
T H E E V O L U T I O N O F T H E R E S E A R C H Q U E U E I N G PACKAGE

Charles H. Sauer Edward A. MacNair

IBM Entry Systems Division
Austin, Texas 78758

IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

Queueing networks are important as performance models of systems where
performance is principally affected by contention for resources. The Research
Queueing Package (RESO) is a weli known software package for definition
and solution of queueing network models. This paper examines the history of
the several versions of RESQ and why RESQ has evolved as it has. Successes,
failures and relationships to other research and development efforts are de­
scribed. The paper assumes the reader has some familiarity with queueing
network models and queueing nelwork software.

1, INTRODUCTION

I.J. Queueing Nelwork Models

Queueing models have been used for decades in studying the performance of manufactur­
ing lines, communication networks and similar systems. In the 1960's there were dramatic
insights into queueing network models of communication networks and computer systems
(particularly those of Kleinrock [24] and Buzen [9]) and product form solutions of queueing
networks (particularly those of Jackson [22] and Buzen [9]). In turn, in the 1970's and early
1980"s there has been substantial additional progress in the understanding and application of
queueing network models. This paper assumes the reader is sufficiently familiar with this work
that a review is not necessary. For general discussion of queueing network models, see the
recent textbooks in the area (e.g., Sauer and Chandy [48], Lavenberg el al [27], Lazowska el
al [30]) and the queueing network issues of Computing Surveys (September 1978) and
Computer (April 1980).

1.2. Queueing Nelwork Software

For queueing network models to be used effectively, appropriate software is necessary lo
construct models and to obtain solutions for models. This paper traces the evolution and
design issues in one of the earliest and most influential packages of queueing network soft­
ware, the Research Queueing Package (RESQ). An appendix shows a frequently used
example model constructed and solved using the current version of RESQ. The bibliography
at the end of the paper includes most of the previous papers and technical reports on RESQ,
except for those restricted to IBM internal use. Included in the bibliography are two prior
retrospectives [51,54], a monograph [53], user manuals [55.56,57], and a product availability
notice [52].

The product version of RESQ is available to IBM customers in the U.S., Puerto Rico,
Europe, the Middle East and Africa. Some of the RESQ characteristics described in this paper
are considered experimental and are not included in the product version of RESQ. Similarly,
this paper speculates about future development of RESQ; this should not be taken as indica­
tion of future additions to the product version of RESQ.

There are many other packages of queueing network software. The bibliography includes
references for most of the well known packages, but does not attempt to include references for
all of the packages that have been developed. A few of these are discussed to the extent they
relate to RESQ.

1.3. Significance of RESQ

RESQ success and importance is due to the multiple roles it plays and the synergism
between these roles.

• The primary role of RESQ is as a modeling package for practical performance evaluation
work. RESQ has been used throughout IBM on a wide variety of modeling problems,
including not only computer/communication system modeling, but also manufacturing
[35], emergency building evacuation and others. RESQ is currently installed on over 130
IBM internal computing systems.

RESQ is a flexible and convenient tool for research in performance evaluation methodolo­
gy. Areas covered in this research include simulation methodology, e.g.. output analysis,
stopping rules, etc., and approximate solution methods, e.g., development of new me­
thods, empirical validation of methods, etc.

• RESQ is an effective vehicle for making available new results in performance methodolo­
gy, both Ihose developed using RESQ, e.g., in the areas just cited, and those developed
without using RESQ, e.g., new algorithms for exact solution of queueing networks.

• The RESQ concepts themselves are research topics, e.g., the appropriate definition of
queueing network extensions for effective modeling of general classes of systems, the
development of languages for expressing definitions of queueing networks, etc.

Al l of these roles will be discussed further in the remainder of the paper, as appropriate. The
remainder of the paper is largely chronological, first addressing work prior to the first RESQ
prototype, then the prototype, the first widely used version, the current version and future
possibilities.

2. PRE-RESQ SOFTWARE AND CONCEPTS

2.1. ASQ, QAL. QSIM. APLOMB (and the Origin of the Passive Queue)

Keller developed the ASQ (Arithmetic Solution of Queues) package [23] based upon
Buzen's algorithms for queueing networks with product form solutions [9] and Chandy's
generalization of the class of networks with product form solution [I I] . ASQ provided an
interactive dialogue for definition and solution oF networks, making it possible to produce
results with much less effort than with conventional simulation languages. ASQ was a great
inspiration to Sauer and other students at the University of Texas at Austin, for it both
demonstrated the power of a such a tool and pointed out the opportunity to develop more
powerful tools, particularly for networks without product form solutions.

I
I

\

I

FREEL.PP

H *
Figure 1. Cenlral Server Model with Peripheral Processors

One of the primary limitations of product form networks was (and is) that a job could
only hold one resource at a time. As part of a planned dissertation, F. Palacios-Comez was
seeking the solution of the model shown in Figure 1. The model was intended to represent the
CDC 6600 in use at the University of Texas. The model was based on Buzen's central server
modtl [9], but included representation of acquisition of one of the 6600's peripheral proc­
essors to perform I / O , and the subsequent release of that processor. (The 6600 CPU cannot
perform I / O and is dependent on the peripheral processors for non-computational functions.)

Foster, Sauer and Waggoner generalized the construct used in the Palacios-Gomez model,
and termed it a "passive server." (Passive as opposed to the "active" servers of traditional
queueing models.) The passive server was a key concept in QAL (Queueing Analysis Lan­
guage) which they proposed as a general language, analogous to a programming language, for
specification of queueing models [19]. Though the definition of passive servers had flaws, the
concept would be refined and, with the name "passive queue," become a key aspect of the
success of RESQ.

QAL was intended to be implemented with a variety of solution techniques, but the only
implementation was the QSIM simulation program of McGehearty [19]. There were three
principal problems with QAL. First, there was little direct consideration given to non-
simulation implementations and even simulation implementation was difficult. Second, Q A L
provided little support for representing distinct classes of jobs. Third, because QAL was
designed as a language and not an interactive dialogue it required greater understanding on the
part of the user.

While still at the University of Texas, Sauer began development of the simulation program
APLOMB [42]. This program was initially intended to be a vehicle for empirical validation of
approximate solution methods for queueing networks, not an interesting work in its own right.
APLOMB provided the regenerative method for estimation of confidence intervals [17] and a
sequential slopping rule to determine run lengths [29]. (The name was chosen because the
program handled a difficult problem, simulation output analysis, with aplomb.)

After joining IBM, Sauer continued to develop APLOMB, with the intent that it be used
for hybrid simulation of SNA networks [61]. New constructs, similar to those of QAL, were
added to the program, but the construct definitions were chosen much more carefully than
with QAL. Special care was taken to allow efficient implementation, to allow the use of the
regenerative method and to provide more unified definitions [43]. For example, the QAL

definition of passive servers considered two types of passive servers, reusable and consumable,
which were combined into a single, more useful definition.

This implementation of APLOMB was in Fortran 66. There was no user interface as
such, but rather a model would be defined by assigning values to variables and calling
subroutines. Model simulation was effected by calling an event handling subroutine, and
model results were obtained from program variables after return from that routine.

t
2.2. IQNA

One of the other fundamental limitations of product form queueing networks is that
FCFS queues must have exponential service time distributions. Chandy, Herzog and Woo
developed a general iterative approach for approximate solution of networks with general
service time distributions at FCFS queues [13], Woo and MacNair refined this approach for
solution of networks with several types of jobs and with priority scheduling. They implement­
ed this approach in a PL/1 program, IQNA (Iterative Queueing Network Analysis).

2.3. QNET4

Reiser and Kobayashi developed a computational algorithm similar to Buzen's which
handled a more general class of product form networks, including mixtures of open and closed
routing chains [39]. The QNET4 program of Reiser [37] incorporated this algorithm. QNET4
was implemented in APL and provided interactive dialogues for definition, solution, listing and
modification of models. The user interface of QNET4 would become the basis for the initial
RESQ user interface.

Another significant aspect of QNET4, especially from a RESQ perspective, was that
QNET4 broke from the tradition of previous software and literature which considered jobs
belonging to classes which are "global" in the sense that jobs remain in the same class when
they move from queue to queue unless they explicitly change class. QNET4 introduced the
concept of local classes explicitly partitioned into routing chains; a queue has one or more
local classes for each routing chain of jobs which may visit the queue. Jobs change class each
time they leave a queue but never change from one chain to another. (Global classes must
also be partitioned into routing chains for non-simulation solutions. This is often overlooked.)
The two representations of job classes are of equivalent generality. However, the local class
representation is often more convenient for the user and simplifies implementation of solution
methods [27,48].

Unlike APLOMB and IQNA, QNET4 was distributed to IBM locations outside of
Yorktown and became popular among IBM performance analysts. However, it was not able to
handle the general nelwork characteristics considered by the other two programs.

3. THE PROTOTYPE VERSION OF RESQ

By late 1975, it was quite evident that APLOMB needed a convenient user interface and
that QNET4 needed to be able to deal with queueing networks which violated product form
conditions. Since, QNET4 had a significant IBM user community, it was natural to extend the
QNET4 model definition dialogue to support the generalizations supported by IQNA and to
support the new constructs in APLOMB, e.g., passive queues.

Initially, the objective was to develop a prototype system quickly. The existing code of
APLOMB, IQNA and QNET4 was used essentially intact. Since these three programs used
three different languages, Fortran, P L / I and APL, respectively, communication between the

dialogues in APL and the APLOMB/IQNA solution portions was through files. Using the
CMS stack facilities of VM/370 , it was possible to give the appearance of a single program.

Besides the obvious problems that result when programs are patched together this way,
there were two main problems with this prototype. First, the code was more installation
dependent than anticipated, and it was troublesome to move the object code to other installa­
tions. Second, and more significant, was the implicit assumption that the user would construct
small models, typically on the order of ten queues. There were several unfortunate conse­
quences of this assumption, some of which were not rectified until the second version of
RESQ. For example,

• On basis of principle, it was decided that the model definition dialogue should not include
solution method specific characteristics. As part of the model solution dialogue, when
using simulation, the user specified characteristics such as initial state, regeneration state
and run length criteria. Though marginally acceptable for small models, this made it
unnecessarily tedious to solve larger models for a range of parameter values.

Rather than identify elements symbolically, the elements (e.g., queues, classes,
allocate/release nodes for passive queues) were identified numerically, and the user had
to specify the numbers of each type of element at the beginning of the model definition
dialogue.

• There was no "batch" mode of model definition and solution - the user had to use the
interactive dialogues.

There was no facility for macro definition of submodels.

Some of these problems could be alleviated by using the procedure level interface to the
solution packages, but thai approach does not provide the convenience such a tool should
provide, nor does it solve all of the above problems.

In addition to these general problems, there were problems with the underlying technolo­
gy of each of the solution programs. ONET4 suffered from the now well known numerical
problems of the "convolution" algorithm [48]. IQNA used heuristic methods which failed
entirely on some problems. The regenerative method used in APLOMB for confidence
interval analysis required considerable sophistication to be used for general models.

In spile of these problems, the prototype was useful both for practical modeling problems
and for research in modeling methodology. For example, several empirical studies in simula­
tion output analysis were conducted using the prototype [28,29], For a more thorough
overview of the prototype version, see Reiser and Sauer [411 and Sauer, Reiser and MacNair
[60].

4. RESQ1

4.1. Implementation and Support

The prototype was considered a success, but did not realize the potential of such software
because of the above problems. Late in 1976, work began on what became known as RESQ1,
a well integrated implementation of essentially the same function as the prototype. From an
implemcntor's view, the natural implementation language was PL/1 . There already existed a
P L / I version of QNET4, IQNA was written in P L / I , and the dialogue components could be
fairly mechanically rewritten in P L / I .

However, there were two formidable problems, the effort required to re-implement
APLOMB in P L / I , and the insistence on support in APL from many users and potential users.
The first problem was addressed by constructing a translator in SNOBOL to translate Fortran,
as used in APLOMB, to P L / I . The elapsed time between beginning work on the translator
and getting a running P L / I version of APLOMB was approximately two weeks, and this
achievement was a great relief to those who anticipated a much, much larger effort. The
second problem was addressed by redundancy: though the complete system was implemented
in P L / I , the user interface was also implemented in APL.

A RESQ Workshop was held in Yorktown in the Spring of 1977, to announce the
availability (within IBM) of RESQ1. This initial Workshop began an annual tradition of
bringing together both experienced and potential users for tutorials, presentations on applica­
tions and exchanges on planned development and suggested improvements. A periodic RESQ
Newsletter was also initiated. Besides the capabilities of the package itself, a major factor in
the ensuing popularity of RESQ1 within IBM was the consultation and other support made
available to users.

RESQ1 came into use at IBM laboratories throughout the world. Users began to
recognize that RESQ was applicable to a wide variety of modeling problems, not just computer
and communication system modeling. However, usage of the non-simulation components of
RESQ became a small part of the overall usage; the dominance of the simulation mode
continues today.

Most of the reports dealing with RESQ1 remain IBM proprietary. In addition to the
previously cited papers dealing with the prototype, a report by Sauer and MacNair [49] gives
an extensive set of examples using RESQ1.

4.2. Problems Solved and Unsolved

The simulation specific information was made part of the model definition dialogue, and
many minor improvements and extensions were made, but RESQ1 still suffered from most of
the "thinking small" problems of the prototype. The interactive dialogues were extended to
allow suspension and later resumption of dialogue. The model definition component was
modified to allow file input as well as terminal input, in the form of "dialogue files." But it
remained awkward, at best, to construct large simulation models. (This is not to say that large
models were not constructed — some models were constructed with hundreds of queues, and
even larger models were constructed using the procedural level interface.) In addition to the
regenerative method for confidence intervals, the classical method of independent replications
was added to the program in a "scaffolded" manner.

5. RESQ2

5.1. The Implementation Plan

With the evident inherent limitations of the RESQI programs, there was the natural
inclination to begin anew with the design and implementation process. However, (his inclina­
tion was tempered by reality: First, it was necessary to provide an easy migration path for
users of the existing programs. So the user interface could not be changed radically, and there
had to be a way to convert an existing model to use a new implementation. Second, as a
Research project, simply reimplementing to "do it right" could not be justified. Rather,
substantially new value had to be provided to justify a major implementation effort.

In the spring of 1977, a comprehensive plan for substantial additional development was
completed. The key aspect of this plan was that a new, compiler-like translator was to be
constructed to support the user interface.

• The language to be accepted by the translator looked much like a transcript of an
interactive dialogue in RESQ1. Thus learning the language would be easy for a
RESQ1 user.

• Though the system would be oriented toward "batch" translation of model defini­
tions, the same translator would serve as an interactive prompter.

• "Templates," would allow macro definition of both queues and entire subnetworks.
(Queue templates are called "queue types" and subnetwork templates are called
"submodels.") Libraries of templates would be supported. In addition to the transla­
tor, a macro expansion processor would be implemented as a "front end" of the
solution system.

Symbolic identification of network elements would be fully supported.

• Arrays of network elements, including macro invocations of submodels, would be
supported.

< General expressions to be evaluated during simulation would be supported.
(Previously, a limited set of dynamically evaluated expressions had been supported.)

• The definitions of network elements were to be generalized significantly. In particu­
lar, considerable flexibility was to be added to the passive queue, as discussed below.
Fission nodes, which allow a job to create related jobs, and fusion nodes, which
allow related jobs to reunite as one, would be extended to allow multiple generations
of related jobs.

• In addition to normal macro invocation of submodels, "substitutions," would be
supported. Substitutions would allow heuristic, hierarchical solutions of models with
the potential of greatly reduced computational requirements.

• IQNA would no longer be supported because of low usage and because it would be
largely superceded by the substitution support.

• New numerical solution methods, e.g., Mean Value Analysis [40], would be support­
ed.

• The method of independent replications would be added as an integral part of the
simulation support, and other methods would be added as appropriate.

Sauer, MacNair and Salza [59] describes the strategy in more detail.

5.2. The Implementation of RESQ2

With one exception, the above plan was followed closely, resulting in Version 2 of RESQ.
Empirical evidence [5] indicates that the substitution support would be of considerably less
practical value than anticipated. Thus there is no longer a plan to support substitutions in
RESQ.

A batch only version of the translator and an initial version of the macro expansion
processor were ready in the spring of 1980, along with many of the planned extensions to the
simulation component. The integrated batch/interactive version of the translator was first
available that summer. Incremental development has continued since then.

Having the same translator capable of both "batch" and interactive modes has been
remarkably useful in model construction because (1) in interactive mode, it is possible to
immediately make revisions or corrections to prior dialogue by escaping to an editor to revise a
transcript of the dialogue so far (a dialogue file) and to then continue in prompting mode after
the (incomplete, edited) dialogue file has been reparsed and (2) revision of an existing model
is possible in mixed mode by deleting portions of the existing dialogue file and using interac­
tive mode for specification of revisions or additions. This mixed mode capability provides the
"user friendliness" of interactive mode without losing the flexibility and efficiency of "batch"
mode for development of significant models. More recently, a full screen, menu oriented
mode has been added.

5.3. Passive Queue Extensions

Typically, passive queues are used for convenient representation of simultaneous resource
possession. A job typically acquires tokens of a passive queue and holds on to them while
visiting other queues (active and/or passive queues) and model elements The job explicitly
releases or destroys its tokens when it no longer needs them. A second major use of passive
queues is to model mechanisms such as communication protocols and protocols for channel-
device interaction. (Such usage may involve other RESQ elements. See Sauer and MacNair
[53] for examples.)

POOL OF TOKENS

TRANSFER CREATE <iOB FLOW DESTROY
TOKEN FLOW

Figure 2. Passive Queue

The RESQ design assumes the tokens of a passive queue to be homogeneous. This is
consistent with most applications and simplifies implementation. However, there are situations
where the effect of heterogeneous tokens is desirable. (PAWS supports heterogeneous tokens
explicitly [34].) The desired effect is obtained in RESQ2 through AND and OR allocate nodes.
An A N D allocate node indicates a job must receive simultaneous allocation from several

different queues, and an OR allocate node indicates a job must receive allocation from any
one of several passive queues.

RESQ2 also provides transfer nodes for passing tokens back and forth between related
jobs (created by fission nodes). CHANGE allocate nodes allow a job to in crease/decrease
the number of tokens it holds from a given pool.

Support for preemptive priority scheduling al passive queues is a relatively recent addition
to RESQ2. Appropriate definition of this discipline is difficult because of the implied side
effects on other queues, both active and passive, when tokens are forcibly taken away from a
job. The basic strategy is to put the job in a suspended state, not allowing it to move or
receive resources, as soon as possible after the tokens are preempted.

•

5.4. Other RESQ2 Extensions

An implementation of Mean Value Analysis [40,62j has displaced QNET4 as the primary
numerical solution component in RESQ2. An implementation of the Tree Convolution
algorithm for product form networks [261 has also been added. The spectral method for
confidence intervals [21] has been added for simulation analysis. Interactive simulation is now
supported, in the sense that it is now convenient to continue a simulation run after examining
results, either because one wants to see results at intermediate points in the run or because
one is not satisfied with results at the planned run length or stopping condition.

6. FUTURE POSSIBILITIES

Incremental development of RESQ continues, but there are no clear plans for major
enhancements of RESQ at this time. There are obvious possibilities worthy of consideration.
One is to provide an interactive graphics interface. However, initial experience with a
prototype [6] suggests that currently economical hardware is inadequate for the large models
often constructed by RESQ users. Another possibility would be to develop a version designed
for personal computers, now that these machines are approaching the capacities of the
mainframes RESQ was initially developed for.

There is also the possibility of additional specialized, higher level modeling tools based on
RESQ. One such tool, SNA/PET [4] already is in use and undergoing further development.
Others, in areas such as manufacturing, seem reasonable possibilities.

ACKNOWLEDGEMENTS

M . Reiser and L.S. Woo made substantial contributions to the initial version of RESQ.
J.F. Kurose and S. Salza helped define the syntax and semantics of the language used in the
current version of RESQ and implemented the translator for that language. L. Berger and P.
Loewner have made extensions in the model construction phase of RESQ. A. Blum,
P. Heidelberger, E. Jaffe, K. Plochinski, P. Rosenfeld, S. Tucci and P.D. Welch all contrib­
uted to the definition and implementation of the numerical and simulation components of
RESQ. K. Bharath-Kumar and P. Kermani have help spur further refinement of RESQ
through their work on SNA/PET. We are indebted to numerous RESQ users for the many
suggestions we have received, for the discussions that have helped crystallize our thinking and
improve RESQ, and for the encouragement we have received in the development of this
methodology and this tool. Finally, we would like to thank the many students at the IBM
Systems Research Institute who have helped us in focusing our attention on the RESQ
concepts.

BIBLIOGRAPHY

1. F. Baskett, K .M. Chandy, R.R. Munlz and F.G. Palacios, "Open, Closed, and Mixed
Networks of Queues with Different Classes of Customers," JACM 22, 2 (April 1975)
pp. 248-260.

2. BGS Systems, "BEST/1 Product Description," BE77-010-2, Lincoln, Massachusetts,
January 1977.

3. H. Beilner and J. Mater, "Simulation and Analytic Modelling of Computer System
Performance Using the Software Tool COPE," ECOMA 10 Conference Proceedings
(1982) pp. 179-183.

4. K. Bharath-Kumar and P. Kermani, "Performance Evaluation Tool (PET): An Analysis
Tool for Computer Communications Networks," IEEE Journal of Selected Areas in
Communications, (January 1984).

5. A. Blum, L . Donatiello, P. Heidelberger, S.S. Lavenberg and E.A. MacNair,
"Experiments with Decomposition of Extended Queueing Network Models," IBM
Research Report RC-10213, Yorktown Heights, New York (October 1983). To appear,
Proceedings International Conference on Modelling Techniques and Tools for Performance
Analysis, Paris, May 16-18, 1984.

6. A. Blum, E.A. MacNair and C.H. Sauer, "The Research Queueing Package: Graphics
Developments," Proceedings Gl/NTG 83: Measurement, Modelling and Evaluation of
Computer Systems, University of Stuttgart (February 1983).

7. M . Booyens, P.S. Kritzinger, A. Krzesinski, P. Teunissen and S. Van Wyk, "SNAP: An
Analytic Multiclass Queueing Network Analyzer," Technical Report ITR83-08-00
(September 1983) Institute for Applied Computer Science, University of Stellenbosch.

8. J.C. Browne, K .M. Chandy, R.M. Brown, T.W. Keller, D. Towsley and C.W. Dissley,
"Hierarchical Techniques for Development of Realistic Models of Complex Computer
Systems," IEEE Proceedings 63, 6 (June 1975) pp. 966-975.

9. J.P. Buzen, Queueing Network Models of Multiprogramming, Ph.D. Thesis, Harvard
University, Cambridge, Mass. (1971). Garland Publishing, New York (1980).

10. J.P. Buzen, "Computational Algorithms for Closed Queueing Networks with Exponen­
tial Servers," Communications of the ACM 16, 9 (September 1973) pp. 527-531.

11. K .M. Chandy, "The Analysis and Solutions for General Queueing Networks," Proc.
Sixth Annual Princeton Conference on Information Sciences and Systems, Princeton
University (March 1972).

12. K.M. Chandy, U. Herzog and L.S. Woo, "Parametric Analysis of Queueing Networks,"
IBM J. of Research and Development 19, 1 (January 1975) pp. 43-49.

13. K.M. Chandy, U. Herzog, and L. Woo, "Approximate Analysis of General Queuing
Networks," IBM Journal of Research and Development 19, (January 1975).

14. K .M. Chandy and D. Neuse, "Linearizer: A Heuristic Algorithm for Queueing Network
Models of Computer Systems," Communication of the ACM 25, 2 (February 1982) pp.
126-133.

15. K.M. Chandy and C.H. Sauer, "Approximate Methods for Analyzing Queueing Network
Models of Computer Systems," ACM Computing Surveys 10, 3 (September 1978) pp.
281-318.

16. M.A. Crane and D.L. Iglehart, "Simulating Stable Stochastic Systems Part I I : Markov
Chains," JACM 21, 1 (1974) pp. 114-123.

17. M.A. Crane and A.J. Lemoine, An Introduction to the Regenerative Method for Simula­
tion Analysis, Lecture Notes in Control and Information Sciences, Vol. 4, Springer-
Verlag, New York (1977).

18. G.S. Fishman, Concepts and Methods in Discrete Event Digital Simulation, Wiley, New
York (1973).

19. D.V. Foster, P.F. McGehearty, C.H. Sauer and C.N. Waggoner, "A Language for
Analysis of Queueing Models," Proceedings Fifth Annual Pittsburgh Modeling and
Simulation Conference, University of Pittsburgh, April 1974.

20. G. Gordon, The Application of GPSS V to Discrete System Simulation, Prentice-Hall,
Englewood Cliffs, N.J. (1975).

21. P. Heidelberger and P.D. Welch, "A Spectral Method for Confidence Interval Genera­
tion and Run Length Control in Simulations," CACM 24, 4 (April 1981) pp. 233-245.

22. J. R. Jackson, "Jobshop-Like Queueing Systems," Management Science 10, 1 (October
1963) pp. 131-142.

23. T.W. Keller, "ASQ Manual," Dept. of Computer Sciences Report TR-27, University of
Texas, Austin, Tx„ 1973.

24. L. Kleinrock, Communication Nets: Stochastic Message Flow and Delay, McGraw-Hill,
New York (1964). Reprinted, Dover Publications (1972).

25. P.J. Kiviat, R. Villanueva and H. Markowitz, The SIMSCR/PT I I Programming
Language, Prentice-Hall, Englewood Cliffs, N.J. (1969).

26. S.S. Lam and Y.L. Lien, "A Tree Convolution Algorithm for the Solution of Queueing
Networks." CACM 26, 3 (March 1983) pp. 203-215.

27. S.S. Lavenberg, editor, Computer Performance Modeling Handbook, Academic Press,
Inc., New York (1983).

28. S.S. Lavenberg, T.L. Moeller and C.H. Sauer, "Concomitant Control Variates Applied
to the Regenerative Simulation of Queuing Systems," Operations Research 27, 1,
January-February 1979.

29. S.S. Lavenberg and C.H. Sauer, "Sequential Stopping Rules for the Regenerative
Method of Simulation," IBM J. of Research and Development 21, 6 (1977) pp. 545-556.

30. E.D. Lazowska, J. Zahorjan, G.S. Graham and K.C. Sevcik, Quantitative System
Performance: Computer System Analysis Using Queueing Nelwork Models, Prentice-Hall,
(1984).

31. E.A. MacNair and C.H. Sauer, "The Research Queueing Package: A Primer," Proceed­
ings of SHARE60. (February 1983) pp. 29-37.

32. J. McKenna. D. Mitra and K.G. Ramakrishnan, "A Class of Closed Markovian Queuing
Networks: Integral Representations, Asymptotic Expansions, and Generalizations," The
Bell System TechnicalJournal 60, 5 (May-June 1981) pp. 599-641.

33. D. Merle, D. Potier and M. Veran, "A Tool for Computer System Performance Analy­
sis," Performance of Computer Installations, Ferrari, D. (editor), North-Holland (1978)
pp. 195-213.

34. D. Neuse, K.M. Chandy, J. Misra and R. Berry, "Simulation Tools in Performance
Evaluation," CPEUG 81, (Computer Performance Evaluation Users Group), San
Antonio, Texas (November 1981) pp. 331-334.

35. W.J. Oales, "Automated Manufacturing Analysis Using RESQ," IBM Technical Report
TR 08.152, Lexington, Kentucy (September 1982).

36. Quantitative System Performance, "MAP User Guide," (1983).
37. M . Reiser, "QNET4 User's Guide," IBM Research Report RA-71, Yorktown Heights,

New York (1975).
38. M. Reiser, "Interactive Modeling of Computer Systems," IBM Systems Journal 15, 4

(1976) pp. 309-327.
39. M. Reiser and H. Kobayashi, "Queueing Networks with Multiple Closed Chains: Theory

and Computational Algorithms," IBM J. of Research and Development 19, 3 (May
1975).

40. M. Reiser and S.S. Lavenberg, "Mean Value Analysis of Closed Multichain Queueing
Networks," JACM 27, 2 (April 1980) pp. 313-322.

41. M. Reiser and C.H. Sauer, "Queueing Network Models: Methods of Solution and their
Program Implementation," in K .M. Chandy and R.T. Yeh, editors, Current Trends in
Programming Methodology, Volume III: Software Modeling and Its Impact on Perform­
ance. Prentice-Hall (1978) pp. 115-167.

42. C.H. Sauer, "Simulation of Generalized Queueing Networks," Proceedings 1975 Summer
Computer Simulation Conference, San Francisco, July 1975.

43. C.H. Sauer, "Characterization and Simulation of Generalized Queueing Networks," IBM
Research Report RC-6057, Yorktown Heights, New York, May 1976.

44. C.H. Sauer, "Passive Queue Models of Computer Networks," Computer Networking
Symposium, Gaithersburg, Maryland (December 1978). IEEE Catalog No. 78CH1400-
1.

45. C.H. Sauer, "Computational Algorithms for State-Dependent Queueing Networks,"
ACM Transactions on Computer Systems 1, 1 (February 1983) pp. 67-92.

46. C.H. Sauer, "Approximate Solution of Queueing Networks with Simultaneous Resource
Possession," IBM J. of Research and Development 25 (1981) pp.894-903.

47. C.H. Sauer and K . M . Chandy, "Approximate Solution of Queueing Models," IEEE
Computer 13, 4 (April 1980) pp. 25-32.

48. C.H. Sauer and K.M. Chandy, Computer Systems Performance Modeling, Prentice-Hall,
Englewood Cliffs, NJ (1981).

49. C.H. Sauer and E.A. MacNair, "Computer/Communication System Modeling with
Extended Queueing Networks," IBM Research Report RC-6654, Yorktown Heights,
New York (July 1977).

50. C.H. Sauer and E.A. MacNair, "Simultaneous Resource Possession in Queueing Models
of Computers," Performance Evaluation Review 7, 1 and 2 (1978), pp. 41-52.

51. C.H. Sauer and E.A. MacNair, "Queueing Network Software for Systems Modeling,"
Software-Practice and Experience 9. 5 (May 1979) pp. 369-380.

52. C. H. Sauer and E.A. MacNair, "The Research Queueing Package Version 2: Availabili­
ty Notice," IBM Research Report RA-144, Yorktown Heights, New York (August
1982).

53. C.H. Sauer and E.A. MacNair, Simulation of Computer Communication Systems.
Prentice-Hall, Englewood Cliffs, NJ (1983).

54. C.H. Sauer, E.A. MacNair and J.F. Kurose, "The Research Queueing Package: Past,
Present and Future," Proceedings 1982 National Computer Conference (1982) pp.
273-280.

55. C.H. Sauer, E.A. MacNair and J.F. Kurose, "The Research Queueing Package Version
2: Introduction and Examples," IBM Research Report RA-138, Yorktown Heights, New
York (April 1982).

56. C.H. Sauer, E.A. MacNair and J.F. Kurose, "The Research Queueing Package Version
2: CMS Users Guide," IBM Research Report RA-139, Yorktown Heights, New York
(April 1982).

57. C.H. Sauer, E.A. MacNair and J.F. Kurose, "The Research Queueing Package Version
2: TSO Users Guide," IBM Research Report RA-140, Yorktown Heights, New York
(April 1982).

58. C.H. Sauer, E.A. MacNair and J.F. Kurose, "Queueing Network Simulations of
Computer Communication," IEEE Transactions on Communications COM-32. 1 (January
1984).

59. C.H. Sauer, E.A. MacNair and S. Salza, "A Language for Extended Queueing Net­
works," IBM J. of Research and Development 24, 6 (November 1980) pp. 747-755.

60. C.H. Sauer, M. Reiser and E.A. MacNair, "RESQ - A Package for Solution of General­
ized Queueing Networks," Proceedings 1977 National Computer Conference (1977) pp.
977-986.

61. C.H. Sauer, L. Woo and W. Chang, "Hybrid Analysis/Simulation: Distributed Net­
works," IBM Research Report RC-6341, Yorktown Heights, New York, June 1976.

62. S. Tucci and E.A. MacNair, "Implementation of Mean Value Analysis for Open, Closed
and Mixed Queueing Networks," Computer Performance 3, 4 (December 1982) pp.
233-239.

APPENDIX

Effective use of RESQ is based on constructing diagrams representing queueing network
models. Figures A. 1 and A.2 depict a hypothetical computer system model. (This network is
similar to networks used as computer system models since the mid sixties.)

TERMINALS

loJ
4 CSSM1J-

Figure A . l . - Terminals and Submodel

MEMORY

SETCMDTYPE

(INPUT) GETMEMORY

DECRCYCLE i FREEMEMORY

(OUTPUT)

Figure A.2. - Computer System Submodel

The SETUP command invokes the RESQ prompter/translator for definition or revision of
a model. If a RESQ user realizes a semantic error was made in some previous portion of the
dialogue, he or she may temporarily suspend the dialogue, correct the error with an editor and
then resume the dialogue at the point of suspension. A transcript (a "dialogue file") of a
model definition dialogue is kept for the user by the translator. The user may edit this
transcript and then have it translated again, with or without additional interactive dialogue.

We will now give an example of a possible SETUP dialogue for the model represented by
Figures A . l and A.2, assuming RESQ is used with CMS. As we present the dialogue we will
make arbitrary assumptions about system characteristics previously left unspecified. The
example is presented as if a scrolling terminal is used, to simplify formatting of this document.
In our examples, upper case characters will correspond to prompts from RESQ components
and lower case will generally be used for replies from the user. -

setup
MODEL:csm /'model name - Computer System Model*/
RESQ2 T r a n s l a t o r V2.04 (01/19/82) Time: 13:56:12 Date: 01/29/B2
MODEL I S CSM

METHOD:s imulation
NUMERIC PARAMETERS:thinktime u s e r s

NUMERIC PARAMETERS:
NUMERIC IDENTIFIERS:userframes /* a constant */

USERFRAMES:50
NUMERIC IDENTIFIERS:

Each RESQ job has a vector, JV, used to store job specific information. In our example
system we assume that there are three types of commands which may be issued by terminal
users. JV(1) will be used to store the command type, and JV(2) will be used to count the
number of CPU-I/O cycles for a particular command.

MAX JVihow /* request f o r he l p message */
ENTER AN ARITHMETIC EXPRESSION FOR THE EXTENT OF THE JV VECTOR

MAX JV:2 command type, 2: c y c l e count*/

The second major section of dialogue is for definition of queues. First we may define a
"queue type", a macro definition of a queue dialogue. We indicate here that we choose not to
define a queue type by giving a null reply. We will illustrate definition and invocation of a
user defined queue type later in the dialogue.

QUEUE TYPE:

Next we define individual queues.
•

QUEUE:terminalsq
TYPE:is / " I n f i n i t e S e r v e r * / \<
CLASS L I S T : t e r m i n a l s

SERVICE TIMES:thinktime
CLASS L I S T :

QUEUE:

The third major section of dialogue is for definition of additional nodes not belonging to
queues. "Nodes" in RESQ are functional elements in the routing, including the class just
defined for the terminals. No more nodes appear outside of the submodel of Figure A . l , so
we give null replies to the prompts for names of these nodes.

SET NODES:
FISSION NODES:
FUSION NODES:

J

The fourth major section of dialogue is for definition of submodels. The submodel definition
dialogue closely parallels the dialogue for model definition, including subsections correspond­
ing to those sections we have already seen. There will also be a routing subsection corre­
sponding to the model routing section which follows submodel definition and invocation.

SUBMODEL:cssm /"Computer System Submodel*/
NUMERIC PARAMETERS:pageframes
NUMERIC PARAMETERS:
NODE PARAMETERS:

Routing "chains" are used to define the routing among nodes of a network. A submodel must
have at least one chain parameter in order to connect the nodes inside of the subnetwork with
nodes outside of the subnetwork.

CHAIN PARAMETERS!interactiy
CHAIN PARAMETERS:
NUMERIC IDENTIFIERS:cmdtype c y c l e c o u n t

CMDTYPE:1 /*JV(1) t o be used t o i n d i c a t e command type*/
CYCLEC0UNT:2 /*JV(2) t o be used t o count CPU-I/O c y c l e s * /

NUMERIC ID E N T I F I E R S : c p i o c y c l e s (3) pageneed(3)
CPIOCYCLES: 8 15 50
PAGENEED: 20 21 30

NUMERIC IDENTIFIERS:cputime
CPUTIME:.025 /*mean time i n seconds*/

NUMERIC IDENTIFIERS:
QUEUE TYPE:
QUEUE:memory

TYPE:passive
TOKENS:pageframes
DSPL:fcfs
ALLOCATE NODE LIST:getmemory

NUMBERS OF TOKENS TO ALLOCATE :pageneed(j v(cmdtype))
ALLOCATE NODE L I S T :
RELEASE NODE LIST:freememory
RELEASE NODE LIST:
DESTROY NODE L I S T :
CREATE NODE L I S T :

QUEUE:cpuq "
TYPE:ps /'processor s h a r i n g * /
CLASS LIST:cpu

SERVICE TIMES:cputime
CLASS LIST:

QUEUE:

Set nodes are used to perform assignment statements in the sense of programming languages.

SET NODES:setcmdtype
ASSIGNMENT LIST: j v (c m d t y p e) = d i s c r e t e { 1 , . 8 ; 2 , . 1 5 ; 3 , . 0 5) , ++

j v (c y c l e c o u n t) = c p i o c y c l e s (j v (c m d t y p e))
SET NODES:decrcycles

ASSIGNMENT L I S T : j v (c y c l e c o u n t) = j v (c y c l e c o u n t) - 1
SET NODES:
FISSION NODES:
FUSION NODES:

The following submodel definition is very sparse, but could be embellished considerably
without changing its subsequent invocations in the submodel cssm.

SUBMODEL:iosys
NUMERIC PARAMETERS:
NODE PARAMETERS:
CHAIN PARAMETERS:interactiv
CHAIN PARAMETERS:
NUMERIC IDENTIFIERS:
QUEUE TYPE:diskdef

NUMERIC PARAMETERS:
NODE PARAMETERS:servicecls
NODE PARAMETERS:

TYPE:fcfS *
CLASS L I S T : s e r v i c e c l s

WORK DEMANDS:.06
CLASS L I S T :

END OF QUEUE TYPE DISKDEF
QUEUE TYPE:
QUEUE:diskq

TYPE:diskdef /* i n v o c a t i o n of above def i n i t i o n */
SERVICECLS:disk

QUEUE:
SET NODES:
FISSION NODES:
FUSION NODES:
SUBMODEL:
INVOCATION:

We have not seen any routing chain definitions yet. The following definition is atypical
because within the submodel there is only one node, "disk", and so no routing within the
submodel will be defined. After giving the name of the chain, we indicate that this chain is to
be completed in the external model, i.e., in the model invoking the submodel "iosys". We
then indicate that "disk" is both the standard entry point and the standard exit point of the
chain. In the invoking model we will refer to "disk" by the synonyms "input" and "output".
The colon prompt (" :") is for a routing transition, as we will see below.

C H A I N : i n t e r a c t i v
T Y P E : e x t e r n a l
INPUT:disk
OUTPUT:disk

CHAIN:
END OF SUBMODEL IOSYS
SUBMODEL:
INVOCATION:iosysl

TYPE:iosys
I N T E R A C T I V : i n t e r a c t i v

INVOCATION:iosys2
TY P E : i o s y s : i n t e r a c t i v /* shorthand p o s i t i o n a l form"/

INVOCATION:

These invocations create two subnetworks with the characteristics of submodel IOSYS. (In
this case the subnetworks consist only of a single queue each.)

The following chain definition is more typical than the previous one. After declaring the
standard entry point to be the set node setcmdtype and the standard exit point to be the
release node freememory, we define the routing among the nodes of the subnetwork.

CHAI"!- i n t e r a c t i v
T Y P E : e x t e r n a l
INPUT:setcmdtype
OUTPUT:freememory
:setcmdtype->getmemory->cpu->iosys1.input i o s y s 2 . i n p u t ; . 5 .5
: i o s y s l . o u t p u t i o s y s 2 . o u t p u t - > d e c r c y c l e s '
:decrcycles->cpu f r e e m e m o r y ; i f [j v (c y c l e c o u n t) > 0) i f (t)

I N I T I A L STATE DEFINITION-
CHAIN : i n t e r a c t i v

NODE L I S T : t e r m i n a l s
INIT POP:tisers

CHAIN:

The simulation run will end when the first of the following limits are reached.

RUN LIMITS-
SIMULATED TIME:3600
EVENTS:50000
QUEUES FOR DEPARTURE COUNTS:cssml.memory

DEPARTURES:500
QUEUES FOR DEPARTURE COUNTS:
NODES FOR DEPARTURE COUNTS:

LIMIT - CP SECONDS:5
TRACE:no

END
NO FATAL ERRORS DETECTED DURING COMPILATION.

The E V A L command invokes dialogue for model solution (e.g., simulation). This
dialogue prompts the user for parameter values, performs the solution and then provides the
user with performance measures requested by the user. For our example model, we might
have the following dialogue with the EVAL command.

e v a l
RESQ2 EXPANSION AND SOLUTION PROGRAM.
MODEL: CSIIi
RESQ2 VERSION DATE: JANUARY 29, 1982 - TIME: 17:00:35 DATE: 01/29/82
THINKTIME:16
USERS:25

Once the parameter values are specified, the model definition is complete and macro-
expansion of the submodel definitions is performed. Then solution commences. When
simulation ends, we get one or more messages indicating why simulation stopped, an error
message or a message indicating no errors were detected, and a summary of the simulation
run.

RUN END: CPU LIMIT
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS

245.77180
5.25
7461

Then we are prompted " W H A T : " meaning "What performance measures do you want to
see?". A repiy of "al l" results in a display of all measures normally provided. Instead of
"al l" , we give now give codes of particular measures and names of particular elements of
interest. (A reply of "how" would provide a tutorial listing all codes.)

WHAT:nd(cssml.memory|
INVOCATION INVOCATION ELEMENT NUMBER OF DEPARTURES

.CSSM1 MEMORY 321

CHAIN: f
END OF SUBMODEL CSSM
SUBMODEL:

Following is the invocation of the submodel, representing the entire computer system, with
values for the numeric and chain parameters.

INVOCATION:cssml
TYPE:cssm
PAGEFRAMES:userframes
I N T E R A C T I V : i n t e r a c t i v

INVOCATION:

A chain in the model proper will be either open, if there are to be provisions for external
arrivals and departures, or closed, if jobs are fixed within the chain (as in our example).

C H A I N : i n t e r a c t i v
TYPE:closed
POPULATION:users
:terminals->cssm1.input
:cssml.output->terminals

CHAIN:

This completes definition of the model proper. The remaining dialogue section pertains to the
specifics of simulation solution.

Many performance measures are gathered by the simulation by default. However,
gathering of distributions of these measures for all appropriate network elements can be
expensive in both time and memory, so distributions are only gathered when requested. The
queueing time for the memory queue, defined as the time of arrival at the allocate node to
departure from the release node, will be the response time seen by terminal users.

QUEUES FOR QUEUEING TIME DIST:cssml.memory
VALUES:1 2 3 4 5 6 7 8

QUEUES FOR QUEUEING TIME DIST:
QUEUES FOR QUEUE LENGTH DIST:cssml.memory
MAX VALUE:users
QUEUES FOR QUEUE LENGTH DIST:
NODES FOR QUEUEING TIME DIST:
NODES FOR QUEUE LENGTH DIST:

RESQ provides three methods for estimating confidence intervals for performance measures,
and two of these three methods also provide for run length control based on the confidence
intervals. In this example we will not illustrate confidence interval estimation or associated
run length control.

CONFIDENCE INTERVAL METHOD:how
CONFIDENCE INTERVAL METHODS ARE: REGENERATIVE, REPLICATIONS, SPECTRAL

OR NONE
CONFIDENCE INTERVAL METHOD:none

For closed routing chains (and open chains which are not initially empty) we must specify
where the jobs of the chain are to be placed initially.

WHAT:qt(cssml.memory)
INVOCATION INVOCATION ELEMENT

CSSM1 MEMORY
MEAN QUEUEING TIME
2.81971

A null reply to "WHAT:" terminates the examination of performance measures.

WHAT:

We are then given the opportunity to extend the simulation run. We may increase any of the
run limits we specified before and let the simulation run until one of the new limits is reached.
In the following we increase the limit on CPU time. (This example was run on a model 3033
processor.)

CONTINUE RUN:yes
LIMIT - SIMULATED TIME:how
LARGER VALUE THAN 3.600E+03 OR NULL TO KEEP THAT VALUE
TRY AGAIN-
LIMIT - SIMULATED TIME:
LIMIT - EVENTS:
LIMIT - CSSM1.MEMORY DEPARTURES:
LIMIT - CP SECONDS:10

When the simulation reaches one of the new limits, we see the old termination message
followed by a new one and a new summary of the simulation run. We then receive the
"WHAT:" prompt again.

RUN END: CPU LIMIT
RUN END: CSSM1.MEMORY DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME:
CPU TIME:

NUMBER OP EVENTS:

366.25098
8.10
1 1528

WHAT:nd(cssml.memory)

INVOCATION INVOCATION
CSSM!

ELEMENT
MEMORY

NUMBER OF DEPARTURES
500 '.'

WHAT:qt

INVOCATION

CSSM1
CSSM1

INVOCATION

CSSM1
CSSM1
IOSYS1
IOSYS2

ELEMENT
TERMINALSQ
MEMORY
CPUQ
DISKQ
DISKQ

MEAN QUEUEING TIME
14.82022
2.95095
0.03118
0.07692
0.07245

WHAT:

CONTINUE RUN:yes
LIMIT - SIMULATED TIME:
LIMIT - EVENTS:
LIMIT - CSSM1.MEMORY DEPARTURES:
1000

LIMIT - CP SECONDS:20
RUN END: CPU LIMIT
RUN END: CSSM1.MEMORY DEPARTURE LIMIT
RUN END: CSSMLMEMORY DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:

753. 42139
16.29
23054

WHAT:qt(cssml.memory)
INVOCATION INVOCATION ELEMENT

CSSM1 MEMORY
MEAN QUEUEING TIME
2.78478

WHAT:
CONTINUE RUN:no

Having terminated both the performance measure dialogue and the simulation, we are now
given the opportunity to define a new set of parameters and start a new run.

THINKTIME:
EXPANSION FINISHED.

A transcript of the dialogue with the E V A L command is also available, e.g., for printing.

