
Simulation of

COMPUTER
COMMUNICATION

SYSTEMS

Charles H. Sauer

IBM Communications Products Division
Austin, Texas 78758

Edward A. MacNair

IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632

Creative Commons Attribution-Noncommercial-No Derivative Works
3.0

United States

http://creativecommons.org/licenses/by-nc-nd/3.0/us/

This book was previously published by Pearson Education, Inc

http://creativecommons.org/licenses/by-nc-nd/3.0/us/

Lib rarx of Congress Cataloging in Publication Data

Sauer. Charles H
Simulation of computer communication systems.

Bibliography: p.
Includes index
I Computer networks—Simulation methods

2 Queuing theory. I MacNair. Edward A II Title.
TK5I05.5.S27 1983 001.64*404 8.3-8711
ISBN 0-13-811125-1

© 1983 by PRENTICE-HALL, INC.,
Englewood Cliffs. New Jersey 07632

All rights reserved. No part of this book
may be reproduced in any form or
by any means without permission in writing
from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

isbn o-13-amas-i

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
EDITORA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro
PRENTICE-HALL OF CANADA, INC., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo
PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

To Caroline and Elizabeth Sauer, Elizabeth, John and Scott MacNair

CONTENTS

PREFACE

1

INTRODUCTION

1.1. Computer Communication Systems. 1
1.2. Performance Evaluation Methodology. 2
1.3. Further Reading. 8

QUEUEING MODELS

2.1. Single Queue Models. 9
2.1.1 The M /M /l Queue. 10
2.1.2 The M /G /l Queue. 12
2.1.3 The M /G /l Queue with Message Classes. 14

2.2. Queueing Networks. 17
2.2.1 Open Networks. 18
2.2.2 Closed Networks. 22

2.2.2.1 Closed Network Characteristics. 22
2.2.2.2 Closed Network Solutions. 27

2.2.3 General Product Form Networks. 31
2.3. Further Reading. 32

VI CONTENTS

3

EXTENDED QUEUEING NETWORKS

3.1. Basic Queueing Networks. 34
3.1.1 Active Queues. 34
3.1.2 Sources and Sink. 35
3.1.3 Routing and Routing Chains. 36

3.2. Network Variables and Functions. 37
3.2.1 Variable Declaration, Naming and Assignment. 38
3.2.2 Job Variables. 39
3.2.3 Chain Variables. 40
3.2.4 Global Variables. 42
3.2.5 Distribution Functions. 43
3.2.6 Routing Predicates. 47
3.2.7 Status Functions. 47

3.3. Passive Queues. 48
3.4. Split, Fission and Fusion Nodes. 50

THE RESEARCH QUEUEING PACKAGE (RESQ) 54

4.1. Simulation Specific Issues. 55
4.1.1 Confidence Intervals. 55
4.1.2 Stopping Rules. 58

4.2. Network Definition. 58
4.3. Submodel Definition. 69
4.4. Further Reading. 73

CONTENTS Vll

5

PROTOCOL REPRESENTATIONS 75
5.1. Modular Representations. 75
5.2. Acknowledgements. 81
5.3. Time Outs. 84
Exercise 5.1 - Negative Acknowledgements without Time Outs. 91
Exercise 5.2 - Negative Acknowledgements and Time Outs. 91
Exercise 5.3 - Store and Forward Buffering. 91
Exercise 5.4 - Congestion Control. 92
5.4. Packetized Messages. 92
Exercise 5.5 - Packetized Messages and Time Outs. 96
5.5. Adaptive Routing. 96
Exercise 5.6 - Quadratic Adaptive Routing. 101
Exercise 5.7 - Routing Estimate Updating. 101
5.6. Flow Control. 102

6

LOCAL AREA NETWORKS 108
6.1. Polling Protocols. 108
Exercise 6.1 - Polling representation. 114
6.2. CSMA/CD Protocols. 114
6.3. Token Protocols. 122

7

COMPUTER SYSTEM EXAMPLES

7.1. Multitasking. 131
7.2. Spooling. 136
7.3. Channel-Device Interaction. 141

131

8

CONCLUSION 148

CONTENTS

BIBLIOGRAPHY 151

INDEX 154

LIST OF FIGURES

Figure 1.1 - Long Haul Communication Network................................... 1
Figure 1.2 - Queueing Network Model... 3
Figure 1.3 - Extended Queueing Network Model..................................... 5
Figure 2.1 - Queue in Isolation... 10
Figure 2.2 - Mean Queueing Time for M /M /l Queue.......................... 11
Figure 2.3 - Mean Queueing Time for M /G /l Queue.......................... 13
Figure 2.4 - Queue with Two Sources and Two Message Classes........ 14
Figure 2.5 - Mean Queueing Time for M /G /l with Message Classes . . 14
Figure 2.6 - Open Queueing Network... 19
Figure 2.7 - Mean Response Time in Open Product Form Network. . . . 20
Figure 2.8 - Central Server Model.. 22
Figure 2.9 - Central Server Model with Terminals................................. 23
Figure 2.10 - Multiple Class Model with Terminals................................ 24
Figure 2.11 - Two Chain Model with Terminals.................................... 25
Figure 2.12 - Closed Network Model of Window Flow Control........... 25
Figure 2.13 - Mean Response Time and Throughput.............................. 29
Figure 2.14 - Mixed Open and Closed Routing Chains........................... 31
Figure 3.1 - Active Queues.. 35
Figure 3.2 - Source and Sink... 36
Figure 3.3 - Set Node... 38
Figure 3.4 - Series Queues with Interdependence................................... 39
Figure 3.5 - Time Dependent Arrival Rates.. 41
Figure 3.6 - BE (Branching Erlang) Distribution................................... 44
Figure 3.7 - Passive Q ueue.. 48
Figure 3.8 - Split, Fission and Fusion Nodes.. 50
Figure 3.9 - Nesting of Fission and Fusion Nodes................................. 52
Figure 4.1 - Network without Independence Assumption...................... 59
Figure 4.2 - Computer System Model with Memory............................... 70
Figure 4.3 - Computer System Submodel... 70
Figure 4.4 - Network with Submodel Invocation................................... 70
Figure 5.1 - Cities Represented by Submodels.. 75
Figure 5.2 - City Submodel... 75
Figure 5.3 - City Submodel with Acknowledgements............................ 81
Figure 5.4 - City Submodel with Time O u ts .. 84
Figure 5.5 - City Submodel with Packetized Messages.......................... 92

IX

Figure 5.6 - City Submodel with Delay Statistics................................... 96
Figure 5.7 - City Submodel with Flow Control................................... 102
Figure 6.1 - Polling of Terminals.. 108
Figure 6.2 - CSMA/CD Representation.. 115
Figure 6.3 - Token Ring Bridge Representation................................... 122
Figure 6.4 - Token Ring Terminal Representation.............................. 122
Figure 7.1 - CPU-I/O Multitasking... 131
Figure 7.2 - Printer Spooling... 136
Figure 7.3 - Channel-Device Interaction.. 141

x

PREFACE
Computer communication networks have developed from the experi

mental systems of a decade ago to become a central issue in computing at
all levels, from personal workstations to large mainframes. Local networks
connect terminals, small computers and peripheral devices in schools, stores,
offices, factories, financial institutions, etc. Networks on a larger geograph
ic scale allow sharing of computational facilities, software and data among
distant individuals and enterprises. There is every reason to believe that the
current proliferation of computer communication systems will at least
continue until buildings without computers and involvement in computer
communication systems will be unusual.

Enormous resources and expense go into this global collection of
communicating computers. In spite of progress in communication technolo
gy, data communication over significant distances is expensive, often the
most expensive aspect of computer communication systems. Computer
hardware continues to show dramatic improvement in cost/performance
ratios, but users seem to manage to quickly find use for any new computer
capacity they can afford. Thus performance has remained and is likely to
remain a significant issue in computing systems and computer communica
tion systems. For the foreseeable future there will be a need to design
systems for the best performance practically attainable within budget const
raints.

In the design and development of systems, measurement is not feasible.
Modeling is necessary in system design and development to estimate the
performance that will be attained once a system is implemented. Tradition
ally there have been two approaches to modeling computer communication
systems, "analytic modeling" and (discrete event) simulation. Analytic
modeling is based on sufficient abstraction of systems that probability
theory and other tools of applied mathematics can be used to develop
equations characterizing system performance. Once the equations are
developed, numerical methods are usually used to solve the equations for

xi

PREFACE

the desired performance measures. Analytic models have been very attrac
tive because of the relatively small computational requirements of the
numerical solutions, as compared with simulation, because the modeling
problems have been intellectually stimulating and because of problems with
simulation other than computational expense. However, analytic models
often require such a high degree of abstraction, in order for the formulation
and solution of the equations to be tractable, that in many situations it is
questionable whether the models have sufficient accuracy for making
choices between competing design alternatives.

As computational hardware has become dramatically less expensive, the
computational requirements of simulation have become much less of a
problem. Simulation has the advantage over the required abstractions of
analytic models that essentially arbitrary detail may be added to a simula
tion model. Thus, when properly used, simulation is appropriate to decision
making in system design and development situations where analytic models
are of little help. Simulation is not without potential problems. Besides
being its greatest advantage, the generality of simulation is a potentially
severe liability, for simulation models may become intractably unwieldy
because of excess detail. The running of a simulation should be viewed as
an experiment which entails statistical problems as in other empirical stud
ies. Fortunately, relatively recent work in the statistical analysis of discrete
event simulations has provided methods for satisfactorily dealing with the
statistical variability of simulation.

Given that the potential problems of computational expense, excess
detail and statistical variability in simulation can be satisfactorily handled,
there is still the effort required to construct simulation models. In the past
constructing a simulation model has usually meant writing a program in a
(language similar to a) programming language. In recent years a number of
pieces of software have been developed which provide a higher level frame
work for constructing simulation models of computer communication sys
tems (and other systems with similar characteristics). The framework is
based on the queueing network, the usual framework used in analytic models
of computer communication systems. Extensions to the queueing network
make it a very flexible and expressive representation of computer communi
cation systems. The Research Queueing Package (RESQ) is widely regard
ed as the best example of such software for simulation of extended queueing

xii

PREFACE

networks. Using a tool such as RESQ, construction of simulation models
becomes a relatively effortless process.

The purpose of this book is to present modern simulation methodology
as it applies to the simulation of computer communication systems. The
focus is on representation of these systems by extended queueing networks.
We also discuss the statistical issues and other considerations that arise in
developing such simulation models. The actual models we show are con
structed and simulated using RESQ. Our emphasis in these examples is on
models and simulation methodology; these examples could be constructed
and simulated using other software packages. (The examples could also be
constructed and simulated using the Pascal extended queueing network
simulation programs in Chapter 7 of Sauer and Chandy [19] and refine
ments of those programs.)

Chapter 1 gives a more thorough introduction to the topics covered
here and more of an overview of the remainder of the book. Chapter 2
discusses the queueing models that are used in analytic models of computer
communication systems. Chapter 3 summarizes the extensions to queueing
networks that have recently made simulation a more attractive approach to
system modeling. Chapter 4 introduces the characteristics of RESQ, includ
ing its capabilities for macro definition of submodels and its several compo
nents for statistical analysis of simulation runs. The remaining chapters
develop specific aspects of simulating computer communication systems. A
major issue in communication systems are the protocols used between
communicating elements. Chapter 5 considers representation of basic
protocols of communication networks, such as acknowledgement, packetiz-
ing of messages and flow control. Chapter 6 shows how the elements of
extended queueing networks can be naturally used to represent protocols for
multidrop lines and local area networks. Many of the analytic models of
computer communication systems focus almost entirely on the communica
tion aspects and make very simplistic assumptions about the computing
systems involved. Chapter 7 shows how the elements of extended queueing
networks facilitate appropriate representations of computing systems.

This book is intended to be useful to anyone involved in design and
development of computer communication systems. As such it may be used
directly by practitioners as well as in courses on computer communications

xiii

XIV PREFACE

systems, systems modeling, operating systems and related topics. The book
is basically self contained, though it does presume some familiarity with
computer communication systems and some exposure to basic concepts of
probability theory.

ACKNOWLEDGEMENTS

We are grateful for the support of the Computer Science Department
of the IBM Thomas J. Watson Research Center in both the development of
the concepts presented in this book and the preparation of the book itself.
We would like to thank K.V. Karlstrom for his suggestion of general strate
gy in presentation of these concepts and for his continuing editorial support.

We also thank Academic Press, Inc. for granting permission to include
material originally published in the following:

S. S. Lavenberg and C. H. Sauer, "Analytical Results for
Queueing Models," Chapter 3 of S. S. Lavenberg, editor,
Computer Performance Modeling Handbook, Academic
Press, Inc., New York (1983).

S. S. Lavenberg and C. H. Sauer, "Approximate Analysis
Techniques for Queueing Networks," Chapter 4 of S. S.
Lavenberg, editor, Computer Performance Modeling
Handbook, Academic Press, Inc., New York (1983).

C. H. Sauer and E.A. MacNair, "Extended Queueing
Network Models," Chapter 8 of S. S. Lavenberg, editor,
Computer Performance Modeling Handbook, Academic
Press, Inc., New York (1983).

The development of the extended queueing networks and of RESQ has
been an evolutionary process with substantial contributions by many per
sons. Discussions with K.M. Chandy, D.V. Foster and C.N. Waggoner
provided the original concept of simulation based on extensions to analyti
cally tractable queueing networks. M. Reiser and L.S. Woo made substan
tial contributions to the initial version of RESQ and the definition of ex
tended queueing networks used by that version. J.F. Kurose and S. Salza

xv

XVI ACKNOWLEDGEMENTS

helped define the syntax and semantics of the language used in the current
version of RESQ and implemented the translator for that language.
A. Blum, P. Heidelberger, E. Jaffe, P. Rosenfeld, S. Tucci and
P.D. Welch all contributed to the definition and implementation of the
numerical and simulation components of RESQ. Discussions with
K. Bharath-Kumar and P. Kermani have helped demonstrate the application
of extended queueing networks through their extensive application of RESQ
in modeling systems developed using the IBM Systems Network Architec
ture. Finally, we are indebted to numerous RESQ users for the many
suggestions we have received, for the discussions that have helped focus our
thinking and improve RESQ, and for the encouragement we have received
in the development of this methodology and this tool.

Charles H. Sauer
Edward A. MacNair
March 3, 1983

Simulation of

COMPUTER
COMMUNICATION

SYSTEMS

CHAPTER 1

INTRODUCTION

1.1. COMPUTER COMMUNICATION SYSTEMS

Computer communication networks have developed from the experi
mental systems of a decade ago to become a central issue in computing at
all levels, from personal workstations to large mainframes. A decade ago
ARPANET was one of the few examples of an operational computer net
work covering a significant geographic area. Today, though ARPANET still
exists, it is one of many networks, most of which are serious commercial
ventures or ancillary to commercial ventures.

In addition to "long haul" networks such as ARPANET, local area
networks have become attractive for the connection of terminals and other

1

2 INTRODUCTION / CHAP. 1

small workstations to each other and to file servers, output devices, etc.
Local (or not so local) networks connecting terminals to a common control
ler or computer have long been in use. However, the technology used (e.g.,
polled multi-drop lines) typically resulted in low bandwidths and vulnerabili
ty to component failures. Distributed control protocols, along with the
technical feasibility of inexpensive stations supporting such protocols, has
spurred the interest in local area networks.

Many computer communication systems will consist of both long haul
and local networks, e.g., local networks connected to each other via a long
haul network. There may be intermediary networks as well which are not
easily classified as "local" or "long haul." Each location in the computer
communication system will have some communication capability and may
also have computational and file capabilities ranging from minimal to quite
substantial.

In spite of progress in communication technology, data communication
over significant distances is expensive, often the most expensive aspect of
computer communication systems. Thus it behooves us to methodically
evaluate the performance of our computer communications systems. Such
evaluation can be used to either reduce cost, e.g., by using less expensive
communication links where excess capacity is present, or to improve per
formance, e.g., by better tuning of protocols (or installation of new proto
cols), or both.

1.2. PERFORMANCE EVALUATION METHODOLOGY

The obvious approach to system performance evaluation is measure
ment of system performance. However, measurement is only feasible with
operational systems. In the design and development of systems, measure
ment is not feasible. Further, measurement can be an unwieldy approach
even in systems confined to a small geographical area because of the diffi
culties in obtaining the required data without affecting the measured system,
because of the difficulties in obtaining reproducible measurements which are
representative of the situations of interest and because of the difficulties in
restructuring the system to obtain measurements for the situations of inter
est. Problems with measurement are exacerbated when one deals with a

SEC. 1.2 / PERFORMANCE EVALUATION METHODOLOGY 3

system with geographically dispersed components, e.g., a computer commu
nication system.

Modeling is necessary in system design and development to estimate the
performance that will be attained once a system is implemented. Modeling
may be a more practical approach to performance evaluation of a working
system, especially in evaluation of proposed system modifications. Model
ing avoids the problems described above, i.e., it has no effect on the meas
ured system, gives reproducible results and is amenable to evaluating alter
nate system structures. However, modeling has problems of its own, prima
rily problems of model abstraction resulting in inaccurate representation of
system performance, problems of obtaining appropriate characterizations of
system workload and problems of obtaining performance measures for the
model.

Performance models of computer communication systems usually focus
on sharing of resources and the resulting queueing for resources. This is
because it is usually relatively easy to quantify performance of systems

4 INTRODUCTION / CHAP. 1

without resource sharing and the resulting contention, e.g., to predict
transmission times for messages across a communication link of given
capacity and length. (In this example, it is relatively difficult to predict the
time a message will spend waiting for its turn for transmission.)

There are two general approaches to solution of models of computer
communication systems, "analytic modeling" and "simulation." Both of
these approaches involve somewhat abstract representations of the actual
system, but typically analytic models involve much more abstraction than
simulation models. When an analytic model is appropriate, it is preferable
to simulation because of the direct relationship between the model parame
ters and the performance measures.

Analytic modeling is based on sufficient abstraction of systems that
probability theory and other tools of applied mathematics can be used to
develop equations characterizing system performance. Once the equations
are developed, numerical methods are usually used to solve the equations
for the desired performance measures. For an analytic model to be mathe
matically tractable, usually it will either represent only a single system
resource in substantial detail or it will consist of a network of queues, each
representing a resource, where the representations of the resources and their
interactions take fairly simple forms. For example, a single queue model
might represent one direction of a full duplex communication link, e.g., one
of the queues depicted in Figure 1.2. Because other components of the
system are ignored or represented in an extremely simplistic manner, details
of the single queue model such as buffer limits or priority scheduling may be
mathematically tractable. A queueing network model might represent all of
the queues depicted in Figure 1.2. In this case, the solution of the model
will usually have a product form, i.e., the solution consists of a product of
terms, one per resource, where the product terms may be determined essen
tially independently of each other. Without the existence of a product form
solution, exact analysis of a queueing network model will usually be imprac
tical. The product form solution does not allow priority scheduling or the
simultaneous resource possession implied by consideration of buffer conten
tion, so one would have to ignore these characteristics in the network model
of Figure 1.2. Simultaneous resource possession occurs when two or more
resources are needed at the same time.

SEC. 1.2 / PERFORMANCE EVALUATION METHODOLOGY 5

The alternative to analytic solution of a model, discrete event simula
tion, is to use a program which behaves like the model and observe the
behavior of the program. The principal advantage of simulation is its great
generality. There are three main problems with simulation: the expense of
constructing a simulation program, the computational expense of running
the program, and the statistical analysis of the program behavior. In addi
tion, since there is no direct relationship between the model parameters and
the simulation results, additional runs must be made for different model
parameters.

Analytic models are very attractive because of the relatively small
computational requirements of the numerical solutions, as compared with
simulation, because the modeling problems have been intellectually stimulat
ing and because of the other problems with simulation just mentioned.
However, analytic models often require such a high degree of abstraction, in
order for the formulation and solution of the equations to be tractable, that
in many situations it is questionable whether the models have sufficient
accuracy for making choices between competing design alternatives.

As computational hardware has become dramatically less expensive, the
computational requirements of simulation have become much less of a
problem. Simulation has the advantage over the required abstractions of
analytic models that essentially arbitrary detail may be added to a simula
tion model. Thus, when properly used, simulation is appropriate to decision
making in system design and development situations where analytic models
are of little help. Besides being its greatest advantage, the generality of
simulation is a potentially severe liability, for simulation models may be
come intractably unwieldy because of excess detail. The running of a
simulation should be viewed as an experiment which entails statistical
problems as in other empirical studies. Fortunately, relatively recent work
in the statistical analysis of discrete event simulations has provided methods
for satisfactorily dealing with the statistical variability of simulation.

Given that the potential problems of computational expense, excess
detail and statistical variability in simulation can be satisfactorily handled,
there is still the effort required to construct simulation models. In the past,
constructing a simulation model has usually meant writing a program in a
(language similar to a) programming language. In recent years a number of

6 INTRODUCTION / CHAP. 1

Figure 1.3 - Extended Queueing Network Model

pieces of software have been developed which provide a higher level frame
work for constructing simulation models of computer communication sys
tems (and other systems with similar characteristics). The framework is
based on the queueing networks usually used in analytic models of computer
communication systems. Extensions to the queueing network make it a very
flexible and expressive representation of computer communication systems.
Figure 1.3 illustrates an extended queueing network model of part of a
computer communication system, with a "passive queue" used to represent
buffer contention and a "split node" used to generate acknowledgement
messages.

In order to effectively use queueing networks as performance models,
appropriate software is necessary for definition of the networks to be
solved, for solution of the networks (by numerical, approximate and/or
simulation methods) and for examination of the performance measures
obtained. The Research Queueing Package (RESQ) which we have con
structed is an example of such software for simulation of extended queueing
networks. Using a tool such as RESQ, construction of simulation models
becomes a relatively effortless process.

Tools similar to RESQ include the Queueing Network Analysis Package
(QNAP) [13] and the Performance Analyst’s Workbench System (PAWS)
[4], Construction of the simulation components of such tools is discussed in

SEC. 1.2 / PERFORMANCE EVALUATION METHODOLOGY 7

Chapter 7 of Sauer and Chandy [19]. That chapter includes Pascal pro
grams for an extended queueing network simulation system and exercises
suggesting further development of those programs. Those programs as
given are sufficient for simulating some of the networks we use as examples.
By performing the appropriate exercises, the reader would have a simulation
system capable of simulating all of our examples. (However, the system as
given does not have the user interface capabilities of RESQ, i.e., the net
works to be simulated are defined by writing a Pascal program which calls
the simulation system.)

The purpose of this book is to present modern simulation methodology
as it applies to the simulation of computer communication systems. The
focus is on representation of these systems by extended queueing networks.
We also discuss the statistical issues and other considerations that arise in
developing such simulation models. The actual models we show are con
structed and simulated using RESQ. Our emphasis in these examples is on
models and simulation methodology; these examples could be constructed
and simulated using other software packages.

Chapter 2 discusses the queueing models that are used in analytic
models of computer communication systems. Chapter 3 summarizes the
extensions to queueing networks that have recently made simulation a more
attractive approach to system modeling. Chapter 4 introduces the charac
teristics of RESQ, including its capabilities for macro definition of submo
dels and its several components for statistical analysis of simulation runs.

The remaining chapters develop specific aspects of simulating computer
communication systems. We have chosen not to organize these chapters
around any particular model of communication system design, e.g., the
International Organization for Standardization’s Reference Model of Open
Systems Interconnection (ISO OSI) or IBM’s Systems Network Architecture
(SNA). Reasons for this choice include the fact that these and other
models of communication system architecture are still competing for accept
ance, that these architectural models are oriented toward function and
specific implementation issues while our performance models are oriented
toward abstraction and that issues present in several layers of ISO OSI or
SNA can be considered collectively from a performance modeling viewpoint.
For example, window flow control mechanisms are present in several layers

of ISO OSI and SNA but can be represented in essentially the same manner
in our extended queueing network models.

Chapter 5 considers representation of basic protocols of communica
tion networks, such as acknowledgement, packetizing of messages and flow
control. Chapter 6 shows how the elements of extended queueing networks
can be naturally used to represent protocols for local networks and multi
drop lines. Many of the analytic models of computer communication
systems focus almost entirely on the communication aspects and make very
simplistic assumptions about the computing systems involved. Chapter 7
shows how the elements of extended queueing networks facilitate appropri
ate representations of computing systems.

X INTRODUCTION / CHAP. 1

1.3. FURTHER READING

An excellent introduction to computer communication systems is given
by Tanenbaum [31]. See also Tanenbaum’s survey article on protocols [32],
Sauer and Chandy [19] introduce many of the concepts of performance
modeling relevant to the issues considered here. See also Kleinrock Volume
II [9] and Schwartz [29].

CHAPTER 2

QUEUEING MODELS
Mathematically solved models of performance of computer communica

tion systems are usually focused on queueing for system resources. Queue
ing models have been used to evaluate the performance of communication
systems since Erlang’s work with telephone systems at the turn of the
century. The solution and application of queueing models has been a
significant area of applied mathematics and probability theory for decades.
Queueing models have been used in computer communication applications
since the mid-sixties [7].

For the solution of a queueing model to be mathematically tractable,
assumptions must be made about the modeled system. Typically these
assumptions relate to the process(es) of arrivals at the queue(s), the service
process(es) at the queues and the scheduling discipline(s) used at the
queue(s). When the model consists of a single queue representing a single
resource (or a collection of homogeneous resources) then the assumptions
need not be as restrictive for sake of tractability as when the model consists
of several queues representing several distinct resources.

We will first briefly survey results for single queue models and then
results for queueing network models. This is done to give the reader a feel
for what is practical in terms of mathematically tractable models of comput
er communication systems. Mathematically tractable models are useful in
their own right, but our motive is more to provide a basis for discussing the
extended queueing networks we advocate for simulation of computer com
munication systems. We will not present derivations of equations since that
would detract from our primary intent. Derivations may be found in the
references cited in Section 2.3 and listed in the Bibliography.

2.1. SINGLE QUEUE MODELS

Models consisting of a single queue are usually used for evaluation of
communication links, though such models are also used for evaluation of

9

10 QUEUEING MODELS / CHAP. 2

processors, direct access storage devices and other resources. The simplest
model in such applications is the classical "M /M /l" queue. The three
positions in this classical notation characterize the arrival process, the
service process and the number of servers, respectively. (Other informa
tion, e.g., the scheduling discipline, is left implicit or separately stated.
When left implicit, the scheduling discipline is assumed to be First Come
First Served (FCFS). Another implicit assumption is that the queue is
allowed to become arbitrarily large.) The "M" stands for "Markov" indicat
ing exponential interarrival times (a Poisson arrival process) and exponential
service times. It is assumed that there is a source of items, which we will
usually refer to as "messages" or "jobs," and that this source is inexhaust
ible. (Usually we will refer to these items as "messages" when discussing
models of communication and as "jobs" when discussing models of comput
er systems. However, we will sometimes refer to "jobs" even when discuss
ing models of communication systems.) Items arriving from the source go to
the queue and jobs leaving the queue go to a sink, as depicted in Figure 2.1.

2.1.1. The M / M / l Queue

Let us assume the arrival process has rate A jobs per time unit (i.e.,
mean interarrival time 1/A). Let us assume the service process has mean
service time 5 (i.e., mean service rate 1/5). The queue will be stable if the
server is not saturated, i.e., as long as the service rate is less than the arrival
rate. The "traffic intensity," p, is defined as the ratio of the arrival rate and
the service rate, i.e., p = A5. Thus the queue is stable provided that p < 1.
The utilization of the server will be equal to the traffic intensity, provided
the server is not saturated. Let us call the throughput R. Assuming the
queue is stable, R — A.

SOURCE SINK

Figure 2.1 - Queue in Isolation

SEC. 2.1 / SINGLE QUEUE MODELS 11

In using the M /M /1 queue as a model of a simple communication link,
X will be the rate of arrival of messages (or packets) at the link, and S will
be the mean time for transmission of messages (or packets). The assump
tion of exponential interarrival times may or may not be reasonable, de
pending on the modeled system. The transmission time for a message will
be the propagation delay plus the message length divided by the link capaci
ty. If the propagation delay is negligible compared to the length divided by
the link capacity, then the reasonableness of the exponential service time
assumption depends primarily on whether the message lengths are reason
ably represented by an exponential distribution. For example, consider a
link from New York to Atlanta, a distance of approximately 1225 kilome
ters. The propagation delay will be approximately 1225/3 xlO5 seconds or
4.08 milliseconds. For an 80 bit message on a 9600 baud link, the propaga
tion delay would be roughly a third of the total transmission time of 12.41
ms. For a 2000 bit message on a 2400 baud link, the propagation delay
would less than 0.5% of the total transmission time of 837.4 ms.

O
CD
E
CTi
c

*<p
=5
CD=3
o
c
oCP

Figure 2.2 - Mean Queueing Time for M /M /l Queue

For the M /M /l queue, the mean queue length, including messages in
transmission, is

12 QUEUEING MODELS / CHAP. 2

For example, if A = 1/2 message per second and S = 0.8374 seconds, then
P = 0.4187 and L = 0.7203 messages. The mean queueing (response) time,
including transmission time, is

Q = Sp
l - p

+ 5 = S’
(1 —p)

For example, if S = 0.8374 seconds and p = 0.4187, then Q = 1.441
seconds. The queueing time distribution is exponential with mean Q.
Figure 2.2 shows a plot of Q versus p for S = 0.8374 seconds. Note the
sharp rise as p goes above roughly 0.6.

2.1.2. The M / G / l Queue

In classical queueing notation, "G" stands for "general," i.e., the
M /G /l queue is a single server queue with exponential (Markovian) inter
arrival times and general (arbitrarily distributed) service times. We use the
same notation as before, except we now also use a for the standard devia
tion of service times. The M /G /l queue is useful where the assumption of
exponential service times is not satisfactory. For example, consider the
9600 baud link from New York to Atlanta. The propagation delay is fixed,
i.e., it has standard deviation 0. Let us assume that the message length has
an approximately exponential distribution, so the standard deviation of the
transmission time related to link capacity is also 80/9600 seconds = 8.333
ms. Since the two components of the transmission time are independent,
the standard deviation of the total transmission time is the square root of
the sum of squares of the component standard deviations, i.e., a =
(02 + 8.3332)° 5 = 8.333 ms. This is considerably less than the mean total
transmission time, 12.41 ms. For the exponential distribution, a = S. There
fore, the exponential distribution does not seem to be a good fit.

For the M /G /l queue the mean queue length is given by

p2(l + (a / S) 2)
+ PL =

2(1 - p)

13

and the mean queueing time for the M /G /l queue is given by

Q = PS (\ + (o /S)2) + s
2(1 —p)

Note that these equations simplify to the M /M /l equations for a = S. The
queueing time distribution for the M /G /l queue does not have a simple
form.

SEC. 2.1 / SINGLE QUEUE MODELS

Figure 2.3 - Mean Queueing Time for M /G /l Queue

For example, with the numbers just given (S = 12.41 ms. and a =
8.333 ms.) and A = 50 messages per second, p = 0.6205 and L = 1.356
and Q = 27.12 ms.. If we were to assume exponential service times, i.e., a
= 12.41, then we would have L = 1.635 and we would have Q = 32.70 ms.
If the message length distribution were less variable than the exponential
distribution, then there would be larger differences between the exponential
service assumption of the M /M /l model and the more precise characteriza
tion of the M /G /l model. For example, if the message length was uni
formly distributed over the interval [24,136], the mean length would still be
80 bits, but the standard deviation of the length would be only 32.33 as
compared with 80 for the assumption of the exponential distribution. Then
with a 9600 baud link the standard deviation of the time related to link

14 QUEUEING MODELS / CHAP. 2

capacity is 32.33/9600 seconds = 3.368 ms. and the standard deviation of
the total transmission time would also be a = 3.368 ms. With this a and
the previous values (A = 50 messages per second, S’ = 12.41 ms. and p =
0.6205), L = 1.165 and Q = 23.30 ms. Figure 2.3 shows a plot of Q
versus p for several values of a, with S = 12.41 ms.

2.1.3. The M /G /1 Queue with Message Classes

The discussion so far has assumed that we do not wish to distinguish
between different classes of messages, for example, between messages with
different (origin,destination) pairs and/or between data and control mes
sages (e.g., acknowledgements).

SOURCES

CLASSES
Figure 2.4 - Queue with Two Sources and Two Message Classes

2.1.3.1 FCFS Scheduling. With FCFS scheduling the extension of the
M /G /l equations (including the M /M /l equations) is straightforward once
we define notation. Let there be A sources of messages. The arrival rate of
messages from source a, a=l,...^4, is Xa. Let there be C message classes at
the queue. Arriving messages from source a, a=l,...?A, belong to class c,
c=l,...,C, with probability qac. Let the mean service time for class c mes
sages be Sc and let the standard deviation of the service time for class c
messages be ac. Scheduling is first come first served without regard to
message class.

Let the throughput of class c messages be R c. Assuming the queue is
stable,

R c - 2
a= 1

SEC. 2.1 / SINGLE QUEUE MODELS 15

The overall arrival rate of messages is

C = 1

Again assuming stability, the overall mean service time will be

r i C —— 1

and the overall standard deviation of service time will be

£ R c(°2c+S*1
___________ S2

A

With these definitions, p, R, L and Q are obtained as before and the queue
is stable if and only if p < 1. The class specific utilization is the class
specific traffic intensity

16 QUEUEING MODELS / CHAP. 2

Pc RCSC

The class specific mean queue length is given by

L = Rc p2(l + (q/ S) 2)
C R 2(1 -p)

and the class specific mean queueing time is given by

Qc
pS(1 + (o /S)2)

2(1 - p)
+ 5 c

For example, let us return to the first set of parameters we considered for
the M /M /l queue, i.e., messages with mean length of 2000 bits with an
exponential distribution, a 2400 baud link and a 4.08 ms. propagation
delay, arriving at a rate of 1/2 message per second. Let us assume that
these are data messages and refer to them as class 2. Let class 1 consist of
control messages of constant length 20 bits, arriving at a rate of 2 messages
per second. Let there be two sources corresponding to the two classes of
messages. Then = 2 messages per second and A2 = 0.5 message per
second. qxx = q21 = 1, and ql2 = <?2l = 0- Thus R x = 2 messages per
second and R 2 = 0.5 message per second. S j = 12.41 ms., p] = 0.0248,
S 2 = 837.4 ms. and p2 = 0.4187. A = 2.5 messages per second. S =
0.8x12.41 + 0.2x837.4 = 177.4 and p = .4435. ctj = 0 and a2 = 833.3,
so a = (0.2x(833.32+837.42) - 177.42)0-5 = 497.6 ms. Finally, L =
2.011, Q = 804.3 ms., L, = 1.279, L2 = 0.732, Qx = 639.3 ms. and Q2 =
1.464 seconds. Thus the control messages are experiencing mean delays
more than 50 times their transmission times. Figure 2.5 shows a plot of Q2
versus p with 5/ = 12.41 ms., S 2 = 837.4 ms. and Aj = 4A2 for both
FCFS and the priority scheduling we now discuss.

2.1.3.2 Priority Scheduling. In the above example we naturally wonder
what improvement would be obtained by giving control messages priority
over data messages. It is reasonable to expect that this will have small
effect on the data messages while significantly reducing delays for control
messages (and thus perhaps improving responsiveness elsewhere in the
system). Let us assume that the control messages (class 1) are given non-
preemptive priority over the data messages (class 2). With non-preemptive
priority scheduling, lower priority messages, which have begun transmission,

are permitted to finish even if higher priority messages arrive
(higher priority) mean queueing time is given by

„ _ pS(l + (a / S) 2) , 0SZ i — -------------------- + i
2(1 —p ,) 1

The class 2 (lower priority) mean queueing time is given by

^ pS(l + (a / S) 2) , o
2(1 — p-j)(l — p) 2

For either class, Lc = RCQC. L = L x+L2 and Q = L/X.

Returning to our numerical values, with non-preemptive priority we
now have Q1 = 370.1 ms. and Q2 = 1.480 seconds. The mean delay for
control messages is dramatically reduced when they are given priority, with
negligible adverse effect on the mean delay for data messages. L x = .740,
L2 = .740, L = 1.480 and Q = 592 ms.

2.1.3.3 Other Scheduling Disciplines and Characteristics. The M /G /l
queue is mathematically tractable with a variety of other scheduling disci
plines and characteristics. The above discussion of non-preemptive priority
with two message classes extends to an arbitrary number of classes and to
other priority schemes such as preemptive priority. Scheduling disciplines
used in polling of multidrop lines have been treated extensively. Scheduling
disciplines useful in processor scheduling, particularly the "processor shar
ing" discipline, a limiting case of a round robin (time slicing) discipline as
the quantum (time slice) tends to zero, are also tractable [9].

A variety of other characteristics in single queue models are also
tractable. Some of these include multiple server queues, service rates de
pendent on queue length, arrival rates dependent on queue length, finite
capacity for waiting messages, group arrivals, etc. We will not discuss these
characteristics here since these models have been given substantial mathe
matical treatment elsewhere.

SEC. 2.1 / SINGLE QUEUE MODELS

The class 1

17

2.2. QUEUEING NETWORKS

Separate models, each representing a single resource, will usually be

18 QUEUEING MODELS / CHAP. 2

inadequate for evaluation of overall system performance because of strong
interactions and dependencies between resources. Queueing network
models are more appropriate for evaluation of overall system performance
because they can represent these interactions and dependencies. Unfortu
nately, many of the things we would like to include in queueing network
models, including some of the characteristics we just discussed in regard to
single queue models, are not mathematically tractable. Thus simulation is
often more appropriate than a mathematically tractable model.

Mathematically tractable queueing network models usually either have
a product form solution, or are small (measured in terms of numbers of
queues or maximum number of messages in the network or some similar
characteristic). Most useful mathematically tractable queueing network
models have the product form solution. In its simplest form, the product
form solution says that the probability of a given distribution of messages
among queues of the network is given by the product of probabilities of the
corresponding numbers of jobs at isolated M /M /l queues, i.e., in a network
of M queues,

P(nv ...,nM) = P l (nl)...PM(nM)

P(nl ,...,nM) is the probability of nl messages at queue 1, n2 messages at
queue 2, ..., nM messages at queue M, and Pm(nm), m = 1 is the
probability of nm messages at queue m in isolation, assuming that queue m
is an M /M /l queue with an appropriately chosen arrival rate.

A key assumption in using product form queueing networks of commu
nication systems is Kleinrock’s "independence assumption" [7,9] This
assumption says that transmission times for a given message on different
links are independent. Clearly this is not the case, assuming the message
length does not change, for the transmission time is directly determined by
the message length. However, Kleinrock argues that usually this assumption
does not significantly affect performance results and makes mathematical
analysis tractable. One will normally avoid this assumption using simula
tion, of course.

We first consider two important special classes of product form net
works and then discuss some of the characteristics which may be allowed in
general product form networks.

SEC. 2.2 / QUEUEING NETWORKS

2.2.1. Open Networks

19

An open network is one with external arrivals from sources and depar
tures through sinks, as in the single queue models we have considered
already. See Jackson [6] for an early discussion of open networks. A
closed network has a fixed population of messages (jobs). As in the
M /G /l queue with message classes, let us assume that there are A sources.
Let us assume arrivals from source a have exponential interarrival times
with rate \ a. Let there be C message classes in the sense of Section 2.1.3.
Let there be M queues. The classes are partitioned among the queues, with
at least one class per queue. Let <€m be the set of classes belonging to
queue m. Queue m has FCFS scheduling and exponential service times with
mean S m at each of its classes. The product form solution requires that
FCFS queues have exponential service time distributions with each class of
a queue having the same mean. General, class specific distributions are
allowed by the product form solution for certain special scheduling disci
plines (processor sharing, last come first serve and infinite server) [2]. Let
the probability a message arriving from source a goes to class c be designat
ed qac. Let the probability a message departing from class i goes to class j
be designated p tj and let the probability a message departing from class i
goes to a sink be designated p iQ. Assuming all queues are stable, the solu
tions to the set of equations

A c

R c = 2 Xa<lac + 2 R cPic> C = 1 — > C >

a= 1 (=1

give the arrival rates at each of the classes. Let Rem) = 2 R c be the arrival
rate at queue m, where the summation is taken over the classes of queue m.
Queue m then has traffic intensity pm = Its mean queue length and
mean queueing time are the same as those given for the M /M /l queue in
Section 2.1.1. Since the mean service times are the same for all classes at
queue m, the mean queueing times are also the same for all classes at queue
m. The mean queue length for class c at queue m will be L mR c/ R ,my The
mean number of messages in the network is simply the sum of the mean
queue lengths, and the mean response time for a message is the sum of the
mean queueing times for the queues it visits.

For example, consider the queueing network of Figure 2.6, based on
the networks of Figures 1.1 and 1.2. This represents sources of messages

2 0 QUEUEING MODELS / CHAP. 2

7

Figure 2.6 - Open Queueing Network

and sinks for messages at each of the four cities and four 9600 baud full
duplex links between pairs of cities. Each half duplex link is represented by
a queue. Let us assume that a message from one city is equally likely to go
to each of the other cities, e.g., a message from New York is equally likely
to go to Atlanta, Dallas or Chicago. A message will be routed so as to
minimize the number of hops. When two minimal hop routes are available,
each is equally likely to be chosen, e.g., a message from Atlanta to Chicago
is equally likely to go through New York or Dallas.

Given these assumptions, we can define two classes at each queue, one
for one hop messages and one for two hop messages. These classes are not
explicitly shown in the figure to avoid clutter. Let class 1 be the "one hop"
class for queue 1, class 2 be the "two hop" class for queue 1, class 3 be the
one hop class for queue 2, class 4 be the two hop class for queue 2, etc. A
message arriving from a source, say source 1 (New York), will go to each

SEC. 2.2 / QUEUEING NETWORKS 21

Arrival Rate, Xa
Figure 2.7 - Mean Response Time in Open Product Form Network

available one hop class (e.g., classes 1 and 15) with probability 1/3 each
and to each available two hop class (e.g., classes 2 and 16) with probability
1/6 each. A message leaving a two hop class (e.g., 2) will then go to a one
hop class (e.g., 5). If we say that each source has arrival rate Xa = 5
messages per second, a=l,2,3,4, then R c = 5/6 for each one hop class,
c=l,3,...,15, R c = (5/3) + (5/6) for each two hop class, c=2,4,...,16, and
R(m) = 3.333 messages per second for m=l,...,8.

We determined the propagation delay between New York and Atlanta
as 4.08 ms. in Section 2.1.1. The distance from Atlanta to Dallas is approx
imately 1130 kilometers, so the propagation delay is approximately 3.77
ms., the distance from Dallas to Chicago is approximately 1270 km., so the
propagation delay is approximately 4.23 ms. and the distance from Chicago
to New York is also approximately 1130 km., so the propagation delay is
again approximately 3.77 ms. Let us assume that each city generates
messages of average length 1400 bits, so the mean transmission time related
to link capacity is 1400/9600 = 145.8 ms. Then for m = l,2 (the links
between New York and Atlanta), the mean total transmission time S m is
149.9 ms., pm = 0.4997, Lm = 0.9987 and Qm = 299.6 ms. For

2 2 QUEUEING MODELS / CHAP. 2

m=3,4,7,8, (the links between Atlanta and Dallas and between Chicago and
New York) Sm is 149.6 ms., pm = 0.4987, Lm = 0.9947 and Qm = 298.4
ms. For m=5,6, (the links between Dallas and Chicago) S m is 150.0 ms.,
pm = 0.5000, Lm = 1.000 and Qm = 300 ms. The mean response time for
a two hop message is roughly 598 ms (300+298 ms). Since there are twice
as many one hop messages as two hop messages, the mean response time for
all messages is roughly 399 ms ((300+300+598)/3 ms). Figure 2.7 shows
the overall mean response versus \ a, assuming Xa is the same for a=l,2,3,4.

There are some additional characteristics which can be added to open
product form network models of communication systems. These are prima
rily of theoretical interest and will be briefly discussed in Section 2.2.3.
Many practical characteristics (in addition to the independence assumption)
are not allowed by the product form solution, including packetizing and
reassembly of messages, buffering and most protocols. However, the closed
product form networks we discuss in the next section have been used to
represent some end to end flow control protocols.

2.2.2. Closed Networks

A closed network is one closed to arrivals from sources and departures
through sinks, i.e., the number of items circulating through the network is
fixed. Though closed queueing networks had been used as models of
computer systems and other systems for years, it was not until Buzen
proposed the "central server model" [3] that closed product form queueing
networks became important as models of computer systems. Considerably
more recently, closed queueing networks have been seen as useful as models
of end to end flow control in communication systems.

In a closed network model, it is usually assumed that use of some
resources is dependent on the possession of some other resource, and that
this other resource is fully utilized. In the central server model of Figure
2.8, this other resource is memory. A job in the queueing network repre
sents a command from a user at a terminal or an operating system task.
Memory is required for using the CPU or disk devices. A job holding
memory alternates back and forth between computation and input/output
until the command processing is completed. The central server model

SEC. 2.2 / QUEUEING NETWORKS 23

FLOPPY

Figure 2.8 - Central Server Model

assumes that the number of jobs holding memory is fixed, and that once one
job finishes, it is immediately replaced by another job.

The queues of a closed network have the same restrictions as those of
an open network, e.g., that at a FCFS queue the service time distribution
must be exponential, with each class having the same mean service time. In
the central server model it is often assumed that the CPU queue has the
Processor Sharing scheduling discipline, thus allowing a product form
solution with general service time distributions at the CPU. However, with
processor sharing scheduling and general service time distributions, only the
mean service time affects the solution for mean values of performance
measures. Assuming FCFS for the CPU, with the same mean service time
but an exponential distribution results in the same product form solution
and mean performance measures.

Figure 2.9 - Central Server Model with Terminals

24 QUEUEING MODELS / CHAP. 2

In the central server model with terminals (Figure 2.9) the terminals
are the "other resource." A terminal is required for using the computer
system. The model assumes that the number of users at the terminals is
fixed, and that once one user finishes, he or she is immediately replaced by
another user. Note that this model ignores memory contention and that this
network has one class per queue.

The network of Figure 2.10 is a refinement of the network of Figure
2.9. Both networks may be considered models of the same computer system
and both assume that all jobs are homogeneous. The second network
distinguishes between types of commands: sometimes a user issues a com
mand to an editor (presumably such commands are likely to have low CPU
service demands) while other times a user issues a command to run a pro
gram other than an editor (presumably these commands have higher CPU
service times). Each of the queues other than the one for the terminals has
two classes: one for editing commands and one for "running" commands.
Assuming that scheduling at the CPU is represented by the Processor
Sharing discipline, then we can have distinct service time distributions at the
two CPU classes. Assuming that device scheduling is FCFS, then the two

SEC. 2.2 / QUEUEING NETWORKS 25

floppy disk classes must have the same exponential distribution and the two
hard disk classes must have the same exponential distribution, but the
floppy disk classes need not have the same mean service time as the hard
disk classes.

A major difference between closed and open networks is that in closed
networks with multiple classes it is often useful to partition the classes into
routing "chains." The network of Figure 2.11 is similar to that of Figure
2.10 but has two routing chains. The network of Figure 2.10 assumes that
homogeneous users switch (frequently) between editing and "running"
modes. In the network of Figure 2.11 there are two heterogeneous sets of
users, one set which stays in editing mode and one which stays in running
mode.

Figure 2.12 shows a closed network model of end to end flow control
corresponding to the open network model of Figure 2.6. In the open
network model, there is no limit to the number of messages which may be in
transit and queued for transmission. In a communication system with end to

26 QUEUEING MODELS / CHAP. 2

end flow control, there is a limit (a "window") to the number of messages
which may be in transit between a given source and a given destination. In
the closed network model the "other" resource is (a position in) the window
of the end to end protocol. A message must have a position in the window
before it can be queued for transmission. There is a separate window and
correspondingly separate routing chain for each (source,destination) pair.
The number of customers in each routing chain is set equal to the window
size, i.e., the limit to the number of messages which may be in transit
between a given source and destination. Instead of the sources and sinks of
the open network, there are additional queues. One single server queue

SEC. 2.2 / QUEUEING NETWORKS 27

effectively takes the place of the source and represents the time it takes to
generate messages (i.e., by the computer system). Another queue, an

infinite server" queue (one without waiting for service), represents the
time it takes acknowledgement messages to get back to the message source.
This artificial queue is used rather than including the acknowledgement
traffic in the queues for the links along the lines discussed in Section 2.1.3
because the product form solution does not allow the heterogeneous mes
sage classes and priority scheduling that would be necessary to properly
represent the acknowledgement traffic. Figure 2.12 fully shows these
queues only for the traffic originating from New York, to avoid cluttering
the diagram.

For closed networks, the product form solution is not quite as simple
conceptually or computationally as the product form solution for open
networks. This is primarily because of the stronger interactions between the
queues due to the fixed number of jobs and because the heterogeneous jobs
of the different routing chains must be explicitly considered. In a network
of M queues, the basic product form becomes

X l {nl)...XM{nM)

g(n)

The vectors have elements corresponding to the different routing chains.
P(nx,...,nM) is the probability of messages at queue 1, n2 messages at
queue 2, ..., nM messages at queue M, Xm(nm), m = 1 is a factor
determined from the probability of nm messages at queue m in isolation,
assuming that queue is an M /M /l queue with appropriately chosen arrival
rates, N is the vector of numbers of jobs in the routing chains and G(N) is
a normalizing constant.

In open networks, it is possible to avoid direct consideration of the
product form and just consider the queues separately. In closed networks,
the queues must be considered collectively, but it is not necessary for a
computational algorithm to recognize the explicit product form. We now
sketch the Mean Value Analysis algorithm for a closed network with a
single routing chain. We use essentially the same notation as in Section
2.2.1, except that we need not consider sources and must explicitly consider
the fixed number of jobs in the network.

P(nl ,...,nM) =

28 QUEUEING MODELS / CHAP. 2

There are C job classes and M queues. The classes are partitioned
among the queues, with at least one class per queue. Let <€m be the set of
classes belonging to queue m. Queue m has FCFS scheduling and exponen
tial service times with mean S m at each of its classes. Let the probability a
message departing from class i goes to class j be designated /?•. A solution
to the set of equations

C

rc = 2 rcPic’ c =

i= 1

gives the relative throughputs at each of the classes in the sense that if Rc is
the throughput at class c, then the throughput at class d is Rd = (rd/r c)Rc.
These equations are linearly dependent and thus do not have a unique set of
solutions. However, any positive set of solutions is acceptable and one may
be chosen arbitrarily. Let = 2 rc be the relative throughput at queue
m, where the summation is taken over the classes of queue m. Let the
number of jobs in the network be N.

We will only consider single server queues and infinite server queues,
since these are the most important for our models and the simplest for the
algorithm. However, the algorithm applies to the full class of product form
networks [18]. Let Lm{n) be the mean queue length at queue m when there
are n jobs in the network and Qm(n) be the mean queueing time at queue m
when there are n jobs in the network.

The name of the algorithm comes from the fact that, for networks with
only single server and infinite server queues, performance measures may be
determined strictly from mean values, without direct consideration of
probabilities of network states or marginal probabilities. For single server
queues, Reiser and Lavenberg showed [14] that

QmM = S J l + Lm(n - Q).

For infinite server queues,

G » = S m-

Given the mean queueing time, the mean queue length is obtainable from
Little’s Rule and the throughput. The throughput is obtainable by applying

Little’s Rule to the mean cycle time, i.e., the mean time between visits to a
queue:

[M r,.v
2 r r - e . - M
«=1 (m)

The population, n, of the network, is used as the "queue length" in Little’s
Rule. The sum on the right hand side is the mean cycle time. The equation
is solved for throughput. Using these recursive equations and the initial
condition that Lm{0) = 0, m = 1 we can state the following algorithm
[14]:

SEC. 2.2 / QUEUEING NETWORKS 29

For n= 1 to TV
For m= 1 to M

If queue m is single server then
< 2 ,» = S m(1 + L J n - 1))

else { queue m is single server }
Q mM = s m

End loop on m
For m= 1 to M

R (m)M =
M r(i)
2 t t : e,(»)
; = 1 (m)

L m W =
End loop on m

End loop on n

As a numerical example, consider the network of Figure 2.9. Let the
mean thinking and keying time, Sj, be 10 seconds. Let the mean CPU
time, S 2 be 50 ms., the mean floppy disk time, 53 be 220 ms. and the mean
hard disk time, S4 be 19 ms. Let the probability a job goes to the floppy
disk after leaving the CPU be 0.1 (the probability a job goes to the hard
disk after leaving the CPU be 0.9) and the probability a job returns to the
CPU after leaving an I/O device be .875 (the number of CPU-I/O cycles
has a geometric distribution starting at one with mean 8 cycles). If we let
r, = 1, then r2 = 8, r3 = 0.8 and r4 = 7.2. (These are the class values.
Since there is one class per queue, the corresponding queue values are the

30 QUEUEING MODELS / CHAP. 2

Figure 2.13 - Mean Response Time and Throughput

same.) Then for n = 1 from the first loop on m we get Q ,(1) = 10 seconds,
Q2(1) — 50 ms., 0 3(1) = 220 ms. and 0 4(1) = 19 ms. Next we get

= 0.09335 jobs per second, R(2)(l) = 0.7468 jobs per second,
R(3)(l) = 0.07468 jobs per second and /?(4)(1) = 0.6721 jobs per second.
We also get L,(1) = 0.9335 jobs, L2(l) = 0.0373 jobs, L3(l) = 0.0164
jobs and L4(l) = 0.0128 jobs. For n = 2 from the first loop on m we get
0 ,(2) = 10 seconds, Q2(2) = 51.87 ms., 0 3(2) = 223.6 ms. and 0 4(2) =
19.24 ms. Proceeding to iterate on n until n reaches N, say 30, we get
0,(30) = 10 seconds, 0 2(3O) = 302.6 ms., 0 3(3O) = 364.7 ms., 0 4(3O) =
27.52 ms. and R(,)(30) = 2.324 jobs per second. A mean response time,
from issuing a command to receiving a response, will consist of 8 CPU
mean queueing times (302.6 ms.), 0.8 floppy disk mean queueing times
(364.7 ms.) and 7.2 hard disk mean queueing times (27.52 ms.) or 2.911
seconds. Figure 2.13 plots the throughput through the terminals and the
mean response time, as a function of the number of terminals, N, as N
ranges from 1 to 60.

SEC. 2.2 / QUEUEING NETWORKS

2.2.3. General Product Form Networks

31

We have discussed in the last two sections the characteristics allowed in
product form queueing networks that we believe are of the most interest in
modeling computer communication systems. A variety of other characteris
tics are allowed by the product form solution. In terms of the individual
queues, the most interesting characteristic we have ignored is service capaci
ty dependent on queue length. Essentially arbitrary positive functions are
allowed for service capacity, but the most interesting functions are those
used to represent multiserver queues, e.g., for a two server queue, the
capacity function would be 1 for queue length 1 and 2 for all queue lengths
greater than 1. These functions significantly add to computational complex
ity for closed networks, but are otherwise easily considered.

Another characteristic of interest is the mixing of open and closed
routing chains in a single network, as illustrated in Figure 2.14. This
illustrates adding a batch workload to our previous computer system model.
Mixed networks are easily handled computationally; the solution of a mixed
network can be transformed into the solution of a corresponding closed
network.

32 QUEUEING MODELS / CHAP. 2

Most of the remaining characteristics allowed in product form networks
have seen little practical application. For an open routing chain, the arrival
rates of sources need not be constant, but may be functions of the network
or chain population. Constraints may be placed on the allowed populations
in a network, resulting in a network which is neither closed nor open.
Certain routing functions dependent on queue length and service capacity
functions dependent on subnetwork populations are also allowed.

2.3. FURTHER READING

The most comprehensive collection of results on queueing models with
tractable mathematical solution is found in Lavenberg and Sauer [12]. That
work includes no derivations, however. Kleinrock Volume I [8] is an
appropriate source of development of results for queues in isolation, and
Sauer and Chandy [19] provide the most general development of results for
product form networks which has been published so far.

CHAPTER 3

EXTENDED QUEUEING NETWORKS
Though mathematically tractable queueing networks are interesting in

their own right, we find them more interesting as a basis for definition of
models to be simulated. Queueing models provide an appropriate level of
abstraction of systems that allows concise, yet understandable characteriza
tions. However, even when we relax some of the assumptions imposed for
the sake of mathematical analysis, e.g., assumptions about arrival and
service time distributions, basic queueing networks are insufficient for
representing a number of important system characteristics. Lacking are
features for representing characteristics such as simultaneous resource
possession, e.g., holding of buffers while using a link for transmission,
parallelism and synchronization, e.g., generation of control messages and
packetizing and reassembly of messages, and effects of protocols.

In this chapter we first define basic queueing networks of the same sort
discussed in the last chapter, but this time define them from a simulation
point of view, without regard to tractability of mathematical analysis. We
next consider the functions and variables, in the sense of programming
languages, which we consider necessary and their relationship to the net
work definition. These functions and variables typically depend on the state
of the simulated system. Third, we define the most important extension to
basic queueing networks, the "passive" queue. Passive queues provide a
concise mechanism for representing simultaneous resource possession, e.g.,
possession of buffers and a link simultaneously. Simultaneous possession of
logical resources is also part of many protocols, e.g., possession of a posi
tion in a window of a flow control mechanism while using a physical re
source such as a communication link. Passive queues are also useful in
instrumentation of a simulation model, e.g., to capture response times in a
subnetwork. Finally, we discuss extensions useful for representing parallel
ism and synchronization.

Fully effective use of extended queueing network models depends on
diagrams showing the network representation of the modeled system. As

33

34 EXTENDED QUEUEING NETWORKS / CHAP. 3

we define the elements of extended queueing networks, we will also define
the diagram symbols for these elements. The most difficult part of model
ing a system becomes the construction of model diagrams. This process
requires understanding and abstraction of the modeled system. Then, with
an appropriate software package such as RESQ, construction of the actual
machine definition of the model is a mechanical translation process, trans
lating the diagram to the machine definition and supplying numerical values.
(Several research efforts are attempting to actually mechanize this transla
tion.)

3.1. BASIC QUEUEING NETWORKS

What we call "basic" queueing networks are essentially the same as
networks with the product form solution, but without requirements neces
sary for the product form, e.g., without the requirement that FCFS queues
have exponential service time distributions. A basic queueing network
consists of a set of jobs which visit queues and request service from the
servers at those queues. The network may have sources for external arrivals
of jobs and a sink for departure of jobs.

3.1.1. Active Queues

We refer to queues with servers as "active" queues. A job’s activity is
typically focused on the servers of active queues. A job typically has no
interaction with other model elements while at an active queue. Each queue
has one or more servers. A server belonging to one queue may not belong
to another queue. A server may have a fixed service rate (capacity), as in
the examples we have given so far. A server may instead have a service
rate which is a function of the state of the queue, e.g., on the number of
jobs at the queue. We will not make much use of such rate functions and
will defer further discussion of them until we do make use of them.

Each queue has one or more classes. A class belonging to one queue
may not belong to another queue. Multiple classes at a queue are useful to
categorize jobs at the queue. The categorization may be used to distinguish
routing of the jobs, to distinguish work demands (service requirements) of
the jobs and/or to distinguish priorities. Jobs within a class may be further

SEC. 3.1 / BASIC QUEUEING NETWORKS 35

distinguished, e.g., by the "job variables" discussed in Section 3.2. A job
arriving at a class demands a certain amount of work from a server of the
queue. Examples of work demand could be number of bytes to be transmit
ted by a communication link, number of instructions to be executed by a
processor, etc. Usually work demand will be characterized by a probability
distribution or a numerical expression (which may involve probability
distributions). In general, work demand is divided by service rate to obtain
service time. The service rate is the amount of work the server can perform
in one unit of time. In the usual case of fixed rate servers, the server may
be assumed to have unit rate of service and work demand may be expressed
as service time, as in all of our examples so far. Once a job is assigned a
server it receives service until the work demand is satisfied or the job is
preempted. However, once a job joins a class it remains part of that class
until its work demand is satisfied, i.e., it remains part of the class while
receiving service. Service may be preempted by arriving jobs or shared by
other jobs, depending on the scheduling discipline.

CLASSES CLASSES CLASSES

SINGLE MULTIPLE INFINITE
SERVER SERVER SERVER

Figure 3.1 - Active Queues
Single, Multiple, Infinite Server

Figure 3.1 shows the symbols we use for active queues, indicating the
servers and classes. The servers are shown as circles, with braces indicating
a collection of servers at one queue. The symbol for a class is intended to
suggest a waiting line. In the special case of an infinite server queue, one
with enough servers that there will never be waiting for servers, the class
symbols are omitted.

3.1.2. Sources and Sink

A network may have one or more sources of jobs. Each source has an

36 EXTENDED QUEUEING NETWORKS / CHAP. 3

unlimited supply of jobs. The source emits jobs one at a time, with the time
between emissions referred to as the "inter-arrival" time, or simply,
"arrival" time. This time is usually specified by a probability distribution
but may be specified by a general numerical expression. In basic networks
the time between arrivals is completely determined by the arrival time value,
but in extended networks additional control, including the ability to turn off
sources, is available. This control is effected using the "chain variables"
discussed in Section 3.2. Routing from sources is handled the same as
routing from classes, as we discuss in the next section.

Only a single sink is necessary to provide for departures of jobs. In
basic networks, a sink has no function other than as an exit point. In
extended networks, a sink may assume implicit functions as needed.

SOURCE SINK
Figure 3.2 - Source and Sink

Figure 3.2 shows the symbols for a source and a sink. Each symbol is
a pentagon, with the only distinction being the direction of the arrow
indicating the flow of jobs.

3.1.3. Routing and Routing Chains

We define routing in a (basic or extended) queueing network as being
between elements categorized as "nodes." Classes, sources and the sink (if
present) are all categorized as nodes. Queues are not categorized as nodes
- the routing between queues is not defined directly but in terms of routing
between classes. We will define a number of other types of nodes in the
remaining sections of this chapter.

The nodes of the network, except for the sink, are partitioned into one
or more "routing chains," or simply, "chains." The routing chains are
disjoint except that several chains may be connected to the sink. The jobs
of the network are also partitioned into these same chains, i.e., a job leaving

SEC. 3.1 / BASIC QUEUEING NETWORKS 37

a node in one chain may not go to a node in another chain. Normally the
nodes of a chain are connected to each other, so that a job at one node of
the chain can eventually get to another node of the chain unless it goes to
the sink first. (The connection is not necessarily direct.) The nodes of a
chain may be partitioned into disjoint subchains.

There are two basic types of chains, "closed" and "open." Closed
chains have a fixed number of jobs (the "population") which remain among
the nodes of the chain throughout the simulation. Open chains have a
(usually) fluctuating number of jobs. Jobs leave the chain (and the net
work, simultaneously) by going to the sink. In a basic network, an open
chain also has one or more sources for external arrival of jobs. In an
extended network sources are not strictly necessary in an open chain since
jobs initially placed in the chain may produce additional jobs by visiting
split nodes, as discussed in Section 3.4. Jobs may be placed at nodes of
open chains at the beginning of simulation, in addition to the jobs which
will arrive from sources during the simulation. Figure 2.11 illustrates a
network with two closed routing chains. Figure 2.13 illustrates a network
with one closed routing chains and one open routing chain.

In a basic queueing network, routing decisions are usually limited to the
fixed probabilities that we discussed in the last chapter, i.e., a job leaving
one node selects among one or more possible destinations according to
prespecified probabilities. In an extended network other decision mecha
nisms are possible, as we discuss in the next section.

3.2. NETWORK VARIABLES AND FUNCTIONS

One necessary extension to basic queueing networks is the provision of
functions and variables which provide and maintain data about the simulat
ed system and its elements. This data may then be used may be used in
expressions for arrival times, service times, priorities, routing and other
model characteristics to dynamically specify these characteristics.

There are three basic categories of variables required, with the differ
ent categories of variables distinguished by their associations with different
network elements. (1) Job variables are used to store data associated with

38 EXTENDED QUEUEING NETWORKS / CHAP. 3

individual jobs. (2) Chain variables are used to store data associated with
individual routing chains. (3) Global variables are used for data associated
with subnetworks or the entire network.

Within these categories one may further distinguish different data
types, e.g., Boolean, fixed point, floating point, or character strings, but
floating point data can be used to represent Boolean and fixed point data
and is usually sufficient. We assume that only floating point data is provid
ed.

There are two categories of functions needed: distribution functions
which return samples from specified probability distributions and status
functions which return information such as the current queue length at a
particular queue.

3.2.1. Variable Declaration, Naming and Assignment

In principal all three categories of variables can be treated similarly to
variables in programming languages. The simulation language provides for
declaration of the variable names (including array extents), for specification
of their category (job, chain or global), for initialization of values and for
assignment. In practice, global variables are used as programming language
variables and this general treatment is appropriate to global variables.
However, job and chain variables are used much more specifically. The
general treatment of job and chain variables leads to potential confusion of
the simulation language user (e.g., a variable is not recognized as belonging
to a particular category unless a special syntax or naming convention is
used). The general treatment of job variables also leads to implementation
efficiency problems, since there will be many instances of the variables.
For these reasons we prefer restrictive treatment of job and chain variables
and general treatment of global variables.

The characteristics of the three categories of variables, in terms of
applications, declarations and naming conventions, will be discussed in the
following three subsections. Assignment to variables of any of the three
categories is performed at "set nodes." A set node is defined to have one or
more assignment statements in the programming language sense. A job

SEC. 3.2 / NETWORK VARIABLES AND FUNCTIONS 39

* GL0 BV= 4

Figure 3.3 - Set Node

visiting a set node causes the assignment statements associated with that set
node to be performed. In our diagrams we will show set nodes as rectan
gles, with the assignment statements shown within the set node where
practical. Figure 3.3 gives an example.

3.2.2. Job Variables

We assume that job variables consist of a single vector named "JV,"
with each job having its own vector, but all vectors having the same number
of elements. The entire vector is initialized to zeroes when a job is placed
in the network at the beginning of simulation or generated by a source.
(For jobs generated by fission or split nodes, the vector of the generated
job receives the same values as the generating job, as discussed in Section
2.4.)

1 2 3 4

[>JV(LENG)= ,
sYa NDARD(. 125,1) OiDC

Figure 3.4 - Series Queues with Interdependence

An important application of job variables is avoidance of the independ
ence assumption discussed in Section 2.2. If a value representing message
length is stored in a job variable, then this value may be used in calculating
service time, i.e., by dividing by the link capacity and adding the propaga
tion delay. Consider the network of Figure 3.4, with four queues in series.

40 EXTENDED QUEUEING NETWORKS / CHAP. 3

Let us suppose the propagation delay is negligible, that the arrival times
have an exponential distribution with mean 0.25 second (A = 4 jobs per
second) and that the message lengths have an exponential distribution with
mean length 300 bits, and that the link capacities are 2400 baud. Then S =
0.125 second for each queue and p = 0.5 for each queue. If we make the
independence assumption, we would expect L to be 1 for each queue and Q
to be 0.25 second for each queue. The set node in Figure 3.4 assumes that
"leng" is a predefined constant indicating which element of JV is to be used
to store the message length. The distribution function "standard^ 125,1)"
results in the desired exponential distribution, as we discuss in Section 3.2.5
below. We simulated this model using a job variable to avoid the independ
ence assumption (using RESQ). For a run of 2500 simulated seconds we
obtained the following point estimates and confidence intervals at a 90%
level of confidence:

m L Q (seconds)
1 1.01 (0.96,1.05) 0.25 (0.24,0.26)
2 1.07 (1.03,1.11) 0.27 (0.26,0.28)
3 1.25 (1.20,1.31) 0.31 (0.30,0.32)
4 1.40 (1.34,1.46) 0.35 (0.34,0.36)

(Confidence intervals provide an estimate of accuracy of simulation results.
We will discuss confidence interval methods briefly in Chapter 4 and cite
references there.) Clearly, as originally observed by Kleinrock, the inde
pendence assumption is not appropriate for this model.

3.2.3. Chain Variables

Chain variables have only one unique function, to control the rates of
sources of the chains. Though chain variables can be used for other purpos
es, it will usually be more appropriate to use global variables for these
purposes. We assume that chain variables consist of a single vector named
"CV," with each chain having its own vector, but all vectors having the
same number of elements. The entire vector is initialized to ones when
simulation begins.

SEC. 3.2 / NETWORK VARIABLES AND FUNCTIONS 41

Only CV(0) affects sources. If CV(0) for an open chain is positive,
samples from the arrival time distributions are divided by CV(0) to obtain
actual interarrival times, i.e., CV(O) acts as a scaling factor for source
arrival rates. If CV(0) is positive and is changed to another positive value,
pending arrivals for that chain are rescheduled. The new time until an
arrival is obtained by multiplying the old time until the arrival by the old
value of CV(0) and dividing that result by the new value of CV(0). Setting
CV(0) to 0 (or a negative value) shuts off all sources for that chain; any
pending source arrivals for the chain are cancelled and no new arrivals will
be scheduled, even if CV(0) should later become positive.

As an example of the use of CV(0) to change arrival rates, consider a
link where the arrival rates vary according to a pattern associated with the
number of minutes past the hour. Because of the nature of the users of the
link, the first 15 minutes of the hour has a relatively high arrival rate, 7.2
messages per second. The second 15 minutes have a moderate arrival rate,
4 messages per second, the third 15 minutes of the hour have a low arrival
rate, 0.8 messages per second, and the last 15 minutes have a moderate rate

42 EXTENDED QUEUEING NETWORKS / CHAP. 3

again, 4 messages per second. Thus the average arrival rate over the hour is
4 messages per second. Let us suppose that in each of these fifteen minute
periods the arrival times have an exponential distribution, i.e., in the first 15
minutes of the hour the time between arrivals has an exponential distribu
tion with mean 0.138 seconds. Let the service times have an exponential
distribution with mean 0.125 seconds. If we assumed this system to be an
M /M /l queue with X = 4, then we would have p — 0.5, L = 1 and Q =
0.25 seconds.

Figure 3.5 shows an extended queueing network representation for this
example. The top part of the figure shows the subchain consisting of
source, queue and its connection to the sink. The bottom part of the figure
shows a subchain consisting of the set nodes used to change CV(0) and a
queue which times the 15 minute intervals. There is a single job alternating
between set nodes and classes with 15 minute times representing the above
periods. We simulated this model for 25 independent one hour periods and,
as expected, obtained the value 0.50 for p, with confidence interval
(0.496,0.500) at a 90% level of confidence. However, we obtained the
value 2.71 for L, with confidence interval (2.54,2.88) and the value 0.68
seconds for Q, with confidence interval (0.64,0.72). Thus the fluctuating
arrival rate causes dramatic deterioration of performance as averaged over
the hour.

3.2.4. Global Variables

Job variables are local to individual jobs and not accessible by other
jobs. Chain variables are local to individual chains and not accessible by
jobs in other chains. In addition to these special variables, we also need
variables accessible by all jobs, regardless of chain. Since these variables
are not local to jobs or chains, we refer to them as "global" variables. They
have naming conventions as in programming languages, are declared and
initialized as in programming languages and are assigned values in assign
ment statements of set nodes. There are two additional points to be made:

• In a language such as RESQ which allows macro defini
tion of subnetworks, there should be provision for
"global" variables which are local to subnetworks (but

SEC. 3.2 / NETWORK VARIABLES AND FUNCTIONS 43

global to jobs and chains). The conventions for these
subnetwork global variables naturally follow those of
block structured programming languages (e.g., Algol,
Pascal and PL/I). We will make frequent use of such
macro definitions and global variables defined within the
macro definitions in our examples in Chapters 5, 6 and
7.

• It is useful to have global variables with special meanings
known to both the simulation program and the modeler.
Most important is a "clock" variable, i.e., one that con
tains the current simulated time. (As an alternative to
special global variables, one could instead define status
functions without arguments. This may even be prefera
ble for values such as simulated time that should not be
modified by the model. However, other values may be
modified by both the simulation program and the model
and are appropriately defined as special global variables.)

3.2.5. Distribution Functions

When one has little information about random values other than mean
values, then it is reasonable to arbitrarily assume that the random values
have a distribution which is completely specified by the mean, e.g., the
exponential distribution. When one has more information, and that infor
mation indicates that the exponential distribution is not an appropriate
representation, then one should use a representation which includes that
information. For example, if one knows standard deviations are substantial
ly different from mean values (with the exponential distribution the stand
ard deviation equals the mean), one should include standard deviations in
the model. All simulation languages have basic facilities for defining proba
bility distributions. Many other distributions can be obtained by combining
these basic facilities in arithmetic expressions. We now summarize the basic
facilities we find appropriate in RESQ.

The coefficient of variation is defined as the standard deviation divided
by the mean. RESQ provides a standardized distribution form which is

44 EXTENDED QUEUEING NETWORKS / CHAP. 3

completely specified by the mean and coefficient of variation and which is
expedient for simulation and confidence interval estimation. The STAND
ARD distribution will often be sufficient. However, if the user has addi
tional information then the user may wish to try to fit the distribution more
precisely. The DISCRETE distribution provides a direct mechanism for
doing this in which the distribution is defined by a table of values and
associated probabilities. This may be appropriate to empirically obtained
data. If the DISCRETE distribution is not appropriate or convenient, then
a continuous distribution, either the BE (Branching Erlang) or UNIFORM
distribution, will usually be appropriate. Since the STANDARD distribution
is a combination of these two, we consider them first.

BE Distribution. A number of distribution forms can be grouped
together as representatives of the method o f exponential stages. Perhaps the
best known of these are the Erlang distribution, the hypoexponential distri
bution and the hyperexponential distribution. The branching Erlang (BE)
distribution is less well known but includes all three of the above distribu
tions and many other distributions as special cases. Figure 3.6 illustrates
the branching Erlang form.

Figure 3.6 - BE (Branching Erlang) Distribution

The BE distribution may be thought of as consisting of K exponential
stages (which are represented by circles in the figure). Stage / = 1 ,...,K,
has a mean (exponential time) and a "branching" probability (to be
described shortly) p-. A sample from the distribution consists of the sum of
(independent) samples from stages 1 to k where k is between 1 and K and
selected by the following rule: With probability p x, k is chosen to be 1, with
probability (1 — pf)p2, k is chosen to be 2, ... and with probability (1 -
P j)(l — p2)...{\ - pK_ j), k is chosen to be K. In other words, /?(is the
probability of branching past the stages after stage i. Note that p K is
identically 1. The mean, M, of the BE distribution is given by

SEC. 3.2 / NETWORK VARIABLES AND FUNCTIONS 45

K k

M = E (1 - î)(1 - - /»*-i)/»*Em-
k= 1 (=1

and the coefficient of variation, C, is given by

C =

(Since we will no longer be enumerating classes, we will no longer use C for
the number of classes.)

The BE distribution reduces to the exponential distribution if we set p j
to 1 and m| to M where M is the mean of the distribution. The BE distri
bution reduces to the Erlang distribution if we set pt to zero for all i other
than K and set mt to M /K . The hypoexponential distribution is a generali
zation of the Erlang distribution which does not require equality of the
stage means {m(}. A 2 stage hyperexponential distribution can be thought
of as a choice of an exponential distribution with mean ml with probability
q and a choice of an exponential distribution with mean m2 otherwise.
Without loss of generality we may assume mj < m2■ Then the BE distribu
tion with 2 stages and the corresponding stage means is equivalent to the
hyperexponential if we set pj to q + (1 — q)mx/m 2■ (If we wish to have
the classical representation of hyperexponential service times at a queue we
can accomplish this by having two classes with exponential distributions
with means m x and m2 and routing a job to the first class with probability q
and to the second class otherwise.)

UNIFORM Distribution. The classical uniform distribution is one with
uniform (positive) probability density over an interval (/, u) and zero
density elsewhere. The uniform distribution provided by RESQ is a gener
alization of the classical form in that it allows several intervals instead of
just one. The mean of the classical uniform distribution is given by

and the coefficient of variation is

46 EXTENDED QUEUEING NETWORKS / CHAP. 3

C = ----u — 1
(/ + u W 3

Alternatively, if we are given the mean and coefficient of variation,

u = M(1 + cV 3)

and

l = 2M - u.

STANDARD Distribution. In many circumstances one is satisfied by
specifying a distribution by mean and coefficient of variation. RESQ
includes a pragmatically chosen collection of distributions so specified. The
distribution used will have mean M and coefficient of variation C where the
specific form is chosen according to the value of C. If C = 0, then the
constant value M is used. If 0 < C < .5, then the classical uniform form is
used. If .5 < C < 1, then the BE distribution is used with

K = ceil(C-2),

2KC2 + K - 2 - V K 2+4 — 4KC2
P1 = ------------------------j ---------------

(K - 1)2{C2 + 1)

p 2 = . . . = p K_ j = 0

and

m x = ... = mK = M/ (K - p {(K- \)) .

Here "ceil" is the ceiling function, i.e., it returns the next larger integer if
its argument is not an integer and returns its argument otherwise. Note that
this results in the Erlang distribution for C = .5, \^3 and >/~2. If C = 1 the
exponential distribution is used and if C > 1 the hyperexponential distribu
tion specified is used with K = 2,

2
1 + C2)

SEC. 3.2 / NETWORK VARIABLES AND FUNCTIONS 47

m l
1 +

M

1 - 2
1 + C2

and

m2 -
M

The discontinuity here, using the classical uniform distribution for small
coefficient of variation and the BE distribution for larger coefficient of
variation, is due to our general preference for the BE distribution tempered
by the computational expense of simulating the BE distribution for small
coefficient of variation. (The number of BE stages, and thus computational
expense, becomes large with small coefficient of variation.)

3.2.6. Routing Predicates

In basic queueing networks routing decisions are made strictly accord
ing to fixed probabilities. (In product form networks, limited forms of
probabilities dependent on queue lengths are permitted.) However, a more
expressive mechanism, analogous to "IF THEN" statements in programming
languages, is needed in extended queueing networks. As an alternative to
associating a probability with a (directed) path between nodes, a
"predicate," i.e., a Boolean function, may be associated with a path be
tween nodes. The predicate has either a true or false value dependent on
network variables and functions. For example, a possible predicate is
"IF(JV(LENG)<256)". If, when a path is being considered for the routing
of a job, the predicate has a true value, that path is taken.

3.2.7. Status Functions

In routing predicates especially, but also in other uses of expressions,
the model must be able to determine characteristics of system state. For
example, a routing predicate may depend on whether there are servers
available at a queue (and if so, how many), on total queue length for all

48 EXTENDED QUEUEING NETWORKS / CHAP. 3

classes of a queue and/or queue length at a specific class. These three
examples are the most important status functions for the network elements
we have defined so far. Additional functions are required to take full
advantage of the passive queues and other elements defined in the remain
der of this chapter.

3.3. PASSIVE QUEUES

The passive queue is the most important extension to the basic queue
ing network. A job typically acquires units of resources represented by
passive queues and simply (passively) holds these resource units while
visiting active queues and other model elements. The job explicitly releases
or destroys the resource units when they are no longer needed. The re
sources represented by active queues are the focus of the job’s activities,
but without the passive queue resources these active queue resources are not
usable. For example, before a message can be transmitted on a communica
tion link, there must be a buffer available at the receiving end to store the
incoming message. Buffers are resources typically represented by passive
queues. Similarly, a passive queue representing memory may be appropri
ately added to the computer system models of Section 2.2. Passive queues
representing I/O channels and/or device controllers might also be appropri
ately added to those or similar models. Besides these representations of
simultaneous possession of physical resources, passive queues are key to the
representations of simultaneous possession of logical resources, as we will
illustrate thoroughly in Chapter 6. We will also depend on passive queues
as instrumentation devices, primarily for measuring response times. The
queueing time for a passive queue is defined as the time between a job’s
request for resource units and that job’s freeing or destroying of the re
source units.

The resource units represented by a passive queue are assumed to be
homogeneous. The resource units are called "tokens." The tokens of a
passive queue correspond to the servers of an active queue. A passive
queue consists of a pool of tokens to be allocated to jobs and a set of nodes
which operate on that pool and the jobs holding tokens. Figure 3.7 shows
the diagram symbols used to represent passive queues.

SEC. 3.3 / PASSIVE QUEUES 49

POOL OF TOKENS

TRANSFER CREATE ----------- JOB FLOW DESTROY
............. TOKEN FLOW

Figure 3.7 - Passive Queue

The primary nodes of passive queues are called "allocate" nodes.
Allocate nodes correspond to the classes of active queues. A job arriving at
an allocate node requests possession of a number of the queue’s tokens.
This number may be a constant, a sample from a probability distribution, an
expression based on job, chain or global variables, etc. If the tokens re
quested are not available for this job, the job waits at the allocate node.
Scheduling of allocations will usually be either FCFS or non-preemptive
priority, but other scheduling disciplines are possible. As soon as the tokens
are allocated, the job is allowed to visit other nodes of the network. Howev
er, as long as the job waits for or possesses tokens of a given passive queue,
it is considered to be associated with that queue and the allocate node
where it obtained tokens, e.g., it is counted in the queue lengths for the
queue and allocate node.

When a job visits a "release" node associated with a particular passive
queue, it instantaneously returns to the pool of tokens all tokens which it
holds. The job is no longer associated with the queue, e.g., the queueing

50 EXTENDED QUEUEING NETWORKS / CHAP. 3

time ends, and the job proceeds without delay. When a job visits a release
node associated with a particular passive queue without holding tokens of
that queue, there is no effect on the job or queue. Fusion nodes (Section
3.4) and the sink may have the effect of releasing tokens.

When a job visits a "destroy" node associated with a particular passive
queue, it instantaneously destroys all tokens which it holds. The job is no
longer associated with the queue, e.g., the queueing time ends, and the job
proceeds without delay. When a job visits a destroy node associated with a
particular passive queue without holding tokens of that queue, there is no
effect on the job or queue.

"Create" nodes are used by a job to add new tokens to a pool of
tokens, usually to complement the effects of a destroy node. A job visiting
a create node may or may not hold tokens of that queue, the effect is the
same in either case. A visit to a create node is instantaneous as far as
simulated time is concerned. In representing communication protocols and
similar mechanisms, it is often the case that a job will destroy tokens and
later either create tokens itself or have another job create tokens. This is
effectively a release of tokens, but can be used to represent delays in
notification of token availability (e.g., the transmission delay for an ac
knowledgement).

"Transfer" nodes are used to transfer tokens between related jobs, as
discussed in the following section.

3.4. SPLIT, FISSION AND FUSION NODES

Split nodes allow a job to produce additional independent jobs. Split
nodes are useful in representing bulk arrival mechanisms and in representing
control messages (e.g., acknowledgements) in communication system proto
cols. A split node has one entrance, an exit for the job that entered and an
additional exit for each new job to be produced. The newly produced jobs
are given the same job variable values as the existing job. The newly
produced jobs do not possess tokens, whether or not the existing job pos
sessed tokens. A visit to a split node is instantaneous, as far as simulated
time is concerned.

SEC. 3.4 / SPLIT, FISSION AND FUSION NODES 51

SPLIT

FISSION FUSION

Figure 3.8 - Split, Fission and Fusion Nodes

Fission nodes allow a job to produce additional jobs dependent on the
existing job. Fusion nodes allow for the destruction of the newly produced
jobs in a coordinated manner. Fission and fusion nodes are usually used
together in pairs. Fission and fusion nodes are useful for representing
synchronized processes (tasks) occurring in operating systems. Similarly,
fission and fusion nodes are useful for representing parallel physical activi
ties representing a single logical activity, for example transmission of a
message across a communication network as a collection of packets.

A fission node has one entrance, an exit for the existing job (referred
to as the "parent"), and an additional exit for each new job to be produced.
The produced jobs are referred to as "children." Children may themselves
enter fission nodes, thus producing hierarchies of jobs. Children are given
the same job variable values as the parent. The children do not possess
tokens, whether or not the parent does. A visit to a fission node is instanta
neous, as far as simulated time is concerned. Jobs are not allowed to leave
the network (i.e., by going to the sink) as long as they have relatives
(parents or children). This is not the case with jobs going through a split
node, since split jobs are not related.

A fusion node provides a place for jobs to wait for related jobs
(parents or children). A fusion node has no effect on jobs without rela
tives. Such jobs pass through a fusion node without delay or other effect.
No more than one job of a "family" can stay at a fusion node. If a job
arrives at a fusion node and it has relatives, but none of its relatives are at

52 EXTENDED QUEUEING NETWORKS / CHAP. 3

this particular fusion node, it waits at the fusion nodes. When a job arrives
at fusion node and it has a relative at this particular fusion node, two things
can happen, depending on the relationship between the jobs. If one is the
parent and the other is a child, then the offspring is destroyed. If both are
children, the one that was produced last is destroyed. Before a child is
destroyed, any tokens it holds are released. After destruction of one job, if
the other job has no remaining relatives, it proceeds from the exit of the
fusion node. If the other job still has other relatives, it waits at the fusion
node for another relative to arrive.

"Transfer" nodes are used to transfer tokens between parent and child.
The transfer may be in either direction, but is always initiated by the child.
When a child is generated at a fission node, it possesses no tokens of
passive queues. A transfer node allows a child to request transfer of its
parent’s tokens of a particular passive queue. This will typically, but not
necessarily, occur immediately after the child is generated. If a child ac
quires tokens, through either allocate or transfer nodes, and does not
dispose of them prior to going to a fusion node, the tokens will be released
as part of the fusion operation. A transfer node also allows a child to
transfer all of its tokens of a particular passive queue back to its parent.

As already mentioned, a child may go to a fission node to produce its
own children. There are two rules which must be kept in mind:

1. Whenever a job visits a fission node, it produces its
immediate descendent, i.e., a job can never directly prod
uce grandchildren.

2. Related jobs more than one generation apart, e.g., grand
parents and grandchildren, may not be present at the
same fusion node.

An immediate consequence of these rules is that it is usually necessary to
have (at least one) separate pair of fission and fusion nodes for every
generation of jobs that is to be produced.

Figure 3.9 illustrates an abstract set of fission and fusion nodes which
might be tailored to a variety of purposes. For example, suppose a commu
nication network is such that messages must be broken into packets for

SEC. 3.4 / SPLIT, FISSION AND FUSION NODES 53

A

transmission and must be broken into sub-packets for transmission across
certain links. Further, a message consists of exactly two packets and a
packet consists of exactly two sub-packets. Node G1FISS (generation 1
fission) in the figure could represent breaking the message into packets.
Since a job that enters G1FISS cannot directly generate grandchildren, it
generates two children, representing the packets. Queue A would be elimi
nated in this case and the jobs that enter G1FISS would go directly to
G1FUSE. The children leaving G1FISS would be transmitted across the
portion of the network allowing full packets, e.g., queues B and C in the
figure. Then they reach G2FISSA and G2FISSB, where they produce
children to represent breaking the packets into sub-packets. A child repre
sents one sub-packet and a grandchild represents the other. After transmis
sion across the portion of the network requiring sub-packets, e.g., queues D
and E in the figure, a child and grandchild can reunite at the generation 2
fusion nodes to represent assembling the sub-packets into packets. The
child (packet) then proceeds further across the network, e.g., through queue
F in the figure to the generation 1 fusion node. When both children have
reached the fusion node, their parent (representing the reassembled mes
sage) leaves the fusion node.

CHAPTER 4

THE RESEARCH QUEUEING
PACKAGE (RESQ)

In order to effectively use queueing networks as performance models,
appropriate software is necessary for definition of the networks to be
solved, for solution of the networks (by numerical or simulation methods)
and for examination of the performance measures obtained. The Research
Queueing Package (RESQ) which we have constructed is an example of
such software for simulation of extended queueing networks. Using a tool
such as RESQ, construction of simulation models becomes a relatively
effortless process.

In this book, our focus is on simulation methodology for computer
communication systems and we use diagrams and informal descriptions to
convey the use of extended queueing network models. However, we wish to
put our examples on more concrete footing by giving formal definitions of
our models. The model definitions are the ones used with RESQ, so we
wish that the reader have enough familiarity with RESQ conventions that
RESQ model definitions used in our examples will be understandable.
Ambiguities in the diagrams and informal descriptions are resolved in the
formal definitions. These definitions may be readily translated to the
definitions used with other tools that support equivalent extended queueing
network models.

Simulation methodology involves more than model definition. In
particular, it involves statistical analysis of simulation outputs and determi
nation of appropriate simulation run lengths. RESQ is especially strong in
this area, so discussion of RESQ gives us an appropriate basis for discussion
of these issues, both in terms of software capabilities and application to
particular simulations. In Section 4.1 we discuss simulation specific issues
of analyzing simulation output, initializing the simulation, and determining
run length.

54

SEC. 4.1 / SIMULATION SPECIFIC ISSUES 55

The remainder of this chapter provides an overview of RESQ as it
pertains to this book. For more thorough discussion, see the references in
the Bibliography. In Section 4.2 we discuss the basic syntax and semantics
of network definition with RESQ. In Section 4.3 we discuss the RESQ
capabilities for macro definitions of subnetworks. Both of these sections
are essentially independent of solution method, though much of the discus
sion applies only to simulation.

4.1. SIMULATION SPECIFIC ISSUES

There are two primary issues we wish to address, the estimation of
accuracy of simulation performance measures obtained from simulations and
the determination of simulation run length. An additional issue which we
consider part of the accuracy issue is the initialization of simulations.

4.1.1. Confidence Intervals

Simulation, as we apply it, inherently involves statistical variability due
to the use of (pseudo-) random number streams. This variability is not a
problem with numerical solutions, where we obtain exact values for model
performance measures (within the limits of numerical accuracy). With
either simulation or numerical solutions, we would like to think that our
main source of errors in results is inaccuracy of representation of a system,
i.e., our model ignores some system characteristic which significantly im
pacts performance. However, if simulation is improperly used, errors due to
statistical variability may dominate errors due to model inaccuracies.

The standard statistical method for estimating the accuracy of simula
tion results is to compute a "confidence interval." In addition to the usual
"point estimate" p for some performance measure (say throughput), an
interval estimate (jp-8,p+8) is computed at a specified "confidence level,"
e.g., 90%. We expect the true value of the performance measure to be
contained in the computed interval most of the time, e.g., 90%, but know
that the true value may fall outside of the interval (but, hopefully, near the
interval).

56 THE RESEARCH QUEUEING PACKAGE (RESQ) / CHAP. 4

Computing confidence intervals for simulation results is not an easy
matter, and research in the area continues. However, a number of ap
proaches are of considerable practical value. RESQ implements three of
these, each with its own advantages and disadvantages, and allows the user
to select the one most appropriate to the problem at hand. The three
methods are the classical method of "independent replications," the relative
ly recent "regenerative" method and the very recent "spectral" method.
The implementations are designed to be transparent to the user, so that the
user need not understand the statistical bases for the methods nor need the
user provide many parameters. This contrasts sharply with most simulation
languages, which provide no support at all for confidence interval estima
tion. Most users will not go to the trouble of programming their own
output analysis routines and will be vulnerable to relying on results with
substantial inaccuracies due to statistical variability.

Independent replications. Much of classical statistics depends on data
items being independent and identically distributed. The obvious items of
data for analysis in simulations of queueing networks will not have this
property, e.g., the length of one response time is likely to be significantly
related to the lengths of previous response times. The basis of the method
of independent replications is to obtain independent and identically distrib
uted groups of data by replicating (repeating) simulation runs. Each repli
cation begins with the same initial conditions, except for the random num
ber streams, and each replication has the same length, so the results from
the replications are independent and identically distributed. For example, in
the simulation of the queue with arrival rate dependent on the time past the
hour (Figure 3.5), we repeated the simulation 25 times. Each simulation
began with the queue empty at the beginning of the hour. The method of
independent replications is quite appropriate to a problem of this sort,
where we recognize and accept the transient behavior of the system (in this
case the arrival rates dependent on simulated time).

Usually, however, we are interested in equilibrium behavior, the behav
ior we would expect to observe after a run of indefinite length. Independ
ent replications is not well suited to this sort of problem for two reasons.
First, the behavior of the system depends on the initial state of the system
until the simulation has run long enough for the effects of the choice of
initial state to be effectively masked. This problem can be alleviated some

SEC. 4.1 / SIMULATION SPECIFIC ISSUES 57

what by discarding an initial portion of each replication, but one must
accept the computational costs of each of these discarded initial portions.
Second, one must determine how long each replication should be, and this is
a difficult problem without analysis of the characteristics of individual
replications.

The Regenerative Method. In many queueing networks it is possible to
identify portions of a single simulation run that are independent and identi
cally distributed. For example, in the M /G /l queue, periods of simulation
between returns to the state where the system is empty (and the server is
idle) are independent and identically distributed because of the memoryless
property of the exponential interarrival time distribution. A state such as
the empty state in the M /G /l queue is called a "regeneration" state and
the periods between returns to the regeneration state are called regeneration
"cycles." All of the queueing systems discussed in Chapter 2 are regenera
tive systems, and so are many of the other systems we discuss. For exam
ple, in the central server model with terminals of Figure 2.9, the state with
all of the jobs at the terminals is a regeneration state. Identification of
regeneration states usually depends on the memoryless property of the
exponential distribution. It is for this reason that we advocate that (when
appropriate) the Branching Erlang distribution be used for representing
non-exponential service and arrival times. The exponential stages of the
Branching Erlang form may be used to identify regeneration states.

There are two principal limitations in using the regenerative method.
First, the method only applies to systems with a regenerative structure.
Though the extended queueing network definitions we have given are made
with the intent of preserving regenerative structure, where possible, the
extensions will eliminate regenerative structure in many cases. Second, even
though a model regenerates in principle, a model may not return to the
regeneration state in a simulation of reasonable length. Even if the simula
tion does return to the regeneration state a few times, this will not be
sufficient for the statistical analysis to be valid.

The Spectral Method. The spectral method does not depend on inde
pendent and identically distributed data items. Rather, it explicitly takes
into consideration the correlations between successive items in the analysis
of the data. Heidelberger and Welch [HEID81] describe the spectral

58 THE RESEARCH QUEUEING PACKAGE (RESQ) / CHAP. 4

method as follows. "An estimate of the variance is obtained by estimating
the spectral density at zero frequency. This estimation is accomplished
through a regression analysis of the logarithm of the averaged periodo-
gram." The spectral method applies to equilibrium behavior of general
extended queueing networks and is very easy to use. The principle problem
with the spectral method is that it only applies easily to discrete items of
data, i.e., it does not apply easily to time averaged data items such as
utilization or queue length. In RESQ, the spectral method implementation
provides confidence intervals for mean queueing times and queueing time
distribution points only.

4.1.2. Stopping Rules

A common approach to determining simulation run lengths is to simply
specify a run length in advance, e.g., to say the simulation will run for one
simulated hour. However, if confidence intervals are available from a single
run method (e.g., the regenerative method or the spectral method), then
these may be used in an automated procedure where the specification given
by the user is the required accuracy of the simulation results rather than an
arbitrarily chosen run length. For example, the specification might be that
the relative width of the confidence interval for some mean queueing time
be less than 10%, i.e., if p is the mean queueing time value and (l,u) is the
confidence interval, then the stopping criterion is that (u - l) / p be no
greater than 0.10.

Such an automated run length determination is usually implemented as
a sequential procedure, where the simulation runs for a period of length
specified by the user. If the accuracy criteria are satisfied, then the simula
tion terminates. If the criteria are not satisfied, then the simulation contin
ues for one or more additional periods until the criteria are satisfied or the
CPU budget for this run is exhausted. Sequential procedures should be
used in a conservative manner, i.e., the period lengths should be specified
that there be only a few, relatively long periods, not many short periods.

4.2. NETWORK DEFINITION

The RESQ user may define a network interactively with a prompter

SEC. 4.2 / NETWORK DEFINITION 59

that leads the user through a network definition. Alternately, the user may
provide a file giving the network definition, analogous to a file giving a
program definition for a compiler. Such a file has the same syntax as the
interactive dialogue, i.e., it includes both prompts and replies. For this
reason it is called a "dialogue" file. The primary difference between the
two modes is that the interactive mode has extra lines, prompts which
receive no reply, which are necessary to terminate sections of interactive
dialogue but are superfluous in dialogue file mode.

Users may switch freely between modes, e.g., while in interactive mode
a user may reply "edit" to edit a dialogue file transcript of the network
definition so far. Such editing may consist of minor corrections or whole
sale corrections. If the RESQ translator is given an incomplete dialogue
file, it will automatically enter the interactive mode after it has parsed the
incomplete file.

Our examples will be dialogue files which only include the portions of
dialogue appropriate to the model at hand. Most lines in the files consist of
a string of upper case characters followed by a colon and a string of
mixed case characters (primarily lower case characters). The upper case
string and colon would be a prompt in interactive mode and the mixed case
string would be the reply.

The common syntax between the two modes forces a fairly rigid se
quence of sections in the dialogue file. There is an initial section declaring
the solution method (numerical or simulation), parameters, identifiers
representing constant values and variables. Then there is a section for
declaration of macro definitions of queues and definitions of the queues
themselves. The next section is for definition of other nodes not associated
with queues, set nodes, split nodes, fission and fusion nodes. Following that
are sections for declaration of subnetwork macros, which we call
"submodels," and invocation of those macros. The final part of the net
work definition is the definition of routing chains. With simulation there is
also a simulation specific section following the network definition.

We now use a sample dialogue file to illustrate the syntax and structure
of the dialogues. This example illustrates a subset of dialogue characteris
tics. The file is for simulation of the network of Figure 2.6 without making

60 THE RESEARCH QUEUEING PACKAGE (RESQ) / CHAP. 4

the independence assumption. See Figure 4.E In addition to the elements
shown in that figure, set nodes are used to set job variables for message
destinations and lengths, and a passive queue is used to measure response
times. The first major portion of dialogue establishes the model name, the
solution method, parameters, constants and variables.

MODEL:chap4m1
METHOD:simulation
NUMERIC PARAMETERS:mean_leng /‘mean message length*/
DISTRIBUTION PARAMETERS:arrivl_tim /*arrival_times*/
NUMERIC IDENTIFIERS:NY Atl Dal Chi

NY: 1
ATL: 2
DAL: 3
CHI : 4

NUMERIC IDENTIFIERS:msg_dest msg_leng
MSG_DEST:0 /*JV(0) to be used to store destination*/
MSG_LENG:1 /*JV(1) to be used to store length */

DISTRIBUTION IDENTIFIERS:msg_l_dist /‘message length */
MSG_L_DIST:standard(mean_leng,1) /‘exponential */

MAX JV:1 /‘maximum subscript*/

SEC. 4.2 / NETWORK DEFINITION 61

(If global variables were being declared for this model, declaration and
initialization would occur here, with syntax similar to the declaration of
constants, i.e., the numeric and distribution identifiers.) Next are a macro
definition of an active queue for representing links,

QUEUE TYPE:bas ic_link
NUMERIC PARAMETERS:prop_delay
NODE PARAMETERS:class_name
TYPE:fcfs /*special case of active queue type*/
CLASS LIST:class_name

SERVICE TIMES:standard(jv(msg_leng)/9600+prop_delay,0)
END OF QUEUE TYPE BASIC_LINK

and 8 invocations of this macro definition which define the link queues.

QUEUE:NY_Atl_q
TYPE:basic_link /*invocation of user defined queue type */
PROP_DELAY:.00408 /*using invocation form with matching of*/
CLASS_NAME:NY_Atl /*parameter names and values */

QUEUE:Atl_Dal_q
TYPE:basic_link: .00377; Atl Dal /*positional invocation form*/

QUEUE:Dal_Chi_q
TYPE:basic_link: .00423; Dal Chi

QUEUE:Chi_NY_q
TYPE:basic_link: .00377; Chi_NY

QUEUE:Atl_NY_q
TYPE:bas ic_link: .00408; Atl_NY

QUEUE:Dal_Atl_q
TYPE:basic_link: .00377; Dal_Atl

QUEUE:Chi_Dal_q
TYPE:basic_link: .00423; Chi Dal

QUEUE:NY_Chi_q
TYPE:bas ic_link: .00377; NY_Chi

We then define a passive queue for measuring response times.

QUEUE:resp_time
TYPE:passive
TOKENS:2147483647 /* "infinity" — 2 * * 31 -1 */
DSPL:fcfs
ALLOCATE NODE LIST:NY_r_t Atl_r_t Dal_r_t Chi_r_t

NUMBERS OF TOKENS TO ALLOCATE:1

(The tokens will be released by the sink.) For each source there is a set
node which determines the destination and message length and stores these
in the appropriate job variables.

62 THE RESEARCH QUEUEING PACKAGE (RESQ) / CHAP. 4

SET NODES:set_NY
ASSIGNMENT LIST:jv(msy_dest)=discrete(Atl,1/3;Dal,1/3;Chi,1/3) ++

jv(msg_leng)=msg_l_dist
SET NODES:set_Atl
ASSIGNMENT LIST:jv(msg_dest)=discrete(NY,1/3,-Dal,1/3;Chi,1/3) ++

jv(msg_leng)=msg_l_dist
SET NODES:set_Dal
ASSIGNMENT LIST:jv(msg_dest)=discrete(NY,1/3;At1,1/3;Chi,1/3) ++

jv(msg_leng)=msg_l_dist
SET NODES:set_Chi
ASSIGNMENT LIST:jv(msg_dest)=discrete(NY,1/3;Atl,1/3;Dal,1/3) ++

jv(msg_leng)=msg_l_dist

The final portion of the network proper is the definition of routing, includ
ing declaration of sources.

CHAIN:c
TYPE:open
SOURCE LIST:New_York Atlanta Dallas Chicago
ARRIVAL TIMES:arrivl_tim
SOURCE LIST:New_York Atlanta Dallas Chicago
ARRIVAL TIMES:arrivl_tim
:New_York->NY_r_t->set_NY
:set_NY->NY_Atl NY_Chi NY_Atl NY_Chi; ++

if(jv(msg_dest)=Atl) if(jv(msg_dest)=Chi) .5 .5
:NY_Atl->sink Atl_Dal;if(jv(msg_dest)=Atl) if(t)
:NY_Chi->sink Chi_Dal;if(jv(msg_dest)=Chi) if(t)
:Atlanta->Atl_r_t->set_Atl
:set_Atl->Atl_Dal Atl_NY Atl_Dal Atl_NY; ++

if(jv(msg_dest)=Dal) if(jv(msg_dest)=NY) .5 .5
:Atl_Dal->sink Dal_Chi;if(jv(msg_dest)=Dal) if(t)
:Atl_NY->sink NY_Chi;if(jv(msg_dest)=NY) if(t)
:Dallas->Dal_r_t->set_Dal
:set_Dal->Dal_Chi Dal_Atl Dal_Chi Dal_Atl; ++

if(jv(msg_dest)=Chi) if(jv(msg_dest)=Atl) .5 .5
:Dal_Chi->sink Chi_NY;if(jv(msg_dest)=Chi) if(t)
:Dal_Atl->sink At1_NY;if(jv(msg_dest)=Atl) if(t)
:Chicago->Chi_r_t->set_Chi
:set_Chi->Chi_NY Chi_Dal Chi_NY Chi_Dal; ++

if(jv(msg_dest)=NY) if(jv(msg_dest)=Dal) .5 .5
:Chi_NY->sink NY_At1;if(jv(msg_dest)=NY) if(t)
:Chi_Dal->sink Dal_At1;if(jv(msg_dest)=Dal) if(t)

The remainder of the dialogue is for definition of simulation specific charac
teristics. These include the gathering of distributions of performance
measures, confidence interval method, initial state definition and stopping
criteria. RESQ does not gather distributions of performance measures
except where the user specifically requests that a distribution be gathered.

SEC. 4.2 / NETWORK DEFINITION 63

QUEUES FOR QUEUEING TIME DIST:resp_time
VALUES:.2 .4 .6 .8 1 1.2

RESQ provides three confidence interval methods, which are described in
Section 4.1. In the following we use the regenerative method, with the
network initially empty of jobs and with the network empty state being the
regeneration state also. The empty state is the default for open chains, so
no explicit declaration is needed.

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION -
/♦Default initial and regeneration states — system empty*/
CONFIDENCE LEVEL:90 /*percent*/

We choose not to use the automated run length control so that we can
demonstrate the interactive simulation capabilities of RESQ. We specify
with the guideline that the run will stop at the first occurrence of the regen
eration (empty) state after 10,000 response times have completed. Howev
er, there is a firm limit of 10 CPU seconds for the simulation run. (These
two values may be increased interactively, as we will see.)

SEQUENTIAL STOPPING RULE:no
RUN GUIDELINES -

QUEUES FOR DEPARTURE COUNTS:resp_time
DEPARTURES:10000

LIMIT - CP SECONDS:10
TRACE:no

END

Following is an example of RESQ output for this simulation, using the
parameters we suggested before in Chapter 2. The EVAL command initi
ates simulation. After the EVAL command is given, it issues prompts for
the model name and model parameters. The simulation begins and then
stops after reaching the 10 second CPU time limit. The results presented
exclude results for the last 307 simulated events, the portion of the run
since the last occurrence of the system empty state. Simulated events
correspond to either arrivals from the sources or completion of service times
at the active queues. A regeneration cycle is the period between occurrenc
es of the empty system state. During the first portion of this run the system
returned to the empty state 16 times.

64 THE RESEARCH QUEUEING PACKAGE (RESQ) / CHAP. 4

eva 1
MODEL:chap4m1
RESQ2 VERSION DATE: MAY 11, 1982 - TIME: 20:55:49 DATE: 05/21/82
MEAN_LENG:1400
ARRIVL_TIM:0.20 /*used as exponential distribution with this mean*/
RUN END: CPU LIMIT
NO ERRORS DETECTED DURING SIMULATION. 308 DISCARDED EVENTS

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS
NUMBER OF CYCLES

156.65729
10.64
7426

1 7

After the simulation summary, EVAL prompts the users for codes indicating
performance measures that are to be displayed.

WHAT:/^performance measures?*/ nd(resp_time) /*number departures*/
ELEMENT NUMBER OF DEPARTURES
RESP TIME 3167

WHAT:qtbo
ELEMENT
RESP_TIME
NY_ATL_Q
ATL_DAL_Q
DAL_CHI_Q
CHI_NY_Q
ATL_NY_Q
DAL_ATL_Q
CHI_DAL_Q
NY_CHI_Q

/♦mean queueing time, both points and intervals*/
MEAN QUEUEING TIME
0.41274(0.35023,0.47524) 30.3%
0.29540(0.25531,0.33549) 27.1%
0.28707(0.22609,0.34804) 42.5%
0.37318(0.28446,0.46190) 47.5%
0.40709(0.17755,0.63663) 112.8%
0.27245(0.25067,0.29424) 16.0%
0.27274(0.23592,0.30957) 27.0%
0.27577(0.23446,0.31708) 30.0%
0.26068(0.22197,0.29938) 29.7%

WHAT :

The fourth column gives the relative width of the confidence interval in
percent, i.e., the width of the confidence interval divided by the point
estimate times 100%. After this dialogue is terminated by an empty reply,
EVAL gives the user an opportunity to continue the simulation after in
creasing the guideline and limit previously specified.

CONTINUE RUN:yes
GUIDELINE - RTQ DEPARTURES: /‘leave this guideline the same*/
LIMIT - CP SECONDS:50

Now the run stops after reaching the guideline and continuing for an addi
tional 282 response times, until the system returns to the empty state.

SEC. 4.2 / NETWORK DEFINITION 65
RUN END: CPU LIMIT
RUN END: RESP_TIME DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS
NUMBER OF CYCLES

513.70313
33.06
24019

49

WHAT:nd(resp time)
ELEMENT NUMBER OF DEPARTURES
RESP_TIME 10282

WHAT:qtbo
ELEMENT MEAN QUEUEING TIME
RESP_TIME 0.41095 (0.3884 3,0.4 3 347) 11.0%
NY_ATL_Q 0.34638(0.30003,0.39274) 26.8%
ATL_DAL_Q 0.31668(0.27531,0.35805) 26.1%
DAL_CHI_Q 0.30788(0.27091,0.34486) 24.0%
CHI_NY_Q 0.33074(0.25216,0.40931) 47.5%
ATL_NY_Q 0.29594(0.27046,0.32143) 17.2%
DAL_ATL_Q 0.27924(0.25932,0.29916) 14.3%
CHI_DAL_Q 0.29231(0.26327,0.32136) 19.9%
NY_CHI_Q 0.29129(0.25946,0.32312) 21 .9%

WHAT:

Again we continue the run. When the new guideline is reached, which is
prior to the specified CPU limit, we examine all of the normally provided
measures.

CONTINUE RUN:yes
GUIDELINE - RESP_TIME DEPARTURES:20000
LIMIT - CP SECONDS:100

RUN END: CPU LIMIT
RUN END: RESP_TIME DEPARTURE GUIDELINE
RUN END: RESP_TIME DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS
NUMBER OF CYCLES

1014.84351
64.39
46928

100

WHAT:allbo
ELEMENT
RESP_TIME
NY_R_T
ATL R T

/♦all standard measures, both points and intervals*/
UTILIZATION
3.7174E-09(3.5603E-09,3.8746E-09) 0.0%
9.6537E-10(9.0408E-10,1.0267E-09) 0.0%
9.2463E-10(8.5699E-10,9.9228E-10) 0.0%

6 6 THE RESEARCH QUEUEING PACKAGE (RESQ) / CHAP. 4
DAL_R_T 9.1964E-10(8.4642E-10,9 .9285E
CHI_R_T 9.0779E-10(8.3 50 2E-10,9 . 8056E

NY_ATL_Q 0.51528(0.49314,0.53742) 4.4%
ATL_DAL_Q 0.49960(0.47406,0.52515) 5.1%
DAL_CHI_Q 0.49487(0.47242,0.51731) 4.5%
CHI_NY_Q 0.49359(0.46680,0.52038) 5.4%
ATL_NY_Q 0.50359(0.48061,0.52656) 4.6%
DAL_ATL_Q 0.49477(0.47316,0.51638) 4.3%
CHI_DAL_Q 0.50038(0.47880,0.52196) 4.3%
NY_CHI_Q 0.50183(0.47902,0.52464) 4.6%

For a queue with multiple servers or tokens, utilization is determined as the
average of all servers or tokens, assuming they are homogeneous. (Tokens
are necessarily homogeneous.) For utilization and distribution values, which
are constrained to the [0,1] interval, the fourth column gives the absolute
width of the confidence interval in percent, i.e., the width of the confidence
interval times 100%.

ELEMENT THROUGHPUT
RESP_TIME 19.83359(19.58752,20.07967) 2.
NY_R_T 4.94855 (4.81649,5.08060:) 5.3%
ATL_R_T 4.94263 (4.81901,5.06626)) 5.0%
DAL_R_T 4.99978(4.87629,5.12328)) 4.9%
CHI_R_T 4.94263(4.80030,5.08497)) 5.8%

NY_ATL_Q 3.32071 (3.21841,3.42301) 6.2%
ATL_DAL_Q 3.34140(3.22036,3.46245) 7.2%
DAL_CHI_Q 3.30494 (3.19591,3.41397) 6.6%
CHI_NY_Q 3.28819 (3.16001,3.41637) 7.8%
ATL_NY_Q 3.30691 (3.20169,3.4121 3) 6.4%
DAL_ATL_Q 3.30593(3.20936,3.40250) 5.8%
CHI_DAL_Q 3.29607(3.17221,3.41994) 7.5%
NY_CHI_Q 3.24385(3.14613,3.34157) 6.0%
SET_NY 4.94855
SET_ATL 4.94263
SET_DAL 4.99978
SET_CHI 4.94263
NEW_YORK 4.94855
ATLANTA 4.94263
DALLAS 4.99978
CHICAGO 4.94263
SINK 19.83359

ELEMENT MEAN QUEUE LENGTH
RESP_TIME 7.98313(7.64571,8.32054) 8.5%
NY_R_T 2.07312(1.94150,2.20474) 12.7!
ATL_R_T 1.98563(1.84037,2.13090) 14.6!
DAL_R_T 1.97490(1.81768,2.13212) 15.9!
CHI_R_T 1.94947(1.79320,2.10574) 16.0!

NY_ATL_Q 1.05253(0.93344,1.17161) 22.6%
ATL_DAL_Q 1.02826(0.90895,1.14757) 23.2%

SEC. 4.2 / NETWORK DEFINITION 67
DAL_CHI_Q 1 .02396(0.88486,1.16306) 27.2)5
CHI_NY_Q 1 .00373(0.831 23,1.17623) 34.4)5
ATL_NY_Q 0.97682(0.88099,1.07265) 19.6%
DAL_ATL_Q 0.93175(0.84269,1.02081) 19.1%
CHI_DAL_Q 0.98241 (0.87671,1.08810) 21.5%
NY_CHI_Q 0.98368(0.87805,1.08931) 21.5%

ELEMENT STANDARD DEVIATION OF QUEUE LENGTH
RESP_TIME 4.19344
NY_R_T 1.85651
ATL_R_T 1.84322
E)AL_R_T 1.85416
CHI_R_T 1.84354

NY_ATL_Q 1.46033
ATL_DAL_Q 1.50998
DAL_CHI_Q 1.56696
CHI_NY_Q 1.54384
ATL_NY_Q 1.33588
DAL_ATL_Q 1.31741
CHI_DAL_Q 1.39669
NY_CHI_Q 1.35321

ELEMENT MEAN QUEUEING TIME
RESP_TIME 0.40251(0.38803,0.41698) 7.2%
NY_R_T 0.41894(0.39931,0.43856) 9.4%
ATL_R_T 0.40174(0.37936,0.42411) 11.1%
E)AL_R_T 0.39500(0.37000,0.42000) 12.7%
CHI_R_T 0.39442(0.37108,0.41776) 11.8%

NY_ATL_Q 0.31696(0.28660,0.34732) 19.2%
ATL_DAL_Q 0.30773(0.28230,0.33317) 16.5%
DAL_CHI_Q 0.3 0983 (0.27725,0.34241) 21 .0%
CHI_NY_Q 0.30525(0.26300,0.34751) 27.7%
ATL_NY_Q 0.29539(0.27360,0.31717) 14.7%
DAL_ATL_Q 0.28184(0.26138,0.30231) 14.5%
CHI_DAL_Q 0.29805(0.27486,0.32125) 15.6%
NY_CHI_Q 0.30325(0.27875,0.32774) 16.2%

(These mean queueing times are definitely comparable
Section 2.2.1 , so the independence assumption does
problem for this model.)

ELEMENT STANDARD DEVIATION OF QUEUEING TIME
RESP_TIME 0.40799
NY_R_T 0.41297
ATL_R_T 0.40281
DAL_R_T 0.41459
CHI_R_T 0.40096

NY_ATL_Q 0.31561
ATL_DAL_Q 0.31359
DAL_CHI_Q 0.33117
CHI_NY_Q 0.33435

6 8 THE RESEARCH QUEUEING PACKAGE (RESQ) / CHAP. 4

ATL_NY_Q 0.27604
DAL_ATL_Q 0.27134
CHI_DAL_Q 0.28741
NY_CHI_Q 0.28363

ELEMENT MEAN TOKENS IN USE
RESP_TIME 7.9831 3(7.64571,8.32054) 8.515

ELEMENT MEAN TOTAL TOKENS IN POOL
RESP_TIME 2.1475E+09

ELEMENT QUEUE LENGTH DISTRIBUTION

ELEMENT QUEUEING TIME DISTRIBUTION
RESP_TIME 2.00E-01:0.38911(0.38017,0.39805

4.OOE-O1:0.63697(0.62617,0.64777
6.OOE-O1:0.77956(0.76868,0.79044
8.OOE-O1:0.86735(0.85780,0.87690
1.00E+00:0.91797(0.91012,0.92583
1.20E+00:0.94793(0.94086,0.95501

ELEMENT DISTRIBUTION OF TOKENS IN USE

ELEMENT DISTRIBUTION OF TOTAL TOKENS IN :

ELEMENT MAXIMUM QUEUE LENGTH
RESP_TIME 30
NY_R_T 12
ATL_R_T 14
DAL_R_T 1 7
CHI_R_T 13

NY_ATL_Q 1 1
ATL_DAL_Q 14
DAL_CHI_Q 1 3
CHI_NY_Q 14
ATL_NY_Q 9
DAL_ATL_Q 10
CHI_DAL_Q 1 1
NY_CHI_Q 10

ELEMENT MAXIMUM QUEUEING TIME
RESP TIME 4.11607

1 .8 %
2 .2 %
2 .2 %
1 .9%
1 .6 %
1 .4 %

SEC. 4.2 / NETWORK DEFINITION 69
NY_R_T 3.64850
ATL_R_T 3.26095
DAL_R_T 4.11607
CHI_R_T 3.06051

NY_ATL_Q 2.13065
ATL_DAL_Q 2.78842
DAL_CHI_Q 2.27004
CHI_NY_Q 2.62601
ATL_NY_Q 1.74989
DAL_ATL_Q 1 .64754
CHI_DAL_Q 1 .9331 3
NY_CHI_Q 2.24017

ELEMENT OPEN CHAIN POPULATION
C 7.98313(7.64571,8.32054) LOCO

ELEMENT OPEN CHAIN RESPONSE TIME
C 0.40251 (0.38803,0.41698) 7.2%

The number of departures is not included in the "all" code, since it can be
obtained from the throughput and simulated time.

WHAT:nd(resp_time)
ELEMENT NUMBER OF DEPARTURES
RESP_TIME 20128

WHAT:

We choose to stop the simulation at this point. EVAL then gives us the
chance to specify new model parameters and run a new simulation.

CONTINUE RUN:no

MEAN_LENG:/*opportunity for another run...*/

4.3. SUBMODEL DEFINITION

In order to take full advantage of extended queueing network models,
one needs a capability for macro definitions of subnetworks. These can be
used to develop hierarchical definitions of models in a manner analogous to
hierarchical development of programs. Hierarchical models are constructed
with the objectives of modularity, clarity, ease of maintenance, etc., which

support the overall objective of reducing the effort of developing simulation
models.

70 THE RESEARCH QUEUEING PACKAGE (RESQ) / CHAP. 4

Figure 4.2 - Computer System Model with Memory

In RESQ, the macro definitions of subnetworks are called
"submodels." The syntax and structure of submodel definition are essential
ly the same as in the network definition dialogues we have just described.
The main differences are in additional facilities for parameterization, i.e., to
provide parameters for connecting submodels to invoking models and other
submodels. With a submodel, there is no simulation specific information;
this information is provided in the invoking model.

Figure 4.2 shows a computer system model corresponding to the one of
Figure 2.9, but with a passive queue added to represent memory contention.
Figure 4.3 shows a subnetwork extracted from the network of Figure 4.2, a
subnetwork consisting of all of Figure 4.2 except for the terminals. Figure
4.4 depicts a network with invocation of the submodel of Figure 4.3.

Following is a submodel definition corresponding to Figure 4.3. The
ordering of major sections is as with RESQ model definitions, as discussed
in Section 4.2. First we declare the submodel name, submodel parameters,
and constants and variables local to the submodel. Chain parameters are
those chains which will be connected to the invoking model or submodel.

SEC. 4.3 / SUBMODEL DEFINITION 71

TERMINALS
r o i

4 HOST
l o .

Figure 4.4 - Network with Submodel Invocation

SUBMODEL:cssm /*Computer System SubModel*/
NUMERIC PARAMETERS:pageframes floppytime disktime cputime
CHAIN PARAMETERS:chn
NUMERIC IDENTIFIERS:cpiocycles

CPIOCYCLES:8

Next are queue definitions, as before.

QUEUE:floppyq
TYPE:fcfs
CLASS LIST:floppy

SERVICE TIMES:floppytime /* mean of exponential dist. */
QUEUE:diskq

TYPE:fcfs
CLASS LIST:disk

SERVICE TIMES:disktime
QUEUE:cpuq

TYPE:ps /*processor sharing*/

72 THE RESEARCH QUEUEING PACKAGE (RESQ) / CHAP. 4

CLASS LIST:cpu
SERVICE TIMES:cputime

QUEUE:memory
TYPE:passive
TOKENS:pageframes
DSPL:fcfs
ALLOCATE NODE LIST:getmemory

NUMBERS OF TOKENS TO ALLOCATE:discrete(16,.25;32,.5;48,.25)
RELEASE NODE LIST:freememory

The remainder of the submodel definition is for the routing chain. Since it
is a chain parameter, to be connected to the invoking model, it has type
"external." With external chains one node, the primary entry point to the
chain, may be given the synonym "input." Similarly, the primary exit point
may be given the synonym "output." (Additional entry and exit points may
be defined using "node" parameters.)

CHAIN:chn
TYPE:external
INPUT:getmemory
OUTPUT:freememory
:getmemory->cpu
:cpu->floppy disk;.1 .9
:floppy->freememory cpu;1/cpiocycles 1 -1/cpiocycles
:disk->freememory cpu;1/cpiocycles 1 -1/cpiocycles

END OF SUBMODEL CSSM

Having defined the submodel, we now define the model corresponding
to Figure 4.4.

MODEL:csm
METHOD:simulation
NUMERIC PARAMETERS:thinktime users pageframes
NUMERIC IDENTIFIERS:floppytime disktime cputime

FLOPPYTIME:.22
DISKTIME:.019
CPUTIME:.05

NUMERIC IDENTIFIERS:cpiocycles
CPIOCYCLES:8

QUEUE:terminalsq
TYPE:is /*infinite server*/
CLASS LIST:terminals

SERVICE TIMES:thinktime

After the queue definitions (and other elements in the network proper, e.g.,
set nodes) come submodel definitions and invocations. This definition
assumes that the submodel definition has been stored in a library. Since

each submodel may be invoked repeatedly, each invocation is named.

SEC. 4.3 / SUBMODEL DEFINITION 73

INCLUDE:cssm /*submodel definition*/
INVOCATION:host

TYPE:cssm
PAGEFRAMES:pageframes
FLOPPYTIME:floppytime
DISKTIME:disktime
CPUTIME:cputime
CHN:interactiv

The chain of the model proper is now defined, using the synonyms for the
allocate and release nodes,

CHAIN:interactiv
TYPE:closed
POPULATION:users
:terminals->host.input
:host.output->terminals

and simulation specific information is provided. This definition will use the
regenerative method with the regeneration state of all users at the terminals.
The automated stopping rule will run the simulation until the confidence
interval for the mean queueing time for the memory queue (the mean
response time seen by the users) has relative width no greater than 10%.

QUEUES FOR QUEUEING TIME DIST:host.memory
VALUES:1 2 3 4 5 6 7 8

QUEUES FOR QUEUE LENGTH DIST:host.memory
MAX VALUE:users/2

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION-
CHAIN :interactiv

NODE LIST:terminals
REGEN POP:users
INIT POP:users

CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:host.memory
MEASURES:qt
ALLOWED WIDTHS:10

SAMPLING PERIOD GUIDELINES-
QUEUES FOR DEPARTURE COUNTS:host.memory

DEPARTURES:1000
LIMIT - CP SECONDS:300
TRACE:no

END

74 THE RESEARCH QUEUEING PACKAGE (RESQ) / CHAP. 4

4.4. FURTHER READING

More detailed descriptions of the current version of RESQ are given by
Sauer, MacNair and Kurose [23,24,25,26]. A number of other references in
the Bibliography describe previous versions of RESQ. Simulation tools
related to RESQ include the Queueing Network Analysis Package (QNAP)
[13] and the Performance Analyst’s Workbench System (PAWS) [4].

Chapter 7 of Sauer and Chandy [19] includes Pascal programs for an
extended queueing network simulation system and exercises suggesting
further development of those programs. Those programs as given include
basic passive queues and fission and fusion nodes. As given they are
sufficient for simulating some of the networks we use as examples. By
performing the appropriate exercises, e.g., by adding job variables, create
and destroy nodes and priority scheduling, the reader would have a simula
tion system capable of simulating all of our examples. However, the system
as given by Sauer and Chandy does not have the user interface capabilities
of RESQ, i.e., the networks to be simulated are defined by writing a Pascal
program which calls the simulation system.

Statistical analysis of simulation output is discussed in Chapter 7 of
Sauer and Chandy [19]. A more comprehensive discussion of simulation
output analysis is given by Welch [34],

CHAPTER 5

PROTOCOL REPRESENTATIONS
We are now ready to begin our examples in earnest, now that we have

defined extended queueing networks and presented the syntax used in our
formal definitions. In this chapter we will consider addition of several basic
protocol mechanisms to the network model of Figure 4.1 and the RESQ
realization of that model given in the last chapter. Before we do this, we
will first make the model more modular, adding a submodel to represent a
city and invoking this submodel for each of the four cities.

The mechanisms we wish to consider here are acknowledgements, time
outs, packetizing of messages, simple adaptive routing decisions and simple
flow control mechanisms. We will treat these individually but generally not
in combinations. We leave for the reader a general exercise of fitting
together combinations of the mechanism representations we describe. We
will also intersperse a few specific exercises for refinement of the represent
ations and/or variations on the examples.

5.1. MODULAR REPRESENTATIONS

Figure 4.1 and the corresponding RESQ representation, though perhaps
adequate if considered as a final objective, are unsuitable for the develop
ment we desire. The characteristics we wish to represent will usually be
duplicated for each city, so to work directly with that figure and RESQ
dialogue would mean corresponding duplications in the model. Adding
cities to the network would be a tedious process, at best.

Since the cities are the foci of our system, the model should have a
modular representation of a generic city, e.g., a RESQ submodel, and
repeated instances of the generic city with parameters appropriate to the
individual cities. Figure 5.1 suggests the top level network representation
with this modularization, and Figure 5.2 details the city module.

75

76 PROTOCOL REPRESENTATIONS / CHAP. 5

Figure 5.1 - Cities Represented by Submodels

Together these two figures are equivalent to the network of Figure 4.1.
There is one minor difference, the "dummy" node, "decide" in the submo
del of Figure 5.2. A dummy node is the extended queueing network equiva
lent of a "no op" machine instruction, i.e., it has no effect. Dummy nodes
are not strictly necessary, but are often useful in network descriptions. In
this case the dummy node "decide" is being introduced in anticipation of its
usage in routing descriptions in following sections.

There is a more substantial difference between the submodel of Figure
5.2 and the submodel of Figure 4.4. In Figure 4.4 there was a single entry
point and a single exit point for the submodel. This is not the case in
Figure 5.2. In this subnetwork there are two primary entry points, for
traffic coming from the network in clockwise and counterclockwise direc
tions, and two primary exits, one for each direction. In addition there are a
secondary exit and a secondary entrance for jobs to visit an allocate node of

SEC. 5.1 / MODULAR REPRESENTATIONS 77

the response time queue. Though we have not explicitly stated this before,
our concept of subnetworks assumes that queues do not cross subnetwork
boundaries, i.e., a queue is entirely within a subnetwork or entirely outside
of a subnetwork. In this case we wish to have a single passive queue
measuring all response times, so the passive queue must be outside the
subnetwork and there must be a means for jobs to leave the subnetwork
temporarily to acquire a token from the passive queue.

In RESQ we use the "node parameters" mentioned in Section 4.3 to
declare nodes that are outside of a submodel which we wish to include in
the submodel routing. In the submodel of Figure 5.2 there are five node
parameters, the allocate node and the four links. For example, in the
invocation of the submodel for Dallas, the allocate node parameter "r_t"
will have as its value the "Dal r t" allocate node, the "to net ccw"

78 PROTOCOL REPRESENTATIONS / CHAP. 5

node parameter will have as its value the class "Dal__Atl," the "from__cw"
node parameter will have as its value the class "Atl__Dal," the
"from__ccw" node parameter will have as its value the class "Chi__Dal"
and the "to__net__cw" node parameter will have as its value the class
"Dal__Chi."

Following is a RESQ submodel definition corresponding to Figure 5.2:

SUBMODEL:city
NUMERIC PARAMETERS:city_code
NUMERIC PARAMETERS:cw_city /^clockwise city code*/
NUMERIC PARAMETERS:ccw_city /*counterclockwise*/
NODE PARAMETERS:r_t
NODE PARAMETERS:to_net_cw to_net_ccw
NODE PARAMETERS:from_cw from_ccw
CHAIN PARAMETERS:c
SET NODES:msg_vals
ASSIGNMENT LIST:jv(msg_dest)=dest_dist(city_code) ++

jv(msg_leng)=msg_l_dist ++
j v (msg_origin)=city_code ++
jv(msg_type)=data

DUMMY NODES:decide
CHAIN:c

TYPE:external
SOURCE LIST:entrance
ARRIVAL TIMES :amvl_tim
/♦Traffic for network: */
:entrance->r_t->msg_vals
:msg_vals->to_net_cw to_net_ccw to_net_cw to_net_ccw; ++
if(jv(msg_dest)=cw_city) if(jv(msg_dest)=ccw_city) .5 .5

/*Traffic from network: */
:from_cw->decide to_net_cw;if(jv(msg_dest)=city_code) if(t)
:from_ccw->decide to_net_ccw;if(jv(msg_dest)=city_code) if(t)
:decide->sink

END OF SUBMODEL CITY

The distribution identifier "dest__dist" is assumed to be defined in the
invoking submodel, as are the new numeric identifiers "msg__origin" and
"msg_type" which we will use in our developments in the following sec
tions. Note especially that the chain definition in the submodel encompas
ses the entire routing definition from the previous model of Section 4 — the
chain definition in the invoking model will be empty of routing statements.

Following is a model definition with four invocations of submodel
"city." This definition has a few additions in anticipation of the develop
ments coming up, but is essentially the same model as that of Chapter 4

SEC. 5.1 / MODULAR REPRESENTATIONS 79

except for the use of submodels. The additions are definitions of additional
job variables and the definition of the link queues as non-preemptive priori
ty queues. The priorities are given by a job variable. This variable will
have the same value (2) for all jobs with the above definition of submodel
"city," so the link queues will actually have FCFS scheduling, as before.
The model uses the sequential stopping procedure to determine run length,
but otherwise will produce the same simulation results as before except for
the statistical variability of simulation.

MODEL:chap5m1
METHOD:simulation
NUMERIC PARAMETERS:mean_leng /‘mean message length*/
DISTRIBUTION PARAMETERS:arrivl_tim /*arrival_times*/
NUMERIC IDENTIFIERS:NY Atl Dal Chi

NY: 1
ATL: 2
DAL: 3
CHI :4

NUMERIC IDENTIFIERS:msg_dest msg_leng
MSG_DEST:0 /*JV(0) to be used to
MSG_LENG:1 /*JV(1) to be used to
MSG_ORIGIN:2 /*JV(2) to be used to
MSG_TYPE:3 /*JV(3) to be used to

NUMERIC IDENTIFIERS:ack data

msg_origin msg_type
store destination
store length
store origin
store type (data or ack)

ACK: 1
DATA:2

DISTRIBUTION IDENTIFIERS: msg_l__dist /*message length */
MSG_L_DIST:standard(mean_leng,1) /*exponential */

DISTRIBUTION IDENTIFIERS:dest_dist(4)
/♦Destination for messages leaving a city*/
DEST_DIST: /*NY */ discrete(Atl,1/3;Dal,1/3;Chi,1/3) ++

/*Atl*/ discrete(NY ,1/3;Dal,1/3;Chi,1/3) ++
/*Dal*/ discrete(NY ,1/3;Atl,1/3;Chi,1/3) ++
/*Chi*/ discrete(NY ,1/3;Dal,1/3;Atl,1/3)

MAX JV:3 /*maximum subscript*/
QUEUE TYPE:basic_link

NUMERIC PARAMETERS:prop_delay
NODE PARAMETERS:class_name
TYPE:prty /*non-preemptive priority*/
CLASS LIST:class_name

SERVICE TIMES:standard(jv(msg_leng)/9600+prop_delay,0)
PRIORITIES:jv(msg_type)

END OF QUEUE TYPE BASIC_LINK
QUEUE:NY_Atl_q

TYPE:basic_link
PROP DELAY:.00408 /*invocation with matching */
CLASS_NAME:NY_Atl /* of names and values */

QUEUE:Atl_Dal_q
TYPE:basic_link: .00377; Atl_Dal /*positional invocation*/

*/
*/
*/
*/

80 PROTOCOL REPRESENTATIONS / CHAP. 5

QUEUE:Dal_Chi_q
TYPE:bas ic_li nk:

QUEUE:Chi_NY_q
TYPE:basic_link:

QUEUE:Atl_NY_q
TYPE:basic_link:

QUEUE :Dal_Atl__q
TYPE:basic_link:

QUEUE:Chi_Dal_q
TYPE:basic_link:

QUEUE:NY_Chi_q
TYPE:bas ic_link:

QUEUE:resp_time
TYPE:passive

. 00423;

.00377;

. 00408;

.00377;

.00423;

.00377;

Dal_Chi

Chi_NY

Atl_NY

Dal_Atl

Chi_Dal

NY Chi

TOKENS:2147483647 /* "infinity"
DSPL:fcfs

2**31 - 1 */

ALLOCATE NODE LIST:NY_r_t Atl_r_t Dal_r_t Chi_r_t
NUMBERS OF TOKENS TO ALLOCATE:1

INCLUDE:city /*submodel definition stored in library*/
INVOCATION:New_York

TYPE:city
CITY_CODE:NY
CW_CITY:Atl
CCW_CITY:Chi
R_T:NY_r_t
TO_NET_CW:NY_At1
TO_NET_CCW:NY_Chi
FROM_CW:Chi_NY
FROM_CCW:At1_NY
C: c

INVOCATION:Atlanta
TYPE:city:Atl;Dal;NY;Atl_r_t;Atl_Dal;Atl_NY;NY_Atl;Dal_Atl; c

INVOCATION:Dallas
TYPE:city:Dal;Chi;Atl;Dal_r_t;Dal_Chi;Dal_At1;Atl_Dal;Chi_Dal;C

INVOCATION:Chicago
TYPE:city:Chi;NY;Dal;Chi_r_t;Chi_NY;Chi_Dal;Dal_Chi;NY_Chi;c

CHAIN:c
TYPE:open

QUEUES FOR QUEUEING TIME DIST:resp_time
VALUES:.2 .4 .6 .8 1 1.2

CONFIDENCE INTERVAL METHOD:regenerative
/♦Initial 6 regeneration states are the same, with system empty:*/
REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:resp_time
MEASURES:qt
ALLOWED WIDTHS:5

SAMPLING PERIOD GUIDELINES -
QUEUES FOR DEPARTURE COUNTS:resp_time

DEPARTURES:20000
LIMIT - CP SECONDS:1000
TRACE:no

SEC. 5.1 / MODULAR REPRESENTATIONS 81

END

5.2. ACKNOWLEDGEMENTS

Messages may be lost in communication networks because of uncor-
rectable transmission errors, buffer overflow or other problems. Usually a
sender of a message will expect an acknowledgement from the recipient
indicating the message was satisfactorily received. We considered this to a
limited extent in Section 2.1.3.2 in discussing queues in isolation. However,
consideration of acknowledgements in a numerically solved queueing net
work is problematic because of the violations of product form assumptions,
i.e., the radically different message size distributions (acknowledgements are
typically short and of fixed length).

Figure 5.3 - City Submodel with Acknowledgements

82 PROTOCOL REPRESENTATIONS / CHAP. 5

In this section we wish to consider simple end to end acknowledge
ments. Effectively what the model says is that once a job (representing a
message) reaches its destination, the job will have its length set to that of
an acknowledgement, say 32 bits, and the job will turn around and go back
to its origin. Figure 5.3 illustrates the modifications to the subnetwork of
Figure 5.2 for this purpose. When a job reaches the dummy node "decide,"
the routing decision will be made based on a job variable indicating whether
the job represents a data message or an acknowledgement. If the job
represents a data message, it goes from "decide" to the set node
"ack__msg." At "ack__msg" the job variable representing the destination is
set to the message origin, the job variable representing the message length is
set to 32 and the job variable representing message type is set to indicate an
acknowledgement. If the job represents an acknowledgement, it goes to the
sink and the response time token is released.

Following is the modified version of submodel "city."

SUBMODEL:city
NUMERIC PARAMETERS:city_code
NUMERIC PARAMETERS:cw_city /*clockwise city code*/
NUMERIC PARAMETERS:ccw_city /*counterclockwise*/
NODE PARAMETERS:r_t
NODE PARAMETERS:to_net_cw to_net_ccw
NODE PARAMETERS:from_cw from_ccw
CHAIN PARAMETERS:C
SET NODES:msg_vals
ASSIGNMENT LIST:jv(msg_dest)=dest_dist(city code) + +

jv(msg_leng)=msg_l_dist + +
jv(msg_origin)=city_code + +
jv(msg_type)=data

SET NODES: ack msg
ASSIGNMENT LI S T :jv(msg_dest)=jv(msg_origin) + +

jv(msg_leng)=32 + +
jv(msg_type)=ack

DUMMY NODES:decide
CHAIN:c

TYPE:external
SOURCE LIST:entrance
ARRIVAL TIMES:arrivl_tim
/*Traffic for network: */
:entrance->r_t->msg_vals
:msg_vals->to_net_cw to_net_ccw to_net_cw to_net_ccw; ++
if(jv(msg_dest)=cw_city) if(jv(msg_dest)=ccw_city) .5 .5

/♦Traffic from network: */
:from_cw->decide to_net_cw;if(jv(msg_dest)=city_code) if(t)
:from_ccw->decide to_net_ccw;if(jv(msg_dest)=city_code) if(t)

SEC. 5.2 / ACKNOWLEDGEMENTS 83
:decide->sink ack_msg;if(jv(msg_type)=ack) if(t)
:ack_msg->to_net_cw to_net_ccw to_net_cw to_net ccw; ++
if(3 v(msg_dest)=cw_city) if(jv(msg_dest)=ccw_city) .5 .5

END OF SUBMODEL CITY

The definition of the invoking model may be exactly the same as in the
previous section. Note that in that definition we used a non-preemptive
priority queue type for the link queues. Those queues will give priority to
acknowledgements over data messages. (Recall the discussion in Section
2.1.3.2.) We might obtain the following results from RESQ:

MODEL:chap5m1
RESQ2 VERSION DATE: MAY 11, 1982 - TIME: 00:13:57 DATE: 05/25/82
MEAN_LENG:1400
ARRIVL_TIM:0.20 /*used as exponential distribution with this mean*/
SAMPLING PERIOD END: RESP_TIME DEPARTURE GUIDELINE
SAMPLING PERIOD END: RESP_TIME DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS
NUMBER OF CYCLES

2033.21240
280.17
148756

150

WHAT:nd(resp_time)
INVOCATION ELEMENT

RESP TIME
NUMBER OF DEPARTURES
40518

As we would expect, there is a slight increase in link utilizations due to the
acknowledgement traffic.

WHAT:utbo
INVOCATION ELEMENT UTILIZATION

RESP_TIME 4.8890E-09(4.7486E-09,5.0293E
NY_ATL_Q 0.52656(0.51139,0.54173) 3.0%
ATL_DAL_Q 0.51921(0.50380,0.53461) 3.1%
DAL_CHI_Q 0.52918(0.51217,0.54620) 3.4%
CHI_NY_Q 0.52663 (0.50979,0.54 346) 3.4%
ATL_NY_Q 0.51970(0.50496,0.53443) 2.9%
DAL_ATL_Q 0.51413(0.49767,0.53059) 3.3%
CHI_DAL_Q 0.52317(0.50695,0.53938) 3.2%
NY_CHI_Q 0.531 11 (0.51714,0.54508) 2.8%

The mean response time increases by roughly 120 ms., but this is a more
realistic response time measure, because the sender really is getting a
response.

84 PROTOCOL REPRESENTATIONS / CHAP. 5

WHAT:qtbo(*)
INVOCATION ELEMENT MEAN QUEUEING TIME

RESP_TIME
NY_R_T
ATL_R_T
DAL_R_T
CHI_R_T

NY_ATL_Q
ATL_DAL_Q
DAL_CHI_Q
CHI_NY_Q
ATL_NY_Q
DAL_ATL_Q
CHI_DAL_Q
NY_CHI_Q

0.52684(0.51431,0.53937) 4.8%
0.52695(0.51324,0.54067) 5.2%
0.52185(0.50729,0.53642) 5.6%
0.52004(0.50353,0.53654) 6.3%
0.53850(0.51654,0.56046) 8.2%

0.19697(0.18780,0.20614) 9.3%
0.19571(0.18324,0.20819) 12.7%
0.20395(0.19309,0.21481) 10.6%
0.21121(0.18972,0.23269) 20.3%
0.19026(0.18117,0.19934) 9.5%
0.18368(0.17552,0.19184) 8.9%
0.19846(0.18441,0.21251) 14.2%
0.19732(0.18769,0.20694) 9.8%

WHAT:qtdbo
INVOCATION ELEMENT

RESP TIME
QUEUEING TIME DISTRIBUTION
2.00E-01 :0.2531 5 (0.24681,0.25948) 1.3%
4.00E-01:0.49993(0.49086,0.50899) 1.8%
6.00E-01:0.67567(0.66662,0.68473) 1.8%
8.00E-01:0.79078(0.78277,0.79880) 1.6%
1.00E+00:0.86636(0.85960,0.87311) 1.4%
1.20E+00:0.91621(0.91103,0.92139) 1.0%

WHAT:
CONTINUE RUN:no
MEAN_LENG:

The primary limitations of this model of acknowledgements are that we
are not considering the lost messages or negative acknowledgements for
erroneously transmitted messages. We will now consider lost messages and
suggest exercises relating to negative acknowledgements.

5.3. TIME OUTS

When a computer transmits a message to another computer over a
potentially unreliable medium, it will normally retain a copy of that message
for retransmission in case of failure of the initial transmission. The retran
smission will typically be triggered by one of two events: either an explicit
negative acknowledgement will be received, asking that the message be
resent, or some arbitrarily determined time will elapse. In this latter, "time
out," case, the initial transmission is presumed lost (though in fact it may
just have been excessively delayed).

SEC. 5.3 / TIME OUTS 85

ENCLRJT tran_ r_ t

Figure 5.4 - City Submodel with Time Outs

Figure 5.4 depicts an approach to representation of these time outs in
our "city" submodel. It is based on fission nodes, fusion nodes and the
transfer of tokens from parent to child. The representation assumes status
functions are available to determine how many tokens a job holds of a
particular passive queue and to determine how many relatives a job has at
particular locations. Other representations of time__outs, for example,
using split nodes and global variables, are also possible.

8 6 PROTOCOL REPRESENTATIONS / CHAP. 5

The normal sequence of events for a message is as follows. (1) After
the job representing the message has obtained its response time token and
has had its characteristics set at set node "msg_vals," it proceeds to the
fission node "beg_timer." (2) The parent (original) job leaving
"beg__timer" goes to an infinite server queue for a delay representing the
time out, at class "time_out." (3) The child leaving "beg__timer" pro
ceeds through the network as in our last example, being turned around as an
acknowledgement and ending up at dummy node "decide" in the city of
origin. (4) The child leaving "decide" determines that it has only one
relative (its parent) and that relative is at class "time__out." (5) The child
goes to transfer node "tran_r__t" and obtains the response time token
held by its parent. (6) The child releases the response time token (thus
ending the measured response time) and goes to fusion node "end__timer."
(7) Some time later, the parent completes its service time at class
"time__out" and determines that it no longer holds its response time token.
(8) The parent goes to fusion node "end__timer," the child is destroyed
and the parent goes to the sink.

If the child does not return to the origin before the end of the time out,
then the following events occur. (1) The parent will determine that it still
has its response time token. (2) The parent goes to fission node
"beg_timer" again, creating another child, which traverses the network
similarly to the first child. (3) The first of the children to arrive at dummy
node "decide" in its city of origin will determine that it has no relatives at
the fusion node "end_timer," and will follow the path through the transfer
and release nodes to the fusion node as in the normal case. (4) When the
remaining children (the time out may happen several times for the same
message) arrive at "decide" in their city of origin, they will determine that
they already have a relative at fusion node "end_timer" and will go direct
ly to "end__timer" without attempting to obtain the response time token
(which their parent no longer possesses). (Actually they do not go quite
directly, but rather through dummy node "cnt__extras" which we use to
count the number of extra children taking this path.) (5) Eventually all of
the children and the parent will have arrived at the fusion node
"end__timer" and the parent will proceed to the sink.

Following is a RESQ definition of this new version of submodel "city."

SEC. 5.3 / TIME OUTS 87
SUBMODEL:city

NUMERIC PARAMETERS:city_code
NUMERIC PARAMETERS:cw_city /*clockwise city code*/
NUMERIC PARAMETERS:ccw_city /*counterclockwise*/
NODE PARAMETERS:r_t tran_r_t end_r_t
NODE PARAMETERS:to_net_cw to_net ccw
NODE PARAMETERS:from_cw from ccw
CHAIN PARAMETERS:C
QUEUE:time_out_q

TYPE:is
CLASS LIST:time_out

SERVICE TIMES:standard(3,0)
SET NODES:msg_vals
ASSIGNMENT LIST:jv(msg_dest)=dest_dist(city code) + +

jv(msg_leng)=msg_l_dist + +
jv(msg_origin)=city code + +
jv(msg_type)=data

SET NODES: ack msg
ASSIGNMENT LIST: jv (msg_dest) = jv (msg_ongin) + +

jv(msg_leng)=32 + +
jv(msg_type)=ack

FISSION NODES:beg_timer
FUSION NODES:end_timer
DUMMY NODES:decide to ntwrk cnt extras
CHAIN :c

TYPE:external
SOURCE LIST:entrance
ARRIVAL TIMES:arrivl_tim
/♦Traffic for network: */
:entrance->r_t->msg_vals->beg_timer
:beg_timer->time_out to_ntwrk;fission
:to_ntwrk—>to_net_cw to_net_ccw to_net_cw to_net_ccw; ++
if(jv(msg_dest)=cw_city) if(jv(msg_dest)=ccw_city) .5 .5
:time_out->end_timer beg_timer;if(th(resp_time)=0) if(t)
/♦Traffic from network: */
:from_cw->decide to_net_cw;if(jv(msg_dest)=city_code) if(t)
:from_ccw->decide to_net_ccw;if(jv(msg_dest)=city_code) if(t)
:decide->ack_msg;if(jv(msg_type)=data)
:ack_msg->to_net_cw. to_net_ccw to_net_cw to_net_ccw; ++
if(jv(msg_dest)=cw_city) if(jv(msg_dest)=ccw_city) .5 .5
:decide->tran_r_t;if(rj(time_out)=rj or rj(end_timer)=0)
:tran_r_t->end_r_t->end_timer
:decide->cnt_extras->end_timer
:end_timer->sink

END OF SUBMODEL CITY

We have assumed the timer interval is three seconds. The status function
"th(<queue name>)" returns the number of tokens (if any) a job holds at
the specified passive queue. The status function "rj(<node name>)"
returns the number of related jobs (if any) at the specified node. The status
function "rj" (without argument) returns the number of related jobs (if

8 8 PROTOCOL REPRESENTATIONS / CHAP. 5

any) in the entire network. In the routing from "decide" to "tran r t,"
the first alternative of the predicate is equivalent to "rj= l and
rjftime_out)=l" for the purposes of this model since rjftime__out) is
always zero or one.

The following changes are needed in the invoking model. First, the
transfer and release nodes must be declared for the response time queue.

QUEUE:resp_time
TYPE:passive
TOKENS:2147483647 /* "infinity" -- 2**31 -1 */
DSPL:fcfs
ALLOCATE NODE LIST:NY_r_t Atl_r_t Dal_r_t Chi_r_t

NUMBERS OF TOKENS TO ALLOCATE:1
TRANSFER NODE LIST:NY_tr_rt Atl_tr_rt Dal_tr_rt Chi_tr_rt

NUMBERS OF TOKENS TO TRANSFER:1
RELEASE NODE LIST:NY end rt Atl end rt Dal end rt Chi end rt

(A negative number of tokens to transfer would indicate transfer from child
to parent.) Second, these new nodes must be included in the invocations,
e.g.,

INVOCATION:New_York
TYPE:city
CITY_CODE:NY
CW_CITY:At 1
CCW_CITY:Chi
R_T:NY_r_t
TRAN_R_T:NY_tr_rt
END_R_T:NY_end_rt
TO_NET_CW:NY_At1
TO_NET_CCW:NY_Chi
FROM_CW:Ch i_NY
FROM_CCW:At1_NY
C: c

Third, we cannot use the regenerative method for confidence intervals
because of the jobs at the time out queues, so we choose to use the spectral
method.

CONFIDENCE INTERVAL METHOD:spectral
INITIAL STATE DEFINITION -
CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes
CONFIDENCE INTERVAL QUEUES:resp_time resp_time

MEASURES: qt qtd

SEC. 5.3 / TIME OUTS 89

ALLOWED WIDTHS:
CONFIDENCE INTERVAL

5
QUEUES:NY_Atl_q

5
Atl Dal q Dal Chi q Chi_NY_q

MEASURES: qt qt qt qt
ALLOWED WIDTHS: 200 200 200 200

CONFIDENCE INTERVAL QUEUES:NY_Chi_q Chi_Dal_q Dal_Atl_q Atl_NY_q
MEASURES: qt qt qt qt
ALLOWED WIDTHS: 200 200 200 200

INITIAL PORTION DISCARDED:5 /^percent of initial sampling period*/
INITIAL PERIOD LIMITS-
QUEUES FOR DEPARTURE COUNTS:resp_time

DEPARTURES:20000
LIMIT - CP SECONDS:1500
TRACE:no

END

Using these definitions we might get the following results from RESQ.

MODEL:chap5m2
RESQ2 VERSION DATE: MAY 11, 1982 - TIME: 17:07:50 DATE: 05/25/82
MEAN_LENG:1400
ARRIVL_TIM:0.20 /*used as exponential distribution with this mean*/
SAMPLING PERIOD END: RESP_TIME DEPARTURE LIMIT
SAMPLING PERIOD END: RESP_TIME DEPARTURE LIMIT
SAMPLING PERIOD END: RESP_TIME DEPARTURE LIMIT
SAMPLING PERIOD END: RESP TIME DEPARTURE LIMIT

The discarded events in the following message are those for the first 1000
(.05x20,000) response times.

NO ERRORS DETECTED DURING SIMULATION. 4644 DISCARDED EVENTS

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:

3219.21509
655.03
299990

Messages will only be retransmitted in this model when messages have
unusually large delays. Thus there are few retransmissions.

WHAT:nd(resp_ time,New_York.cnt_extras,Atlanta.cnt_extra:
Dallas.cnt extras,Chicago.cnt_extras)

INVOCATION ELEMENT
RESP_TIME

NUMBER OF DEPARTURES
64125

NEW_YORK CNT_EXTRAS 15
ATLANTA CNT_EXTRAS 20
DALLAS CNT_EXTRAS 23
CHICAGO CNT_EXTRAS 12

90 PROTOCOL REPRESENTATIONS / CHAP. 5

WHAT:lng(resp time,New_York..time_out_q,Atlanta.time out q, ++
Dallas.time_out_q,Chicago.time out q)

INVOCATION ELEMENT FINAL LENGTHS
RESP_TIME 8

NEW_YORK TIME_OUT_Q 17
ATLANTA TIME_OUT_Q 18
DALLAS TIME_OUT_Q 1 3
CHICAGO TIME_OUT_Q 18

The utilizations and queueing times are essentially the same as before

WHAT:ut
INVOCATION ELEMENT UTILIZATION

RESP_TIME 4.8783E-09
NY_ATL_Q 0.52107
ATL_DAL_Q 0.51175
DAL_CHI_Q 0.52365
CHI_NY_Q 0.53115
ATL_NY_Q 0.51786
DAL_ATL_Q 0.51341
CHI_DAL_Q 0.53404
NY_CHI_Q 0.53684

NEW_YORK TIME_OUT_Q 0.00000
ATLANTA TIME_OUT_Q 0.00000
DALLAS TIME_OUT_Q 0.00000
CHICAGO TIME_OUT_Q 0.00000

WHAT:qtbo
INVOCATION ELEMENT MEAN QUEUEING TIME

RESP_TIME 0.52582(0.51401,0.53763) 4.5%
NY_ATL_Q 0.19532(0.18598,0.20466) 9.6%
ATL_DAL_Q 0.18893(0.17921,0.19864) 10.3%
DAL_CHI_Q 0.20060(0.18586,0.21533) 14.7%
CHI_NY_Q 0.20013(0.18989,0.21036) 10.2%
ATL_NY_Q 0.19274(0.18329,0.20219) 9.8%
DAL_ATL_Q 0.18947(0.17872,0.20021) 11.3%
CHI_DAL_Q 0.20629(0.19158,0.22101) 14.3%
NY_CHI_Q 0.20379(0.19426,0.21332) 9.4%

NEW_YORK TIME_OUT_Q 3.00000
ATLANTA TIME_OUT_Q 3.00000
DALLAS TIME_OUT_Q 3.00000
CHICAGO TIME_OUT_Q 3.00000

WHAT:qtdbo
INVOCATION ELEMENT QUEUEING TIME DISTRIBUTION

RESP_TIME 2.00E-01 : 0.25603(0.25081,0.26125) 1 .0%
4.00E-01:0.50002(0.49115,0.50890) CD

6.00E-01:0.67247(0.66392,0.68102) 1 .7%
8.OOE-O1:0.78894(0.78149,0.79639) 1 .5%
1 .00E+00:0.86520(0.85919,0.871 21) 1 .2%
1.20E+00:0.91529(0.90863,0.92195) 1.3%

WHAT:

SEC. 5.3 / TIME OUTS 91

CONTINUE RUN:no
MEAN_LENG:

Exercise 5.1 - Negative Acknowledgements without Time
Outs. The models given so far do not consider explicit
negative acknowledgements (which occur because of
uncorrected transmission errors). Develop a version of
the city subnetwork which includes negative acknowl
edgements. In this exercise do not incorporate time outs
for lost or excessively delayed messages.

Exercise 5.2 - Negative Acknowledgements and Time Outs.
Combine the time outs of the last example and the nega
tive acknowledgements of Exercise 5.1 in a single version
of the city subnetwork.

Exercise 5.3 - Store and Forward Buffering. Most of our
discussion and examples so far have assumed that the
computers involved had sufficient buffers for messages
that we could ignore contention for buffers. In practice,
buffer contention may be sufficient to cause loss of mes
sages and other problems. It is a straightforward appli
cation of passive queues to represent buffer contention.
A token of the passive queue represents a unit of buffer
space. One or more tokens are allocated when buffer
space is required and are released when the space is no
longer needed. The "ta(<queue_name>)" status func
tion provides the current number of tokens available at
the specified queue. A job requiring buffers can use this
function to determine whether sufficient buffers are
available or whether it should "get lost."

Often communication networks will operate in a store
and forward manner, where intermediate nodes buffer
messages and acknowledge receipt of messages so that
the sending node or previous intermediate nodes may
free the buffers held by these messages. (An example of
an intermediate communication network node in our
hypothetical four city network would be Atlanta for a

92 PROTOCOL REPRESENTATIONS / CHAP. 5

message going from Dallas to New York by way of At
lanta.) Extend the city subnetwork to consider store and
forward buffering with acknowledgements.

Exercise 5.4 - Congestion Control. In a store and forward
system, a network node may wish to conserve buffers if
and when its buffer supply is depleted. For example, a
node might tell its neighbors not to transmit data to it
when its buffer occupancy level reaches 75% and then
tell its neighbors to resume normal operation when buff
er occupancy drops back below 50%. Construct an
extended queueing network representation for such a
mechanism. A sketch of such a representation is given by
Sauer [17]. (You may wish to consider deadlock preven
tion in your representation.)

5.4. PACKETIZED MESSAGES

A potentially severe problem with non-preemptive scheduling is that a
long service time for one job can cause excessive delay for many other jobs
with short service times. For this reason processors are usually scheduled
using a preemptive resume mechanism where sufficient information about
processor state is retained to allow resumption of processing at the point of
suspension. With resources such as disks and communication links this is
less practical. However, essentially the same effect can be obtained with
communication links by dividing messages into packets no larger than some
size chosen to avoid monopolization of a link by a single packet.

Fission and fusion nodes are naturally used to represent division of a
message into several packets and the reassembly of these packets into
messages. Figure 5.5 depicts addition of fission and fusion nodes for this
purpose to the city subnetwork of Figure 5.3. If a message is longer than a
single packet, it goes to the fission node "separate" one or more times to
generate children representing packets. The job variable giving the message
length of the parent is decremented by the amount of data that may be
included in a packet and the job variable of the child giving the message
length is set to the packet size (which includes data, control information and

SEC. 5.4 / PACKETIZED MESSAGES 93

Figure 5.5 - City Submodel with Packetized Messages

error correction information). The packets traverse the network in the same
manner as the messages in the subnetwork version of Figure 5.3. When
they reach the dummy node "decide" at their destination, they go on to the
fusion node "assemble" to wait for the other packets to arrive. Recall that
a fusion node simply passes jobs without relatives, so a single packet mes
sage proceeds through to set node "ack__msg." Acknowledgements go to
the sink, as before. Once all of the packets have arrived at the fusion node

assemble," the parent, representing the reassembled message, proceeds to
111 IIack__msg.

94 PROTOCOL REPRESENTATIONS / CHAP. 5

Following is a definition of submodel "city" corresponding to Figure
5.5. It assumes that the original form of the invoking model is used, i.e.,
without the added node parameters used in Section 5.3. It also assumes the
maximum packet size is 512 bits and that 480 of these are for data. (Thus,
assuming the mean message length is 1400 bits, as before, and that 1368 of
these bits are data, a message will average 2.85 packets.)

SUBMODEL:city
NUMERIC PARAMETERS:city_code
NUMERIC PARAMETERS:cw_city /*clockwise city code*/
NUMERIC PARAMETERS:ccw_city /*counterclockwise*/
NODE PARAMETERS:r_t
NODE PARAMETERS:to_net_cw to_net_ccw
NODE PARAMETERS:from_cw from_ccw
CHAIN PARAMETERS:c
SET NODES:msg_vals
ASSIGNMENT LIST:jv(msg_dest)=dest_dist(city code) + +

jv(msg_leng)=msg_l_dist + +
jv(msg_origin)=city_code + +
jv(msg_type)=data

SET NODES: ack msg
ASSIGNMENT LIST:jv(msg_dest)=jv(msg_origin) + +

jv(msg_leng)=32 + +
jv(msg_type)=ack

SET NODES:dec_msg_l
ASSIGNMENT LIST:jv(msg_leng)=jv(msg_leng)-480
SET NODES:set_pkt_l
ASSIGNMENT LIST:jv(msg_leng)=512
FISSION NODES:separate
FUSION NODES:assemble
DUMMY NODES:decide
CHAIN:c

TYPE:external
SOURCE LIST:entrance
ARRIVAL TIMES:arrivl_tim
/♦Traffic for network: */
:entrance->r_t->msg_vals
:msg_vals->separate;if(jv(msg_leng)>512)
:msg_vals->to_net_cw to_net_ccw to_net_cw to_net ccw; ++
if(jv(msg_dest)=cw_city) if(jv(msg_dest)=ccw_city) .5 .5
:separate->dec_msg_l set_pkt_l;fission
:dec_msg_l->separate;if(jv(msg_leng)>512)
:dec_msg_l->to_net_cw to_net_ccw to_net_cw to_net_ccw; ++
if(jv(msg_dest)=cw_city) if(jv(msg_dest)=ccw_city) .5 .5
:set_pkt_l->to_net_cw to_net_ccw to_net_cw to_net__ccw; ++
if(jv(msg_dest)=cw_city) if(jv(msg_dest)=ccw_city) .5 .5

SEC. 5.4 / PACKETIZED MESSAGES 95
/*Traffic from network: */
:from_cw->decide to_net_cw;if(jv(msg_dest)=city_code) if(t)
:from_ccw->decide to_net_ccw;if(jv(msg_dest)=city_code) if(t)
:decide->sink assemble;if(jv(msg_type)=ack) if(t)
:assemble->ack_msg
:ack_msg->to_net_cw to_net_ccw to_net_cw to_net_ccw; ++
if(j v(msg_dest)=cw_city) if(jv(msg_dest)=ccw_city) .5 .5

END OF SUBMODEL CITY

We might get the following output from RESQ.

MODEL:chap5m1
RESQ2 VERSION DATE: MAY 11, 1982 - TIME: 22:04:22 DATE: 05/25/82
MEAN_LENG:1400
ARRIVL_TIM:0.20 /*used as exponential distribution with this mean*/
SAMPLING PERIOD END: RESP_TIME DEPARTURE GUIDELINE
SAMPLING PERIOD END: RESP_TIME DEPARTURE GUIDELINE
SAMPLING PERIOD END: RESP_TIME DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS
NUMBER OF CYCLES

3050.61499
893.87
415830

257

WHAT:nd(resp_time)
INVOCATION ELEMENT NUMBER OF DEPARTURES

RESP TIME 60712

With the added traffic of packet control information and error correction
information, we would expect the link utilizations to increase.

WHAT:utbo
INVOCATION ELEMENT UTILIZATION

RESP_TIME 4.2024E-09(4.0927E-09,4. 3120E
NY_ATL_Q 0.58155 (0.56944,0.59366) 2.4%
ATL_DAL_Q 0.56926(0.55679,0.58173) 2.5%
DAL_CHI_Q 0.57991 (0.56802,0.59180) 2.4%
CHI_NY_Q 0.57985 (0.567 72,0.59198) 2.4%
ATL_NY_Q 0.57709(0.56568,0.58850) 2.3%
DAL_ATL_Q 0.56969(0.55778,0.58160) 2.4%
CHI_DAL_Q 0.58584(0.57460,0.59707) 2.2%
NY_CHI_Q 0.58224(0.57061,0.59387) 2.3%

However, the mean response time decreases by roughly 70 ms.

WHAT:qtbo
INVOCATION ELEMENT MEAN QUEUEING TIME

RESP_TIME 0.45346(0.44311,0.46381) 4.6%

96 PROTOCOL REPRESENTATIONS / CHAP. 5

NY_ATL_Q
ATL_DAL_Q
DAL_CHI_Q
CHI_NY_Q
ATL_NY_Q
DAL_ATL_Q
CHI_DAL_Q
NY_CHI_Q

0.23856(0.22194,0.25517) 13.9%
0.22045(0.20802,0.23289) 11.3%
0.24778(0.23274,0.26281) 12.1%
0.24809(0.22253,0.27364) 20.6%
0.22439(0.21245,0.23634) 10.6%
0.21912(0.20795,0.23029) 10.2%
0.23619(0.22245,0.24992) 11.6%
0.22777(0.21332,0.24222) 12.7%

WHAT:qtdbo
I NVi)CAT I ON ELEMENT

RESP TIME
QUEUEING TIME DISTRIBUTION
2 . 0 0 E - 0 1 : 0 . 3 1 6 4 9 (0 . 3 1 1 0 9 , 0 . 3 2 1 9 0) 1. 1%
4 . 0 0 E - 0 1 : 0 . 5 7 5 4 2 (0 . 5 6 7 3 8 , 0 . 5 8 3 4 6) 1. 6%
6 . 0 0 E - 0 1 = 0 . 7 3 5 2 4 (0 . 7 2 6 8 5 , 0 . 7 4 3 6 3) 1. 7%
8 . 0 0 E - 0 1 = 0 . 8 3 7 6 1 (0 . 8 2 9 7 1 , 0 . 8 4 5 5 1) 1. 6%
1 . 0 0 E + 0 0 : 0 . 9 0 0 9 9 (0 . 8 9 4 4 5 , 0 . 9 0 7 5 3) 1. 3%
1 . 2 0 E + 0 0 : 0 . 9 4 0 7 5 (0 . 9 3 5 3 0 , 0 . 9 4 6 2 1) 1. 1%

WHAT:
CONTINUE RUN:no
MEAN LENG:

Exercise 5.5 - Packetized Messages and Time Outs. Devel
op a version of the city subnetwork which incorporates
packetizing of messages and time outs. The time out
representation may be either the basic one of Section 5.3
or the revised one of Exercise 5.3.

5.5. ADAPTIVE ROUTING

Communication networks may be designed either with static routing,
where messages from a given origin always take the same route to get to a
given destination, or with dynamic routing, where different messages may be
routed differently for the same (origin,destination) pair. A dynamic routing
mechanism may be adaptive, trying to determine the best path given the
current state of the network. The routing we have assumed so far is basi
cally static, with the exception of the random choice of direction for mes
sages traveling two hops. A variety of more sophisticated approaches are
possible. Choice among these approaches is not clear and we will not
attempt a thorough treatment of the issues here. Our focus is modeling, so
we will simply illustrate how global variables might be used to maintain
information for making routing decisions.

SEC. 5.5 / ADAPTIVE ROUTING 97

The mechanism we consider is simplistic and has little effect in the
small communication network we have been using as an example. The
mechanism will only have an effect when a decision is needed whether a
"two hop" message should be sent clockwise or counterclockwise. For two
hop messages, the model records in global variables an estimate of recent
delays in each direction. When a decision is needed, the direction with the
lower current estimate is chosen.

98 PROTOCOL REPRESENTATIONS / CHAP. 5

Figure 5.6 illustrates a version of the city subnetwork of Figure 5.3
with the changes for this decision mechanism. The set node "msg__vals"
now sets an additional job variable to the current simulated time. The
dummy node "decide" has been replaced by two dummy nodes, one for
each direction. Similarly, there are now two set nodes corresponding to
"ack_msg." A message will go to the set node appropriate to its chosen
direction to store the delay experienced getting to the destination (but not
the additional delay for acknowledgement). This value is used to update the
delay estimate when the acknowledgement returns to the origin. The
estimate uses the exponential smoothing function E +■ .9E + AD, where E
is the current estimate and D is the most recent delay.

We assume that the invoking model declarations now include

NUMERIC IDENTIFIERS:msg_dest msg_leng msg_origin msg_type msg_time
MSG_ DEST:0 /*JV(0) to be used to store destination */
MSG_ LENG:1 /*JV(1) to be used to store length V
MSG_ ORIGIN: 2 /*JV(2) to be used to store destination */
MSG_ TYPE:3 /*JV(3) to be used to store type, direction */
MSG_ TIME:4 /*JV(4) to be used to store time stamp V

NUMERIC IDENTIFIERS:ack cw ack ccw data
ACK_CW:1
ACK_CCW:2
DATA:3

GLOBAL VARIABLES:clock /*simulated time special global variable*/
CLOCK:0

MAX JV:4 /*maximum subscript*/

QUEUE TYPE ibasic_link
NUMERIC PARAMETERS:prop_delay
NODE PARAMETERS:class_name
TYPE:prty
CLASS LIST:class_name

SERVICE TIMES:standard(jv(msg_leng)/9600+prop_delay,0)
PRIORITIES:max(2,jv(msg_type))

END OF QUEUE TYPE BASIC_LINK

Following is a RESQ definition of submodel "city."

SUBMODEL:city
NUMERIC PARAMETERS:city_code
NUMERIC PARAMETERS:cw_city /*clockwise city code*/
NUMERIC PARAMETERS:ccw_city /*counterclockwise*/
NODE PARAMETERS:r_t
NODE PARAMETERS:to net cw to net ccw

SEC. 5.5 / ADAPTIVE ROUTING 99
NODE PARAMETERS:from_cw from_ccw
CHAIN PARAMETERS:C
GLOBAL VARIABLES:delay_cw delay ccw temp

DELAY_CW:.4 /*arbitrary initial estimate*/
DELAY_CCW:.4
TEMP: 0

SET NODES:msg_vals
ASSIGNMENT LIST:jv(msg_dest)=dest_dist(city_code) ++

jv(msg_leng)=msg_l_dist ++
jv(msg_origin)=city_code ++
jv(msg_type)=data ++
jv(msg_time)=clock

SET NODES:ack_m_cw
ASSIGNMENT LIST:temp=jv(msg_dest) ++

jv(msg_dest)=jv(msg_origin) ++
jv(msg_origin)=temp ++
jv(msg_leng)=32 ++
j v (msg_type)=ack_cw ++
jv(msg_time)=clock-jv(msg_time)

SET NODES:ack_m_ccw
ASSIGNMENT LIST:temp=jv(msg_dest) ++

jv(msg_dest)=jv(msg_origin) ++
jv(msg_origin)=temp ++
jv(msg_leng)=32 ++
jv(msg_type)=ack_ccw ++
jv(msg_time)=clock-jv(msg_time)

SET NODES:set d cw
ASSIGNMENT LIST:delay_cw=.9*delay_cw+.1 *jv(msg time)
SET NODES:set_d_ccw
ASSIGNMENT LIST:delay_ccw=.9*delay_ccwt.1 *jv(msg_time)
DUMMY NODES:dec_cw dec_ccw
CHAIN:c

TYPE:external
SOURCE LIST:entrance
ARRIVAL TIMES:arrivl_tim
/♦Traffic for network: */
:entrance->r_t->msg_vals
:msg_vals->to_net_cw to_net_ccw to_net_cw to_net_ccw; ++
if(jv(msg_dest)=cw_city) if(jv(msg_dest)=ccw_city) ++
if(delay_cw<delay_ccw) if(t)

/♦Traffic from network: */
:from_cw->dec_cw to_net_cw;if(jv(msg_dest)=city_code) if(t)
:from_ccw->dec_ccw to_net_ccw;if(jv(msg_dest)=city_code) if(t)
:dec_cw->ack_m_cw;if(jv(msg_type)=data)
:dec_cw->sink;if(abs(jv(msg_dest)-jv(msg_origin))=1)
:dec_cw->set_d_cw set_d_ccw;if(jv(msg_type)=ack_cw) if(t)
:ack_m_cw->to_net_cw to_net_ccw to_net_cw to_net_ccw; ++
if(jv(msg_dest)=cw_city) if(jv(msg_dest)=ccw_city) .5 .5
:dec_ccw->ack_m_ccw;if(jv(msg_type)=data)
:dec_ccw->sink;if(abs(jv(msg_dest)-jv(msg_origin))=1)
:dec_ccw->set_d_cw set_d_ccw;if(jv(msg_type)=ack_cw) if(t)
:set_d_cw set_d_ccw->sink
:ack_m_ccw->to_net_cw to_net_ccw to_net_cw to_net_ccw; ++

100 PROTOCOL REPRESENTATIONS / CHAP. 5

if(jv(msg_dest)=cw_city) if(jv(msg_dest)=ccw_city) .5 .5
END OF SUBMODEL CITY

Unlike previous versions, this submodel sets the origin of an acknowledge
ment properly, so that it may be determined whether or not the message is a
two hop message.

We might get the following results from RESQ.

MODEL:chap5m3
RESQ2 VERSION DATE: MAY 27, 1982 - TIME: 23:39:12 DATE: 05/30/82
MEAN_LENG:1400
ARRIVL_TIM:0.20 /*used as exponential distribution with this mean*/
WARNING — MODEL MAY NOT BE TRULY REGENERATIVE

BECAUSE OF USE OF GLOBAL VARIABLES
SAMPLING PERIOD END: RESP_TIME DEPARTURE GUIDELINE
SAMPLING PERIOD END: RESP_TIME DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS
NUMBER OF CYCLES

2042.381 35
333.53
149375

126

WHAT:nd(resp time)
INVOCATION ELEMENT NUMBER OF DEPARTURES

RESP_TIME 40689

WHAT:utbo
INVOCATION ELEMENT UTILIZATION

RESP_TIME 4.9662E-09(4.8230E-09,5. 1093E-09)
NY_ATL_Q 0.52618(0.51044,0.54192) 3 .1 %
ATL_DAL_Q 0.51254(0.49596,0.52912) 3 .3%
DAL_CHI_Q 0.52512(0.50674,0.54350) 3 .1%
CHI_NY_Q 0.52963(0.51104,0.54822) 3 .1%
ATL_NY_Q 0.52298(0.50184,0.54411) 4 .2%
DAL_ATL_Q 0.51182(0.49116,0.53248) 4. 1 %
CHI_DAL_Q 0.52263(0.50661,0.53864) 3. 2%
NY_CHI_Q 0.53618(0.52191,0.55045) 2. 9%

WHAT:qtbo
INVOCATION ELEMENT MEAN QUEUEING TIME

RESP_TIME 0.53531(0.52243,0.54820) 4 .8%
NY_ATL_Q 0.20246(0.19197,0.21295) 10 .4%
ATL_DAL_Q 0.19758(0.18617,0.20899) 1 1.555
DAL_CHI_Q 0.21389(0.20012,0.22765) 12 . 9%
CHI_NY_Q 0.20141 (0.18707,0.21 575) 14 . 2 %
ATL_NY_Q 0.19740(0.18635,0.20846) 1 1. 2 %
DAL_ATL_Q 0.18621(0.17505,0.19738) 12 .0%
CHI_DAL_Q 0.20227(0.19032,0.21422) 1 1. 8 %

SEC. 5.5 / ADAPTIVE ROUTING 101
NY_CHI_Q

WHAT:qtdbo
INVOCATION ELEMENT

RESP TIME

WHAT:gv
INVOCATION

NEW_YORK
NEW_YORK
NEW_YORK
ATLANTA
ATLANTA
ATLANTA
DALLAS
DALLAS
DALLAS
CHICAGO
CHICAGO
CHICAGO

ELEMENT
CLOCK
DELAY_CW
DELAY_CCW
TEMP
DELAY_CW
DELAY_CCW
TEMP
DELAY_CW
DELAY_CCW
TEMP
DELAY_CW
DELAY_CCW
TEMP

WHAT:
CONTINUE RUN:no
MEAN LENG:

0.20208(0.19148,0.21268) 10.5*

QUEUEING TIME DISTRIBUTION
2.00E-01:0.25398(0.24765,0.26030)
4.00E-01 :0.49633 (0.487 7 5,0.50490)
6.00E-01 :0.66853 (0.65854,0.67853)
8.OOE-O1:0.78247(0.77340,0.79154)
1.00E+00:0.85795(0.84992,0.86598)
1.20E+00:0.90801(0.90088,0.91513)

FINAL VALUES OF GLOBAL VARIABLES
2042.38135
1.72158
0.21239
1 . 00000
0.62367
2.02729
2.00000
1.15409
1.94663
3.00000
0.73166
1.35357
4.00000

As we would expect, the results are essentially the same as before.

Exercise 5.6 - Quadratic Adaptive Routing. Agnew [1]
has suggested that adaptive routing decisions be based on
a function of the form (1 +L)(1 +L/2), where L is the
current estimate of the total queue length along a path
being considered. Develop a version of the city subnet
work using such a routing mechanism. Normally esti
mates used in adaptive routing decisions, e.g., the queue
lengths required here, will be based on periodic updates
furnished by adjacent nodes. You may need not repre
sent these updates.

1 . 3*
1.7*

. 0 *

. 8 *
1 . 6 *
.4*

102 PROTOCOL REPRESENTATIONS / CHAP. 5

Exercise 5.7 - Routing Estimate Updating. In Exercise
5.6 add the updating messages required for the queue
length estimates.

5.6. FLOW CONTROL

Often it is important to limit the number of messages in transit between
a sender and a recipient. The sender may be able to generate messages
much more rapidly than the recipient can handle them. If the sequence of
messages is important, as it usually is, having many messages in transit runs
a risk of intermediate messages in the sequence being lost, causing either
excess retransmission or excess buffering. The limits may be imposed
between neighboring nodes in the communication network, or between ends
of a virtual circuit, or both.

A common limiting mechanism is "window" flow control. A sender
has a window, i.e., a limit, to the number of messages which may be sent
before the recipient explicity requests that more messages be sent. Two
basic varieties are fixed window and variable window protocols. In a fixed
window protocol the recipient waits until the entire window has been
received before requesting a new window. The simplest fixed window
protocol would be to have a window size of one and require that the sender
wait for an acknowledgement before sending the next message. In a varia
ble window protocol, the recipient requests additional messages before
receiving all of the messages of the last window, e.g., after receiving the
first message of the last window. This allows time for the request to get
back to the sender, allowing a more continuous flow.

Figure 5.7 suggests the additions to the subnetwork of Figure 5.3 to
represent variable window flow control from the represented city to each of
the possible destinations. A global variable ("count__cw," "count__ccw"
or "count_two") is used to count the generated messages, modulo the
window size. When the count is zero, the generated message is considered
the first message of a new window and a job variable ("rep__bit") is set to
indicate that this message should eventually generate a reply asking for a
new window. (The acknowledgement will function as this reply when the
bit is set.) All generated messages wait for a token of the appropriate

SEC. 5.6 / FLOW CONTROL 103

Figure 5.7 - City Submodel with Flow Control

passive queue (depending on destination) before proceeding. Once a
message gets a window token, it destroys it and proceeds as before. An
acknowledgement with the reply bit set will generate a new window of
tokens.

Following is the revised definition of submodel "city" with the addi
tions for window flow control.

104 PROTOCOL REPRESENTATIONS / CHAP. 5

SUBMODEL:city
NUMERIC PARAMETERS:city_code
NUMERIC PARAMETERS:cw_city /*clockwise city code*/
NUMERIC PARAMETERS:ccw_city /*counterclockwise*/
N<)DE PARAMETERS : r_t
NODE PARAMETERS:to_net_cw to_net_ccw
NODE PARAMETERS:from_cw fromccw
CHAIN PARAMETERS:c
NUMERIC IDENTIFIERS:windowsize

WINDOWSIZE:2
GLOBAL VARIABLES:count_cw count_ccw count_two/*hops*/

COUNT_CW:0
COUNT_CCW:0
COUNT_TWO:0

QUEUE:wind_cwq
TYPE:passive
TOKENS:windowsize
DSPL:fefs
ALLOCATE NODE LIST:getw_cw

NUMBERS OF TOKENS TO ALLOCATE:1
DESTROY NODE LIST:dropw_cw
CREATE NODE LIST:neww_cw

NUMBERS OF TOKENS TO CREATE:windowsize
QUEUE:wind_ccwq

TYPE:passive
TOKENS:windowsize
DSPL:fefs
ALLOCATE NODE LIST:getw_ccw

NUMBERS OF TOKENS TO ALLOCATE:1
DESTROY NODE LIST:dropw_ccw
CREATE NODE LIST:neww_ccw

NUMBERS OF TOKENS TO CREATE:windowsize
QUEUE:wind_twoq

TYPE:passive
TOKENS:windowsize
DSPL:fefs
ALLOCATE NODE LIST:getw_two

NUMBERS OF TOKENS TO ALLOCATE:1
DESTROY NODE LIST:dropw_two
CREATE NODE LIST:neww_two

NUMBERS OF TOKENS TO CREATE:windowsize
SET NODES:msg_vals
ASSIGNMENT LIST:jv(msg_dest)=dest_dist(city_code) ++

jv(msg_leng)=msg_l_dist ++
jv(msg_origin)=city_code ++
jv(msg_type)=data

SET NODES:ack_msg
ASSIGNMENT LIST:temp=jv(msg_dest) ++

jv(msg_dest)=jv(msg_origin) ++
jv(msg_origin)=temp ++
jv(msg_leng)=32 ++
jv (msg__type) =ack

SET NODES:inccnt cw

SEC. 5.6 / FLOW CONTROL 105
ASSIGNMENT LIST:count_cw=(count_cw+1) mod windowsize
SET NODES:inccnt_ccw
ASSIGNMENT LIST:count_ccw=(count_ccw+1) mod windowsize
SET NODES:inccnt_two
ASSIGNMENT LIST:count_two=(count_two+1) mod windowsize
SET NODES:setrep_cw setrep_ccw setrep_two
ASSIGNMENT LIST:jv(rep_bit)=1 jv(rep_bit)=1 jv(repjoit)=1
DUMMY NODES:decide flow_cw flow_ccw flow two
CHAIN:c

TYPE:external
SOURCE LIST:entrance
ARRIVAL TIMES:arrivl_tim
/♦Traffic for network: */
:entrance->r_t->msg_vals
:msg_vals->flow_cw flow_ccw flow_two; ++
if(jv(msg_dest)=cw_city) if(jv(msg_dest)=ccw_city) if(t)
:flow_cw->setrep_cw inccnt_cw;if(count_cw=0) if(t)
:setrep_cw->inccnt_cw->getw_cw->dropw_cw->to_net_cw
:flow_ccw->setrep_ccw inccnt_ccw;if(count_ccw=0) if(t)
:setrep_ccw->inccnt_ccw->getw_ccw->dropw_ccw->to_net_ccw
:flow_two->setrep_two inccnt_two;if(count_two=0) if(t)
: setrep_two->inccnt_two->getw_two->dropw_two
:dropw_two->to_net_cw to_net_ccw;.5 .5
/♦Traffic from network: */
:from_cw->decide to_net_cw;if(jv(msg_dest)=city_code) if(t)
:from_ccw->decide to_net_ccw;if(jv(msg_dest)=city_code) if(t)
:decide->ack_msg;if(jv(msg_type)=data)
:ack_msg->to_net_cw to_net_ccw to_net_cw to_net_ccw; ++
if(jv(msg_dest)=cw_city) if(jv(msg_dest)=ccw_city) .5 .5
: decide->sink;if(jv(rep_bit)=0)
:decide->neww_cw;if(jv(msg_origin)=cw_city)
:decide->neww_ccw;if(jv(msg_origin)=ccw_city)
:decide->neww_twoif (t)
:neww_cw neww_ccw neww_two->sink

END OF SUBMODEL CITY

With a window size of two, there can be at most three messages out
standing between a given sender and recipient, the last message of the last
window and the two messages of the current window. The definition of the
invoking model is the same as we gave in Section 5.1 except for the addi
tional identifier declaration ("rep__bit") and the increase of "MAX JV".
We get the following results from running the simulation:

RESQ2 VERSION DATE: JUNE 11, 1982 - TIME: 17:39:36 DATE: 06/16/82
MODEL:CHAP5M4
MEAN_LENG:1400
ARRIVL_TIM:0.20 /‘used as exponential distribution with this mean*/
WARNING — MODEL MAY NOT BE TRULY REGENERATIVE

BECAUSE OF USE OF GLOBAL VARIABLES

106 PROTOCOL REPRESENTATIONS / CHAP. 5

The above warning is given because RESQ does not attempt to verify that
global variables have the same values at each occurrence of what appears to
be the regeneration state. In this model the global variables will always be
zero in the empty system state, so the model is truly regenerative.

SAMPLING PERIOD END: RESP_TIME DEPARTURE GUIDELINE
SAMPLING PERIOD END: RESP_TIME DEPARTURE GUIDELINE
SAMPLING PERIOD END: RESP_TIME DEPARTURE GUIDELINE
SAMPLING PERIOD END: RESP_TIME DEPARTURE GUIDELINE
SAMPLING PERIOD END: RESP_TIME DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS
NUMBER OF CYCLES

5085.95703
944.37
373063

195

WHAT:nd
INVOCATION ELEMENT NUMBER OF DEPARTURES

RESP_TIME 101613
NY_ATL_Q 33831
ATL_DAL_Q 33798
DAL_CHI_Q 33866
CHI_NY_Q 34004
ATL_NY_Q 33944
DAL_ATL_Q 3391 1
CHI_DAL_Q 33979
NY_CHI_Q 341 17

NEW_YORK WIND_CWQ 8395
NEW_YORK WIND_CCWQ 8378
NEW_YORK WIND_TWOQ 8564
ATLANTA WIND_CWQ 8421
ATLANTA WIND_CCWQ 8475
ATLANTA WIND_TWOQ 8438
DALLAS WIND_CWQ 8528
DALLAS WIND_CCWQ 8433
DALLAS WIND_TWOQ 8597
CHICAGO WIND_CWQ 8571
CHICAGO WIND_CCWQ 8300
CHICAGO WIND_TWOQ 8513
NEW_YORK DROPW_CW 8395

SINK 101613

WHAT:utbo
INVOCATION ELEMENT UTILIZATION

RESP TIME 5.8983E-09(5.7389E-09,6.0577E-09) 0.0%

SEC. 5.6 / FLOW CONTROL 107
NY_ATL_Q
ATL_DAL_Q
DAL_CHI_Q
CHI_NY_Q
ATL_NY_Q
DAL_ATL_Q
CHI_DAL_Q
NY_CHI_Q

0.52487(0.
0.51688(0.
0.52163(0.
0.52163(0.
0.52367 (0 .
0.52452(0.
0.52510(0.
0.52878(0.

51579.0.
50799.0.
51251 ,0.
51180.0.
51422.0.
51493.0.
51521.0.
51940.0.

53394) 1.8%
52576) 1.8%
53076) 1.8%
53147) 2.0%
53312) 1.9%
53411) 1.9%
53499) 2.0%
53817) 1.9%

WHAT:qtbo(*)
INVOCATION ELEMENT MEAN QUEUEING TIME

RESP_TIME 0.63398(0.61814,0.64982) 5.0%
NY_R_T 0.64396(0.61909,0.66883) 7.7%
ATL_R_T 0.62706(0.60562,0.64850) 6.8%
DAL_R_T 0.63684(0.60256,0.67112) COo

CHI_R_T 0.62806 (0.60843,0.64769) 6.3%
NY_ATL_Q 0.18235 (0.17792,0.18678) 4.9%
ATL_DAL_Q 0.17970(0.1751 1,0.18430) 5. 1 %
DAL_CHI_Q 0.18239(0.17769,0.18709) 5.2%
CHI_NY_Q 0.18134(0.17576,0.18692) 6.2%
ATL_NY_Q 0.18063 (0.17541,0.18585) 5.8%
DAL_ATL_Q 0.18392(0.17897,0.18886) 5.4%
CHI_DAL_Q 0.18263 (0.17717,0.18810) 6.0%
NY_CHI_Q 0.18515(0.18083,0.18947) 4. 7%

NEW_YORK WIND_CWQ 0.03528(0.02909,0.04146) 35 . 1 %
NEW_YORK WIND_CCWQ 0.03307(0.02765,0.03848) 32 .8%
NEW_YORK WIND_TWOQ 0.39271 (0.3 3482,0.45060) 29 .5%
ATLANTA WIND_CWQ 0.03474(0.02883,0.04066) 34 .0%
ATLANTA WIND_CCWQ 0.03857(0.03041,0.04672) 42 .3%
ATLANTA WIND_TWOQ 0.35275(0.30643,0.39908) 26 .3%
DALLAS WIND_CWQ 0.03 352 (0.02883,0.03822) 28 .0%
DALLAS WIND_CCWQ 0.03700(0.03149,0.04251) 29 .8%
DALLAS WIND_TWOQ 0.37693(0.29218,0.46169) 45 .0%
CHICAGO WIND_CWQ 0.04030 (0.02863,0.05197) 57 .9%
CHICAGO WIND_CCWQ 0.03495(0.02978,0.04012) 29 .6%
CHICAGO WIND_TWOQ 0.34516(0.30665,0.38367) 22 .3%

WHAT:qtdbo
INVOCATION ELEMENT QUEUEING TIME DISTRIBUTION

RESP_TIME 2.00E-01:0.24422(0.24065, 0. 24779)
4.OOE-O1:0.47451(0.46899, 0. 48003)
6.00E-01:0.63528(0.62916, 0. 64141)
8.OOE-O1:0.74401(0.73796, 0. 75005)
1.00E+00:0.81620(0.81040, 0. 82201)
1.20E+00:0.86623(0.86071 ,0. 87175)

0.7%
1.1%
1 .2 %
1 .2%
1 .2 %
1.1%

WHAT:
CONTINUE RUN:no
MEAN LENG:

CHAPTER 6

LOCAL AREA NETWORKS
So far our models have presumably dealt with at least moderate sized

computers and have left unresolved issues with regard to how terminals and
other workstations fit into the picture. In this chapter we consider local
networks explicitly. The discussion applies both to local networks inde
pendent of long haul networks and to local networks as sources of traffic
carried by long haul networks. We consider representation of the tradition
al approach of polled multidrop lines and of two more recent approaches,
CSMA/CD (carrier sense multiple access with collision detection) networks
and token rings.

6.1. POLLING PROTOCOLS

Until recently, polling has been the dominant protocol for connection
of several stations on a single communication line. One station, i.e., a line
controller, regulates the use of the line by other stations, e.g., terminals.
The controlling station asks each other station, in turn, whether it has any
traffic. This is done by sending a polling message to that station. The
station either proceeds to send messages it has been holding or replies that
it has no traffic. The polling normally is sequential among the stations, but
other orders are used in some systems to favor some stations over others.

We will consider a system of ten terminals on a full duplex 2400 baud
line. With probability 0.5 a terminal generated message will be destined for
a station across a long haul network, e.g., a network of the sort we have
considered in previous chapters. Our model does not represent the long
haul network, but simply assumes that the time for a message to get across
the long haul network and produce a reply has an exponential distribution
with mean 1.5 seconds. With probability 0.5 a terminal generated message
will be destined for another of the terminals on the same line, each of the
other terminals being equally likely. In this case, the receiving terminal will

108

SEC. 6.1 / POLLING PROTOCOLS 109

generate a reply to be sent back to the terminal generating the original
message. Ligure 6.1 depicts this model.

Poliowing is a submodel definition for the submodel representing the
controller. (Some of the identifiers are declared in the invoking model.)

SUBMODEL:poll_line
NUMERIC PARAMETERS:no_terms
NODE PARAMETERS:from_terms from_line to_line to_terms
CHAIN PARAMETERS:C
GLOBAL VARIABLES:cur_term cur_prior(no_terms)

CUR TERM:1

110 LOCAL AREA NETWORKS / CHAP. 6

CUR_PRIOR:0
QUEUE:polling

TYPE:passive
TOKENS:0
DSPL:prty
ALLOCATE NODE LIST:msg_allcte

NUMBERS OF TOKENS TO ALLOCATE:1
PRIORITIES:cur_prior(jv(msg_origin))

ALLOCATE NODE LIST:cnt_allcte
NUMBERS OF TOKENS TO ALLOCATE:1
PRIORITIES:cur_prlor(cur_term)+1

RELEASE NODE LIST:msg_releas
DESTROY NODE LIST:cnt_dstroy
CREATE NODE LIST:free_msgs

NUMBERS OF TOKENS TO CREATE:1
QUEUE:to_net

TYPE:fcfs
CLASS LIST:msg_in

SERVICE TIMES:standard(jv(msg_leng)/2400,0)
CLASS LIST:cnt_in

SERVICE TIMES:standard(16/2400,0)
QUEUE:from_net

TYPE:prty
CLASS LIST:msg_out

SERVICE TIMES:standard(jv(msg_leng)/2400,0)
PRIORITIES:2

CLASS LIST:cnt_out
SERVICE TIMES:standard(16/2400,0)
PRIORITIES:1

SET NODES:new_cur
ASSIGNMENT LIST:cur_prior(cur_term)=

cur_prior(cur_term)+2*no_terms
cur_term=(cur_term mod no_terms)+1

SET NODES:init_prior
ASSIGNMENT LIST:cur_prior(cur_term)=cur_term*2-1

cur_term=cur_term+1
SET NODES:init_term
ASSIGNMENT LIST:cur_term=1
CHAIN:c

TYPE:external
:from_terms->msg_a1lete->msg_in->msg_releas->from_line
:to_line->msg_out->to_terms

CHAIN:pollingjob
TYPE:closed
POPULATION:1
:init_prior->init_prior;if(cur_term<=no_terms)
:init_prior->init_term;if(t)
:init_term->cnt_out->free_msgs->cnt_allcte->cnt_dstroy
:cnt_dstroy->new_cur->cnt_in->cnt_out

END OF SUBMODEL POLL LINE

++
++

++

SEC. 6.1 / POLLING PROTOCOLS 111

The polling is represented by the priority scheduling of the passive
queue "polling." A job representing the polling message changes the priori
ties of the terminals in order. The routing chain for the polling job is
contained entirely within the submodel, unlike chains in other submodels we
have used. The polling message is assumed to be 16 bits long, and propaga
tion delays are assumed insignificant because of relatively short distances.

When a terminal is being polled, it will have highest priority. The
polling message will have priority one lower than the data messages for the
polled terminal. The polling job creates a token and then waits to get the
token. Messages from the polled terminal get the token, experience a
transmission delay and return the token. When the polled terminal has no
messages, the polling job gets the token, destroys it, resets the priorities,
experiences transmission delays and then creates another token. The model
does not recycle priority values, since the possible values will not be ex
hausted in any feasible run length. However, it would be possible to reset
the values if that were necessary.

Following is a definition of the model invoking this polling representa
tion.

MODEL:chap6m1
METHOD:simulation
NUMERIC IDENTIFIERS:no_terms thinktime

NO_TERMS:10
THINKTIME:10

NUMERIC IDENTIFIERS:msg_dest msg_leng msg_origin terminal
MSG DEST:0 /*JV to be used to indicate destination*/
MSG_LENG:1
MSG_ORIGIN:2
TERMINAL:3

GLOBAL VARIABLES:temp
TEMP:0

MAX JV:3

/*JV to be used to indicate length
/*JV to be used to indicate origin
/*JV to be used to indicate terminal

*/
*/
*/

QUEUE:terminalsq
TYPE:is
CLASS LIST:terminals

SERVICE TIMES:thinktime
QUEUE:resp_time /‘response time*/

TYPE:passive
TOKENS:2147483647 /*"infinity"*/
DSPL:fcfs
ALLOCATE NODE LIST:begin_rt

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST: end_rt

1 1 2 LOCAL AREA NETWORKS / CHAP. 6

QUEUE:networkq
TYPE:is
CLASS LIST:network

SERVICE TIMES:1.5
SET NODES:init_term

ASSIGNMENT LIST:temp=temp+1 jv(termina1)=temp
SET NODES:init_msg

ASSIGNMENT LIST: ++
jv(msg_leng)=standard (800 , 1) ++
jv(msg_origin)= jv(terminal) ++
jv(msg_dest)=ceil(uniform(0,0,0.5; ++
0,jv(terminal)-1,(jv(terminal)-1)/2*(no_terms-1); ++
jv(terminal),no_terms,(no_terms-jv(terminal))/2*(no_terms-1)))

SET NODES:net_reply
ASSIGNMENT LIST: ++
jv(msg_leng)=standard(800,1) ++
jv(msg_origin)=jv(terminal) ++
jv(msg_dest)=jv(terminal)

SET NODES:local_rply
ASSIGNMENT LIST: ++
jv(msg_leng)=standard(800, 1) ++
jv(msg_origin)=jv(msg_dest) ++
jv(msg_dest)=jv(terminal)

DUMMY NODES:from_terms from_line to__line to_terms
INCLUDE:poll
INVOCATION:line

TYPE:poll_line
NO_TERMS:no_terms
FROM_TERMS:f rom_terms
FROM_LINE:from_line
TO_LINE:to_line
TO_TERMS:to_terms
C: c

CHAIN:c
TYPE:closed
POPULATION:no_terms
:terminals->begin_rt from_terms; ++

if(th(resp_time)=0) if(t)
:begin_rt->init_msg->from_terms
:from_line->to_line network;if(jv(msg_dest)>0) if(t)
:network->net_reply->to_line
:to_terms->end_rt local_rply; ++

if(jv(msg_dest)=jv(terminal)) if(t)
:end_rt local_rply->terminals

/♦initialization of terminals*/
:init_term->terminals

QUEUES FOR QUEUEING TIME DIST:resp_time
VALUES:.5 1 2 4 8

CONFIDENCE INTERVAL METHOD:spectral
INITIAL STATE DEFINITION-
CHAIN : line.pollingjob

NODE LIST:line.init_prior
INIT POP:1

SEC. 6.1 / POLLING PROTOCOLS 113
CHAIN:c

NODE LIST:init_term
INIT POP: no_terms

CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

CONFIDENCE INTERVAL QUEUES:resp_time resp_time
MEASURES: qt qtd
ALLOWED WIDTHS: 10 10

INITIAL PORTION DISCARDED:10
INITIAL PERIOD LIMITS-

QUEUES FOR DEPARTURE COUNTS:resp_time
DEPARTURES:1000

LIMIT - CP SECONDS:1000
TRACE:no

END

The "terminal" job variable always indicates the "home" of the mes
sage, i.e., a job which represents a reply will have its "msg__origin" job
variable indicating the identity of the replying terminal, but the "terminal"
job variable will still be the identity of the message originator. Destination
zero is used to indicate traffic for a station across the long haul network.
The RESQ "uniform" distribution is an extension of the classical uniform
distribution to allow several disjoint intervals. Each interval is specified by
a triple giving the lower bound, the upper bound and the probability of that
interval.

Following are results from running this model:

RESQ2 VERSION DATE: JUNE 11, 1982 - TIME: 17:14:04 DATE: 06/16/82
MODEL:CHAP6M1
ERROR: WARNING - NODE NOT BRANCHED TO: INIT_TERM
SAMPLING PERIOD END: RESP_TIME DEPARTURE LIMIT
SAMPLING PERIOD END: RESP_TIME DEPARTURE LIMIT
SAMPLING PERIOD END: RESP_TIME DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION. 12578 DISCARDED EVENTS

SIMULATED TIME: 3558.08154
CPU TIME: 417.37

NUMBER OF EVENTS: 257844

WHAT:nd(resp_time,line.polling)
INVOCATION ELEMENT NUMBER OF DEPARTURES

RESP_TIME 2025
LINE POLLING 126900
LINE RELEASE 3015
LINE DESTROY 123885

114 L O C A L A R E A N E T W O R K S / C H A P .

WHAT:u t (line..msq in,line.cnt_ in,line.msg out,line.cnt out)
INVOCATION ELEMENT UTILIZATION
LINE MSG_IN 0.28164
LINE CNT_IN 0.23212
LINE MSG_OUT 0.28115
LINE CNTJOUT 0.23212

WHAT:q t (*)
INVOCATION ELEMENT MEAN QUEUEING TIME

RESP_TIME 7.70193(7.40312,8.00074) 7.8%
TERMINALSQ 10.01314
NETWORKQ 1.48203

LINE POLLING 0.02907
LINE MSG_ALLCTE 0.89098
LINE CNT_ALLCTE 8.0890E-03
LINE RELEASE 0.89189
LINE DESTROY 8.0890E-03
LINE TO_NET 0.01441
LINE MSG__IN 0.33237
LINE CNT_IN 6.6667E-03
LINE FROM_NET 0.02266
LINE MSG_OUT 0.38003
LINE CNT_OUT 0.01397

WHAT:qtdbo
INVOCATION ELEMENT QUEUEING TIME DISTRIBUTION

RESP_TIME 5.00E-01:0.01136(0.00750,0.01521) COo

1.00E+00:0.06074(0.05037,0.071 1 1) 2.1%
2.00E+00:0.22765(0.21534,0.23997) inC\)

4.00E+00:0.48296(0.46058,0.50535) 4.5%
8.00E+00:0.70272(0.69002,0.71541) 2.5%

6

WHAT:
CONTINUE RUN:no

E x e r c i s e 6 .1 - P o l l i n g r e p r e s e n t a t io n . The representation
of polling used in this model is expensive in terms of
simulated events, because of the polling that occurs w h e n
there are no waiting messages. (In the simulation above,
there were only 3015 data messages transmitted from the
terminals, but there were 123885 polling messages trans
mitted from the terminals.) H o w would you refine this
model to reduce this expense?

6.2. CSMA/CD PROTOCOLS

In recent years, m u c h attention has been paid to local area networks

SEC. 6.2 / CSMA/CD PROTOCOLS 115

using CSMA/CD (carrier sense multiple access with collision detection)
protocols, such as the one used in the Xerox Ethernet™. Such networks
typically use a coaxial cable connecting the stations on the network. The
cable is strung from station to station with a total length on the order of
one kilometer. The data rate is usually in the range of 1-10 megabits per
second. Each station monitors the cable to see if there is traffic (a carrier)
on the cable. When a station wishes to transmit, it waits until the cable is
idle and then initiates transmission. However, because of propagation
delays, two or more stations may still try to use the cable at the same time.
The interference between the attempted simultaneous transmissions (a
destructive collision) is detected by each station because the station is
monitoring the cable to verify that what it "hears" is what it is transmitting.
When a station recognizes a collision, it stops its transmission and waits a
random time interval before trying again. (Other mechanisms besides a
random wait are also used in some protocols.)

Figure 6.2 depicts an extended queueing network representation of a
CSMA/CD local area network. The stations representing both the termi
nals and the connection to the long haul network in this example have the
same characteristics as in the polling example of the last section. A binary
valued global variable "collision" is used to indicate whether a collision is
currently occurring or not. Passive queue "cable" represents contention for
the cable. Active queue "timing" has two classes, one for the propagation
delay and the other for the delay due to data rate. When the cable is idle
an arriving job gets the cable token and experiences a propagation delay. If
another job arrives during the propagation delay, it sets the collision varia
ble to indicate a collision has occurred. If another job arrives while the
cable is in use but after the propagation delay, it simply waits for the cable
to be free. After a job finishes its propagation delay, if it determines that
no collision occurs, then it proceeds to the class representing the remainder
of its transmission time. If there was a collision, then it releases the cable
and goes to a class representing the delay before retry. The other jobs
waiting for the cable token (which actually were involved in the collision)
release the cable token immediately and go to the retry class. The very last
of these also clears the collision variable.

Following is a RESQ definition of the submodel representing the
CSMA/CD protocol:

116 LOCAL AREA NETWORKS / CHAP. 6

INITTERM

Figure 6.2 - CSMA/CD Representation

SUBMODEL:csma_cd
CHAIN PARAMETERS:C
GLOBAL VARIABLES:collision

COLLISION:0
QUEUE:cable

TYPE:passive
TOKENS:1
DSPL:fcfs
ALLOCATE NODE LIST:get_cable

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:collided finished

QUEUE:t iming
TYPE:fcfs
CLASS LIST:propagate

SERVICE TIMES:standard(1/3.0E+05,0)

SEC. 6.2 / CSMA/CD PROTOCOLS 117
CLASS LIST:capacity

SERVICE TIMES:standard(jv(msg_leng)/I.0E+06,0)
QUEUE:retryq

TYPE:is
CLASS LIST:retry

SERVICE TIMES:2000/1.0E+06
SET NODES:collide clear

ASSIGNMENT LIST:collision=1 collision=0
DUMMY NODES:arrivals
CHAIN:c

TYPE:external
INPUT:arrivals
OUTPUT:finished
:arrivals->get_cable collide;if(ql(propagate)=0) if(t)
:collide->get_cable
:get_cable->propagate clear collided; ++

if(collision=0) if(ql(get_cable)=1) if(t)
:propagate->capacity collided; ++

if (collision=0) if(t)
:capacity->finished
:clear->collided
:collided->retry->arrivals

END OF SUBMODEL CSMA_CD

This definition assumes the cable length is exactly one kilometer and that
the data rate is one megabit per second. The retry delay is exponential with
mean equal to the transmission delay for two and a half messages.

Following is the model invoking the CSMA/CD submodel. Up until
the submodel inclusion it is the same as the model used for the polling
example.

MODEL:chap6m2
METHOD:simulation
NUMERIC IDENTIFIERS:no terms thinktime

NO_TERMS:10
THINKTIME:10

NUMERIC IDENTIFIERS:msg_dest msg_leng msg_origin terminal
MSG_DEST:0 /*JV to be used to indicate destination*/

/*JV to be used to indicate length
/*JV to be used to indicate origin
/*JV to be used to indicate terminal

MSG_LENG:1
MSG_ORIGIN:2
TERMINAL:3

GLOBAL VARIABLES:temp
TEMP:0

MAX JV:3

*/
*/
*/

QUEUE:terminalsq
TYPE:is
CLASS LIST:terminals

SERVICE TIMES:thinktime
QUEUE:resp_time /‘response time*/

118 LOCAL AREA NETWORKS / CHAP. 6

TYPE:passive
T()KENS:214 748 364 7 /*"infinity"*/
PSPL:fcfs
ALLOCATE NODE LIST:begin_rt

NUMBERS OF TOKENS To ALLOCATE:1
RELEASE NODE LIST: end_rt

QUEUE:networkq
TYPE:is
CLASS LIST:network

SERVICE TIMES:1.5
SET NODES:init_term

ASSIGNMENT LI ST:temp=temp+1 jv(termina1)=temp
SET NODES:init_msg

ASSIGNMENT LIST: ++
Iv(msg^leng)=standard(800,1) ++
]v (msg_origm) =jv (terminal) ++
jv(msg_dest)=cei1(unitorm(0,0,0.5; ++
0,jv(terminal)-1,(jv(terminal)- 1)/2*(no_terms-1) ; ++
jv (terminal) ,no_terms,(no_terms-jv (terminal)) /2*(no_terms-1)))

SET NODES:net_reply
ASSIGNMENT LIST: ++
jv(msg_leng)=standard(800,1) ++
iv(msg_orlgin)=jv(terminal) ++
jv(msg_dest)=jv(terminal)

SET NODES:local_rply
ASSIGNMENT LIST: ++
jv(msg_leng)=standard(800,1) ++
jv(msg_origin)=jv(msg_dest) ++
jv(msg_dest)=jv(terminal)

Because the submodel itself is simpler than the polling submodel, the invo
cation and connections are also simpler.

INCLUDE:csma_cd
INVOCATION:lan

TYPE:csma_cd
C: c

CHAIN:c
TYPE:closed
POPULATION:no_terms
:terminals->begin_rt lan.input; ++

if(th(resp_time)=0) if(t)
:begin_rt->init_msg->lan.input
:lan.output->network;if(jv(msg_dest)=0)
:lan.output->network end_rt local_rply; ++
if(jv(msg_dest)=0) if(jv(msg_dest)=jv(terminal)) if(t)
:network->net_reply->lan.input
:end_rt local_rply Sterminals

/* m i t ial izat ion of terminals*/
:init_term->terminals

QUEUES FOR QUEUEING TIME DIST:resp_time
VALUES:.5 1 2 4 8

SEC. 6.2 / CSMA/CD PROTOCOLS 119
CONFIDENCE INTERVAL METHOD:spectral
INITIAL STATE DEFINITION-
CHAIN : C

NODE LIST:init_term
INIT POP: no_terms

CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

CONFIDENCE INTERVAL QUEUES:resp_time resp_time
MEASURES: qt qtd
ALLOWED WIDTHS: 10 10

INITIAL PORTION DISCARDED:10
INITIAL PERIOD LIMITS-

QUEUES FOR DEPARTURE COUNTS:resp_time
DEPARTURES:1000

LIMIT - CP SECONDS:100
TRACE:no

END

With these parameters, we expect very few collisions, if any, because it
is unlikely that two or more stations would try to transmit at the same time.
This is confirmed by the simulation:

RESQ2 VERSION DATE: JUNE 11, 1982 - TIME: 12:02:07 DATE: 06/17/82
MODEL:CHAP6M2
ERROR: WARNING - NODE NOT BRANCHED TO: INIT_TERM
SAMPLING PERIOD END: RESP_TIME DEPARTURE LIMIT
SAMPLING PERIOD END: RESP_TIME DEPARTURE LIMIT
SAMPLING PERIOD END: RESP_TIME DEPARTURE LIMIT
SAMPLING PERIOD END: RESPJTIME DEPARTURE LIMIT
SAMPLING PERIOD END: RESPJTIME DEPARTURE LIMIT
SAMPLING PERIOD END: RESPJTIME DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION. 609 DISCARDED EVENTS

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS

1.0720E+04
69.18
40995

WHAT:nd
INVOCATION ELEMENT NUMBER OF DEPARTURES

RESPJTIME 6832
TERMINALSQ 10236
NETWORKQ 3429

LAN CABLE 1 3665
LAN TIMING 27330

END_RT 6832
INIT_MSG 6833
NET_REPLY 3429
LOCAL_RPLY 3404

LAN FINISHED 1 3665
LAN ARRIVALS 1 3665

120 LOCAL AREA NETWORKS / CHAP. 6

RESQ only reports the nodes with at least one departure during the run.
Thus there were no collisions in this run.

WHAT:ut(lan.timing,lan.propagate,lan.capacity)
INVOCATION
LAN
LAN
LAN

ELEMENT
TIMING
PROPAGATE
CAPACITY

UTILIZATION
1 .0 3 5 1E-0 3
4.2492E-06
1.0308E-03

WHAT:qtbo(*)
INVOCATION ELEMENT

RESP_TIME
TERMINALSQ
NETWORKQ

LAN CABLE
LAN TIMING
LAN PROPAGATE
LAN CAPACITY

MEAN QUEUEING TIME
5.72917(5.52937,5.92897) 7.0%
9.96381
1.48531
8.1240E-04
4.0599E-04
3.3333E-06
8.0864E-04

WHAT:qtdbo
INVOCATION ELEMENT QUEUEING TIME DISTRIBUTION

RESP_TIME 5.00E-01:0.16920(0.16004,0.17837) 1.8%
1.00E+00:0.29581(0.28790,0.30372) 1.6%
2.00E+00:0.46341(0.45202,0.47480) 2.3%
4.00E+00:0.63203(0.61769,0.64636) 2.9%
8.00E+00:0.77488(0.76389,0.78587) 2.2%

WHAT:
CONTINUE RUN:no

If we increase the number of terminals to 500, we do get a few colli
sions:

RESQ2 VERSION DATE: JUNE 11, 1982 - TIME: 12:37:00 DATE: 06/17/82
MODEL:CHAP6M2H
ERROR: WARNING - NODE NOT BRANCHED TO: INIT_TERM
SAMPLING PERIOD END: RESP_TIME DEPARTURE LIMIT
SAMPLING PERIOD END: RESP_TIME DEPARTURE LIMIT
SAMPLING PERIOD END: RESP_TIME DEPARTURE LIMIT
SAMPLING PERIOD END: RESP_TIME DEPARTURE LIMIT
SAMPLING PERIOD END: RESP_TIME DEPARTURE LIMIT
RUN END: CPU LIMIT
NO ERRORS DETECTED DURING SIMULATION. 945 DISCARDED EVENTS

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS

189.42805
100.78
35824

SEC. 6.2 / CSMA/CD PROTOCOLS 121
WHAT:nd
INVOCATION ELEMENT NUMBER OF DEPARTURES

RESP_TIME 5931
TERMINALSQ 8966
NETWORKQ 2973

LAN CABLE 1 1944
LAN TIMING 23879
LAN RETRYQ 6

END_RT 5931
INIT_MSG 6008
NET_REPLY 2973
LOCAL_RPLY 3036

LAN COLLIDED 6
LAN FINISHED 1 1938
LAN COLLIDE 3
LAN CLEAR 3
LAN ARRIVALS 1 1945

WHAT:ut(lan.timing,lan.propagate,lan.capacity)
INVOCATION ELEMENT UTILIZATION
LAN TIMING 0.05139
LAN PROPAGATE 2.1012E-04
LAN CAPACITY 0.05118

However, there is no significant effect on mean response time

WHAT:qtbo(*)
INVOCATION ELEMENT MEAN QUEUEING TIME

RESP_TIME 5.53182(5.15682,5.90682) 1
TERMINALSQ 9.48699
NETWORKQ 1.49810

LAN CABLE 8.6210E-04
LAN TIMING 4.0765E-04
LAN PROPAGATE 3.3333E-06
LAN CAPACITY 8.1206E-04
LAN RETRYQ 1.2209E-03

and a maximum of two colliding stations:

WHAT:mxql(*)
INVOCATION ELEMENT MAXIMUM QUEUE LENGTH

RESP_TIME 209
TERMINALSQ 489
NETWORKQ 42

LAN CABLE 4
LAN TIMING 1
LAN PROPAGATE 1
LAN CAPACITY 1
LAN RETRYQ 2

1 2 2 LOCAL AREA NETWORKS / CHAP. 6

WHAT :
CONTINUE RUN:no

6.3. TOKEN PROTOCOLS

A primary competitor with CSMA/CD protocols for use in local
networks is the token ring. (The word "token" is used in its common sense,
to refer to a special control message, and has no other relationship to our
use of "token" with respect to passive queues. We will be careful to avoid
ambiguity as to which meaning of "token" we are using. The reader should
also be careful.) A token ring may be viewed as a large shift register con
necting the stations in a circle. A station wishing to transmit must wait
until it receives the token message. The station may then transmit one data
message on the ring and then retransmits the token message.

The data rate for a token ring is typically of the same order as a
CSMA/CD network, 1-10 megabits per second. The token message is
typically 8 bits. Simulation of the token ring is quite similar conceptually to
the polling protocol simulation, but there is a qualitative difference. In
simulating the polling protocol, the simulation of the polling when there was
no traffic on the line was expensive but, perhaps, tolerable. In simulating a
token ring with data message events on the order of seconds or milliseconds,
it is totally impractical to simulate the movement of the token message
around the idle ring, since that movement requires at most eight microse
conds of simulated time and involves at least one simulated event per
station.

Our extended queueing network representation of the token ring does
not attempt to simulate the movement of the token message during periods
when there is no data activity on the ring. Rather, when a data message is
to be transmitted, a new token message is created and the data message
waits for the newly created token message to have time to get around the
ring. Our representation does not take into consideration the possibility
that some other station might begin transmission before the station which
created the new token message. The job representing the token message
simply has a delay which is uniformly distributed between the minimum time
needed for it to get to the station (zero) and the maximum time (the time to
go all the way around the ring).

SEC. 6.3 / TOKEN PROTOCOLS 123

NETWORK

Figure 6.3 - Token Ring Bridge Representation

Unlike the previous two examples, where we could easily avoid explicit
representation of individual stations, with the token ring we find it appropri
ate to explicitly represent the stations. Except for this difference, we use
the same representations of the terminals and the bridge to the long haul
network. Figure 6.3 shows the representation of the station bridging to the
long haul network. In this figure the entire representation is of the token
ring except for one set node and the network delay queue. Figure 6.4 is the
corresponding figure for the terminal stations, which have additional detail
beyond the token ring protocol. We do not show a figure for the connec-

124 LOCAL AREA NETWORKS / CHAP. 6

rSTApON£N).

Figure 6.4 - Token Ring Terminal Representation

tion of the stations — the output of one station is connected to the input of
its neighbor.

Passive queue "limitq" is used to limit a station to one transmission at
a time. A message to be transmitted waits to allocate a token at
"get limit." Global variable "no active" is used to count the number of
active messages, i.e., messages ready for transmission, so that it can be
determined whether it is necessary to generate a new token message. After
a job gets the "limitq" token, it increments "no__active." It then goes to
split node "new_token," if necessary, to generate a new token message.

SEC. 6.3 / TOKEN PROTOCOLS 125

Whether or not it generated a new token message, it then goes to allocate
node "msg__get__ac" to wait for a passive queue token indicating it may
transmit. When a token message reaches a station, it creates a token for
passive queue "accessq" at node "create__acc." If there is a data message
waiting (there can be at most one), it gets the "accessq" token and frees it
at release node "free__acc." The data message frees the "limitq" token and
goes to "timingq" for the delay in transmission to the neighbor. The token
message gets the "accessq" token and destroys it at "destroy_acc." The
token message goes to "timingq."

A data message arriving at its destination decrements "no_active" and
then is handled as in the previous examples. A data message going through
some other station goes directly to the next station after the timing delay.
A token message arriving at a station after "no__active" has reached zero
goes to the sink.

Following is the RESQ definition for the long haul network bridge
submodel.

SUBMODEL:net_delay
NUMERIC PARAMETERS:index
CHAIN PARAMETERS:C
QUEUE:limitq

TYPE:passive
TOKENS:1
DSPL:fcfS
ALLOCATE NODE LIST:get_limit

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:free_limit

QUEUE:accessq
TYPE:passive
TOKENS:0
DSPL:fcfs
ALLOCATE NODE LIST:msg_get_ac tok_get_ac

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:free_acc
DESTROY NODE LIST:dstroy_acc
CREATE NODE LIST:create_acc

NUMBERS OF TOKENS TO CREATE:1
QUEUE:timingq

TYPE:fcfs
CLASS LIST:timing

SERVICE TIMES:standard(jv(msg_leng)/1.0E+06,0)
QUEUE:latencyq

TYPE:is
CLASS LIST:latency

126 LOCAL AREA NETWORKS / CHAP. 6

SERVICE TIMES:uniform (0,1/3.0E+05,1)
QUEUE:networkq

TYPE:is
CLASS LIST:net_time

SERVICE TIMES:1.5
SET NODES:net_reply

ASSIGNMENT LIST:
jv(msg_leng)=standard(800,1)
jv(msg_origin)=]v(terminal)
jv(msg_dest)=jv(terminal)

SET NODES: inc_no dec_no
ASSIGNMENT LI ST:no_active = no_active+1 no_active = no_active-1

SET NODES:init_token
ASSIGNMENT LIST:
jv(msg_type)=tok
jv(msg_leng)=8

SPLIT NODES:newtoken
DUMMY NODES:arrivals
CHAIN:c

TYPE:external
INPUT:arrivals
OUTPUT:timing
:arrivals->sink;if(/*jv(msg_type)=tok) and*/ no_active=0)
:arrivals->create_acc;if(jv(msg_type)=tok)
:arrivals->timing;if (j v (msg_dest) -i= index)
:arnvals->dec_no->net_time->net_reply->get_limit
:create_acc->tok_get_ac->dstroy_acc->timing
:get_limit->inc_no->msg_get_ac new_token; ++

if(no_active>1) if(t)
:msg_get_ac->free_acc->free_limit->timing
:new_token->msg_get_ac init_token;split
:init_token->latency->create_acc

END OF SUBMODEL NET DELAY

++
+ +
+ +

+ +
++

This is the RESQ definition for the terminal station submodel:

SUBMODEL:station
NUMERIC PARAMETERS:index
CHAIN PARAMETERS:c
QUEUE:terminalsq

TYPE:is
CLASS LIST:terminals

SERVICE TIMES:thinktime
QUEUE:resp_time /‘response time*/

TYPE:passive
TOKENS:2147483647 /*"infinity"*/
DSPL:fcfs
ALLOCATE NODE LIST:begin_rt

NUMBERS OF TOKENS TO ALLOCATE:!
RELEASE NODE LIST: end_rt

QUEUE:limitq
TYPE:passive

SEC. 6.3 / TOKEN PROTOCOLS 127
TOKENS:1
DSPL:fcfs
ALLOCATE NODE LIST:get_limit

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:free_limit

QUEUE:accessq
TYPE:passive
TOKENS:0
DSPL:fcfs
ALLOCATE NODE LIST:msg_get_ac tok_get_ac

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:free_acc
DESTROY NODE LIST:dstroy_acc
CREATE NODE LIST:create_acc

NUMBERS OF TOKENS TO CREATE:1
QUEUE:timingq

TYPE:fcfs
CLASS LIST:timing

SERVICE TIMES:standard(jv(msg_leng)/1.0E+06,0)
QUEUE:latencyq

TYPE: is
CLASS LIST:latency

SERVICE TIMES:uniform(0,1/3.0E+05+8/1.0E+06,1)
/*propagation+capacity*/

SET NODES:init_term
ASSIGNMENT LIST:jv(terminal)=index

SET NODES:init_msg
ASSIGNMENT LIST: ++
jv(msg_type)=data ++
jv(msg_leng)=standard(800,1) ++
jv(msg_origin)=jv(terminal) ++
jv(msg_dest)=ceil(uniform(0,0,0.5; ++
0,jv(terminal)-1,(jv(terminal)-1) /2*(no_terms-1); ++
jv(terminal),no_terms,(no_terms-jv(terminal)) /2*(no_terms-1)))

SET NODES:local_rply
ASSIGNMENT LIST: ++
jv(msg_leng)=standard (800,1) ++
jv(msg_origin)=jv(msg_dest) ++
jv(msg_dest)=jv(terminal)

SET NODES: inc_no dec_no
ASSIGNMENT LIST:no_active=no_active+1 no_active=no_active-1

SET NODES:init_token
ASSIGNMENT LIST: ++
j v (msg_type)=tok
jv(msg_leng)=8

SPLIT NODES:new_token
DUMMY NODES:arrivals
CHAIN:c

TYPE:external
INPUT:arrivals
OUTPUT:timing
:arrivals->sink;if(/*jv(msg_type)=tok) and*/ no_active=0)
:arrivals->create_acc;if(jv(msg_type)=tok)

1 2 8 LOCAL AREA NETWORKS / CHAP. 6

:arnvals->timing; if (j v (msg_des t) ->= index)
:arrivals->dec_no->end_rt local_rply; ++

if(jv(msg_dest)=jv(terminal)) if(t)
:creatc_acc->tok_get_ac->dstroy_acc->timing
:end_rt local_rply->terminals
:termina1s->begin_rt get_limit; ++

if(th(resp_time)=0) if(t)
:beg in_rt->init_msg->get_limit
:get_limit->inc_no->msg_get_ac new_token; ++

if(no_active>1) if(t)
:msg_get_ac->frec_acc->free_limit->timing
:new_token->msg_get_ac init_token;split
:init_token->latency->create_acc

/♦initialization of terminals*/
:init_term->terminals

END OF SUBMODEL STATION

The model definition including these two submodels is as follows:

MODEL:chap6m3
METHOD:simulation
NUMERIC IDENTIFIERS:no_terms thinktime

NO_TERMS:10
THINKTIME:10

NUMERIC IDENTIFIERS:msg_dest msg_leng msg_origin terminal msg_type
MSG__DEST:0 /*JV to be used to indicate destination*/
MSG__LENG:1 /*JV to be used to indicate length */
MSG_/ORIGIN:2 /*JV to be used to indicate origin */
TERMINAL:3 /*JV to be used to indicate terminal */
MSG_ TYPE:4 /*JV to be used to indicate type*/

NUMERIC IDENTIFIERS:tok data
TOK: 1
DATA:2

GLOBAL VARIABLES:no_active
NO_ACTIVE:0

MAX JV:4
INCLUDE:station
INCLUDE:net_delay

An array of invocations is used for the terminal stations, with each element
of the array given its index as a numeric parameter.

INVOCATION:stations(no_terms)
TYPE:station
INDEX:(1 to no_terms by 1) /*list of 1,2,...,no_terms*/
C : c

INVOCATION:network
TYPE:net_delay
INDEX:0
C: C

SEC. 6.3 / TOKEN PROTOCOLS 129

The "input" and "output" synonyms are left implicit in the following chain
definition to simplify the iterative specification of connections between
neighbors.

CHAIN:c
TYPE:open
:network->stations(1)
:(for i=1 to no_terms-1 by 1):stations(i)->stations(i+1)
:stations(10)->network

QUEUES FOR QUEUEING TIME DIST:stations(*).resp_time
VALUES:.5 1 2 4 8

CONFIDENCE INTERVAL METHOD:spectra1
INITIAL STATE DEFINITION-
CHAIN :C

NODE LIST:stations(*).init_term
INIT POP: 1

CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

CONFIDENCE INTERVAL QUEUES:stations(1).resp_time
MEASURES: qt
ALLOWED WIDTHS: 10

CONFIDENCE INTERVAL QUEUES:stations(1).resp_time
MEASURES: qtd
ALLOWED WIDTHS: 10

INITIAL PORTION DISCARDED:0
INITIAL PERIOD LIMITS-

QUEUES FOR DEPARTURE COUNTS:stations(1).resp_time
DEPARTURES:100

LIMIT - CP SECONDS:2000
TRACE:no

END

Since there are ten terminals, specifying a departure limit of 100
response times for one terminal is roughly equivalent to the previous specifi
cation of 1000 departures across all ten terminals. However, the specifica
tion of the stopping criteria is more stringent than before since the criteria
are restricted to a single terminal. We get the following simulation results:

RESQ2 VERSION DATE: JUNE 18, 1982 - TIME: 21:20:30 DATE: 06/17/82
MODEL:CHAP6M3
ERROR: WARNING - NODE NOT BRANCHED TO: STATIONS(1).INIT_TERM
ERROR: WARNING - NODE NOT BRANCHED TO: STATIONS(2).INIT_TERM

ERROR: WARNING - NODE NOT BRANCHED TO: STATIONS(10).INIT_TERM
SAMPLING PERIOD END: STATIONS(1).RESP_TIME DEPARTURE LIMIT
SAMPLING PERIOD END: STATIONS(1).RESP_TIME DEPARTURE LIMIT
SAMPLING PERIOD END: STATIONS(1).RESP_TIME DEPARTURE LIMIT
SAMPLING PERIOD END: STATIONS(1).RESP_TIME DEPARTURE LIMIT
SAMPLING PERIOD END: STATIONS(1).RESP TIME DEPARTURE LIMIT

130 LOCAL AREA NETWORKS / CHAP. 6

SAMPLING PERIOD END: STATIONS(1).RESP_TIME DEPARTURE LIMIT
SAMPLING PERIOD END: STATIONS(1).RESP_TIME DEPARTURE LIMIT
SAMPLING PERIOD END: STATIONS(1).RESP_TIME DEPARTURE LIMIT
SAMPLING PERIOD END: STATIONS(1).RESP_TIME DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION. 3440 DISCARDED EVENTS

SIMULATED TIME: 3.6807E+04
CPU TIME: 1064.55

NUMBER OF EVENTS: 606377

WHAT:nd(stations(1),stations(*).resp_time)
INVOCATION ELEMENT NUMBER OF DEPARTURES
STATIONS(1) RESP_TIME 2296
STATIONS(1) LIMITQ 2448
STATIONS(1) ACCESSQ 25758
STATIONS(1) RELEASE 2448
STATIONS(1) DESTROY 2331 0
STATIONS(1) TERMINALSQ 2448
STATIONS(1) TIMINGQ 46668
STATIONS(1) LATENCYQ 2432
STATIONS(1) RESP_TIME 2296
STATIONS(2) RESP_TIME 2336
STATIONS(3) RESP_TIME 2316
STATIONS(4) RESP_TIME 2288
STATIONS(5) RESP_TIME 2394
STATIONS(6) RESP_TIME 2358
STATIONS(7) RESP_TIME 2320
STATIONS(8) RESP_TIME 2291
STATIONS(9) RESP_TIME 2363
STATIONS(10) RESP_TIME 2389

WHAT:qtbo(stations(*).resp_time)
INVOCATION ELEMENT MEAN QUEUEING TIME
STATIONS(1) RESP_TIME 5.86521 (5.59002,6.14040) 9.4%
STATIONS(2) RESP_TIME 5.690 31 (5.2 9780,6.08282) 13.8%
STATIONS(3) RESP_TIME 5.86568(5.48995,6.24141) 12.8%
STATIONS(4) RESP_TIME 5.80673(5.44168,6.17178) 12.6%
STATIONS(5) RESP_TIME 5.41839(5.17779,5.65898) CO

STATIONS(6) RESP_TIME 5.45440(5.13408,5.77473) 11.7%
STATIONS(7) RESP_TIME 5.50468(5.24706,5.76230) 9.4%
STATIONS(8) RESP_TIME 5.47117(5.31891,5.62342) 5.6%
STATIONS(9) RESP_TIME 5.25881(4.95425,5.56336) 11.6%
STATIONS(10) RESP_TIME 5.34525(4.98513,5.70536) 13.5%

WHAT:
CONTINUE RUN:no

C H A P T E R 7

COMPUTER SYSTEM EXAMPLES
The examples of the last two chapters have dealt with communication

issues and have largely ignored issues in the computers themselves. The
purpose of this chapter is to illustrate how the same methodology applies to
computer system modeling. We will focus on a three specific examples.
These examples are extensions and variations on the examples associated
with Figures 2.8 and 4.2. First we consider representation of multitasking,
i.e., one activity being carried out by several cooperating processes. Then
we consider spooling of peripheral devices. Finally, we develop a represent
ation of interaction between disk devices and the channels (or controllers)
which handle those devices.

7 .1 . M U L T IT A S K IN G

The example of Figure 4.2 assumed that a user’s command could be
using the CPU or using a disk device, but not doing both at the same time.
However, many operating systems will attempt to overlap CPU and I/O
activity for a single job by allowing two or more tasks (processes) to per
form work for that job. The tasks are synchronized at the occurrence of
significant events, e.g., a computational task must wait for completion of an
I/O task if its computations depend on data having been read or written by
that task.

Figure 7.1 illustrates the modification of the network of Figure 4.2 to
represent this overlapping of CPU-I/O activity for a single command. Our
example will be optimistic about the degree of overlap. We assume that
50% of the CPU services are potentially overlapped with I/O, in the sense
that overlap will occur if the jobs involved can both get the required ser
vers. (In the system terminology, this would mean that the computational
task would have the use of the processor at least part of the time that the
I/O task would have the use of the device.) Even if the actual services are

131

132 COMPUTER SYSTEM EXAMPLES / CHAP. 7

not overlapped, there may be some performance improvement because of
overlap of times waiting for service.

In Figure 7.1 fission and fusion nodes are used to effect the potential
overlap. With probability 0.5 a job receiving memory goes to the fission
node instead of the CPU queue. The job which entered the fission node
(the parent) then goes to a different class ("cpuo") than the jobs going to
the CPU without going through the fission node. (The "o" suffix on the
class names stands for "overlap.") One job is created at the fission node
and goes to one of the disk queues, either to class "floppyo" or class
"disko." Jobs leaving classes "cpuo", "floppyo" and "disko" go to the
fusion node. When both a parent and its (sole) child are at the fusion node,
the child disappears and the parent leaves the fusion node. The job leaving
the fusion node may then go to the fission node again if it is to go back to
the CPU.

From our discussion of fusion nodes, it should be clear that the classes
"floppyo" and "disko" are not strictly necessary, i.e., the created jobs from
the fission node could go to classes "floppy" and "disk" and all jobs leaving

SEC. 7.1 / MULTITASKING 133

those classes could go to the fusion node. The fusion node would have no
effect on the jobs that had not been through the fission node in the current
CPU-I/O cycle.

Following is a RESQ dialogue file for this model.

MODEL:chap7m1
METHOD:aplomb
NUMERIC PARAMETERS:thinktime users pageframes
NUMERIC IDENTIFIERS:floppytime disktime cputime

FLOPPYTIME:.22
DISKTIME:.019
CPUTIME:.05

NUMERIC IDENTIFIERS:cpiocycles
CPIOCYCLES:8

QUEUE:floppyq
TYPE:fcfs
CLASS LIST:floppy floppyo

SERVICE TIMES:floppytime
QUEUE:diskq

TYPE:fcfs
CLASS LIST:disk disko

SERVICE TIMES:disktime
QUEUE:cpuq

TYPE:ps
CLASS LIST:cpu cpuo

SERVICE TIMES:cputime
QUEUE:terminalsq

TYPE:is
CLASS LIST:terminals

SERVICE TIMES:thinktime
QUEUE:memory

TYPE:passive
TOKENS:pageframes
DSPL:fcfs
ALLOCATE NODE LIST:getmemory

NUMBERS OF TOKENS TO ALLOCATE:discrete(16,.25;32,.5;48,.25)
RELEASE NODE LIST:freememory

FISSION NODES:fissionnod
FUSION NODES:fusionnode
CHAIN:interactiv

TYPE:closed
POPULATION:users
:terminals->getmemory->fisslonnod cpu;.5 .5
:f iss ionnod->cpuo dummynode;f iss ion
:cpu->floppy disk; . 1 .9
:cpuo->fusionnode
:dummynode->floppyo disko;.1 .9
:floppyo disko->fusionnode
:floppy->freememory cpu;1/cpiocycles (1 - 1/cpiocycles)*.5
:floppy->fissionnod; (1 -1/cpiocycles)*.5

134 COMPUTER SYSTEM EXAMPLES / CHAP. 7

:disk->freememory cpu;1/cpiocycles (1 - 1/cpiocycles)*.5
:disk->fissionnod; (1 - 1/cpiocycles)*.5
:fusionnode->freememory cpu; 1/cpiocycles (1-1/cpiocycles)* . 5
:fusionnode->fissionnod;(1-1/cpiocycles)*.5
:freememory->terminals

QUEUES FOR QUEUEING TIME DIST:memory
VALUES:1 2 3 4 5 6 7 8

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION-
CHAIN :interactiv

NODE LIST:terminals
REGEN POP:users
INIT POPrusers

CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:memory
MEASURES:qt
ALLOWED WIDTHS:10

SAMPLING PERIOD GUIDELINES-
QUEUES FOR DEPARTURE COUNTS:memory

DEPARTURES:2000
LIMIT - CP SECONDS:300
TRACE:no

END

We could get the following results, using the same parameters as
before.

RESQ2 VERSION DATE:
MODEL:chap7m1
THINKTIME:10
USERS:30
PAGEFRAMES:128
SAMPLING PERIOD END
SAMPLING PERIOD END
SAMPLING PERIOD END
SAMPLING PERIOD END
SAMPLING PERIOD END
NO ERRORS DETECTED DURING SIMULATION.

JUNE 11, 1982 - TIME: 18:06:40 DATE: 06/17/82

MEMORY DEPARTURE GUIDELINE
MEMORY DEPARTURE GUIDELINE
MEMORY DEPARTURE GUIDELINE
MEMORY DEPARTURE GUIDELINE
MEMORY DEPARTURE GUIDELINE

SIMULATED TIME 4453.97656
CPU TIME: 108.54

NUMBER OF EVENTS: 172316
NUMBER OF CYCLES: 313

WHAT:utbo
ELEMENT UTILIZATION
MEMORY 0.82584(0.81276,0.83892) 2.6%
FLOPPYQ 0.40494(0.39290,0.41698) 2.4%
DISKQ 0.30932(0.30536,0.31329) COo

CPUQ 0.90891(0.90048,0.91735) 1.7%

TERMINALSQ 0.00000(0.00000,0.00000)

SEC. 7.1 / MULTITASKING

WHAT:tpbo
ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ
FREEMEMORY
FISSIONNOD
FUSIONNODE
DUMMYNODE

THROUGHPUT
2.28874(2.26657,2.31091) 1.9%
1.83274(1.79455,1.87093) 4.2%
16.36693(16.18715,16.54672) 2.2%
18.19968(18.01088,18.38847) 2.1%
2.28874(2.26657,2.31091) 1.9%
2.28874
9.08424
9.08424
9.08424

WHAT:qlbo
ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

MEAN QUEUE LENGTH
6.98981(6.67931,7.30030) 8.9%
0.60410(0.57733,0.63088) 8.9%
0.41388(0.40671,0.42105) 3.5%
2.60553(2.55325,2.65781) 4.0%
23.01019(22.69969,23.32068) 2.7%

WHAT:qtbo
ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

MEAN QUEUEING TIME
3.05400(2.90948,3.19851) 9.5%
0.32962(0.32052,0.33871) 5.5%
0.02529(0.02501,0.02557) 2.2%
0.14316(0.14099,0.14534) 3.0%
10.05365(9.90331,10.20399) 3.0%

WHAT:qtdbo
ELEMENT QUEUEING TIME DISTRIBUTION
MEMORY 1.00E+00:0.19453(0.17485,0.21420) 3.9%

2.00E+00:0.38582(0.35846,0.41317) 5.5%
3.00E+00:0.56435(0.53643,0.59227) 5.6%
4.00E+00:0.70875(0.68376,0.73374) 5.0%
5.00E+00:0.82117(0.80119,0.84114) 4.0%
6.00E+00:0.89327(0.87877,0.90778) 2.9%
7.00E+00:0.93800 (0.92657,0.94944) 2.3%
8.00E+00:0.96439(0.95616,0.97262) 1.6%

WHAT:
CONTINUE RUN:no
THINKTIME:

135

In Chapter 4 we did not give simulation results for the model without
CPU-I/O overlap. The following is from the model without CPU-I/O
overlap.

136 COMPUTER SYSTEM EXAMPLES / CHAP. 7

RESQ2 VERSION DATE: MARCH 11, 1982 - TIME: 20:53:25 DATE: 03/16/82
Mi)DEL: chap7m2
THINKTIME:10
USERS:30
PAGEFRAMES:128
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS
NUMBER OF CYCLES

5605.87500
95.89
214365

247

WHAT:qtbo(memory)
ELEMENT MEAN QUEUEING TIME
MEMORY 3.40792(3.24079,3.57505) 9 . 8 %

WHAT :
CONTINUE RUN:no
THINKTIME:

The multitasking seems to have produced a noticeable decrease in mean
response time.

7 .2 . S P O O L IN G

The examples in this section and in Section 7.3 will be based on the
central server model of Figure 2.8, i.e., we will not consider the terminals or
memory explicitly. The computer system models we have looked at so far
have (implicitly) considered use of disk devices for files and for paging but
not for files spooled to or from slower devices such as printers. We now
consider addition of printer spooling to the central server model.

Let us assume that there is a 300 line per minute printer supported by
the computer system and that there are two tasks constantly present which
handle the spooling. One task fills buffers from the disk for the printer and
the other dumps the buffers to the printer. There are two buffers for the
printer and each buffer contains 30 lines. Thus the transfer time for one
buffer is 6 seconds (30/(300/60)).

SEC. 7.2 / SPOOLING 137

Figure 7.2 shows the additions to the central server model. To repre
sent the printer spooling we have two chains, one for each task, and two
passive queues, one for full buffers and one for empty buffers. The passive
queues will be used, in part, to represent communication between the tasks,
corresponding to the use of semaphores and similar task communication
primitives in operating systems. The number of tokens of each queue will
fluctuate between zero and two, because of create and destroy nodes, and
the total number of tokens will usually be less than two. The task which
empties the buffers acquires a token representing a full buffer, destroys it,
transfers the buffer contents to the printer and creates a token of the pool

1 38 COMPUTER SYSTEM EXAMPLES / CHAP. 7

representing empty buffers. Similarly, the task which fills the buffers
acquires an "empty buffer" token, destroys it, transfers from the disk to the
buffer and creates a token of the "full buffer" pool. The buffer emptying
task waits at the full buffer allocate node when no full buffers are available,
and the buffer filling task waits at the empty buffer allocate node when no
empty buffers are available.

Following is a RESQ dialogue file for this model.

MODEL:chap7m3
METHOD:simulation
NUMERIC IDENTIFIERS:floppytime disktime cputime dmp

FLOPPYTIME:.22
DISKTIME:.019
CPUTIME:.05
DMP:4 /*Degree of multiprogramming*/

NUMERIC IDENTIFIERS:buffers initfulbuf
BUFFERS:2
INITFULBUF:2

NUMERIC IDENTIFIERS:lpm /*1ines/minute*/ lpb /*lines/buffer*/
LPM:300
LPB:30

QUEUE:floppyq
TYPE:fcfs
CLASS LIST:floppy

SERVICE TIMES:floppytime
QUEUE:diskq

TYPE:fcfs
CLASS LIST:disk diskspool

SERVICE TIMES:disktime
QUEUE:cpuq

TYPE:ps
CLASS LIST:cpu

SERVICE TIMES:cputime
QUEUE:printerq

TYPE:fcfs
CLASS LIST:printer

SERVICE TIMES:standard(lpb/(lpm/60),0)
QUEUE:fullbuffer

TYPE:passive
TOKENS:initfulbuf-1
DSPL:fcfs
ALLOCATE NODE LIST:getfullbuf

NUMBERS OF TOKENS TO ALLOCATE:1
DESTROY NODE LIST:destfulbuf
CREATE NODE LIST:genfullbuf

NUMBERS OF TOKENS TO CREATE:1
QUEUE:empbuf fer

TYPE:passive
TOKENS:buffers-initfulbuf

SEC. 7.2 / SPOOLING 139

DSPL:fcfs
ALLOCATE NODE LIST:getempbuf

NUMBERS OF TOKENS TO ALLOCATE:1
DESTROY NODE LIST:destempbuf
CREATE NODE LIST:genempbuf

NUMBERS OF TOKENS TO CREATE:1
CHAIN:csm

TYPE:closed
POPULATION:dmp
:cpu->disk floppy;.9 .1
:disk floppy->cpu

CHAIN:emptying
TYPE:closed
POPULATION:1
:getfullbuf->destfulbuf->printer->genempbuf->getfullbuf

CHAIN:filling
TYPE:closed
POPULATION:1
:getempbuf->destempbuf->diskspool->genfullbuf->getempbuf

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION -
CHAIN:csm

NODE LIST:cpu
REGEN POP:dmp
INIT POP:dmp

CHAIN:emptying
NODE LIST:printer
REGEN POP:1
INIT POP:1

CHAIN:filling
NODE LIST:getempbuf
REGEN POP:1
INIT POP:1

CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:floppyq diskq printerq
MEASURES:ut ut ut
ALLOWED WIDTHS:10 10 10

SAMPLING PERIOD GUIDELINES -
QUEUES FOR DEPARTURE COUNTS:cpuq

DEPARTURES:10000
LIMIT - CP SECONDS:250
TRACE:no

END

We choose to use the RESQ regenerative method implementation in a
heuristic manner, though we could use independent replications instead.
(The spectral method would not provide confidence intervals for the per
formance measures we wish to examine.) Following are simulation results
for the model.

140 COMPUTER SYSTEM EXAMPLES / CHAP. 7

RESQ2 VERSION DATE: MARCH 11, 1982 - TIME: 18:53:25 DATE:
MODEL:chap7m3
WARNING — SOME PASSIVE QUEUE QT PROCESSES MAY

NOT BE TRULY REGENERATIVE BECAUSE OF
QUEUEING TIMES IN PROGRESS

WARNING — MODEL MAY NOT BE TRULY REGENERATIVE
BECAUSE OF NON-ZERO POPULATION AT CLASS
WITH DIST. OTHER THAN BRANCHING ERLANG

SAMPLING PERIOD END: CPUQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: CPUQ DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS
NUMBER OF CYCLES

1055.25220
33 . 36
40350
8317

WHAT:utbo(*)
ELEMENT
FULLBUFFER
EMPBUFFER
FLOPPYQ
DISKQ
DISK
DISKSPOOL

CPUQ
PRINTERQ

UTILIZATION
0.00000
0.00000
0.41176(0.36190,0.46162) 10.0%
0.32471(0.31889,0.33053) 1.2%
0.32191(0.31611,0.32772) 1.2%
2.7956E-0 3(-5.6492E-04,6.1562E-03) 0.7%

0.95834(0.95279,0.96389) 1.1%
1.00000(0.99992,1.00008) 0.0%

WHAT:qlbo(*)
ELEMENT
FULLBUFFER

DESTROY
EMPBUFFER

DESTROY
FLOPPYQ
DISKQ
DISK
DISKSPOOL

CPUQ
PRINTERQ

MEAN QUEUE LENGTH
0.00000
0.00000
0.99528(0.98976,1.00080) 1.1%
0.99030
0.63072(0.51490,0.74653) 36.7%
0.46227(0.44977,0.47476) 5.4%
0.45754(0.44516,0.46993) 5.4%
4.7232E-03(-7.9525E-04,1.0242E-02) 233.7%

2.91174(2.86889,2.95459) 2.9%
1.00000(0.99992,1.00008) 0.0%

WHAT:tpbo(*)
ELEMENT
FULLBUFFER
EMPBUFFER
FLOPPYQ
DISKQ
DISK
DISKSPOOL

CPUQ
PRINTERQ

THROUGHPUT
0.16584(0.03030,0.30138) 163.5%
0.16584(0.03030,0.30138) 163.5%
1.93792(1.77106,2.10479) 17.2%
17.18071(16.95303,17.40837) 2.7%
17.01488(16.78821,17.24153) 2.7%
0.16584(0.03030,0.30138) 163.5%
18.95280(18.73048,19.17511) 2.3%
0.16584(0.03030,0.30138) 163.5%

03/16/82

SEC. 7.2 / SPOOLING 141

WHAT:
CONTINUE RUN:no

With these parameters, the spooling has little impact on the rest of the
system.

7.3. CHANNEL-DEVICE INTERACTION

The computer system models so far have assumed that competition
between disks, e.g., for channels or controllers, is not significant. Let us
consider a computer system with two disks where the same channel must be
used to initiate positioning (arm and/or rotational) and for transfers. If the
channel is not available when a device is in the correct rotational position, a
job must wait a full revolution before it can try again to get the channel and
make the transfer. Thus there may be substantial added delay if there is
significant competition for the channel.

Figure 7.3 illustrates substantial additions to the central server model
to represent channel contention and interactions between the channel and
disk devices. This model also contains a submodel representation of round
robin scheduling at the CPU. The I/O system is described as a submodel,
with nested submodels for each disk. In the I/O system model there is a
passive queue representing the channel, with node parameters to allow the
nested submodels access to the channel passive queue. Within the disk
submodel there is both a passive and an active queue representing the disk
device. The passive queue is used for representing contention and the
active queue is used for representing timing; there will never be more than
one job at the (device) active queue.

After a job leaves the CPU and acquires the token for a device, it
requests the channel, to initiate arm or rotational positioning. As soon as it
gets the channel it releases it; we assume the time to initiate positioning is
negligible, but that the time waiting to initiate positioning may not be
negligible. The device arm may or may not be at the proper cylinder. We
assume that with probability 2/3 the arm is already at the right cylinder and
the job only needs to wait for rotational positioning. If the arm is not at
the right cylinder we assume each of the remaining cylinders is equally likely
to be the correct one. Global variables are used to keep track of the cur-

142 COMPUTER SYSTEM EXAMPLES / CHAP. 7

rent and chosen cylinder. After a seek the job initiates and waits for
rotational positioning. The rotational positioning time is uniformly distrib
uted from 0 to one revolution.

After the device is at the correct rotational position, the TA (number
of tokens available) status function is used to determine whether the chan
nel is available. If it is not, then the job is delayed for a full revolution.
Once the job gets the channel, it has a transfer time (which we assume to
be constant, e.g., one page) and then releases the channel and device. The
degree of multiprogramming is assumed constant.

SEC. 7.3 / CHANNEL-DEVICE INTERACTION 143

Following is the dialogue file for the I/O subsystem submodel:

SUBMODEL:iosys /*subsystem with device contention for channel*/
CHAIN PARAMETERS:c
NUMERIC IDENTIFIERS:movearmp

MOVEARMP:1/3
QUEUE:channel

TYPE:passive
TOKENS:1
DSPL:fcfs
ALLOCATE NODE LIST:pos_s_a1 pos_l_a1 tranal

NUMBERS OF TOKENS TO ALLOCATE:1
ALLOCATE NODE LIST:pos_s_a2 pos_l_a2 trana2

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:pos_s_r1 pos_l_r1 tranrl
RELEASE NODE LIST:pos_s_r2 pos_l_r2 tranr2

DUMMY NODES:dummyin dummyout
SUBMODEL:dasd /*individual device*/

NUMERIC PARAMETERS:ncyl startarmt cylt revt trant
NODE PARAMETERS:pos_s_a pos_s_r pos_l_a pos_l_r trana tranr
CHAIN PARAMETERS:c
GLOBAL VARIABLE IDENTIFIERS:oldcyl newcyl

OLDCYL:ncyl/2
NEWCYL:0

QUEUE:deviceq
TYPE:passive
TOKENS:1
DSPL:fcfs
ALLOCATE NODE LIST:device

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:devicer

QUEUE:timesq
TYPE:fcfs
CLASS LIST:seek

SERVICE TIMES:standard(startarmt+abs(newcyl-oldcyl) ++
*cylt,0)

CLASS LIST:lat rev
SERVICE TIMES:uniform(0,revt,1) standard(revt,0)

CLASS LIST:tran
SERVICE TIMES:standard(trant,0)

SET NODES:setnewcyl
ASSIGNMENT LIST:++

newcyl=ceil(uniform(0,oldcyl-1,(oldcyl-1)/(ncyl-1);++
oldcyl,ncyl,(ncyl-oldcyl)/(ncyl-1)))

SET NODES:setoldcyl
ASSIGNMENT LIST:oldcyl=newcy1
CHAIN:c

TYPE:external
INPUT:device
OUTPUT:devicer
:device->pos_s_a pos_l_a;movearmp 1-movearmp
:pos_s_a->pos_s_r->setnewcyl->seek->setoldcyl->pos_l_a

144 COMPUTER SYSTEM EXAMPLES / CHAP. 7

: pos__l_a->pos_l_r->lat
:lat—>trana rev;if(ta>0) if(t)
:rev->trana rev;if(ta>0) if(t)
:trana->tran->tranr->devicer

END OF SUBMODEL DASD
INVOCATION:disk 1

TYPE:dasd
NCYL:800
STARTARMT:.01
CYLT:.0001
REVT:.0166667
TRANT:.0029
POS_S_A:pos_s_a1
POS_S_R:pos_s_r1
POS_L_A:pos_l_a1
POS_L_R:pos_l_r1
TRANA:trana1
TRANR:tranr1
C: c

INVOCATION:disk2
TYPE:dasd
NCYL:800
STARTARMT:.01
CYLT:.0001
REVT:.0166667
TRANT:.0029
POS_S_A:pos_s_a2
POS_S_R:pos_s_r2
POS_L_A:pos_l_a2
POS_L_R:pos_l_r2
TRANA:trana2
TRANR:tranr2
C: c

CHAIN :c
TYPE:external
INPUT:dummyin
OUTPUT:dummyout
:dummym->disk1.input disk2.input;.5 .5
:diski.output disk2.output->dummyout

END OF SUBMODEL IOSYS

The submodel representing round robin scheduling uses a job variable
to store the total service time for a given visit to the CPU. The queue itself
has FCFS scheduling, with the service time based on the minimum of the
remaining service and the round robin quantum.

SUBMODEL:rrqueue /*round robin queue*/
NUMERIC PARAMETERS:mean_serve quantum overhead
CHAIN PARAMETERS:chn
QUEUE:q

TYPE:fcfs

SEC. 7.3 / CHANNEL-DEVICE INTERACTION 145

CLASS LIST:els
SERVICE TIMES:standard(min(jv(0) ,quantum)+overhead, 0)

SET NODES:set_total
ASSIGNMENT LIST:jv(0)=standard(mean_serve,1)
SET NODES:set_remain
ASSIGNMENT LIST:jv(0)=jv(0)-min(jv(0).quantum)
DUMMY NODES:dummy_out
CHAIN:chn

TYPE:external
INPUT:set_total
OUTPUT:dummy_out
:set_total->cls->set_remain->cls dummy_out;if(jv(0)>0) if(t)

END OF SUBMODEL RRQUEUE

Following is the model definition invoking these submodels.

MODEL:chap7m4
METHOD:simulation
NUMERIC IDENTIFIERS:mean_serve quantum overhead

MEAN_SERVE:.02
QUANTUM:.02
OVERHEAD:.0002

INCLUDE:rrqueue
INCLUDE:iosys
INVOCATION:epuq

TYPE:rrqueue: mean_serve; quantum; overhead; c
INVOCATION:lO

TYPE:iosys
C : c

CHAIN:C
TYPE:closed
POPULATION:4
:epuq.output->io.input
:io.output->cpuq.input

CONFIDENCE INTERVAL METHOD:replications
INITIAL STATE DEFINITION -
CHAIN:c

NODE LIST:epuq.set_total
INIT POP:4

CONFIDENCE LEVEL:90
NUMBER OF REPLICATIONS:5
INITIAL PORTION DISCARDED:10 /*percent*/
REPLIC LIMITS-

NODES FOR DEPARTURE COUNTS:epuq.set_total
DEPARTURES:10000

LIMIT - CP SECONDS:300
TRACE:no

END

Following are the simulation results.

146 COMPUTER SYSTEM EXAMPLES / CHAP. 7

RESQ2 VERSION DATE: MARCH 3, 1982 - TIME: 22:29:10 DATE: 03/09/82
MODEL:chap7m4
REPLICATION 1: SET_TOTAL DEPARTURE LIMIT
REPLICATION 2: SET_TOTAL DEPARTURE LIMIT
REPLICATION 3: SET_TOTAL DEPARTURE LIMIT
REPLICATION 4: SET_TOTAL DEPARTURE LIMIT
REPLICATION 5: SET_TOTAL DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION. 19837 DISCARDED EVENTS

SIMULATED TIME PER REPLICATION: 207.52304
CPU TIME: 291.46

NUMBER OF EVENTS PER REPLICATION: 35782
NUMBER OF REPLICATIONS: 5

WHAT:tpbo
INVOCATION INVOCATION ELEMENT THROUGHPUT

CPUQ Q 68.54985(68.37177,68.72792) 0.5%
10 CHANNEL 101.30110(100.28430,102.31792) 2.0%

10 DISK1 DEVICEQ 21.86382(21.54640,22.18124) 2.9%
10 DISK1 TIMESQ 52.40106(51.56384,53.23827) 3.2%
10 DISK2 DEVICEQ 21.50816(21.28053,21.73578) 2.1%
10 DISK2 TIMESQ 51.48280(50.97803,51.98758) 2.0%

CPUQ SET_TOTAL 43.36867
CPUQ SET_REMAIN 68.54947
CPUQ DUMMY_OUT 43.37251
10 POS_S_R1 7.35436
10 POS_L_R1 21.86263
10 TRANR1 21.86166
10 P0S_S_R2 7.20016
10 P0S_L_R2 21.50700
10 TRANR2 21.50700
10 DUMMYIN 43.37251
10 DUMMYOUT 43.36867

10 DISK 1 DEVICER 21.86166
10 DISK1 SETNEWCYL 7.35436
10 DISK 1 SETOLDCYL 7.35340
10 DISK2 DEVICER 21.50700
10 DISK2 SETNEWCYL 7.20016
10 DISK2 SETOLDCYL 7.20016

WHAT:utbo(cpuq.q 1 0 .channel,io.disk 1.deviceq,1 0 .disk2.deviceq)
INVOCATION INVOCATION ELEMENT UTILIZATION

CPUQ Q 0.87926(0.87447,0.88406) 1.0%
10 CHANNEL 0.12578(0.12460,0.12696) 0.2%

10 DISK1 DEVICEQ 0.53930(0.52858,0.55002) 2.1%
10 DISK2 DEVICEQ 0.52685(0.52173,0.53196) 1.0%

WHAT:qlbo(*)
INVOCATION INVOCATION ELEMENT MEAN QUEUE LENGTH

CPUQ Q 2.21399(2.18089,2.24708) 3.0%
IO CHANNEL 0.12935(0.12820,0.13050) 1.8%
10 POS_S_A1 3.65E-04(2.95E-04,4.34E-04) 38.0%
10 P0S_L_A1 1 . 39E-03 (1 .30E-03,1 .48E-0 3) 13.1%

SEC. 7.3 / CHANNEL-DEVICE INTERACTION 147
IO TRANA1
IO POS_S_A2
IO POS_L_A2
IO TRANA2

10 DISKI DEVICEQ
10 DISK1 TIMESQ
10 DISK1 SEEK
10 DISK1 LAT
10 DISK1 REV
10 DISK1 TRAN
10 DISK2 DEVICEQ
10 DISK2 TIMESQ
10 DISK2 SEEK
10 DISK2 LAT
10 DISK2 REV
10 DISK2 TRAN

WHAT:St(*)
INVOCATION INVOCATION ELEMENT

CPUQ Q
IO DISK1 TIMESQ
IO DISKI SEEK
IO DISK1 LAT
IO DISK1 REV
IO DISK1 TRAN
IO DISK2 TIMESQ
IO DISK2 SEEK
IO DISK2 LAT
IO DISK2 REV
IO DISK2 TRAN

WHAT:gv
INVOCATION INVOCATION ELEMENT
IO DISK1 OLDCYL
IO DISK1 NEWCYL
IO DISK2 OLDCYL
IO DISK2 NEWCYL

0.06341(0.06248,0.06433) 2.9??
4.02E-04(3.75E-04,4.29E-04) 13.3%
1 .42E-0 3(1.32E-03,1 .51E-03) 13.3%
0.06237(0.06171,0.06303) 2.1%
0.91284(0.87976,0.94592) 7.2%
0.53754(0.52681,0.54828) 4.0%
0.27007(0.26338,0.27675) 5.0%
0.18209(0.17829,0.18589) 4.2%
0.02198(0.02002,0.02394) 17.8%
0.06341(0.06248,0.06433) 2.9%
0.87317(0.86327,0.88307) 2.3%
0.52503(0.51989,0.53017) 2.0%
0.26165(0.25638,0.26693) 4.0%
0.17991(0.17757,0.18225) 2.6%
0.02109(0.02007,0.02212) 9.7%
0.06237(0.06171,0.06303) 2.1%

MEAN SERVICE TIMES
0.01283
0.01026
0.03671
8.3271E-03
0.01667
2.9000E-03

0 . 0 1 0 2 0
0.03634
8.3646E-03
0.01667
2.9000E-03

FINAL VALUES OF GLOBAL VARIABLES
119.00000
119.00000
645.00000
645.00000

WHAT:

CHAPTER 8

CONCLUSION

Computer communication systems are prevalent today. Many comput
er systems are connected together with high speed communication links and
large numbers of terminals are connected to these computers, with lower
speed links. These systems will continue to proliferate and systems based
on local area networks will also become widespread. Performance modeling
of these systems can be extremely valuable for their design, development
and efficient operation. Computer communication systems are complex. In
order to simplify the task of understanding how these systems perform,
models should be used. Models can aid in predicting the behavior of sys
tems which do not exist and in determining the effects of changes which are
made to existing networks.

We discussed two types of modeling techniques. Analytic models
consist of equations which relate parameters of the model to the perform
ance measures. An analytic solution gives the exact results for the model
which is being solved. A model which is solved using simulation can usually
be formulated as a more exact representation of the real system than a
corresponding analytic model. Simulation is a statistical experiment which
imitates the behavior of the model and observes it as the state of the model
changes. Since simulation produces random results, we use confidence
intervals to determine the accuracy of the results.

We have appproached modeling in the context of queueing network
models. The primary advantage of using a queueing network representation
for simulation of computer communication systems is the high level of
description used, in comparison with the conventional simulation program
ming languages. In using simulation, we can describe a system as a queueing
network and incorporate any level of detail. Extended queueing networks
provide additional network elements and powerful modeling constructs for
the representation of complex situations found in real systems.

148

CHAP. 8 / CONCLUSION 149

The basic problems in using queueing network models are to (1)
determine which resources are important to have in the model and the
characteristics which will most affect performance, (2) formulate a model
representing these resources and characteristics, and (3) determine the
values for the performance measures of the model. Item (1) requires that
the modeler understand the system, and that he or she uses intuition in
determining what is important. A model is a simplistic representation of the
system. It is necessary to decide on how much detail the model will contain.
In doing this, we must make many simplifying assumptions. The second
problem involves a description of the flow of messages through the network
and the amount of service required at the resources. For queueing network
models to be used effectively for the representation of computer communi
cation systems, appropriate software is needed. The Research Queueing
Package provides many of the desireable properties of software for these
types of models. Many of the examples discussed throughout the text have
been illustrated with RESQ models. The ease with which complex situations
can be represented has been demonstrated with these models.

Models should be developed in a top-down, hierarchical fashion. A
model can never exactly represent the real system. The model should in
clude only as much detail as is necessary to accurately produce the desired
performance measures. Modeling should begin simply, with additional
complexity being added as the system and the model are better understood.
RESQ provides a facility for defining submodels which can be nested within
each other. These submodels help give the model structure and allow for the
addition of further details as they are necessary.

We have presented many different models of computer communication
systems. Some of the models have dealt with protocols like acknowledge
ments, time-outs, packetizing of messages, adaptive routing and flow con
trol. Models of local area networks have illustrated polled multidrop lines,
CSMA/CD networks and token rings. Computer system models displayed
examples of multitasking, spooling and channel-device interaction. The
modeling techniques used in these models are applicable to current comput
er communication systems.

Systems are becoming increasingly complex. We need mathematical
tools to help us understand the behavior of these systems. We have attempt

150 CONCLUSION / CHAP. 8

ed to show how some of these complexities can be represented and studied.
In the future, we will need tools which are simpler to use and which can
represent even more complex conditions. We hope the ideas we have
presented will aid in future modeling endeavors.

BIBLIOGRAPHY

1. C.E. Agnew, "On Quadratic Adaptive Routing Algorithms," CACM
19, 1 (January 1976) pp. 18-22.

2. F. Baskett, K.M. Chandy, R.R. Muntz and F.G. Palacios, "Open,
Closed, and Mixed Networks of Queues with Different Classes of
Customers," JACM 22, 2 (April 1975) pp. 248-260.

3. J.P. Buzen, Queueing Network Models o f Multiprogramming, Ph.D.
Thesis, Harvard University, Cambridge, Mass. (1971). Garland
Publishing, New York (1980).

4. K.M. Chandy, J. Misra, R. Berry and D. Neuse, "Simulation Tools in
Performance Evaluation," CPEUG 81, (Computer Performance
Evaluation Users Group), San Antonio, Texas (November 1981).

5. P. Heidelberger and P.D. Welch, "A Spectral Method for Confidence
Interval Generation and Run Length Control in Simulations," CACM
24, 4 (April 1981) pp. 233-245.

6. J. R. Jackson, "Jobshop-Like Queueing Systems," Management
Science 10, l (October 1963) pp. 131-142.

7. L. Kleinrock, Communication Nets: Stochastic Message Flow and
Delay, McGraw-Hill, New York (1964). Reprinted, Dover Publica
tions (1972).

8. L. Kleinrock, Queueing Systems Volume I: Theory, Wiley, New York
(1975).

9. L. Kleinrock, Queueing Systems Volume II: Computer Applications,
Wiley, New York (1976).

10. A.G. Konheim and B. Meister, "Service in a Loop System," JACM
19, (January 1972) pp. 92-108.

11. S.S. Lam and Y.L. Lien, "A Tree Convolution Algorithm for the
Solution of Queueing Networks," to appear, CACM.

151

152 BIBLIOGRAPHY

12. S. S. Lavenberg and C. H. Sauer, "Analytical Results for Queueing
Models," Chapter 3 of S. S. Lavenberg, editor, Computer Performance
Modeling Handbook, Academic Press, Inc., New York (1983).

13. D. Merle, D. Potier and M. Veran, "A Tool for Computer System
Performance Analysis," Performance o f Computer Installations, Fer
rari, D. (editor), North-Holland (1978).

14. M. Reiser and S.S. Lavenberg, "Mean Value Analysis of Closed
Multichain Queueing Networks," JACM 27, 2 (April 1980) pp.
313-322.

15. M. Reiser and C.H. Sauer, "Queueing Network Models: Methods of
Solution and their Program Implementation," in K.M. Chandy and
R.T. Yeh, editors, Current Trends in Programming Methodology, Vol
ume III: Software Modeling and Its Impact on Performance. Prentice-
Hall (1978) pp. 115-167.

16. M. Reiser, "Performance Evaluation of Data Communication Sys
tems," IBM Research Report RZ-1092 (August 1981).

17. C.H. Sauer, "Passive Queue Models of Computer Networks," Com
puter Networking Symposium, Gaithersburg, Maryland (December
1978) . IEEE Catalog No. 78CH1400-1.

18. C.H. Sauer, "Computational Algorithms for State-Dependent Queue
ing Networks," ACM Transactions on Computer Systems 1, 1
(February 1983).

19. C.H. Sauer and K.M. Chandy, Computer Systems Performance Model
ing, Prentice-Hall, Englewood Cliffs, NJ (1981).

20. C.H. Sauer and E.A. MacNair, "Queueing Network Software for
Systems Modeling," Software-Practice and Experience 9, 5 (May
1979) .

21. C. H. Sauer and E.A. MacNair, "Extended Queueing Network Mod
els," Chapter 8 of S. S. Lavenberg, editor, Computer Performance
Modeling Handbook, Academic Press, Inc., New York (1982).

22. C. H. Sauer and E.A. MacNair, "The Research Queueing Package
Version 2: Availability Notice," IBM Research Report RA-144,
Yorktown Heights, New York (August 1982).

23. C.H. Sauer, E.A. MacNair and J.F. Kurose, "The Research Queueing
Package: Past, Present and Future," Proceedings 1982 National Com
puter Conference.

BIBLIOGRAPHY 153

24. C.H. Sauer, E.A. MacNair and J.F. Kurose, "The Research Queueing
Package Version 2: Introduction and Examples," IBM Research
Report RA-138, Yorktown Heights, New York (April 1982).

25. C.H. Sauer, E.A. MacNair and J.F. Kurose, "The Research Queueing
Package Version 2: CMS Users Guide," IBM Research Report RA-
139, Yorktown Heights, New York (April 1982).

26. C.H. Sauer, E.A. MacNair and J.F. Kurose, "The Research Queueing
Package Version 2: TSO Users Guide," IBM Research Report RA-
140, Yorktown Heights, New York (April 1982).

27. C.H. Sauer, E.A. MacNair and S. Salza, "A Language for Extended
Queueing Networks," IBM J. o f Research and Development 24, 6
(November 1980).

28. C.H. Sauer, M. Reiser and E.A. MacNair, "RESQ - A Package for
Solution of Generalized Queueing Networks," Proceedings 1977
National Computer Conference.

29. M. Schwartz, Computer-Communication Network Design and Analysis,
Prentice-Hall (1977).

30. C.E. Skinner, "A Priority Queueing System with Server Walking
Time," Operations Research 15, (1967) pp. 278-285.

31. A.S. Tanenbaum, Computer Networks, Prentice-Hall (1981).
32. A.S. Tanenbaum, "Network Protocols," Computing Surveys 13, 4

(December 1981) pp. 453-489.
33. S. Tucci and C.H. Sauer, "The Tree MVA Algorithm," IBM Research

Report RC-9338 (April 1982).
34. P.D. Welch, "The Statistical Analysis of Simulation Results," S.S.

Lavenberg (Editor), Computer Performance Modeling Handbook, to
appear, Academic Press (1982).

154 INDEX

INDEX

A

Absolute width 66
Acknowledgements 27, 50, 50, 81

negative 91
Active queues 34, 35
Allocate nodes 48
Analytic models 4, 6
Array of invocations 128
Arrival processes 10
Arrival rates 41
Arrival times 36
Assignment statements 38, 42
Automated run length 58
Automated stopping rule 73

B

Boolean funtions 47
Buffer contention 91
Buffering 22
Bulk arrival mechanisms 50

C

Central server model 22, 136
Chain parameters 70
Chain variables 36, 38, 38, 40, 42,

49
Chains 25, 36

closed 37
open 37

Children 51
Classes 14, 34, 35

Clock 43
Closed networks 22, 25
Coefficient of variation 44, 45, 45
Collisions 115
Confidence interval method 62
Confidence intervals 40, 55, 58,

64, 66, 73
Confidence level 40, 55
Control messages 50
Correlations 57
Create nodes 50
CSMA/CD 114
CV 40

D

Data types 38
Destroy nodes 50
Diagrams 33
Dialogue files 59, 59
Discarded initial portions 57
Distribution functions 38
Distributions 43

empirical 44
Branching Erlang 44, 57
BE 44, 44
DISCRETE 44
Erlang 44
Exponential 45
Hyperexponential 44, 45
Hypoexponential 44, 45
Performance measures 62
STANDARD 44, 46
UNIFORM 45, 113

INDEX 155

Dummy nodes 76

E

Elements 33, 34, 36
Equilibrium behavior 56, 58
Ethernet 115
Events 63
Extended queueing networks 6, 8,

9, 33
External 72

F

Family 51
Fission nodes 39, 51, 85, 132

nested 52
Fixed service rates 34
Flow controls 22, 25
Functions 37
Fusion nodes 50, 51, 51, 85, 132

G

Global variables 38, 38, 42, 49,
60, 96

H

Hierarchical definitions 69
Holding buffers 33

/

Independence assumption 18, 39,

Independent and identically
distributed 56, 57

Independent replications 56
Infinite server 27, 35
Initial state 56, 62
Initialization 55
Input 72
Interarrival times 36, 41
Invocations 72
Invoking models 70
ISO OSI 7

J

Job variables 34, 37, 38, 39, 42,
49, 50, 60, 61

Jobs 10, 34, 35, 36
JV 39

L

Libraries 72
Line controllers 108
Link capacities 11
Local networks 1, 2, 8, 108
Long haul networks 1,2, 108
Lost messages 84

M

M /G /l queues 12
M /M /l queues 10
Macro definitions 69
Mean queue lengths 11, 12, 19

67

156 INDEX

Mean queueing times 12, 19, 58,
67

Mean response times 12, 19, 73
Mean service rates 10
Mean service times 10, 14, 15, 19,

23, 25
Mean Value Analysis 27
Memory contention 24
Memoryless property 57
Message classes 14
Messages 10
Method of exponential stages 44
Mixed networks 31
Model results

chap4ml 63
chap5ml 83, 95
chap5m2 89
chap5m3 100
chap5m4 105
chap6ml 113
chap6m2 119
chap6m2h 120
chap6m3 129
chap7ml 134
chap7m2 135
chap7m3 139
chap7m4 145

Modeling 3
Models

chap4ml 60
chap5ml 79
chap6ml 111
chap6m2 117
chap6m3 128
chap7ml 133
chap7m3 138
chap7m4 145

csm 72
Modular representation 75
Multiple classes 25
Multiserver queues 31
Multitasking 131

N

Network definition 58
Networks of queues 4
Node parameters 72, 77
Nodes 36
Normalizing constant 27

O

Open networks 19
Output 72
Overlap 131

P

Packetizing 22, 33
Packets 51, 52, 92
Parallel activities 51
Parallelism 33
Parent 51
Passive queues 6, 33, 48, 52, 60,

61, 77
Performance evaluation 2, 3
Performance measures 4, 6, 23,

54, 55, 64
Point estimates 40, 55
Polling 108
Pool of tokens 48
Population (closed chain) 37

INDEX 157

Predicates 47
Preemption 35
Priorities 16,34,110

non-preemptive 79, 83
Probability distributions 35, 36,

43, 49
Processor sharing 17, 23
Product form solution 4, 18, 22,

27, 34, 47
Propagation delays 11
Protocols 22, 33, 50, 50

Q

Queue lengths 49
Queueing models 3, 33
Queueing network models 4, 9, 18
Queueing networks 4, 6, 18, 33

extensions 6
Queueing time distributions 13, 58
Queueing times 48

R

Random number streams 55
Reassembly of messages 22, 33
Regeneration cycles 57, 63
Regeneration state 57, 63, 73
Regenerative method 57, 63, 73
Regenerative systems 57
Related jobs 51
Relative throughputs 28
Relative width 58, 64, 73
Relatives 51
Release nodes 49
Release of tokens 50, 61

Replication length 57
Resource sharing 3
Response times 33, 48
Routing 36
Routing chains 27
Routing definition 62

S'

Semaphores 137
Sequential procedure 58
Servers 34, 35
Service capacities 31
Service processes 9, 10
Service rates 35
Service requirements 34
Service times 35
Set nodes 38, 60, 61
Simulation 4, 18, 33
Simulation run lengths 54, 55, 58
Simulation times 43
Simultaneous resource possession

4, 33, 48
Single queue models 4, 9
Sink 34, 36, 37, 50
Sources 34, 35, 37, 62
Spectral Method 57
Split nodes 6, 37, 39, 50
Spooling 136
Standard deviations 12, 14, 15, 43
States 33, 47, 57
Statistical analysis 5, 7, 54, 74
Statistical variability 55
Status functions 38, 48, 85
Stopping criteria 58, 62
Store and forward buffering 91
Subchains 37

158 INDEX

Submodels 70, 75
city 78, 82, 86, 94, 98, 103
csma_cd 115
cssm 71
dasd 143
iosys 142
net__delay 125
poll__line 109
rrqueue 144
station 126

Symbols 35, 36, 48
Synchronization 33, 51
SNA 7

T

Throughput 10
Time outs 84
Token rings 122
Tokens 48

Transfer nodes 50, 52, 85
Transient behavior 56
Transmission times 11
True values 55

U

Utilization 10, 66

V

Variables 37

W

Waiting lines 35
Windows 25
Work demands 34, 35

