RT PC Distributed Services

Charles I. Sauer

Don W. Johnson

Larry K. Loucks

Amal A. Shaheen-Gouda
Todd A. Smith

IBM Industry Systems Products
Austin, Texas 78758

ABSTRACT

RT PC Distributed Services provides distributed operating system capabililies for the
AIX' operating system. These include distributed files with local/remole (ransparency, a
form of "single system image” and distributed interprocess communication. Applications, in-
cluding data management/data base applications, can typically be used in the distributed en-
vironment without modification to existing object code. Distributed Services is archilected for
strong compalibility with AIX, the UNIX2 operating system, IBM architectures such as SNA
and some of the architectures of Sun Microsystems’@ NI'S. The Distributed Services im-
plementation includes caching mechanisms and other algorithms designed for high perfor-
mance without sacrificing strict functional transparency. This paper describes the key charac-
teristics and decisions in the design of Distributed Services.

INTRODUCTION

The widespread availability of personal computers and workstations has lifted many of
the limitations of the previous generation of time sharing systems, by giving individuals a great
deal of dedicated computing capacity and previously unavailable capabilitics, e.g., memory-
mapped displays. [1owever, having machines* dedicaled to individuals means the loss of im-
portant, previously taken for granted, system characleristics. These include the ability to
share [iles and peripherals, the ability to use any onec ol a pool of equivalent machines, and
the ability of one person to act as administrator for a number of other users. Pile transfer and
remote login facilities can alleviate these losses somewhal, bul a betler solution is to provide
distributed operaling services, such as access to remole [iles using the same mechanisms as
access to local files.

There have been numerous research cfforts and a number of products with goals and
characteristics similar to Distributed Services. Perhaps the best known of these are LLOCUS
[Popek er al 1981, Popek and Walker 1985], NI'S [Sandberg ef al 1985, Sun 1986] and RES
[Rifkin er al 1986]. We studied each of these, and many other, previous designs. As we
describe Distributed Services, we will contrast our design with some of its predecessors.

The remainder of the paper is organized as [ollows: Iiirst, we will summarize our view of
the administralive environments anticipated lor Distribuled Services installations and our ob-
jectives for Distributed Services. Then we describe the overall characteristics of Distributed
Services. Finally, we cover our definition and treatment of "single svstem image" in addi-
tional detail.

AlX is a trademark of International Business Machines Corporation

Developed and licensed by American Telphone and Tclegraph. Unix is a registered trademark in the U.S. AL
and other countries.

Sun Microsystems is a_trademark of Sun Microsystems, Inc.

We use “machine™ to indicate a generic computer — i personal computer, workstation or larger computer.

N

June 5, 1987 cHS - |

RT P'C Distributed Services

ADMINISTRATIVE ENVIRONMENTS

Assumptions about administrative environments are fundamental to design of distributed
systems, yet administralive concerns are oflen omitled from primary consideration. Two
primitive elemenlts can be identified in the environments we anticipate: multi-machine clus-
ters and independently administered machines.

/usrinews | O /usr/lpp/pl8cc

o]
0 O
Jdev/aps5
o |/devimt "ol |o
’ 0| e L]
I

Il % B O O 0 g
O
O

D29
0 0

/usr/src a
o 4B H . D94

Figure 1. Multi-machine clusters and separately administered machines.

Multi-machine Clusters

All of the machines in a multi-machine cluster are administercd uniformly, let us as-
sume by the same person. The machines in the clusier are likely owned by the same depart-
ment, and members of the department can use the machines equivalently, i.c., the multiple
machines present a “single system image.”" Regardless of which machine in the cluster is
used, login ids and passwords are the same, the same programs/dala [iles/direclories are acces-
sible and authorization characteristics are the same. The large boxes marked D46, D29, ... in
Figure 1 are meant to suggest multi-machine clusters, with each small box representing a
machine. Of course, the machines may be dispersed geographically within the limitations of
the netwaorks used — they are shown together in a room for convenience in drawing the [igure.

Independently Administered Machines

The other primitive clement is the independently administerd machine. These
machines fall into lwo subcalegories: servers and private machines. Servers in this sense are
nol funclionally different lrom other servers (e.g., file or device servers) which may be lound
within multi-machine clusters, but they are administered independently [rom other
machines/clusters. The boxes wilh path names in Figure 1 arc intended 1o suggest lile/device

June 5, 1987 cHs - 2

RT PC Distribured Services

servers administered independently. Other machines may he independently administered be-
cause the owners are unwilling to allow others to assume adminisirative responsibility. Both
of these subcategories can be considered degenerate cases of the multi-machine cluster, but it
is convenient to discuss them separately.

Networks of Multi-Machine Clusters/Independently Administered Machines

As organizations evolve toward connecting all machines with multimegabit per second
networks, administrative configurations such as the one depicted in Figure 1 will inevitably
occur. It will be required that all of the machines be ahle 1o communicale with one another,
and a high degree of network transparency will be required. Bul administrative clustering of
machines according to subgroups of the organization will be natural, and coopera-
tion/transparency within these clusters will usually be a primary issue. Authorization charac-
teristics will vary across the clusters/independent machines. Organizations will change, and
correspondingly, machines will be added to/deleted from clusters, and clusters/machines will
be added to/deleted from networks. Distributed system designs must be prepared to cope with
these configurations and changes in configuration.

DISTRIBUTED SERVICES DESIGN GOALS

The primary design goals in our design of Distribuled Services were

LocallRemote Transparency in the services distributed. 1'rom both the users’
perspective and the application programmer’s perspective, local and remote ac-
cess appear the same.

Adherence to AIX Semantics and Unix Operating System Semantics. T'his is corol-
lary to local/remote transparency: the distribution of services cannol change the
semantics of the services. Existing object code should run without modification,
including data base management and other code which is sensitive to [ile system
semantics.

.

Remote Performance = Local Performance. T'his is also corollary to [ransparency:
if remole access is noticably more expensive, then transparency is lost, Nole that
caching effects can make some distributed operations faster than a comparable
single machine operation.

Network Media Transparency. The system should be able to run on different local
and wide arca networks.

Mixed Administrative Environments Supported. 'This was discussed in the previous
section. Additionally, services must be designed to make the administrator's job
reasonable.

Security and Authorization Comparable to a Single Multiuser AMachine.

DISTRIBUTED SERVICES FILE SYSTEM

Remote Mounts

Distributed Services uses "remote mounts” to achicve local/remote transparency. A
remote mount is much like a conventional mount in the Unix operating system, bul the
mounted filesystem is on a different machine than the mounted on dircctory. Once the
remote mount is established, local and remole files appear in the same directory hicrarchy,
and, with minor exceptions, file system calls have the same effect regardless of whether
liles(dircclories) are local or remoleS. Mounls, both conventional and remote, are typically

June 5, 1987 CHS -3

RT PC Distributed Services

made as part of system startup, and thus are established belore users login., Additional remote
mounts can be established during normal system operation, il desired.

Conventional mounts require that an entire file system be mounted. Distributed Services
remote mounts allow mounts of subdirectories and individual liles of a remote filesystem over
a local directory or file, respectively. File granularity mounts are useful in configuring a single
system image. For example, a shared copy of /ete/passwd may be mounted over a local
/etc/passwd without hiding other, machine specilic, files in the /ete directory. Directory
granularily and file granularity mounts are now also allowed with AIX local mounts.

Distributed Services does not require a file system server to export/advertise a [ile system
before it can be mounted. [f a machine can name a directory/file o bhe mounted (naming it
by node and path within that node), then the machine can mount the directory/file if it has
the proper permissions. The essential permission constraints are

1. Superuser (root) can issue any mount.
2 System group® can issue local device mounts defined in the profile
/etc/filesystems.
. Other users/groups are allowed to perform remote directory/file mounts? il
the process has search permission for the requested directory/lile, owns the
mounted upon object (directory/file) and has write permission in the parent
directory of the mounied upon object.
The objectives of these constraints are lo maintain system integrilty bul allowing users the
[lexibility to perform "casual" mounts.

File System Implementation Issues

Virtual File Systems. The Distributed Services remolc mount design uses the Virtual File
System approach used with NFS [Sun 1986]. This approach allows construction of essen-
tially arbitrary mount hierarchies, including mounting a local object over a remole object,
mounting a remote object over a remote object, mounting an object more than once within
the same hierarchy, mount hierarchies spanning more than one machine, ctc. The main con-
straint is that mounts are only effective in the machine performing the mount.

Inherited mounts. It is desirable for one machine to be able 1o "inherit” mounls per-
formed by other machines. TFor example, if a machine has mounted over jusr/src/icon
and a second machine then mounts the first machine's /usr/sre, it might be desired that the
second machine see the mounted version ol /usr/src/icon. This would not happen in the
default case, but Distributed Services provides a query facility as parl ol a new mntetl ()
system call. The mount command supporls a =i (inheriled) flag which causes the query to
be performed and the additional mounts to be made. By use ol inherited mounts, clients of a
file server need not know of restructuring of the server's mounts underneath the initial mount,
For example, il a client always uses an inherited mount of /usr/sre, it does nol need to
change it's configuration [iles when the scrver uses additional mounts to provide the subdirec-
tories ol /usr/src.

5. The traditional prohibition of links across devices npplics 1o remote mounts. In addition, Distributed Ser=
vices «loes not support direct access (o remote special files (deviees) and the remote mapping of data files
using the AIX extensions to the shmat() system call.

Note that program licenses may not allow execution ol a remotely stored copy of a program.

6. In AIX, we have given the system group (gid 0) most of the privileges traditionally restricied to the super=
user. Only especially “dangerous™ or “sensitive™ operations arc restricted to the superuser [Loucks 1986].

7. Remote device ts are not suppeorted, but the only practical effect is that a remote device that is not
mounted at all at the owning machine can not be remole mounted. This is likcly desirable, since this
situation is only likely to occur during maintenance of the ted device. £

June 5, [987 clis - 4

RT PC Distribured Servires

lookup. In conjunction with using the Virtual I'ile System concepl, we necessarily have
replaced the traditional namei () kernel function, which translated a full path name to an
i-number, with a component by component lookup () function. For [ile granularity mounts,
the string form of the [ile name is used, along with the [ile handle of the (real) parent direc-
tory. This alternative to using the file handle for the mounled file allows replacement of the
mounted f[ile with a new version without loss of access to the file (with that name). (For
example, when /etc/passwd is mounted and the passwd command is used, the old file is
renamed opasswd and a new passwd file is produced. If we used a file handle for the [ile
granulariily mount, then the client would continue to access the old version of the file. Our
approach gives the, presumably intended, effect that the client sees the new version of the
file.)

Statelessness and Statefulness. One of the key implementation issues is the approach to
"statelessness” and "statefulness."” Wherever it is practical lo use a stalcless approach, we
have done so. For example, our remote mounts are stateless. [Towever, in some areas where
we believe a stateful approach is necessary, we maintain state between server and client and
are prepared (o clean up this state information when a client or server fails. In particular, we
maintain state with regard to directory and data caching, so thal cache consisiency can be
assured.

Directory Caching. Use of component by component lookup means, in the worst case,
that there will be a lookup() remole procedure call for each component ol the path. To
avoid this overhead in typical path searches, the resulls of lookupt) ealls are cached in
kernel memory, for directory components only. Cached results may become invalid because
of directory changes in the server. We believe that state information must be maintained [or
purposes of cache validity. Whenever any directory in a server is changed, clientl directory
caches are purged. Only clients performing a lookup () since the previous directory change
are notified, and they, of course, only purge the entries for the server that had the directory
change. This purpose of this strategy is to keep the directory cache entries correct, with little
network traffic.

Data Caching. Distributed Services uses data caching in both client and server, lo avoid
unnecessary network traffic and associated delays. The caching achieves (he traditional read
ahead, write behind and reuse benefits associated with the kernel buffer cache, but with both
client and server caches. As a result, read ahead(write behind) can be occuring in the client
cache with regard to the network and in the server cache with regard to the disk. As a result,
disk to disk transfer rates tol/from remote machines can be substantially greater than local rates.
In AIX we have carclully tuned the local disk subsystem, yet use of cp for remote files yields
significantly higher disk to disk throughput than for local only files. Note that stateless designs
may not support write behind, in order to guarantee that all data will be actually on the ser-
ver’s disk before the write rpe returns to the client.

Data Cache Consistency. In gencral, it is difficult 1o keep multiple cached data blocks
consistent. We designed a general cache invalidalion scheme, but chose 1o implement instead
a state machine based on current opens of a given file. We emphasize that this mechanism is
applied at a [ile granularity, and that it is strictly a performance optimization — the
mechanism is designed to preserve the traditional multircader/multiwriter semantics of the
Unix file system. Any particular file will be in one of the lollowing stales:

1. Nol open.

2. Open only on one machine ‘This may be a different machine than the serv-
cr for the file. ("async mode™)
3. Open only for reads on more than one machine. ("read only mode™)

June 5, 1987 cls -5

RT PC Distributed Services

4, Open ?n multiple machines, with at least one open for writing. ("fullsync
mode’

We believe that the read only and async,modes are dominant in actual system operation, and
our client caching applies to these modes only. In fullsync mode, there is no client caching
for the given [ile, but the server caches as in a slandalone system.

Close/Reopen Optimization. A frequent scenario is that a [ile is closed, say by an editor,
and then immediately reopened, say by a compiler. Our data cache consistency mechanisms
are extended to allow reuse of cached data blocks in the client data cache, if and only il the
file is nol modiflied elsewhere between the close and subsequent reopen.

Kernel Structured Using Sun "vnode” Definition. We have used the Sun vnode data struc-
ture [Kleinman 1986] to support multiple file system types in the AIX kernel. 'This allows a
clean division between the local AIX [lilesystem code and the remole [ilesystem code.

System Calls System Calls
vnodes vnodes AIX
remote
o Jaix AKX , AIX
Potential }|5cq) | remote Potential local
Expansion Virtual Expansion ¢ Virtual
Circuit Circuit
Interface Interface
LU 6.2 LU 6.2
; ; Server Side
Client Side Ethernets ver Sl Ethernet
SDLC SDLC

Figure 2. Architectural Structure of Distributed Services FFile System

8. Ethernct is a trademark of Xcrox Corporation.
9. This is not intended as speculation of [uture products.

Virtual Circuit Interface. Distribuled Services assumes virtual circuits are available [or
network trallic. One or more virtual circuils must remain in force between a client with a file
open and the server for that [ile. (The mere existence of a remote mount does not require
relention of a virtual circuil.) Execulion of cleanup code, e.g., decrementing usage counts on
open files, will be Iriggered by loss of a virtual circuit. The architecture of Distributed Ser-
vices includes a Virtual Circuit Interface (VCI) layer lo isolate the Distributed Services code
from the supporting network code. Our current code uses the SNA LU 6.2 protocol to provide
virtual circuit support, but, potentially, another connection oriented protocol, e.g., TCP,
could be used. The basic primitives of the VCI are the dsrpe (), dsrpe_got () and dsget -
data() functions. dsrpe() acquires a conneclion with a specified machine and then issucs
dsrpc_got () to invoke a [unction on that machine. dsrpe_got () is called dircctly if the
caller has a previously established conncction available. Both of these calls relurn without
wailing for the result of the remote [unclion, allowing continued exccution on the calling

Jiune 5, 1987 CllS - 6

RT PC Distribured Services

machine. dsgetdata() is used to request the result of a remote functions; it will wait until
the result is available.

SNA LU 6.2 Usage. We chose to'use LU 6.2 because of its popular position in IBM's
networking products and because of its technical advantages. In parlicular, [.U 6.2 allows for
"conversations” within a session. Conversations have the capabilities of virtual circuils, yet
with low overhead of the order typically associated with datagrams. Typically, one or two
sessions are opened to support the flow between two machines, regardless of the number of
virtual circuits required. We have carefully tuned the LU 6.2 implementalion, exploiting the
[ully preemptive process model of the AIX Virtual Resource Manager [l.ang, Greenberg and
Sauer 1986]. By properly exploiling the basic architecture of LU 6.2 and carelul tuning, we
have been able to achieve high performance without using special prwaie protocols [Popek
and Walker 1985] or limiting ourselves to datagrams.

The AIX implementation of LU 6.2 supports both Ethernet and SDI.C transport. The
AIX LU 6.2 and TCP/IP implementations are designed to coexist on the same Ethernet — in
our development environment, we use both protocols on a single Ithernet, e.g., TCP for
Telnet and/or X Windows and LU 6.2 for Distributed Services.

DISTRIBUTED PROCESS SUPPORT

Approaches to Distributed Process Support

Unlike distributed file systems, where there seems to be emerging consensus in the tech-
nical community on basic concepls, e.g., use ol remole mount approaches, there is no con-
sensus on mechanisms for distributed process support. [For examples, [.OCUS has chosen to
distribute the traditional [ork and pipe mechanisms, NI'S provides the Sun RI’C interface [or
interprocess communication and System V.3 provides the streams inlerface [or interprocess
communication. We have chosen lo provide a distributed version ol the AIX message queues.
In addition, base AIX provides facilities [or less transparent nelwork wide inlerprocess com-
munication.

Distributed Message Queues

The base AIX message queue delinition is a superset of the System V delinition. The
primary extension is the provision of the msgxrev () call, which provides additional informa-
tion about the sender of the message, e.g., the effective uscrid and groupid, so that the
recipient can be more seleclive in acting upon the message reccived, and a time stamp.

We expect that distributed message queues will typically be used to communicate with a
server process, e.g., a print spooler, without requiring the client and server to be aware of
whether or not they are on the same machine. To provide a distributed version of message
queues, we have done the following:

1. The system call msgget (), which takes a 32 bil key as an argument and

returns a msqid for the corresponding queue, has been modificd 1o do a
table lookup lo see il the key has been registered as remote. This is done
within the kernel proper, so an existing object module which received a key
as a parameler and invoked msgget () would invoke the distributed version.
Il the queue is remote, a request, including a remole key found in the
lookup, is sent to the remole machine to creale or lind the message queue,
as needed. The remote machine relurns a remote msqid, the loecal kernel
creates/[inds an entry in ils own lables to give the local msqid for the
remote queue and relurns the local msqid. (The local 1o |ocal case is
handled using these same tables and mechanisms.)

June 5, 1987 cHS - 7

RT PC Distributed Services

2 When the system calls msgetl (), msgsnd(), msgrev() and msgxrev()
are invoked, the msqid lable is searched to find the location of the message
queue, and il the queue is remote, the operation is sent on lo the remote
machine.

3. A new system call, loadtbl (), is used to load the table which lists keys and
ids of remote message quecues. (loadtbl () is a general purpose mechanism
which is also used by Distributed Services for loading the uid/gid translate
lables discussed below, and which is used by base AIX for loading tables
used for national language support.) loadtbl () is invoked at startup time
to initialize the tables and is also invoked while the system is running, when
the tables need to be updated.

4. ftok () has been modified to not return keys less than 0x1000000, and the
remaining key space is used by new services/profiles. The new services,
create_ipc_prof () and find_ipe prof (), have been provided for creat-
ing/finding a profile entry which contains a symbolic name and both a local
and remote key for the queue.

3, Additional commands and menus have been provided [or creating/updating
the tables used by the above services.
We have not provided corresponding distributed versions of shared memory and semaphores.

AIX Remote Process Support

In addition to the distributed message queues of Distributed Services, base AIX provides
non-location transparent support mechanisms for remote processes. ‘These mechanisms are
enhanced by the distributed file system support. They include:

SNA LU 6.2. The previously discussed remote procedure call support of LU 6.2 is
available directly to user level processes.

SNA Services System Resource Controller (SRC). The SRC provides mechanisins
for starting and signalling remole processes. Mecnu interfaces are provided [or
managing these mechanisms.

AIX TCP/IP. Remote print, remote login, and remote ecxecution [acilities are
provided, in addtion to the base TCP/UDP/IP protocols. (Other ser-
vices/protocols, e.g., ftp and smip, are also availablc.)

DISTRIBUTED SERVICES SECURITY AND AUTHORIZATION
Encrypted Node Identilication

When considering networks of the sort suggested by Figure 1, it is clear that cach
machine needs to be suspicious of the other machines. If a machine is going to act as a server
for another, il should have a mechanism to determinc thal the potential client is not
masquerading. The AIX implementation of SNA LU 6.2 provides an option for encrypled
node identification between a pair of communicating machines, The identification is by ex-
change of DES encrypted messages. The identiflication occurs al session establishment lime
and al random intervals thercalter. Once a client/server have cach determined that the other
is nol masquerading, then they can take appropriate actions authorized according to (the
translated) userid's/groupid’s associated with each request.

Userid/Groupid Translation

There are a number of reasons why a common userid space and a common group id
space are impractical in the environment of Figure I:

1 An individual machine, whether a private machine or a server, should not
be required to give superuser (root) authority to a request from a process

June 5, 1987 cls - 8

RT PC Distributed Servires

with root authority on another machine. Rather, it should be possible to
reduce the authority of the remote process. The reduced authority may
retain some administrative privileges, may be that ol an ordinary user or
may be no access al all, depending on the preferences of the administrator
of the individual machine. Similar statements apply to the cluster of
machines.

2. A user may have logins provided by several dilfcrent administrators on
several different machines/clusters, and these will typically have different
numeric userids. When thal user uses diflferent machines, he/she should
have access to his/her authorized resources on all machines in the network.

3. Previously operating machines may join a nelwork or move to a new net-
work, and existing networks may merge. When this happens, there may be
different users/groups with the same numeric ids. Such reconfiguration
should be possible without requiring users/groups to change numeric ids or
changing userids/groupids in all of the inodes.

Our response to these requirements is to define a network wide ("wire") space of 32 bit
userids and groupids. Each request leaving a machine has the userid translated to the wire
userid and each request entering a machine has the wire userid translated to a local userid.
The above requirements are mel by proper management ol the Iranslations.

DISTRIBUTED SERVICES ADMINISTRATION

In addition to the normal system profiles, e.g., /etc/filesystems, lhere are profiles
for both the SNA support and for Distributed Services. Wilh these new profiles, we have
taken care to organize the directories containing the profiles so thal we can use remole mounts
to administer remote machines, without use of remote login (or roller skates). T[or Dis-
tributed Services, there are three profiles, for machine ids and passwords, for userid/groupid
translation and for registry of message queues.

Part of the AIX design is provision of a user interface architecture lor a screen oriented
("menu™) inlerface, to simplify system management and usage [Kilpatrick and Green 1986,
Murphy and Verburg 1986]. Configuration of both SNA and Distributed Services, i.e.,
management of the SNA and Distributed Services profiles, is normally performed using menus
conforming to this user interface architecture.

DISTRIBUTED SERVICES "SINGLE SYSTEM IMAGE”

Our definition of "Single System Image" is as lollows: Users of the given sysiem, users of
external systems which communicate with the given system and application programmers ARE
NOT aware of differences between single and multiple machine implementation. System ad-
ministrators and maintenance personnel ARE aware of distinctions amongst machines.

User/Programmer View of Distributed Services Single System Image

Though there are inherent exceptions to this, ¢.g., the uname () system call is designed
to return the machine name, we believe that Distribuled Services largely meets this defini-
tion. The key mechanism is to be able to properly confligure the several machines so that they
share the [liles and directories which matter to the user and the application programmer.
These include basic profiles such as /etc/passwd, home directories, and directories contain-
ing applications, commands and libraries. Figure 3 skelches one such posssible configuation.

Once this is accomplished, most of the desired properties just fall in place. The login

process will be the same bhecause of the sharing of /ete/passwd related fliles. Normal [ile
system manipulations and applications work in the shared dircctories. Atministrative com-

June 5, 1987 cHs - 9

RT PC Distributed Services

mands for ordinary users, e.g., passwd, also work properly il they follow reasonable conven-
tions (we had to rework several commands such as passwd, as discussed below.)

o= \ount points

g 1
@ IS5

etc — file-granularity sharing — passwd, group, ... from "/etc server”

ib

tmp
u (users' "home" directories) — shared from "data server”

wwoon

see

fadm
m_— shared from "application server” machine

Linclude
Llb _oeshared from application server
Iop 9%~ shared from application server

L SD0OI,

UsSr

L3YS
Lime

Figure 3. Example Shared Uile System.
10. An ATX convention is to place most applications in subdirectories of fuse/ipp

Administrator's View ol Single System Image Confligurations

Some of the administrator's tasks must be be performed for cach machine individually.
For example, the administrator must install and configure AIX and Distributed Services on
each machine. Other tasks can be performed once for the entire single system image cluster.,
FFor example, installation of an application, in the usual case where the installp command
retrieves files from diskette and places them in the appropriate subdirectory of /usr/lpp,
need only be done once, assuming it is done after normal system startup. Similarly, the ad-
duser command, which creates an entry in /ete/passwd, creates a home directory and
copies standard files to the heme dircctory, need only be applied once.

Routine maintenance, c.g., backing up and restoring files, can be done [or the system as
a whole while the system is in normal operation. Error logs are intentionally kept scparately
for cach machine — otherwise, the [irst problem determination step would be to isolate the
anomalous machine. Some maintenance operations, c.g., image backups of disks and

June 5, 1987 clis - 10

RT PC Distributed Services

hardware diagnostics, are necessarily performed on a machine by machine basis, while the
machine is in maintenance mode.

Implementation Tssues in Distributed Services Single System Image

There is an obvious question of ordering in starting the separate machines. We have
added a number of options to the mount command and /etc/filesystems to allow simple
retry mechanisms to be execuled in the background when initial mount attempts fail. This is
done to allow arbitrary ordering of the startup of machines.

Many of the interesting commands, e.g., passwd, use private locking mechanisms, e.g.,
based on creating/deleting dummy lock files. We have had to modily a number of these
commands to use the lockf () system call.

A more subtle issue is the “copy/modify/unlink/relink” idiom used in a number of in-
teresting programs such as editors. This idiom does not work in all cases of file granularity .
mounts, because a client may be attempting to violate the prohibition of linking across
devices. In more detail, the idiom is as follows, for updating foo in the current directory:

cp foo .foo.tmp
modify . foo.tmp
rm foo

In .foo.tmp foo
rm .foo.tmp

bl b =

If foo is a file mount from a different device, step 4 will fail. We have had lo modify several
programs lo do a copy if the link step (4) fails. Note that this is not a problem with directory
mounts, only file granularity mounts.

There is also a potential problem with routines such as mktemp() and tempnam(),
which use process ids to generate unique [ile names. Since process ids are nol unique across
machines, we have modilied these routines to use the machine id as well as the process id in
deriving a file name. (The modified versions of these routines are packaged with AIX, so that
object code does not have to be recompiled/relinked to run with Distributed Services.)

Separate Machine Operation

Clearly, it is desirable that a client machine of the servers in Figure 3 be able to operate
if one or more of the servers is down. A critical aspect of this is having recent copies of the
shared [iles [rom the "/etc server.”" As part of the mounting of these [iles, before the mount
is actually performed, the file is copied from the server to the client. For example, before
mounting the shared /etc/passwd over the client /etc/passwd, the shared version is
mounled temporarily over another file and copied to /etc/passwd. IFor each user that is to
be able to use a machine when the "home directory server” is not available, a home directory
must be crealed and stocked with essential data [iles. Similarly, for a machine o be able to
use an application when the "application server” is not available, that application must be
installed in the clienl's /usr/lpp, when the server's /usr/1lpp is not mounted. The result-
ing machine is certainly not as useful as when the servers are available, but it is usable, and
much better than no machine at all,

SUMMARY

We believe we have done well in meeting our design goals:

1. Distributed Services provides local/remote transparency lor ordinary files
(both data and programs), for directorics and for message queues.

June 5, 1987 . clis - 11

RT PC Distributed Servires

2. Our implementation adheres closely to AIX semanltics, except for the lack
of support for remote mapped files.

3 We have achieved good remote performance in general, and some remote
operalions are actually faster than corresponding local operations.

4. Use of a popular network protocol, SNA LU 6.2, gives us syncrgy with other
SNA development and independence of the underlying transport media.

5. We have been careful to provide for flexibility in configurations and ad-
ministrative environments.

6. Our encrypted node identification and id translation mechanisms give us
strong control over securily and authorization.

7. Our use of architectures such as LU 6.2, the vnode concept, our Virtual
Circuit Interface, etc. allows us subslantial room [or potential extension and
growth in network media, file systems and network protocols, respectively.

Further, we believe we have advanced the state of the arl with the following

1: Our simple, but effective approach to single system image.

2. Use of a standard virtual circuit protocol, SNA LU 6.2, while achieving high
performance.

3. Our performance optimizations, especially our caching siralegies.

4, QOur extensions for administrative [lexibility and control, e.g., file

granularity mounts, inherited mounts, adminisiration based on remote
mounting of profiles, etc.

REFERENCES

1.

L

-

June 5, 1987

IBM, IBM RT Personal Computer AIX Operating Svstem Technical Reference Manual, SA23-0806,
January 1986.

P.J. Kilpatrick and C. Greene, "Restructuring the AIX User Interface,”™ M RT Personal Computer Technology,
SA23-1057, January 1986, 2

S.R. Kleinman, "Vnodes: An Architecture for Multiple File System Types in Sun UNIX," UJSENIX Con-
ference Proceedings, Atlanta, June 1986.

T.G. Lang, M.S. Greenberg and C.II. Sauer, "The Virtual Resource Manager,™ /BAM RT Personal Com-
puter Technology, SA23-1057, January 1986.

L.K. Loucks, "IBM RT PC AIX Kernel — Modifications and Extensions,” /BM RT Persanal Computer
Technology, SA23-1057, January 1986.

T. Murphy and R. Verburg, "Extendable High-Tevel ATX User Interface,” /MM RT Personal Compurer
Technolagy, SA23-1057, January 1986.

G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin and G. Thicl, "A Network Transparent,
High Reliability Distributed System," Proceedings of the 8th Svmposium on Operating Svstems Principles,
Pacific Grove, CA, 1981.

G. Popck and B. Walker, The LOCUS Distributed Operating Svstem, MIT Press, 1985,

A.P. Rifkin, M.P. Forbes, Richard L. Hamilton, M. Sabrio, S. Shah and K. Yuch, "RFS Architectural
Overview,” USENIX Conference Proceedings, Atlanta, Junc 1986.

. R. Sandberg, D. Goldberg, S. Kleinman, Dan Walsh and B. Lyon, "Design and Implementation of the Sun

Network File System,” USENIX Conference Proceedings, Portland, Junc 1985,

. Sun Microsystems, Inc., Nenvarking on the Sun Workstarion, Feburary 1986,

cllts - 12

