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A B S T R A C T 
RT PC Distributed Services provides distributed operating system capabilities for the 

A I X 1 operating system. These include distributed files wi th local / remote transparency, a 
form of "single system image" and distributed interprocess communica t ion . Appl ica t ions , i n ­
cluding data management/data base applications, can typical ly be used in l l ie distributed en­
vi ronment without modif ica t ion to existing object code. Distributed Services is architected Cor 
strong compat ib i l i ty wi th A I X , the U N I X 2 operating system, I B M architectures such as S N A 
and some of the architectures of Sun Microsys tems ' 3 NTS. T h e Distributed Services i m ­
plementation includes caching mechanisms and other algorithms designed for high perfor­
mance without sacrificing strict functional transparency. This paper describes the key charac­
teristics and decisions in the design o f Distributed Services. 

I N T R O D U C T I O N 
The widespread availability o f personal computers and workstations hns lifted many of 

the l imitat ions of the previous generation o f t ime sharing systems, by giving individuals a great 
deal of dedicated comput ing capacity and previously unavailable capabilities, e.g., m e m o r y -
mapped displays. However, having machines 4 dedicated to individuals means the loss of i m ­
portant, previously taken for granted, system characteristics. These include the anil i ty to 
share files and peripherals, the ability to use any one of a pool of equivalent machines, and 
the abil i ty of one person to act as administrator Tor a number oT other users. Tile transfer and 
remote login facilities can alleviate these losses somewhat, but n hcMcr solution is lo provide 
distributed operating services, such as access to remote Tiles using the same mechanisms as 
access to local files. 

There have been numerous research efforts and a number of products w i t h goals and 
characteristics similar to Distributed Services. Perhaps the best known of these arc L O C U S 
[Popek et at 1981, Popck and Walker 19851, N1 :S |San<lbcrg el at 1985, Sun 1986[ and RPS 
[Ri fk in et at 1986] . We studied each of these, and many oi l ier , previous designs. As wc 
describe Distributed Services, we w i l l contrast our design with some nf its predecessors. 

The remainder of the paper is organized as follows: First, wc w i l l summarize our view of 
the administrative environments anticipated Tor Distributed Services installations and our ob­
jectives for Distributed Services. Then we describe the overall characteristics oT Distributed 
Services. Finally, wc cover our def ini t ion and treatment of "single system image" in addi ­
tional detail . 

1. A I X is a t r a d e m a r k o( I n t e r n a t i o n a l B l ) l i n e n M a c h i n e s C o r p o r a I i o n 
2. D e v e l o p e d a n d l i c e n s e d t>y A m e r i c a n T e l p h o n e a n d T e l e g r a p h . U n i x i s • r e g i s t e r e d t r a d e m a r k i n t h e U . S . A . 

a n i l o t h e r c o u n t r i e s . 
3 . S u n M i c r o s y s t e m s i s a t r a d e m a r k o l S u n M i c r o s y s t e m s , I n c . 
4. W c u s e " m a c h i n e " l o i n d i c a t e a g e n e r i c c o m p u t e r — a p e r s o n a l c o m p u t e r , w o r k s t a t i o n or l a r g e r c o m p u t e r . 
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A D M I N I S T R A T I V E E N V I R O N M E N T S 
Assumptions about administrative environments are fundamental lo design oT distributed 

systems, yet administrative concerns are oflen amilleil from primary consideration. T w o 
primitive element! can be identified in the environments we anticipate: multi-machine clus­
ters and independently administered machines. 

/usr/news • /usr/lpp/pl8cc 

0 

• 
/dev/aps5 
/dev/mt 

0 

• /usr/src 

Figure I . Multi-machine clusters and separately administered machines. 

Multi-machine Clusters 
A l l of the machines in a multi-machine cluster are administered uniformly, let us as­

sume by I he same person. The machines In the cluster arc likciy owned by I lie same depart­
ment, and members of the department can use the machines equivalcnlly, i.e., the multiple 
machines present a "single system image." Regardless of which machine in the cluster is 
used, login ids and passwords are the same, the same programs/data files/directories arc acces­
sible and authorization characteristics are llic same. The large boxes marked 1)46, 1)29. . . . in 
Figure 1 are meant to suggest multi-machine clusters, wi lh each small box representing a 
machine. Of course, (be machines may be dispersed geographically within the limitations of 
llic networks used — they arc shown together in a room for convenience in drawing the figure. 

Independently Administered M a c h i n e s 

The other primitive element is llic independently administer! machine. These 
machines fall into two subcategories: servers and private machines. Servers in this sense are 
not functionally different from other servers (e.g., file or device servers) which may be found 
within multi-machine clusters, but they arc administered Independently from other 
machines/clusters. The boxes with path names in Figure I are intended lo suggest file/device 
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servers administered independently. Other machine! may he independently administered be­
cause the owners are unwilling lo allow oihcrs lo assume administrative responsibility. Doth 
of these subcategories can be considered degenerate cases of ihc mulIi—machine cluster, hut it 
is convenient to discuss them separately. 

Networks of Multi-Machine Glisters/Independently Administered Machines 
As organizations evolve toward connecting nil machines with mullhncgabil per second 

networks, administrative configurations such as I he one depicted in Figure 1 will Inevitably 
occur. It wilt be required that all of ihc machines he able In communicate with one another, 
and a high degree of network transparency will lie required. Ilui administrative clustering of 
machines according to subgroups of the organization will he natural, and coopera­
tion/transparency within these clusters will usually be a primary issue. Authorization charac­
teristics will vary across the clusters/independent machines. Organizations will change, and 
correspondingly, machines wi l l be added to/delctcd from clusters, titid cluslcn/mochines wi l l 
be added to/deleted from networks. Distributed system designs must he prepared to cope with 
these configurations and changes in configuration. 

D I S T R I B U T E D S E R V I C E S D E S I G N G O A L S 
The primary design goals in our design of Distributed Services were 

Local/Remote Transparency in the services distributed. From both the users' 
perspective and the application programmer's perspective, local and remote ac­
cess appear the same. 

Adherence to AIX Semantics and Unit Operating System Semantics. This is corol­
lary to local/remote transparency: the distribution of services cannot change llic 
semantics or the services. Kxisting object code should run without modification, 
including data base management and other code which is sensitive to file sysiem 
semantics. 

Remote Performance • Local Performance. This is also corollary to transparency; 
if remote access is notlcably more expensive, then transparency is lost. Nolo that 
caching cTfecls can make some distributed operations [aster than a comparable 
single machine operation. 

Network Media Transparency. The system should he able lo run on different local 
and wide area networks. 

Mixed Administrative Environments Supported. This was discussed in the previous 
section. Additionally, services must he designed to make I lie administrator's job 
reasonable. 

Security and Authorization Comparable to a Single Multiuser Machine. 

D I S T R I B U T E D S E R V I C E S F I L E S Y S T E M 

Remote M o u n t s 
Distributed Services uses "remote mounis" to achieve IncnI/rcmnic transparency. A 

remote mount is much like a conventional mnuul in (be Unix operating system, but ihc 
mounted filcsystem is on a different machine than the mounted on directory. Once the 
remote mount is established, local and remote files appear In the same directory hierarchy, 
and, with minor exception!, file system calls have the same effect regardless oT whether 
filcs(dircctories) are local or remote 5. Mounts, boih conventional and remote, arc typically 
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made as pari of system startup, and thus arc established before users Ingin. Additional remote 
mounts can be established during normal system operation, ir desired. 

Conventional mounts require that an entire file system tic mounted. Distributed Services 
remote mounts allow mounts of subdirectories and individual files of a remote filcsystem over 
a local directory or file, respectively. Tile granularity mounts arc useful In configuring a single 
system image. For example, a shared copy of /e tc /passwd may be mounted over a local 
/e tc /passwd without hiding other, machine specific, files in Ihc / e t c directory. Directory 
granularity and file granularity mounts are now also allowed with A I X local mounts. 

Distributed Services does not require a file system server lo export/advertise a file system 
before i ! can be mounted. If a machine can name a directory/file to be mounted (naming it 
by node and path within that node), then the machine can mount the directory/file if it has 
the proper permissions. The essential permission constraints are 

1, Superuser (root) can issue any mount. 
2. System group 8 can issue local device mounts dcNncd in the profile 

/ e t c / f i1esys terns. 
J. Other users/groups are allowed lo perform remote directory/file mounts' if 

the process has search permission for the requested directory/file, owns the 
mounted upon object (directory/file) and has wriic permission in ihc parent 
directory of the mounted upon object. 

The objectives of these constraint are lo maintain system integrity hut allowing users the 
flexibility to perform "casual" mounts. 

F i le Sys tem I m p l e m e n t a t i o n Issues 

Virtual Pile Systems. The Distributed Services remote mount design uses the Virtual File 
System approach used with N I ^ (Sun 1986]. This approach allows construction of essen­
tially arbitrary mount hierarchies, including mounting a local object over a remote object, 
mounting a remote object over a remote object, mounting an object more than once within 
the same hierarchy, mount hierarchies spanning more than one machine, etc. The main con­
straint is that mounts arc only effective in the machine performing llic mount. 

Inherited mounts. It is desirable for one machine lo be able lo "inheri t" mounts per­
formed by other machines. For example, i f a machine has mounted over / u s r / s r c / i c o n 
and a second machine then mounts the first machine's / u s r / s r c , it might be desired that Ihc 
second machine see the mounted version oT / u s r / s r e / i e o n . This woidd not happen in the 
default case, but Distributed Services provides a query facility as part of a new m n t c t l ( ) 
system call. The mount command supports a - i (inherited) flag which causes the query to 
be performed and the additional mounts lo be made. I)y use of inherited mounts, clients of a 
file server need not know oT restructuring of the server's mounts underneath the initial mount. 
For example, if a client always uses an inherited mount of / u s r / s r c , it docs not need lo 
change it's configuration files when the server uses additional mounts to provide the subdirec­
tories o f / u s r / s r c . 

5 . T h e t w t i t l c n i l p r o h i b i t i o n of l inks a c r o s s d e v i c e s i p p t u - J 13 r e m : . l e m. i ' . - r i s h i n d d t i i r . a I j i s i r i f e u t c d S i r -
v i c e s d o c s not s u p p o r t d i r e c t a c c e s s l o r e m o t e s p e c i a l r 1 1 - c ( d e v i c e s ) a n d i h c r e m o t e m a p p i n g of d a i n f l i c * 
u s i n g I h c A I X e x t e n s i o n s In the s h m a i ( ) s y s t e m c a l l . 
N o i c t h a i p r o g r a m l i c e n s e s m a y n o i a l l o w e x e c u t i o n ot a r c i n n i c l y s t o r e d c o p y n l a p r o g r a m . 

6 . In A I X , w c h a v e g i v e n i h c s y s t e m g r o u p ( g i d 0 ) m o s t of I h c p r i v i l e g e s t r a d i t i o n a l l y r c s l n c t c d to i h c s u p e r -
u s e r . O n l y e s p e c i a l l y " d a n g e r o u s " o r " s e n s i t i v e " o p e r a t i o n s a r c r e s t r i c t e d to the s u p c r u s c r [ l . n u c k s I 9 n 6 j . 

7 . R e m o t e d e v i c e m o u n t s a r e n o l s u p p o r t e d , b u l the o n l y p r a c t i c a l c t f e e l is t h a i a m u o t c d e v i c e t h a t is n o t 
m o u n t e d a l a l l at I h c o w n i n g m a c h i n e c a n not b e r e m o t e m o u n t e d . I l i i s i s l i k e l y d c s i i a l t l e , s i n c e I h i s 
s i t u a t i o n is o n l y l i k e l y l o o c c u r d u r i n g m a i n t e n a n c e of I h c u n m o u n i e d d e v i c e . 
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lookup. In conjunction with using the Virtual File System concept, wc necessarily liave 
replaced the traditional natnei f) kernel function, which translated a Till! path name lo an 
I—number, with a component by component lookup () function. For file granularity mounts, 
the string form of the File name is used, along with the file handle of the (real) parent direc­
tory. This alternative to using the file handle Tor the mounted file allows replacement of the 
mounted Tile with a new version without loss of access to the file (with that name). (For 
example, when /e tc /passwd is mounted and Ihc passwd command is used, the old file is 
renamed opasswd and a new passwd file is produced. IT we used a file handle for the file 
gramilariity mount, then the client would continue lo access the old version of the file. Our 
approach gives the, presumably intended, effect that the client sees the new version of the 
file.) 

Statelessness and Slaiefulness. One of Ihe key implementation issues is the approach lo 
"statelessness" and "slaiefulness." Wherever it is practical to use a stateless approach, we 
have done so. For example, our remote mounts are stateless. However, in some areas where 
we believe a slateful approach is necessary, we maintain state between server and client and 
are prepared to clean up this slate information when a client or server fails. In particular, we 
maintain stale with regard to directory and data caching, so that cache consistency can be 
assured. 

Directory Caching. Use of component by component lookup means, in the worst case, 
that there will be a lookup( ) remote procedure call for each component of Ihe path. To 
avoid this overhead in typical path searches, ihc results oT lookup I I calls are cached in 
kernel memory, for directory components only. Cached results may become invalid because 
of directory changes in the server. We believe that slate information must be maintained for 
purposes of cache validity. Whenever any directory in a server is changed, client directory 
caches are purged. Only clients performing a lookup t ) since the previous directory change 
are notified, and they, of course, only purge ihc entries for ihc server that had the dircclory 
change. This purpose of this strategy is to keep the directory cache entries correct, with little 
network traffic. 

Data Caching. Distributed Services uses data caching In both client and server, to avoid 
unnecessary network traffic and associated delays. The caching achieves ihe traditional read 
ahead, write behind and reuse benefits associated with the kernel buffet cache, but with both 
client and server caches. As a result, read ahead (write behind) can be occuiing in Ihe client 
cache wiih regard to Ihc network and in the server cache with regard lo Ihc disk. As a result, 

disk to disk transfer rates to/from remote machines can be substantially greater than local rales. 

In A I X we have carefully tuned the local disk subsystem, yet use of cp lor remote Tiles yields 
significantly higher disk lo disk throughput than Tor local only files. Note that stateless designs 
may not support wrile behind, in order to guarantee that all data will be actually on ihe ser­
ver's disk before the wrile rpc returns lo the client. 

Data Cache Consistency. In general, it is difficult lo keep multiple cached (lain blocks 
consistent. We designed a general cache invalidation scheme, hut chose lo implement instead 
a state machine based on current opens of a given file. Wc cmphasi/e that this mechanism is 
applied at a file granularity, and that il is strictly a performance optimization — the 
mcchaoism is designed lo picscrvc Ihc traditional mull ircadcr 'mult iwri tcr semantics of ihe 
Unix Tile system. Any particular Tile wi l l be in one of (he following stales: 

1. Not open. 
2. Open only on one machine This may be a different machine than Ihe serv­

er for the file, ("async mode") 
3. Open only for reads on more than one machine, ("read only mode") 
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A. Open on multiple machines, with at least one open for writing, ("fullsync 
mode') 

We believe that the read only and async,modes are dominant in actual system operation, and 
our client caching applies lo these modes only. In fullsync mode, there is no client caching 
for the given file, but the server caches as in a standalone system. 

Close!Reopen Optimization. A frequent scenario is thai a Tile is closed, say by an editor, 
and then immediately reopened, say by a compiler. Our data cache consistency mechanisms 
arc extended lo allow reuse of cached daia blocks in Ihc clieni data cache, iT and only i f ihe 
file is not modified elsewhere between the close and subsequent reopen. 

Kernel Structured Using Sun "vnode" Definition. We have used the Sun vnode data struc­
ture [Kleinman 1986] to support multiple file system lypes in Ihc A I X kernel. This allows a 
clean division between the local A I X filesystem code and the remote filcsystem code. 

System Calls System Calls 

vnodes vnodes AIX 
remote 

Potential 
Expansion 

AIX 
locaf 

AIX 
remote Potential 

AIX 
local 

AIX 
remote 

Potential 
Expansion Virtual 

Circuit 
Interface 

Expansion9 

Virtual 
Circuit 
Interface 

Client Side 
LU 6.2 

Server Side 
LU 6.2 

Client Side Ethernet 8 

SDLC 

Server Side 
Ethernet 
SDLC 

i 
Figure 2. Architectural Structure of Distributed Services bile System 

S. E t h e r n e t is a I r a d c m a r k o t X e r o x C o r p o r a t i o n . 
9 . T h i s is n o t i n t e n d e d as s p e c u l a t i o n o f f u t u r e p r o d u c t s . 

Virtual Circuit Interface. Distributed Services assumes virtual circuits arc available for 
network traffic. One or more virtual circuits must remain in force between a client with a file 
open and Ihc server for thai file. (The mere existence of a remote mount does not require 
retention of a virtual circuit .) Execution of cleanup code, e.g., decrementing usage counts on 
open files, will he triggered by loss of a virtual circuit. The architecture of Distributed Ser­
vices includes a Virtual Circuit Interface ( V C I ) layer to isolate the Distributed Services code 
from the supporting network code. Our current code uses the SNA I.U fi.2 protocol lo provide 
virtual circuit support, but, potentially, another connection oriented protocol, e.g., TCP, 
could be used. The basic primitives ol the VCI are Ihc d s r p c f t . d s r p c _ g o t ( ) and dsge t -
d a t a ( l functions, dsrpc f ] acquires a connection with a specified machine and Ihcn issues 
d s rpc_ f ;o t [ ) to invoke a function on that machine. ds rpc_got I ) is called directly iT the 
caller has a previously established connection available. Doth of ihcsc calls return without 
waiting for the result of Ihc remote function, allowing continued execution on the calling 

JI»M 3. 1937 CltS - 6 



RT PC DkMhuftd Services 

machine, dsgetdatal . ) is used lo requesl ihe result oT a remote Functions; it wi l l wail unti l 
Ihe result is available. 

SNA LU 6.2 Usage. We chose lo use L U 6.2 because of its popular position in Iftrvt's 
networking products and because of its technical advantages. In particular, I .U 6.2 allows for 
"conversations" within a session. Conversations have Ihc capabilities oT virtual circuits, yet 
with low overhead of Ihe order typically associated with datagrams. Typically, one or two 
sessions are opened to support the flow between Iwo machines, regardless of the number of 
virtual circuits required. We have carefully tuned the L U 6.2 implementation, exploiting Ihe 
fully preemptive process model of Ihe A I X Virtual Resource Manager [i.ang, Greenberg and 
Sauer 1986]. By properly exploiting the basic architecture of L U 6.2 and careful tuning, we 
have been able to achieve high performance withoul using special private proiocols [Popek 
and Walker 1985] or l imit ing ourselves to datagrams. 

The A I X implementation of L U 6.2 supports both Rlhernot and SDLC iransport. The 
A I X L U 6.2 and TCP/IP implementations are designed to coexist on Ihe same Rtherncl — in 
our development environment, we use both protocols on a single Ethernet, e.g., TCP for 
Telnet and/or X Windows and L U 6.2 for Disiributed Services. 

D I S T R I B U T E D P R O C E S S S U P P O R T 

A p p r o a c h e s to D i s t r i b u t e d Process S u p p o r t 

Unlike distributed file systems, where there seems lo be emerging consensus in the tech­
nical community on basic concepts, e.g., use of remote mount approaches, there is no con­
sensus on mechanisms for distributed process support. For examples, LOCUS has chosen to 
distribute the traditional fork and pipe mechanisms, NFS provides Ihc Sun RI'C interface for 
interprocess communication and System V.3 provides Ihc sireams interface for interprocess 
communication. We have chosen lo provide a distributed version of the A I X message queues. 
In addition, base A I X provides facilities for less transparent network wide interprocess com­
munication. 

D i s t r i b u t e d Message Queues 

The base A I X message queue definilion is a superset of the System V definition. The 
primary extension is Ihe provision of the msgxrcv() call, which provides additional informa­
tion aboul Ihe sender of Ihe message, e.g., the effective uscrid and gioupid, so that the 
recipient can be more selective in acting upon Ihc message received, and a lime stamp. 

We expect that disiributed message queues will typically be used lo communicate with a 
server process, e.g., a print spooler, without requiring ihc client and server to be aware of 
whether or nol they are on the same machine. To provide a distributed version of message 
queues, we have done the following: 

1. The system call msgge t f ) , which takes a 32 bil key as an argument and 
returns a msqid for Ihe corresponding queue, has been modified lo do a 
tabic lookup lo see if ihe key has been registered as rcmolc. This is done 
within the kernel proper, so an existing object module which received a kf>y 
as a parameter and invoked magget (1 would invoke llic distributed version. 
If ihc queue is remote, a request, including a rcmolc key round in the 
lookup, is sent lo Ihc temole machine to crcnlc or find Ihe message queue, 
as needed. Tits rcmolc machine returns a remote msqid, ihc local kernel 
creates/finds an entry in its own tables to give the local msqid for Ihe 
remote queue and returns the local msqid. ( I h c local lo [ocal case is 
bandied using these same tables and mechanisms.) 
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1. When 'he system calls, n s g e t l ( ) , msgsndo , m s g r c v o and insgxrcv l ) 
arc invoked, Ihc msqid lablc is searched lo find the locniion oT Ihe message 
queue, and if ihc queue is remote, ihe operation is sent on to the remote 
machine. 

3. A new system call, l o a d t b l ( ) , is used to load ihc table which lisis keys and 
ids of remote message queues, ( l o a d t b l () is a general purpose mechanism 
which is also used by Distributed Services for loading the uid/gid translate 
tables discussed below, and which is used by base A I X for loading tables 
used for national language support.) l o a d t b l () is invoked at startup time 
to initialize the tables and is also invoked while Ihc system is running, when 
the lables need lo be updated. 

4. f t o k ( ) has been modified to not return keys less than 0x1000000. and the 
remaining key space is used by new services/profiles. The new services, 
c r e a t e _ i p c _ p r o f () and f i n d _ i p c _ p r o f f ) , nave been provided for crcai-
ing/finding a profile entry which contains a symbolic name and hoih a local 
and remote key for the queue. 

5. Additional commands and menus have been provided for crcaling/updating 
the tables used by the above services. 

We have not provided corresponding distributed versions of shared memory and semaphores. 

A I X Remote Process S u p p o r t 
In addition to Ihe distributed message queues oT Distributed Services, base A I X provides 

non-location transparent support mechanisms for remote processes. These mechanisms are 
enhanced by Ihe distributed file sysicm support. They include: 

SNA LU 6.2. The previously discussed remote procedure call support of LU 6.2 is 
available directly to user level processes. 

SNA Services System Resource Controller (SRC). The SRC provides mechanisms 
for starting and signalling remote processes. Menu interfaces arc provided for 
managing these mechanisms. 

AIX TCP/IP. Remote print, remote login, and rcmolc execution facilities are 
provided, in addlion to Ihc base TCP/UDP/IP protocols. (Other ser­
vices/protocols, e.g., ftp and smtp, are also available.) 

D I S T R I B U T E D S E R V I C E S S E C U R I T Y AND A U T H O R I Z A T I O N 

E n c r y p t e d Node I d e n t i f i c a t i o n 

When considering networks of the sort suggested by Figure 1, it is clear that each 
machine needs to be suspicious of the other machines. If a machine is going to act as a server 
for another, it should have a mechanism lo determine thai the potential client is not 
masquerading. The A I X Implementation oT SNA L U 6.2 provides an option Tor encrypted 
node identification hclwccn a pair of communicating machines. The identification is by ex­
change of DFS encrypted messages. The Identification occurs at session establishment lime 
and al random intervals thereafter. Once a client/server have each determined that ihe oilier 
is noi masquerading, then Ihcy can take appropriate actions authorized according to (l l ic 
translated) uscrid's/groupid's associated wilh each request. 

U s e r i d / G r o u p i d T r a n s l a t i o n 

There arc a number of reasons why a common nserid space and a common group id 
space arc impractical in the environment of Figure I : 

I . A n individual machine, whether a private machine or a server, should not 
be required lo give supcruscr (root) authority to a request from a process 
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with rool authority on another machine. Rather, it should he possible to 
reduce the authority of the remote process. The reduced authority may 
retain some administrative privileges, may be that of an ordinary user or 
may be no access at all , depending on the preferences of Ihe administrator 
or ihe individual machine. Similar statements apply to the cluster oT 
machines. 

2. A user may have logins provided by several different administrators on 
several different machines/clusters, and these will typically have different 
numeric userids. When that user uses different machines, he/she should 
have access to his/her authorized resources on all machines in ihe network. 

3. Previously operating machines may join a network or move to a new net­
work, and existing networks may merge. When this happens, there may be 
different users/groups with the same numeric ids. Such reconfiguration 
should be possible without requiring users/groups to change numeric ids or 
changing userids/groupids in all of the iuodes. 

Our response to these requirements is to define a network wide ("wire") space of 32 bit 
userids and groupids. Each request leaving a machine lias the uscrid translated to the wire 
userid and each request entering a machine has Ihe wire userid translated lo a local uscrid. 
The above requirements are met by proper management or the translations. 

D I S T R I B U T E D S E R V I C E S A D M I N I S T R A T I O N 
In addition lo the normal system profiles, e.g., / e t c / f i l e s y s t e m s , there arc profiles 

for both Ihe SNA support and for Distributed Services. With these new profiles, we have 
taken care lo organize the directories containing ihc profiles so that wc can use remote mounts 
to administer remote machines, without use of remote login (or roller skates). For Dis­
iributed Services, there are three profiles, for machine ids and passwords, for uscrid/groupid 
translation and for registry of message queues. 

Part of the A I X design is provision of a user interface architecture for a screen oriented 
("menu") interface, lo simplify system management and usage [Kilpatrick and Green 1986, 
Murphy and Vcrburg 1986]. Configuraiion of both SNA and Distributed Services, i .e. , 
management of the SNA and Distributed Services profiles, is normally performed using menus 
conforming lo this user interface architecture. 

D I S T R I B U T E D S E R V I C E S " S I N G L E S Y S T E M I M A G E " 
Our definition of "Single System Image" is as follows: Users of llic given system, users of 

external systems which communicate with the given system and application programmers ARE 

NOT aware of differences between single and multiple machine implementation. System ad­

ministrators and maintenance personnel ARE aware of distinctions amongst machines. 

User/Programmer View of Distributed Services Single System Image 
Though there arc inherent exceptions to this. e.g., Ihc unarm? () system call is designed 

to return the machine name, we believe that Distributed Services largely meets Ibis defini­
tion. The key mechanism is to be able lo properly configure the several machines so thai they 
share the files anil directories which matter lo Ihe user and llic application programmer. 
These include basic profiles such as / e tc /passwd, borne directories, and directories contain­
ing applications, commands and libraries. Figure 3 sketches one such posssiblc configuaiion. 

Once this is accomplished, most of Ihc desired properties just fall in place. The login 
process will he the same because of the sharing of /e tc /pass ivd related files. Normal file 
system manipulations and applications work in Ihc shared directories. Administrative com-
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mands Tor ordinary users, e.g., passwd, also work properly if they follow reasonable conven­
tions (we had to rework several commands such as passwd, as discussed below.) 

bin I.— i _ _ ; „ , _ 

dev 
- IVIUUI 11 pu i i ' i o 

etc - file-granularity sharing - passwd, group, ... From " /e tc server" 

lib 

tmp 

ti (users' "home" directories) - shared from " data server" 

saner 

wonn 

tisr 
... 

a rim 

p f j j j j ^ ^ - shared from "application server" machine 

include 

J;^ - shared from application server 

Ipp ' ° - shared from application server 

snool 

svs 

-

t 

Figure 3. Example Shared File System 

10. An AIX convention is lo place most applicaiions in su ITCTrrccIovjcs o f / u n f / t p - p 

Administrator's View of Single System Image Coiifigiii-alions 
Some of the administrator's tasks must he be performed for each machine individually. 

For example, the administrator must install and configure A I X and Distributed Services on 
each machine. Oihcr tasks can be performed once for ihc enlirc single system image cluster, 
For example, installation of an application, in the usual case where the i n s t a l l p command 
retrieves files from diskette and places them in Ihe' appropriate subdirectory of / u s r / l p p , 
need only be done once, assuming it is done after normal system startup. Similarly, the ad-
duser command, which ci-caies an cnlry in / e t c /pa s swd , creates a home directory and 
copies standard files Id Ihc home directory, need only be applied once. 

Routine mainlcnancc, e.g., backing u p and restoring files, can be done for Ihc system as 
a whole while the system is in normal operation. F.rror logs ate intentionally kept separately 
for each machine — otherwise, the first problem determination step would be to isolate Ihc 
anomalous machine. Some mainlcnancc operations, e.g., image backups of disks and 
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hardware diagnostics, are necessarily performed on a machine hy machine basis, while Ihe 
machine is in maintenance mode. 

Implementation Issues in Distributed Services Single System Tmage 
There is an obvious question of ordering in starting Ihe separate machines. We have 

added a number of options to Ihc mount command and / e t c / f i l e s y s t e m s to allow simple 
retry mechanisms to be executed in Ihe background when initial mount attempts Tail. This is 
done lo allow arbitrary ordering of the startup of machines. 

rvfany of Ihe inleresting commands, e.g., passwd, use private locking mechanisms, e.g., 
based on creating/deleting dummy lock files. We have had to modify a number of these 
commands to use ihe l o c k f () system call. 

A more subtle issue is the "copy/modify/unlink/relink" idiom used in a number of in­
teresting programs such as editors. This idiom does nol work in all cases of file granularity 
mounts, because a client may be attempting lo violate the prohibition of linking across 
devices. In more detail, the idiom is as follows, for updating foo in the current directory; 

1. cp foo . f o o . t m p 
2. modify . f o o . tmp 
3. rm foo 
4. I n .foo. t rap foo 
5. rm . f o o , tmp 

If foo is a file mount from a different device, slep 4 wil l fail. Wc have had to modify several 
programs to do a copy if the link slep (4) fails. Note that this is not a problem with directory 
mounts, only file granularity mounts. 

There is also a polential problem with routines such as mktempO and tempnam(), 
which use process ids to generate unique file names. Since process ids arc nol unique across 
machines, wc have modified these routines to use the machine id as well as Ihe process id in 
deriving a file name. (The modified versions of these routines are packaged with A I X , so that 
object code docs nol have lo be recompiled/relinked lo run with Distributed Services.) 

Separate Machine Operation 
Clearly, it is desirable that a client machine oT the servers in Figure 3 be able to operate 

if one or more of Ihe servers is down. A critical aspect of this is having recent copies of the 
shared files from the " / e t c server." As part of Ihe mounting oT these files, before the mount 
is actually performed, the file is copied from the server lo the client. For example, before 
mounting Ihc shared /e tc /passwd over the client / e t c /passwd, Ihc shared version is 
mounted lemporarily over another file and copied lo / e t c /pas swd . For each user that is to 
bo able to use a machine when the "home directory server" is nol available, a home directory 
must be created and stocked with esscniial data files. Similarly, for a machine lo he able to 
use an application when the "application server" is nol available, that application must be 
installed in Ihe client's / u s r / l p p , when the server's A i s r / l p p is not mounted. The result­
ing machine is certainly not as useful as when the servers arc available, hut it is usable, and 
much better than no machine at all. 

SUMMARY 
Wc believe we have done well in meeting our design goals: 

I . Distributed Services provides local/remote transparency for ordinary files 
(boili data and programs), for directories and for message queues. 
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Our implementation adheres closely to A I X semantics, except Tor the lack 
of support for remote mapped files. 
Wc have achieved good remote performance in general, and some remote 
operations are actually faster than corresponding local operations. 
Use of a popular network protocol, SNA L U (5.2, gives us synergy with other 
SNA development and independence of the underlying transport media. 
We have been careful to provide for flexibility in configurations and ad­
ministrative environments. 
Our encrypted node identification and id translation mechanisms give us 
strong control over security and authorization. 
Our use of architectures such as L U 6.2, the vnode concept, our Virtual 
Circuit Interface, etc. allows us substantial room for potential extension and 
growth in network media, file systems and network protocols, respectively. 

Further, we believe we have advanced the state of the art with the following 

1. Our simple, but effective approach to single system image. 
2. Use of a standard virtual circuit protocol, SNA L U 6.2, while achieving high 

performance. 
3. Our performance optimizations, especially our caching strategies. 
4. Our extensions for administrative flexibility and control, e.g., file 

granularity mounts, inherited mounts, administration based on remote 
mounting of profiles, etc. 
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