
THE UNIX TECHNOLOGY ADVISOR

MSP* (not MPS!) ^Meaningful Indicators of System Performance
Dr. Charles Sauer, Dell Computer Corporation

Everyone knows that a MIP is a "Meaningless Indicator of Performance "
but MIPS (Millions of Instructions Per Second) is still the most widely
quoted measure of system performance. In principle, meaningful indications
of system performance can be obtained by running the intended applications
on the systems under consideration and measuring the time to completion.
Unfortunately, this is often impractical.

First, because it may not be possible to
identify a representative set of applications, e.g.,
due to the diversity amongst users of a system.
Second, the intended applications may not be
written yet. Third, the intended applications may
not have yet been ported to the systems under
consideration.

If it is not possible to do performance mea­
surements using the intended application, the next
best thing is measuring the time to complete a
meaningful benchmark, a program seen as repre­
sentative of the i ntended appl ications. The problem
is then how to get a meaningful indication of
performance using benchmarks, since
benchmarking has many problems as well.

It may not be obvious what system resources
(CPU, disk, network, etc.) the applications will
utilize most heavily, so a benchmark focused on
any one of these resources may be irrelevant.
Similarly, trying to weight the results of different
benchmarks assumes it is possible to correlate the
benchmark mix with the intended application.

To further com pound the problem, there may
not be any existing benchmarks that represent the
desired resource usage (writing a representative
benchmark is difficult in itself). And, the bench­
marks may be subject to system characteristics
such as optimizing compilers, "small" caches in the
memory hierarchy, "small" caches in the disk
subsystem, etc., that improve benchmark timings
much more than they improve intended application
performance.

Instruction-Mix Benchmarks
Most early attempts to measure processor

performance were based on mixes of instructions
which were believed to be characteristic of typical
programs. Usually, these mixes were derived from
histograms of instructions executed in snapshots of
applications or operating systems. As long as the
liming of instructions is easily determined, it is
possible to calculate a MIPS rating as an estimate
of system performance. However, it may not be
easy to determine instruction timing in the pres­
ence of cache memories, pipelining, and other
effects.

Instruction mixes are normally expressed in
terms of machine instructions, so they are less
intuitive than benchmarks written in high level
languages. MIPS ratings do not reflect relative
strengths and weaknesses of instruction sets.
Higher MIPS ratings may actually be a result of
reducing system performance. The following short
history of benchmarks may help to clarify some of
the confusion surrounding these performance
claims.
The Whetstone Benchmark

The high level language analog of an in­
struction mix is the Synthetic Benchmark, a pro­
gram written with the intention of emulating
measurements of actual programs. Perhaps the first
well known example is the Whetstone benchmark,
often used as a measure of floating point perfor­
mance. There are several limitations to the usage of
Whetstone. One, the code makes heavy usage of

transcendental library functions - the benchmark
timing can be improved dramatically by library
tuning. (Such tuning will have a lesser effect on
applications with lesser use of these functions.)

Second, there is a substantial proportion of
fixed point computation in the benchmark, thus
reducing its effectiveness as a floating point
benchmark. Third, optimizing compilers can dis­
card significant portions of the code and/or replace
function calls with inline code, in ways not pos­
sible with real applications. Nevertheless, the
Whetstone benchmark was widely used for a
number of years and is still in use as a floating point
benchmark. Results are reported as "Whetstones
per second" - most systems with floating point
hardware will have ratings of more than a million
Whetstones/second.

Dtirystone and Drhystone MIPS
A contender with MIPS for the most widely

quoted measure of performance, the Dhrystone
benchmark is intended to represent characteristics
of systems programs and fixed point applications.
Dhrystone has analogous limitations to Whet­
stone, e.g., impacts of library tuning, optimizers
eliminating "un needed" code, inlining, etc. There
have been several versions intended to reduce
these effects - the most recent is 2.1. The compiled
program will fit in small caches, so impacts of
memory subsystemsare not measured. Results are
quoted as "Dhrystones/second."

With a reasonably good compiler, say the
GCC compiler from GNU, a VAX 11/780 does
just under 1800 Dhrystones /second with
Dhrystone version 2,1 (vs. just under 1900
Dhrystones/second with version 1.1). A common
marketing practice fora new machine is to assume
the VAX 11/780 to b e a l MIPS machine (in native
VAXMIPSit iscloser toa.5 MIPS machine),then
take the new machine's Dhrystone rating divided
by the 780 's Dhrystone rating to derive a
"Dhrystone MIPS" rating.

These derived ratings bear little relationship
[o more direct measurements of the machine's
speed in instructions per second, yet they are
probably the most widely quoted ratings of ma­
chine speed in common practice today. In ways
this is reminiscent of wattage claims for audio
amplifiers a couple of decades ago. (The VAX
figures used may be significantly lower than the
above, since VAX ratings as low as 1400
Dhrystones/second are quoted for compilers with
limited optimization.)

The Unpack Benchmark
One of the earliest independent collections

ol" benchmark results fora wide array of machines

is the so-called Linpack report from Argonne Labs.
Unpack is a linear algebra package - the bench­
mark is based on solution of a 100x100 system of
linear equations, with results reported in MFLOPS
(millions of floating point operations). Though the
benchmark is often a reasonable indicator of
floating point performance, the results can be
heavily influenced by cache size and effectiveness
of the memory hierarchy when the matrix does not
fit in the cache. Linpack has effectively displaced
Whetstone to become the most widely quoted
measure of floating point performance.

MIPS Performance Brief
John Mashey of MIPS Computer Systems

periodically produces a broad overview of bench­
mark summaries and results for a variety of bench­
marks and systems. This brief includes discussion
and results for Whetstone, Dhrystone 14 and 2.1,
and LINPACK, as well asavariety of lesser known
benchmarks, for a cross-section of machines from
the DEC VAX 11/780 on up through Cray
supercomputers.

SPEC (Systems Performance Evaluation
Cooperative)

Systems Performance Evaluation Coopera­
tive is a non-profit corporation formed to establish,
maintain, and endorse a standardized set of rel­
evant benchmarks that can be applied to the newest
generation of high-performance computers." With
the exception of Linpack, most of the popular CPU
benchmarks prior to SPEC were synthetic, and
arguably not representative of real applications,
and/or were fairly trivial. (Some of the benchmarks
still in use today are literally only one line of source
code.) SPEC has tried to establish much more
ri g orous s tandards for benchmarking, starting wi th
processor-oriented benchmarks.

SPEC release 1.0 is a suite of ten real appli­
cations to be used as benchmarks. Four of the
benchmarks are oriented toward fixed-point com­
putation and six toward floating-point, with the
former wriuen in C and the latter written in Fortran.
Most of the benchmarks are memory intensive, so
results are usually quoted for machines with six­
teen megabytes or more of main memory, to avoid
paging. Given sufficient memory to avoid paging,
the benchmark results are typically dominated by
computation, though some do require non-trivial 1/
O; e.g., one of the benchmarks is based on com­
pilation using the GNU C compiler. The bench­
marks are all fairly long-running; e.g., the shortest
running benchmark requires well over a quarter of
art hour on a VAX 11/780.

Though using SPEC 1.0 is not the same as
using the intended application, using these bench-

"For systems
with local
disks, prob­
ably the most
important
performance
factor after
processor
performance
is the perfor­
mance of
the disk
subsystem."

marks eliminates many of the problems of the
previously mentioned benchmarks. The bench­
marks by definition preclude (he use of "trick"
optimizations (since any optimization that has an
effect on one of the programs necessarily im­
proves the performance of a "real" program). In
princ iple, a vendor is supposed to quote the results
of all ten benchmarks and the geometric mean of
the ten results is the "SPECmark." Full descrip­
tions of execution environments are supposed to
be included with the seated results.

In practice, most of the "rules" seem to be
followed, but in the never-ending quest for a single
number, SFECmarks are often quoted out of
context and used as a replacement for "MIPS." As
machines with extreme Boating point strength or
weakness have been seen to distort the overall
geometric mean, some vendors have begun to
quote "SPEC integer," based on Ihe geometric
mean from the four integer applications alone, and
"SPEC floating," based on the six floating point
applications. This i s not necessarily a bad practice,
if you are more interested in specifics than in
"overall" system performance.
What About System Performance ?

With ihe initial set of SPEC benchmarks,
there is a reasonable standard for processor per­
formance, including compilers, memory sub­
systems, etc. Not a perfect standard, not a uni­
versally accepted standard, but a reasonable
one. However, real usage of computer systems
depends on many other performance factors: op­
erating system overhead, storage subsystem
bandwidth and latency, terminal capabilities,
network subsystem characteristic, etc. Though
ihere are many proposed synthetic benchmarks for
most of these, ihere are very few real applications
used as benchmarks of these factors, and there is
relatively li tile consensus or consistency in the use
of synthetic benchmarks.

There are many aspects of operating system
overhead that could be measured, but some of the
most commonly considered are: cost of a system
call, cost of context-switching, and throughput of
interprocess communication. Just as instruction
mixes and synthetic processor benchmarks are of
limited value in determining end user perfor­
mance, these are not direcUy indicative of system
performance. But these are of interest in assessing
ihe efficiency of a particular implementation.

A common benchmark of UNIX system-call
overhead is ihe time to run jjetpidO, since the usual
implementation requires only a lookup in die "u
block" and is dominated by the time to enter/eiit
kernel mode. Similarly, con text switch timecan be
estimated by using a pair of processes which do

nothing but interprocess communication (e.g., via
a pipe) with minimal data passed. Each process of
the pair sends a byte, say, to the other and then
waits to receive a byte from the other.
Disk Subsystem?

For systems with local disks, probably the
most important performance factor afterprocessor
performance, or even the most important, period,
is the performance of the disk subsystem (transfer
rates, latency for random access, etc). There are
numerous variables which can dominate perfor­
mance: ihe disk drtvefs) itself, the disk controller,
the I/O bus (if there is one), device driver code, file
system layout, and file system code. Partly as a
result of these variables, there is no generally
accepted benchmark of disk subsystem perfor­
mance.

There are numerous simple synthetic
benchmarks which create files, read files sequen­
tially, read files randomly, etc. By varying the file
sizes, using very large fdes, being careful to write
distinct data to different parts of the files, reading
alternate files in flush caches, etc., one can get a
feel for disk subsystem performance. Some of Ihe
more ambitious synthetic disk benchmarks have
been incorporated in commercial benchmarking
packages or posted to Usenet. However, none of
the popular benchmarks are based on real appli­
cations.
Multiuser Benchmarking

The status of network benchmarking is
similar to that of disk benchmarking, and essen­
tially the same approaches are often used. In some
cases, exacdy die same approaches are used; e.g.,
disk subsystem benchmarks are often used as
benchmarks of remote file systems. Conversely,
benchmarks originally designed for remote file
systems are often used to assess performance of
local disk subsystems.

There are two basic approaches to multiuser
benchmarking. One is to attempt to create a syn­
thetic workload of collections of processes, each
collection attempting to represent one user. For
example, such a collection might be a shell script
whichcopiesafile, uses Q rep or sed to scan the file
(in lieu of an interactive editor), runs a compiler (or
other utility) against the file, etc., all in a repeating
loop. This is the easier approach to implement, but
it is not fully convincing without rigorous argu­
ments.

The other approach is to use one or more
secondary computers as terminal emulators. For
example, both die computer to be measured and
the secondary computer are configured with
multipoti controllers connected to each other. The

secondary machine runs a workload script against
each port, while the computer being measured
reacts to the workload as if it were driven by a live
user. This approach has the advantage of being
more intuitively representative of a real system,
but is likely to be more expensive to implement,

Ineithercase.themostimportantquestionis
that of the workloads being used as the bench­
mark. The workloads can be real applications or
synthetic applications. Unfortunately, the typical
workloads are synthetic, there are no commonly
accepted real workloads for these purposes.

Commercial Benchmark Packages and Services
There are a number of commercial enter­

prises which produce benchmark suites, collect
results across different platforms, run customized
benchmarks, etc. These include A&T Systems,
AIM Technology, Neal Nelson and Associates,
Performance Awareness, and ARS/Workstation
Labs.

AIM Technology
AIM has produced several suites of syn­

thetic benchmarks which represent the perfor­
mance of various subsystems (processor, disk,
operating system, ...), characterize multiuser
systems, represent workstation applications,
represent UNIX utility performance, etc. ATM
also produces reports of results of their bench­
marks on a variety of manufacturers' platforms.

ileal Nelson and Associates
Neal Nelson is probably best known for a

scries of "Business Benchmarks" which assess
performance of systems on synthetic benchmarks
oriented toward multiuser commercial applica­
tions. Neal Nelson is now emphasizing services
based on terminal emulation equipment and as­
sociated benchmarks.

ARS/Workstation Labs
Workstation Labs emphasizes a benchmark

suite known as "Khomerstone" which summa­
rizes several aspects of system performance. The
Khomerstone suite is based in pan on well known
benchmarks such as Dhrystone and Whetstone,
but is also based on additional benchmarks as­
sessing disk subsystems and multitasking capa-
biliucs. Workstation Labsalso publishes monthly
reports of results for a variety of manufacturers.
Next Steps

Benchmarking is inherently controversial
because of the effects on buying decisions and
competition amongst manufacturers. The best
benchmarks are thus the ones that serve to mini­

mize the controversy; e.g., by providing a direct link
to real applications as in SPEC Release 1.0. How­
ever, in areas outside of processor performance,
there is little agreement and much controversy re­
maining. Future articles will cover these subjects in
more detail. +

Resources for Assessing
System Performance

J.L Hennassy and D.A^Pattersorr. Computer Archi­
tecture: A Quantitative Approach, Morgan Kaufman
(1990). ^ ; ,
HJ. Curnow and BA: Wichman, 'A Synthetic
Benchmark,"?*™ Computer Journal 19. t (1976).
R.P.Walker, '"Dhrystone: A Synthetic Systems Pro­
gramming Benchmark?. Cprnmufticatioris o(the

'^ACM 27, 10 (October* 1974;
J.Dongarra, •Performance of Various Computers
Using Standard Linear Equations in a Fortran Envi­
ronment, -Argonns National laboratories (1989)
J.Mashey, •Performance Briei: CPU Benchmarks,"
Issue 3.8 (June 1989).
SPEC Newsletter 2, 1 (Winter 1990).
J X Ousterhout, "Why Aren't Operating Systems Getting Faster as Fast as rfardwawT, Usentx
Summer Conference Proceedings. June 1990,
pp.247-256.
A.Southerton, 'The Performance Measurement
ContesfUnix World (March 1990).

Benchmark Resources

Neal Nelson Business Benchmark, Multiple
Language Business benchmark, and others.
Neal Nelson & Associates, 35 E. Wacker Drive,
Suite 1510, Chicago, IL6O601 (312)332-1462
AIM Application Benchmark, Multiuser Benchmark,
Benchmark Suite 1. AIM Technology, 4699 Old
Ironsides Dr.. #150, Santa Clara, CA 95054 (408)
748-8649
System V Verification Suite, Release 3.0,
Contact Neal Kane. AT&T, 55 Corporate Drive,
Room C02-24A14, Bridgewater, NJ 08807-6991
(201)658-7695
C Test Suite (C Language Test Management
Software). Contact Barb McLatchie, SCO. Canada.
130 Bloor St., West 10th Floor, Toronto, Canada
M5S 1M5 (416)922-1937
Empower Remote Terminal Emulation Benchmark,
Perlormix, Inc.. 7927 Jones Branch Dr.. #400,
McLean. VA 22102 (703)749-1452

