
ELEMENTS OF PRACTICAL

PERFORMANCE MODELING

Edward A. MacNair

IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

Charles H. Sauer

IBM Engineering Systems Products
Austin, Texas 78758

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632

Creative Commons Attribution-Noncommercial-No Derivative Works
3.0

United States

http://creativecommons.org/licenses/by-nc-nd/3.0/us/

This book was previously published by Pearson Education, Inc

http://creativecommons.org/licenses/by-nc-nd/3.0/us/

Library of Congress Catalog Card Number: 85-061832

©1985 by PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632

Pages 96-99 from Charles H. Sauer, Edward A. MacNair, Simulation of
Computer Communication Systems, © 1983, pp. 142, 143-145. Reprinted by
permission of Prentice-Hall, Inc., Englewood Cliffs, N.J.

Pages 205-214 from Kader, “ An On-board Digital Processing Multibeam Store-
and-Forward Node Satellite System,” Proc. 1980 National Telecommunications
Conf., Houston, TX, pp. 70.2.1-70.2.3, Dec. 1980.

The author and publisher of this book have used their best efforts in preparing this book.
These efforts include the development, research, and testing of the theories and programs to
determine their effectiveness. The author and publisher make no warranty of any kind,
expressed or implied, with regard to these programs or the documentation contained in this
book. The author and publisher shall not be liable in any event for incidental or
consequential damages in connection with, or arising out of, the furnishing, performance, or
use of these programs.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN □-13-2L^EfcJ7'-A □!

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A ., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

To Betsy, John and Scott, Caroline and Elizabeth

CONTENTS

PREFACE

INTRODUCTION
1.1. System Behavior. 1
1.2. Resource Contention. 1
1.3. Measurements. 2
1.4. Performance Modeling. 2
1.5. Further Reading. 8

2

THE PROCESS OF MODELING
2.1. Understanding the System Design. 11
2.2. Formulating Models. 11
2.3. Types of Models. 12
2.4. Probability Distributions. 15
2.5. Scheduling Algorithms. 20
2.6. Model Parameters. 21
2.7. Model Solution. 21
2.8. Computer System. 23
2.9. Communication Network. 25
2.10. Manufacturing System. 25
2.11. Further Reading. 27
2.12. Exercises. 27

VI CONTENTS

3

MODEL ELEMENTS AND DIAGRAMS 28
3.1. Customers. 28
3.2. Service Centers. 29
3.3. Passive Centers. 31

3.3.1 Allocate and Release. 32
3.3.2 Create and Destroy. 33
3.3.3 AND/OR Allocate. 34

3.4. Sources and Sinks. 34
3.5. Model Variables and Status. 35
3.6. Wait Until. 37
3.7. Chains. 38
3.8. Submodels. 39
3.9. Nonstructural Information. 40
3.10. Sample Diagrams. 41
3.11. Modeling Packages. 42
3.12. Further Reading. 44
3.13. Exercises. 44

ANALYTIC SOLUTIONS 46
4.1. Solution of an Open Model. 46
4.2. Closed Model. 49
4.3. Advantages and Restrictions. 51
4.4. Approximations. 53
4.5. Further Reading. 58
4.6. Exercises. 58

CONTENTS Vll

5

SIMULATION 60
5.1. Random Numbers. 61
5.2. An Example. 62
5.3. Advantages. 64
5.4. Run Length. 65
5.5. Different Seeds. 68
5.6. Confidence Intervals. 69

5.6.1 Replications. 70
5.6.2 Regenerative Method. 72
5.6.3 Spectral Method. 74

5.7. Hybrid Modeling. 76
5.8. Further Reading. 79
5.9. Exercises. 79

6

MODEL STRUCTURE
6.1. Structure Clarification. 81
6.2. Ease of Repetition. 84
6.3. Sharing Between Models. 86
6.4. Variability in Model Structure. 89
6.5. Decomposition. 90

6.5.1 Analytic Submodel. 92
6.5.2 Simulation Submodel. 95
6.5.3 Parametric Study with Submodel Parameters Fixed

6.6. Further Reading. 103
6.7. Exercises. 103

80

. 1 0 0

CONTENTS

INTERPRETING RESULTS 105
7.1. Performance Measures. 105
7.2. Sources of Error. 108
7.3. Simulation Accuracy. 108
7.4. Validation. 114
7.5. Level of Detail. 115
7.6. Modification Analysis. 116
7.7. Sensitivity Analysis. 124
7.8. Plotting of Results. 127
7.9. Further Reading. 127
7.10. Exercises. 128

8

EVERYDAY LIFE SYSTEMS 130
8.1. Barber Shop. 130
8.2. Parking Lot. 136
8.3. Traffic Light. 140
8.4. Copier. 144
8.5. Catalog Store. 150
8.6. Supermarket. 156
8.7. Further Reading. 161
8.8. Exercises. 162

9

COMPUTER SYSTEM MODELS 163
9.1. Capacity Planning Model. 163
9.2. System Memory Model. 177
9.3. Mass Storage Subsystem. 188
9.4. Further Reading. 197
9.5. Exercises. 198

CONTENTS IX

10

COMMUNICATION NETWORKS 199
10.1. Remote Terminals. 199
10.2. Satellite Model. 205
10.3. Communication Protocol Model. 214
10.4. Further Reading. 224
10.5. Exercises. 224

11

MANUFACTURING SYSTEMS 225
11.1. Tool Failures. 225
11.2. Load Balancing. 230
11.3. A Robot. 235
11.4. Merging Lines. 241
11.5. Further Reading. 245
11.6. Exercises. 245

12

EPILOGUE 246

BIBLIOGRAPHY 249

INDEX 261

LIST OF FIGURES

Figure 1.1. Model Diagram of a Single Computer System4
Figure 1.2. Model Diagram of a Simple Communication Network4
Figure 1.3. Model Diagram of a Simple Manufacturing System 5
Figure 1.4. System, Model Diagram, and Solution ... 7
Figure 2.1. A Service C enter.. 13
Figure 2.2. Different Kinds of Models ... 15
Figure 2.3. Histograms (Relative Frequency) ... 17
Figure 2.4. Probability Distribution Functions .. 18
Figure 2.5. Probability Density Functions ... 19
Figure 2.6. Central Server Model ... 23
Figure 2.7. Interactive Workload ..24
Figure 2.8. Transaction Processing Workload ..24
Figure 2.9. Model of a Simple Communication Network26
Figure 2.10. Model of a Manufacturing System ..26
Figure 3.1. Split, Fission and Fusion Nodes ..30
Figure 3.2. Three Service Centers ..30
Figure 3.3. Allocate and Release Nodes ..32
Figure 3.4. Create and Destroy Nodes ..33
Figure 3.5. AND Allocate and OR Allocate N odes..34
Figure 3.6. Open Model with Source and Sink ..35
Figure 3.7. A Set Node ..36
Figure 3.8. Routing Decisions and Set Nodes ..37
Figure 3.9. Wait Node and Active Service Center ..37
Figure 3.10. A Model with a Closed and an Open Chains 39
Figure 3.11. A Model with a Submodel ..40
Figure 3.12. Interactive Computer System ..42
Figure 3.13. Overlap of CPU and I/O Processing ..43
Figure 4.1. Open Model of a Simple Computer System 46
Figure 4.2. Closed Model of a Simple Computer System 49
Figure 4.3. Model with Simultaneous Resource Possession.................................. 54
Figure 4.4. Submodel and Model with Flow Equivalent Server............................ 54
Figure 5.1. Exponential Cumulative Distribution Function 62
Figure 5.2. Decomposed Model and Submodel for Hybrid Model 77
Figure 6.1. Round-robin CPU and Two I/O Devices .. 83
Figure 6.2. Three Invocations of a Tool Submodel .. 85
Figure 6.3. Model with Included Submodel.. 87
Figure 6.4. Model with a Variable Number of Devices .. 89
Figure 6.5. Model with Analytic Submodel .. 92
Figure 6.6. Model of Channel Contention .. 96
Figure 6.7. CPU, Peripheral Processors, and I/Os .. 100
Figure 7.1. Model Diagram of an Interactive System 109
Figure 7.2. Computer System Model for Modification Analysis 117

xi

Figure 7.3. Utilization, Throughput, Queue Length, and Queueing Time 1/8
Figure 7.4. Queue Length and Queueing Time Distributions 1^8
Figure 8.1. Schematic of a Barber Shop .. 130
Figure 8.2. Model Diagram of a Barber Shop .. 131
Figure 8.3. Graphs of Utilization and Queueing Time 137
Figure 8.4. Model Diagram of a Parking Lot ... 137
Figure 8.5. Model Diagram of a Traffic Light ... 140
Figure 8.6. Model Diagram of Using a Copier ... 144
Figure 8.7. Model Diagram of a Catalog Store ... 151
Figure 8.8. Model Diagram of a Supermarket ... 156
Figure 9.1. Model Diagram of an MVS Type System 164
Figure 9.2. Model Diagram of System Memory Model 178
Figure 9.3. Model Diagram of a Mass Storage Subsystem 189
Figure 10.1. Diagram of Remote Terminal System .. 200
Figure 10.2. Model Diagram of Remote Terminal System 201
Figure 10.3. Plot of Model Results .. 203
Figure 10.4. Three-dimensional Plot of Results .. 204
Figure 10.5. Model Diagram of Satellite System ... 206
Figure 10.6. Model Diagram of Communication Protocol Model 215
Figure 11.1. Model Diagram of Tool Failures ... 226
Figure 11.2. Graphical Results of Tool Failures .. 230
Figure 11.3. Model Diagram of Mold Press .. 231
Figure 11.4. Graphical Results of Mold Press Model 236
Figure 11.5. Model Diagram of a Simple Robotic System 237
Figure 11.6. Model Diagram of Merging Lines ... 242

xii

PREFACE
Computer systems, communication networks, and manufacturing lines

are examples of systems which are sufficiently complex that carefully
developed models are necessary for understanding system performance. The
behavior of these complex systems needs to be understood in order to be
able to design new systems or to improve the operation of existing systems.
Typically, contention for resources is the fundamental issue which must be
addressed in performance models of these systems. For example, computer
system users contend for processing and peripherals, messages in a commu
nication network contend for media and buffers, and jobs in a manufactur
ing line contend for tools and conveyors. For this reason, we will refer to
the systems of interest as contention systems.

There have been many other books written about performance evalua
tion and modeling. Most are concerned with the mathematics involved in
solving models. These mathematical techniques have been incorporated in
many of the readily available modeling tools. In order to understand how to
use one of these modeling tools to construct and solve models, the analyst
does not need to have an in-depth knowledge of the mathematical techni
ques. Rather, he or she needs to fully understand the system to be modeled
and the building blocks, or model elements, available with the tools to be
used. The purpose of this book is to present the type of information a
systems analyst needs to conduct modeling projects employing a model
solution package. We will discuss very little of the mathematics used in
solving models. Instead, we will be concentrating on the practical ap
proaches needed to construct and solve models.

This book is a practical guide for someone who is planning to use, or is
using, a general-purpose software package to do performance modeling. We
are interested in fairly general queueing systems like manufacturing systems
and detailed computer communication protocols, as well as computer system
capacity planning. For this reason, the software packages need to have
general capabilities and not be tailored to a particular type of system. These
general capabilities need to be present in both the user interface and the
solution methods. In addition, we need to be more concerned with problems
such as the proper level of detail in the model and problems related to
model validation. These types of issues are not as difficult to deal with in
more restricted application domains like capacity planning for specific
operating systems.

xiii

XIV P R E F A C E

The first chapter gives an overview of the remainder of the book. In
the second chapter we discuss the process of modeling. There is a descrip
tion of what contention systems are and the various components found in
these types of systems. The important aspects of formulating a model are
introduced, and there is a discussion of how to represent the flow of tasks
through a model.

A model diagram aids the analyst in illustrating the behavior of a
system. A diagram which employs symbols which correspond to model
elements facilitates the building of the model. This type of diagram also
makes it easy to describe the model to someone else. Model diagrams and
the corresponding model elements are presented in Chapter 3.

This book discusses two methods of solving extended queueing network
models. Analytic solutions are described in Chapter 4, and simulation is
discussed in Chapter 5. Having the ability to use both types of solution
methods is very important to an analyst. There are situations in which one
of the solution methods is more appropriate than the other. The advantages
and disadvantages of each approach are discussed with recommendations
given about which method should be selected in different situations. The
Research Queueing Package (RESQ), a modeling tool developed at the IBM
Thomas J. Watson Research Center, employs both analytic and simulation
solutions.

Chapter 6 focuses attention on the structure of models. Just as the
hierarchical approach is recommended for developing programs, constructing
models hierarchically is also a beneficial practice. Models with submodels
are exhibited to illustrate this point. Some models can be decomposed into
submodels which can be solved separately and replaced in the main model.
This type of decomposition, when it is appropriate, can reduce the amount
of time necessary to find the results of the model.

It is necessary to be able to interpret the meaning of the results ob
tained from a model and to determine how they relate to the behavior of
the system being studied. This is the topic of Chapter 7. Some additional
analyses of the results are also discussed. In particular, some graphical
representations are illustrated.

It is a difficult task to describe, in general, how to build models of
many different types of systems. Chapters 8-11 discuss models of many
different types of systems at various levels of detail in an attempt to exhibit
this process. Chapter 8 describes models of systems encountered in every
day life situations. Chapter 9 presents some computer system models.
Chapter 10 illustrates models of communication networks. Chapter 11
exhibits models of manufacturing systems. Studying the techniques used in

PREFACE xv

these models aids the analyst in constructing models of other systems.
These models are not intended to be realistic models of actual systems, but
rather to demonstrate how currently available model elements can be used
to represent complex features which exist in actual systems.

This book is suitable both as a guide to the practitioner and as a text
for an introductory modeling course. Any systems analyst involved in the
design of new systems or in improving the operation of existing systems
should find this book useful. As a textbook, this book should be appropri
ate for a senior level or first-year graduate course. The material presented
here has been used as the basis for a graduate level course entitled
"Computer Systems Modeling Workshop" at the IBM Systems Research
Institute. Many of the students who participate in this course have little or
no background in modeling before starting the course. Some background in
basic probability and statistics is desirable but is not an absolute prerequi
site.

ACKNOWLEDGEMENTS

We are grateful for the support of the Computer Science Department
of the IBM Thomas J. Watson Research Center and the IBM Engineering
Systems Products unit in Austin, Texas, in the preparation of the book. The
concepts discussed have been formulated over a number of years while both
authors were located at the IBM Thomas J. Watson Research Center. We
would like to thank K.V. Karlstrom and P. Henry of Prentice-Hall for
encouraging us to write this book. We would also like to thank H. Fromm
of IBM and E.D. Lazowska of the University of Washington for their
editorial comments on a draft of the book. Their comments have been very
helpful in improving the final version.

The development of the extended queueing networks and of RESQ has
been an evolutionary process with substantial contributions by many per
sons. Discussions with K.M. Chandy, D.V. Foster, and C.N. Waggoner
provided the original concept of simulation based on extensions to analyti
cally tractable queueing networks. M. Reiser and L.S. Woo made substan
tial contributions to the initial version of RESQ and the definition of ex
tended queueing networks used by that version. J.F. Kurose and S. Salza
helped define the syntax and semantics of the language used in the current
version of RESQ and implemented the translator for that language.
L. Berger and P. Loewner have made extensions in the model construction
phase of RESQ. A. Blum, P. Heidelberger, E. Jaffe, K. Plochinski,
P. Rosenfeld, S. Tucci, and P.D. Welch all contributed to the definition
and implementation of the numerical and simulation components of RESQ.
Discussions with K. Bharath-Kumar and P. Kermani have helped demon
strate the application of extended queueing networks through their extensive
application of RESQ in modeling systems developed using the IBM Systems
Network Architecture. We are indebted to numerous RESQ users for the
many suggestions we have received, for the discussions that have helped
crystallize our thinking and improve RESQ, and for the encouragement we
have received in the development of this methodology and this tool. Final
ly, we would like to thank the many students at the IBM Systems Research
Institute who have helped us in focusing our attention on the concepts
presented here.

Edward A. MacNair
Charles H. Sauer

xvn

CHAPTER 1

INTRODUCTION

1.1. SYSTEM BEHAVIOR

In today’s world of high technology, computer systems, communication
networks, and automated manufacturing systems are in use in many places.
These systems are decidedly expensive to design. Once they are installed, it
is costly to improve their efficiency. When designing a system, it is often
difficult to decide which of the many possible alternatives would give the
best performance. After a system is running, it is a complicated task to
improve its operation and plan for future changes. There is every reason to
believe that these conditions will continue into the foreseeable future.

When we speak of a system we will simply mean a collection of objects
which work together to perform a certain goal. Computer systems, commu
nication networks, and manufacturing lines are examples of complex systems
whose behavior is of interest to system designers and analysts. Because of
contention for service, limited waiting areas, parallel operations, simultane
ous activities, multiple interactions, and complex decision mechanisms, the
operation of these systems is not easy to predict. The complexity of these
systems requires the use of methods and procedures to understand their
behavior.

System designers want to be able to predict the behavior of a new
system which is being designed and to select the best design from a set of
possible alternatives. System analysts are concerned with the effects of
changes made to existing systems and whether the systems can handle an
increasing amount of work. These systems are rarely static. The design
specifications for new systems are continually changing. The amount and
type of work processed by existing systems is very dynamic.

1.2. RESOURCE CONTENTION

The systems we are discussing are composed of many components
called resources. Examples of resources are a central processing unit (CPU),
a communications link, a terminal in an office, or a work station on a
manufacturing line. Customers, of course, make use of these resources by
visiting them and requesting service from them. During the time that a
customer is receiving service, other customers can arrive to request service

1

2

from the same resource. This causes contention among the customers for the
resources and results in queues or waiting lines. The amount of contention
and the length of the service requests affect the behavior of the system.

This contention for resources within the system is a fundamental issue
which must be understood in studying the operation of these systems. If
there is no contention in a system, the system performance is often easy to
calculate. However, computer systems, communication networks, and
manufacturing lines usually exhibit quite a bit of contention. Jobs in a
computer contend for memory, the CPU, input/output (I/O) units, chan
nels, control units, and other resources. Messages in communication net
works compete for lines, buffers, tokens, buses, transmission control units,
window mechanisms, polling messages, and other transmission media. Tasks
in a manufacturing system contend for tools, storage areas, presses, buffers,
robots, baths, transfer units, and conveyor mechanisms. Because of the
important role that this contention plays in these systems, they will be
referred to as contention systems.

INTRODUCTION / CHAP- 1

1.3. MEASUREMENTS

If we want to determine the behavior of an existing system, we could
observe the system while it is running. This is referred to as a measurement
of system performance. System measurement is frequently used for conduct
ing performance evaluation of computer systems. There are two major types
of measurement tools—hardware monitors and software monitors. Hardware
monitors are plugged into a system and measure electrical signals. They
normally do not use any of the system resources, but have limited capabili
ties for the performance measures they can produce. Software monitors are
programs which execute on the system. They can produce much more
detailed information about the system operation, but they use the system to
do this. Therefore, they perturb the measurement data away from the actual
values. Since the systems are usually very complex, measurements are often
costly and impractical. Even when the information obtained from measure
ments is sufficient to understand the current operation of the system, it is
difficult to use these data to predict the future behavior of the system as the
workload and configuration change. When we are trying to design a new
system, measurement is rarely of much use.

1.4. PERFORMANCE MODELING

In order to predict the future performance of a system, we need an
abstract representation of the system which will embody its behavior. We
call this a model of the system. A model contains parameters which repre

SEC. 1.4 / PERFORMANCE MODELING 3

sent factors that can be varied to portray different systems. Values of the
parameters can depict the amount of service demanded by the customers
and the rate at which they arrive at the system. The purpose of the model
is to analyze the contention among the customers and the effect it has on
the flow of customers through the system. One benefit of modeling a
system, in addition to being able to study its behavior in a controlled fash
ion, is that we frequently gain a deeper understanding of how the system
performs.

The procedure of developing a model of a system is not an easy task.
One necessary prerequisite is an in depth knowledge of the system to be
modeled. Chapter 2 is an overview of the process of modeling. It discusses
model formulation and construction, parameter estimation, and model
solution and gives a sample model of each of the major types of systems.
Because of the complexities involved in performance modeling, methodolog
ical approaches are very beneficial.

In building a model, it is helpful to draw a diagram of the flow of
customers through the system. This type of diagram also aids in describing
the model to others who need to know what the model depicts. In Chapter
3 we present symbols that can be used in drawing diagrams of models. The
symbols used in these diagrams will also represent model elements which
will be described and used in the remainder of the book. Once the individu
al building blocks of models are understood, it is relatively easy to put them
together in the appropriate manner to represent a specific system in which
we are interested. Figure 1.1 shows a typical model diagram of a simple
computer system with some interactive terminals, a CPU, and two direct-
access storage devices (DASD).

Notice the parallelism which exists in the computer system. Different
jobs can be receiving service from the terminals, the CPU, and the DASDs
simultaneously. This parallel operation will also be represented in the
models we construct.

Figure 1.2 shows a simple model of a communication network. There
are some remote terminals connected to a computer by a full duplex line. A
separate service mechanism for inbound and outbound messages provides
the capabilities of the full duplex transmission.

The model diagram in Figure 1.3 illustrates a portion of a manufactur
ing system. Jobs entering the system wait in a staging area until a transfer
mechanism moves them one at a time through some tool processing and a
transfer unit prior to the next operation.

4 INTRODUCTION / CHAP 1

TERMINALS

INBOUND
COMPUTER
SYSTEM

FULL DUPLEX

OUTBOUND

&

Figure 1.2. Model Diagram of a Simple Communication Network

SEC. 1.4 / PERFORMANCE MODELING 5

STAGING TOOL TRANSFER RELEASE
AREA PROCESSING UNIT STAGING

AREA

Figure 1.3. Model Diagram of a Simple Manufacturing System

We will be discussing two methods of solving models. A model solved
by an analytic method will represent the system by a set of mathematical
equations. We give values to the parameters of the model and solve the
equations to obtain performance measures which estimate how the system
behaves. In Chapter 4 we will discuss analytic solutions in greater detail.
A model solved by simulation is a computer program which acts like the
system. When we run a simulation, the computer program keeps track of
the contention for resources represented in the model and calculates the
performance measures based on what it has observed. Simulation will be
covered in more depth in Chapter 5.

There are many different kinds of models. We will be concerned with a
specific kind of model called a queueing network model. A network is a
collection of resources interconnected in some fashion. A queue is a waiting
line at a resource. A queueing network model gives us a way of depicting
the resource contention we are interested in. A queueing network model
permits a high level of representation of the system resources. Queueing
network models normally are used to solve simplistic representations of
systems. We will describe extensions to queueing network models which
permit the representation of complex features that exist in real systems.

This book is a practical guide to using a general-purpose software
package to do performance modeling of fairly comprehensive queueing

6 INTRODUCTION / CHAP. 1

systems. To maintain its generality, the modeling tool cannot be custom
tailored to any particular type of system. The user interface and solution
methods must be capable of representing and evaluating a broad spectrum
of systems. Associated with this universality are problems concerning the
proper level of detail in the model and model validation.

We have mentioned the performance of the system, but we have not
defined what we mean. System performance can be measured in various
ways. We are often interested in how long it takes a customer to go from
one place in the system to another. The fraction of time that a resource is
busy could be important. The length of the queues at the resources gives us
some insight into system behavior. Sometimes we are interested in the
number of customers which complete service at a resource in a unit of time.
We will be discussing different performance measures for these kinds of
behavior.

Figure 1.4 shows a diagram of a simple system, followed by a model
diagram and some sample results. In Chapter 3 we will discuss what the
different symbols in the model diagram stand for. The types of results
displayed might be used for predicting the system behavior.

When we speak of customers we may be referring to a person, a
program in a computer system, a message in a communication network, an
office activity, a task to be performed at a manufacturing work station, or a
part to be assembled. There can be many different types of customers in
the same model.

Our models will give us estimates of system performance. The inaccura
cies which are present in the performance measures can come from several
sources. The models we develop are only approximate representations of the
real system. If certain details of the system are not included, the model will
not accurately predict the true behavior of the system. In order to solve for
the performance measures, it is necessary to supply values for the model
parameters. These parameters could include the rate at which the resources
serve the customers, the amount of service demanded by the customers, the
number of customers, or the rate at which customers arrive at the model.
We usually do not know the exact values of these parameters. When using
simulation, therefore, we are actually conducting a statistical experiment and
observing the model behavior. The statistical nature of a simulation program
can also introduce inaccuracies in the performance measures. However,
there are ways of dealing with the statistical nature of the results from a
simulation, and we will discuss some of these ways in Chapter 5.

The basic challenges in using queueing network models are to (1)
determine which resources are important to have in the model and the

SEC. 1.4 / PERFORMANCE MODELING 7

SYSTEM

BUFFER TOOL

MODEL

O-IL— -ID—

Model Solution

Fraction of time busy: 0.65
Job completion rate: 9 per hour
Time in system: 21 minutes
Number of jobs: 12

Figure 1.4. System, Model Diagram, and Solution

characteristics that will most affect performance, (2) formulate a model
representing these resources and characteristics, and (3) determine the
values for the performance measures of the model. Item (1) requires that
the modeler understand the system, and that he or she use intuition in
determining what is important. Since a model is a simplistic representation
of the system, it is necessary to decide how much detail the model will
contain. In doing this, we must make many simplifying assumptions. The
structure and level of detail of models will be discussed in Chapter 6. The
second problem we mentioned involves a description of the flow of custom
ers through the system and the amount of service required at the resources.
After the model has been constructed, calculation of the performance
measures could be a time consuming task if a modeling tool is not available.
A modeling tool, like many currently available, simplifies the construction
and solution of models. The model elements aid in formulating the model.
After the model has been defined, the performance measures are calculated

X INTRODUCTION / CHAP. 1

automatically.

Some of the currently available modeling tools will be briefly described
in Chapter 3. The Research Queueing Package (RESO), a modeling tool
developed at the IBM Research Center, is a collection of programs for
constructing and solving analytic and simulation models. RESQ will be used
to demonstrate, in a precise manner, the content of actual models and the
performance measures which can be calculated by such a modeling tool.
Because of the availability of many modeling tools, it is not necessary for an
analyst to have an in depth knowledge of the mathematics used in solving
models. The mathematical techniques are built into the modeling tools. In
addition to knowing when a model has been validated, what is necessary is a
good understanding of the system to be modeled and a knowledge of the
model elements available in the modeling tools used. In Chapter 2 there is
more discussion about the skills necessary for modeling.

After the performance measures are calculated, the analyst must be
able to interpret them in order to determine how they are related to the
behavior of the system. It is also necessary to be able to change the model
or the parameters of the model to investigate how different system designs
or various resource characteristics affect the behavior. Chapter 7 will
describe how the results of models can be used in determining the behavior
of a system.

In order to show how to build models of many different types of
systems, we will be discussing many models. In Chapter 8 we will see
models of systems which may be encountered in everyday life situations.
These systems are not important by themselves, but the models of these
systems will illustrate several ways of representing certain types of features
in models. The last three chapters before the epilogue, Chapters 9, 10, and
11, investigate models of computer systems, communication networks, and
manufacturing systems.

1.5. FURTHER READING

Performance modeling has been discussed by many authors. There are
some books which deal with a broad spectrum of modeling including both
analytic and simulation solution techniques like Ferrari [62], Kobayashi
[98], Lavenberg [100], and Sauer and Chandy [152], The following books
might be of interest for information related to measurements: Drummond
[58], Ferrari, Serazzi, and Zeigner [63], Hellerman and Conroy [78] and
Svobodova [179], The two books by Allen [3] and Trivedi [183] contain
probability and statistical information related to queueing models. Beizer
[17], Gelenbe and Mitrani [69] and Lazowska, Zahorjan, Graham, and

SEC. 1.5 / FURTHER READING 9

Sevcik [108] are primarily devoted to analytic solutions of queueing network
models. There are many books which discuss simulation. Some of the better
ones are Fishman [64, 65], Gordon [71], Law and Kelton [106], Maisel and
Gnugnoli [117], Sauer and MacNair [156], and Shannon [171], The special
issues of ACM Computing Surveys (September 1978) [11, 39, 45, 57, 73,
126, 145, 189] and Computer (April 1980) [4, 151, 175] will provide
further background. Information pertaining to RESQ can be found in the
RESQ documentation [155-163].

CHAPTER 2

THE PROCESS OF MODELING
The process of modeling a system is not an easy task. A great deal of

knowledge, intuition, and ingenuity are necessary to conduct a successful
modeling project. It is difficult to explain exactly how this process should be
conducted. In this chapter, we will attempt, in an informal manner, to
describe fundamental aspects of this task.

The noun "model" has several interpretations in the field of systems
performance evaluation. Two of the definitions offered by Webster are "a)
a small copy or imitation of an existing object, as a ship, building, etc.,
made to scale, b) a preliminary representation of something, serving as the
plan from which the final, usually larger, object is to be constructed." Many
performance practitioners use "model" to mean a detailed imitation of
system behavior, essentially using Webster’s definition (a). Others, our
selves included, primarily use "model" to mean an abstract representation of
a system, more in line with definition (b).

A model designed to imitate system behavior in detail is very expensive
to construct and often requires a great amount of effort to maintain and
use. On the other hand, if used properly, such a model can study very
subtle issues of system behavior. In our view, however, the expense of such
detailed construction usually outweighs its advantage.

In our experience, it is usually more effective to spend a fair amount of
effort hypothesizing which system characteristics are most likely to deter
mine system performance. One can then build an abstract representation of
the system which focuses on these characteristics and ignores many system
details.

The fundamental steps in this approach are as follows:

1. Study the system design and hypothesize which charac
teristics determine its performance.

2. Develop a model of the system using a modeling lan
guage such as RESQ.

3. Obtain numerical values for the system characteristics
represented by model parameters.

10

SEC. 2.1 / UNDERSTANDING THE SYSTEM 11

4. Use the modeling package to obtain values for the de
sired performance measures.

These steps are usually not carried out strictly sequentially or even in this
order. The availability or nonavailability of the numerical values called for
in step 3 will usually influence the representation developed in steps 1 and
2. Once one sees results from a preliminary version of the model, the entire
process will likely be repeated, possibly several times. When measurements
of prototype systems are available, these may be compared against model
results, resulting in further model revision. Once the model is satisfactory,
then graphs or tables of model results will be developed for ranges of
numerical parameter values and design alternatives.

2.1. UNDERSTANDING THE SYSTEM DESIGN

It is important for the analyst to understand the system to be modeled.
Since the model is an abstract representation of the system, it must contain
enough information to appear to behave similarly to the real system. Of
course, a model can be built at many different levels of detail, but even the
highest level of detail must incorporate some of the complexities which exist
in the real system. It is probably not possible to develop a reasonable
model without knowing quite a bit about the operation of the system.

Some people can begin a modeling project without a deep understand
ing of the system. However, as they progress, they will find they must
acquire such knowledge. This can be done by speaking with knowledgeable
people, by reading system documentation, or by studying the actual system.
The act of modeling a system usually develops insight into how the system
behaves. Thus an added benefit of modeling is being compelled to learn the
characteristics of the system behavior.

2.2. FORMULATING MODELS

Model formulation is an art rather than a scientific discipline. It
requires a comprehensive knowledge of the system to be modeled. Intuition
is needed to determine which system resources are important and how they
are to be represented in the model. There are no rigorous methods for
accomplishing this task. However, there are some guidelines which can be
followed. We will discuss some guidelines and describe different types of
models that can be used.

The purpose of the model is an important aspect of formulating the
model. Should the model be very simple or should it contain most of the

12

details which are found in the real system? Is it sufficient that the results
be gross estimates of system behavior, or is it necessary to produce very
accurate performance measures? The purpose of the model will strongly
influence the answers to these questions.

The important system resources and mechanisms must be identified and
included in the model. In a computer system, the processors and I/O
devices are usually important resources, and the scheduling algorithms for
these resources are important mechanisms. In a communication network,
both the links and the protocols are significant. In a manufacturing system,
the important resources include tools, buffers, and transfer units. It is
necessary to determine how fast demands on a resource can be satisfied.
This depends on resource capacity, service demands, scheduling, and so on.
The frequency of visits to each resource and/or the flow of work through
the system must be represented.

THE PROCESS OF MODELING / CHAP. 2

2.3. TYPES OF MODELS

Usually, one begins with definite notions of the type of model to be
constructed. For example, one can think in terms of relatively imitative
models, corresponding to our first definition, or relatively abstract models,
corresponding to the second definition. Often analysts classify models
according to the methods used to obtain numerical results, for example,
simulation models versus "analytic" models. As suggested above, we will
focus on relatively abstract models. Though most of the models we consid
er will be solved by simulation, we will largely ignore solution methods
while constructing models.

An analyst will rarely develop an abstract model without consciously
considering previously constructed models. Rather, one will use general
characteristics of one’s own models or others’ models as a framework for
constructing new models. Assuming we are working with relatively abstract
models, we can classify models corresponding to the framework used in
constructing the models. We will use "queueing networks" as the frame
work for the models we construct. The further reading section at the end of
this chapter cites descriptions of various frameworks others have found
useful.

A basic queueing network consists of one or more entities which we
call "service centers" and a set of "customers" which receive service at the
centers. A service center consists of one or more servers, corresponding to
resources in the modeled system, and a waiting area (a "queue") for cus
tomers needing service. Some analysts refer to service centers as "queues "
or as "servers." A customer corresponds to an entity which circulates in the

SEC. 2.3 / TYPES OF MODELS 13

modeled system, for example, a computer system transaction, a message in a
communication net, or a printed circuit board to be populated with chips.
Some analysts refer to customers as "jobs" or as "transactions."

The simplest queueing network consists of a single service center,
representing the entire system. The system may be very complex, but the
model is simple. Of course, single service center models cannot capture all
the complexities which exist in real systems. However, sometimes this type
of model provides useful information. A single service center in a queueing
model has several mechanisms relating the customer to the waiting area and
the server. Figure 2.1 illustrates some of these mechanisms. The customers
arrive at the service center and demand service. The patterns of arrival and
service will be discussed in Section 2.4. When customers are waiting for
service and a server is free, a decision must be made as to which customer
goes into service next. Scheduling algorithms are discussed in Section 2.5.

WAITING
LINE

ARRIVALS -------TV~\ DEPARTURES—>_iD—*
SERVER

Inter- Ivait- LerviJ e

ARRIVAL ING TIME
TIME TIME

QUEUEING
TIME

Figure 2.1. A Service Center

There can be any number of servers at a service center. The customers
wait in a waiting line or queue until a server is free. A server can serve a
customer according to a constant rate, or the rate of service can be depend
ent on the number of customers in the queue. The waiting line can have an
infinite capacity for customers waiting for service, or the waiting room can
be finite. There can also be different types of customers which we refer to
as classes of customers, demanding different amounts of service.

The type of resource which can be represented by a service center such
as those just described will be called an active resource because the servers
are actively engaged in providing service. There are some resources which
do not behave like active resources. We call these passive resources. There
are usually a limited number of items of this type of resource which have to

14 THE PROCESS OF MODELING / CHAP. 2

be allocated to customers, held onto for a while, and released by the cus
tomers. The passive resource permits the sharing of a finite number of
items of the resource. The items which are allocated and released are called
tokens of the passive resource. They are analogous to the servers of an
active resource. However, the amount of time that a customer holds onto
the passive resource is determined by the amount of time that it takes to
visit other resources after it has been allocated tokens and until it has
released the tokens. One important use of a passive resource is to represent
the simultaneous possession of more than one resource. For example, it can
represent a job in a computer system which needs to be allocated some
memory, and while holding onto this memory, also receives service at an
active resource like a CPU. In a communication network or manufacturing
system, a passive resource can represent a finite number of buffers or
storage areas. In Chapter 3 we will describe more features of passive
resources. Passive resources are very useful for representing many instances
of complex system behavior. We will see many examples of using passive
resources in models.

In actual systems there are many resources which are interconnected.
In models, we can connect single resources in series, in parallel, or in any
complex fashion. If we have two resources connected in series, and after
completing service at the second resource we go back to the first, we call
this a cyclic queueing model. Figure 2.2 illustrates a cyclic model along
with several other types of models which are briefly described here. A
model which allows new customers to be generated and eventually to depart
is called an open model. A closed model contains a fixed number of custom
ers. There are never any new customers to arrive, and no customers depart.
A special case of the closed model is referred to as the central server model.
In this type of model there is a special resource to which all customers
return. When a customer leaves this resource, it has a certain probability of
going to any of the other resources.

There are models which can be constructed using different combina
tions of the types of models just described. A model which contains both
open and closed paths is called a mixed model. A hierarchical model is one
which is constructed at different levels of detail. A hybrid model will em
ploy different solution techniques for solving various parts of the model.
We will have more to say about hierarchical and hybrid models in Chapter
6 .

There can be many different types of customers in a model. In a
computer system, one type of customer might represent interactive jobs and
another type of customer might be for batch jobs. In a communication
network, one type of customer might represent the messages which are
flowing through the network and a second type of customer could be the

SEC. 2.3 / TYPES OF MODELS

CYCLIC OPEN

Figure 2.2. Different Kinds of Models

acknowledgements. In a model of a manufacturing line there could be
normal types of jobs and jobs which represent tool failures. The different
types of customers can travel over different paths and demand different
amounts of service.

When a customer of any type leaves a center some mechanism must be
provided for determining what center the customer will visit next. This is
called a routing decision. We can make routing decisions based on a set of
probabilities which add up to one for all of the possible destinations, or we
can make the decision based on some condition which exists in the model at
the time of the decision. For example, we could choose to visit a service
center if there is a server available, otherwise we could go to a different
center.

2.4. PROBABILITY DISTRIBUTIONS

Customers arrive for service according to a certain pattern called an
"arrival distribution." The amount of service required has a corresponding
pattern, which we call the "work demand" distribution. In the special, but

16

typical, case where the server has a fixed capacity, the values of the work
demand distribution can be divided by the capacity to determine a pattern
called the "service time distribution." Passive queues have corresponding
distributions for numbers of tokens needed by customers. Other distribu
tions are associated with other network elements.

One approach to modeling, known as "trace driven modeling," requires
the analyst to measure the patterns which occur during a particular opera
tional period of an actual system. The specific values are recorded on
magnetic tape and then used as input to a simulation model of alternate
system designs and configurations. However, the quantity of data involved
is usually large, and direct representation of distributions in this manner is
usually impractical.

A fundamental aspect of the modeling process is characterizing distri
butions so that the data are manageable. Usually this consists of making a
series of assumptions about the distribution to allow a convenient represent
ation. The most important of the typical assumptions is that there is no
pattern in the data values, that is, that a given value is independent of prior
values. This assumption can be relaxed somewhat, to assume that the
values have a relatively simple pattern, but without some sort of independ
ence assumption or assumption of a simple pattern of values, the analyst is
forced to trace driven modeling. From now on, we will make the assumption
that, for a particular distribution, the values are independent and identically
distributed.

With this assumption, we can focus on frequency of particular values.
The most straightforward way to do this is to define a set of intervals of
values, for example, [0,0.1), [0.1,0.2), . . . and determine the relative
frequency of values in each of these intervals. Graphically, this is equiva
lent to producing a histogram such as the one in Figure 2.3.

Characterizing a distribution in terms of frequency of value intervals is
often practical, both in terms of developing the characterization and in
terms of using it in a simulation model. However, this "brute force" ap
proach usually is intractable for solution methods other than simulation.
Further, the analyst may not know much about a distribution and may not
be able to determine (or conjecture) the distribution in terms of frequency
of intervals. A representation which is simpler still is likely to be easier to
develop, easier to deal with in the model, and produce satisfactorily accurate
model results.

The simpler representation usually used is a "probability distribution
function," or PDF. A PDF specifies the probability that a distribution value

THE PROCESS OF MODELING / CHAP. 2

SEC. 2.4 / PROBABILITY DISTRIBUTIONS 17

Figure 2.3. Histograms (Relative Frequency)

will be less than or equal to the function argument for all possible values of
the distribution. For example, the PDF of the "uniform" distribution is

0, x < a

F(x) = a , a < x < b
b—a

1, x>b

Where the derivative of the PDF is well defined, it is often mathematically
useful to deal with that derivative. The derivative of the PDF is known as
the "probability density function." For example, for the uniform distribu
tion, the density function is

f ix) = I
1

b—a ’

0,

a < x < b

otherwise

The uniform distribution gets its name because the density function is
uniform over the interval [a,b\. Other well known and useful PDFs include
the exponential, Erlang, constant, hyperexponential, and normal PDFs.
Figure 2.4 illustrates some of these PDFs, and Figure 2.5 shows the corre
sponding density functions.

18 THE PROCESS OF MODELING / CHAP. 2

Figure 2.4. Probability Distribution Functions

Often the analyst will speculate on the shape of the PDF/density
function and then estimate the parameters. For example, one might hypoth
esize that the distribution can be represented as uniform, and then estimate
the end points of the interval [a,b]- Rather than directly estimating the
defining parameters of the distribution, an analyst will usually estimate the
mean (average) value of the distribution and the variability of the distribu
tion. (The variability can be determined either as the variance, the standard
deviation, or the coefficient of variation. Assuming the mean and one of
these values is known, the other two can be directly obtained.) These are
the values usually required by modeling packages. For example, for the
uniform distribution, the mean is given by

a + bx = ------
2

the variance is

2 (b - a) 2o = ----------
1 2

0.
06

0.

12

SEC. 2.4 / PROBABILITY DISTRIBUTIONS 19

Figure 2.5. Probability Density Functions

the standard deviation is

_ b — a
2 / 3

and the coefficient of variation is

C = b — a
0b + a W 3

The types of distributions used in a model to represent arrivals, service,
and other probabilistic decisions can have a significant effect on the results
of a model. There are many sophisticated mathematical techniques that can
be used to determine which distributions are appropriate. A thorough
discussion is beyond the scope of this book. Section 2.11 lists several books
which cover this topic extensively.

2 0 THE PROCESS OF MODELING / CHAP. 2

2.5. SCHEDULING ALGORITHMS

The scheduling algorithm used to decide which customer to place in
service next is frequently referred to as the queueing discipline. Some
common queueing disciplines used in models include first-come-first-served
(FCFS), last-come-first-served (LCFS), processor sharing (PS), infinite
server (IS), nonpreemptive priority (PRTY), and preemptive-resume priority
(PRTYPR). With FCFS scheduling, a customer is put into service in the
order in which it arrives at the service center. LCFS is just a push-down
stack. If a customer arrives when one is in service, the customer in service is
taken out of service, and the new customer begins its service. When a
customer completes, the customer at the top of the stack is put back in
service.

In order to explain the processor sharing queueing discipline, we will
first explain the round-robin (RR) scheduling algorithm. With round-robin
scheduling, when a customer arrives at a service center it has a total service
request. Each customer is permitted to execute for a small amount of time,
which is usually less than the total service request. This execution time is
called a quantum. If the service request is not completed after executing for
a quantum, the customer is placed at the end of the queue and the next
customer begins its quantum. Eventually the customer will complete and
leave the resource. If we reduce the quantum to zero, all customers at the
resource will be served in parallel. This is exactly what happens in the case
of processor sharing. If there are n customers at the resource, each customer
receives 1/nth of the processing power. Although the processor sharing
discipline does not occur in real systems, it is often used as a good approxi
mation of round-robin scheduling. Round-robin scheduling is very common
in a computer system at a CPU.

At an infinite server service center, there is never any waiting. A
customer begins its service immediately upon arrival. All customers present
at the service center are served in parallel. This type of service center is
useful in representing a delay where there is no waiting, as would be the
case for think times at a cluster of terminals from which transactions are
being generated.

Priority scheduling is used to give preference to certain types of cus
tomers. With nonpreemptive priority a customer which is in service is not
preempted if a higher priority customer arrives. With preemptive-resume
priority a higher priority customer will preempt a lower priority customer.
The preempted customer will resume its service after all higher priority
customers complete their service.

SEC. 2.6 / MODEL PARAMETERS

2.6. MODEL PARAMETERS

2 1

The models we build will contain parameters which must be given
values before we can calculate the performance measures we are interested
in. These parameters could include the amount and distribution of service
demanded at each resource, the scheduling algorithms, the average number
of times a customer visits a device, the number of customers in a closed
system, and the interarrival time distributions for an open system. Some of
these parameters are a characterization of the workload on the system. If
the workload varies while the system is operating, the analyst may have to
decide what operating period to use for determining the associated model
parameters. The parameters can be estimated from our knowledge of the
system, our intuition, or from measurements on the system. In estimating
values for these parameters, we must be aware of the possibility of intro
ducing errors which could result in inaccurate results.

Frequently, models are evaluated for many different sets of parameter
values. One set of values might represent a system as it currently exists. A
different set of parameters might represent changes in the workload, a
different configuration, or different equipment. Predicting the performance
of a system by solving a model with different parameters is called a modifi
cation analysis. Determining what parameter values to use is often a difficult
task which requires a great deal of skill by the analyst. Some changes are
simple to represent, like doubling the speed of a processor. Others are very
difficult to categorize. As an example, how would a different operating
system affect the behavior of interactive users at terminals?

The most important skills that an analyst needs are an understanding of
how a system behaves, a means of estimating the initial set of model param
eters, and the ability to perform a modification analysis accurately. It is not
necessary to understand the mathematical analysis which is used to solve
models. This knowledge is incorporated into readily available modeling
packages. Many people are capable of performing excellent modeling studies
without having a sophisticated mathematical background.

2.7. MODEL SOLUTION

Using the types of models we have described, we must choose one of
the available solution techniques. We will be discussing two possible solu
tion techniques. An analytic solution will involve solving some equations
which relate the model parameters to the performance measures. Simulation
is a statistical experiment which observes the behavior of the model and
generates the performance measures from the observations. We will have
much more to say about these two solution techniques in Chapters 4 and 5.

2 2 THE PROCESS OF MODELING / CHAP. 2

At this time, we want to describe briefly how we would choose between
them. An analytic approach is usually a faster solution method and is
preferable when it is applicable. The problem is that many simplifying
assumptions must be made in order to be able to solve a model analytically.
Simulation is much more general and can be applied to very complex situa
tions. The price which must be paid for this generality is the longer time
required to obtain accurate performance measures.

We will be interested in several different performance measures calcu
lated by the solution technique. The utilization of a resource is the fraction
of time a server is busy. The queue length is the number of customers either
waiting or in service. The throughput is the customer completion rate. It is
the number of customers which complete their service in a given unit of
time. The queueing time is the time a customer spends in the waiting line
and in service at a center. We will be interested in mean values for these
results and sometimes in the distributions of the queue length and the
queueing time. Chapter 7 will discuss these performance measures in more
depth.

When we build a model, we should structure the model in a logical
fashion. A good approach is to begin with a very simple and high-level
model with very few details. As we progress, we can add more of the details
that exist in the real system by expanding the resources which exist in the
higher level model. This can be done by defining submodels that contain
more realistic representations of the additional complexities and using these
submodels in place of the simpler representations. In this way, the model
can be constructed in a top-down manner and can be refined to any level of
detail that we desire. The structure of models will be discussed in more
detail in Chapter 6.

Even after we decide to construct a detailed simulation model, it is a
good idea to have a simpler model which can be solved analytically and
which will be an approximation of the more complicated model. The analyt
ic model will provide a means of partially assuring the simulation model is
working correctly. In addition, if it turns out that the analytic model is a
close enough approximation for the simulation model, the analytic model
may suffice. The analytic model could also be useful in obtaining gross
estimates of the performance measures over a large parameter space, and
then the simulation model could be used to obtain more accurate results for
a subset of the parameter values.

SEC. 2.8 / COMPUTER SYSTEM

2.8. COMPUTER SYSTEM

23

Many computer system models contain identical submodels. Almost
every model of a computer system contains a submodel representing the
CPU and the I/O devices. The central server model depicted in Figure 2.6
shows a CPU and an arbitrary number of I/O devices. The central server
model is a good representation of a batch workload under heavy load. If
there is always a new batch customer to replace one that finishes, this type
of model gives good results. This is a closed model. The number of custom
ers in the batch workload is equal to the multiprogramming level.

Many computer systems contain other types of workloads in addition to
batch workloads. An interactive workload can be modeled as a closed model
with an infinite service center for the terminals. The number of customers in
the model will be equal to the number of terminals. In an MVS type of
system, TSO workloads can be represented as interactive workloads. Figure
2.7 illustrates an interactive workload. It contains the terminals, a passive
resource representing a memory constraint, and a central server submodel.

One other type of workload which appears in many computer systems
is called a transaction processing workload. Data-base systems like IMS and
CICS fall into this category. Figure 2.8 shows a transaction processing
workload. The transactions arrive according to some arrival distribution.

24 THE PROCESS OF MODELING / CHAP. 2

There is a passive resource for the memory constraint, and a central server
subsystem for the CPU and I/O devices.

Figure 2.8. Transaction Processing Workload

SEC. 2.8 / COMPUTER SYSTEM 25

Most computer systems contain a number of different types of work
loads. There might be two different types of interactive workloads, a batch
workload and a transaction processing workload. These can be easily includ
ed in the model by combining the models described previously. A model of
many different workloads requires more input parameter values but gives
more detailed performance measures.

2.9. COMMUNICATION NETWORK

Most models of communication networks contain at least one queue
representing a communication line. In this section we will introduce a very
simple model with a single half duplex line. A half duplex line can only
communicate in one direction at a time. This will be modeled as a single
resource with one path for inbound messages and another path for outbound
messages. There is a single server which can transmit either inbound or
outbound messages. Figure 2.9 shows the half duplex line with some termi
nals and a computer system. The terminals are depicted by an infinite
server. As soon as a response returns over the outbound line from the
computer, a user at a terminal begins his or her next think time. When a
transaction is entered, it is transmitted over the inbound line, performs some
processing at the computer, and sends a response back over the outbound
line. There is contention at the line from messages being entered from
multiple terminals. There is also contention between inbound and outbound
messages. The rate of service at the line is the transmission rate in the
system. Messages of different sizes will require the use of the line for
different lengths of time.

2.10. MANUFACTURING SYSTEM

Generally, manufacturing systems have machines that break down and
require repair. Figure 2.10 shows a simple model of a tool which experi
ences breakdowns. Arriving customers are either transferred to a tool for
processing or bypass the tool and are transferred to the next operation. Jobs
which complete processing at the tool also go through a transfer unit on the
way out. When the tool breaks down, customers queue up waiting for the
tool to be repaired. The tool failure can be represented by another customer
which circulates between the tool and another queue. When this special
customer is not at the tool, the tool is operating normally. When the special
customer arrives at the tool, a failure occurs. The special customer takes
control of the tool because it is assigned a higher priority than the normal
customers at the tool. The amount of time the special customer spends at
the tool represents the downtime. The amount of time the special customer

26 THE PROCESS OF MODELING / CHAP. 2

TERM INALS

Figure 2.9. Model of a Simple Communication Network

spends at the other queue is the uptime. This simple type of model very
nicely captures the tool failures.

SEC. 2.11 / FURTHER READING

2.11. FURTHER READING

27

The process of modeling is introduced by Kobayashi [98], Lavenberg
[100], Lazowska, Zahorjan, Graham, and Sevcik [108], and Sauer and
Chandy [152]. Petri Nets provide a modeling framework which is different
from the queueing networks we have discussed. The following references
contain information about using Petri Net models: Balbo, Marsan, Ciardo,
and Conte [8], Garg [68], and Peterson [132]. More information on proba
bility distributions can be found in Allen [3], Cramer [53], Feller [60],
Chapter 2 of Lavenberg [100], Mood and Graybill [124], Parzen [130],
Trivedi [183], and other books on probability and statistics. See Buzen [40]
for a good description of the skills necessary to carry out a performance
analysis. More details about scheduling algorithms can be found in Klein-
rock [95] and Sauer and Chandy [152]. There are many computer system
models in Allen [3], Ferrari [62], Lavenberg [100], Lazowska, Zahorjan,
Graham, and Sevcik [108], Sauer and Chandy [152], and Trivedi [183],
Communication network models can be found in Bharath-Kumar and
Kermani [21], Kleinrock [96], Sauer and MacNair [156], and Schwartz
[165,166]. The following references contain some manufacturing models:
Law and Kelton [106], Medeiros and Sadowski [121], Oates [129], and
Taylor and Clayton [180].

2.12. EXERCISES

2.1 Discuss the differences between an open model and a closed model.

2.2 Describe some features in systems you are familiar with that can be
represented by a passive resource.

2.3 Obtain some measurement data from a system representing service
times or interarrival times. Determine the sample mean, sample stand
ard deviation, and the coefficient of variation of these values.

2.4 Plot a histogram for the following data and determine what distribu
tion it might have come from: 4.06, 0.56, 1.56, 1.26, 3.04, 6.11,
0.775, 0.773, 0.135, 1.92, 1.31, 0.37, 6.73, 5.86, 1.27, 0.798, 9.73,
1.92, 5.41, 1.75, 0.752, 1.06, 0.144, 0.334, 1.28, 4.77, 0.85, 1.75,
0.71, 0.188.

2.5 Draw a model diagram, representing in a simplistic fashion the flow of
work through a system you are familiar with.

CHAPTER 3

MODEL ELEMENTS
AND DIAGRAMS

A model diagram is essential to understanding how the model repre
sents the system to be studied. It is an exact, unambiguous representation
of the order in which the resources are visited by the customers. It is an
excellent means of communicating what the model is. We will discuss a
relatively small set of diagram symbols and the corresponding model ele
ments which are fairly widely accepted for capturing the flow of work
through many different types of models. Some modeling tools employ a
large collection of symbols for use in diagrams. The advantage of having a
small set of symbols is the simplicity of learning them and using them in
diagrams. The disadvantage is that some situations may not be explicitly
represented or some information may be missing from the diagram. Even
with the small set of symbols we will discuss, the diagrams will be able to
represent most aspects of the models.

The model elements are the building blocks of a modeling tool. Once
we understand what the model elements are and how to use them, it be
comes a relatively simple task to construct a model of a complex system if
we understand how the system operates. We just need to know which
elements to use and in which order to use them. By putting the building
blocks together in different fashions, we can construct many different
models.

3.1. CUSTOMERS

In building models we will focus our attention on the customers that
are circulating through the model and demanding service from the resources.
The customers can represent many different kinds of entities. They can be
people, computer programs or jobs, communication messages, acknowledge
ments or polling responses, manufacturing tasks or parts to be assembled,
among other items found in systems.

We will not explicitly draw the customers in the model diagrams.
However, all the resources they visit will be shown along with the paths that
the customers follow. The paths followed by customers are depicted by solid
lines and arrows. Each place a customer visits in a model is called a node.
There are several different kinds of nodes which represent various kinds of

28

SEC. 3.1 / CUSTOMERS 29

actions performed when a customer arrives at each node. The different
types of nodes are discussed in the remaining sections of this chapter. The
collection of nodes visited by a customer and the order in which they are
visited is referred to as the routing.

The customers can have different attributes which distinguish different
kinds of customers and could represent the amounts of service demanded.
Some examples of attributes of customers include the type of job, for
example, interactive or batch in a computer system, the message length, the
path length, the priority level, the number of times the customer should visit
a portion of the model, the time of arrival at or departure from a particular
node, and many other identifying characteristics. The attributes are atta
ched to the customers and can be interrogated while making routing deci
sions or when determining how much service a customer demands.

There are certain instances when we want the customers to make
copies of themselves, with the original customer and the copies possibly
proceeding over different paths. If we want 100 pieces of a subassembly to
arrivp at a service center all at the same time, we can have one customer
split itself into 100 separate customers which then progress separately
through the model. The copies which are produced can be independent
customers which follow different paths, or they can be related to each other
and join back together again at an appropriate place in the model. An
example of related customers is found in a communication network where
large messages are broken down into smaller packets. The packets are
transmitted over the network and reassembled after transmission.

There are different symbols associated with the generation of the
copies of customers depending on whether the customers are related or not.
There is also a symbol for a node where the related customers are reassem
bled. Figure 3.1 shows the symbols for split, fission, and fusion nodes.
Customers passing through a split node generate unrelated customers. The
fission and fusion nodes are used in pairs. The copies of customers generat
ed at a fission node are joined together at a corresponding fusion node.
Only a single customer leaves the fusion node. This occurs after all of the
related customers arrive.

3.2. SERVICE CENTERS

Service centers are the major model elements used in extended queue
ing networks. They are composed of one or more servers, one or more
queues, and a queueing discipline or scheduling algorithm for determining
which customer to put into service next. The customers arrive at the service
centers and request a certain amount of service. This service is usually

30 MODEL ELEMENTS AND DIAGRAMS / CHAP. 3

SPLIT FISSION FUSION

Figure 3.1. Split, Fission and Fusion Nodes

determined by a service time distribution specified when defining the service
center.

Figure 3.2 shows a service center with a single server, one with two
servers, and one with an infinite number of servers. A circle is used to
represent a server at an active resource. The queues, which are shown as a
rectangle with one side missing and a vertical line in the middle, are also
called classes. Some service centers have more than one queue. Several
reasons for having multiple queues at a service center are to specify differ
ent service time distributions, different priority levels, and alternate routing
paths. The classes are the nodes at service centers which are used in the
routing definition.

--> I
/ \
o >— > — X

'p '• >o \ _ / o-

_

1 CLASS,
1 SERVER

1 CLASS,
2 SERVERS

Figure 3.2. Three Service Centers

INFINITE
SERVER

Since there is no waiting at an infinite server, there are no queues
shown with the symbol of the IS center. There can still be multiple classes
at an infinite server so that customers can have various routing paths.

SEC. 3.2 / SERVICE CENTERS 31

When a customer arrives at a service center other than an infinite
server, the customer waits in the queue until a server is free. When a server
is available, customers are scheduled according to the queueing discipline.
Recall that some of the queueing disciplines include FCFS, LCFS, processor
sharing, round robin, preemptive priority, and nonpreemptive priority. The
queueing discipline determines whether the service may be preempted by
other jobs arriving at the service center or whether the server is shared
among the customers. A customer’s activity is usually focused on the
resources of a service center and typically has no interaction with other
modeling elements while at a service center.

When a customer is put into service, the amount of service requested
can be specified in two different ways. The first approach is to specify a
service time which is the amount of time spent in service during a single
visit to the service center. The second method is to specify an amount called
the work demand and a rate of service. Examples of work demands are the
number of instructions to process and the message length. The service time
is then calculated as the work demand divided by the service rate. The rate
of service is the amount of work a server can perform in one unit of time.
When the servers work at the same fixed rate, the service rate can be set
equal to one. In this case, the service time is equal to the work demand. The
service rate can be thought of as a scaling factor.

The amount of service requested is normally specified by a distribution.
With simulation, a random sample is taken from the distribution to deter
mine the amount of time each individual customer will spend in service. The
service time can also be obtained from a file containing trace data. With an
analytic solution, only the mean service time will affect the results, which
can be calculated using a queueing network model with standard numerical
solutions. This will be discussed in more detail in Chapter 4. Some of the
commonly used service time distributions are constant, discrete, uniform,
Erlang, exponential, hyperexponential, and normal. The different distribu
tions represent different patterns of service.

3.3. PASSIVE CENTERS

Given only customers and service centers as model elements, there are
many situations which exist in real systems which are difficult or impossible
to represent accurately. Passive centers permit us to represent many of these
complex features.

32 MODEL ELEMENTS AND DIAGRAMS / CHAP. 3

3.3.1. Allocate and Release

Passive centers are mainly used to model a resource that has a limited
number of elements that are allocated to customers, held on to by the
customers while they receive service at service centers and then released by
the customers. The major difference between service centers and passive
centers is that a service center has one or more servers actively engaged in
providing service to customers. This is not the case at a passive resource.
There are no servers actively providing service. However, there are ele
ments called tokens which are in some ways analogous to servers. There is
usually a limited number of tokens at the passive center. These tokens can
be used to represent a finite number of elements of a resource like the
number of buffers, memory units, channels, and other limited resources.

As an example of a passive center, we will consider how to represent
memory contention in a computer system. Figure 3.3 depicts a passive
center with the number of tokens, which is shown in the box, being equal to
the number of memory partitions. The rectangular box is the pool of tokens
from which the memory partitions are requested. AL1 is an allocate node
where customers request tokens. If the number of tokens remaining in the
pool is less than the number of tokens a customer requests, the customer
waits in the queue associated with the allocate node until a sufficient num
ber become available. It is important to remember that customers retain
possession of the tokens until they are explicitly released. Tokens are
returned to the pool when a customer which is holding tokens from the
passive resource passes through release node RE1. As usual, the customer
flow is shown with solid lines and arrows. The flow of tokens is illustrated
with dashed lines.

MEMORY PARTITIONS

■>

AL1 RE1

Figure 3.3. Allocate and Release Nodes

SEC. 3.3 / PASSIVE CENTERS 33

The passive center facilitates the representation of many situations
where customers simultaneously hold multiple resources. A customer which
acquires tokens from a passive center can also request service at service
centers and can also request tokens from other passive centers. This type of
model element is a very powerful extension to conventional queueing
networks.

In Figure 3.3 we drew one allocate node and one release node. Howev
er, there is no restriction on the number of allocate or release nodes which
belong to a passive center. There is also no one-to-one correspondence
necessary between allocate and release nodes. There can be any number of
allocate nodes and any number of release nodes.

3.3.2. Create and Destroy

With only allocate and release nodes, there is no way to change the
number of tokens at a passive center. There are times when we would like
to increase or decrease the number of tokens. This can be accomplished as
shown in Figure 3.4 using create and destroy nodes. A customer which goes
through a create node will add a specified number of new tokens to the
pool, and a customer holding tokens when it is routed through a destroy
node will discard the tokens it holds. This permits the number of tokens
associated with a passive center to change dynamically. One use for these
model elements is to hold customers in the queue at an allocate node until
another customer creates tokens for them to advance. This is a type of
synchronization which is very common in contention systems. These model
elements can also be used for communicating between independent process
es. In an operating system, this is often referred to as a semaphore.

ALLOCATE

0 POOL OF TOKENS

CREATE

Figure 3.4. Create and Destroy Nodes

34 MODEL ELEMENTS AND DIAGRAMS / CHAP. 3

3.3.3. AND/OR Allocate

It is sometimes necessary for customers to contend for elements of
several passive centers at the same time. Special types of allocate nodes
provide the model elements to handle this situation. AND allocate nodes
belong to multiple passive centers. A customer which arrives at an AND
allocate node requests tokens from all the passive centers it is a member of.
The customer waits in the queue until all of its demands can be met. Simi
larly, OR allocate nodes belong to multiple passive centers. A customer
which is routed to an OR allocate node is allocated tokens from the first
passive center which has a sufficient number of tokens to satisfy the number
demanded. This is illustrated in Figure 3.5.

Figure 3.5. AND Allocate and OR Allocate Nodes

Passive centers provide very high-level model elements to depict many
complexities found in real systems. In addition to representing contention
for finite resources, they can be used in modeling complicated flow control
algorithms like polling and pacing found in communication networks. We
will see many examples where passive centers are very useful.

3.4. SOURCES AND SINKS

In open-path models where customers enter from outside the model, we
need places where customers are generated and locations where customers
depart. These nodes are called sources and sinks. Associated with every
source there is an interarrival time distribution. This distribution determines
how frequently customers arrive at the model and according to what type of
pattern. The exponential distribution is often used when there is no infor

SEC. 3.4 / SOURCES AND SINKS 35

mation available to suggest some other distribution. Customers arriving at a
source circulate through the model and eventually leave at a sink.

In building models an analyst must determine whether to use paths
which are open or closed. In choosing an open path, we are assuming that
the customers are being generated from an infinite population. The number
of customers in the model at any given time will vary from zero up to any
value, but we will be able to calculate an average customer population.

Figure 3.6 shows an open model with a source, a service center with
one server and a sink. If we choose an exponential arrival distribution and
an exponential service distribution, this model corresponds to an M /M /l
queue. This type of service center is described in many books on queueing
theory.

SERVICE
CENTER

SOURCE SINK

Figure 3.6. Open Model with Source and Sink

Open models can have any number of sources and conceptually any
number of sinks. Since a sink is just a place for customers to leave the
model, we need only one sink in the entire model. All the customers which
leave will depart through the same sink. The reason for having multiple
sources is to allow customers to be routed to different nodes after arrival.

3.5. MODEL VARIABLES AND STATUS

In order to make certain types of decisions, we will use two different
types of variables. One type of variable is used to hold the set of attributes
of each customer. Each customer has its own set of attributes which can be
set to different values and used to make routing decisions and to determine
the amount of service requested and the customer’s priority, among other
purposes. The other type of variable is accessible by all customers. This
type of variable is a global variable in the sense of a variable in a program
ming language. As customers proceed through the model, these global
variables can be assigned values and used in ways similar to the customer
attributes.

36

All customer attributes are automatically initialized to a value of zero,
and global variables are initialized to a specified value when they are de
fined. They must be explicitly assigned other values as the model is prog
ressing. In order to assign values to the customer attributes and the global
variables, we need a special kind of node which we designate as a set node.
As customers pass through a set node, one or more assignments are made to
the values of the customer’s attributes or to the global variables. The
symbol for a set node is a rectangular box as shown in Figure 3.7. When
there is room, the assignment statements are given in the rectangle. The
assignment statements can contain expressions. In this case the global
variable V is being incremented by one.

MODEL ELEMENTS AND DIAGRAMS / CHAP. 3

\ V = V + 1 \} /

Figure 3.7. A Set Node

In addition to making decisions based on the values of variables, we
can also interrogate the status of various conditions of the model. Some of
these conditions include the queue lengths at classes, service centers, allo
cate nodes and passive centers, the number of servers or tokens available
for service or allocation, the number of customers related to a customer
which has gone through a fission node, and the number of tokens a custom
er holds from a passive center. These few conditions will provide most of
the status of the model necessary to control the flow of customers through
the network.

Figure 3.8 illustrates some routing decisions being made based on the
value of a global variable. The variable V is incremented by one, and its
value is tested. If V is equal to ten, the customer is sent to Q2 for service.
If V is less than ten, the customer joins the end of Q1 again. By initializing
V to zero, this approach can be used to send customers to a service center a
specified number of times. As mentioned above, these routing decisions
could be based on the model status as well as the values of variables.

SEC. 3.6 / WAIT UNTIL 37

Q1 Q2
_ \ I O > V=V+1

IF(V=10) "7
K IDA /

£-----
X J ^

------------ 7 |
IF(V<10) —

Figure 3.8. Routing Decisions and Set Nodes

3.6. WAIT UNTIL

There are times when customers are held at a particular location in a
system until a certain condition occurs. The wait node provides this type of
capability. Customers are placed in a queue and wait there until a specified
condition occurs. When the condition becomes true, all waiting customers
for which the condition is true proceed from this node.

WAIT Q1

UNTIL(QL(Q1)<4)
Figure 3.9. Wait Node and Active Service Center

38 MODEL ELEMENTS AND DIAGRAMS / CHAP. 3

A wait node is a rectangular box with a queue in front of it. In Figure
3.9, customers join the queue at the wait node and wait until the queue
length at Q1 is less than four. The conditions tested at a wait node can
include any of the model status tests discussed in Section 3.5 and the values
of customer attributes and global variables.

3.7. CHAINS

Chains are used to classify different types of customers into different
routing paths. A path consists of all the nodes visited by a customer. When
a model contains different types of customers, it is convenient to define
separate chains for each customer type. Different types of customers may
belong to the same chain. In this case, the customer attributes can be used
to identify the customer type, and routing decisions can send customers to
different resources.

By using different chains for different types of customers, the model
does not have explicity to check the customer type. This is implicit in the
chain to which the customer is assigned. Customers and nodes are uniquely
assigned to one chain. A customer in one chain can never visit a node which
belongs to a different chain, and a node which belongs to one chain cannot
be used in a routing statement of another chain. This does not preclude
customers in different chains from contending with one another. A center
representing either an active or passive resource can have nodes belonging
to different chains. The customers belonging to the different chains can still
contend for the same servers or tokens.

A standard example of using multiple chains in a model is a computer
system that has two different workloads. One type of work is from interac
tive terminals where people are submitting transactions and receiving re
sponses. A second type of work is batch jobs. Figure 3.10 shows two
chains for the two different workloads. The interactive jobs travel over a
closed chain visiting the terminals, the CPU, and an input/output (I/O)
device. The batch jobs arrive from a source of an open chain and contend
with the interactive jobs at the CPU and I/O devices.

In Chapter 2 we briefly discussed open, closed, and mixed models. The
types of chains in a model determine the type of model. An open chain
usually contains one or more sources where customers enter the chain and a
sink where customers depart. It is possible for an open chain to contain no
source. In this case, customers would have to be initialized at one or more
nodes of the chain. This approach is used when customers produce copies of
themselves by going through a split node and the copies eventually are
routed to the sink. The original customers can continue to circulate through

SEC. 3.7 / CHAINS 39

the chain. Open chains permit the number of customers in the chain to vary.
There are customers arriving and departing at various times, and the number
of customers present is continually changing. An open chain is frequently
used to model a system where the population is not static.

A closed chain contains a fixed number of customers. We specify the
chain population, and these customers always remain in the chain. A system
that has a finite number of customers, like an interactive computer system
with 50 terminals, is conveniently represented by a closed chain. When we
can identify a relatively small, fixed number of customers in a chain, a
closed chain is the appropriate model element to use.

3.8. SUBMODELS

A submodel is a subset of the model’s resources which are separated
from the rest of the model either to add structure and clarity or to solve the
submodel in isolation. We will not discuss submodels to any great extent
here because they will be described in detail in Chapter 6. Submodels do
appear on diagrams in the form of rectangular boxes drawn with dashed

40

lines. Figure 3.11 shows a submodel in the top part of the figure and the
resources which belong to the submodel below it.

MODEL ELEMENTS AND DIAGRAMS / CHAP. 3

3.9. NONSTRUCTURAL INFORMATION

The model diagrams we have been discussing represent the flow of
customers visiting the resources. However, there is some information which
is pertinent to the model which does not appear explicitly in the diagrams.
Since the customers are not shown on the diagram, their attributes are also
not displayed. The assignments made to the attributes are given at set
nodes, and the routing decisions based on the values of the attributes are
illustrated. In a similar fashion, global variables are not depicted in the
diagrams, but their assignments and routing decisions based on their values
are shown.

When there are different types of customers with different priorities,
very often the priority levels are not shown on the diagram. When this
information is crucial to understanding the model, it can be represented.
Sometimes when customers visit a service center with many different
classes, it may be difficult to depict the fact that the different classes belong

SEC. 3.9 / NONSTRUCTURAL INFORMATION 41

to the same service center. The mapping of the classes onto the service
centers is important, but is not always necessary for the model diagram.

The tokens allocated to customers are held by the customers until they
are explicitly released. Since the tokens can be allocated according to a
distribution, the number of tokens a customer holds is not shown. Interarri
val time and service time distributions are also not displayed in diagrams.

Most of the information which is omitted from the diagrams is left out
to reduce the complexity of the picture. Even with this information missing
from the diagrams, we can still get a good picture of the flow of work
through the system. This is the main purpose of the diagrams.

3.10. SAMPLE DIAGRAMS

We will illustrate most of the model elements which have just been
discussed in several diagrams in this section. Many more diagrams will be
presented as various models are discussed throughout the remainder of the
book.

The first diagram, Figure 3.12, depicts an interactive computer system
with memory contention. Users at the terminals submit jobs to the comput
er system. The terminals are represented by an infinite server. The jobs
wait in a queue at the allocate node if all four memory partitions are in use.
A memory partition could correspond to a region in some operating systems.
When a memory partition is available, it is allocated to a job which then
receives service at the CPU followed by one of the I/O devices. With a
certain probability the job cycles back through the CPU and 1/O subsystem.
Eventually the job completes, releases its memory partition, and returns to
the terminal. Notice that a job simultaneously holds onto a memory parti
tion and receives service at an active service center when it is in the CPU
and I/O subsystem.

The next diagram, Figure 3.13, illustrates the use of fission and fusion
nodes for producing copies of customers. A customer which goes through
the fission node makes a related copy of itself. The original customer goes
to the CPU and the copy goes to one of the I/O devices. This permits the
simultaneous execution of the customer on two different devices at the same
time if both devices are free. Any customer with a relative which arrives at
the fusion node waits until its relative arrives. The original customer and
the copy are reunited at the fusion node and just one customer proceeds.

Model diagrams give us a concise way of seeing the structure of a
model. These diagrams aid in the construction of models when using

42 MODEL ELEMENTS AND DIAGRAMS / CHAP. 3

modeling packages. In the next section we will briefly discuss some of the
modeling packages which are commonly used.

3.11. MODELING PACKAGES

Modeling packages aid in the construction and solution of models. They
impose some structure on the construction and simplify the accurate solu
tion of a model. Most of the models we discuss could be solved without a
modeling package. The analytic models could be solved by manipulating
mathematical equations. Simulation models could be solved by writing a
program in a higher level language or in a simulation language such as
GASP [133], GPSS [70,71,164], SIMAN [131], SIMSCRIPT [91,146], or
SLAM [135]. However, these approaches will normally be more costly in
terms of the human effort necessary to produce a solution than the use of
an appropriate modeling package.

Modeling packages fall into two categories. There are packages which
are oriented toward the performance evaluation of specific systems. Pack
ages of this type include BEST/1 [39,18,19,20], CMF [23], FIVE [128],
MAP [137], PERFORMS [90], PET [21], SNAP/SHOT [176], the VM

SEC. 3.11 / MODELING PACKAGES 43

CPU

Predictor [11], and XL [29]. The systems modeled by these tools are
mostly the large computer systems and their associated operating systems.
Some modeling packages have data collection and analysis facilities. The
formulation of the model is built into the tool, with the model parameters
specified through a language related to the system being modeled.

The other category of modeling packages consists of general-purpose
tools which can be used to model many different types of systems. This
generality is an advantage in that a wide range of systems can be studied,
but it requires that the model formulation be done by the analyst. General-
purpose modeling packages include BORIS [116], CADS [83], COPE
[15,16], Micronet [110], NUMAS [125], Panacea [119,120], PAWS
[84,127], PNET [34], Q-GERT [134], QNA [187,188], QNAP [122,184],
QNET4 [140], RESQ [114, 155-163], SCERT II [136], SNAP [24,25],
STEP-1 [1], and Supernet [35]. These are the kinds of tools the remainder
of the book is about. The discussion will concentrate on the formulation of
models and the effective use of general-purpose modeling packages. Model
elements and diagrams similar to the ones described in this chapter are used
with these types of packages.

44 MODEL ELEMENTS AND DIAGRAMS / CHAP. 3

3.12. FURTHER READING

Most of the model elements and symbols which we discussed in this
chapter are in common usage in the modeling literature and used with
various modeling packages. RESQ makes extensive use of them, and the
publications related to RESQ [114, 155-163] contain much more informa
tion about these model elements and diagrams.

Many papers, books, and reports have been written about modeling
packages. Some of these have been mentioned in Section 3.10. Further
discussions of some of these tools can be found in Reiser and Sauer [142]
and Sauer and MacNair [154], The books by Allen [3], Beizer [17], Ferrari
[62], Kleinrock [95,96], Kobayashi [98], Lavenberg [100], Lazowska,
Zahorjan, Graham, and Sevcik [108], Sauer and Chandy [152], and Trivedi
[183] also provide information about the mathematical methods used in
modeling.

3.13. EXERCISES

3.1 Use the symbols discussed in this chapter to draw a model diagram of
a system you are familiar with.

3.2 The concept of bulk arrivals permits multiple jobs to arrive at a
service center at the same simulated time. Take a sample from a
distribution to determine the number of copies which should arrive
simultaneously and produce this number of arrivals at an active serv
ice center. Draw a model diagram of a bulk arrivals system.

3.3 Draw a model diagram of a system with a finite capacity queue. Send
the arrivals to the sink when the capacity is exceeded.

3.4 Draw a model diagram of a manufacturing system which contains a
buffer where jobs wait for a robot to pick them up one at a time and
move them to a tool subsystem for processing. Assume there are two
robots and three tools in series.

3.5 Draw a model diagram of a simple street intersection with a traffic
light and traffic flowing in one direction only. Make sure you repre
sent the traffic light changing from red to green.

3.6 Draw a model diagram which explicitly represents round-robin sched
uling.

SEC. 3.13 / EXERCISES 45

3.7 Draw a model diagram of machine breakdowns and repair by a single
repair person.

3.8 Draw a model diagram of a parking lot with one hundred spaces and
send the cars to the sink when the parking lot is full.

3.9 Draw a model diagram of a full duplex line which is used to send
messages between three different locations.

3.10 Draw a model diagram of a portion of a communication network
which contains buffer contention and acknowledgements to permit
the transmission of additional messages.

3.11 Draw a model diagram which contains multiple servers and picks one
of the servers at random.

3.12 Draw a model diagram which sequences jobs to their original order of
arrival after they come out of an infinite server. (Jobs coming out of
an infinite server can be in a different order than the order of their
arrival.)

CHAPTER 4

ANALYTIC SOLUTIONS
An analytic solution is conducted by solving equations which relate the

model parameters to the performance measures. For example, if we are
working with an open model and are given the routing probabilities, the
mean interarrival time, and the mean service times of the resources, it is
easy to calculate the utilization, throughput, mean queue length, and mean
queueing time at each resource. The next two sections discuss the solutions
of a simple open model and a simple closed model. The purpose of this
explanation is to contrast analytic solutions with the method of simulation
presented in Chapter 5.

4.1. SOLUTION OF AN OPEN MODEL

An open model contains at least one source where customers enter the
model. By using a source, we are assuming that there is an infinite popula
tion from which we are producing customers. In an open model, there is
also a sink where customers leave the model. Figure 4.1 is a diagram of an
open model which might represent a simple computer system. After a
customer is generated at the source, it visits the CPU. From the CPU, the
customer goes to either the disk or the drum. After service at one of the
I/O devices, the customer leaves through the sink.

DISK

46

SEC. 4.1 / OPEN MODEL 47

As a concrete representation of this model, we will present a version of
it constructed using RESQ. RESQ uses some language which is slightly
different from the corresponding terms found in some of the literature
related to queueing networks. These differences will be identified as the
model is presented. The first two items in the RESQ model are the model
name and the method of solution. RESQ uses the term numerical for an
analytic solution.

MODEL:EX4.1
METHOD:numerical

The next section of the model contains the definition of each of the
resources in the model. A service center is called a queue in RESQ. The
type of queue used in this model is related to the scheduling algorithm or
queueing discipline. For this simple system, the queueing discipline is
first-come-first-serve. A RESQ class is a waiting at a service center. Each
class has a service time associated with it and possibly a priority level. The
service time given in this example is the mean of an exponential distribu
tion. This is used to determine the amount of service requested each time a
customer visits the service center. This model contains three service
centers—the CPU, a disk, and a drum.

QUEUE:cpuq
TYPE:fcfs
CLASS LIST:cpu

SERVICE TIMES:.02
QUEUE:diskq

TYPE:fcfs
CLASS LIST:disk

SERVICE TIMES:.044
QUEUE:drumq

TYPE:fcfs
CLASS LIST:drum

SERVICE TIMES:.008

After defining the service centers, the RESQ model contains a defini
tion of the path the customers follow. The path is called a chain in RESQ.
Since this is an open model, there is a definition for the source where the
customers enter the model. Associated with the source is an interarrival time
distribution. Again we will use an exponential distribution for the interarri
val times. RESQ uses the names of the classes to define which resources the
customers visit. Here we see the customers go from the source SRC to the
CPU. After completing service at the CPU, the customer goes to either the
DISK or the DRUM. The routing decision is based on a probability. With a
probability of 0.2, the customer will go to the DISK. With one minus this
probability, the DRUM will be selected. After finishing service at one of the
I/O devices, the customer will leave through the SINK.

48 ANALYTIC SOLUTIONS / CHAP. 4

CHAIN:chn
TYPE:open
SOURCE LIST:src

ARRIVAL TIMES:.0209
:src->cpu->disk drum;.2 .8->sink

END

If we use RESQ to solve this model, the following performance meas
ures are calculated:

ELEMENT UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
CPUQ 0.95694 47.84688 22.2221 1 0.46444
DISKQ 0.42105 9.56938 0.72727 0.07600
DRUMQ 0.30622 38.27750 0.44138 0.01153

These performance measures can be calculated by a modeling package
very simply. The first part of the calculation involves finding the visit ratio
which is the average number of times a customer visits a service center.
Each customer makes one visit to the CPU, 0.2 visits to the disk, and 0.8
visits to the drum. For this model the visit ratios are equal to the routing
probabilities. In general, it is necessary to solve a set of simultaneous linear
equations relating the flow into and out of each resource. The reciprocal of
the mean interarrival time is equal to the arrival rate (A R), and the through
put (TF) at each service center is equal to the arrival rate times the visit
ratio (LR). The arrival rate is equal to 1 divided 0.0209 which is 47.84688.
For this model, the throughput at the CPU is equal to

TP = AR xV R = 47.84688x1.0 = 47.84688.
The throughputs at the disk and drum are 47.84688 times 0.2 and 47.84688
times 0.8, which equal the numbers cited in the table.

The utilization (UT) is equal to the service time (ST) multiplied by the
throughput (TP). At the CPU, it is

UT = S T x TP = 0.02x47.84688 = 0.95694.
The disk utilization is 0.044 times 9.56938 or 0.42105, and the drum
utilization is 0.008 times 38.27750. This is equal to 0.30622. For the types
of service centers present in this model, the queueing time (QT) is equal to
the service time divided by one minus the utilization, and the queue length
(QL) is equal to the throughput times the queueing time. This last formula
is just Little’s rule [112], Performing these calculations for the CPU yields a
queueing time of

QT = ST
1 - UT

0.02
1 -0.95694 0.46444

and a queue length of

SEC. 4.1 / OPEN MODEL 49

QL = TPxQ T = 47.84688x0.46444 = 22.22211
Similar calculations for the disk and the drum will produce the numbers
shown above.

4.2. CLOSED MODEL

In a closed model, there is no source and no sink. There are a fixed
number of customers which continue to circulate among the service centers.
Figure 4.2 shows a diagram of the same system which was used in the
previous section, but now it is represented as a closed system.

DISK

The following is a listing of the model. It is exactly the same as the
previous model, except when describing the type of chain. This is a closed
chain with a chain population of four. This might represent a computer
system where the multiprogramming level is four and the load on the system
is very heavy. As soon as one job completes, another job replaces it so that
the multiprogramming level never varies.

MODEL:EX4.2
METHOD:numerical
QUEUE:cpuq

TYPE:fcfs
CLASS LIST:cpu

SERVICE TIMES:.02
QUEUE:diskq

TYPE:fcfs
CLASS LIST:disk

SERVICE TIMES:.044

50 ANALYTIC SOLUTIONS / CHAP. 4

QUEUE:drumq
TYPE:fcfs
CLASS LIST:drum

SERVICE TIMES:.008
CHAIN:chn

TYPE:Closed
POPULATION:4
:cpu->disk drum;.2 .8->cpu

END

If we solve this model with RESQ, we will obtain the following performance
measures. Notice that the utilization and throughput numbers are very close
to the numbers obtained in the open model. This was done by design by
specifying an arrival rate to the open model which would produce about the
same throughput as the closed model with four customers. However, notice
the difference in the queue lengths and queueing times. When we do not
have an infinite population, these last two performance measures can be
significantly different.

ELEMENT UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
CPUQ 0.95675 47.83765 2.91501 0.06094
DISKQ 0.42097 9.56753 0.66303 0.06930
DRUMQ 0.30616 38.27011 0.42196 0.01103

The discussion of how these performance measures are calculated will
involve a very simplistic description of the Mean Value Analysis (MVA)
algorithm [141]. When dealing with a closed model, there is no arrival rate.
Therefore, the throughput is more difficult to calculate. We still need to
obtain the visit ratios. They are calculated exactly as in the case of the open
model.

The following items are defined and used in the MVA equations.
n = the number of customers {n=\,...,N)
m = a queue number (m=
VRm = visit ratio for queue m
STm = service time of queue m
QLm{n) = queue length of queue m with n customers
QTm(n) = queueing time of queue m with n customers
TPm(n) = throughput of queue m with n customers

The MVA equations are started with QLm(0) = 0, m = Then
the following equations are solved for each queue as n varies from 1 to N.

Q T J n) = ST (l + Q L (n - 1))

T P = M
n

VR,
2 ------QTXn)

i= \V R„ '

SEC. 4.2 / CLOSED MODEL 51

Q L J n) = T P J n) Q T J n)

When these equations are used with the given visit ratios and service
times, the following intermediate results are obtained.

CPU DISK DRUM
QUEUE 1 2 3
VR 1.0 0.2 0.8
ST 0.02 0.044 0.008

For n = 1 :
QT 0.02000 0.04400 0.00800
TP 28.40909 5.68182 22.72726
QL 0.56818 0.25000 0.18182

For n = 2:
QT 0.03136 0.05500 0.00945
TP 40.05826 8.01165 32.04660
QL 1.25637 0.44064 0.30299

For n = 3:
QT 0.04513 0.06339 0.01042
TP 45.35544 9.07109 36.28435
QL 2.04678 0.57500 0.37822

For n equal to 4, the results shown previously are obtained.

4.3. ADVANTAGES AND RESTRICTIONS

Models which can be solved analytically provide several advantages
over other solution techniques. Therefore, whenever a model can be solved
with an analytic solution, this is the best choice. However, many models
cannot be solved in this fashion. There are many restrictions which must be
adhered to for analytic solutions. First we will discuss the advantages of
solving models analytically, and then we will present the restrictions which
must be met.

An analytic solution gives the exact results for the model which is being
solved. We will see that this is not so when using simulation. However, the
model may not be an accurate representation of the actual system, so the
results may not be close to the actual values. An analytic solution is gener
ally very fast, often two orders of magnitude faster than simulation. Keep in
mind that an analytic model may require a large amount of computation

52 ANALYTIC SOLUTIONS / CHAP. 4

time if it is a closed model with a large number of customers or if there are
many complex types of queues like ones with multiple servers. Since the
model parameters are directly related to the performance measures, the
effects of changes in some model parameters can be easily predicted. Both
open and closed models are permitted. Mixed models which contain both
open and closed chains are also allowed. The active resources are permitted
to have a single server, multiple servers, or an infinite number of servers. A
single server can serve at a fixed rate or can serve at a rate which varies as
the number of customers at the resource changes. We call this a queue
dependent server. Except at a FCFS service center, there can be different
types of customers at an active resource. The different types of customers
are routed to different classes at the resource. Each class has an associated
service time distribution and provides a place for customers to wait before
being served.

With all of these advantages you might think that there would not be a
need for other types of solution methods. In actual practice, many models
are solved with other techniques. This is because there are many complexi
ties which exist in real systems which cannot be dealt with efficiently with
an analytic approach. When solving a queueing network model analytically,
there are a number of restrictions which must be satisfied. Many of these
restrictions are not applicable when solving a single resource model. There
are many formulas which can be applied with a single resource which do not
hold when dealing with a network. The following restrictions apply to
solving queueing networks. The interarrival time distribution at sources
must be exponential. The routing decisions must be made by specifying a set
of branching probabilities. We will see more general ways that these deci
sions can be made when using simulation. Simultaneous resource possession
is not permitted. This would occur when a job acquired a passive resource
and held onto that passive resource while receiving service at one or more
active resources. Only active resources are allowed in an analytic model.
Only sources, classes, and sinks are permitted in the routing. The queueing
disciplines are limited to four types: first-come-first-served (FCFS), proc
essor sharing (PS), last-come-first-served (LCFS), and infinite server (IS).
For a resource with FCFS scheduling, there are further restrictions which
require that the service time distribution be exponential and that all classes
at the resource have the same mean service time. Priority queueing disci
plines are not permitted. Each waiting line must have an infinite capacity.
Finite waiting rooms are not allowed. For a multiserver resource, every
server must serve at the same rate. The only performance measures availa
ble are utilization, throughput, mean queue length, mean queueing time, and
the queue length distribution. The distribution of response time cannot be
calculated for most models.

SEC. 4.3 / ADVANTAGES AND RESTRICTIONS 53

Because many of these restrictions are violated in real systems, analytic
models cannot be used in modeling many systems. However, we recom
mend that a model be started with a simple analytic approach. Even if the
model is not very realistic, it will provide a check on a more realistic model
which is solved by another solution method. Also, when it is necessary to
evaluate a model for a large set of parameter values, simulation is usually
too time consuming. In this case, an analytic model could provide a large set
of results quickly.

4.4. APPROXIMATIONS

There are many models which cannot be solved analytically because
one or more of the above restrictions are violated. Some of these models
can be solved by special techniques without resorting to simulation. The
main reason for developing approximation techniques is to be able to solve
the model in less time than would be required to simulate it.

There are many different types of approximation techniques. One
approach which is very popular for representing simultaneous resource
possession is to substitute a flow equivalent server for the passive resource
and all of the active service centers visited while holding an element of the
passive resource. Figure 4.3 shows an example of a model with a passive
resource representing memory partitions. These memory partitions are
allocated to customers while they visit the CPU and I/O devices. This
model violates one of the restrictions for an analytic solution.

To approximately solve this model, it is decomposed into a submodel
containing the CPU and I/O devices, and the aggregate model with the
terminals and a flow equivalent server in place of the submodel. The
submodel and model are shown in Figure 4.4. They both satisfy the restric
tions discussed above and can be solved analytically. The parameters for
the flow equivalent server are found by solving the submodel for all popula
tions from one up to the number of elements of the passive resource. The
submodel throughputs from each solution are used as the rates of the flow
equivalent server.

Let us take a look at a concrete example of this technique. The follow
ing is a simulation model which corresponds to the diagram shown in Figure
4.3. Interactive users at a set of terminals submit requests to a computer
system. Before entering the system, a request must obtain a memory parti
tion. There are only four memory partitions available in this system. If they
are all in use, the request must wait until one is free. After a request is
allocated a memory partition, it receives service at the CPU and one of the
I/O devices. With a specified probability, it will cycle back through the

54 ANALYTIC SOLUTIONS / CHAP. 4

Figure 4.3. Model with Simultaneous Resource Possession

FLOPPY

Figure 4.4. Submodel and Model with Flow Equivalent Server

CPU and I/O device again. When the request has completed, it releases the

memory partition and sends a response to the terminal.

SEC. 4.4 / APPROXIMATIONS 55

MODEL:EX4.3
METHOD:simulation
QUEUE:floppyq

TYPE:fcfs
CLASS LIST:floppy

SERVICE TIMES:0.22 /* seconds */
QUEUE:diskq

TYPE:fcfs
CLASS LIST:disk

SERVICE TIMES:0.019 /* seconds */
QUEUE:cpuq

TYPE:ps
CLASS L I S T : c p u

SERVICE TIMES:0.05 /* seconds */
QUEUE:terminalsq

TYPE:is
CLASS LIST:terminals

SERVICE TIMES:10 /* seconds think time */
QUEUE:memory

TYPE:passive
TOKENS:4 /* partitions */
DSPL:fcfs
ALLOCATE NODE LIST:getmemory

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:freememory

CHAIN:interactiv
TYPE:closed
POPULATION:30 /* users at the terminals */
:terminals->getmemory->cpu->floppy disk;.1 .9
:floppy->freememory cpu;1/8 1-1/8
:disk->freememory cpu;1/8 1-1/8
:freememory->terminals

This model is solved using simulation because of the passive queue
representing the number of memory partitions. The FLOPPYQ and DISKQ
are FCFS queues like the ones we have seen in the previous models in this
chapter. The CPUQ and TERMINALSQ queues are very similar to these
FCFS queues, except that the queueing disciplines are processor sharing and
infinite server. The MEMORY queue is a passive queue. A passive queue is
chosen to represent the memory contention because we do not know a
priori how much time a job will hold onto a memory partition. This is
determined by the length of time the job spends at the CPU and I/O
devices. The number of tokens at the passive queue represents the number
of memory partitions. GETMEMORY is the allocate node where the memo
ry partitions are acquired by the jobs, and FREEMEMORY is the release
node where they are freed.

56 ANALYTIC SOLUTIONS / CHAP. 4

This is a closed model. The chain population is equal to the 30 termi
nals which are actively using the system. The routing statements should be
easy to follow. The only new feature present in this model which has not
been shown previously is the arithmetic expressions used for the routing
probabilities of choosing the FREEMEMORY or the CPU. With a proba
bility of 1/8, FREEMEMORY is chosen. With a probability of 1 — 1/8, or
7/8, CPU is chosen. This means that on the average a job will cycle
through the CPU and I/O subsystem eight times before returning to the
terminals.

The following results have been obtained from a simulation of this
model. We are omitting any information related to the accuracy of the
simulation results here. The next chapter will discuss this topic.

ELEMENT THROUGHPUT QUEUE LENGTH QUEUEING TIME
TERMINALSQ 2.29243 22.62959 9.75792
MEMORY 2.28742 7.37039 3.22209

To obtain an approximate solution to this model, it is decomposed into
a submodel and an aggregate model which both can be solved by numerical
solution. The following submodel contains a numeric parameter. This varia
ble can be given different values while solving the submodel. This makes the
submodel solution for a range of parameter values very convenient. NUM-
INSYS represents the number of jobs in the computer system. This is varied
from one to four, because four is the maximum number of partitions availa
ble.

MODEL:EX4.4s
METHOD:numerical
NUMERIC PARAMETERS:numinsys
QUEUE:floppyq

TYPE:fcfs
CLASS LIST:floppy

SERVICE TIMES:0.22 /* seconds */
QUEUE:diskq

TYPE:fcfs
CLASS LIST:disk

SERVICE TIMES:0.019 /* seconds */
QUEUE:cpuq

TYPE:ps
CLASS LIST:cpu

SERVICE TIMES:0.05 /* seconds */
CHAIN:interactiv

TYPE:closed
POPULATION:numinsys /* number of jobs in the system */
:cpu->floppy disk;.! ,9->cpu

END

SEC. 4.4 / APPROXIMATIONS 57

The following throughputs are obtained for the CPUQ for the four
values of NUMINSYS. By dividing these throughput values by eight, which
is the average number of cycles through the computer system, we calculate
the rate of service for a flow equivalent server in the aggregate model.

NUMINSYS ELEMENT THROUGHPUT
1 CPUQ 1 1.22334
2 CPUQ 15.88912
3 CPUQ 18.04608
4 CPUQ 19.07506

The rate of service for the COMSYSQ is given as a vector with four
elements. The first element will be used as the service rate when one cus
tomer is present. The second element will be used when there are two
customers, the third when there are three. When there are four or more
customers, the fourth rate will be used. A server with a vector of rates is a
queue dependent server. This flow equivalent server acts very similar to the
computer system submodel with the passive queue for the memory parti
tions.

MODEL:EX4.4a
METHOD:numerical
QUEUE:terminalsq

TYPE:is
CLASS LIST:terminals

SERVICE TIMES:10 /* seconds think time */
QUEUE:comsysq

TYPE:active
SERVERS:1
DSPL:fcfs
CLASS LIST:comsys

WORK DEMANDS:1
SERVER -

RATES:11.22334/8 15.88912/8 18.04608/8 19.07506/8
CHAIN:interactiv

TYPE:closed
POPULATION:30
:terminals->comsys->terminals

END

When the following results from the aggregate model are compared
with the results from the simulation of the original model, we see that they
are very close. This is often the case in performing decompositions of this
type. There will be much more presented about decompositions in the
chapter on submodels.

ELEMENT THROUGHPUT QUEUE LENGTH QUEUEING TIME
TERMINALSQ 2.26988 22.69876 10.00000
COMSYSQ 2.26988 7.30123 3.21658

58 ANALYTIC SOLUTIONS / CHAP. 4

There are many other kinds of approximation techniques. Most of them
are applicable in certain specific situations. These other approximation
techniques will not be discussed here. However, in many cases an approxi
mation approach will be more efficient than using simulation.

4.5. FURTHER READING

The examples presented in this chapter are not representative of all
types of analytic models. The following books provide much more in-depth
information related to analytic solutions of queueing models: Allen [3],
Kleinrock [95, 96], Kobayashi [98], Chapter 3 of Lavenberg [100], Lazows-
ka, Zahorjan, Graham, and Sevcik [108], Sauer and Chandy [152], and
Trivedi [183]. These books should be studied for a better understanding of
analytic queueing network models. Further information on approximation
techniques can be found in Chandy and Sauer [45], Chapter 4 of Lavenberg
[100], and Sauer and Chandy [151].

4.6. EXERCISES

4.1 Calculate the utilization, throughput, mean queue length, and mean
queueing time for a model similar to EX4.1 where the CPU service
time is 0.015, the disk service time is 0.035, the drum service time is
0.01, the mean interarrival time is 0.02, and 30 percent of the jobs go
to the disk and 70 percent to the drum.

4.2 Use the same model parameters as in Exercise 4.1 to solve a closed
model with a customer population equal to 3.

4.3 Think of a simple model which can be decomposed into a submodel
that can be solved separately. Use a flow equivalent server to repre
sent the submodel.

4.4 Discuss the restrictions which must be imposed to solve a queueing
network model with an analytic solution.

4.5 Add an infinite server representing a group of terminals to model
EX4.2. Let the think time be 10 seconds. Find the performance
measures.

4.6 Find the performance measures of a closed model with two service
centers where one is an infinite server and the other a FCFS server.
The service time at the infinite server is 10 hours and 0.5 hours at the
FCFS server. There are 5 jobs in the model. This is called a machine

SEC. 4.6 / EXERCISES 59

repairman model. The infinite server represents the machines operat
ing, and the FCFS server represents the machines being repaired one
at a time.

4.7 Use a closed, cyclic queueing model to represent a service center with
a finite capacity. Let the service time of the finite capacity queue be
0.5 seconds and the capacity be 2. Let the service time of the second
service center be 1 second. This second service center represents a
source of arrivals, where arrivals are discarded when the queue is
saturated.

CHAPTER 5

SIMULATION
Simulation is a method of solution which mimics the behavior of the

system. It is a statistical experiment which observes the behavior of the
model as it evolves over time. We can run the simulation with trace data or
with random numbers which are generated to represent arrival times, service
times and routing probabilities. To use trace data to drive the simulation,
measurements are taken from the system. These measurements can be
arrival times of customers or service times at various devices. These meas
urements can be used by the simulation program in testing other aspects of
the system. The random number approach is a more common way of
simulating systems. The random numbers are not really random. They are
produced by an algorithm according to specified probability distributions.
Section 5.1 discusses random numbers in more detail.

If the model contains one or more sources, the simulation program
schedules the time of arrival of the customers at the sources according to
some probability distribution. The simulator generates the time of arrival of
each customer at the service centers. When a customer arrives, the simula
tion program generates a request for service, that is, a service time. The
program then schedules when a customer is to start its service and when it is
to complete its service. From the time of arrival and the completion time it
can calculate how much time the customer spent at the resource. By keeping
track of all the different times, it can produce the desired performance
measures. This type of bookkeeping performed by the simulator will be
illustrated in Section 5.2.

In order to begin the simulation we need to specify whether there are
to be any customers initially at any of the resources. This is called an
initialization state. A state of the system is just the number of customers at
every resource. For an open model, we might have no customers present
initially. For a closed model, we must place the fixed number of customers
at specific resources. As we run the simulation, the customers will begin to
circulate among the resources. When the simulation stops, the performance
measures which are calculated are random outputs based on the random
numbers used in performing this run. For many simulations, the random
outputs will reach a steady state. Being in a steady state does not mean that
the state remains the same from that point on. Rather, it means that the
distributions associated with the system states have converged to a limiting
state.

60

SEC. 5.1 / RANDOM NUMBERS 61

Many times the results will exhibit transient characteristics. In a real
system, a transient condition would exist initially when the system was
turned on as customers begin to arrive for service. If the arrival pattern does
not change and the system has the capacity to handle the requested service,
a steady state or equilibrium condition may exist.

5.1. RANDOM NUMBERS

Random numbers are produced by an algorithm which produces a
sequence of numbers which follow a specified probability distribution.
Therefore the numbers are not random at all, they just appear as if they are
random. Each number in the sequence is a function of the previous number.
There are many different kinds of random number generators. We will
discuss one which is widely used by many simulation programs.

We will first describe the method of producing random numbers be
tween zero and one. The sequence of random numbers is started with an
initial value called a seed. The formula for obtaining the next value in the
sequence is

Xn = bXn_ j(mod m)

Mod stands for the modulo function. It produces the remainder by dividing
the expression on the left, bX v by m. To use this formula, we need
numbers for b, A0 and m. Once these are specified, this formula can be used
to produce numbers between zero and m minus one. We then divide these
numbers by m to produce uniform random numbers between zero and one.

To produce random numbers from a probability distribution other than
the uniform distribution, we can use the probability distribution function
(PDF). This is a function which has values going from zero to one. A PDF
for an exponential function is shown in Figure 5.1. After generating a
uniform random number U between zero and one, we can find the corre
sponding exponential random number X as shown in the figure.

We can use this type of approach for generating random numbers from
most of the commonly used probability distributions. We can therefore
generate random arrival times, service times, and routing probabilities from
many different probability distributions.

6 2 SIMULATION / CHAP. 5

X
Figure 5.1. Exponential Cumulative Distribution Function

5.2. AN EXAMPLE

As an example of how a simulation works, we will use the closed
central server model which was solved in Section 4.2.

MODEL: EX5. 1
METHOD:simulation
QUEUE:cpuq

TYPE:fcfs
CLASS LIST:cpu

SERVICE TIMES:.02
QUEUE:diskq

TYPE:fcfs
CLASS LIST:disk

SERVICE TIMES:.044
QUEUE:drumq

TYPE:fcfs
CLASS LIST:drum

SERVICE TIMES:.008
CHAIN:chn

TYPE:closed
POPULATION:4
:cpu->disk drum;.2 .8->cpu

CONFIDENCE INTERVAL METHOD:none
INITIAL STATE DEFINITION -
CHAIN:chn

NODE LIST:cpu disk
INIT POP:3 1

RUN LIMITS

SEC. 5.2 / AN EXAMPLE 63

NODES FOR DEPARTURE COUNTS:cpu
DEPARTURES:10

LIMIT - CP SECONDS:10
TRACE:no

END

Except for using simulation as the solution method, this model is the same
as model EX4.2 through the routing information. At the end of simulation
models there are some statements pertaining to simulation. We have not
discussed confidence intervals yet. They will be discussed in Section 5.6. In
order to begin the simulation, the four customers in the closed chain must
be initially placed somewhere. This model places three jobs at the CPU and
one job at the DISK. The model will run until there are ten departures from
the CPU.

We will concentrate our attention on the service requests and comple
tions at the CPU. The service times at the CPU are from an exponential
distribution, so random numbers are employed to generate service times of
each customer. The following table illustrates various times associated with
the CPU for the first ten customers.

CUSTOMER ARRIVAL SERVICE SERVICE DEPARTURE QUEUE
TIME TIME BEGINS TIME TIME

1 0.00000 0.00289 0.00000 0.00289 0.00289
2 0.00000 0.05121 0.00289 0.05410 0.05410
3 0.00000 0.01477 0.05410 0.06887 0.06887
4 0.00494 0.08494 0.06887 0.15381 0.14887
5 0.03642 0.01377 0.15381 0.16758 0.13116
6 0.05520 0.00795 0.16758 0.17552 0.12032
7 0.07143 0.03863 0.17552 0.21415 0.14272
8 0.15437 0.01454 0.21415 0.22869 0.07432
9 0.18031 0.00555 0.22869 0.23424 0.05393
10 0.18201 0.01387 0.23424 0.2481 1 0.06610

TOTALS 0.2481 1 0.86328

The arrival time at the CPU is zero for the first three jobs which were
initialized there. The remaining arrival times are equal to the completion
times of the jobs at one of the I/O devices. The service times are samples
from an exponential distribution with a mean of 0.02. The remaining times
are calculated by the simulation program. The beginning of service is either
the arrival time if the queue is empty or is the departure time of the last
customer. The departure time is equal to the start of service time plus the
service time sample from the distribution. The time a job spends in the
queue is equal to the departure time minus the arrival time. The simulation
program keeps track of all of these numbers to produce the performance
measures.

64 SIMULATION / CHAP. 5

The service times and the queue times are summed to find the total
amount of time the server was busy and the total amount of time jobs spent
at the queue. The utilization can be found by dividing the total service time
by the simulation time. In this example, the utilization is equal to one
because the server was never idle. The mean queueing time is equal to the
total queueing time divided by the number of customers, 0.86328/10, which
equals 0.086328. The mean queue length is equal to the total queueing time
divided by the simulation time, 0.86328/0.24811 = 3.47942. The simula
tion time for this example is the time of the last departure, because we
stopped the simulation after ten customers finished. The throughput can be
calculated using Little’s rule. This is the queue length divided by the queue
ing time, 3.47942/0.086328 = 40.3047.

Notice that these performance measures are not equal to the ones
calculated in Section 4.2. This simulation was run for a very small amount
of time. To obtain more accurate estimates of the performance measures,
the simulation would have to be run for many more completions.

5.3. ADVANTAGES

Using the simulation solution method has many advantages over the
analytic approach. Attached to each customer we may have one or more
attributes. These attributes can be used to save any information about a
customer. An attribute might be used to identify different types of custom
ers. Another attribute could be used as a counter to insure that the custom
er goes through a subsystem a specified number of times. An attribute could
be used to determine the service time of a customer. In addition to custom
er attributes, a simulation model may contain global variables. Global
variables are like variables in a programming language. They can be used to
identify any type of condition, and their values are available to all custom
ers. One example of a global variable would be to keep track of the number
of customers present in an open chain. The variable would be incremented
whenever a customer arrived and decremented when a customer went to a
sink.

We have many different types of distributions which can be used for
interarrival times, service times, work demands, allocation and creation of
tokens, and assigning values to variables. The most common distributions
include the constant, discrete, uniform, exponential, branching Erlang,
hyperexponential, and normal. Additional distributions can usually be
constructed by using these distributions in expressions or with other model
ing facilities.

SEC. 5.3 / ADVANTAGES 65

Routing decisions can be made based on the status of simulation
conditions as well as by probabilities. We can test conditions like the queue
length at a resource, whether there are servers or tokens available at a
resource, the number of tokens held by a job, and the number of jobs
related to a specified job. Access to this type of information gives us a lot
of flexibility in determining where a job will go next.

More complex queueing disciplines are permitted with simulation. Both
preemptive and nonpreemptive priority disciplines are available. In addition,
it is possible to construct other disciplines using routing decisions and global
variables. An explicit representation of round-robin scheduling can be
constructed in this fashion.

In addition to the active resources which are available with a numerical
solution, passive resources can be defined when using simulation. Passive
resources permit the representation of simultaneous resource possession,
blocking, finite waiting rooms, and complex algorithms and protocols.

With simulation we are able to produce multiple copies of a customer.
The copies can be unrelated, travel over different paths, be different types
of customers and never be reunited. Or the copies can be related to the
original customer and be gathered together at some time in the future.
Unrelated customers could be used to represent messages which generate
acknowledgements. Related customers could be used to model parallel
processing of a customer at multiple resources.

Of course, there are many disadvantages related to using simulation.
Some of these were discussed in Chapter 4. The advantages of analytic
solutions correspond to the disadvantages of simulation. The next three
sections discuss disadvantages related to run length and statistical variabili
ty.

5.4. RUN LENGTH

How long should we run the simulation program? This is often a
difficult question to answer. To illustrate some of the problems involved in
answering this question, we will look at two simple models. The first model
is a single resource model with customers arriving according to an exponen
tial distribution. The service time distribution is also exponential. In queue
ing theory notation, this type of queue is called an M /M /l queue. Here is
the model:

MODEL:EX5.2

6 6 SIMULATION / CHAP. 5

METHOD:simulation
QUEUE:q1

TYPE:fcfs
CLASS LIST:c1

SERVICE TIMES:.4
CHAIN:ch1

TYPE:open
SOURCE LIST:src
ARRIVAL TIMES:1
:src->c1->sink

CONFIDENCE INTERVAL METHOD:none
INITIAL STATE DEFINITION -
RUN LIMITS -

QUEUES FOR DEPARTURE COUNTS:q1
DEPARTURES:500

LIMIT - CP SECONDS:120
TRACE:no

END

This simulation will not produce confidence intervals. When there is no
initial state definition given, the model starts with no customers present.
The model will run until there are 500 departures from Ql. In running the
model we have continued the simulation by increasing the number of depar
tures and looking at the performance measures at later times. The following
results were produced for different number of departures:

partures Utilization Throughput Queue Length Queueing Time
500 0.37222 0.98429 0.58974 0.59915
1000 0.38558 0.99383 0.60087 0.60196
2000 0.38801 1.01451 0.62648 0.61752
4000 0.39353 1.00925 0.64299 0.63709
8000 0.39634 1.00175 0.64237 0.64125
16000 0.39752 0.99692 0.65163 0.65364
32000 0.39796 0.99348 0.65592 0.66023
64000 0.39962 0.99597 0.65975 0.66242
128000 0.39986 1.00005 0.66287 0.66284

This is a very simple model which we can solve analytically. The true
values of the performance measures are 0.4 for the utilization and 1.0 for
the throughput. The queue length and the queueing time are both equal to
0.66667. We can see that as the simulation is run for a longer time, the
estimates of the performance measures are approaching the true values.
However, it is very difficult with the information shown here to determine
when to stop the simulation. The changes in the performance measures
shown above are an illustration of statistical variability produced by random
numbers. After a discussion of how to use confidence intervals, we will have
more information about how to determine the accuracy of the results.

SEC. 5.4 / RUN LENGTH 67

In addition to the above situation where the results are converging to
some limiting values, some models go through a buildup period called an
initial transient before reaching a steady state. To illustrate this type of
behavior, the model shown in Figure 4.3 will be simulated. We are repeating
the model definition for ease of readability.

MODEL:EX5.3
METHOD:simulation
QUEUE:floppyq

TYPE:fcfs
CLASS LIST:floppy

SERVICE TIMES:.22
QUEUE:diskq

TYPE:fcfs
CLASS LIST:disk

SERVICE TIMES:.019
QUEUE:cpuq

TYPE:ps
CLASS LIST:cpu

SERVICE TIMES:.05
QUEUE:terminalsq

TYPE:is
CLASS LIST:terminals

SERVICE TIMES:10
QUEUE:memory

TYPE:passive
TOKENS:4
DSPL:fcfS
ALLOCATE NODE LIST:getmemory

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:freememory

CHAIN:interactiv
TYPE:closed
POPULATION:30
:terminals->getmemory->cpu->floppy disk;.1 .9
:floppy->freememory cpu;1/8 7/8
:disk ->freememory cpu;1/8 7/8
:freememory->terminals

CONFIDENCE INTERVAL METHOD:none
INITIAL STATE DEFINITION -
CHAIN:interactiv

NODE LIST:terminals
INIT POP:30

RUN LIMITS -
QUEUES FOR DEPARTURE COUNTS:memory

DEPARTURES:50
LIMIT - CP SECONDS:180
TRACE:no

END

6 8 SIMULATION / CHAP. 5

This model definition includes information related to the initial length
of the simulation run. Confidence intervals are not being produced. After
initializing all 30 customers at the terminals, the simulation is run until there
are 50 departures from the MEMORY queue. The following results for the
queue length at the MEMORY queue have been found by continuing the
simulation by increasing the number of departures.

Number of Departures Queue Length
50 7.56759
100 9.26374
500 8.36907
1000 7.83167
2000 7.46833
4000 7.27863
8000 7.36439
16000 7.36102
32000 7.37758

We can see that in the beginning of the run the queue length at the
MEMORY queue is very variable and appears to reach a steady state as the
run increases. To overcome this initial transient condition, we can discard
some portion of the data from the beginning of the run which is not repre
sentative. If we discard 1 percent of the initial portion of the run, the
MEMORY queue length after 4000 departures is 7.28396. This is a slightly
more accurate estimate. The discarding of the initial portion of the simula
tion, in other models where the initial transient is very different from the
rest of the run, can have larger effects on the performance measures.

5.5. DIFFERENT SEEDS

In addition to the types of variability shown in the previous section,
variability in the results can be encountered by running a simulation with
different initial seeds. This will be illustrated by running model EX4.2 for
8000 departures using ten different seeds.

Seed Utilizati
1 0.39634
2 0.39333
3 0.39884
4 0.39091
5 0.39408
6 0.40772
7 0.39654
8 0.41353
9 0.40033
10 0.40402

Throughput
1.00175
1.00299
0.99834
0.99573
0.98063
1.01557
0.99221
1.01695
1.00410
1.00874

Queue Length
0.64237
0.66214
0.64974
0.63717
0.63984
0.70451
0.67504
0.73065
0.67906
0.67813

Queueing Time
0.64125
0.66017
0.65082
0.63990
0.65226
0.69274
0.68019
0.71842
0.67629
0.67224

SEC. 5.5 / DIFFERENT SEEDS 69

An obvious observation from these results is that different random numbers
definitely produce different results. The outcome also illustrates the danger
of using results from one simulation run based on one set of random num
bers. We need some additional information to determine the accuracy of the
results. We need to perform a statistical analysis of the simulation output.
In the next section, we will see how using different random numbers can
help us in determining the accuracy of simulation results.

5.6. CONFIDENCE INTERVALS

One of the most difficult problems concerned with using simulation is
how to determine the accuracy of the simulation estimates. In the last two
sections we discussed the statistical variability of simulation estimates of
performance measures as a function of the random numbers and the length
of the run. There is no corresponding problem associated with solving a
model numerically. When we solve a model numerically, we obtain an exact
result for that model. Any difference betweeri the results from a numerical
model and the actual system is due to inaccuracies in the model or in the
parameters of the model, and not due to inaccuracy of the solution. This is
not the case when using simulation. Additional errors can also come from
the simulation solution itself. Though we usually expect the inaccuracies of
models to be the principal source of error in the performance measures, it is
essential that we attempt to estimate the error introduced by statistical
variability.

The usual method of estimating the variability in simulation results is to
produce confidence interval estimates. Roughly speaking, a confidence
interval is a range of values in which we expect to find the actual perform
ance measure with a specified level of confidence. We can say that the true
value of the performance measure will fall within the confidence interval
with the probability specified by the confidence level. This can be discussed
in more mathematical terms as follows. A point estimate of a performance
measure is an average value of the result over the length of the simulation.
Given some point estimate p, like the mean queueing time at the CPU, we
can produce a confidence interval estimate (p —8,p + S). Associated with
this interval is a probability that the true value is contained within this
interval. This probability, expressed in percent (e.g., 90%), is known as the
confidence level. The quantity S depends on the confidence level. The
higher the confidence level is, the larger S is. We will drop the term
"estimate" from the phrase "confidence interval estimate," but it should be
remembered that a confidence interval is only an estimate. Note that the
true value may lie outside the confidence interval, but this happens only
with a small probability. If a simulation is not run long enough, or if the
performance measure considered is highly variable, then S may be greater

70 SIMULATION / CHAP. 5

than p. In this case p - S may be negative even though the performance
measure must be greater than or equal to zero. Similarly, for performance
measures known to be not greater than one (e.g., utilization), p and 8 may
be such that p + 8> 1.

We will discuss three methods for estimating confidence intervals.
There is no one method which works well in all situations, so we need to be
able to choose an appropriate method.

• The method of independent replications is the preferred
method for estimation of transient conditions. Independ
ent replications may be applied to estimation of equilibri
um characteristics, but one of the following two methods
will usually be preferable for estimating equilibrium char
acteristics.

• The regenerative method is the preferred method for
estimation of equilibrium behavior in models with regen
erative characteristics. These types of characteristics will
be discussed in Section 4.6.2.

• The spectral method is the preferred method for estima
tion of equilibrium behavior in models without regenera
tive characteristics. The spectral method may also be
applied to models with regenerative characteristics.

For models that reach equilibrium, we recommend trying the regenerative
method first. If the model does not exhibit regenerative characteristics, the
spectral method should be used next. In all cases, the method of independ
ent replications will always work, but it usually requires longer run times.
These issues will be discussed further in the following sections along with
their applications. The mathematical methods of constructing confidence
intervals are built into some modeling packages. In this case, we just need to
learn how to apply the different methods which are available.

5.6.1. Replications

A classical method for obtaining confidence intervals is the method of
independent replications. With independent replications we repeat the
simulation run several times with everything except the random number
streams reset to the original initial state for each replication after the first.
The random number streams for the second replication begin where the
streams for the first replication ended; the streams for the third replication
begin where the streams for the second replication ended, and so on.

SEC. 5.6 / CONFIDENCE INTERVALS 71

To demonstrate how independent replications are used, we will simulate
example EX5.2 from Section 5.4. The following information is related to
using this method of generating confidence intervals.

CONFIDENCE INTERVAL METHOD:replications
INITIAL STATE DEFINITION -
CONFIDENCE LEVEL:90 /* percent */
NUMBER OF REPLICATIONS:5
REPLIC LIMITS -

QUEUES FOR DEPARTURE COUNTS:q1
DEPARTURES:32000

LIMIT - CP SECONDS:120
TRACE:no

END

Since the initial state is not given, there are no jobs present initially. The
level of confidence is 90 percent. This will determine the widths of the
confidence intervals that are estimated. The model is run five times with
different random numbers. Each replication is stopped after 32000 custom
ers complete at Ql.

The following results were obtained for this model.

Utilization
0 . 3 9 8 9 4 (0 . 3 9 7 1 7 , 0 . 4 0 0 7 1)

Throughput
1 . 0 0 0 3 6 (0 . 9 9 5 0 8 , 1 . 0 0 5 6 4)

Queue Length
0 . 6 6 2 1 6 (0 . 6 5 7 4 2 , 0 . 6 6 6 9 1)

Queueing Time
0 . 6 6 1 9 3 (0 . 6 5 6 2 6 , 0 . 6 6 7 5 9)

The first value of each of these performance measures is the point estimate.
The confidence interval values are between the parentheses. All of the
confidence intervals are very narrow. These results are very close to the
true values, and the confidence intervals do contain the true values.

Usually we are interested in equilibrium behavior of the modeled
system. In this case we wish to have the replications long so that the effects
of our choice of initial state will not be noticeable. We prefer a few longer
replications to many shorter replications. Usually we choose the number of
replications to be between five and ten. The only significant exception is
when we want the replications short because we want to notice the effects
of our choice of initial state. In this case we would be interested in transient
behavior rather than equilibrium behavior. Then it may be quite reasonable
to have many (20 or more) replications.

72 SIMULATION / CHAP. 5

5.6.2. Regenerative Method

The regenerative method is a second method that can be used to
estimate confidence intervals for equilibrium measures. The principal advan
tages of the regenerative method over replications are that we can make a
single (long) simulation run instead of multiple (shorter) runs and that we
need not be concerned about the effects of the choice of the initial state.
The fact that there is no initial transient problem as with replications will be
explained below. Even though the regenerative method has these advan
tages there are problems also.

With the regenerative method we must pick a "regeneration state,"
which is similar to the initial state. A regeneration state has the following
properties.

• The model periodically returns to the regeneration state.
The periods between occurrences of the regeneration
state are called "cycles."

• When the model enters the regeneration state, the future
behavior of the model depends only on the regeneration
state. This means it is independent of the behavior that
led to the entrance of that state. Because of this inde
pendent behavior, there is no initial transient problem.
Every regeneration cycle, including the first one, behaves
statistically identical to every other cycle.

The most convenient examples of regeneration states are found in Markov
and semi-Markov processes. In a "nice" (semi-) Markov process, each state
is a regeneration state, and except for practical considerations, all of the
states are equally useful. A large subset of extended queueing networks can
be described as (semi-) Markov processes, and these processes will usually
be "nice" unless a queue of the network is saturated or a deadlock is
possible in the network.

The principal practical consideration is that we would like the regenera
tion state to occur frequently during a simulation of reasonable length. By
"frequently" we mean that there be at least some minimum number of
cycles (say 20) during the simulation. If we do not have this property then
we cannot reasonably use the regenerative method.

We would also like the state to be one which is easily detected by the
simulation. For this reason, modeling packages which use the regenerative
method usually only allow regeneration states which are specified by the
number of jobs at each node with the understanding that additional charac

SEC. 5.6 / CONFIDENCE INTERVALS 73

teristics of the states are specified implicitly. These implicitly specified
characteristics include the following.

• Where arrival and service distributions are specified by
the method of exponential stages—for example, branch
ing Erlang or hyperexponential—any arrival and service
times in progress are in the first stage in the regeneration
state.

• At active queues where different orderings of the jobs in
the queue are important—for example, FCFS queueing
discipline—the ordering of jobs of different classes is the
same as at the first occurrence of the regeneration state.

• At passive queues the ordering of jobs at different allo
cate nodes and different numbers of tokens requested is
the same as at the first occurrence of the regeneration
state.

For a further discussion of the regenerative method in general, see
Crane and Iglehart [54, 55], Crane and Lemoine [56], Iglehart [81], Iglehart
and Shedler [82], Chapter 4 of Kobayashi [98], Chapter 6 of Lavenberg
[100], Lavenberg and Sauer [102], Lavenberg and Slutz [103], and Chapter
7 of Sauer and Chandy [152].

The following information is the type required when using the regener
ative method.

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION -
CHAIN:ch1

NODE LIST:cl
REGEN POP:0
INIT POP:0

CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:q1
MEASURES:qt /* mean queueing time */
ALLOWED WIDTHS:5 /* percent */

SAMPLING PERIOD GUIDELINES -
QUEUES FOR DEPARTURE COUNTS:q1

DEPARTURES:16000
LIMIT - CP SECONDS:120
TRACE:no

END

74 SIMULATION / CHAP. 5

This will be used to simulate the M /M /l queue which was simulated in the
previous section. The regeneration state we have chosen is the empty
system. As long as the load on the system is not too large, the open chain
will be empty from time to time. Since the utilization of Q1 is 0.4, this
regeneration state should occur frequently. The initial state is chosen to be
the same as the regeneration state. This is not necessary in all models. If the
initial state is different from the regeneration state, the simulation program
will discard the data from the beginning of the run until the regeneration
state is first entered.

The confidence level is 90 percent again. The regenerative method
allows an automated run length control based on achieving confidence
intervals of a previously specified width. A sequential stopping rule is
employed. Periodically, the program checks the confidence interval of the
mean queueing time at Q1 to see if it is less than 5 percent wide. This
relative allowed width is determined by dividing the confidence interval
width by the point estimate and multiplying by 100 to achieve a percent.
For performance measures, like the utilization, which are between 0 and 1,
we use the absolute width. This is just the confidence interval width, with
out dividing by the point estimate, multiplied by 100 to be a percent. If the
above criterion is satisfied, the run is stopped. If it is not satisfied, the run
continues for another sampling period. For this model the length of each
sequential sampling period will be 16000 departures from Ql.

We could obtain the following performance measures for this model.

These results are not quite as accurate as the ones from the simulation
where we used replications. However, much less run time was used in this
case. This run used only 23.09 seconds as opposed to 71.16 seconds for the
replications solution. The regeneration state which was chosen for this
model occurred 19,291 times. This is a large number of regeneration cycles.

5.6.3. Spectral Method

The spectral method is a third method we could use to estimate confi
dence intervals for equilibrium measures. Most methods for estimating
confidence intervals depend on having items of data that are "independent

Utilization
0.39796(0.39290,0.40302)

Throughput
0.99348(0.98450,1.00245)

Queue Length
0.65592(0.64062,0.67122)

Queueing Time
0.66023(0.64746,0.67300)

SEC. 5.6 / CONFIDENCE INTERVALS 75

and identically distributed." The method of independent replications
achieves this "i.i.d." property by the protocol which repeats the simulation.
The regenerative method depends on being able to observe the i.i.d. proper
ty during the simulation run as the simulation returns to the regeneration
state. The spectral method does not depend on the i.i.d. property. Rather, it
explicitly takes into consideration the correlation between data items in the
simulation—for example, the dependencies between successive queueing
times for a given queue. This is done without user awareness, other than the
availability of confidence intervals. Therefore, the information necessary to
use the spectral method is essentially the same as simulation without confi
dence intervals. A sequential stopping rule is also available with the spectral
method. A significant advantage of the spectral method over independent
replications is that we can make a single (long) simulation run instead of
multiple (shorter) runs. Therefore we do not need to be as concerned about
the effects of the choice of the initial state. The spectral method applies to
equilibrium behavior of all models simulated using extended queueing
networks, not just those with regenerative properties. For a statistical
discussion of the spectral method, see Heidelberger and Welch [75].

Again we will use the M /M /1 queue model for describing how to apply
the spectral method. The following information could be given when using it
to generate confidence intervals.

CONFIDENCE INTERVAL METHOD:spectral
INITIAL STATE DEFINITION -
CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

CONFIDENCE INTERVAL QUEUES:q1
MEASURES:qt
ALLOWED WIDTHS:5

INITIAL PERIOD LIMITS -
QUEUES FOR DEPARTURE COUNTS:q1

DEPARTURES:16000
LIMIT - CP SECONDS:120
TRACE:no

END

Since there is no initial state definition given, the simulation is begun with
no customers present. The confidence level is 90 percent. We are using the
sequential stopping rule to determine when the simulation should stop. The
spectral method will only produce confidence intervals for the mean queue
ing time and the queueing time distribution. Here we use the same stopping
criterion used previously with the regenerative method. The length of the
initial sampling period is 16,000 departures from Ql.

The following results were obtained from a simulation using this infor
mation.

76 SIMULATION / CHAP. 5

Utilization Throughput Queue Length Queueing Time
0 . 3 9 9 0 0 0 . 9 9 5 5 3 0 . 6 6 0 9 1 0 . 6 6 3 8 5 (0 . 6 4 7 9 0 , 0 . 6 7 9 8 0)

The confidence interval produced for the mean queueing time is wider than
the one produced by the regenerative method, but the run using the spectral
method was shorter. This run consumed only 11.14 seconds to produce the
given data.

5.7. HYBRID MODELING

In evaluating a hybrid model, more than one solution method is in
voked. Usually a numerical method is used to solve one or more submodels,
and the results from the submodel solutions are used in conjunction with a
simulation of the rest of the model.

We will present a simple example of a hybrid model. The model is
EX4.3 from Section 4.4. We will use the same decomposition employed
there for solving the central server submodel numerically. However, instead
of replacing the passive queue and the submodel with a flow equivalent
server, the passive queue will be kept in the model. The flow equivalent
server will replace only the central server submodel. This decomposition is
illustrated in Figure 5.2.

Since the submodel can be solved numerically, the substitution of the
flow equivalent server using the service rates derived from solving the
submodel is an exact method of replacing the submodel, at least as far as
mean values of the performance measures are concerned. Since the model
with the flow equivalent server has fewer resources, and therefore fewer
simulation events to schedule, we expect the simulation of this model to be
more efficient than the simulation of the entire model without the flow
equivalent server.

We will use the results from Section 4.4 for the submodel solution.
These results are shown as the rates of the COMSYSQ queue in the model
definition below.

SEC. 5.7 / HYBRID MODELING 77

Figure 5.2. Decomposed Model and Submodel for Hybrid Model

MODEL:EX5.4
METHOD:simulation
QUEUE:terminalsq

TYPE:is
CLASS LIST:terminals

SERVICE TIMES:10 /* seconds think time */
QUEUE:memory

TYPE:passive
TOKENS:4 /* partitions */
DSPL:fcfs
ALLOCATE NODE LIST:getmemory

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:freememory

QUEUE:comsysq
TYPE:active
SERVERS:1
DSPL:fcfs
CLASS LIST:comsys

WORK DEMANDS:1
SERVER -

RATES:11.22334/8 15.88912/8 18.04608/8 19.07506/8
CHAIN:interactiv

TYPE:closed
POPULATION:30

78 SIMULATION / CHAP. 5

:terminals->getmemory->comsys->freememory->terminals
CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION -
CHAIN:interactiv

NODE LIST:terminals
REGEN POP:30
INIT POP:30

CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:memory
MEASURES:qt
ALLOWED WIDTHS:10 /* percent */

SAMPLING PERIOD GUIDELINES -
QUEUES FOR DEPARTURE COUNTS:memory

DEPARTURES:1000
LIMIT - CP SECONDS:120
TRACE:no

END

Notice that the regenerative method is used to estimate confidence
intervals. The initial state places all the users at the terminals. This is also
the regeneration state. The simulation will be run until the relative confi
dence interval width of the mean queueing time at the MEMORY queue is
less than or equal to 10 percent. The following results were obtained from
the simulation.

Throughput
TERMINALSQ 2.26926(2.24314, 2.29538)
MEMORY 2.26926(2.24314, 2.29538)

Queue Length
TERMINALSQ 22.51093(22.19072,22.83113)
MEMORY 7.48906 (7.16886, 7.80927)

Queueing Time
TERMINALSQ 9.91995(9.78835,10.05155)
MEMORY 3.30022 (3.1 3727, 3.46317)

It is difficult to compare the results from the various solution methods.
We do not know the true values, and we do not know how accurate the
results from the original simulation are because no confidence intervals were
produced.

The main advantage of using a hybrid modeling approach is to reduce
the number of events which must be simulated by replacing one or more
portions of the model with resources which behave like the original model.
The method employed to obtain the parameters of the substituted resource
must be more efficient than the time necessary to solve the substituted
portion of the original model. For a further discussion of hybrid modeling

SEC. 5.7 / HYBRID MODELING 79

see Browne, Chandy, Brown, Keller, Towsley, and Dissley [33], Chiu and
Chow [46], and Schwetman [168]. We will have more to say about hybrid
modeling in Chapter 6 when we discuss decomposition.

5.8. FURTHER READING

For more information related to random numbers see the references by
Knuth [97], Lewis, Goodman, and Miller [109], and Chapter 5 of Laven-
berg [100], There have been many books written about simulation. Some of
the better ones are Banks and Carson [9], Fishman [64, 65], Gordon [71],
Kleijnen [92, 93], Chapter 4 of Kobayashi [98], Chapters 6 and 7 of Laven-
berg [100], Law and Kelton [106], Maisel and Gnugnoli [117], Pritsker and
Pegdon [135], Schriber [164], and Shannon [171].

5.9. EXERCISES

5.1 Use the random number generator discussed in Section 5.1 with
m=32, b= 9 and XQ =1 to generate the next five numbers in the
sequence.

5.2 Given the following five arrival times to a single service center (0.2,
0.6, 2.2, 2.6 and 3.0) and corresponding service times (0.8, 0.4, 1.2,
0.2, 0.2), calculate when service begins, the departure time, and the
queue time of each of the five customers. If the total simulation time
is 4.0 time units, calculate the utilization, the mean queueing time, the
mean queue length, and the throughput of the service center.

5.3 Discuss the advantages and disadvantages of using simulation as a
modeling tool.

5.4 Simulate an M /M /l model like EX5.2 with the service time changed
to 0.9. Run it for an increasing number of departures and notice how
long it takes to approach the actual values.

5.5 Use a different seed for the random number generator for simulating
the model discussed in Exercise 5.4.

5.6 Use a confidence interval method to produce confidence intervals for
the model discussed in Exercise 5.4.

CHAPTER 6

MODEL STRUCTURE
A submodel is a portion of a model containing parameters which can

be assigned values. A submodel may contain any subset of resources
present in the model, and we may make one or more copies of the submo
del. Submodels can be used to clarify the structure of a model, to avoid
duplication of effort within a model, to permit sharing of parts of models, to
introduce variability in the model structure and, with decomposition, to
solve the submodel separately and replace the submodel with a flow equiva
lent server.

The structure of the model can be clarified by constructing submodels
for the major subsystems to be represented. The submodels can be used to
represent high-level abstractions of the subsystems which can be easily
connected to form the overall system. If we have a model of a system which
has a CPU and an I/O subsystem, we could construct a submodel represent
ing the CPU and another submodel representing the I/O subsystem. The
I/O submodel could also be decomposed into submodels nested within it
representing each 1/O device.

If a model contains similar subsystems, we could construct a submodel
representing one copy of the subsystem with parameters which will capture
the differences. Then the submodel can be duplicated for each subsystem
with different values supplied for each copy of the submodel. In a communi
cation network with several similar host computers, a submodel representing
one host could be constructed and easily duplicated for each host needed in
the model.

Many models contain subsystems which are similar to those used in
other models. Submodels facilitate the use of portions of models. If a
submodel of a CPU with round-robin scheduling has been constructed, this
submodel can be used in many different models.

Very frequently, models have a requirement ,for having a variable
number of resources. The number of resources can be specified as a model
parameter, and a submodel can be built to represent one of the resources.
Some modeling packages permit an arbitrary number of copies of the sub
model to be created based on the value of a model parameter. A simple
example of this is a model of an I/O subsystem that we want to evaluate for
a variable number of I/O devices. This can be easily represented by using a
submodel of one device and making any number of copies of it.

8 0

SEC. 6.1 / STRUCTURE CLARIFICATION 81

Hierarchical decomposition is a widely used technique for simplifying
the solution of certain types of models. The model is decomposed into one
or more submodels which are solved separately without the remainder of the
model. Results from the submodel solution are used to characterize a flow
equivalent server which is used in place of the submodel in an aggregate
model. The flow equivalent server is usually a queue dependent server with
appropriately chosen service rates. This decomposition and substitution can
be accomplished by using any solution technique for solving the submodels
and the aggregate model.

6.1. STRUCTURE CLARIFICATION

A good way to approach the modeling of a complicated system is to
identify major subsystems and structure the model around these subsystems.
A very high-level view of the system can be refined in a stepwise fashion by
adding more and more details to the model. The model should consist of
submodels which correspond to the major subsystems. The submodels can
be defined at a high level. As time permits and as more accuracy is needed,
these submodels can include more details and even have submodels defined
within them. This block structuring helps to clarify how the model func
tions.

The following model shown in Figure 6.1 is a more detailed version of
model EX4.2 which was diagramed in Figure 4.2.

MODEL:EX6.1
METHOD:simulation
QUEUE:diskq

TYPE:fcfs
CLASS LIST:disk

SERVICE TIMES:.044
QUEUE:drumq

TYPE:fcfs
CLASS LIST:drum

SERVICE TIMES:.008
SUBMODEL:rrqueue /*round robin queue*/

NUMERIC PARAMETERS:mean_serve quantum overhead
CHAIN PARAMETERS:chn
QUEUE:q

TYPE:fcfs
CLASS LIST:els

SERVICE TIMES:constant(min(jv(0),quantum)+overhead)
SET NODES:set_total
ASSIGNMENT LIST:jv(0)=exponential(mean_serve)
SET NO DE S: s e t _ r e m a i n
ASSIGNMENT LIST:jv(0)=jv(0)-min(jv(0),quantum)
DUMMY NODES:dummy_out

82 MODEL STRUCTURE / CHAP. 6

CHAIN:chn
TYPE:externa 1
INPUT:set_total
OUTPUT:dummy_out
:set_total->cls->set_remain->cls dummy_out;if(jv(0)>0) if(t)

END OF SUBMODEL RRQUEUE
INVOCATION:epu

TYPE:rrqueue
MEAN_SERVE:0.02
QUANTUM:0.02
OVERHEAD:0.0002
CHN:chn

CHAIN:chn
TYPE:closed
POPULATION:4
:cpu->disk drum;.2 ,8->cpu

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION -
CHAIN:chn

NODE LIST: disk drum
REGEN POP: 3 1
INIT POP: 3 1

CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:diskq
MEASURES:qt
ALLOWED WIDTHS:8 /* percent */

SAMPLING PERIOD GUIDELINES -
CYCLES:300

LIMIT - CP SECONDS:90
TRACE:no

END

Model EX4.2 was simple enough to solve numerically. Here we have
replaced the CPU with a submodel which explicitly represents round-robin
scheduling. In order to do this we will use simulation as the solution tech
nique. The two queue definitions for the I/O devices are exactly the same
as the previous model. The submodel for the RRQUEUE contains the
modeling constructs necessary to depict the more complicated scheduling
algorithm.

Numeric parameters in a submodel allow us to use symbolic names in
the submodel definition which are given values at a later time. The chain
parameter enables the chain defined in the submodel to be attached to a
chain outside the submodel. When a customer enters the submodel, the total
service demanded is assigned to a customer attribute. In RESQ the customer
attributes are called job variables and identified by the keyword JV. Each
customer has a vector of job variables which can be indexed starting at
zero. For each customer, JV(0) is set equal to a sample from an exponen
tial distribution which represents the total service demand. The service time

SEC. 6.1 / STRUCTURE CLARIFICATION 83

DISK

at the CPU will be equal to the round-robin quantum or the remaining
service time, whichever is smaller, plus some overhead connected with
system processing.

After receiving service at the CPU, the remaining service time is
calculated by subtracting the smaller of the quantum or the remaining time.
This again is stored in a customer attribute whose value is tested. If more
service is necessary, the customer is routed back to the CPU. If the service
is completed, the customer leaves the submodel.

In RESQ an invocation is a way of making a copy of a submodel. We
will see later that there can be many invocations of the same submodel.
When the submodel is invoked, the submodel parameters are assigned
values. The parameter values given imply that the total service requested by
each customer will be from an exponential distribution with mean 0.02, the
quantum is 0.02 and the overhead, 0.0002. The routing statements in the
model are exactly the same as in the previous version of the model.

This model uses the regenerative method for constructing confidence
intervals. The regeneration state is the same as the initial state. There are
three customers at the disk and one customer at the drum. The level of

84 MODEL STRUCTURE / CHAP. 6

confidence is 90 percent. The sequential stopping rule is employed to check
the accuracy of the confidence interval of the mean queueing time at the
DISKQ. This condition will be checked at multiples of 300 regeneration
cycles, and the simulation will be terminated when the accuracy condition is
less than or equal to eight percent.

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS
NUMBER OF CYCLES

633.89233
59.91
77186

900

These summary statistics show how much simulated time and process
ing time expired. The number of events is equal to the total number of
completions at all queues; 900 regeneration cycles occurred for this run.

Element
CPU. Q
DISKQ
DRUMQ

Utilization
0.96197(0.95860,0.96534)
0.41135(0.39475,0.42794)
0.30078(0.29614,0.30542)

Throughput
74.79817(74.43318,75.16315)
9.32019 (9.03948, 9.60091)
37.64676(37.22142,38.07210)

Element
CPU.Q
DISKQ
DRUMQ

Queue Length
2.95755(2.92992,2.98517)
0.63162(0.59358,0.66967)
0.41083(0.40217,0.41950)

Queueing Time
0.03954(0.03915,0.03993)
0.06777(0.06546,0.07008)
0.01091 (0.01073,0.01 109)

Although this model is not the same as model EX4.2, many of these
results are close to the results from the previous model. The CPU through
put is not close to the previous result because some customers go through
the CPU more than once. The CPU mean queueing time is also different
because of the round-robin scheduling.

We could now take this model and add further details. The CPU
submodel could be refined more to represent other complexities. A new
submodel could be defined to capture a more realistic I/O subsystem. This
stepwise refinement could be continued to any level of detail desired.

6.2. EASE OF REPETITION

A frequent use of submodels is to repeat similar portions of a model.
A submodel can be defined with parameters which can be assigned different
values for each invocation. This ease of repetition simplifies the construc
tion of many models.

To illustrate this feature, the following model is a simple representation
of a manufacturing system with three tools. Figure 6.2 shows the model

diagram. This model is based on one from Oates [129].

T00L2

SEC. 6.2 / EASE OF REPETITION

i il li i

TRANSIN PTOOL^i01•3 0 r-^H>r
1-PT00L

TRANSOUT!

+ 3 0

L__ !

Figure 6.2. Three Invocations of a Tool Submodel

The TOOLSUB submodel contains three parameters. TRANSTIME will
be used as the mean of an exponential distribution for the amount of time it
takes to transfer a part to a tool, to bypass the tool, or to transfer the part
out of the subsystem. TOOLTIME is the service time for parts which
require service at the tool. PTOOL is a branching probability. Parts enter
the submodel at the transfer input unit. With a probability of PTOOL they
go to the tool. With one minus this probability, they bypass the tool. All
parts go through the output transfer unit.

There are three invocations of the TOOLSUB submodel. Each one has
a different set of parameter values. The routing shown at the bottom illus
trates the order in which parts visit the tools.

MODEL:EX6.2
METHOD:numerical
SUBMODEL:toolsub

NUMERIC PARAMETERS:transtime tooltime ptool
CHAIN PARAMETERS:chn
QUEUE:transinq

TYPE:fcfs
CLASS LIST:transin

8 6 MODEL STRUCTURE / CHAP. 6

SERVICE TIMES:transtime
QUEUE:toolq

TYPE:fcfs
CLASS LIST:tool

SERVICE TIMES:tooltime
QUEUE:t ransoutq

TYPE:fcfs
CLASS LIST:transout

SERVICE TIMES:transtime
CHAIN:chn

TYPE:external
INPUT:transin
OUTPUT:transout
: transin->tool transout;ptool 1-ptool
:tool->transout

END OF SUBMODEL TOOLSUB
INVOCATION:tooll

TYPE:toolsub
TRANSTIME:4
TOOLTIME:20
PTOOL:.75
CHN:line

INVOCATION:tool2
TYPE:toolsub
TRANSTIME:5
TOOLTIME:22
PTOOL:.8
CHN:line

INVOCATION:tOol3
TYPE:toolsub
TRANSTIME:3
TOOLTIME:15
PTOOL:.6
CHN:line

CHAIN:line
TYPE:open
SOURCE LIST:src
ARRIVAL TIMES:25
:src->tool1->tool2 tool3;.3 ,7->sink

END

6.3. SHARING BETWEEN MODELS

Frequently, different models contain sections representing similar
subsystems. It is convenient to be able to easily share portions of models in
other models. Any part of a model can be placed in a separate file or as a
member in a library. Then these files or members can be shared by many
models.

SUBMODEL:rrqueue /*round robin queue*/

SEC. 6.3 / SHARING BETWEEN MODELS 87
NUMERIC PARAMETERS:mean_serve quantum overhead
CHAIN PARAMETERS:chn
QUEUE:q

TYPE:fcfs
CLASS LIST:els

SERVICE TIMES:constant(min(jv(0),quantum)+overhead)
SET NODES:set_total
ASSIGNMENT L I S T : j v (0) = e x p o n e n t i a l (m e a n _ s e r v e)
SET NODES:set_remain
ASSIGNMENT LIST:jv(0)=jv(0)-min(jv(0) ,quantum)
DUMMY NODES:dummy_out
CHAIN:chn

TYPE:external
INPUT:set_total
OUTPUT:dummy_out
:set_total->cls->set_remain->cls dummy_out;if(jv(0)>0) if(t)

END OF SUBMODEL RRQUEUE

Figure 6.3. Model with Included Submodel

If we remove the RRQUEUE submodel from model EX6.1 and place it
in a separate file, then, as shown in Figure 6.3, we can include it in any
other model. The model that follows is similar to model EX4.3, but with the
RRQUEUE submodel included and used in place of the original CPU queue
definition.

8 8 MODEL STRUCTURE / CHAP. 6

MODEL:EX6.3
METHOD:simulation
QUEUE:floppyq

TYPE:fcfs
CLASS LIST:floppy

SERVICE TIMES:0.22 /* seconds */
QUEUE:diskq

TYPE:fcfs
CLASS LIST:disk

SERVICE TIMES:0.019 /* seconds */
QUEUE:terminalsq

TYPE:is
CLASS LIST:terminals

SERVICE TIMES:10 /* seconds think time */
QUEUE:memory

TYPE:passive
TOKENS:4 /* partitions */
DSPL:fcfs
ALLOCATE NODE LIST:getmemory

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:freememory

INCLUDE:rrqueue
INVOCATION:cpu

TYPE:rrqueue
MEAN_SERVE:0.05
QUANTUM:0.05
OVERHEAD:0.0005
CHN:interactiv

CHAIN:interactiv
TYPE:closed
POPULATION:30 /* users at the terminals */
:terminals->getmemory->cpu->floppy disk;.1 .9
:floppy->freememory cpu;1/8 1-1/8
:disk->freememory cpu;1/8 1-1/8
:freememory->terminals

CONFIDENCE INTERVAL METHOD:replications
INITIAL STATE DEFINITION -
CHAIN:interactiv
NODE LIST:terminals

INIT POP:30 /* users at the terminals */
CONFIDENCE LEVEL:90
NUMBER OF REPLICATIONS:5
REPLIC LIMITS -

QUEUES FOR DEPARTURE COUNTS:memory
DEPARTURES:2000

LIMIT - CP SECONDS:120
TRACE:no

END

6.4. VARIABILITY IN MODEL STRUCTURE

The previous examples of using submodels have all involved a fixed
number of invocations of each submodel. Often we would like a model to
have a variable number of similar devices. Figure 6.4 and the following
model illustrate an example of this type of approach.

SEC. 6.4 / VARIABILITY IN MODEL STRUCTURE 89

10(1).

This is a model which is solved numerically. It contains a CPU and an
arbitrary number of I/O devices. The number of I/O devices is specified as
a numeric parameter named NIOS. The submodel definition contains a
single queue for one of the I/O devices. The invocation uses a vector
notation to produce NIOS copies of the submodel IOSUB. The routing in
the model specifies that each I/O device will be branched to with the same
probability.

MODEL:EX6.4
METHOD:numerical
NUMERIC PARAMETERS:nios
QUEUE:cpuq

TYPE:ps
CLASS LIST:cpu

SERVICE TIMES:0.05
SUBMODEL:iosub

90 MODEL STRUCTURE / CHAP. 6

CHAIN PARAMETERS:chn
QUEUE:devlceq

TYPE:fcfs
CLASS LIST:device

SERVICE TIMES:0.10
CHAIN:chn

TYP E :externa I
INPUT:device
OUTPUT:device

END OF SUBMODEL IOSUB
INVOCATION:1 0 (nios)

TY P E :iosub
C H N :chn

CHAIN:chn
TY P E :closed
POPULATION:10
:cpu->io (*) .input;1/nios
:1 0 (*).output->cpu

END

When we solve this model and specify the number of I/Os as two and
three, we obtain the following results.

NIOS Element Utilization Throughput Queue length Queueing time
2 CPU 0.83333 16.66666 3.33333 0.20000

10(1) 0.83333 8.33333 3.33333 0.40000
10(2) 0.83333 8.33333 3.33333 0.40000

3 CPU 0.95078 19.01563 5.27969 0.27765
10(1) 0.63385 6.33858 1.57344 0.24823
10(2) 0.63385 6.33858 1.57344 0.24823
10(3) 0.63385 6.33858 1.57344 0.24823

6.5. DECOMPOSITION

Hierarchical decomposition is becoming a technique which is used in
modeling certain types of systems. To decompose a model, the model is
hierarchically structured with submodels which are solved individually.
Results from each submodel solution are used to characterize a flow equiva
lent server which replaces the submodel. For models which cannot be solved
analytically, decomposition may yield submodels and aggregate models
which can all be solved analytically. An aggregate model is just a model
with one or more submodels replaced by flow equivalent servers. Theoreti
cal work which provides justification for using this approach can be found
in Chandy, Herzog, and Woo [42] and Courtois [50, 52],

Even if the decomposed model does not produce submodels and aggre
gate models that can be solved analytically, decomposition could still be an
attractive solution technique. If a model can be decomposed into a submo

SEC. 6.5 / DECOMPOSITION 91

del which can be solved analytically and an aggregate model which must be
simulated, the simulation of the aggregate model will frequently be more
efficient than the original simulation. This is because the flow equivalent
server requires only a single event in place of the many events required in
the original submodel.

Unfortunately, there are some disadvantages to using decomposition.
In Chapter 4 we mentioned that decomposition is an approximate solution
as opposed to an exact representation of the system. Usually, only mean
values of the performance measures may be obtained. It is difficult to
calculate performance measures for the resources in the submodel. Com
monly, only the results for the resources in the aggregate model are report
ed. It is difficult to determine the simulation run lengths and to generate
confidence intervals. These last two issues are addressed in Blum, Donatiel-
lo, Heidelberger, Lavenberg, and MacNair [22],

There are several modeling situations which are particularly amenable
to decomposition. When the submodel can be solved analytically, this is
usually an ideal situation for using decomposition. An example is a model
that contains only one queue which violates the restrictions for an analytic
solution. In this case a submodel consisting of all but the queue which
violates the analytic restrictions is constructed. This submodel can be solved
analytically and the aggregate model solved by simulation. Decomposition
will also be worthwhile when simulation has to be used to solve the submo
del, and the aggregate model can be solved analytically if the amount of
simulation run time to solve the submodel is not too large.

When the submodel to be solved has a fixed set of parameters, decom
position could be very fruitful. The results from the submodel solution could
be substituted in an aggregate model, and a parametric study could be
carried out on the aggregate model. This should reduce the time to do the
parametric study. This is true even if the aggregate model must be simulat
ed, because there will be fewer elements in the aggregate model and there
fore fewer events to simulate.

If the time scale of the occurrence of the events in the aggregate model
and the events in the submodel is very different, decomposition should be
beneficial. This occurs when the model is nearly completely decomposable
as discussed by Courtois [50, 51, 52], We encountered this type of situation
when modeling the simultaneous resource possession of the computer system
with memory constraint in Section 4.4. The events which take place in the
computer system after a job has been allocated memory occur much more
frequently than the events outside the computer system.

92 MODEL STRUCTURE / CHAP. 6

If a model contains several identical submodels, decomposition could be
particularly advantageous. The results from solving one of the submodels
could be used as parameters for flow equivalent servers in the aggregate
model. The more identical submodels there are in the model, the more
efficient the decomposition will be.

6.5.1. Analytic Submodel

The following model will illustrate how a submodel which can be solved
analytically can be used to reduce the amount of simulation time necessary
to solve a decomposed model.

C1 AL C2

- * 1

C3M C40—5] C5(0̂ 3O ■ REV-
Figure 6.5. Model with Analytic Submodel

MODEL:EX6.5
METHOD:simulation
QUEUE:q1

TYPE:fcfs
CLASS LIST:c1

SERVICE TIMES:.5
QUEUE:pq

TYPE:passive
TOKENS:2
DSPL:fcfs

SEC. 6.5 / DECOMPOSITION 93
ALLOCATE NODE LISTial

NUMBER OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:re

QUEUE:q2
TYPE:fcfs
CLASS LIST:c2

SERVICE TIMES:.25
QUEUE:q3

TYPE:fcfs
CLASS LIST:c3

SERVICE TIMES:.25
QUEUE:q4

TYPE:fcfs
CLASS LIST:c4

SERVICE TIMES:.25
QUEUE:q5

TYPE:fcfs
CLASS LIST:c5

SERVICE TIMES:.25
CHAIN:chn

TYPE:closed
POPULATION:10
:c1->al->c2->c3->c4->c5->re->c1

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION -
CHAIN:chn

NODE LIST:c1
REGEN POP:10
INIT POP:10

CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:q1
MEASURES:qt
ALLOWED WIDTHS:10

SAMPLING PERIOD GUIDELINES -
CYCLES:50

LIMIT - CP SECONDS:60
TRACE:no

END

This model required 53.52 seconds of run time to reach the level of
accuracy specified. The following decomposed version of this model, with
the submodel solved analytically, required only 23.03 seconds to reach the
same level of accuracy.

MODEL:EX6.51 /* inner submodel */
METHOD:numerical
NUMERIC PARAMETERS:cpop /* solved for values 1 and 2 */
QUEUE:q2

TYPE:fcfs
CLASS LIST:c2

SERVICE TIMES:.25

94 MODEL STRUCTURE / CHAP. 6

QUEUE:q 3
TYPE:fcfs
CLASS LI ST:c3

SERVICE TIMES:.25
QUEUE:q4

TYPE:fcfs
CLASS LIST:c4

SERVICE TIMES:.25
QUEUE:q5

TYPE:fcfs
CLASS LIST:c5

SERVICE TIMES:.25
CHAIN:chn

TYPE:closed
POPULATION:cpop
:c2->c3->c4->c5->c2

END

This submodel only has to be solved for chain populations of one and
two since the passive queue enforces a maximum capacity of two in the
submodel. The throughput is equal to TO when the chain population is one
and is equal to 1.6 for a population of two.

M0DEL:EX6.50 /* Aggregate model */
METHOD:simulation
QUEUE:q1

TYPE:fcfs
CLASS LIST:c1

SERVICE TIMES:.5
QUEUE:pq

TYPE:passive
TOKENS:2
DSPL:fcfs
ALLOCATE NODE LIST:al

NUMBER OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:re

QUEUE:q2 345
TYPE:active
SERVERS:1
DSPL:fcfs
CLASS LIST:c2345

WORK DEMANDS:1
SERVER - /* These come from the */

RATES:1.0 1.6 /* submodel solution. */
CHAIN:chn

TYPE:closed
POPULATION:10
:c1->al->c2345->re->c1

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION -
CHAIN:chn

NODE LIST:Cl

SEC. 6.5 / DECOMPOSITION 95
REGEN POP:10
INIT POP:10

CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:q1 q2345
MEASURES:qt
ALLOWED WIDTHS:10

SAMPLING PERIOD GUIDELINES -
CYCLES:100

LIMIT - CP SECONDS:60
TRACE:no

END

The following results were obtained from a simulation of the original
model and a simulation of the aggregate model using the flow equivalent
server rates calculated analytically for the submodel.

Q1
Run length
Utilization
Throughput
Queue length
Queueing time

Simulation
53.52
0.78806(0.78087,0.79526)
1.58841 (1.58082, 1.59601)
2.35685(2.26633,2.44736)
1.48377 (1.42656,1.54099)

Decomposition
23.03
0.77600(0.76501,0.78700)
1 .55380(1.53660,1.57100)
2.91300(2.78961,3.03.638)
1.87475(1 .8021 3,1.94737)

6.5.2. Simulation Submodel

The model discussed in this subsection is taken from Sauer, MacNair,
and Kurose [159, 160] and Sauer and MacNair [156]. It is a model of
channel contention in an I/O subsystem. See any of these references for a
description of the model.

Figure 6.6 is the model diagram. We will decompose the model so that
the I/O subsystem is solved for multiprogramming levels of one through
four. This submodel cannot be solved numerically, so simulation is used.
The easiest way to solve the submodel is to replace the RRQUEUE submo
del in the original model with a queue with zero service time. This is called
the SHORTQ in the following submodel definition. The throughput through
the SHORTQ is then used as a service rate in a flow equivalent server in
the aggregate model. The following throughputs were produced by simulat
ing this submodel for different multiprogramming levels: 42.7, 55.3, 61.3,
and 65.7.

96 MODEL STRUCTURE / CHAP. 6

MODEL:EX6.61 /* I/O submodel */
METHOD:simulation
NUMERIC PARAMETERS:mpl
QUEUE:shortq

TYPE:fcfs
CLASS LIST:short

SERVICE TIMES:constant(0)
SUBMODEL:iosys /*subsystem with device contention for channel*/

CHAIN PARAMETERS:C
NUMERIC IDENTIFIERS:movearmp

MOVEARMP:1/3
QUEUE:channel

TYPE:passive
TOKENS:1
DSPL:fcfs
ALLOCATE NODE LIST:pos_s_a1 pos_l_a1 tranal

NUMBERS OF TOKENS TO ALLOCATE:1
ALLOCATE NODE LIST:pos_s_a2 pos_l_a2 trana2

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:pos_s_r1 pos_l_r1 tranrl
RELEASE NODE LIST:pos_s_r2 pos_l_r2 tranr2

DUMMY NODES:dummyin dummyout

SEC. 6.5 / DECOMPOSITION 97

SUBMODEL:dasd /*individual device*/
NUMERIC PARAMETERS:ncyl startarmt cylt revt trant
NODE PARAMETERS:pos_s_a pos_s_r pos_l_a pos_l_r trana tranr
CHAIN PARAMETERS:C
GLOBAL VARIABLE IDENTIFIERS:oldcyl newcyl

OLDCYL:ncyl/2
NEWCYL:0

QUEUE:deviceq
TYPE:passive
TOKENS:1
DSPL:fcfs
ALLOCATE NODE LIST:device

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:devicer

QUEUE:timesq
TYPE:fcfs
CLASS LIST:seek

SERVICE TIMES:standard(startarmt+abs(newcy1-oldcy1) ++
*cylt,0)

CLASS LIST:lat rev
SERVICE TIMES:uniform(0,revt,1) standard(revt,0)

CLASS LIST:tran
SERVICE TIMES:standard(trant,0)

SET NODES:setnewcyl
ASSIGNMENT LIST:++

newcyl=ceil(uniform(0,oldcyl-1,(oldcyl-1)/(ncyl-1);++
oldcyl,ncyl,(ncyl-oldcyl)/(ncyl-1)))

SET NODES:setoldcyl
ASSIGNMENT LIST:oldcyl=newcy1
CHAIN:c

TYPE:external
INPUT:device
OUTPUT:devicer
:device—>pos_s_a pos_l_a;movearmp 1-movearmp
:pos_s_a->pos_s_r->setnewcyl->seek->setoldcyl->pos_l_a
:pos_l_a->pos_l_r->lat
:lat—>trana rev;if(ta>0) if(t)
:rev->trana rev;if(ta>0) if(t)
:trana->tran->tranr->devicer

END OF SUBMODEL DASD
INVOCATION:disk 1

TYPE:dasd
NCYL:800
STARTARMT:.01
CYLT:.0001
REVT:.0166667
TRANT:.0029
POS_S_A:pos_s_a1
POS_S_R:pos_s_r1
POS_L_A:pos_l_a1
POS_L_R:pos_l_r1
TRANA:trana1
TRANR:tranr1

98 MODEL STRUCTURE / CHAP. 6

C: c
INVOCATION:disk2

TYPE:dasd
NCYL:800
STARTARMT:.01
CYLT:.0001
REVT:.0166667
TRANT:.0029
POS_S_A:pos_s_a2
P0S_S_R:pos_s_r 2
POS_L_A: pos__l_a2
POS_L_R:pos_l_r 2
TRANA:trana2
TRANR:tranr2
C: c

CHAIN:C
TYPE:externa 1
INPUT:dummyin
OUTPUT:dummyout
:dummyin->disk1.input disk2.input;.5 .5
:diski.output disk2.output->dummyout

END OF SUBMODEL IOSYS
INVOCATION:io

TYPE:losys
C: C

CHAIN:C
TYPE:closed
POPULATION:mpl
:short->io->short

CONFIDENCE INTERVAL METHOD:none
INITIAL STATE DEFINITION -
CHAIN:C

NODE LIST:short
INIT POP:mpl

RUN LIMITS-
NODES FOR DEPARTURE COUNTS:short

DEPARTURES:5000
LIMIT - CP SECONDS:30
TRACE:no

END

The aggregate model consists of the flow equivalent server, represent
ing the I/O subsystem, and the RRQUEUE submodel. This model must also
be solved by simulation.

MODEL:EX6.60 /* Aggregate model */
METHOD:simulation
NUMERIC IDENTIFIERS:mean_serve quantum overhead

MEAN_SERVE:.02
QUANTUM:.02
OVERHEAD:.0002

QUEUE:ioq

SEC. 6.5 / DECOMPOSITION 99
TYPE:active
SERVERS:1
DSPL:fcfs
CLASS LIST:I O C

WORK DEMANDS:1
SERVER -

RATES:42.7 55.3 61.3 65.7
SUBMODEL:rrqueue /‘round robin queue*/

NUMERIC PARAMETERS:mean_serve quantum overhead
CHAIN PARAMETERS:chn
QUEUE :q

TYPE:fcfs
CLASS LIST:els

SERVICE TIMES:standard(min(jv(0),quantum)+overhead,0)
SET NODES:set_total
ASSIGNMENT LIST:jv(0)=standard(mean_serve,1)
SET NODES:set_remain
ASSIGNMENT LIST:jv(0)=jv(0)-min(jv(0),quantum)
DUMMY NODES:dummy_out
CHAIN:chn

TYPE:external
INPUT:set_total
OUTPUT:dummy_out
:set_total—>cls—>set_remain->cls dummy_out;if(jv(0)>0) if(t)

END OF SUBMODEL RRQUEUE
INVOCATION:epuq

TYPE:rrqueue
MEAN_SERVE:mean_serve
QUANTUM:quantum
OVERHEAD:overhead
CHN: c

CHAIN:c
TYPE:closed
POPULATION:4
:epuq.output->ioc->cpuq.input

CONFIDENCE INTERVAL METHOD:replications
INITIAL STATE DEFINITION -
CHAIN:c

NODE LIST:epuq.set_total
INIT POP:4

CONFIDENCE LEVEL:90
NUMBER OF REPLICATIONS:5
INITIAL PORTION DISCARDED:10 /*percent*/
REPLIC LIMITS-

NODES FOR DEPARTURE COUNTS:epuq.set_tota1
DEPARTURES:10000

LIMIT - CP SECONDS:300
TRACE:no

END

The original model required 291 seconds of run time and the decom
posed model, including the four submodel solutions, required only 152

seconds. The following is a comparison of some of the results produced by
these two approaches.

100 MODEL STRUCTURE / CHAP. 6

CPUQ.Q Simulation
Run 1ength 291.46
Throughput 68.54985(68.37177,68.72792)
Utilization 0.87926(0.87447, 0.88406)
Queue length 2 . 21 3 9 9(2.18089, 2.24708)

Decomposition
151.67
67.51341 (67.32947,67.69736)
0.86940 (0.86545, 0.87335)
2.25151(2.23616, 2.26686)

6.5.3. Parametric Study with Submodel Parameters Fixed

If we have a model which can be decomposed into a submodel whose
parameters are fixed, then we can solve the submodel and use its results in
the aggregate model. Then the aggregate model can be solved multiple times
by varying parameters which affect only the aggregate model results. In this
situation we can afford to spend a large amount of time solving the submo
del. Figure 6.7 shows a model of a CPU, peripheral processors, and I/O
units which can be found in Chandy and Sauer [45]. This model cannot be
solved numerically. A simulation model is shown here.

Figure 6.7. CPU, Peripheral Processors, and I/Os

MODEL:EX6.7

SEC. 6.5 / DECOMPOSITION 101

METHOD:simulation
NUMERIC PARAMETERS:npp mpl cpust diskst nios
QUEUE:cpuq

TYPErps
CLASS LIST:cpu

SERVICE TIMES:cpust
QUEUE:ppq

TYPE:passive
TOKENS:npp
DSPL:fcfs
ALLOCATE NODE LIST:alpp

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:repp

SUBMODEL:io
CHAIN PARAMETERS:ch1
QUEUE:diskq

TYPE:fcfs
CLASS LIST:diskcl

SERVICE TIMES:diskst
CHAIN:chi

TYPE:external
INPUT:diskcl
OUTPUT:diskcl

END OF SUBMODEL io
INVOCATION:disk(nios)

TYPE:io
CH1:chi

CHAIN:Ch1
TYPE:closed
POPULATION:mpl
:cpu->alpp->disk (*) .input;1/nios
:disk(*).output->repp->cpu

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION -
CHAIN:ch1

NODE LIST:cpu
REGEN POP:mpl
INIT POP:mpl

CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:disk(1).diskq
MEASURES:qt
ALLOWED WIDTHS:10

SAMPLING PERIOD GUIDELINES -
QUEUES FOR DEPARTURE COUNTS:disk(1).diskq

DEPARTURES:1000
LIMIT - CP SECONDS:120
TRACE:no

END

If we fix the I/O subsystem parameters, we can decompose the model
by setting the CPU service time to zero and removing the passive queue.
This leaves us with a model that can be solved numerically. When we solve

102 MODEL STRUCTURE / CHAP. 6

this with the multiprogramming level equal to one, two, three, and four,
where four is the maximum number of peripheral processors, we obtain
throughputs of 25.0, 41.7, 53.6, and 62.5.

MODEL:EX6.71 /* Submodel */
METHOD:numerical
QUEUE:cpuq

TYPE:ps
CLASS LIST:cpu

SERVICE TIMES:0
SUBMODEL: 10

CHAIN PARAMETERS:ch1
QUEUE:diskq

TYPE:fcfs
CLASS LIST:diskcl

SERVICE TIMES:.04
CHAIN:Chi

TYPE:external
INPUT:diskcl
OUTPUT:diskcl

END OF SUBMODEL io
INVOCATION:disk(5)

TYPE:io
CH1:ch1

CHAIN:chi
TYPE:closed
POPULATION:5
:cpu->disk(*).input;1/5
:disk(*).output->cpu

END

The aggregate model can also be solved numerically. Since the I/O
subsystem parameters are fixed, we will solve the aggregate model for
different CPU service times. The I/O submodel has been replaced by a flow
equivalent server whose service rates come from the submodel solutions.

MODEL:EX6.70 /* aggregate model */
METHOD:numerical
NUMERIC PARAMETERS:cpust
QUEUE:cpuq

TYPE:ps
CLASS LIST:cpu

SERVICE TIMES:cpust
QUEUE:loq

TYP E :active
SERVERS:1
DSPL:fcfs
CLASS LIST:ios

WORK DEMANDS:1
SERVER -

RATES:25.0 41.7 53.6 62.5

SEC. 6.5 / DECOMPOSITION 103
CHAIN:Ch1

TYPE:closed
POPULATION:5
:cpu->ios->cpu

END

The results from the aggregate model are shown here for different
values of CPU service time.

CPUST Queue Utilization Throughput Queue length Queueing time
0.005 CPUQ 0.30674 61.34865 0.42397 0.00691

IOQ 0.99953 61.34865 4.57603 0.07459
0.010 CPUQ 0.57158 57.15761 1.06795 0.01868

IOQ 0.99065 57.15761 3.93205 0.06879
0.020 CPUQ 0.86812 43.40623 2.43708 0.05615

IOQ 0.90789 43.40623 2.56292 0.05905
0.030 CPUQ 0.95905 31.96831 3.30363 0.10334

IOQ 0.78280 31.96831 1.69637 0.05306
0.040 CPUQ 0.98526 24.63155 3.77821 0.15339

IOQ 0.67059 24.63155 1.22179 0.04960
0.050 CPUQ 0.99386 19.87718 4.05608 0.20406

IOQ 0.58112 19.87718 0.94392 0.04749

6.6. FURTHER READING

The following books and papers contain more information about
submodels: Kobayashi [98], Lavenberg [100], Sauer and MacNair
[154,156], Sauer, MacNair, and Kurose [158,159,160,161], and Sauer,
MacNair, and Salza [162], The following references should be consulted for
additional information about decomposition: Avi-Itzhak and Heyman [6],
Balbo and Bruell [7], Bard [10], Brandwajn [27], Browne, Chandy, Brown,
Keller, Towsley, and Dissley [33], Chandy, Herzog, and Woo [42], Chandy
and Sauer [45], Chiu and Chow [46], Courtois [50,51,52], Lavenberg [100],
Sauer [149], Sauer and Chandy [151,152], Schwetman [168], and Thoma-
sian and Nadj [181].

6.7. EXERCISES

6.1 Discuss the reasons for using submodels in model construction and
solution.

6.2 Construct a model with at least one submodel where the submodel
helps to clarify the structure of the model.

6.3 Build a submodel containing a CPU and several I/O devices. Use
several copies of the submodel in a model containing terminals sub-

mitting transactions to multiple host systems represented by copies of
the submodel.

6.4 Given the following submodel which assigns a normal random varia
ble to a specified job variable, illustrate how it could be used in a
model to produce service times which follow a normal distribution:

SUBMODEL:normal
/* Submodel to generate a normal random variable for a */
/* distribution with mean MU and standard deviation SIGMA.*/
/* The normal r.v. is put in JV(NORMRV). */

NUMERIC PARAMETERS:mu sigma normrv
CHAIN PARAMETERS:chn1
GLOBAL VARIABLES:u1 u2 x sg y

U1 : 0
U2 : 0
X : 0
SG: 0
Y : 0

SET NODES:set1
ASSIGNMENT LIST:u1=uniform(0,1,1) u2=uniform(0,1, 1) ++

x=(-In(u1)) ++
y=(x-1)*(x-1)/2 y=(-y) y=exp(y)

SET NODES:set2
ASSIGNMENT LIST:sg=uniform(0,1,1)
SET NODES:set3
ASSIGNMENT LIST:X=(-x)
SET NODES:set4
ASSIGNMENT LIST:x=(sigma*x)+mu jv(normrv)=x
CHAIN:chn1

TYPE:external
INPUT:set1
OUTPUT:set4
:set1->set2 set1;if(u2<=y) if(t)
:set2->set3 set4;if(sg>.5) if(t)
:set3->set4

END OF SUBMODEL normal

6.5 Apply the decomposition techniques discussed in Section 6.5 to a
model of a system you are familiar with.

6.6 Construct a submodel which represents four servers where the servers
are picked at random from among those that are free.

104 MODEL STRUCTURE / CHAP. 6

CHAPTER 7

INTERPRETING RESULTS
We have discussed modeling constructs, solution methods, and model

structures. Now we will describe how to interpret the results produced when
we solve models. The various performance measures produced will be
examined. The model results contain different types of errors, and the
sources of these errors will be illustrated. Some information pertaining to
how to determine whether the model is producing valid results will be
presented. We will exhibit the results from a model constructed at different
levels of detail. An analysis of the effects of modifying model parameters
will illustrate how the behavior of different configurations can be studied.
Some results are very sensitive to certain model parameters. An example of
this will be given. Frequently, the results from a model solved using multi
ple parameter values are plotted. Some typical types of graphs will be
described.

7.1. PERFORMANCE MEASURES

There are many different performance measures produced by modeling
packages, but only a few of them are available when using an analytic
solution. We will first focus on the results which are available when using
both types of solution techniques. The utilization of a server at an active
resource is the fraction of time the server is busy. At a passive resource,
the utilization refers to the fraction of time a token is in use. The utilization
gives a measure of the time a resource is busy. The throughput is a measure
of the customer completion rate. It is the number of completions per unit of
time. A simple relationship to keep in mind is that the utilization is equal to
the throughput times the service time. The mean queue length is the aver
age number of jobs waiting in line and in service. To find the average
number of jobs waiting, subtract the utilization times the number of servers
from the mean queue length. The mean queueing time is the average
amount of time a job spends waiting in line and in service. To find the
average waiting time, subtract the mean service time from the mean queue
ing time. Recall that Little’s Rule also tells us that the mean queue length is
equal to the throughput times the queueing time. For an open chain, the
average chain population is equal to the average number of customers in the
chain, and the mean response time is the average amount of time it takes a
customer to go from a source to a sink. The queue length distribution can
also be calculated when solving a model analytically. The queue length

105

106

distribution values are the probabilities that the queue length is equal to
each possible value.

These performance measures will be illustrated by displaying the
corresponding results produced by solving a RESQ simulation model of an
M /M /l queue with a mean interarrival time of one and a mean service time
of 0.5.

INTERPRETING RESULTS / CHAP. 7

ELEMENT
MM IQ

UTILIZATION
0.49976

ELEMENT
MM1Q

THROUGHPUT
0.99957

ELEMENT
MM IQ

MEAN QUEUE LENGTH
0.98753

ELEMENT
MM1Q

MEAN QUEUEING TIME
0.98796

ELEMENT
CH 1

OPEN CHAIN POPULATION
0.98753

ELEMENT
CH 1

OPEN CHAIN RESPONSE TIME
0.98796

ELEMENT
MM1Q

QUEUE LENGTH DISTRIBUTION
0:0.50024
1:0.25063
2:0.12564
3:0.06355
4:0.03093
5:0.01539
6:7.2115E-03
7:3.2 366E-0 3
8:1.5775E-03
9:8.084 3E-04
10:3.9507E-04

Only the probabilities up to a queue length of ten have been shown for the
queue length distribution.

When using simulation, there are many more performance measures
available. Some measures which give an indication of variability in the
results are the standard deviation of queue length, the standard deviation of
queueing time, the maximum queue length, and the maximum queueing time.
The queueing time distribution gives the probability that the queueing time

SEC. 7.1 / PERFORMANCE MEASURES 107

is less than or equal to a specified value. The following results are for the
same M /M /l queue.

ELEMENT STANDARD DEVIATION OF QUEUE LENGTH
MM1Q 1.38078

ELEMENT STANDARD DEVIATION OF QUEUEING TIME
MM1Q 0.97274

ELEMENT MAXIMUM QUEUE LENGTH
MM1Q 14

ELEMENT MAXIMUM QUEUEING TIME
MM1Q 14.55514

ELEMENT QUEUEING TIME DISTRIBUTION
MM1Q 5.00E-01:0.39183

1.00E+00:0.63186
1.50E+00:0.78011
2.00E+00:0.86905
2.50E+00:0.92 31 1
3.00E+00:0.95440

The queueing time probabilities are given for a list of discrete points.

With simulation there are other results which are sometimes of use. The
system state of where the jobs are left when the simulation stops is availa
ble. The mean service time at each active resource is the average value
observed during the run. This is almost always different from the mean
specified with the distribution input parameter. Since the simulation pro
gram is sampling from distributions, the average it observes is usually
different from the specified mean. The number of departures from a re
source is often helpful in debugging a model. Values of global variables and
customer attributes are also available. Statistics related to the usage of
tokens at passive resources can also be displayed.

In addition to the performance measures which are directly available,
we are often interested in the response time between two arbitrary points in
a model. This can be obtained by using a passive resource. An allocate node
is placed where the response time is to start. A release node is placed at the
point which ends the response time. To ensure that no waiting occurs at the
allocate node, the number of tokens at the passive resource must be large
enough so that it is never exhausted. Using a passive resource like this also
provides queueing time distribution results.

108 INTERPRETING RESULTS / CHAP. 7

7.2. SOURCES OF ERROR

When we examine the performance measures produced by solving a
model, they may contain errors from several different sources. One particu
larly common source of error is caused by inaccurately estimating the input
parameters of the model. To run the model we must supply values for
service times distributions, arrival time distributions, routing probabilities,
number of tokens at passive resources, chain populations, queueing disci
plines, and other items. The values we supply are just estimates of the
actual parameters. Some of the parameters are critical in producing the
solution of the models. Slight errors in estimating their values can result in
large errors in some of the performance measures.

This can be a particularly difficult problem to deal with. In designing a
new system, it is often hard to obtain accurate estimates for input parame
ters.' Even when modeling an existing system for which measurements are
available, frequently the measurements are inaccurate or missing necessary
information. Software and hardware monitors used with computer systems
and communication networks do not produce all the data necessary to run
most models. Predicting parameters which represent future workloads is
even more troublesome. There is usually no easy way to determine exactly
how to predict future workload requirements.

There can also be errors in the model itself. The structure of the model
can be incorrect. Some key resources can be missing from the model. The
model may contain logical errors. These types of errors are normally not as
difficult to deal with as the errors in the parameter estimation just de
scribed.

When solving a model with simulation, we must also be concerned with
the statistical variability which exists in the results. Since there is random
ness involved in sampling from distributions, the results are also random.
We saw in Chapter 5 how confidence intervals can help in determining the
accuracy of the results. We also described how the simulation can automati
cally stop when the desired level of accuracy is detected.

7.3. SIMULATION ACCURACY

Because of this statistical variability connected with simulation, in some
sense the simulation results are inaccurate estimates for the model being
solved. This is not true of results produced by an analytic solution. The
results produced by solving an analytic model are exact for that model.
However, the analytic model may not be an accurate representation of the
actual system. Therefore, the analytic results may not agree with the system

SEC. 7.3 / SIMULATION ACCURACY 109

behavior. Since a simulation model may be made as detailed and realistic as
we like, the results from the simulation model may be closer to the behavior
of the system in spite of the statistical variability.

The accuracy of the simulation results can be controlled by the length
of time we run the model. If we could run the simulation for an infinite
amount of time, the results would be exact for the associated model. A
model which has reached equilibrium will normally become more accurate as
we increase the run length. If we have a steady state model and are using
independent replications, we will have to increase the length of each replica
tion. If the model is a transient solution, we will have to increase the num
ber of replications.

We will illustrate this discussion of simulation accuracy with a simple
model of a computer system. Figure 7.1 shows an interactive system with a
memory constraint.

Figure 7.1. Model Diagram of an Interactive System

There are active service centers for the terminals, the CPU and two I/O
devices. There is a passive resource to represent memory contention. The
following is a RESQ model corresponding to the diagram in Figure 7.1.

MODEL:EX7.1
METHOD:simulation
NUMERIC PARAMETERS:thinktime users pageframes
NUMERIC IDENTIFIERS:floppytime disktime cputime

FLOPPYTIME:.22
DISKTIME:.019
CPUTIME:.05

NUMERIC IDENTIFIERS:cpiocycles
CPIOCYCLES:8

110 INTERPRETING RESULTS / CHAP. 7

QUEUE:floppyq
TYPE:fcfs
CLASS LIST:floppy

SERVICE TIMES:floppytime
QUEUE:d iskq

TYPE:fcfs
CLASS LIST:disk

SERVICE TIMES:disktime
QUEUE:cpuq

TYPE:ps
CLASS LIST:cpu

SERVICE TIMES:cputime
QUEUE:terminalsq

TYPE:is
CLASS LIST:terminals

SERVICE TIMES:thinktime
QUEUE:memory

TYPE:passive
TOKENS:pageframes
DSPL:fcfs
ALLOCATE NODE LIST:getmemory

NUMBERS OF TOKENS TO ALLOCATE:discrete(16, .25;32, . 5;48 , . 25)
RELEASE NODE LIST:freememory

CHAIN:interactiv
TYPE:closed
POPULATION:users
:terminals->getmemory->cpu->floppy disk;.1 .9
:floppy->freememory cpu;1/cpiocycles 1 - 1/cpiocycles
:disk->freememory cpu;1/cpiocycles 1 -1/cpiocycles
:freememory->terminals

QUEUES FOR QUEUEING TIME DIST:memory
VALUES:1 2 3 4 5 6 7 8

QUEUES FOR QUEUE LENGTH DIST:memory
MAX VALUE:users/2
CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION -
CHAIN:interactiv
NODE LIST:terminals

REGEN POP:users
INIT POP:users

CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:memory cpuq
MEASURES:qt qt
ALLOWED WIDTHS:10 10

SAMPLING PERIOD GUIDELINES -
QUEUES FOR DEPARTURE COUNTS:memory

DEPARTURES:2000
LIMIT - CP SECONDS:300
TRACE:no

END

SEC. 7.3 / SIMULATION ACCURACY 111

This discussion will concentrate on the simulation accuracy of the
results of this model. We are using the regenerative method to produce
confidence intervals. All the customers in the closed chain are initialized at
the terminals, and this same system state is used as the regeneration state.
The confidence level is 90 percent. The sequential stopping rule is em
ployed to check the accuracy of the confidence intervals for the mean
queueing times at the MEMORY and CPUQ queues. The accuracy criteria
are checked after every two thousand departures from the MEMORY
queue.

The following simulation results were obtained for this model.

RESQ2 VERSION DATE:
MODEL:EX7.1

JANUARY 18, 1984 - TIME: 13:42:53 DATE: 02/24/84

THINKTIME1:10
USERS:30
PAGEFRAMES:128
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS
NUMBER OF CYCLES

7683.34766
102.83
294452

323

WHAT:QTBO(MEMORY)

ELEMENT MEAN QUEUEING TIME
MEMORY 3.39507(3.23577,3.55438) 9.4)5

WHAT:
CONTINUE RUN:YES

EXTRA SAMPLING PERIODS:1

SAMPLING PERIOD END:
SAMPLING PERIOD END:
SAMPLING PERIOD END:
SAMPLING PERIOD END:
SAMPLING PERIOD END:
SAMPLING PERIOD END:
SAMPLING PERIOD END:

MEMORY DEPARTURE GUIDELINE
MEMORY DEPARTURE GUIDELINE
MEMORY DEPARTURE GUIDELINE
MEMORY DEPARTURE GUIDELINE
MEMORY DEPARTURE GUIDELINE
MEMORY DEPARTURE GUIDELINE
MEMORY DEPARTURE GUIDELINE

112 INTERPRETING RESULTS / CHAP. 7

SAMPLING PERIOD. END: MEMORY DEPARTURE GUIDELINE
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE
NO ERRORS DETECTED. DURING SIMULATION.

SIMULATED TIME: 8592.57813
CPU TIME: 114.97

NUMBER OF EVENTS: 329312
NUMBER OF CYCLES: 375

WHAT:ALLBO

ELEMENT UTILIZATION
MEMORY 0.84943(0.84087,0.85800) 1 . 7 %
FLOPPYQ 0.39982(0.39208,0.40756) 1 .5%
DISKQ 0.30872(0.30642,0.31102) 0.5%
CPUQ
TERMINALSQ

0.89862(0.89349,0.90375)
0.00000(0.00000,0.00000)

1 .0%

ELEMENT THROUGHPUT
MEMORY 2.24636(2.22549,2.26722) 1.9%
FLOPPYQ 1.80830(1.78245,1.83416) 2.9%
DISKQ 16.23109(16.13292,16.32925) 1.2%
CPUQ 18.03940(17.93738,18.14142) 1.1%
TERMINALSQ 2.24636(2.22549,2.26722) 1.9%
FREEMEMORY 2.24636

ELEMENT MEAN QUEUE LENGTH
MEMORY 7.57585(7.28393,7.86776) 7.7%
FLOPPYQ 0.58988(0.57167,0.60809) 6.2%
DISKQ 0.41949(0.41539,0.42358) 2.0%
CPUQ 2.47420(2.43792,2.51047) 2.9%
TERMINALSQ 22.42415(22.13223,22.71606) 2.6%

ELEMENT STANDARD DEVIATION OF QUEUE LENGTH
MEMORY 3.95216
FLOPPYQ 0.85820
DISKQ 0.71946
CPUQ 1.37433
TERMINALSQ 3.95216

ELEMENT MEAN QUEUEING TIME
MEMORY 3.37250(3.22446,3.52055) 6̂CD00

FLOPPYQ 0.32621(0.31905,0.33336) 4.4%
DISKQ 0.02584(0.02569,0.02600) 1.2%
CPUQ 0.13716(0.13558,0.13873) 2.3%
TERMINALSQ 9.98245(9.86628,10.09862) 2.3%

SEC. 7.3 / SIMULATION ACCURACY 113
ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT

E L E M E N T

STANDARD DEVIATION OF QUEUEING TIME
2.39267
0.31081
0.02506
0.15172
9.91859

MEAN TOKENS IN USE
108.72725(107.63087,109.82364) 2.0%

MEAN TOTAL TOKENS IN POOL
127.99998

QUEUE LENGTH DISTRIBUTION
0:0.01525(0.01255,0.01795) 0.5%
1:0.03285(0.02844,0.03726) 0.9%
2:0.05133(0.04575,0.05691) 1.1%
3:0.06762(0.06109,0.07415) 1.3%
4:0.07830(0.07213,0.08447) 1.2%
5:0.08662(0.08021,0.09302) 1.3%
6:0.09317(0.08730,0.09904) 1.2%
7:0.08688(0.08218,0.09158) 0.9%
8:0.08753(0.08243,0.09264) 1.0%
9:0.08465(0.07914,0.09016) 1.1%
10:0.07819(0.07292,0.08346) 1.1%
11:0.06698(0.06175,0.07221) 1.0%
12:0.05524(0.04982,0.06067) 1.1%
13:0.04026(0.03474,0.04579) 1.1%
14:0.02788(0.02318,0.03258) 0.9%
15:0.01908(0.01497,0.02318) 0.8%

QUEUEING TIME DISTRIBUTION
1.00E+00:0.15776(0.14438,0.17113) 2.7%
2.00E+00:0.32997(0.30835,0.35159) 4.3%
3.00E+00:0.50622(0.48078,0.53165) 5.1%
4.00E+00:0.65879 (0.63516,0.68243) 4.7%
5.00E+00:0.78241(0.76208,0.80273) 4.1%
6.00E+00:0.86540(0.84836,0.88244) 3.4%
7.00E+00:0.92032(0.90722,0.93342) 2.6%
8.00E+00: 0.95379 (0.94494,0.96263) 1.8%

DISTRIBUTION OF TOKENS IN USE

D I S T R I B U T I O N O F T O T A L T O K E N S I N P O O L

114 INTERPRETING RESULTS / CHAP. 7

ELEMENT
MEMORY
FLOPPYQ
DISKQ

MAXIMUM QUEUE LENGTH
21
5
6
7
30

CPUQ
TERMINALSO

ELEMENT
MEMORY
FLOPPYQ
DISKQ

MAXIMUM QUEUEING TIME

CPUQ
TERMINALSQ

20.62199
2.64097
0.29332
1.94650
111.93118

There were eight sampling periods. After each one of these the accuracy
criteria were checked. In order to insure that the results were sufficiently
accurate, we continued the simulation until the stopping criteria had been
satisfied for two successive sampling periods. This occurred after one more
sampling period. Extra sampling periods force the simulation to run longer
and thus can help overcome some of the small sample problems of the
sequential stopping rule. On a very short run, severe underestimates of the
confidence interval widths may result in the criteria being accepted.

In some cases the accuracy criteria could be violated at the end of
additional sampling periods. As you can see by comparing the mean queue
ing time of the MEMORY queue after eight and nine sampling periods,
these results are fairly close. By continuing the run for the extra sampling
period, we have ensured that the accuracy condition still holds.

7.4. VALIDATION

Validation is the process of ensuring that the model produces correct
results. The model must be validated for the baseline case and for perform
ance predictions. The baseline case is the solution of the model with param
eters reflecting an existing system and a comparison of the results against
measurements from the system. When designing a new system, actual
measurements do not normally exist. In this case the analyst must convince
himself or herself about the validity of the model based on intuition or
discussions with system experts. If measurements exist, determining whether
the model is producing correct results is normally a simple procedure. If the
results do not agree with the measurements, the model or the input parame
ters must be adjusted. It is also possible that the measurement data are
inaccurate. Jobs that have started before the measurement interval or
ended after the measurement interval can cause errors in measurement data.

SEC. 7.4 / VALIDATION 115

Validating performance predictions is much more difficult. One reason
for doing the prediction is that the system is not available for measure
ments. So there is nothing to compare against. However, if a system is later
installed based on the model results, a comparison should be performed to
determine the validity of the model. If the system and the model do not
agree, an investigation should be conducted to determine the cause of
disagreement. The knowledge gained in determining the sources of error
can be useful in future modeling studies.

The sources of error were discussed in Section 7.2. When the model
results are incorrect, a determination of which types of errors are causing
the problem must be undertaken. Logical errors in the model can normally
be found by reviewing the model, or in the case of a simulation, by running
a trace of the model. Most simulation programs provide a facility for obtain
ing detailed trace information as the simulation is in progress. The trace
usually includes customer movement information from node to node, re
source requests and completions at active and passive resources, event
handling and event list processing, and periodic displays of the number of
customers at each resource. Errors related to input parameters or model
structure are more difficult to deal with but must also be resolved. Statisti
cal variability of a simulation model is usually not a serious problem, be
cause confidence intervals give us an indication of the accuracy of the
results. The solution for increasing the accuracy in this case normally
involves extending the length of the simulation run.

7.5. LEVEL OF DETAIL

The level of detail of a model is determined by its purpose. A model
being used to design a new system or for performing capacity planning can
be a gross, high-level representation of the system. A model used to tune a
system must incorporate much more detail to capture all of the tuning
effects.

A model used for capacity planning of a large computer system, like an
MVS or VM type system, will normally contain a service center for each of
the resources in the system whose utilization is at least five percent. These
devices include the CPU, DASD devices, and tape drives. The channels,
control units, and heads of strings are frequently not explicitly included. The
time to use these devices is often included in the service demands of the
DASD and tape service centers. Priority scheduling is permitted at the CPU,
and memory contention can be depicted as a passive resource with a given
multiprogramming level. Paging and swapping are represented by service
demands at the appropriate DASD devices. Different workloads, like TSO,
batch and data-base applications, can be included as multiple chains in the

116 INTERPRETING RESULTS / CHAP. 7

model. Interactive workloads with terminals are usually modeled as an
infinite server in a closed chain whose chain population is equal to the
number of terminals, or as a source of arrivals with a specified interarrival
time distribution in an open chain.

For some modeling purposes, this level of detail is not adequate. The
I/O subsystem is a very complicated subsystem. I/O path sharing, channel,
control unit and head of string contention, rotational position sensing,
buffered DASD, paging, and swapping are difficult to represent accurately.
Loosely coupled and tightly coupled multiprocessors can also be an addi
tional complexity. Obtaining an estimate of the network delays to remote
terminals or other systems is also difficult. These more complex features
require a more detailed model to represent them accurately.

Similar hierarchical structuring exists in communication network mod
els. A high-level model might include service centers for communication
lines, control units, a single service center for entire computer systems, and
terminals. This would not be adequate for network designers working on
new communication protocols. This task would require more detail including
an item-by-item representation of all of the layers of protocols in the
network.

Manufacturing models also can be constructed at different levels of
detail. A high-level model might leave out machine failures and rework. A
decision can be made as to how accurately batches of jobs should be repre
sented. Some resources capable of parallel processing might simply be
represented by a multiserver or a more realistic submodel might be used.

7.6. MODIFICATION ANALYSIS

After a baseline model is validated, the model is used to predict the
future behavior of the system under various workloads or different configu
rations. The process of changing the parameters and structure of the base
line model to act as a predictive model is called modification analysis. The
model and its parameters are modified to analyze alternative system behav
ior.

We will analyze the simple model illustrated in Figure 7.2. It contains a
CPU and two I/O devices. This is an open model with transactions arriving
from an external source according to a specified arrival rate. Other parame
ters of the model include the service times at the three service centers and
visit ratios representing the average number of times a job visits a service
center.

SEC. 7.6 / MODIFICATION ANALYSIS 117

Figure 7.2. Computer System Model for Modification Analysis

A RESQ model, which includes symbolic numeric parameter names for
the model parameters, is included here.

MODEL:EX7.2
METHOD:numerical
NUMERIC PARAMETERS:arrivlrate stcpu stiol stio2
NUMERIC PARAMETERS: vrcpu vriol vrio2
QUEUE:cpuq

TYPE:ps
CLASS LIST:cpu

SERVICE TIMES:Stcpu
QUEUE:io1q

TYPE:fcfs
CLASS LIST:io1

SERVICE TIMES:stiol
QUEUE:io2q

TYPE:fcfs
CLASS LIST:io2

SERVICE TIMES: S t i o 2
CHAIN:ch1

TYPE:open
SOURCE LIST:sourc
ARRIVAL TIMES:1/arrivlrate
:sourc->cpu->io1 io2 sink; ++

vrio1/vrcpu vrio2/vrcpu 1/vrcpu
:io1 io2->cpu

END

This model can be solved analytically. There are three service centers,
one for the CPU and one for each of the I/O devices. RESQ expects an
interarrival time distribution, so the reciprocal of the arrival rate is used in

INTERPRETING RESULTS / CHAP. 7118

the chain definition. RESQ uses branching probabilities for making routing
decisions, so the visit ratios are combined in simple expressions to produce
the probabilities. When we solve this model with the following set of
parameters, we obtain the baseline performance measures.

ARRIVLRATE:5 /* TRANSACTIONS PER SECOND */
STCPU:.009 /* 9 MS PER VISIT */
ST101 : .040 /* 40 MS PER VISIT */
STI02:.025 /* 25 MS PER VISIT */
VRCPU:6 /* VISITS PER TRANSACTION */
VRIO1:1 /* VISIT PER TRANSACTION */
VRI02:4 /* VISITS PER TRANSACTION */
NO ERRORS DETECTED DURING NUMERICAL SOLUTION

MEAN QUEUE LENGTH
0.36986
0.25000
1 . 0 0 0 0 0

MEAN QUEUEING TIME
0.01233
0.05000
0.05000

WHAT:ALL

ELEMENT
CPUQ
101 Q
I02Q

ELEMENT
CPUQ
101 Q
I02Q

ELEMENT
CPUQ
I 0 1Q
I02Q

ELEMENT
CPUQ
101 Q
I02Q

ELEMENT
CHI

ELEMENT
CH 1

UTILIZATION
0.27000
0 . 2 0 0 0 0
0.50000

THROUGHPUT
29.99998
5 . 0 0 0 0 0
19.99998

OPEN CHAIN
1.61986

POPULATION

OPEN CHAIN RESPONSE TIME
0.32397

Now we are in a position to perform a modification analysis. If we wish
to determine the effect of doubling the speed of the CPU, one parameter
which is affected is the CPU service time. This is probably the only parame
ter which will change, and its new value should be 4.5 ms. The following
results are obtained with this new parameter value.

SEC. 7.6 / MODIFICATION ANALYSIS 119

ARRIVLRATE:5
STCPU:.0045 /* 4.5 MS PER VISIT */
STI01:.040
STI02:.025
V R C P U :6
V R I 0 1 :1
V R I 0 2 :4
NO ERRORS DETECTED DURING NUMERICAL SOLUTION

WHAT:ALL

ELEMENT UTILIZATION
CPUQ 0.13500
101 Q 0.20000
I02Q 0.50000

ELEMENT THROUGHPUT
CPUQ 29.99998
101 Q 5.00000
I02Q 19.99998

ELEMENT MEAN QUEUE LENGTH
CPUQ 0.15607
101 Q 0.25000
I02Q 1.00000

ELEMENT MEAN QUEUEING TIME
CPUQ 5.2023E-03
IOIQ 0.05000
I02Q 0.05000

ELEMENT OPEN CHAIN POPULATION
CH1 1 .40607

ELEMENT OPEN CHAIN RESPONSE TIME
CH 1 0.28121

Notice that the CPU utilization has been reduced by 50 percent. This is
because the utilization is equal to the throughput times the service time.

The next modification will be to predict the result of replacing the 1/O
devices with disks which are 10 percent faster. This changes the values of
the I/O service times, and we can obtain the following performance meas
ures.

ARRIVLRATE:5
STCPU:.009
STI01:.036 /* 36 MS PER VISIT */
STI02:.0225 /* 22.5 MS PER VISIT */
VRCPU:6

120 INTERPRETING RESULTS / CHAP. 7

VRIOl:1
VRI02:4
NO ERRORS DETECTED DURING NUMERICAL SOLUTION

WHAT:ALL

ELEMENT
CPUQ
101 Q
I02Q

UTILIZATION
0.27000
0.18000
0.45000

ELEMENT
CPUQ
101 Q
I02Q

THROUGHPUT
29.99998
5.00000
19.99998

ELEMENT
CPUQ
101Q
I02Q

MEAN QUEUE LENGTH
0.36986
0.21951
0.81818

ELEMENT
CPUQ
101Q
I02Q

MEAN QUEUEING TIME
0.01233
0.04390
0.04091

ELEMENT OPEN CHAIN POPULATION
CHI 1.40756

ELEMENT OPEN CHAIN RESPONSE TIME
CH1 0.28151

Again notice the ten percent decrease in the utilization of the two I/O
devices.

What will happen if we increase the number of terminals by 40 per
cent? To simplify this modification, we will assume that this will affect only
the arrival rate of transactions to the system. This has the hidden assump
tion that the new terminals will be entering the same types of transactions
and that the service times and visit ratios will remain the same as before.
Increasing the arrival rate by 40 percent makes the transactions arrive at
seven transactions per second.

ARRIVLRATE:7 /* TRANSACTIONS PER SECOND */
STCPU:.009
STI01:.040
STI02:.025
VRCPU:6
VRIOl:1
VRI02:4

SEC. 7.6 / MODIFICATION ANALYSIS 121
NO ERRORS DETECTED DURING NUMERICAL SOLUTION

WHAT:ALL

ELEMENT
CPUQ
101 Q
I02Q

UTILIZATION
0.37800
0.28000
0.70000

ELEMENT
CPUQ
101 Q
I02Q

THROUGHPUT
41.99997
7 . 0 0 0 0 0
27.99998

ELEMENT
CPUQ
101 Q
I02Q

MEAN QUEUE LENGTH
0.60772
0.38889
2.33333

ELEMENT
CPUQ
101 Q
I02Q

MEAN QUEUEING TIME
0.01447
0.05556
0.08333

ELEMENT OPEN CHAIN POPULATION
CH1 3.32993

ELEMENT OPEN CHAIN RESPONSE TIME
CHI 0.47570

Here we see that both the utilizations and the throughputs increase by 40
percent.

Let’s replace the two disk drives with a single I/O device which has
twice the capacity as each of the previous I/O devices. This will make the
visit ratio of the new device equal to five. However, it is not easy to predict
what value should be used for the I/O service time. Temporarily, we will
use a value of 30 milliseconds, which produces the following results.

ARRIVLRATE:5
STCPU:.009
STIO1:.030 /* 30 MS PER VISIT */
STI02:0 /* THIS DEVICE WAS REMOVED */
VRCPU:6
VRIO1:5 /* VISITS PER TRANSACTION */
VRI02:0 /* THIS DEVICE WAS REMOVED */
NO ERRORS DETECTED DURING NUMERICAL SOLUTION

W H A T : A L L

122 INTERPRETING RESULTS / CHAP. 7

ELEMENT UTILIZATION
i 'PUQ 0.27000
join 0.75000
1 (> 2 Q 0.00000

ELEMENT THROUGHPUT
CPUQ 30.00000
I () 1 Q 25.00000
I02Q 0.00000

ELEMENT MEAN QUEUE LENGTH
CPUQ 0.36986
I01Q 3.00000
I02Q 0.00000

ELEMENT MEAN QUEUEING TIME
CPUQ 0.01233
101 Q 0.12000
I02Q 0.00000

ELEMENT OPEN CHAIN POPULATION
CH 1 3.36986

ELEMENT OPEN CHAIN RESPONSE TIME
CH 1 0.67397

The utilization at IOQ1 is slightly higher than the sum of the two utiliza
tions at the original I/O devices.

As a final modification, what happens when we eliminate one request
per transaction for the second I/O device by making the index portion of
one of the device’s files resident in memory? This will change the visit ratios
for the CPU and the second I/O device to five and three, respectively. Now
we must determine what effect this change will have on the CPU service
time. It certainly will increase because of the index searching. The exact
amount of increase is difficult to determine without some measurement data,
but we will use a value of 10.2 ms for the new service time. This produces
the following performance measures.

ARRIVLRATE:5
ST(’PU:.0102 /* 10.2 MS PER VISIT */
ST101:.040
STI02:.025
VRCPU:5 /* VISITS PER TRANSACTION */
VRI01:1
VRI02:3 /* VISITS PER TRANSACTION */
NO ERRORS DETECTED DURING NUMERICAL SOLUTION

W H A T :A L L

SEC. 7.6 / MODIFICATION ANALYSIS 123
ELEMENT UTILIZATION
CPUQ 0.25500
101 Q 0.20000
I02Q 0.37500

ELEMENT THROUGHPUT
CPUQ 24.99998
101 Q 5.00000
I02Q 15.00000

ELEMENT MEAN QUEUE LENGTH
CPUQ 0.34228
101 Q 0.25000
I02Q 0.60000

ELEMENT MEAN QUEUEING TIME
CPUQ 0.01369
101Q 0.05000
I02Q 0.04000

ELEMENT OPEN CHAIN POPULATION
C H 1 1.19228

ELEMENT OPEN CHAIN RESPONSE TIME
CH 1 0.23846

This modification could also cause a change in the service time of the
second I/O device. We have not used a different value for this parameter.
Its new value is difficult to predict without some additional measurement
data.

Table 7.1 contains a summary of the modification analysis for the
baseline case and the five modifications. The parameter values used as input
and some of the performance measures have been tabulated.

Parameter I Base ICase 1 ICase 2 ICase 3 I Case 4 ICase 5

ARRIVLRATE I 5 I 5 I 5 I 7 I 5 I 5
STCPU I 0.009 I 0.0045 I 0.009 I 0.009 I 0.009 10.0102
STI01 I 0.040 I 0.040 I 0.036 I 0.040 I 0.030 I 0.040
STI02 I 0.025 I 0.025 I 0.0225 I 0.025 I 0 I 0.025
VRCPU I 6 I 6 I 6 I 6 I 6 I 5
VRI01 I 1 I 1 I 1 I 1 I 5 I 1
VRI02 I 4 I 4 I 4 I 4 I 0 1 3

UT(CPU)
I
I 0.27 10.135 I 0.27 I 0.378 I 0.27 10.255

UT(101) I 0.20 I 0.20 10.18 I 0.28 I 0.7 5 10.20
UT(102) I 0.50 I 0.50 I 0.45 I 0.70 I0 10.375
QL(CPU) I 0.37 10.156 I 0.37 I 0.608 I 0.37 10.342
QL(101) I 0.25 I 0.25 I 0.22 I 0.389 I 3.00 10.25

124 INTERPRETING RESULTS / CHAP. 7

Q L (102) 11.00 11.00 10.818 |2.33 |0 10.60
Resp. Time 10.324 10.281 I 0.282 I 0.476 I 0.674 I 0.2 38

Table 7.1.

This modification analysis illustrates the skills needed by a performance
analyst. A skill which is not necessary is an understanding of the mathemati
cal techniques used to calculate the results. What is critical is how the model
parameters should be changed to reflect changes in the workload or system
configuration. Some parameter values are difficult to determine. This re
quires an in-depth understanding of the system and often a great deal of
intuition.

7.7. SENSITIVITY ANALYSIS

Sometimes an input parameter value can have a significant effect on
the results of a model. In this case it is important to perform a sensitivity
analysis. This involves trying multiple values for a parameter or set of
parameters and observing the magnitude of the change in the performance
measures. If the results do not change much, this is not a critical parameter.
If the results change quite a bit with small changes in the parameter, the
value of this parameter is critical. This would indicate that a further investi
gation is necessary to obtain an accurate estimate for this parameter.

In the previous section, case four contained a parameter for the I/O
service time which we said was temporarily estimated at 30 ms. We will now
solve this model and vary the I/O service time from 30 to 40 ms. The
following results are obtained.

ARRIVLRATE:5
STCPU:.009
STI01 : .03 /* 30 MS PER VISIT */
STI02:0 /* DEVICE REMOVED */
VRCPU:6
VRIO1:5 /* VISITS PER TRANSACTION */
VRI02:0 /* DEVICE REMOVED */
NO ERRORS DETECTED DURING NUMERICAL SOLUTION

WHAT:ALL

ELEMENT
CPUQ
I01 Q

UTILIZATION
0.27000
0.75000

ELEMENT
CPUQ
I01 Q

THROUGHPUT
30.00000
25.00000

SEC. 7.7 / SENSITIVITY ANALYSIS 125
ELEMENT
CPUQ
101 Q

MEAN QUEUE LENGTH
0.36986
3.00000

ELEMENT
CPUQ
101 Q

MEAN QUEUEING TIME
0.01233
0.12000

ELEMENT
CH1

OPEN CHAIN POPULATION
3.36986

ELEMENT
CH 1

OPEN CHAIN RESPONSE TIME
0.67397

WHAT:
ARRIVLRATE
STCPU:.009

: 5

STI01:.035
STI02:0 /*
VRCPU:6

/* 35 MS PER VISIT */
DEVICE REMOVED */

VRI01:5 /* VISITS PER TRANSACTION */
VRI02:0 /* DEVICE REMOVED */
NO ERRORS DETECTED DURING NUMERICAL SOLUTION

WHAT:ALL

ELEMENT
CPUQ
101Q

UTILIZATION
0.27000
0.87500

ELEMENT
CPUQ
101 Q

THROUGHPUT
30.00000
25.00000

ELEMENT
CPUQ
I01Q

MEAN QUEUE LENGTH
0.36986
7.00000

ELEMENT
CPUQ
101Q

MEAN QUEUEING TIME
0.01233
0.28000

ELEMENT
CHI

OPEN CHAIN POPULATION
7.36986

ELEMENT
CH 1

OPEN CHAIN RESPONSE TIME
1.47397

WHAT:
ARRIVLRATE:
STCPU:.009

: 5

126 INTERPRETING RESULTS / CHAP. 7

ST101:.039 /* 39 MS PER VISIT */
STI02:0 /*
V RCPU:6

DEVICE REMOVED */

V RI01:5 /*
V RI02:0 /*

VISITS PER TRANSACTION */
DEVICE REMOVED */

NO ERRORS DETECTED DURING NUMERICAL SOLUTION

WHAT:ALL

ELEMENT UTILIZATION
CPUQ 0.27000
I0 1 Q 0.97500

ELEMENT THROUGHPUT
CPUQ 30.00000
101 Q 25.00000

ELEMENT
CPUQ

MEAN QUEUE LENGTH
0.36986

101 Q 39.00020

ELEMENT
CPUQ

MEAN QUEUEING TIME
0.01233

101 Q 1.56001

ELEMENT OPEN CHAIN POPULATION
CH 1 39.37006

ELEMENT OPEN CHAIN RESPONSE TIME
CH 1 7.87401

WHAT:
ARRIVLRATE : 5
STCPU:.009
STIO1:.04 /* 40 MS PER VISIT */
STI02:0 /*
VRCPU:6

DEVICE REMOVED */

VRIOI:5 /*
VRI02:0 /*

VISITS PER TRANSACTION */
DEVICE REMOVED */

NO ERRORS DETECTED DURING NUMERICAL SOLUTION

WHAT:ALL

ELEMENT UTILIZATION
CPUQ 0.27000
101 Q 1.00000

ELEMENT THROUGHPUT
CPUQ 30.00000
101 Q 25.00000

SEC. 7.7 / SENSITIVITY ANALYSIS 127
ELEMENT
CPUQ
101Q

MEAN QUEUE LENGTH
0.36986
9.4520E+06

ELEMENT
CPUQ
101 Q

MEAN QUEUEING TIME
0.01233
3.7808E+05

ELEMENT
CH1

OPEN CHAIN POPULATION
9.4520E+06

ELEMENT
CH 1

OPEN CHAIN RESPONSE TIME
1.8904E+06

The results vary significantly with different values of the I/O service
time parameter. This would indicate that the I/O service time is a critical
parameter for this model. We should obtain an accurate estimate of it in
order to obtain accurate performance measures.

7.8. PLOTTING OF RESULTS

Models are frequently solved for a large set of parameter values. One
of the best ways of viewing a large collection of results from many different
parameter values is using graphics. The graphical plots of model results can
sometimes give further insight into the system behavior. In this section some
typical plots will be illustrated. There are many other types of plots which
analysts may find useful.

Let us start out by plotting some results from model EX7.2 which was
discussed in the previous two sections. We have solved this model by vary
ing the arrival rate (ARRIVLRATE) from 5.0 to 9.5 in increments of 0.5.
The plots in Figure 7.3 illustrate the changes in utilization, throughput,
mean queue length, and mean queueing time with the arrival rate.

Look back at the results listed for the M /M /l queue model discussed
in Section 7.1. The following two plots in Figure 7.4 show the queue length
distribution and the queueing time distribution.

7.9. FURTHER READING

Additional information about performance measures and the model
from Section 7.3 can be found in Sauer, MacNair, and Kurose [159, 160].
For a further discussion of the sequential stopping rule and the small sample

Q
U

E
U

E
 L

E
N

G
TH

U

TI
LI

ZA
TI

O
N

128 INTERPRETING RESULTS / CHAP. 7

EX7.2 QUEUE LENGTHS

7 8

ARRIVAL RATE

10

s

3u3

3 33a

EX7.2 QUEUEING TIMES

• mow)
- OT(DS)

7 8

ARRIVAL RATE

10

Figure 7.3. Utilization, Throughput, Queue Length, and Queueing Time

problems see Lavenberg and Sauer [102], Buzen [40] contains a good
discussion of modification analysis and the skills necessary for modeling.
The model and parameters in Sections 7.6 and 7.7 are based on descriptions
found in this same paper by Buzen. Lazowska, Zahorjan, Graham, and
Sevcik [108] has additional information on modification analysis and valida
tion of analytic models. Law and Kelton [106] has a good discussion of
accuracy and validation of simulation models. Kobayashi [98] and Laven
berg [100] contain additional material related to the level of detail of
models. MacNair and Sauer [115] illustrates some additional examples of
graphical results.

7.10. EXERCISES

7.1 Discuss the various performance measures produced by modeling
packages.

7.2 Discuss the sources of error that may exist in model results.

PR
O

BA
BI

LI
TY

SEC. 7.10 / EXERCISES 129

o MM1Q QUEUE LENGTH DISTRIBUTION o MM1Q QUEUEING TIME DISTRIBUTION

o0 1 1 '"•»..... .— L- 1 1 1 1
2 A 8 a 10

QUEUE LENGTH

o0 I I l
1 2
QUEUEING TIME

Figure 7.4. Queue Length and Queueing Time Distributions

3

7.3 Discuss the role confidence intervals play in determining the accuracy
of simulation results.

7.4 Try to validate a simple model of a system you are familiar with.

7.5 Construct a model of a system at several different levels of detail and
compare the results.

7.6 Perform a modification analysis and a sensitivity analysis on a model
of your choice.

7.7 Plot some of the results obtained from a parametric study of a model
of your choice.

CHAPTER 8

EVERYDAY LIFE SYSTEMS
This chapter contains models of simple systems people encounter in

day to day activities. These models are being presented as a teaching aid to
demonstrate how to formulate a model once we understand how a system
behaves. The systems modeled in this chapter were chosen because most
people are familiar with the way they function. The systems include a
barber shop, a parking lot, a traffic light, use of a copier, a catalog store,
and a supermarket.

8.1. BARBERSHOP

A barber shop is a very simple system. The barbers constitute the
servers and the chairs can be represented by positions in a waiting line.
Figure 8.1 is a schematic of a typical barber shop.

It can be modeled as an open model with a source generating the arrivals of
new customers. Figure 8.2 illustrates a model diagram of this system. The
people arrive according to some interarrival time distribution. If there are
any empty seats available, the new customer enters the barber shop. If the

130

SEC. 8.1 / BARBER SHOP 131

shop is full, the customer leaves. The customers are served in FCFS order
by the first available barber.

Figure 8.2. Model Diagram of a Barber Shop

The following listing is a simple RESQ model of this system. It will first
be solved by simulation, and then we will compare it to an analytic solution.
It contains symbolic input parameters for the rate of arrival of new custom
ers, the time to cut a person’s hair, the number of barbers, and the number
of chairs. The arrival rate and the cutting time are mean values for exponen
tial distributions.

MODEL:EX8.1
METHOD:simulation
NUMERIC PARAMETERS:arrivlrate cuttingtim numbarbers numchairs

/* arrivlrate - arrival rate, people per hour */
/* cuttingtim - cutting time in minutes V
/* numbarbers - number of barbers */
/* numchairs - number of waiting chairs */

QUEUE:barbers
TYPE:active
SERVERS:numbarbers
DSPL:fcfs
CLASS LIST:chairs

WORK DEMANDS:cuttingtim
SERVER -

RATES:1
CHAIN:path

TYPE:open
SOURCE LIST:people
ARRIVAL TIMES:60/arrivlrate /* minutes between arrivals */
:people->chairs sink; if (qKnumchairs+numbarbers) if (t)
:chairs->sink

CONFIDENCE INTERVAL METHOD:none

132 EVERYDAY LIFE SYSTEMS / CHAP. 8

INITIAL STATE DEFINITION -
FUN LIMITS -

QUEUES FOR DEPARTURE COUNTS:barbers
DEPARTURES:1000

LIMIT - CP SECONDS:5
TRACE:no

The barbers and the chairs are modeled as a single service center with
multiple servers. The model permits the arrival rate to be entered as the
number of people per hour, which is converted to minutes between arrivals.
If all of the chairs, and therefore the barbers, are occupied when a new
customer arrives, the new customer leaves the model by going to the SINK.
The simulation will not produce confidence intervals. It will be run until
there are 1,000 departures from the shop.

We can solve this model and specify different arrival rates, cutting
times, numbers of barbers, and numbers of chairs. The parameters for the
first solution are 17 people per hour, ten minutes per haircut, five barbers,
and ten chairs. We can obtain the following results from the simulation.

RESQ2 VERSION DATE: JANUARY 18, 1984 - TIME: 09:23:17 DATE: 02/26/84
MODEL:EX8.1
ARRIVLRATE:17
CUTTINGTIM:10
NUMBARBERS:5
NUMCHAIRS:10
RUN END: BARBERS DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION.

END

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS

3553.03662
0.75
2004

WHAT:ALL

ELEMENT
BARBERS

UTILIZATION
0.5447 1
0.76568
0.64583
0.56723
0.41837
0.32642

SERVER 1
SERVER 2
SERVER 3
SERVER 4
SERVER 5

ELEMENT
BARBERS
PEOPLE
SINK

THROUGHPUT
0.28145
0.28258
0.28145

SEC. 8.1 / BARBER SHOP 133
ELEMENT MEAN QUEUE LENGTH
BARBERS 2.88230

ELEMENT STANDARD DEVIATION OF QUEUE LENGTH
BARBERS 1.87379

ELEMENT MEAN QUEUEING TIME
BARBERS 10.21078

ELEMENT STANDARD DEVIATION OF QUEUEING TIME
BARBERS 10.05878

ELEMENT MAXIMUM QUEUE LENGTH
BARBERS 10

ELEMENT MAXIMUM QUEUEING TIME
BARBERS 67.45689

ELEMENT OPEN CHAIN POPULATION
PATH 2.88230

ELEMENT OPEN CHAIN RESPONSE TIME
PATH 10.24092

WHAT:
CONTINUE RUN:no

If the new customers were not leaving when all of the chairs are occu
pied, the actual throughput would be 17 people per hour divided by 60
minutes per hour which is 0.28333. This is a very short run, but the simula
tion throughput at the source (PEOPLE) is close to the actual value. The
throughput at the barbers should be less than this value. The actual utiliza
tion is equal to the throughput times the service time divided by the number
of servers. It should be less than 0.56667. Notice the server utilizations
reported by the simulation program. When there are several servers free, the
simulation always selects the first server to begin service. This is the reason
for the decreasing server utilizations.

Now we will change the input parameters to a new set of values and
solve the model again.

ARRIVLRATE:6
CUTTINGTIM:11
NUMBARBERS:3
NUMCHAIRS:4
RUN END: BARBERS DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION.

134 EVERYDAY LIFE SYSTEMS / CHAP. 8

SIMULATED TIME: 1.0060E+04
CPU TIME: 0.70

NUMBER OF EVENTS: 2002

WHAT:ALL

ELEMENT UTILIZATION
BARBERS 0.35351
SERVER 1 0.54293
SERVER 2 0.33930
SERVER 3 0.17829

ELEMENT THROUGHPUT
BARBERS 0.09940
PEOPLE 0.09960
SINK 0.09940

ELEMENT MEAN QUEUE LENGTH
BARBERS 1 . 10741

ELEMENT STANDARD DEVIATION OF QUEUE LENGTH
BARBERS 1.10274

ELEMENT MEAN QUEUEING TIME
BARBERS 11.11303

ELEMENT STANDARD DEVIATION OF QUEUEING TIME
BARBERS 11.05664

ELEMENT MAXIMUM QUEUE LENGTH
BARBERS 6

ELEMENT MAXIMUM QUEUEING TIME
BARBERS 74.20258

ELEMENT OPEN CHAIN POPULATION
PATH 1.10741

ELEMENT OPEN CHAIN RESPONSE TIME
PATH 11.14108

Again we could easily calculate the actual throughput at the source and
approximate values for the utilization and throughput at the barbers. In
stead we will change the model so that we can solve it analytically. The
following model replaces the source with a FCFS service center and the
open chain with a closed chain. The finite capacity of the barber shop is
represented by the closed chain population. This is a cyclic queueing model
because the customers keep cycling back through the service centers. The

SEC. 8.1 / BARBER SHOP 135

results produced at the BARBERS service center are comparable for both
models.

MODEL:EX8.2
METHOD:numerical
NUMERIC PARAMETERS:arrivlrate cuttingtim numbarbers numchairs
QUEUE:sourceq

TYPE:fcfs
CLASS LIST:people

SERVICE TIMES:60/arrivlrate /* min. between arrivals */
QUEUE:barbers

TYPE:act ive
SERVERS:numbarbers
DSPL:fcfs
CLASS LIST:chairs

WORK DEMANDS:cuttingtim
SERVER -

RATES:1
CHAIN:path

TYPE:closed
POPULATION:numchairs+numbarbers
:people->chairs->people

Here are the performance measures from the analytic solution with the
same set of parameter values.

RESQ2 VERSION DATE: JANUARY 18, 1984 - TIME: 09:59:20 DATE: 02/26/84
MODEL:EX8.2
ARRIVLRATE:17
CUTTINGTIM:10
NUMBARBERS:5
NUMCHAIRS:10
NO ERRORS DETECTED DURING NUMERICAL SOLUTION

END

WHAT:ALL

ELEMENT
SOURCEQ
BARBERS

UTILIZATION
0.99971
0.56650

ELEMENT
SOURCEQ
BARBERS

THROUGHPUT
0.28325
0.28325

ELEMENT
SOURCEQ
BARBERS

MEAN QUEUE LENGTH
11.91461
3.08539

ELEMENT
SOURCEQ

MEAN QUEUEING TIME
42.06383

136 EVERYDAY LIFE SYSTEMS / CHAP. 8

BARBERS 10.89277

WHAT:
ARRIVLRATE:6
('UTTINGTIM: 1 1
NUMBARBERS:3
NUMCHAIRS:9
Nu ERRORS DETECTED DURING NUMERICAL SOLUTION

WHAT:ALL

ELEMENT
SOURCEQ
BARBERS

UTILIZATION
0.99869
0.36619

ELEMENT
SOURCEQ
BARBERS

THROUGHPUT
0.09987
0.09987

ELEMENT
SOURCEQ
BARBERS

MEAN QUEUE LENGTH
5.83926
1 . 16074

ELEMENT
SOURCEQ
BARBERS

MEAN QUEUEING TIME
58.46945
1 1 .62262

This technique of using a cyclic queueing model can be used to exactly
represent a finite capacity, single-resource system. The population in the
closed model is used to depict the finite capacity.

Next we will solve this model by varying the arrival rate from five to
15 people per hour and the cutting time from ten to 14 minutes with three
barbers and four chairs. The following graphs in Figure 8.3 show the utiliza
tion of the barbers and the average amount of time spent in the barber
shop.

8.2. PARKING LOT

We will build a simple model of a parking lot in order to illustrate how
to use a passive resource. The passive resource contains a finite number of
elements which are allocated to customers, held onto by the customers, and
finally released by the customers. The finite number of elements will repre
sent the number of spaces in the parking lot. Figure 8.4 shows a model
diagram of the parking lot model.

SEC. 8.2 / PARKING LOT 137

Figure 8.3. Graphs of Utilization and Queueing Time

PARKING LOT

Figure 8.4. Model Diagram of a Parking Lot

There is a passive resource for the number of spaces in the lot. The
number of tokens is equal to the number of spaces. One space is allocated
at PARKINGENT and is held onto until it is released at PARKINGEXT.
There is an active service center which represents the time a customer

138 EVERYDAY LIFE SYSTEMS / CHAP. 8

spends shopping while the car occupies a space in the parking lot. Cars are
generated at a source and enter the parking lot if a space is available. A
status function (TA) for the number of tokens available is checked to
determine this condition. If all spaces are in use, the car leaves the model.
After being allocated a space, the car holds onto the space until the service
time at the SPACEQ service center is complete. The SPACEQ service
center is modeled as an infinite server so that the occupants of the cars can
be shopping at the same time. Then the car releases the space and leaves.
The released space is then available to be allocated to new cars that arrive.
This model contains numeric parameters for the number of spaces in the lot,
the average amount of time a space is occupied, and the
arrival.

MODEL:EX8.3
METHOD:s imulat ion
NUMERIC PARAMETERS : numspaces spacetime arnvlrate
/* numspaces = the number of spaces in the parking
/* spacetime = the average number of minutes a car
/* in a space */
/* arrivlrate = the average number of cars arriving
QUEUE:spaceq

TYPE:is
CLASS LIST:spaces

SERVICE TIMES:spacetime
QUEUE:parkinglot

TYPE:pass 1 ve
TOKENS:numspaces
DSPL:fcfs
ALLOCATE NODE LIST:parkingent

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:parkingext

CHAIN:carpath
TYPE:open
SOURCE LIST:cars
ARRIVAL TIMES:60/arnvlrate /* inter-arrival time, minutes */
:cars->parkingent sink;if(ta>0) if(t)
:parkingent->spaces->parkingext->s ink

CONFIDENCE INTERVAL METHOD:none
INITIAL STATE DEFINITION -
RUN LIMITS -

SIMULATED TIME:480
QUEUES FOR DEPARTURE COUNTS:parkinglot

DEPARTURES:1000
LIMIT - CP SECONDS:5
TRACE:no

END

average rate of

lot */
spends */

per hour */

When we simulate this model with 100 spaces, an average of 20 min
utes occupying a space and 270 cars per hour, we obtain the following
results. On the average only 79 spaces are occupied. Notice that the mean

SEC. 8.2 / PARKING LOT 139

queueing times are less than the 20 minutes which was specified as an input
parameter. This is a very short run of the simulation, and the results are not
representative of the actual performance measures. The simulation would
have to be continued to obtain more accurate results.

RESQ2 VERSION DATE: JANUARY 18, 1984 - TIME: 19:20:15 DATE: 02/29/84
MODEL:PARKINGL
NUMSPACES:100
SPACETIME:20
ARRIVLRATE:270
RUN END: PARKINGLOT DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME: 242.20998
CPU TIME: 1 .44

NUMBER OF EVENTS: 2080

WHAT:ALL

ELEMENT UTILIZATION
PARKINGLOT 0.78691
SPACEQ 0.00000

ELEMENT THROUGHPUT
PARKINGLOT 4.12865
SPACEQ 4.12865
PARKINGEXT 4.12865
CARS 4.45894
SINK 4.15342

ELEMENT MEAN QUEUE LENGTH
PARKINGLOT 78.69113
SPACEQ 78.69113

ELEMENT STANDARD DEVIATION OF QUEUE LENGTH
PARKINGLOT 1 5.46044
SPACEQ 15.46044

ELEMENT MEAN QUEUEING TIME
PARKINGLOT 17.76599
SPACEQ 17.76599

ELEMENT STANDARD DEVIATION OF QUEUEING TIME
PARKINGLOT 18.32513
SPACEQ 18.32513

ELEMENT MEAN TOKENS IN USE
PARKINGLOT 78.69113

140 EVERYDAY LIFE SYSTEMS / CHAP. 8

ELEMENT
PARKINOLOT

MEAN TOTAL TOKENS IN POOL
1 00.00000

ELEMENT
PARK INCH >T
SPACEQ

MAXIMUM QUEUE LENGTH
100
100

ELEMENT
PARKINGLi >T
SPACEQ

MAXIMUM QUEUEING TIME
134.91374
134.91374

ELEMENT
CARPATH

OPEN CHAIN POPULATION
78.69113

ELEMENT
CARPATH

OPEN CHAIN RESPONSE TIME
18.94609

8.3. TRAFFIC LIGHT

We will construct a simple model of an intersection with traffic flowing
in one direction. Figure 8.5 shows a model diagram of this system. Cars are
generated at a source and wait at an allocate node if the light is red. When
the light becomes green, cars go through the intersection one at a time. The
light is changed to red by allocating the token representing the light to a
special customer, which holds onto it for a time period representing the red
light. Then the token is released by this special customer, and the special
customer spends time at a service center for the amount of time the light
stays green.

TRAFFIC STOPLIGHT INTERSECTN RELLIGHT SINK

Figure 8.5. Model Diagram of a Traffic Light

SEC. 8.3 / TRAFFIC LIGHT 141

The model contains numeric parameters for the average amount of time
it takes a car to get through the intersection, the average length of a green
light, the average number of cars to arrive per minute, and the average
length of a red light. The passive resource representing the traffic light has
one token, two allocate nodes, and two release nodes. One pair of allocate
and release nodes (STOPLIGHT and RELLIGHT) is for the cars, and the
other pair of allocate and release nodes (MAKERED and MAKEGREEN)
is for the special customer that controls the light. The passive resource has
a priority queueing discipline, with the special customer having priority over
the cars. There are service centers for the intersection time, the green light
and the red light. The lengths of the green and red lights are specified to be
constants. The intersection time and the interarrival time between cars are
specified as exponential distributions. This simple technique of synchroniz
ing customers with a passive resource will be very useful in many other
modeling situations.

MODEL:EX8.4
METHOD:simulation
NUMERIC PARAMETERS:intersectm greentime arrivlrate redtime
/* intersectm = average amount of time a car spends in the */
/* intersection, in seconds */
/* greentime = length of a green light, in seconds */
/* arrivlrate = average number of cars which arrive in 1 minute */
/* redtime = length of a red light, in seconds */
QUEUE:trafficlgt

TYPE-.passive
TOKENS:1
DSPL:prty
ALLOCATE NODE LIST:stoplight makered

NUMBERS OF TOKENS TO ALLOCATE:1 1
PRIORITIES:2 1

RELEASE NODE LIST:rellight makegreen
QUEUE:intersectq

TYPE:fcfs
CLASS LIST:intersectn

SERVICE TIMES:intersectm
QUEUE:greenq

TYPE:fcfs
CLASS LIST:greenlight

SERVICE TIMES:constant(greentime)
QUEUE:redq

TYPE:fcfs
CLASS LIST:redlight

SERVICE TIMES:constant(redtime)
CHAIN:trafpath

TYPE:open
SOURCE LIST:traffic
ARRIVAL TIMES:60/arrivlrate
:traffic->stoplight->intersectn->rellight->sink
:greenlight->makered->redlight->makegreen->greenlight

142 EVERYDAY LIFE SYSTEMS / CHAP. 8

CONFIDENCE INTERVAL METHOD:none
INITIAL STATE DEFINITION -
CHAIN:trafpath
NODE LIST:greenlight

INIT POP:1
RUN LIMITS -

QUEUES FOR DEPARTURE COUNTS:intersectq
DEPARTURES:1000

LIMIT - CP SECONDS:5
TRACE:no

The following results were produced by assigning the intersection time
to two seconds, the green time to 20 seconds, the red time to 30 seconds,
and the arrival rate to ten cars per minute. Again we are running the
simulation for a very short amount of time. On the average there are about
four cars waiting at a red light or in the intersection if the light is green.
The average amount of time a car spends waiting for a red light is about
22.5 (24.5 minus 1.95) seconds.

RESQ2 VERSION DATE: JANUARY 18, 1984 - TIME: 18:57:29 DATE: 02/28/84
MODEL:EX8.4
INTERSECTM:2
GREENTIME:20
ARRIVLRATE:10
REDTIME:30
RUN END: INTERSECTQ DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION.

END

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS

6040.91406
0.99
2241

WHAT:ALL

ELEMENT
TRAFFICLGT
STOPLIGHT
MAKERED
INTERSECTQ
GREENQ
REDQ

UTILIZATION
0.90840
0.32240
0.58600
0.32240
0.39292
0.58600

ELEMENT
TRAFFICLGT
STOPLIGHT
MAKERED
INTERSECTQ
GREENQ
REDQ
RELLIGHT

THROUGHPUT
0.18507
0.16554
0.01953
0. 16554
0.01953
0.01953
0.16554

SEC. 8.3 / TRAFFIC LIGHT 143
MAKEGREEN
TRAFFIC
SINK

0.01953
0.16637
0.16554

ELEMENT
TRAFFICLGT
STOPLIGHT
MAKERED
INTERSECTQ
GREENQ
REDQ

MEAN QUEUE LENGTH
4.67230
4.06522
0.60708
0.32240
0.39292
0.58600

ELEMENT
TRAFFICLGT
STOPLIGHT
MAKERED
INTERSECTQ
GREENQ
REDQ

STANDARD DEVIATION OF QUEUE LENGTH
3.85954
3.81547
0.48840
0.46739
0.48840
0.49255

ELEMENT
TRAFFICLGT
STOPLIGHT
MAKERED
INTERSECTQ
GREENQ
REDQ

MEAN QUEUEING TIME
25.22060
24.52933
31.07884
1 .94756
20.00000
30.00000

ELEMENT
TRAFFICLGT
STOPLIGHT
MAKERED
INTERSECTQ

STANDARD DEVIATION OF QUEUEING TIME
18.64174
19.58708
1.69751
1.99970

ELEMENT
TRAFFICLGT

MEAN TOKENS IN USE
0.90840

ELEMENT
TRAFFICLGT

MEAN TOTAL TOKENS IN POOL
1 .00000

ELEMENT
TRAFFICLGT
STOPLIGHT
MAKERED

MAXIMUM QUEUE LENGTH
23
22
1

INTERSECTQ 1
GREENQ
REDQ

1
1

ELEMENT
TRAFFICLGT
STOPLIGHT
MAKERED

MAXIMUM QUEUEING TIME
110.01151
110.01151
39.51199

144 EVERYDAY LIFE SYSTEMS / CHAP. 8

INTERSECTQ
GREENQ
REDQ

13.49137
20.00000
30.00000

ELEMENT
TRAFPATH

OPEN CHAIN POPULATION
5.06522

ELEMENT
TRAFPATH

OPEN CHAIN RESPONSE TIME
30.59857

8.4. COPIER

This section discusses a model of using a copier. Figure 8.6 shows a
model diagram. People arrive at a source according to some interarrival time
distribution. There is a passive resource with one token to insure that only
one person can use the copier at a time. There is a set node to assign the
number of copies to a customer attribute by sampling from a distribution. If
the number of blank sheets remaining in the copier is greater than or equal
to the number of copies, the sheets are allocated to the person and time is
spent copying the previously assigned number of copies. A destroy node
discards the copied sheets so that the number of blank sheets remaining is
correct. Remember that a customer which visits a destroy node discards all
the tokens it is holding. Then any customer waiting can use the copier
when the previous person leaves. If the number of copies exceeds the
number of sheets remaining, the person loads the copier with new blank
sheets before proceeding to perform the copying.

WAITQ

(■
PEOPLE W AITUNE'' SETCOPIES SHEETSUSED COPY FINISH SINK

INIT
SHEETS

Figure 8.6. Model Diagram of Using a Copier

SEC. 8.4 / COPIER 145

The model contains numeric parameters for the rate of arrival of the
people, the mean number of copies made, the average amount of time to
load the copier with blank sheets, the number of blank sheets initially in the
copier, the amount of time to copy one sheet, and the number of simulation
minutes per sequential sampling period. The passive resource for restricting
the use of the copier defines an allocate node, a release node, and one
token. The time to load the blank sheets is assumed to be from an expo
nential distribution. The passive resource controlling the use of the blank
sheets contains a release node, a destroy node, a create node, and a number
of tokens equal to a previously defined numeric parameter (INITSHEETS).
The number of sheets allocated to a customer is equal to a customer attrib
ute (in RESQ, it is a job variable (JV(0)) which is assigned as a sample
from an exponential distribution at a set node. The number of sheets
created when the copier is about to be empty is a sample from a discrete
distribution. Either 100, 200, or 300 sheets are loaded with the given
probabilities. The copying time is equal to the number of copies times the
amount of time necessary to copy one sheet. We are using the regenerative
method to produce confidence intervals and the sequential sampling proce
dure to detect when the accuracy criteria are satisfied.

MODEL:EX8.5
METHOD:simulation
NUMERIC PARAMETERSipeoplear mnumcopies loadtime

/* peoplear = number of people per minute */
/* mnumcopies = mean number of copies made */
/* loadtime = average amount of seconds to load */

NUMERIC PARAMETERS:initsheets copytime stperperid
/* initsheets = initial number of sheets in copier */
/* copytime = number of seconds to copy 1 sheet */
/* stperperid = simulation minutes per period */

QUEUEiwaitq
TYPE:passive
TOKENS:1
DSPL:fcfs
ALLOCATE NODE LIST:waitline

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:leave

QUEUE:loadq
TYPE:fcfS
CLASS LIST:load

SERVICE TIMES:loadtime
QUEUE:sheetsq

TYPE:passive
TOKENS:initsheets
DSPL:fcfs
ALLOCATE NODE L I S T :sheetsused

NUMBERS OF TOKENS TO ALLOCATE:jv(0)
DESTROY NODE LIST:finish
CREATE NODE LIST:newsheets

146 EVERYDAY LIFE SYSTEMS / CHAP. 8

NUMBERS OF TOKENS TO CREATE:discrete(100,.4;200 ,.3 ; 300 ,.3)
QUEUE:copyq

TYPE:fcfs
CLASS LIST:copy

SERVICE TIMES:constant(jv(0)*copytime)
SET NODES:setcopies

ASSIGNMENT LIST:jv(0)=exponential(mnumcopies)
/* jv(0) = number of copies for each person */

CHAIN:peoplepath
TYPE:open
SOURCE LIST:people
ARRIVAL TIMES:60/peoplear /* seconds between arrivals */
:people->waitline->setcopies
:setcopies->sheetsused load;if(jv(0)<ta) if(t)
:load->newsheets->sheetsused->copy->finish->leave->sink

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:sheetsq
MEASURES:qt
ALLOWED WIDTHS:10

SAMPLING PERIOD GUIDELINES -
SIMULATED TIME:60*stperperid /* seconds */

LIMIT - CP SECONDS:30
TRACE:no

END

The following results are produced for the parameter values shown.
This is a very short simulation run, and some of the confidence interval
widths are very large. There is not much contention with this set of parame
ter values. The maximum queueing time of more than five minutes is caused
by a long load time. Notice that it was necessary to load the copier 53
times during this run.

RESQ2 VERSION DATE:
MODEL:EX8.5
PEOPLEAR:0.5
MNUMCOPIES:10
LOADTIME:60
INITSHEETS:300
COPYTIME:0.5
STPERPERID:400
SAMPLING PERIOD END
SAMPLING PERIOD END
SAMPLING PERIOD END
SAMPLING PERIOD END
SAMPLING PERIOD END

JANUARY 18, 1984 - TIME: 07:54:53

SIMULATED TIME GUIDELINE
SIMULATED TIME GUIDELINE
SIMULATED TIME GUIDELINE
SIMULATED TIME GUIDELINE
SIMULATED TIME GUIDELINE

NO ERRORS DETECTED DURING SIMULATION.

DATE: 03/07/84

SEC. 8.4 / COPIER 147
SIMULATED TIME .2024E+05

CPU TIME 2.62
2045
939

NUMBER OF EVENTS
NUMBER OF CYCLES

WHAT:ALLBO

ELEMENT
WAITQ
LOADQ
COPYQ

ELEMENT
WAITQ
SHEETSQ
LOADQ
COPYQ
LEAVE
FINISH
NEWSHEETS
SETCOPIES
PEOPLE
SINK

ELEMENT
WAITQ
SHEETSQ
LOADQ
COPYQ

ELEMENT
WAITQ
SHEETSQ
LOADQ
COPYQ

ELEMENT
WAITQ
SHEETSQ
LOADQ
COPYQ

ELEMENT
WAITQ
SHEETSQ
LOADQ
COPYQ

ELEMENT
WAITQ
SHEETSQ

UTILIZATION
0.06531(0.05670,0.07393) 1.7%
0.02322(-0.00801,0.05444) 6.2%
0.04210(0.03906,0.04514) 0.6%

THROUGHPUT
8.2834E-03(7.8471E-03,8.7196E-03) 10.5%
7.8842E-0 3 (7.4562E-03,8.3122E-03) 10.9%
4.4078E-04(2.9473E-05,8.5209E-04) 186.6%
8.2834E-03(7.8471E-03,8.7196E-03) 10.5%
8.2834E-03
8.2834E-03
4.4078E-04
8.2834E-03
8.2834E-03
8.2834E-03

MEAN QUEUE LENGTH
0.07718(0.06279,0.09157) 37.3%
0.04205(0.03894,0.04516) 14.8%
0.02322(-0.00801,0.05444) 269.0%
0.04210(0.03906,0.04514) 14.4%

STANDARD DEVIATION OF QUEUE LENGTH
0.31875
0.20070
0.15059
0.20081

MEAN QUEUEING TIME
9.31745(7.67765,10.95725) 35.2%
5.33341(5.06968,5.59714) 9.9%
52.67407(40.19261,65.15552) 47.4%
5.08190(4.82670,5.33709) 10.0%

STANDARD DEVIATION OF QUEUEING TIME
21.55467
4.89252
55.17625
4.90234

MEAN TOKENS IN USE
0.06531(0.05670,0.07393) 26.4%
0.82559(0.72304,0.92814) 24.8%

148 EVERYDAY LIFE SYSTEMS / CHAP. 8

ELEMENT
WAITQ
SHEETSQ

MEAN TOTAL TOKENS IN POOL
1.00000
109.07230(103.04735,115.09724) 11.0%

ELEMENT
WAITQ
SHEETSQ

MAXIMUM QUEUE LENGTH
4
1

LOADQ
COPYQ

1
1

ELEMENT
WAITQ
SHEETSQ
LOADQ
COPYQ

MAXIMUM QUEUEING TIME
304.101 32
36.62265
301.45630
36.62265

ELEMENT
PEOPLEPATH

OPEN CHAIN POPULATION
0.07718(0.06279,0.09157) 37.3%

ELEMENT
PEOPLEPATH

WHAT:ND(*)

OPEN CHAIN RESPONSE TIME
9.31745(7.67765,10.95725) 35.2%

ELEMENT
WAITQ
SHEETSQ
LOADQ
COPYQ
LEAVE
FINISH
NEWSHEETS
SETCOPIES
PEOPLE
SINK

NUMBER OF DEPARTURES
996
948
53
996
996
996
53
996
996
996

WHAT :
CONTINUE RUN:no

If we triple the rate at which people arrive to use the copier, we obtain
the following results. There is more contention exhibited in these results
compared to the ones with the previous arrival rate.

PEOPLEAR:1.5
MNUMCOPIES:10
LOADTIME:60
INITSHEETS:300
COPYTIME:0.5
STPERPERID:400
SAMPLING PERIOD END: SIMULATED TIME GUIDELINE
SAMPLING PERIOD END: SIMULATED TIME GUIDELINE

NO ERRORS DETECTED DURING SIMULATION.

SEC. 8.4 / COPIER 149

SIMULATED TIME 4.8739E+04
CPU TIME 3.05

2503
974

NUMBER OF EVENTS
NUMBER OF CYCLES

WHAT:ALLBO

ELEMENT
WAITQ
LOADQ
COPYQ

ELEMENT
WAITQ
SHEETSQ
LOADQ
COPYQ
LEAVE
FINISH
NEWSHEETS
SETCOPIES
PEOPLE
SINK

ELEMENT
WAITQ
SHEETSQ
LOADQ
COPYQ

ELEMENT
WAITQ
SHEETSQ
LOADQ
COPYQ

ELEMENT
WAITQ
SHEETSQ
LOADQ
COPYQ

ELEMENT
WAITQ
SHEETSQ
LOADQ
COPYQ

ELEMENT
WAITQ

UTILIZATION
0.20563(0.17595,0.23532) 5.9%
0.07768(-0.02337,0.17873) 20.2%
0.12795(0.11921,0.13669) 1.7%

THROUGHPUT
0.02505(0.02384,0.02626) 9.7%
0.02382(0.02262,0.02502) 10.1%
1.2516E-03(2.3253E-04,2.2706E-03) 162.8%
0.02505(0.02384,0.02626) 9.7%
0.02505
0.02505
1 .2516E-03
0.02505
0.02505
0.02505

MEAN QUEUE LENGTH
0.41951(0.25452,0.58450) 78.7%
0.12780(0.11888,0.13672) 14.0%
0.07768(-0.02337,0.17873) 260.2%
0.12795(0.11921,0.13669) 13.7%

STANDARD DEVIATION OF QUEUE LENGTH
1.21415
0.33387
0.26767
0.33403

MEAN QUEUEING TIME
16.74559(10.30549,23. 18570) 76.9%
5.36516(5.11409,5.61622) 9.4%
62.06848 (46.62164,77.51532) 49.8%
5.10742(4.86712,5.34772) 9.4%

STANDARD DEVIATION OF QUEUEING TIME
42.05983
5.07177
65.92419
5.07391

MEAN TOKENS IN USE
0.20563(0.17595,0.23532) 28.9%

150 EVERYDAY LIFE SYSTEMS / CHAP. 8

SHEETSQ 2.59484(2.26255,2.92713) 25.6%

ELEMENT
WAITQ
SHEETSQ

MEAN TOTAL TOKENS IN POOL
1 .00000 (1 .00000, 1 .00000) 0.0%
105.14462(99.44360,110.84564) 10.8%

ELEMENT
WAITQ
SHEETSQ
U)ADQ
COPYQ

MAXIMUM QUEUE LENGTH
1 3
1
1
1

ELEMENT
WAITQ
SHEETSQ
LOADQ
COPYQ

MAXIMUM QUEUEING TIME
448.45972
37.66333
405.26050
37.66333

ELEMENT
PEOPLEPATH

OPEN CHAIN POPULATION
0.41951(0.25452,0.58450) 78.7%

ELEMENT
PEOPLEPATH

WHAT:ND(*)

OPEN CHAIN RESPONSE TIME
16.74559(10.30548,23.18568) 76.9%

ELEMENT
WAITQ
SHEETSQ
LOADQ
COPYQ
LEAVE
FINISH
NEWSHEETS
SETCOPIES
PEOPLE
SINK

NUMBER OF DEPARTURES
1221
1161
61
1221
1221
1221
61
1 221
1 221
1221

8.5. CATALOG STORE

The model discussed in this section will be more complicated than the
ones discussed in the previous sections in this chapter. It is a model of a
catalog store which sells items from a catalog. People call the store or come
in to place orders or pick them up when they are ready. In addition to
answering the telephone calls and waiting on the people who come in, the
clerks who work at the store must place orders which are ready for delivery
in bins in anticipation of customer pickup. This is called a binning opera
tion. The store is in operation for nine hours, but the desk is only open for

SEC. 8.5 / CATALOG STORE 151

the last seven hours. No new requests are accepted after nine hours, but
the ones present are completed.

Figure 8.7 shows four sources. Three of them are for three different
types of requests: a phone call, a person arriving at the desk, and a binning
request. Each customer is assigned a number to identify the type of re
quest. There are four clerks available for handling the requests. The phone
and desk requests take precedence over the binning requests, until eight
hours have transpired. After eight hours, the binning requests are processed
the same as the other types of requests. Any binning requests which are
waiting after the eight hours at an allocate node with lower priority than the
phone and desk requests are moved to the line with the other requests by
creating a sufficient number of tokens to allocate to the waiting binning
requests.

SINK

CRABNBW

Figure 8.7. Model Diagram of a Catalog Store

The model contains numeric parameters for the mean interarrival times
for the phone, desk, and binning requests and their mean service times. The
phone and desk requests have the same mean service times. Numeric
identifiers are defined to make the model easier to read. The symbolic
names are used in place of the numbers. Two global variables are defined.
One is used as a counter for the number of binning requests that are wait
ing, and the other is the simulation clock used for timing purposes. There is

152 EVERYDAY LIFE SYSTEMS / CHAP. 8

a passive resource which assigns a higher priority to the phone and desk
requests over the binning requests until eight hours have passed. There is an
active service center with four servers. Binning operations take a different
amount of time to process than the phone and desk requests. The infinite
server queue delays the arrival of the desk requests by two hours. The desk
is only open after two hours have elapsed. The first three set nodes are
used to identify the types of requests. The final two set nodes keep track of
how many binning requests are waiting to be processed. The number waiting
have their priority increased after eight hours of the store operation. Any
requests that arrive after nine hours of store operation are turned away. The
type of request is checked to determine the amount of processing required.

MODEL:EX8.6
METHOD:simulation
/* Time unit is in hours. */
NUMERIC PARAMETERS: atp atd atb stpd stb
NUMERIC IDENTIFIERS:request phone desk binning

REQUEST:0
PHONE:1
DESK:2
BINNING:3

GLOBAL VARIABLES:nbw clock
NBW: 0
CLOCK:0

QUEUE:pqassoc
TYPE:passive
TOKENS:4
DSPL:prty
ALLOCATE NODE LIST:alapd alab

NUMBERS OF TOKENS TO ALLOCATE:1 1
PRIORITIES : 1 2

RELEASE NODE LIST:rea
DESTROY NODE LIST:deab
CREATE-NODE LIST:crabnbw

NUMBERS OF TOKENS TO CREATE:nbw
QUEUE:aqassoc

TYPE:active
SERVERS:4
DSPL:fcfs
CLASS LIST:clspd clsb

WORK DEMANDS:stpd stb
SERVER -

RATES : 1
QUEUE:delay2

TYPE:is
CLASS LIST:cldly

SERVICE TIMES:standard(2,0)
SET NODES:setp

ASSIGNMENT LIST:jv(request)=phone
SET NODES:setd

ASSIGNMENT LIST:jv(request)=desk

SEC. 8.5 / CATALOG STORE 153
SET NODES:setb

ASSIGNMENT LIST:jv(request)Winning
SET NODESraddb subb

ASSIGNMENT LIST:nbw=nbw+1 nbw=nbw-1
CHAIN:ch1

TYPE:open
SOURCE LIST:srcp srcd srcb srcc
ARRIVAL TIMES:atp atd atb standard(8,0)
:srcp->setp sink;if(clock<=9) if(clock>9)
:setp->alapd->clspd clsb; ++

if(jv(request)=phone or jv(request)=desk) ++
if (jv(request)=binning)

:clspd->rea->sink
:srcd->setd sink;if(clock<=7) if(clock>7)
:setd->cldly->alapd
:srcb->setb sink;if(clock<=9) if(clock>9)
:setb->alapd addb;if(clock>=8) if(clock<8)
:addb->alab->deab subb;if(clock>=8) if(clock<8)
:deab->alapd
:subb->clsb->rea
:srcc->crabnbw->sink

CONFIDENCE INTERVAL METHOD:none
INITIAL STATE DEFINITION -
RUN LIMITS -

SIMULATED TIME:10
LIMIT - CP SECONDS:10
TRACE:no

The simulation is run for ten hours of store operation time to make
sure any requests present after nine hours can be finished. The utilization
of the clerks is very low. The idle time would include time for breaks, lunch,
and possibly other activities. However, the four clerks could probably
handle more requests. The model parameters used would represent a light
day. At the end of the simulation we display the number of requests remain
ing (LNG). It is zero, which indicates that all of the requests were complet
ed.

RESQ2 VERSION DATE: JANUARY 18, 1984 - TIME: 10:17:02 DATE: 03/10/84
MODEL:EX8.6
ATP:.25
ATD: . 2
ATB:.5
STPD: . 1
STB:.3
RUN END: SIMULATED TIME LIMIT
NO ERRORS DETECTED DURING SIMULATION.

END

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS

10.02981
0.18
261

154 EVERYDAY LIFE SYSTEMS / CHAP. 8
WHAT:ALL

ELEMENT UTILIZATION
PQASSi)(' 0. 3442 3
ALAPD 0.2 3751
ALAB 0. 10672

AQASSOC 0.34423
SERVER 1 0.49106
SERVER 2 0.42434
SERVER 3 0.24138
SERVER 4 0.22013
CLSPD 0.17888
CLSB 0.16534
DELAY 2 0.00000

ELEMENT THROUGHPUT
PQASSOC 9.57147
ALAPD 7.97623
ALAB 1.59524
AQASSOC 9.57147
CLSPD 7.677 1 2
CLSB 1.89435
DELAY2 4.38692
REA 9.57147
CRABNBW 0.09970
SETP 3.29019
SETD 4.38692
SETB 1 .89435
ADDB 1.59524
SUBB 1.59524
SRCP 3.88841
SRCD 5.98217
SRCB 2.09376
SRCC 0.09970
SINK 12.06404

ELEMENT MEAN QUEUE LENGTH
PQASSOC 1.38402
ALAPD 0.95715
ALAB 0.42686

AQASSOC 1.37691
CLSPD 0.71553
CLSB 0.66138

DELAY 2 8.77385

ELEMENT STANDARD DEVIATION OF QUEUE LENGTH
PQASSOC 1.27967
ALAPD 1.04610
ALAB 0.59364

AQASSOC 1.26223
CLSPD 0.90236
CLSB 0.87530
DELAY2 5.30245

SEC. 8.5 / CATALOG STORE 155
ELEMENT
PQASSOC
ALAPD
ALAB
AQASSOC
CLSPD
CLSB
DELAY 2

MEAN QUEUEING TIME
0.14460
0.12000
0.26758
0.14386
0.09320
0.34913
2.00000

ELEMENT
PQASSOC
ALAPD
ALAB
AQASSOC
CLSPD
CLSB

STANDARD DEVIATION OF QUEUEING TIME
0.21596
0.18058
0.31409
0.21476
0.08741
0.38670

ELEMENT
PQASSOC

MEAN TOKENS IN USE
1.37691

ELEMENT
PQASSOC

MEAN TOTAL TOKENS IN POOL
4.00000

ELEMENT
PQASSOC
ALAPD
ALAB
AQASSOC
CLSPD

MAXIMUM QUEUE LENGTH
5
5
2

4
4

CLSB
DELAY2

4
17

ELEMENT
PQASSOC '
ALAPD
ALAB
AQASSOC
CLSPD
CLSB
DELAY2

MAXIMUM QUEUEING TIME
1.37963
1.32846
1 . 37963
1.37963
0.43161
1 . 37963

2.00000

ELEMENT
CHI

OPEN CHAIN POPULATION
10.15786

ELEMENT
CH1

WHAT:ND(*)

OPEN CHAIN RESPONSE TIME
0.84200

ELEMENT
PQASSOC
ALAPD

NUMBER OF DEPARTURES
96
80

156 EVERYDAY LIFE SYSTEMS / CHAP. 8

ALAB 16
AQASSOC 96
CLSPD 77
CLSB 19

DELAY2 44
REA 96
CRABNBW 1
SETP 33
SETD 44
SETB 19
ADDB 16
SUBB 16
SRCP 39
SRCD 60
SRCB 21
SRCC 1
SINK 121

WHAT:LNG

ELEMENT FINAL
PQASSOC 0
AQASSOC 0
DELAY2 0

8.6. SUPERMARKET

LENGTHS

A simple model of a supermarket will contain a deli section with three
servers and a checkout area with four registers. Shoppers arrive and go to a
set node to determine how many items they are going to purchase. Some of
the customers go to the deli section. All customers spend time shopping for
the number of items they need. If they buy ten or less items, there is a
special checkout counter for them. Otherwise a customer picks the shortest
line available at the other registers.

The model contains a numeric parameter for the mean interarrival time
of customers. There are numeric identifiers defined for mean service times
at the deli section and the registers and for the number of deli servers. The
deli section is modeled as a multiserver queue with three classes. The
shopping time is spent at an infinite server resource. The checkout counters
are single server queues. The number of items to purchase is determined by
sampling from a uniform distribution from one to 30. Since the uniform
distribution is a continuous distribution, the sample is converted to an
integer using the ceiling function at set node SETNUM. The number of
items is saved as a customer attribute. Some customers go to the deli sec
tion, and all customers then spend time shopping. The first register (REG1)
is for ten items or less. The customer attribute (JV(0)) is checked to deter-

SEC. 8.6 / SUPERMARKET 157

SHOPPING

Figure 8.8. Model Diagram of a Supermarket

mine the number of items. The line lengths at the remaining checkouts are
examined to determine which one is the shortest. The regenerative method
is used to construct the confidence intervals. Since this is an open model,
the regeneration state is the empty store.

MODEL:EX8.7
METHOD:SIMULATION
NUMERIC PARAMETERS:CUSTARRIVT
NUMERIC IDENTIFIERS:DELI1TIME DELI2TIME DELI3TIME NUMDELI

DEL11 TIME:3
DELI2TIME:5
DELI3TIME:3
NUMDELI:3

NUMERIC IDENTIFIERS:REG 1 TIME REG2TIME REG3TIME REG4TIME
REG 1 TIME 3
REG2TIME 8
REG3TIME 6
REG4TIME 8

QUEUE:DELIQ
TYPE:ACTIVE
SERVERS:NUMDELI
DSPL:FCFS
CLASS LIST:DELI!

WORK DEMANDS:DEL11 TIME
CLASS LIST:DELI2

WORK DEMANDS:DELI2TIME

158 EVERYDAY LIFE SYSTEMS / CHAP. 8

CLASS LI ST:DELI 3
WORK DEMANDS:DELI3TIME

SERVER -
RATES:1

QUEUE:SHOPPINGQ
TYPE:IS
CLASS LIST:SHOPPING

SERVICE TIMES:JV (0) * 0 . 5
QUEUE:CKOUTQ1

TYPE:FCFS
CLASS LIST:REG 1

SERVICE TIMES:REG 1 TIME
QUEUE:CKOUTQ2

TYPE:FCFS
CLASS LIST:REG2

SERVICE TIMES:REG2TIME
QUEUE:CKOUTQ3

TYPE:FCFS
CLASS LIST:REG3

SERVICE TIMES:REG3TIME
QUEUE:CKOUTQ4

TYPE:FCFS
CLASS LIST:REG4

SERVICE TIMES:REG4TIME
SET NODES:SETNUM

ASSIGNMENT LIST:JV(0)=cel1(uniform(1,30,1))
CHAIN:shoppingc

TYPE:open
SOURCE LIST:customers
ARRIVAL TIMES:custarrivt
:customers->setnum->de1i1 deli2 deli3 shopping;.1 .1 .1 .7
:deli1 deli2 deli3->shopping
:shopping->reg1; i f (j v (0)<=10)
:shopping->reg2; if(ql(reg2)<=ql(reg3) and ql(reg2)<=ql(reg4))
:shopping->reg3; if(ql(reg3)<=ql(reg4))
:shopping->reg4
:reg1 reg2 reg3 reg4->sink

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:ckoutq1 ckoutq2 ckoutq3 ckoutq4
MEASURES:qt
ALLOWED WIDTHS:10

SAMPLING PERIOD GUIDELINES -
CYCLES:30

LIMIT - CP SECONDS:50
TRACE:no

END

The sequential stopping procedure was used, and the simulation auto
matically stopped when the accuracy criteria were detected. The utilization
of the deli servers is low, so there are probably too many deli servers. It

SEC. 8.6 / SUPERMARKET 159

takes an average of about 17 minutes for a customer to complete all of his
or her shopping. The service times at the active service centers is displayed
to see how close they are to the values specified in the model. They are very
close, which is another indication of the accuracy of the results.

RESQ2 VERSION DATE: JANUARY 18, 1984 - TIME: 08:39:19 DATE: 03/11/84
MODEL:EX8.7
CUSTARRIVT:3
SAMPLING PERIOD END: CYCLE GUIDELINE
SAMPLING PERIOD END: CYCLE GUIDELINE
SAMPLING PERIOD END: CYCLE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS
NUMBER OF CYCLES

6.1064E+04
33.62
66697

90

WHAT:ALLBO

ELEMENT
DELIQ
SERVER 1
SERVER 2
SERVER 3
DEL11
DELI 2
DELI 3
SHOPPINGQ
CKOUTQ1
CKOUTQ2
CKOUTQ3
CKOUTQ4

UTILIZATION
0.12655(0.12197,0.13113) 0.9%
0.27297(0.26546,0.28049) 1.5%
0.08845(0.08252,0.09438) 1.2%
0.01822(0.01526,0.02118) 0.6%
0.03486(0.03295,0.03677) 0.4%
0.05727(0.05353,0.06102) 0.7%
0.03442(0.03242,0.03641) 0.4%

0 . 0 0 0 0 0 (0 . 0 0 0 0 0 , 0 . 0 0 0 0 0)

0.31559(0.30460,0.32657) 2.2%
0.71813(0.70894,0.72732) 1.8%
0.50173(0.48977,0.51368) 2.4%
0.38382(0.36710,0.40055) 3.3%

ELEMENT
DELIQ
DEL11
DELI2
DELI 3
SHOPPINGQ
CKOUTQ1
CKOUTQ2
CKOUTQ3
CKOUTQ4
SETNUM
CUSTOMERS
SINK

THROUGHPUT
0.10093(0.09886,0.10299) 4.1%
0.03342(0.03228,0.03456) 6.8%
0.03377(0.03234,0.03520) 8.5%
0.03374(0.03245,0.03502) 7.6%
0.33044(0.32641,0.33447) 2.4%
0.10510(0.10264,0.10756) 4.7%
0.09107(0.08941,0.09273) 3.7%
0.08478(0.08302,0.08654) 4.1%
0.04949(0.04783,0.05115) 6.7%
0.33044
0.33044
0.33044

ELEMENT
DELIQ
DEL11

MEAN QUEUE LENGTH
0.38070(0.36681,0.39458) 7.3%
0.10492(0.09918,0.11066) 10.9%

160 EVERYDAY LIFE SYSTEMS / CHAP. 8

DELI 2
DELI 3

SHOPPINGQ
CKOUTQ1
CKOUTQ2
CKOUTQ3
CKOUTQ4

0.17225(0.16094,0.18356) 13.1%
0.10353(0.09757,0.10949) 11.5%
2.64157(2.58583,2.69731) 4.2%
0.45832(0.43246,0.48418) 11.3%
0.99057(0.96205,1.01910) 5.8%
0.62758(0.60303,0.65214) 7.8%
0.47015(0.44276,0.49753) 11.6%

ELEMENT
DELIQ
DELI 1
DELI 2
DELI 3
SHOPPINGQ
OKOUTQ1
CKOUTQ2
CKOUTQ3
CKOUTQ4

STANDARD DEVIATION OF QUEUE LENGTH
0.62001
0.32487
0.41783
0.32104
1 .64753
0.80065
0.81149
0.72752
0.67279

ELEMENT
DELIQ
DEL11
DELI2
DELI 3
SHOPPINGQ
CKOUTQ1
CKOUTQ2
CKOUTQ3
CKOUTQ4

MEAN QUEUEING TIME
3.77201(3.67677,3.86724) 5.0%
3.13898(3.03003,3.24792) 6.9%
5.10101(4.91438,5.28763) 7.3%
3.06891(2.94338,3.19445) 8.2%
7.99406(7.85018,8.13793) 3.6%
4.36063(4.18497,4.53628) 8.1%
10.87720(10.47463,11.27977) 7.4%
7.40245(7.17382,7.63107) 6.2%
9.49997(9.09466,9.90528) 8.5%

ELEMENT
DELIQ
DEL11
DELI 2
DELI 3
SHOPPINGQ
CKOUTQ1
CKOUTQ2
CKOUTQ3
CKOUTQ4

STANDARD DEVIATION
4.02950
3.10487
5.16425
3.11209
10.09827
4.35481
10.38003
7. 11697
9.59193

OF QUEUEING TIME

ELEMENT
DELIQ
DEL11
DELI 2
DELI 3

SHOPPINGQ
CKOUTQ1
CKOUTQ2
CKOUTQ3
CKOUTQ4

MAXIMUM QUEUE LENGTH
5
3
4
3

1 1
6
5
5
5

SEC. 8.6 / SUPERMARKET 161
ELEMENT
DELIQ
DEL11
DELI 2
DELI 3
SHOPPINGQ
CK0UTQ1
CK0UTQ2
CK0UTQ3
CK0UTQ4

MAXIMUM QUEUEING TIME
41.93370
35.06032
41.93370
30.24907
123.56955
35.84251
91.95149
53.99690
99.01994

ELEMENT
SHOPPINGC

OPEN CHAIN POPULATION
5.56889(5.45590,5.68187) 4.1%

ELEMENT
SHOPPINGC

OPEN CHAIN RESPONSE TIME
16.85286(16.62274,17.08296) 2.7%

WHAT:ST(*)

ELEMENT
DELIQ
DEL11
DELI2
DELI 3
SHOPPINGQ
CKOUTQ1
CKOUTQ2
CKOUTQ3
CKOUTQ4

WHAT:ND(*)

MEAN SERVICE TIMES
3.76153
3.12891
5.08806
3.06050

7.99406
3.00264
7.88558
5.91797
7.75571

ELEMENT
DELIQ
DEL11
DELI 2
DELI 3
SHOPPINGQ
CKOUTQ1
CKOUTQ2
CKOUTQ3
CKOUTQ4
SETNUM
CUSTOMERS
SINK

NUMBER OF DEPARTURES
6163
2041
2062
2060
20178
6418
5561
5177
3022
20178
20178
20178

8.7. FURTHER READING

The models discussed in the first four sections were constructed to
illustrate the use of some of the basic model elements. The catalog store

162 EVERYDAY LIFE SYSTEMS / CHAP. 8

model presented in Section 8.5 is based on discussions with Wessels [186],
The supermarket model is a simplified version of a model developed by
Freireich [66]. Many books on simulation contain simple models like these
which are encountered in everyday situations. The following books may be
helpful in describing other models of similar systems: Gordon [71], Law and
Kelton [106], Maisel and Gnugnoli [117], Pritsker and Pegden [135],
Russell [146], and Schriber [164],

8.8. EXERCISES

8.1 Construct and solve some models of systems you might encounter in
day-to-day activities.

8.2 What modeling element was used in model EX8.1 to limit the capaci
ty of the barber shop? Why are the server utilizations decreasing from
server 1 to server 5?

8.3 Explain how the passive queue is used to control the traffic light in
model EX8.4.

8.4 Explain how the allocate, destroy, and create nodes were used in
model EX8.5 to control the depletion and loading of sheets in the
copier.

8.5 Explain how the shortest queue was selected in model EX8.7.

CHAPTER 9

COMPUTER SYSTEM MODELS
This chapter discusses three models of computer systems. The first is a

simple version of a capacity planning model for an MVS type system. The
second model is of a system with multiple processors and multiple memory
units. The last one is a model of a mass storage subsystem.

9.1. CAPACITY PLANNING MODEL

Frequently, a very gross model of a computer system is all that is
necessary for a capacity planning study. Capacity planning involves a
baseline model which must be validated and some forecasts of future work
loads and alternative configurations. Since it is very difficult to correctly
project the future workload requirements accurately, a detailed model of the
system is not necessary.

Figure 9.1 illustrates a model diagram of an MVS type of system. It
depicts three different types of workloads. One is an interactive workload
called TSO. The second one is a batch workload. The last one is a data
base workload called IMS. The TSO workload is represented as a closed
chain with an infinite server for the terminals. There is a passive resource
which restricts the multiprogramming level. The batch workload is a closed
chain. The multiprogramming level is equal to the number of customers in
the closed chain. Using this approach, we are assuming that when a batch
job finishes, it is immediately replaced by another batch job. An open
chain is used for the IMS workload. Transactions arrive at a certain rate of
arrival, and there is also a maximum multiprogramming level for IMS trans
actions. Each workload contends for the CPU and the I/O devices. The
CPU has a priority queueing discipline.

The first model of this system is a simple model that can be solved
analytically. To do this, we will make some simplifying assumptions. The
priority scheduling at the CPU is replaced by processor sharing. The model
does not contain any memory constraints for the TSO or IMS workloads.
The service times at each I/O device are the total service demanded for all
visits to each device. Since this can be different for each workload, FCFS
scheduling cannot be used. These simplifications can be avoided by using a
queueing network package containing approximation techniques or simula
tion. The simulation approach will be used later in this section. This model
contains only ten I/O devices. Most large systems contain many more I/O

163

164 COMPUTER SYSTEM MODELS / CHAP. 9

devices. The I/O path contention and rotational position sensing are not
being explicitly modeled. Some of this is captured in the measurement data.
The model contains different parameters for the three different workloads.
The parameters for the TSO workload include the think time (Z), the
number of TSO terminals, the total service demand at the CPU for an
average TSO transaction, and the total service demand at each of the I/O
devices. The service demands at the I/O devices are defined as vectors with
one element for each I/O device. The batch parameters are the number of
batch jobs and the total of service demands at the CPU and I/O devices.
The IMS workload parameters are the transaction arrival rate and the total
service demands at all devices. In the real system, a transaction or job visits
the CPU and an I/O device several times before completing. Because it is
difficult to obtain measurement data for individual visits to I/O devices by
workload, the total of service demands for all visits is used. This also simpli
fies the routing statements so that each device is branched to only once for
each transaction or job.

SEC. 9.1 / CAPACITY PLANNING MODEL 165
MODEL:EX9.1

METHOD:numerical
NUMERIC PARAMETERS: z ntso dcputso dtso(10)
NUMERIC PARAMETERS: nbat dcpubat dbat(10)
NUMERIC PARAMETERS:lambdaims dcpuims dims(10)
QUEUE:terminalsq

TYPE:is
CLASS LIST : terminals

SERVICE TIMES:z
QUEUE:cpuq

TYPE:ps
CLASS LIST : CputSO cpubat cpuims

SERVICE TIMES:dcputso dcpubat dcpuims
QUEUE:disk 1q

TYPE:ps
CLASS LIST : diskltso disk 1 bat disk 1ims

SERVICE TIMES:dtso(1) dbat(1) dims(1)
QUEUE:disk2q

TYPE:ps
CLASS LIST : disk2tso disk2bat disk2ims

SERVICE TIMES:dtso(2) dbat(2) dims(2)
QUEUE:disk3q

TYPE:ps
CLASS LIST : disk3tso disk3bat disk3ims

SERVICE TIMES:dtso(3) dbat(3) dims(3)
QUEUE:disk4q

TYPE:ps
CLASS LIST : disk4tso disk4bat disk4ims

SERVICE TIMES:dtso(4) dbat(4) dims(4)
QUEUE:disk5q

TYPE:ps
CLASS LIST:: disk5tso disk5bat disk5ims

SERVICE TIMES:dtso (5) dbat(5) dims(5)
QUEUE:disk6q

TYPE:ps
CLASS LIST:: disk6tso disk6bat disk6ims

SERVICE TIMES:dtso(6) dbat(6) dims(6)
QUEUE:disk7q

TYPE:ps
CLASS LIST:: disk7tso disk7bat disk7 ims

SERVICE TIMES:dtso(7) dbat(7) dims(7)
QUEUE:disk8q

TYPE:ps
CLASS LIST: disk8tso disk8bat disk8ims

SERVICE TIMES:dtso(8) dbat (8) dims(8)
QUEUE:disk9q

TYPE:ps
CLASS LIST: disk9tso disk9bat disk9ims

SERVICE TIMES:dtso(9) dbat(9) dims(9)
QUEUE:disk 1Oq

TYPE:ps
CLASS LIST: diskiOtso diskiObat disk 1Oims

SERVICE TIMES:dtso(10) dbat(10) dims(10)

166 COMPUTER SYSTEM MODELS / CHAP. 9

CHAIN:chtso
TYPE:closed
POPULATION:ntso
:term]nals->cputso->++
disk 1tso->disk2tso->disk3tso->disk4tso->disk5tso->++
disk6tso->disk7tso->disk8tso->disk9tso->disk10tso->++
terminals

CHAIN:chbat
TYPE:closed
POPULATION:nbat
:cpubat->++
disk 1bat->disk2bat->disk3bat->disk4bat->disk5bat->++
disk6bat->disk7bat->disk8bat->disk9bat->disk1Obat->++
cpubat

CHAIN:chims
TYPE:open
SOURCE LIST:srcims

ARRIVAL TIMES:1/lambdaims
:srcims->cpuims->++
disk 1ims->disk2 ims->disk3 ims->disk4ims->disk5ims->++
disk6ims->disk7 ims->disk8ims->disk9ims->disklOims->++
sink

END

The parameter values given are for a system under a very heavy load. It
could be a peak period on prime shift or it could be a benchmark with the
processor driven very hard. All times are in seconds. All but one of the ten
disks has a utilization greater than 15 percent. Most of the 16 TSO jobs
are at the CPU. The CPU is certainly the bottleneck for the TSO workload.
Remember that we are not using priority scheduling in the analytic solution.
The batch workload is using the I/O devices quite a bit. The IMS transac
tions use DISK2 heavily, but not much else. Recall that the analytic solu
tion does not place any memory constraint on the TSO or IMS workloads.

RESQ2 VERSION DATE: JANUARY 18, 1984 - TIME: 19:14:31 DATE: 03/23/84
MODEL: EX9 . 1
Z : 1 2 . 1 2
NTSO:16
DCPUTSO:6.37
DTSO:.039 .021 .25 .462 .501 .00005 .764 .12 .264 .072
NBAT:7
DCPUBAT:.0385
DBAT:.291 .343 .168 .147 .118 0 .34 .178 .177 .099
LAMBDAIMS:1.0
DCPUIMS:.00335
DIMS:.464 .034 .039 0 0 .097 0 0 .04 0
NO ERRORS DETECTED DURING NUMERICAL SOLUTION

WHAT:ALL

SEC. 9.1 / CAPACITY PLANNING MODEL

ELEMENT
CPUQ
CPUTSO
CPUBAT
CPUIMS
DISK1Q
DISK1TSO
DISK1BAT
DISKI IMS
DISK2Q
DISK2TSO
DISK2BAT
DISK2IMS
DISK3Q
DISK3TSO
DISK3BAT
DISK3IMS
DISK4Q
DISK4TSO
DISK4BAT
DISK5Q
DISK5TSO
DISK5BAT
DISK6Q
DISK6TSO
DISK6IMS
DISK7Q
DISK7TSO
DISK7BAT
DISK8Q
DISK8TSO
DISK8BAT
DISK9Q
DISK9TSO
DISK9BAT
DISK9IMS
DISK10Q
DISKIOTSO
DISK1OBAT

UTILIZATION
1.00000
0.93972
0.05693
3.3500E-03

0.90003
5.7534E-03
0.43027
0.46400

0.54426
3.0980E-03
0.50716
0.03400
0.32429
0.03688
0.24841
0.03900

0.28551
0.06816
0.21736

0.24838
0.07391
0.17448

0.09701
7.3762E-06
0.09700

0.61543
0.11271
0.50273

0.28089
0.01770
0.26319

0.34066
0.03895
0.26171
0.04000

0.15700
0.01062
0.14638

167

ELEMENT
TERMINALSQ
CPUQ
CPUTSO
CPUBAT
CPUIMS

THROUGHPUT
0. 14752
2.62613
0.14752
1.47861
1.00000

ELEMENT
TERMINALSQ
CPUQ
CPUTSO
CPUBAT
CPUIMS

MEAN QUEUE LENGTH
1.78798
14.49063
1 3.55920
0.87954
0.05189

168 COMPUTER SYSTEM MODELS / CHAP. 9

DISK1Q
DISK1TS0
DISKI BAT
DISK1IMS

DISK2Q
DISK2TSO
DISK2BAT
DISK2IMS

DISK3Q
DISK3TSO
DISK3BAT
DISK3IMS
DISK4Q
DISK4TSO
D1SK4BAT

DISK5Q
DISK5TSO
DISK5BAT
DISK6Q
DISK6TSO
DISK6IMS
DISK7Q
DISK7TS0
DISK7BAT

DISK8Q
DISK8TSO
DISK8BAT
DISK9Q
DISK9TSO
DISK9BAT
DISK9IMS

DISK10Q
DISK1OTSO
DISK1OBAT

5.17508
0.03584
2.27400
2.86523
1.03836
6.3411E-03
0.96271
0.06930

0.46646
0.05417
0.35510
0.05719

0.39101
0.09492
0.29609

0.32576
0.09808
0.22768
0.10743
8.1686E-06
0.10742
1.36596
0.26790
1 .09806

0.37796
0.02443
0.35353
0.50065
0.05854
0.38208
0.06003

0.18379
0.01258
0.17121

ELEMENT
TERMINALSQ
CPUQ
CPUTSO
CPUBAT
CPUIMS

DISK 1Q
DISK 1TSO
DISKI BAT
DISK1IMS

DISK2Q
DISK2TSO
DISK2BAT
DISK2IMS
DISK3Q
DISK3TSO
DISK3BAT

MEAN QUEUEING TIME
12.12001
5.51786
91.91231
0.59484
0.05189
1.97061
0.24293
1.53793
2.86523

0.39540
0.04298
0.65109
0.06930
0.17762
0.36718
0.24016

SEC. 9.1 / CAPACITY PLANNING MODEL 169
DISK3IMS
DISK4Q
DISK4TSO
DISK4BAT

DISK5Q
DISK5TSO
DISK5BAT

DISK6Q
DISK6TSO
DISK6IMS
DISK7Q
DISK7TSO
DISK7BAT
DISK8Q
DISK8TSO
DISK8BAT
DISK9Q
DISK9TSO
DISK9BAT
DISK9IMS
DISKIOQ
DISK1OTSO
DISK10BAT

0.05719
0.14889
0.64345
0.20025

0.12405
0.66484
0.15398

0.04091
5.5371E-05
0.10742

0.52014
1.81601
0.74263

0.14392
0.16561
0.23910

0.19064
0.39682
0.25841
0.06003

0.06998
0.08529
0. 1 1579

ELEMENT OPEN CHAIN POPULATION
CHIMS 3.21107

ELEMENT OPEN CHAIN RESPONSE TIME
CHIMS 3.21107

Now we will turn to a simulation model which explicitly includes
memory constraints for the TSO and IMS workloads and priority scheduling
at the CPU. Several new numeric parameters are included for these features.
There are also two numeric parameters for controlling the simulation run
length. The CPU is represented as a preemptive priority active queue. The
ten disks are exactly the same as the previous model. There are two passive
queues for the memory constraints for TSO and IMS. The routing is very
similar to the last model. We are using independent replications to generate
confidence intervals. Since the TSO and batch workloads are modeled as
closed chains, the number of jobs in these chains must be initialized some
where. We will run each replication until there are a specified number of
departures from the CPUQ.

MODEL:EX9.2
METHOD:simulation
NUMERIC PARAMETERS: z ntso mctso dcputso prtso dtso(10)
NUMERIC PARAMETERS: nbat dcpubat prbat dbat(10)
NUMERIC PARAMETERS:lambdaims mcims dcpuims prims dims(10)
NUMERIC PARAMETERS:cpudep cpulim
QUEUE:terminalsq

170 COMPUTER SYSTEM MODELS / CHAP. 9

TYPE:is
CLASS LIST:terminals

SERVICE TIMES: Z

QUEUE : cpuq
TYPE:prtypr
PREEMPT LIST:1
('LASS LIST: cputso

SERVICE TIMES:dcputso
PRIORITIES: prtso

QUEUE: d i s k 1 q
TYPE:fcfs
CLASS LIST: diskltso

SERVICE TIMES:dtso(1)

QUEUE:mctsoq
TYPE:passive
TOKENS:mctso
DSPL:fcfs
ALLOCATE NODE LI ST : metntso

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:reltso

QUEUE:mcimsq
TYPE:passive
TOKENS:menus
DSPL:fcfs
ALLOCATE NODE LIST:memims

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:relims

CHAIN:chtso
TYPE:closed
POPULATION:ntso
:terminals->memtso->cputso->++
diskitso->disk2tso->disk3tso->disk4tso->disk5tso->++
disk6tso->disk7tso->disk8tso->disk9tso->disk10tso->++
reltso->terminals

CHAIN:chbat
TYPE:closed
POPULATION:nbat
:cpubat->++
disk1bat->disk2bat->disk3bat->disk4bat->disk5bat->++
disk6bat->d isk7bat->disk8bat->disk9bat->disk10bat->+ +
epubat

CHAIN:chims
TYPE:open
SOURCE LIST:srcims

ARRIVAL TIMES:1/lambdaims
:srcims->memims->cpuims->++
disk 1ims->disk2ims->disk3ims->disk4ims->disk5ims->++
disk6ims->disk7 ims->disk8ims->disk9ims->disk10ims->++
relims->sink

CONFIDENCE INTERVAL METHOD:replications
INITIAL STATE DEFINITION -
CHAIN:chtso

epubat epuims
depubat depuims
prbat prims

disk 1 bat
dbat (1)

diskiims
dims (1)

SEC. 9.1 / CAPACITY PLANNING MODEL 171
NODE LIST:terminals

INIT POP:ntso
CHAIN:chbat

NODE LIST:cpubat
INIT POP:nbat

CONFIDENCE LEVEL:90
NUMBER OF REPLICATIONS:5
REPLIC LIMITS -

QUEUES FOR DEPARTURE COUNTS:cpuq
DEPARTURES:cpudep

LIMIT - CP SECONDS:cpulim
TRACE:no

END

The parameter values are very similar to the ones used for the analytic
solution. The memory constraint for TSO transactions is seven and for IMS
it is three. IMS has the highest priority, followed by TSO and batch. Each
replication is run until there are 15,000 departures from the CPUQ. Be
cause of the priority scheduling, we can notice a difference in the utiliza
tions at the CPU of the different workloads. There is very little batch work
being completed because of the low priority. Notice the difference in mean
queue lengths, partly because of the priority scheduling and partly because
of the memory constraints. The TSO memory constraint is having a consid
erable effect on the TSO transactions. Most of the batch confidence
intervals are very large because there were so few batch completions. The
batch workload is probably not of much interest under these circumstances,
so it is probably not worthwhile running the simulation longer. The IMS
workload receives very good service since it has the highest priority.

RESQ2 VERSION DATE: JANUARY 18, 1984 - TIME: 06:10:13 DATE: 03/24/84
MODEL:EX9.2
Z : 1 2 . 1 2
NTSO:16
MCTSO:7
DCPUTSO:6.37
PRTSO:2
DTSO:.039 .021 .25 .462 .501 .00005 .764 .12 .264 .072
NBAT: 7
DCPUBAT:.0385
PRBAT:3
DBAT: . 291 .343 .168 .147 .1 18 0 .34 .178 .177 .099
LAMBDAIMS:1.0
MCIMS:3
DCPUIMS:.00335
PRIMS:1
DIMS:.464 .034 .039 0 0 .097 0 0 .04 0
CPUDEP:15000
CPULIM:900
REPLICATION 1: CPUQ DEPARTURE LIMIT
REPLICATION 2: CPUQ DEPARTURE LIMIT

172 COMPUTER SYSTEM MODELS / CHAP. 9

REPLICATION 3: CPUQ DEPARTURE LIMIT
REPLICATION 4: CPUQ DEPARTURE LIMIT
REPLICATION 5: CPUQ DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME PER REPLICATION
CPU TIME

NUMBER OF EVENTS PER REPLICATION
NUMBER OF REPLICATIONS

1.2997E+04
246.55
179976

5

W H A T :ALLBO

ELEMENT
MOTSOQ
MCIMSQ
CPUQ
CPUTSO
CPUBAT
CPUIMS

DISK 1Q
DISK1TSO
DISKI BAT
DISKI IMS

DISK2Q
DISK2TSO
DISK2BAT
DISK2IMS

DISK3Q
DISK3TSO
DISK3BAT
DISK3IMS

DISK4Q
DISK4TSO
DISK4BAT

DISK5Q
DISK5TSO
DISK5BAT

DISK6Q
DISK6TSO
DISK6IMS

DISK7Q
DISK7TSO
DISK7BAT

DISK8Q
DISK8TSO
DISK8BAT

DISK9Q
DISK9TSO
DISK9BAT
DISK9IMS

DISK1OQ
DISKI0TSO

UTILIZATION
0.99969(0.99959,0.99980) 0.0%
0.45499(0.45003,0.45996) 1.0%
0.99995(0.99985,1.00004) 0.0%
0.99660(0.99650,0.99670) 0.0%
1.5670E-05(2.8273E-06,2.8512E-05) 0.0%
3.3335E-03(3.2980E-03,3.3691E-03) 0.0%

0.46822(0.46451,0.47193) 0.7%
6.2445E-03(6.1150E-03,6.3740E-03) 0.0%
9.5024E-05(-7.3376E-06,1.9739E-04) 0.0%
0.46188(0.45802,0.46574) 0.8%
0.03708(0.03671,0.03745) 0.1%
3.2965E-0 3(3.2002E-03,3.3927E-03) 0.0%
1 .1 534E-04 (3.0895E-05,1.9978E-04) 0.0%
0.03367(0.03327,0.03406) 0.1%

0.07800(0.07713,0.07886) 0.2%
0.03909(0.03804,0.04014) 0.2%
7.7618E-05(-2.8081E-06,1.5804E-04) 0.0%
0.03882(0.03852,0.03913) 0.1%

0.07285(0.07189,0.07381) 0.2%
0.07277(0.07178,0.07376) 0.2%
7.7736E-05(-8.9084E-06,1.6438E-04) 0.0%

0.07851(0.07614,0.08087) 0.5%
0.07848(0.07610,0.08085) 0.5%
2.8736E-05(-9.1216E-06,6.6594E-05)' 0.0%

0.09626(0.09570,0.09683) 0.1%
7.9240E-06(7.7194E-06,8.1287E-06) 0.0%
0.09626(0.09569,0.09682) 0.1%
0.12069(0.11700,0.12438) 0.7%
0.12058(0.11691,0.12426) 0.7%
1.0515E-04(-1.0682E-05,2.2097E-04) 0.0%

0.01928(0.01891,0.01966) 0.1%
0.01921(0.01885,0.01957) 0.1%
7.5204E-05(- 1 .8727E-05,1 .6913E-04) 0.0%

0.08143(0.08013,0.08273) 0.3%
0.04158(0.04031,0.04285) 0.3%
9.4735E-05(-5.5351E-06,1.9501E-04) 0.0%
0.03976(0.03941,0.04011) 0.1%

0.01150(0.01114,0.01186) 0.1%
0.01146(0.01107,0.01185) 0.1%

SEC. 9.1 / CAPACITY PLANNING MODEL 173
DISK10BAT

ELEMENT
MCTSOQ
MCIMSQ
TERMINALSQ
CPUQ
CPUTSO
CPUBAT
CPUIMS
DISK1Q
DISK1TSO
DISK1BAT
DISK1IMS
SRCIMS
SINK

ELEMENT
MCTSOQ
MCIMSQ
TERMINALSQ
CPUQ
CPUTSO
CPUBAT
CPUIMS
DISK1Q
DISK1TSO
DISKI BAT
DISKI IMS
DISK2Q
DISK2TSO
DISK2BAT
DISK2IMS
DISK3Q
DISK3TSO
DISK3BAT
DISK3IMS
DISK4Q
DISK4TSO
DISK4BAT
DISK4IMS

DISK5Q
DISK5TSO
DISK5BAT
DISK5IMS
DISK6Q
DISK6TSO
DISK6IMS

DISK7Q
DISK7TSO
DISK7BAT
DISK7IMS
DISK8Q

4.2854E-05(4.1202E-06,8.1587E-05)

THROUGHPUT
0.15824(0.15547,0.16102) 3.5%
0.99523(0.98751,1.00295) 1.6%
0.15929(0.15654,0.16204) 3.5%
1.15413(1.14923,1.15904) 0.9%
0.15827(0.15549,0.16105) 3.5%
4.3021E-04(4.9240E-05,8.1118E-04)
0.99543(0.98776,1.00310) 1.5%
1.15398(1.14902,1.15893) 0.9%
0.15826(0.15548,0.16104) 3.5%
4.3021E-04(4.9240E-05,8.1118E-04)
0.99529(0.98757,1.00301) 1.6%

0.99550
0.99523

MEAN QUEUE LENGTH
14.05746(13.97369,14.14124) 1.2%
1.75329(1.73402,1.77255) 2.2%
1.94254(1.85876,2.02631) 8.6%
13.50794(13.49593,13.51996) 0.2%
6.50596(6.49417,6.51775) 0.4%
6.99855(6.99689,7.00021) 0.0%
3.4315E-03(3.4021E-03,3.4609E-03)

0.83577(0.82441,0.84714) 2.7%
0.06371(0.06135,0.06608) 7.4%
3.4609E-04(-9.4231E-05,7.8641E-04)
0.77171(0.76121,0.78222) 2.7%

0.03972(0.03927,0.04017) 2.3%
4.5709E-03(4.4653E-03,4.6766E-03)
2.4011E-04(6.7467E-05,4.1276E-04)
0.03491 (0.03447,0..03535) 2.5%

0.09141(0.09034,0.09248) 2.3%
0.04345(0.04246,0.04444) 4.6%
1.0766E-04(3.4833E-06,2.1184E-04)
0.04785(0.04740,0.04830) 1.9%

0.11808(0.11548,0.12068) 4.4%
0.08040(0.07891,0.08190) 3.7%
9.8829E-05(-8.0906E-06,2.0575E-04)
0.03758(0.03615,0.03901) 7.6%

0.15572(0.15030,0.16114) 7.0%
0.08619(0.08318,0.08920) 7.0%
2.9216E-05(-9.6176E-06,6.8049E-05)
0.06950(0.06678,0.07223) 7.8%

0.1 1202(0.1 1 1 17,0.1 1287) 1 .5%
3.5283E-04(2.8838E-04,4.1728E-04)
0.11167(0.11083,0.11250) 1.5%

0.28534(0.27347,0.29721) 8.3%
0.13796(0.13295,0.14298) 7.3%
3.0532E-04(-2.1362E-04,8.2427E-04)
0.14707(0.14005,0.15409) 9.5%

0.04385(0.04359,0.04412) 1.2%

0 .0 %

177.1%

177.1%

1 .7%

254.5%

4.6%
143.8%

193.5%

216.4%

265.8%

36.5%

339.9%

174 COMPUTER SYSTEM MODELS / CHAP. 9

DISK8TSO
DISKSBAT
DISKSIMS

DISK9Q
DISK9TSO
DISK9BAT
DISK9IMS
DISKIOQ
DISKIOTSO
DISK10BAT
DISKIOIMS

0.01966(0.01929,0.02002) 3.7%
1.1025E-04(-4.0960E-05,2.6146E-04) 274.3%
0.02409(0.02387,0.02430) 1.8%

0.15275(0.14802,0.15749) 6.2%
0.04403(0.04250,0.04555) 6.9%
1.6318E-04(-2.5070E-05,3.5142E-04) 230.7%
0.10856(0.10512,0.11201) 6.3%
0.02022(0.01928,0.02117) 9.3%
0.01157(0.01117,0.01198) 7.0%
4.7168E-0 5 (4.6567E-06,8.9679E-0 5) 180.3%
8.6028E-03(8.0028E-03,9.2028E-03) 13.9%

ELEMENT
MCTSOQ
MCIMSQ
TERMINALSQ
CPUQ
CPUTSO
CPUBAT
CPUIMS

DISK 1Q
DISK 1TSO
DISKI BAT
DISK1IMS

DISK2Q
DISK2TSO
DISK2BAT
DISK2IMS
DISK3Q
DISK3TSO
DISK3BAT
DISK3IMS

DISK4Q
DISK4TSO
DISK4BAT
DISK4IMS

DISK5Q
DISK5TSO
DISK5BAT
DISK5IMS

DISK6Q
DISK6TSO
DISK6IMS

DISK7Q
DISK7TSO
DISK7BAT
DISK7IMS
DISK8Q
DISK8TSO
DISK8BAT
DISK8IMS

DISK9Q
DISK9TSO

MEAN QUEUEING TIME
88.53023(86.49715,90.56329) 4.6%
1.76138(1.73422,1.78853) 3.1%
12.17930(11.82077,12.53783) 5.9%
5.63178(5.61408,5.64948) 0.6%
41.05673(40.27191,41.84154) 3.8%
0.08451 (0.03258,0.1 3645) 122.9%
3.4473E-03(3.4356E-03,3.4589E-03) 0.7%

0.72419(0.71537,0.73301) 2.4%
0.40260(0.38931,0.41590) 6.6%
0.53513(0.16237,0.90789) 139.3%
0.77530(0.76699,0.78360) 2.1%

0.03442(0.03410,0.03474) 1.9%
0.02889(0.02825,0.02952) 4.4%
0.56923(0.22259,0.91587) 121.8%
0.03508(0.03477,0.03538) 1.7%

0.07922(0.07799,0.08045) 3.1%
0.27455(0.27117,0.27793) 2.5%
0.19876(0.04646,0.35107) 153.3%
0.04808(0.04758,0.04859) 2.1%

0.10233(0.09996,0.10470) 4.6%
0.50817(0.49808,0.51825) 4.0%
0.20135(0.04256,0.36015) 157.7%
0.03776(0.03628,0.03924) 7.8%

0.13499(0.13014,0.13983) 7.2%
0.54462(0.52965,0.55959) 5.5%
0.1 3265
0.06984(0.06700,0.07269) 8.2%

0.09709(0.09643,0.09775) 1.4%
2.2303E-03(1.8246E-03,2.6361E-03) 36.4%
0.11220(0.11124,0.11316) 1.7%
0.24732(0.23605,0.25860) 9.1%
0.87167(0.85091,0.89244) 4.8%
0.41968(-0.00340,0.84277) 201.6%
0.14783(0.13980,0.15585) 10.9%

0.03800(0.03769,0.03832) 1.6%
0.12424(0.12165,0.12683) 4.2%
0.16149(0.03651,0.28647) 154.8%
0.02420(0.02395,0.02445) 2.0%

0.13239(0.12807,0.13671) 6.5%
0.27820(0.27068,0.28572) 5.4%

SEC. 9.1 / CAPACITY PLANNING MODEL 175
DISK9BAT
DISK9IMS
DISK10Q
DISK10TSO
DISK10BAT
DISK10IMS

0.25993(0.06574,0.45412) 149.4%
0.10909(0.10542,0.11277) 6.7%

0.01753(0.01667,0.01839) 9.8%
0.07313(0.07160,0.07466) 4.2%
0.11474(0.06041,0.16908) 94.7%
8.6465E-03(8.0115E-03,9.2814E-03) 14.7%

ELEMENT
MCTSOQ
MCIMSQ

MEAN TOKENS IN USE
6.99786(6.99714,6.99858) 0.0%
1.36498(1.35010,1.37986) 2.2%

ELEMENT
MCTSOQ
MCIMSQ

MEAN TOTAL TOKENS IN POOL
7.00000(7.00000,7.00000) 0.0%
3.00000

ELEMENT
MCTSOQ
MCIMSQ
TERMINALSQ
CPUQ
CPUTSO
CPUBAT

MAXIMUM QUEUE LENGTH
16
18
16
17
7
7

CPUIMS
DISK1Q
DISK1TSO
DISK1BAT
DISKI IMS
DISK2Q
DISK2TSO
DISK2BAT
DISK2IMS
DISK3Q
DISK3TSO
DISK3BAT
DISK3IMS
DISK4Q
DISK4TSO
DISK4BAT
DISK4IMS
DISK5Q

3
8
5
6
3

6
4
4
3

7
4
3
3

8
5
2
3

7
DISK5TSO 4
DISK5BAT
DISK5IMS
DISK6Q
DISK6TSO
DISK6BAT
DISK6IMS
DISK7Q
DISK7TSO
DISK7BAT
DISK7IMS
DISK8Q
DISK8TSO

1
3

5
2
1
3

9
5
7
3

7
3

176 COMPUTER SYSTEM MODELS / CHAP. 9

DISK8BAT
DISK8IMS

DISK9Q
DISK9TSO
DISK9BAT
DISK9IMS

DISK1OQ
DISK1OTSO
DISK10BAT
DISK10IMS

ELEMENT
MCTSOQ
MCIMSQ
TERMINALSQ
CPUQ
CPUTSO
CPUBAT
CPUIMS

DISK1Q
DISK1TSO
DISK1BAT
DISK1IMS
DISK2Q
DISK2TSO
DISK2BAT
DISK2IMS
DISK3Q
DISK3TSO
DISK3BAT
DISK3IMS
DISK4Q
DISK4TSO
DISK4BAT
DISK4IMS
DISK5Q
DISK5TSO
DISK5BAT
DISK5IMS
DISK6Q
DISK6TSO
DISK6IMS

DISK7Q
DISK7TSO
DISK7BAT
DISK7IMS

DISK8Q
DISK8TSO
DISK8BAT
DISK8IMS

DISK9Q
DISK9TSO
DISK9BAT

4
3

8
3
4
3

5
2
2
3

MAXIMUM QUEUEING TIME
190.42751
14.78805
119.49144
129.55780
129.55780
0.36434
0.03762

6.23365
5.50544
1 . 52777
6.23365
1 . 27344
0.61008
1 . 27344
0.94008
3.67241
3.67241
0.75374
1.78574

4.45479
4.45479
0.69891
4.44128
6.01475
6.01475
0.47490
4.60192
1.15101
0.63058
1.15101

7.35371
7.35371
2.44769
6.83558
1.17878
1.17878
1.06251
1.06251

2.66187
2.61701
1.17748

SEC. 9.1 / CAPACITY PLANNING MODEL 177

DISK9IMS
DISK10Q

2.66187
0.77064
0.77064
0.42730
0.76915

DISK10TSO
DISK10BAT
DISK10IMS

ELEMENT
CHIMS

OPEN CHAIN POPULATION
1.75329(1.73402,1.77255) 2.2%

ELEMENT
CHIMS

OPEN CHAIN RESPONSE TIME
1.76183(1.73457,1.78909) 3.1%

The parameters used for these solutions would probably indicate that
this system is approaching its capacity limit during peak periods. They
would have been derived from measurements and would represent a baseline
case. Capacity planning involves predicting future system behavior under
changing workloads and new configurations. The performance analyst must
predict how the workloads will change and try various configurations which
will handle the increased workloads. New parameter values must be deter
mined to represent the growth in the workloads and the alternate configura
tions to handle the additional work. The model can be solved for many
different parameter sets, and an adequate solution can be found.

9.2. SYSTEM MEMORY MODEL

The system consists of multiple processors attached by several buses to
a number of shared memory units. A bus can provide a path from any
processor to any memory unit. Depending on the number of processors,
buses and memory units, there can be contention at the buses and the
memory units. A job is first allocated a processor and accesses memory. If
the required information is present in the memory unit, the job cycles back
to the CPU. If the information is not present, the processor is released, and
an access is made to an I/O device.

The multiple processor memory model is shown in Figure 9.2. It in
cludes a passive queue representing the number of processors, a multiserver
queue for the CPUs, a separate passive queue for each memory unit, and a
passive queue for the buses. I/O devices are depicted by parallel single
server queues. A job will wait at the processor passive queue when the
number of jobs at the processors and the system memory units is equal to
the number of processors. When a job is allocated a processor, it proceeds
to the CPU queue. Since this is a multiserver queue with the number of
servers equal to the number of processors, there is no contention at the
CPUs. After an exponential service time, the job randomly chooses one of
the memory units. If the memory unit is busy, the job waits in a queue.

178 COMPUTER SYSTEM MODELS / CHAP. 9

When the memory unit is available, the job queues for a bus. After being
allocated a bus, there is a constant service time to use the bus and transfer
information from the memory unit. The job then either proceeds back to
the CPU or releases the processor and performs I/O. The I/O service time
is also exponential. This is a closed model with the number of jobs equal to
the multiprogramming level in the computer system.

The model contains numeric parameters for the CPU service time for
each visit, the bus time, the number of processors, the number of buses, the
number of system memory units, the number of I/O devices, the I/O
service time, the multiprogramming level, the number of cycles through the
CPU and memory subsystem, the seed for the random number generator,
and CPU run limit. Some of these parameters will determine the number of
elements in the model. The values for the number of memory units
(NMEM) and the number of I/O units (NIOS) will determine the number
of queues and nodes in the model.

There is a submodel defined for one system memory unit and a submo
del for one I/O device. These submodels are invoked a variable number of
times based on the values of numeric parameters. The spectral method is
used to construct the confidence intervals. All of the jobs in the closed
chain are initialized at the passive queue to be allocated a processor.

SEC. 9.2 / SYSTEM MEMORY MODEL 179

MODEL:EX9.3
METHOD:simulation
NUMERIC PARAMETERS:cputime bustime nproc nbus nmem
NUMERIC PARAMETERS:nios iost mpl ncycles replnum cpulim
NODE ARRAYS:busal(nmem) smbus(nmem) busre(nmem)
QUEUE:mplq

TYPE:passive
TOKENS:nproc
DSPL:fcfs
ALLOCATE NODE LIST:mplal

NUMBER OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:mplre

QUEUE:cpusq
TYPE:active
SERVERS:nproc
DSPL:fcfs
CLASS LIST:cpus

WORK DEMANDS:cputime
SERVER -

RATES:1
QUEUE:busq

TYPE:passive
TOKENS:nbus
DSPL:fcfs
ALLOCATE NODE LIST:busal(*)

NUMBER OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:busre(*)

QUEUE:smbusq
TYPE:active
SERVERS:nbus
DSPL:fcfs
CLASS LIST:smbus(*)

WORK DEMANDS:constant(bustime)
SERVER -

RATES:1
DUMMY NODES:dum1
SUBMODEL:subsm

CHAIN PARAMETERS:network
QUEUE:smq

TYPE:passive
TOKENS:1
DSPL:fcfs
ALLOCATE NODE LIST: al

NUMBER OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST: re

CHAIN:network
TYPE:external
INPUT:al
OUTPUT:re

END OF SUBMODEL subsm
SUBMODEL:subio

CHAIN PARAMETERS:network
QUEUE:ioq

180 COMPUTER SYSTEM MODELS / CHAP. 9

TYPE:fcfs
CLASS LIST:ioc

SERVICE TIMES:lost
CHAIN:network

TYPE:external
INPUT:ioc
OUTPUT:ioc

END OF SUBMODEL subio
INVOCATION:sm(nmem)

TYPE:subsm
NETWORK:network

INVOCATION:io(nios)
TYPE:subio
NETWORK:network

CHAIN:network
TYPE:closed
POPULATION:mpl
:mplal->cpus
:cpus->sm{*).al;1/nmem
:sm(*).al->busal(*)->smbus(*)->busre(*)->sm(*).re
:sm(*).re->dum1
:duml->mplre;1/ncycles
:dum1->cpus;1-1/ncycles
:mplre->io(*).ioc;1/nios
:io(*).ioc->mplal

CONFIDENCE INTERVAL METHOD:spectral
INITIAL STATE DEFINITION -
CHAIN:network

NODE LIST:mplal
INIT POP:mpl

CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

CONFIDENCE INTERVAL QUEUES:mplq cpusq busq smbusq
MEASURES:qt
ALLOWED WIDTHS:10

CONFIDENCE INTERVAL QUEUES:sm(1).smq io (1) .ioq
MEASURES:qt
ALLOWED WIDTHS:10

CONFIDENCE INTERVAL QUEUES:sm(2).smq io(2).ioq
MEASURES:qt
ALLOWED WIDTHS: 10

CONFIDENCE INTERVAL QUEUES:sm(3).smq io(3).ioq
MEASURES:qt
ALLOWED WIDTHS:10

CONFIDENCE INTERVAL QUEUES:sm(4).smq io(4).ioq
MEASURES:qt
ALLOWED WIDTHS:10

CONFIDENCE INTERVAL QUEUES:io(5).ioq io(6).ioq io(7).ioq io(8).ioq
MEASURES:qt
ALLOWED WIDTHS:10

CONFIDENCE INTERVAL QUEUES:io(9).ioq io(10).ioq io(11).ioq
MEASURES:qt
ALLOWED WIDTHS:10

SEC. 9.2 / SYSTEM MEMORY MODEL 181

CONFIDENCE INTERVAL QUEUES:io(12).ioq io(13).ioq io(14).ioq
MEASURES:qt
ALLOWED WIDTHS:10

CONFIDENCE INTERVAL QUEUES:io(15).ioq io(16).ioq io(17).ioq
MEASURES:qt
ALLOWED WIDTHS:10

CONFIDENCE INTERVAL QUEUES:io(18).ioq io(19).ioq io(20).ioq
MEASURES:qt
ALLOWED WIDTHS:10

INITIAL PERIOD LIMITS -
SIMULATED TIME:1000
EVENTS:6000

LIMIT - CP SECONDS:cpulim
SEED:replnum
TRACE:no

END

The model is solved with the following parameter values: 0.1 ms for the
CPU service time, 0.02 ms for the bus time, four processors, one bus, four
memory units, 20 I/O devices, 24 milliseconds for I/O service time, a
multiprogramming level of 20, 100 cycles through the CPU and memory
subsystem, the third seed for the random number generator, and 240 sec
onds for the model solution.

The model stopped after 240 CPU seconds. This occurred before the
accuracy criteria were satisfied. The bus utilization is about 60 percent, and
the I/O devices vary between 26 and 50 percent. The average queue length
at the CPU and memory subsystem is 8.54. There are 3.86 jobs at the CPU
and memory units and 4.68 jobs waiting. This leaves 11.46 jobs at the I/O
devices. The throughput for the processor passive queue is 0.31 jobs per
ms. The confidence intervals for the mean queueing times at the processor
passive queue and the I/O devices are very large. The model should be run
longer if these performance measures are critical.

RESQ2 VERSION DATE: JANUARY 18, 1984 - TIME: 18:02:57 DATE: 03/30/84
MODEL:EX9.3
CPUTIME:.1
BUSTIME:.02
NPROC: 4
NBUS : 1
NMEM:4
NIOS:20
IOST:24
MPL: 20
NCYCLES:100
REPLNUM:3
CPULIM:240
SAMPLING PERIOD END: EVENT LIMIT
SAMPLING PERIOD END: EVENT LIMIT
SAMPLING PERIOD END: EVENT LIMIT

182 COMPUTER SYSTEM MODELS / CHAP. 9

SAMPLING
SAMPLING
SAMPLING
SAMPLING
SAMPLING
SAMPLING
SAMPLING
SAMPLING
RUN END:

PERIOD END
PERIOD END
PERIOD END
PERIOD END
PERIOD END
PERIOD END
PERIOD END
PERIOD END
CPU LIMIT

EVENT LIMIT
EVENT LIMIT
EVENT LIMIT
EVENT LIMIT
EVENT LIMIT
EVENT LIMIT
EVENT LIMIT
EVENT LIMIT

NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME: 5754
CPU TIME:

NUMBER OF EVENTS:

WHAT:ALLBO

INVOCATION ELEMENT UTILIZATION
MPLQ 0.96606
BUSQ 0.60607
BUSAL(1) 0.15143
BUSAL(2) 0.15235
BUSAL(3) 0.15122
BUSAL(4) 0.15107

CPUSQ 0.75510
SERVER 1 0.86714
SERVER 2 0.81193
SERVER 3 0.73384
SERVER 4 0.60749

SMBUSQ 0.60607
SMBUS (1) 0.15143
SMBUS (2) 0.15235
SMBUS (3) 0.15122
SMBUS(4) 0.15107

SM (1) SMQ 0.19393
SM (2) SMQ 0.19550
SM (3) SMQ 0.19376
SM (4) SMQ 0.19378
10(1) IOQ 0.3901 1
10(2) IOQ 0.37937
10(3) IOQ 0.33730
10(4) IOQ 0.28396
10(5) IOQ 0.26692
10(6) IOQ 0.41879
10(7) IOQ 0.34019
10(8) IOQ 0.41775
10(9) IOQ 0.36413
10(10) IOQ 0.43473
10(11) IOQ 0.39990
10(12) IOQ 0.29864
10(13) IOQ 0.37315
10(14) IOQ 0.38230
10(15) IOQ 0.49748

240.22
350524

SEC. 9.2 / SYSTEM MEMORY MODEL 183
10(16) IOQ 0.40157
10(17) IOQ 0.38410
10(18) IOQ 0.41368
10(19) IOQ 0.44312
10(20) IOQ 0.33350

INVOCATION

SM (1)
SM (2)
SM (3)
SM (4)
IO (1)
IO (2)
IO (3)
IO (4)
IO (5)
IO (6)
IO (7)
10 (8)
IO (9)
IO (10
IO (11
IO (12
IO (13
IO (14
IO (15
IO (16
IO (17
IOi(18
IOi(19
IO 1(20

SM l(1)
SMI(2)
SMI(3)
SMI(4)

ELEMENT
MPLQ
BUSQ
BUSAL(1)
BUSAL(2)
BUSAL(3)
BUSAL(4)
CPUSQ
SMBUSQ
SMBUS(1)
SMBUS(2)
SMBUS(3)
SMBUS (4)
SMQ
SMQ
SMQ
SMQ
IOQ
IOQ
IOQ
IOQ
IOQ
IOQ
IOQ
IOQ
IOQ
IOQ
IOQ
IOQ
IOQ
IOQ
IOQ
IOQ
IOQ
IOQ
IOQ
IOQ
BUSRE(1)
BUSRE(2)
BUSRE(3)
BUSRE(4)
MPLRE
DUM1
RE
RE
RE
RE

THROUGHPUT
0.31108
30.30341
7.57133
7.61756
7.56091
7.55361
30.30357
30.30341
7.57133
7.61756
7.56091
7.55361

7.57133
7.61756
7.56091
7.55361
0.01616
0.01442
0.01442
0.01217
0.01390
0.01720
0.01269
0.02085
0.01616
0.01599
0.01477
0.01251
0.01442
0.01303
0.01894
0.01564
0.01825
0.01634
0.01634
0.01495
7.57133
7.61756
7.56091
7.55361
0.31108
30.30341
7.57133
7.61756
7.56091
7.55361

184 COMPUTER SYSTEM MODELS / CHAP. 9

INVOCATION ELEMENT MEAN QUEl
MPLQ 8.54315
BUSQ 0.77696
BUSAL(1) 0.19393
BUSAL(2) 0.19550
BUSAL(3) 0.19376
BUSAL(4) 0.19378

CPUSQ 3.02039
SMBUSQ 0.60607
SMBUS(1) 0.15143
SMBUS(2) 0.15235
SMBUS(3) 0.15122
SMBUS(4) 0.15107

SM { 1) SMQ 0.21062
SM (2) SMQ 0.21263
SM (3) SMQ 0.21036
SM (4) SMQ 0.21022
10(1) IOQ 0.60027
10(2) IOQ 0.51460
10(3) IOQ 0.53429
10(4) IOQ 0.37152
10(5) IOQ 0.34390
10(6) IOQ 0.73393
10(7) IOQ 0.47829
10(8) IOQ 0.68385
10(9) IOQ 0.53187
10(10) IOQ 0.66912
10(11) IOQ 0.60433
10(12) IOQ 0.38066
10(13) IOQ 0.55475
10(14) IOQ 0.58337
10(15) IOQ 0.95825
10(16) IOQ 0.67384
10(17) IOQ 0.52480
10(18) IOQ 0.53846
10(19) IOQ 0.70951
10(20) IOQ 0.46723

INVOCATION ELEMENT STANDARD
MPLQ 3.62395
BUSQ 0.73634
BUSAL(1) 0.39537
BUSAL(2) 0.39658
BUSAL(3) 0.39524
BUSAL(4) 0.39526

CPUSQ 0.90662
SMBUSQ 0.48862
SMBUS(1) 0.35846
SMBUS(2) 0.35936
SMBUS(3) 0.35826
SMBUS(4) 0.35812

SM (1) SMQ 0.44806
SM (2) SMQ 0.45056

SEC. 9.2 / SYSTEM MEMORY MODEL 185
SM (3) SMQ 0.44764
SM (4) SMQ 0.44734
10(1) IOQ 0.89312
10(2) IOQ 0.75876
10(3) IOQ 0.91099
10(4) IOQ 0.65971
10(5) IOQ 0.63399
10(6) IOQ 1.11966
10(7) IOQ 0.75321
10(8) IOQ 0.98036
10(9) IOQ 0.84805
10(10) IOQ 0.95530
10(11) IOQ 0.87561
10(12) IOQ 0.65095
10(13) IOQ 0.84111
10(14) IOQ 0.87061
10(15) IOQ 1.27903
10(16) IOQ 1.01358
10(17) IOQ 0.76722
10(18) IOQ 0.73233
10(19) IOQ 0.97948
10(20) IOQ 0.82061

INVOCATION ELEMENT MEAN QUEUEING TIME
MPLQ 27.36353(23.45761,31 .2694/') 28.5%
BUSQ 0.02564(0.02554,0.02574) 0.8%
BUSAL(1) 0.02561
BUSAL(2) 0.02566
BUSAL(3) 0.02563
BUSAL(4) 0.02565
CPUSQ 0.09967(0.09917,0.10017) 1.0%
SMBUSQ 0.02000(0.02000,0.02000) 0.0%
SMBUS (1) 0.02000
SMBUS(2) 0.02000
SMBUS (3) 0.02000
SMBUS(4) 0.02000

SM (1) SMQ 0.02782(0.02767,0.02796) 1.0%
SM (2) SMQ 0.02791(0.02776,0.02806) 1.1%
SM (3) SMQ 0.02782(0.02765,0.02800) 1.2%
SM (4) SMQ 0.02783(0.02766,0.02800) 1.2%
10(1) IOQ 37.14030(29.60065,44.67995) 40.6%
10(2) IOQ 35.67574(23.71260,47.63889) 67.1%
10(3) IOQ 37.04091(12.23162,61.85019) 134.0%
10(4) IOQ 30.53976(18.90219,42.17734) 76.2%
10(5) IOQ 24.47348(18.94743,29.99953) 45.2%
10(6) IOQ 42.65845 (-4.26932,89.58623) 220.0%
10(7) IOQ 37.52390(23.05740,51.99037) 77.1%
10(8) IOQ 32.34151 (19.63872,45.04428) 78.6%
10(9) IOQ 32.80647(16.21382,49.39912) 101.2%
10(10) IOQ 41.85065(26.15631,57.54500) 75.0%
10(11) IOQ 40.54945(31.45183,49.64708) 44.9%
10(12) IOQ 30.42253(18.63383,42.21123) 77.5%
10(13) IOQ 38.45975(30.29814,46.62137) 42.4%

186 COMPUTER SYSTEM MODELS / CHAP. 9

10(14) IOQ 44.75768(11.54152,77.97385) 148.4)5
10(15) iog 50.58678(27.33376,73.83981) 91 .9%
10(16) IOQ 42.75700(18.30812,67.20587) 114.4%
10(17) IOQ 28.55008(22.88754,34.21262) 39.7%
10(18) IOQ 3 2.921 31 (2 5.28915,40.55345) 46.4%
10(19) IOQ 42.47963(14.61713,70.34215) 131.2%
10(20) IOQ 31 .26234(-8.86049,71.38518) 256.7%

INVOCATION ELEMENT STANDARD DEVIATION OF QUEUEING TIME
MPLQ 17.44107
BUSQ 8.6671E-03
BUSAL(1) 8.6405E-0 3
BUSAL(2) 8.6829E-0 3
BUSAL(3) 8.6682E-03
BUSAL(4) 8.6767E-03

CPUSQ 0.09938
SM (1) SMQ 0.01107
SM (2) SMQ 0.01108
SM (3) SMQ 0.01106
SM (4) SMQ 0.01106
10(1) IOQ 38.68065
10(2) IOQ 32.66183
10(3) IOQ 36.93301
10(4) IOQ 28.99449
10(5) IOQ 23.91405
10(6) IOQ 45.34605
10(7) IOQ 38.63686
10(8) IOQ 30.07637
10(9) IOQ 33.18271
10(10) IOQ 37.97098
10(11) IOQ 37.6541 1
10(12) IOQ 31.06099
10(13) IOQ 30.52859
10(14) IOQ 45.55791
10(15) IOQ 48.89714
10(16) IOQ 41.39999
10(17) IOQ 24.65466
10(18) IOQ 30.21254
10(19) IOQ 43.01801
10(20) IOQ 31.07422

INVOCATION ELEMENT MEAN TOKENS IN USE
MPLQ 3.86423
BUSQ 0.60607

SM (1) SMQ 0.19393
SM (2) SMQ 0.19550
SM (3) SMQ 0.19376
SM (4) SMQ 0.19378

INVOCATION ELEMENT MEAN TOTAL TOKENS IN POOL
MPLQ 4.00000
BUSQ 1.00000

SM (1) SMQ 1.00000

SEC. 9.2 / SYSTEM MEMORY MODEL 187
SM (2) SMQ
SM (3) SMQ
SM (4) SMQ

INVOCATION ELEMENT
MPLQ
BUSQ

SM (1)

BUSAL(1)
BUSAL(2)
BUSAL(3)
BUSAL(4)

CPUSQ
SMBUSQ
SMBUS(1)
SMBUS(2)
SMBUS(3)
SMBUS(4)
SMQ

SM (2) SMQ
SM (3) SMQ
SM (4) SMQ
10(1) IOQ
10(2) IOQ
10(3) IOQ
10(4) IOQ
10(5) IOQ
10(6) IOQ
10(7) IOQ
10(8) IOQ
10(9) IOQ
10(10) IOQ
10(11) IOQ
10(12) IOQ
10(13) IOQ
10(14) IOQ
10(15) IOQ
10(16) IOQ
10(17) IOQ
10(18) IOQ
10(19) IOQ
10(20) IOQ

INVOCATION ELEMENT
MPLQ
BUSQ
BUSAL(1)
BUSAL(2)
BUSAL(3)
BUSAL(4)

CPUSQ
SMBUSQ
SMBUS(1)
SMBUS(2)

1.00000
1.00000
1.0 0 0 0 0

MAXIMUM QUEUE LENGTH
20
4

1
1
1
1

4
1

1
1
1
1

4
4
4
4
5
3
5
3
3
5
3
5
5
4
4
4
5
4
6
4
4
4
5
4

MAXIMUM QUEUEING TIME
115.04950
0.07899
0.07594
0.07792
0.07899
0.07859
1.06927
0 . 0 2 0 0 0

0 . 0 2 0 0 0
0 . 0 2 0 0 0

188 COMPUTER SYSTEM MODELS / CHAP. 9

SMBUS (3) 0.02000
SMBUS(4) 0.02000

SM (1) SMy 0.10306
SM (2) SMQ 0.11747
SM (3) SMQ 0.11853
SM (4) SMQ 0.11949
10(1) I0Q 206.14177
10(2) I0Q 139.16139
10(3) I0Q 127.89719
10(4) IOQ 112.80254
10(5) IOQ 129.50917
10(6) IOQ 231.51268
10(7) IOQ 218.30869
10(8) IOQ 123.88608
10(9) IOQ 153.15895
10(10) IOQ 167.86011
10(11) IOQ 173.59288
10(12) IOQ 160.68028
10(13) IOQ 133.22328
10(14) IOQ 244.72989
10(15) IOQ 224.45024
10(16) IOQ 174.84987
10(17) IOQ 137.76170
10(18) IOQ 155.20480
10(19) IOQ 211.46941
10(20) IOQ 158.90723

This model can be decomposed in several different fashions. One way
is to put the processor passive queue and all resources within it in a submo
del and solve it separately. The submodel solution can be accomplished by
simulation and replaced by a flow equivalent server in the higher level
model. This model with the flow equivalent server and the I/O devices can
be solved analytically.

9.3. MASS STORAGE SUBSYSTEM

A mass storage subsystem (MSS) is mainly used as an archival storage
device. It is sometimes used to replace a tape library. It consists of very
slow, high-capacity storage areas. The storage medium is a roll of tape
wrapped around a cylinder. Many of these cylinders are stored in a honey
comb area and must be retrieved when the data are requested.

The MSS model accepts four types of requests: (1) cylinder faults, (2)
stage operations, (3) demount commands, and (4) mount requests. The
different types of requests are identified by setting a job variable at a set
node when a job first arrives. The different requests have different arrival
rates, priorities at certain devices, and distinguishable service times at some
resources. The interarrival times for the requests are assumed to follow an

SEC. 9.3 / MASS STORAGE SUBSYSTEM 189

exponential distribution. We can specify the number of Data Recording
Devices (DRDs), accessors, Data Recording Controllers (DRCs), and
staging adapters. The cylinder fault requests have priority over the other
requests for acquiring a DRD. After being allocated a DRD, a request must
obtain an accessor. Then the request experiences a delay for moving the
accessor. We are assuming there is no contention between the accessors.
The accessor is released, and a service time representing a cartridge load is
taken. The cartridge load operations can take place in parallel for each
request which has moved the accessor and has a DRD. After loading the
cartridge, the request must be allocated a DRC and a staging adapter. Then
there is a delay representing the seek and data transfer operation. We are
permitting each type of request to have a different type of distribution for
seek and data transfer. Cylinder fault and mount requests have a constant
distribution for this time. We are assuming there is no multiplexing of the
DRCs. The DRC and staging adapter are released, and the model records
the host response time. The DRD is rewound, with a constant service time,
and an accessor is reacquired and moved to reposition the cartridge. Final
ly, the accessor is released, and the DRD is freed.

Hoarmro

M

REHAT REDRC RE3A
MQVAOCR DRDREW

Figure 9.3. Model Diagram of a Mass Storage Subsystem

There are numeric parameters for the four different interarrival times,
for the number of accessors, DRCs, staging adapters, and DRDs, for the
service times for moving the accessor, the cartridge load time, the seek and

190 COMPUTER SYSTEM MODELS / CHAP. 9

data transfer for the four types of requests, the DRD rewind time, and the
coefficient of variation of moving the accessor. There is a passive queue for
recording the host response time. There are passive queues for the DRDs,
the accessors, the DRCs, and the staging adapters. There are active queues
for moving the accessors, loading the cartridge, doing the seek and data
transfer, and rewinding the DRD. There are four sources, one for each type
of request. The regenerative method is being used to calculate the confi
dence intervals along with the sequential stopping rule.

MODEL:EX9.4
METHOD:simulation
NUMERIC PARAMETERS:iatmnt iatdem iatstage iatcylf
NUMERIC PARAMETERS:numacc numdrc numsa numdrd
NUMERIC PARAMETERS:stmovacc stdrd
NUMERIC PARAMETERS:stmnt stdem ststage stcylf stdrdrew
NUMERIC PARAMETERS:cvmovacc
NUMERIC IDENTIFIERS:mntni demni stageni cylfni

MNTNI:1
DEMNI:2
STAGENI:3
CYLFNI:4

QUEUE:hostrtq
TYPE:passive
TOKENS:999999
DSPL:fcfs
ALLOCATE NODE LIST:alhrtmds alhrtc

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:rehrt

QUEUE:drdq
TYPE:passive
TOKENS:numdrd
DSPL:prty
ALLOCATE NODE LIST:aldrdmds aldrdc

NUMBERS OF TOKENS TO ALLOCATE:1
PRIORITIES:2 1

RELEASE NODE LIST:redrd
QUEUE:accq

TYPE:passive
TOKENS:numacc
DSPL:fcfs
ALLOCATE NODE LIST:alaccp alaccr

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:reaccp reaccr

QUEUE:movaccq
TYPE:is
CLASS LIST:movaccp movaccr

SERVICE TIMES:standard(stmovacc,cvmovacc)
QUEUE:drdservq

TYPE:is
CLASS LIST:drdserv

SERVICE TIMES:constant(stdrd)

SEC. 9.3 / MASS STORAGE SUBSYSTEM 191
QUEUE:drcq

TYPE:passive
TOKENS:numdrc
DSPL:fcfs
ALLOCATE NODE LIST:aldrc

NUMBERS OF TOKENS TO ALLOCATE:!
RELEASE NODE LIST:redrc

QUEUE:saq
TYPE:passive
TOKENS:numsa
DSPL:fcfs
ALLOCATE NODE LIST:alsa

NUMBERS OF TOKENS TO ALLOCATE:!
RELEASE NODE LIST:resa

QUEUE:seekdtq
TYPE:is
CLASS LIST:mnt dem stage cylf

SERVICE TIMES:constant(stmnt) stdem ststage constant{stcylf)
QUEUE:drdrewq

TYPE:is
CLASS LIST:drdrew

SERVICE TIMES:stdrdrew
SET NODES:setmnt setdem

ASSIGNMENT LIST:jv(0)=mntni jv(0)=demni
SET NODES:setstage setcylf

ASSIGNMENT LIST:jv(0)=stageni jv(0)=cylfni
CHAIN:chi

TYPE:open
SOURCE LIST:smnt sdem sstage scylf
ARRIVAL TIMES:iatmnt iatdem iatstage iatcylf
:smnt->setmnt->alhrtmds->aldrdmds
:sdem->setdem->alhrtmds
:sstage->setstage->alhrtmds
:scylf->setcylf->alhrtc->aldrdc
:aldrdmds aldrdc->alaccp->movaccp->reaccp->drdserv->aldrc->alsa
:alsa->mnt dem stage cylf;if(jv(0)=mntni) if(jv(0)=demni) ++

if (jv(0)=stageni) if(jv(0)=cylfni)
:mnt dem stage cylf->resa->redrc->rehrt
:rehrt->drdrew->alaccr->movaccr->reaccr->redrd->sink

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:drdq
MEASURES:qt
ALLOWED WIDTHS:10

SAMPLING PERIOD GUIDELINES -
CYCLES:5

LIMIT - CP SECONDS:60
TRACE:no

END

192 COMPUTER SYSTEM MODELS / CHAP. 9

The interarrival times for the four types of requests are 43.9, 35.2, 20,
and 42.4 seconds between arrivals. There are two accessors, two DRCs, two
staging adapters and four DRDs. It takes an average of six seconds to move
an accessor and five seconds to do a cartridge load. The seek and data
transfer times average 2.14, 10.7, 9.7, and 2.14 seconds for the four differ
ent requests. It takes an average of 4.2 seconds to rewind a DRD. The
coefficient of variation of moving the accessor is 0.19.

After running for 60 seconds of CPU time, we look at the mean queu
ing time statistics and continue the run. The new CPU time limit is set at
150 seconds. After this new limit, most of the confidence limits are small
except for some related to the host response time and the DRD passive
queue. This MSS is fairly heavily loaded. It probably requires a larger
number of DRDs and maybe more accessors. Increasing either of these may
require more DRCs and staging adapters.

RESQ2 VERSION DATE: JANUARY 18, 1984
MODEL:EX9.4
IATMNT:43.9
IATDEM:35.2
IATSTAG:20
IATCYLF:42.4
NUMACC:2
NUMDRC:2
NUMSA:2
NUMDRD:4
STMOVACC:6
STDRD:5
STMNT:2.14
STDEM:10.7
STSTAGE:9.7
STCYLF:2.14
STDRDREW:4.2
CVMOVACC:0.19
SAMPLING PERIOD END:
SAMPLING PERIOD END
SAMPLING PERIOD END
SAMPLING PERIOD END
SAMPLING PERIOD END
RUN END: CPU LIMIT
NO ERRORS DETECTED DURING SIMULATION.

CYCLE GUIDELINE
CYCLE GUIDELINE
CYCLE GUIDELINE
CYCLE GUIDELINE
CYCLE GUIDELINE

TIME: 18:42:45 DATE: 03/29/84

46 DISCARDED EVENTS

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS
NUMBER OF CYCLES

1.0643E+05
60.15
80010

27

WHAT:QTBO

SEC. 9.3 / MASS STORAGE SUBSYSTEM 193
ELEMENT
HOSTRTQ
DRDQ
ACCQ
DRCQ
SAQ
MOVACCQ
DRDSERVQ
SEEKDTQ
DRDREWQ

MEAN QUEUEING TIME
186.65231(161.47067,211.83395)
197.89339(172.65480,223.13197)
7.11519(7.08713,7.14324) 0.8%
7.89622(7.78656,8.00587) 2.8%
7.22508(7.12230,7.32786) 2.8%
5.99362(5.98413,6.00311) 0.3%
5.00000
7.22508(7.12230,7.32786) 2.8%
4.21470(4.14267,4.28673) 3.4%

27.0%
25.5%

WHAT:
CONTINUE R U N : y e s

LIMIT - CP SECONDS:150

SAMPLING PERIOD END CYCLE GUIDELINE
SAMPLING PERIOD END CYCLE GUIDELINE
SAMPLING PERIOD END CYCLE GUIDELINE
SAMPLING PERIOD END CYCLE GUIDELINE
SAMPLING PERIOD END CYCLE GUIDELINE
RUN END: CPU LIMIT
SAMPLING PERIOD END CYCLE GUIDELINE
SAMPLING PERIOD END CYCLE GUIDELINE
SAMPLING PERIOD END CYCLE GUIDELINE
SAMPLING PERIOD END CYCLE GUIDELINE
SAMPLING PERIOD END CYCLE GUIDELINE
SAMPLING PERIOD END CYCLE GUIDELINE
SAMPLING PERIOD END CYCLE GUIDELINE
SAMPLING PERIOD END CYCLE GUIDELINE
SAMPLING PERIOD END CYCLE GUIDELINE
SAMPLING PERIOD END CYCLE GUIDELINE
SAMPLING PERIOD END CYCLE GUIDELINE
SAMPLING PERIOD END CYCLE GUIDELINE
SAMPLING PERIOD END CYCLE GUIDELINE
SAMPLING PERIOD END CYCLE GUIDELINE
SAMPLING PERIOD END CYCLE GUIDELINE
SAMPLING PERIOD END CYCLE GUIDELINE
RUN END: CPU LIMIT CYCLE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS
NUMBER OF CYCLES

2.6808E+05
150.12
199374

1 10

WHAT:ALLBO

ELEMENT
HOSTRTQ
ALHRTMDS
ALHRTC

U T IL IZ A T IO N
1.8919E-05(1.4241E-05,2.3597E-05) 0.0%
1.8433E-05(1,3718E-05,2.3147E-05) 0.0%
4.8615E-07(4.7411E-07,4.9820E-07) 0.0%

194 COMPUTER SYSTEM MODELS / CHAP. 9
DRDQ 0.96518(0.95358,0.97678) 2.3%
ALDRDMDS 0.81390(0.80247,0.82533) 2 . 3%
ALDRDC 0.15128(0.14797,0.15459) 0.7%

ACCQ 0.74407(0.73675,0.75139) 1 .5%
ALACCP 0.37188(0.36804,0.37573) 0.8%
ALACCR 0.37218(0.36868,0.37569) 0.7%

DRCQ 0.44072(0.43323,0.44821) 1 .5%
SAQ 0.44072(0.43323,0.44821) 1 . 5%

ELEMENT THROUGHPUT
HOSTRTQ 0.12395(0.12274,0.12517) 2.0%
ALHRTMDS 0.10062(0.09939,0.10185) 2.5%
ALHRTC 0.02333(0.02284,0.02383) 4.2%

DRDQ 0.12395(0.12274,0.12517) 2.0%
ALDRDMDS 0.10062(0.09939,0.10185) 2.5%
ALDRDC 0.02333(0.02284,0.02383) 4.2%

ACCQ 0.24791(0.24548,0.25034) 2.0%
ALACCP 0.12395(0.12274,0.12517) 2.0%
ALACCR 0.12395(0.12274,0.12517) 2.0%

DRCQ 0.12395(0.12274,0.12517) 2.0%
SAQ 0.12395(0.12274,0.12517) 2.0%
MOVACCQ 0.24791(0.24548,0.25034) 2.0%
MOVACCP 0.12395(0.12274,0.12517) 2.0%
MOVACCR 0.12395(0.12274,0.12517) 2.0%

DRDSERVQ 0.12395(0.12274,0.12517) 2.0%
SEEKDTQ 0.12395(0.12274,0.12517) 2.0%
MNT 0.02274(0.02225,0.02323) 4.4%
DEM 0.02790(0.02734,0.02845) 4.0%
STAGE 0.04999(0.04899,0.05098) 4.0%
CYLF 0.02333(0.02284,0.02383) 4.2%

DRDREWQ 0.12395(0.12274,0.12517) 2.0%
REHRT 0.12395
REDRD 0.12395
REACCP 0.12395
REACCR 0.12395
REDRC 0.12395
RESA 0.12395
SETMNT 0.02274
SETDEM 0.02790
SETSTAGE 0.04999
SETCYLF 0.02333
SMNT 0.02274
SDEM 0.02790
SSTAGE 0.04999
SCYLF 0.02333
SINK 0 . 12395

ELEMENT MEAN QUEUE LENGTH
HOSTRTQ 18.91885(14.24051,23.59720) 49.
ALHRTMDS 18.43269(13.71835,23.14706) 51
ALHRTC 0.48615 (0.47410,0.49820) 5.0%

DRDQ 20.30960(15.62110,24.99811) 46.
ALDRDMDS 19.55798(14.83429,24.28168) 48

SEC. 9.3 / MASS STORAGE SUBSYSTEM 195
ALDRDC

ACCQ
ALACCP
ALACCR

DRCQ
SAQ
MOVACCQ

MOVACCP
MOVACCR

DRDSERVQ
SEEKDTQ

MNT
DEM
STAGE
CYLF

DRDREWQ

0.75162(0.73454,0.76869) 4.5%
1.76481(1.74394,1.78568) 2.4%
0.89282(0.88163,0.90402) 2.5%
0.87199(0.86210,0.88187) 2.3%
0.95738(0.93825,0.97650) 4.0%
0.88143(0.86645,0.89642) 3.4%
1.48814(1.47350,1.50278) 2.0%
0.74377(0.73608,0.75146) 2.1%
0.74437(0.73735,0.75138) 1.9%

0.61977(0.61369,0.62585) 2.0%
0.88143(0.86645,0.89642) 3.4%
0.04866(0.04760,0.04972) 4.4%
0.30039(0.29291,0.30787) 5.0%
0.48245(0.47069,0.49421) 4.9%
0.04993(0.04888,0.05099) 4.2%
0.51876(0.51223,0.52529) 2.5%

ELEMENT
HOSTRTQ

ALHRTMDS
ALHRTC

DRDQ
ALDRDMDS
ALDRDC

ACCQ
ALACCP
ALACCR

DRCQ
SAQ
MOVACCQ

MOVACCP
MOVACCR

DRDSERVQ
SEEKDTQ

MNT
DEM
STAGE
CYLF

DRDREWQ

STANDARD DEVIATION OF QUEUE LENGTH
15.51591
15.48125
0.71744
15.55947
15.51930
0.88582
1.01432
0.82495
0.78750

0.91519
0.75812
0.68333
0.67579
0.67276

0.65242
0.75812
0.21721
0.51709
0.62557
0.22059

0.66858

ELEMENT
HOSTRTQ

ALHRTMDS
ALHRTC

DRDQ
ALDRDMDS
ALDRDC

ACCQ
ALACCP
ALACCR

DRCQ
SAQ
MOVACCQ

MEAN QUEUEING TIME
152.62796(115.92844,189.32748) 48.1%
183.18936(138.09811,228.28059) 49.2%
20.83528(20.55783,21.11273) 2.7%
163.84782(127.14409,200.55157) 44.8%
194.37273(149.27301,239.47244) 46.4%
32.21257(31.90994,32.51520) 1.9%

7.11881(7.09781,7.13982) 0.6%
7.20286(7.17328,7.23244) 0.8%
7.03476(7.01626,7.05327) 0.5%

7.72365(7.60674,7.84055) 3.0%
7.11097(7.02090,7.20104) 2.5%
6.00277(5.99661,6.00894) 0.2%

196 COMPUTER SYSTEM MODELS / CHAP. 9

MOVACCP 6.00035(5.99177,6.00894) 0.3%
MOVACCR 6.00519(5.99616,6.01423) 0.3%
DRDSERVy 5.00000
SEEKDTO 7.11097(7.02090,7.20104) 2.5%
MNT 2.14000
DEM 10.76840(10.56662,10.97019) 3.7%
STAGE 9.65173(9.48919,9.81427) 3.4%
CYLF 2.14000(2.14000,2.14000) 0.0%

DRDREWQ 4.18511(4.14339,4.22683) 2.0%

ELEMENT STANDARD DEVIATION OF QUEUEING TIME
HOSTRTQ 148.59668
ALHRTMDS 149.09648
ALHRTC 6.50429

DRDQ 148.64529
ALDRDMDS 149.18004
ALDRDC 7.91753
ACCQ 2.14633
ALACCP 2.29846
ALACCR 1.97904
DRCQ 9.14761
SAQ 8.78364
MOVACCQ 1.13785
MOVACCP 1.13738
MOVACCR 1.13833
SEEKDTQ 8.78364
DEM 10.64073
STAGE 9.56278

DRDREWQ 4.18850

ELEMENT MEAN TOKENS IN USE
HOSTRTQ 18.91885(14.24051,23.59720) 49.5%
DRDQ 3.86072(3.81433,3.90711) 2.4%
ACCQ 1.48814(1.47350,1.50278) 2.0%
DRCQ 0.88143(0.86645,0.89642) 3.4%
SAQ 0.88143(0.86645,0.89642) 3.4%

ELEMENT MEAN TOTAL TOKENS IN POOL
HOSTRTQ 1.0000E+06
DRDQ 4.00000(4.00000,4.00000) 0.0%
ACCQ 2.00000(2.00000,2.00000) 0.0%
DRCQ 2.00000(2.00000,2.00000) 0.0%
SAQ 2.00000(2.00000,2.00000) 0.0%

ELEMENT MAXIMUM QUEUE LENGTH
HOSTRTQ 70
ALHRTMDS 69
ALHRTC 6
DRDQ 71
ALDRDMDS 71
ALDRDC 7

ACCQ 4
ALACCP 4

197SEC. 9.3 / MASS STORAGE SUBSYSTEM
ALACCR
DRCQ
SAQ
MOVACCQ
MOVACCP
MOVACCR
DRDSERVQ
SEEKDTQ
MNT
DEM
STAGE
CYLF
DRDREWQ

4
4
2
2
2
2

4
2
2
2
2
2

4

ELEMENT
HOSTRTQ
ALHRTMDS
ALHRTC
DRDQ
ALDRDMDS
ALDRDC
ACCQ
ALACCP
ALACCR
DRCQ
SAQ
MOVACCQ
MOVACCP
MOVACCR
DRDSERVQ
SEEKDTQ
MNT
DEM
STAGE
CYLF
DRDREWQ

MAXIMUM QUEUEING TIME
692.52759
692.52759
60.36292

703.02490
703.02490
70.21457
15.91407
15.91407
15.20627

96.60123
96.60123
7.97442
7.97442
7.97426

5.00000
96.60123
2.14000
96.60123
85.10968
2.14000

43.82709

ELEMENT
CH1

OPEN CHAIN POPULATION
20.30960 (15.62109,24.9981 1) 46.2%

ELEMENT
CH1

OPEN CHAIN RESPONSE TIME
163.84782(127.14407,200.55156) 44.8%

9.4. FURTHER READING

The capacity planning model presented in Section 9.1 resulted from
conversations with Alex Birman and similar models described in the litera
ture such as those in Lazowska, Zahorjan, Graham, and Sevcik [108]. The
following papers are some references on capacity planning: Bronner [30,
31], Cooper [49], and Major [118]. The IBM manuals [80] contain some

198 COMPUTER SYSTEM MODELS / CHAP. 9

information about MVS. The system memory model in Section 9.2 is based
on discussions with A1 Blum, Lorenzo Donatiello, Ambuj Goyal, Phil Hei-
delberger, Steve Lavenberg, and Don Towsley. See Blum, Donatiello,
Heidelberger, Lavenberg, and MacNair [22], for some further summary
results from this model. The model of the mass storage subsystem is the
result of conversations with Mike Coome [48].

There are several books which discuss computer system models: Allen
[3], Ferrari [62], Kobayashi [98], Lavenberg, editor, [100], Lazowska,
Zahorjan, Graham, and Sevcik [108], and Sauer and Chandy [152]. There
are numerous papers dealing with computer system models. Some of them
are Allen [4], Avi-Itzhak and Heyman [6], Boyse and Warn [26], Brandwajn
[27, 28], Brown, Browne, and Chandy [32], Browne, Chandy, Brown,
Keller, Towsley, and Dissley [33], Buzen [36, 39, 40], Chandy and Sauer
[45], Chiu and Chow [46], Denning and Buzen [57], Kienzle and Sevcik
[89], Lazowska [107], Lipsky and Church [111], Lo [113], Reiser [140],
Rose [144], Sauer and Chandy [150, 151], Sauer and MacNair [153, chapter
7 of 156], Sauer, MacNair, and Kurose [158, 159, 160], Schwetman [168],
and Wong and Graham [190].

9.5. EXERCISES

9.1 Construct and solve some models of computer systems you are
familiar with.

9.2 Construct a model of a system that uses printer spooling. Assume
there are two buffers which are filled and emptied by two independ
ent tasks.

9.3 Construct a model which includes paging and swapping.

9.4 Construct a model with multiple paths to I/O devices and the simul
taneous use of channels, control units, and head of strings.

9.5 Construct models of tightly coupled and loosely coupled multiproces
sor systems.

9.6 Construct a model of a data-base system.

CHAPTER 10

COMMUNICATION NETWORKS
This chapter discusses three models of communication networks. The

first model is a system with remote terminals controlled by a high speed
processor and using high speed lines. The second model is a satellite system
with three earth stations. The last model illustrates some common protocols
found in communication networks, including polling, flow control, and
packetizing.

10.1. REMOTE TERMINALS

The system we are modeling consists of 200 remote terminals con
trolled by high speed processors and lines connected to a host computer.
There is one high speed processor for each group of 100 terminals. There
are smaller, faster processors controlling the high speed lines. The host
computer is running an interactive operating system mainly used for pro
gram development, experimentation, text processing, and graphics. The
system also includes a facility for switching all 100 terminals attached to
one of the high speed processors over to the other high speed processor in
the event that a high speed line or line control processor goes down. Figure
10.1 illustrates a diagram of the system.

Figure 10.2 shows a model diagram of this system. This is an open
model driven by a transaction arrival rate. We are modeling only one leg of
the system shown in Figure 10.1. Therefore only the terminals communicat
ing over one set of the high-speed lines will be represented in the model.
The high speed processor is designated as a 4381. There is an active queue
with two classes representing processing for inbound and outbound transac
tions through the 4381. There are two separate multiserver queues for
inbound and outbound messages on the high speed lines and the smaller
processors which are controlling the lines. There is an infinite server queue
representing remote entry and host processing. The two classes at this
infinite server queue represent different types of transactions. Q1 is for
shorter transactions, and Q2 is for longer transactions.

This model is being solved analytically. There is a large parameter
space which must be investigated, so the analytic solution is necessary for
fast solution. There are numeric parameters for the arrival rate in transac
tions per hour per user, the number of users, the transmission block size,
the number of lines, and the hour of the day. The hour is used to determine

199

2 0 0 COMMUNICATION NETWORKS / CHAP. 10

100 TERMINALS 100 TERMINALS

the amount of processing necessary on the host. It is different at different
times of the day.

There are several numeric identifiers defined. These will be used as
service times at the active queues. There is an active queue with two classes
for the 4381. The two classes are used for inbound and outbound messages.
There are two multiserver queues for the slower processors and the high
speed lines. Since the high-speed lines are full duplex, one multiserver
queue is for inbound transactions and one for outbound transactions. There
is an infinite server with two classes representing processing on the host.
The two classes are for different types of transactions. There is a branching
probability which determines the type of transaction. The model contains an
open chain, and the arrival rate is used in an expression to calculate an
interarrival time in seconds.

SEC. 10.1 / REMOTE TERMINALS 2 0 1

SERIES/1 AND PVM AND HOST
T1 INBOUND Q1

T1 OUTBOUND

Figure 10.2. Model Diagram of Remote Terminal System

MODEL:EX10.1
METHOD:numerical
NUMERIC PARAMETERS:arrate users blksize nlines hour

/* arrate is transactions per hour per user */
/* hour - 9 to 16 (9am to 4pm) */

NUMERIC IDENTIFIERS:stq1(8) stq2(8)
STQ1:.372 .388 .338 .312 .349 .367 .408 .395
STQ2:.721 .662 .652 .550 .586 .623 .715 .838

NUMERIC IDENTIFIERS:st4381
ST4381:.012 /* sec./trans. */

NUMERIC IDENTIFIERS:Stt1 sts1 sthostl sthost2
STT1:(8*blksize/1500) /* 8bits*2kb/1.5mbps */
STS 1: .002 /* sec. */
STHOST1:(2*.012)tstql(hour-8) /* pvm in and out */
STHOST2:(2*.012)+stq2(hour-8) /* pvm in and out */

QUEUE:q4381
TYPE:fcfs
CLASS LIST:i4381 04381

SERVICE TIMES:st4381
QUEUE:t1iq /* series/1->t1->series/1 */

TYPE:active
SERVERS:nlines
DSPL:fcfs
CLASS LIST:t1i

2 0 2 COMMUNICATION NETWORKS / CHAP. 10

WORK DEMANDS:stt1+(2*sts1)
SERVER -

RATES : 1
QUEUE:t1oq /* series/1->t1->series/1 */

TYPE:actlve
SERVERS:nlincs
DSPL:fcfs
CLASS LIST:t1o

WORK DEMANDS:stt1+(2*sts1)
SERVER -

RATES : 1
QUEUE:hostq

TYPE: is
CLASS LIST:host 1 host2

SERVICE TIMES:sthost1 sthost2
CHAIN:chn

TYPE:open
SOURCE LIST:src

ARRIVAL TIMES:3600/(arrate*users) /* sec. */
: src->i4381->t1i->host 1 host2;.592 .408->t1o->o4381->sink

END

The following interactive dialog will be used to solve the model multi
ple times and produce a file which will be used to plot the results. We can
specify the number of plots and the number of curves on each plot. The
eight curves will represent data for the eight different hours from nine in
the morning until four in the afternoon. The numeric parameter ARRATE
will be varied along the X-axis. The different arrival rates will be 503, 528,
553, 578, and 603. The Y-coordinate variable will be the HOUR. The
expression evaluated to produce the data for the plots represents the relative
degradation due to the remote delay as compared to local terminals. There
are 100 terminals, a block size of two, and one high-speed line.

NUMBER OF PLOTS:1
NUMBER OF CURVES ON EACH PLOT:8
X-COORDINATE -

X-VARIABLE NAME:ARRATE
ARRATE VALUES:503 TO 603 BY 25

Y-COORDINATE -
Y-VARIABLE NAME:HOUR

HOUR VALUES:9 TO 16
EXPRESSION FOR PLOT 1:(rtm(chn)-qt(hostq)+0.024)/rtm(chn)

OTHER MODEL PARAMETERS -
USERS:100
BLKSIZE:2
NLINES:1

Figure 10.3 depicts the graph of the relative remote delay for the
different arrival rates and the eight hours during the day. At 4:00 pm the
system exhibits the lowest relative degradation, and at 12 noon we find the

SEC. 10.1 / REMOTE TERMINALS 203

largest relative degradation. These hours during the day correspond to the
maximum and minimum expected host service times.

RELATIVE REMOTE DELAY

In addition to these parameter values, this model was also solved with
200 users, a block size of four and six, and two and three lines. A three-
dimensional plot with the block size varied in the third dimension is shown
in Figure 10.4.

The table that follows shows the relative degradation from 90 solutions
of the model. These results are from the peak period at 4:00 pm. The
model was solved for 720 different model parameter combinations. To
conserve space, the other results are not being shown. The results shown
on the first three lines are the ones plotted in Figure 10.4. With 200 users, a
block size of six, and one line, the system was saturated. Hence, the results
are displayed for slightly smaller parameter values in this region.

204 COMMUNICATION NETWORKS / CHAP. 10

RELATIVE REMOTE DELAY

Figure 10.4. Three-dimensional Plot of Results

ARRATE
Relative
Degradation

HOUR 16 (4:00 pm)
503 528 553 578 603 USERS BLKSIZE NLINES
144 . 146 .148 .1 50 .152 100 2 1
194 . 197 .201 .205 .209 100 4 1
263 .271 .279 .289 .299 100 6 1
203 .214 .227 .242 .262 200 2 1
320 . 344 .374 .410 .455 200 4 1
422 .474 .545 .649 .823 190 5 1

135 . 1 36 .137 .139 . 140 100 2 2
163 .165 .166 .168 . 169 100 4 2
192 . 194 .196 .197 . 199 100 6 2
181 .191 .203 .217 .236 200 2 2
212 .222 .233 .247 .266 200 4 2
251 .262 .276 .291 .311 200 6 2

1 34 . 1 36 .137 .1 39 . 140 100 2 3
161 . 163 .164 .165 . 166 100 4 3
187 . 188 .189 .191 .192 100 6 3
180 . 189 .201 .215 .234 200 2 3
205 .214 .225 .239 . 256 200 4 3
230 . 239 .250 .263 . 280 200 6 3

SEC. 10.2 / SATELLITE MODEL

10.2. SATELLITE MODEL

205

In this section, we discuss a model of a store-and-forward node sched
uled satellite system. Because of the complexity of the model, we are using
simulation to obtain the performance measures. The model includes many of
the features that exist in the real system. There are three different earth
stations which transmit messages to one another. Every earth station can
transmit messages to itself or to any other earth station. Each message is
identified by its source and destination pair. We used an exponential inter
arrival time distribution for messages entering the model from the earth
stations. Each earth station can have a unique mean interarrival time for the
messages it generates.

Messages entering the model may be successful transmissions, new
transmissions which might collide, or retransmissions. A message must first
be allocated a transmission buffer. Each source and destination pair can
have a different buffer capacity depending on the transmission schedule
selected. After obtaining a buffer, which corresponds to a slot in a time
frame, the message waits until the beginning of the next frame. Each frame
has a specified number of slots corresponding to the schedule selected. We
have used a constant delay to represent the transmission of messages in
each time slot. For each combination of source and destination, where the
sources are different and the destinations are unique, the messages can be
transmitted in parallel. The buffer is normally released as soon as the slot
transmission is completed.

The three earth stations, labeled A, B, and C, generate messages at the
three sources labeled STATIONA, STATIONB, and STATIONC. The
probability of a collision is specified in the routing. Messages which collide
leave the model. The arrival rate of messages from the earth stations in
cludes messages which may have previously collided. Those messages which
do not collide are probabilistically routed to determine the source and
destination pair according to the schedule. The schedule used for this model
permitted ten slots in each frame for transmission from station A to A, A to
B, and A to C. Therefore, one third of the noncolliding A messages were
routed to each destination. For stations B and C, the slot allocations were
ten, five, and five for destinations A, B, and C, respectively. After tagging
each message with its source/destination pair at the set nodes, messages
were discarded if all the buffers in the frame were in use. When buffers are
available, they are allocated to arriving messages. Messages which are
allocated buffers wait until the beginning of the next frame. A passive
queue and a timing mechanism are used to synchronize the beginning and
ending of a frame transmission. A constant delay of 30 time units is used
for the frame transmission. All waiting messages are scheduled into the next
frame according to their source/destination pairs and the specified schedule.

206 COMMUNICATION NETWORKS / CHAP. 10

_ n f £ L
STATONB *1 l ~/V *

— t i i j T h
[_/ SETBC BUFALOCE 5 J X V 1

STATONC
L > - SETCA

HD
BUFALOCC \

SCHgn*

SCHSTBC

« 2
- 3 -

SCH5TCC
- 3 -
scHsrc/

♦3 3 - 9 =

*3 3 - ^
3LTRCA BUFRELCA

* S 5 - V =

FRENDAL FRENDRE SINK

/ \

Figure 10.5. Model Diagram of Satellite System

Each message experiences a constant delay of one time unit for the slot
transmission. After completing the slot transmission, the message releases
the buffer it was allocated and leaves the model when the frame is ended.

MODEL:EX 10.2
METHOD:simulation
NUMERIC PARAMETERS:iata iatb iatc
NUMERIC IDENTIFIERS:aa ab ac

AA: 1
AB: 2
AC : 3

NUMERIC IDENTIFIERS:bb be ba
BB : 4
BC : 5
BA: 6

NUMERIC IDENTIFIERS:cc ca cb
CC : 7
CA: 8
CB : 9

SEC. 10.2 / SATELLITE MODEL 207

MAX JV:1
QUEUE:bufferqaa

TYPE:passive
TOKENS : 10
DSPL:fcfs
ALLOCATE NODE LIST:bufalocaa

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:bufrelaa

QUEUE:bufferqab
TYPE:passive
TOKENS:10
DSPL:fcfs
ALLOCATE NODE LIST:bufalocab

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:bufrelab

QUEUE:bufferqac
TYPE:passive
TOKENS:10
DSPL:fcfs
ALLOCATE NODE LIST:bufalocac

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:bufrelac

QUEUE:buf ferqbb
TYPE:passive
TOKENS:5
DSPL:fcfs
ALLOCATE NODE LIST:bufalocbb

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:bufrelbb

QUEUE:buf ferqbc
TYPE-.passive
TOKENS:5
DSPL:fcfs
ALLOCATE NODE LIST:bufalocbc

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:bufrelbc

QUEUE:bufferqba
TYPE:passive
TOKENS:10
DSPL:fcfs
ALLOCATE NODE LIST:bufalocba

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:bufrelba

QUEUE:bufferqcc
TYPE:passive
TOKENS:5
DSPL:fcfs
ALLOCATE NODE LIST:bufaloccc

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:bufrelcc

QUEUE:bufferqca
TYPE:passive
TOKENS:10

208 COMMUNICATION NETWORKS / CHAP. 10

DSPL:fcfs
ALLOCATE NODE LIST:bufalocca

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:bufrelca

QUEUE:bufferqcb
TYPE:passive
TOKENS:5
DSPL:fcfs
ALLOCATE NODE LIST:bufaloccb

NUMBERS OF TOKENS TO ALLOCATE:!
RELEASE NODE LIST:bufrelcb

QUEUE:framepq
TYPE:passive
TOKENS:1
DSPL:prty
ALLOCATE NODE LIST:frstal frtimal frendal

NUMBERS OF TOKENS TO ALLOCATE:1 1 1
PRIORITIES:2 3 1

RELEASE NODE LIST:frstre frtimre frendre
QUEUE:schstq

TYPE:is
CLASS LIST:schstaa schstab schstac

SERVICE TIMES:constant(10) constant(20) constant(O)
CLASS LIST:schstbb schstbc schstba

SERVICE TIMES:constant(0) constant(10) constant(20)
CLASS LIST:schstcc schstca schstcb

SERVICE TIMES:constant(20) constant(0) constant(10)
QUEUE:frtimaq

TYPE:is
CLASS LIST:frtime

SERVICE TIMES:constant(30)
QUEUE:sltrqaa

TYPE:fcfs
CLASS LIST:sltraa

SERVICE TIMES:constant(1)
QUEUE:sltrqab

TYPE:fcfs
CLASS LIST:sltrab

SERVICE TIMES:constant (1)
QUEUE:sltrqac

TYPE:fcfs
CLASS LIST:sltrac

SERVICE TIMES:constant(1)
QUEUE:sltrqbb

TYPE:fcfs
CLASS LIST:Sltrbb

SERVICE TIMES:constant(1)
QUEUE:sltrqbc

TYPE:fcfs
CLASS LIST:sltrbc

SERVICE TIMES:constant(1)
QUEUE:sltrqba

TYPE:fcfs

SEC. 10.2 / SATELLITE MODEL 209
CLASS LIST:sltrba

SERVICE TIMES:constant(1)
QUEUE:sltrqcc

TYPE:fcfs
CLASS LIST:sltrcc

SERVICE TIMES:constant (1)
QUEUE:sltrqca

TYPE:fcfs
CLASS LIST:sltrca

SERVICE TIMES:constant(1)
QUEUE:sltrqcb

TYPE:fcfs
CLASS LIST:sltrcb

SERVICE TIMES:constant(1)
SET NODES:setaa setab setae

ASSIGNMENT LIST:jv(0)=aa jv(0)=ab jv(0)=ac
SET NODES:setbb setbc setba

ASSIGNMENT LIST:jv(0)=bb jv(0)=bc jv(0)=ba
SET NODES:setcc setca setcb

ASSIGNMENT LIST:jv(0)=cc jv(0)=ca jv(0)=cb
CHAIN:ch1

TYPE:open
SOURCE LIST:stationa stationb stationc
ARRIVAL TIMES:iata iatb iatc
:stationa->sink setaa setab setae;.9 .0333333 .0333333
:stationb->sink setbb setbc setba;.9 .025 .025 .05
:stationc->sink setcc setca setcb;.9 .025 .05 .025
:setaa->bufalocaa sink;if(ta>0) if(t)
:setab->bufalocab sink;if(ta>0) if(t)
:setac->bufalocac sink;if(ta>0) if(t)
:setbb->bufaloebb sink;if(ta>0) if(t)
:setbc->bufalocbc sink;if(ta>0) if(t)
:setba->bufalocba sink;if(ta>0) if(t)
:setcc->bufaloccc sink;if(ta>0) if(t)
: setca->buf alocca sinkif (ta>0) if(t)
:setcb->bufaloeeb sink;if(ta>0) if(t)
:bufalocaa->frstal
:bufalocab->frstal
:bufalocac->frstal
:bufalocbb->frstal
:bufalocbc->frstal
:bufalocba->frstal
:bufaloccc->frstal
:bufalocca->frstal
:bufaloccb->frstal
:frstal->frstre
:frstre->schstaa;if(jv(0)=aa)
:frstre->schstab;if(jv(0)=ab)
:frstre->schstac;if(jv(0)=ac)
:frstre->schstbb;if(jv(0)=bb)
:frstre->schstbc;if(jv(0)=bc)
:frstre->schstba;if(jv(0)=ba)
:frstre->schstcc;if(jv(0)=cc)

.0333334

2 1 0 COMMUNICATION NETWORKS / CHAP. 10

: frstre->schstca;if(j v (0)=ca)
:frstre-Xschstcb;if(jv(0)=cb)
:schstaa->sltraa->bufrelaa->frendal
:schstab->sltrab->bufrelab->frendal
:schstac->sltrac->buf relac->frendal
:schstbb->sltrbb->bufrelbb->frendal
:schstbc->sltrbc->bufrelbc->frendal
:schstba->sltrba->bufrelba->frendal
:schstcc->sltrcc->bufrelcc->frendal
:schstca->sltrca->bufrelca->frendal
:schstcb->sItrcb->bufrelcb->frendal
:frendal->frendre->sink
:frtimal->frtime->frtimre->frtimal

CONFIDENCE INTERVAL METHOD:none
INITIAL STATE DEFINITION -
CHAIN:ch1
NODE LIST:frtimal

INIT POP:1
RUN LIMITS -

SIMULATED TIME:3000
LIMIT - CP SECONDS:30
TRACE:no

We can model different schedules, representing symmetric and asym
metric types. We represented collisions both implicitly by specifying arrival
rates of successful transmissions and by probabilistically turning away
collided messages. Blocking was modeled by rejecting messages which did
not collide if the buffer capacity for the source/destination pair was exceed
ed. The buffers can be held until the completion of the frame time, or they
can be released when the slot transmission is complete. We ran the simula
tion for 3000 time units. The results shown include the number of depar
tures at all nodes, the average and maximum delays, and the throughputs as
a function of the load on the system for one set of interarrival times.

RESQ2 VERSION DATE: JANUARY 18, 1984 - TIME: 10:11:07 DATE: 04/15/84
MODEL:EX 10.2
IATA:.4
IATB : .4
IATC: .4
RUN END: SIMULATED TIME LIMIT
NO ERRORS DETECTED DURING SIMULATION.

END

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS

3000.00000
9.59
26732

WHAT:ND(*)

SEC. 10.2 / SATELLITE MODEL 211

ELEMENT
BUFFERQAA
BUFFERQAB
BUFFERQAC
BUFFERQBB
BUFFERQBC
BUFFERQBA
BUFFERQCC
BUFFERQCA
BUFFERQCB
FRAMEPQ
FRSTAL
FRTIMAL
FRENDAL
SCHSTQ
SCHSTAA
SCHSTAB
SCHSTAC
SCHSTBB
SCHSTBC
SCHSTBA
SCHSTCC
SCHSTCA
SCHSTCB
FRTIMAQ
SLTRQAA
SLTRQAB
SLTRQAC
SLTRQBB
SLTRQBC
SLTRQBA
SLTRQCC
SLTRQCA
SLTRQCB
BUFRELAA
BUFRELAB
BUFRELAC
BUFRELBB
BUFRELBC
BUFRELBA
BUFRELCC
BUFRELCA
BUFRELCB
FRSTRE
FRTIMRE
FRENDRE
SETAA
SETAB
SETAC
SETBB
SETBC
SETBA
SETCC

OF DEPARTURESNUMBER
236
225
249
180
169
365
172
369
187
4375
2152
100

2123
2152
236
225
249
180
169
365
172
369
187

100
236
225
249
180
169
365
172
369
187
236
225
249
180
169
365
172
369
187
2152
100
2123
240
226
250
183
174
370
191

2 1 2 COMMUNICATION NETWORKS / CHAP. 10

SETCA 374
SETCB 197
STATIONA 7463
STATIONB 7439
STATIONC 7426
SINK 22278

WHAT:QT(*)

ELEMENT MEAN QUEUEING TIME
BUFFERQAA 27.11955
BUFFERQAB 37.71048
BUFFERQAC 17.40508
BUFFERQBB 17.65688
BUFFERQBC 25.89842
BUFFERQBA 37.93280
BUFFERQCC 37.27525
BUFFERQCA 18.43593
BUFFERQCB 25.97539
FRAMEPQ 16.79979
FRSTAL 15.14503
FRTIMAL 30.00000
FRENDAL 17.85539

SCHSTQ 9.83271
SCHSTAA 10.00000
SCHSTAB 20.00000
SCHSTAC 0.00000
SCHSTBB 0.00000
SCHSTBC 10.00000
SCHSTBA 20.00000
SCHSTCC 20.00000
SCHSTCA 0.00000
SCHSTCB 10.00000
FRTIMAQ 30.00000
SLTRQAA 2.33898
SLTRQAB 2.16444
SLTRQAC 2.26506
SLTRQBB 1.73889
SLTRQBC 1.76923
SLTRQBA 2.76712
SLTRQCC 1 .83721
SLTRQCA 2.821 14
SLTRQCB 1.90909

WHAT:MXQT(*)

ELEMENT MAXIMUM QUEUEING TIME
BUFFERQAA 40.92558
BUFFERQAB 50.93857
BUFFERQAC 30.95584
BUFFERQBB 30.99225
BUFFERQBC 40.93324
BUFFERQBA 50.97237

SEC. 10.2 / SATELLITE MODEL 213
BUFFERQCC
BUFFERQCA
BUFFERQCB
FRAMEPQ
FRSTAL
FRTIMAL
FRENDAL
SCHSTQ
SCHSTAA
SCHSTAB
SCHSTAC
SCHSTBB
SCHSTBC
SCHSTBA
SCHSTCC
SCHSTCA
SCHSTCB
FRTIMAQ
SLTRQAA
SLTRQAB
SLTRQAC
SLTRQBB
SLTRQBC
SLTRQBA
SLTRQCC
SLTRQCA
SLTRQCB

WHAT:TP(*)

ELEMENT
BUFFERQAA
BUFFERQAB
BUFFERQAC
BUFFERQBB
BUFFERQBC
BUFFERQBA
BUFFERQCC
BUFFERQCA
BUFFERQCB
FRAMEPQ
FRSTAL
FRTIMAL
FRENDAL
SCHSTQ
SCHSTAA
SCHSTAB
SCHSTAC
SCHSTBB
SCHSTBC
SCHSTBA
SCHSTCC
SCHSTCA

50.70691
30.87671
40.92767
30.00000
29.99225
30.00000
30.00000

2 0 . 0 0 0 0 0
1 0 . 0 0 0 0 0
2 0 . 0 0 0 0 0
0.00000
0.00000
1 0 . 0 0 0 0 0
2 0 . 0 0 0 0 0
2 0 . 0 0 0 0 0
0.00000
1 0 . 0 0 0 0 0

30.00000
9.00000
7.00000
9.00000
5.00000
5.00000
1 0 . 0 0 0 0 0
5.00000
1 0 . 0 0 0 0 0
5.00000

THROUGHPUT
0.07867
0.07500
0.08300
0.06000
0.05633
0.12167
0.05733
0.12300
0.06233
1 .45833
0.71733
0.03333
0.70767

0.71733
0.07867
0.07500
0.08300
0.06000
0.05633
0.12167
0.05733
0.12300

214 COMMUNICATION NETWORKS / CHAP. 10

SCHSTCB 0.06233
FRTIMAQ 0.03333
SLTRQAA 0.07867
SLTRQAB 0.07500
SLTRQAC 0.08300
SLTRQBB 0.06000
SLTRQBC 0.05633
SLTRQBA 0.12167
SLTRQCC 0.05733
SLTRQCA 0.12300
SLTRQCB 0.06233
BUFRELAA 0.07867
BUFRELAB 0.07500
BUFRELAC 0.08300
BUFRELBB 0.06000
BUFRELBC 0.05633
BUFRELBA 0.12167
BUFRELCC 0.05733
BUFRELCA 0.12300
BUFRELCB 0.06233
FRSTRE 0.71733
FRTIMRE 0.03333
FRENDRE 0.70767
SETAA 0.08000
SETAB 0.07533
SETAC 0.08333
SETBB 0.06100
SETBC 0.05800
SETBA 0.12333
SETCC 0.06367
SETCA 0.12467
SETCB 0.06567
STATIONA 2.48767
STATIONB 2.47967
STATIONC 2.47533
SINK 7.42600

10.3. COMMUNICATION PROTOCOL MODEL

This section considers remote terminals connected to an interactive
computing system. We assume the terminals are organized in three separate
groups. The terminals share a full duplex 2400 baud line to the computer
system. In order to avoid conflicts between traffic destined from a terminal
group to the computer system, a polling protocol gives each group a turn to
transmit any traffic it has for the computing system. The messages sent from
the terminals to the computing system are fairly short, with a maximum
length of 640 bits. However, the messages sent from the computing system
to the terminals are longer and more variable in length, with a mean length
of 800 bits. To prevent a long message from monopolizing the line from the
computing system to the terminals, the messages are divided into packets of

SEC. 10.3 / COMMUNICATION PROTOCOL MODEL 215

maximum length of 256 bits. Only 240 of the 256 bits are used for data,
with the remaining bits used for control information. To prevent a terminal
controller from receiving more data than it can handle, a simple window
flow control protocol is used. The protocol allows only a single message
(typically, several packets) to be sent to a terminal group before that group
explicitly requests another message to be sent.

The model consists of three submodels, a queue representing the
computer system, and a passive queue used for measuring response times.
The first submodel, TERM__GROUP, represents a terminal group. There
will be one invocation of TERM__GROUP for each group. The second
submodel, POLL__LINE, represents the communication line. There is just
one invocation of POLL__LINE. The third submodel, FLOW__N__PKT,
represents the window flow control protocol and the division of messages
into packets. There will be one invocation of FLOW__N__PKT for each
terminal group.

MODEL:EX 1 0 . 3
/* Computer system with several remote terminal groups. */
/* Groups connected to system by polled communication */
/* line. Flow control and packetizing of messages. */

216 COMMUNICATION NETWORKS / CHAP. 10

METHOD:simulation
NUMERIC IDENTIFIERS:no_terms /*per group*/ thinktime

NO_TERMS:10
THINKTIME:20

NUMERIC IDENTIFIERS:control data
CONTROL:0 /*Code to be used for control messages*/
DATA:1 /*Code to be used for data messages*/

NUMERIC IDENTIFIERS:group msg_type msg_leng
GROUP:0 /*JV to be used to indicate group*/
MSG_TYPE:1 /*JV to be used to indicate type*/
MSG_LENG:2 /*JV to be used to indicate length*/

MAX JV:2
QUEUE:rtq /*response time*/

TYPE:passive
TOKENS:2147483647 /*"infinity"*/
DSPL:fcfs
ALLOCATE NODE LIST:begin_rt1 begin_rt2 begin_rt3

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST: end_rt1 end_rt2 end_rt3

QUEUE:comp_sysq
TYPE:active
DSPL:ps
CLASS LIST:comp_sys

WORK DEMANDS:1
SERVER-

RATE :1.4 2.0 2.25 2.4
DUMMY NODES:poll_in cntrl_rout cntrl_in1 cntrl_in2 cntrl_in3

Jobs are initially placed at the terminals to represent users. At the end
of a think time, a job goes to set node MSG__CHAR, which sets job
variables in terms of message characteristics, that is, the group producing
the message, the fact that this is a data message, and the message length.
The job then goes to node parameter BEGIN__RT, which is an allocate
node for response time measurement. Jobs representing packets returning
from the computing system go to fusion node ASSMBL__PKT. When all
packets of a message have arrived at the fusion node, a single job represent
ing the assembled message leaves the fusion node. That job goes to split
node GEN__CNTRL to generate a control message, which will eventually
allow another message to be sent, as we discuss shortly. The control mes
sage job goes to set node SET__CNTRL, which sets the job variables giving
its characteristics. From the set node the control message job will go to
communication line. The job representing the message goes to node parame
ter END_RT, a release node for response time measurement, and then
goes to the terminals.

SUBMODEL:term_group
NUMERIC PARAMETERS:group_no
NODE PARAMETERS:begin_rt end_rt
CHAIN PARAMETERS: C

QUEUE:terminalsq

SEC. 10.3 / COMMUNICATION PROTOCOL MODEL 217
TYPE:is
CLASS LIST:terminals

SERVICE TIMES:thinktime
SET NODES:msg_char /*message characteristics*/
ASSIGNMENT LIST:jv(group)=group_no ++

jv(msg_type)=data ++
jv(msg_leng)=uniform(24,640,1)

SET NODES:set_cntrl
ASSIGNMENT LIST:jv(group)=group_no ++

jv(msg_type)=control ++
jv(msg_leng)=32

SPLIT NODES:gen_cntrl
FUSION NODES:assmbl_pkt
CHAIN: c

TYPE:external
INPUT:assmbl_pkt
OUTPUT:set_cntrl
:assmbl_pkt->gen_cntrl->end_rt set_cntrl;split
:end_rt->terminals->msg_char->begin_rt

END OF SUBMODEL TERM_GROUP

The key element of the POLL__LINE submodel is the use of the
vector of priorities, CUR__PRIOR, which is used with the passive queue
POLLING. There are three priority levels for a group: high priority for the
flow control messages, medium priority for the data messages, and low
priority for the polling job. Group i has highest priority given by
CUR__PRIOR(z) for flow control messages, priority CUR__PRIOR(z) + l
for data messages, and priority CUR__PRIOR(z) + 2 for the polling job.
Polling is accomplished by the polling job creating a token at node
FREE__MSGS and then waiting at allocate node CNT__ALLCTE until all
higher priority jobs (flow control and data messages for the group being
polled) have received the token, spent a service time at class MSG_IN, and
then released the token at MSG__RELEAS. When the polling job receives
the token, it increases the CUR__PRIOR value for the group just polled by
three times NO_GROUPS, thus giving the group just polled the lowest
priority.

SUBMODEL: p o l l _ l i n e
NUMERIC PARAMETERS: n o _ g r o u p s
NODE PARAMETERS: i n b o u n d i n i n b o u n d o u t
CHAIN PARAMETERS:C
GLOBAL V A R IA B L E S : c u r _ g r o u p c u r _ p r i o r (n o _ g r o u p s)

CUR_GROUP:1
CUR_PRIOR:0

QUEUE:polling
TYPE:passive
TOKENS:0
DSPL:prty
ALLOCATE NODE LIST:msg_allcte

NUMBERS OF TOKENS TO ALLOCATE:1

218 COMMUNICATION NETWORKS / CHAP. 10

PRIORITIES:cur_prior(jv(group))+jv(msg_type)
ALLOCATE NODE LIST:cnt_aIlcte

NUMBERS OF TOKENS TO ALLOCATE:1
PRIORITIES:cur_prior(cur_group)+2

RELEASE NODE LIST:msg_releas
DESTROY NODE LIST:cnt_dstroy
CREATE NODE LIST:free_msgs

NUMBERS OF TOKENS TO CREATE:1
QUEUE:inbound

TYPE:fcfs
CLASS LIST:msg_in

SERVICE TIMES:standard(jv(msg_leng),0)/2400
CLASS LIST:cnt_in

SERVICE TIMES:32/2400
QUEUE:outbound

TYPE:prty
CLASS LIST:msg_out

SERVICE TIMES:standard(jv(msg_leng),0)/2400
PRIORITIES : 2

CLASS LIST:cnt_out
SERVICE TIMES:32/2400
PRIORITIES:1

SET NODES:new_cur
ASSIGNMENT LIST:cur_prior(cur_group)= ++

cur_prior(cur_group)+3*no_groups ++
cur_group=(cur_group mod no_groups)+1

SET NODES:init_prior
ASSIGNMENT LIST:cur_prior(cur_group)=cur_group*3-2 ++

cur_group=cur_group+1
SET NODES:init_group
ASSIGNMENT LIST:cur_group=1
CHAIN :C

TYPE:external
INPUT:msg_out
OUTPUT:msg_out
:inboundin->msg_allcte->msg_in->msg_releas->inboundout

CHAIN:pollingjob
TYPE:closed
POPULATION:1
:init_prior->init_prior;if(cur_group<=no_groups)
:init_prior->init_group;if(t)
:init_group->cnt_out->free_msgs->cnt_allcte->cnt_dstroy
:cnt_dstroy->new_cur->cnt_in->cnt_out

END OF SUBMODEL POLL_LINE

In the FLOW__N__PKT submodel a job representing a message from
the computer system goes to set node OUTBND__LNG to establish the
length of the message. The job then goes to allocate node FLOWALLCTE
to wait for a token. A token will be made available by a job representing a
flow control message arriving from node parameter CNTRL__IN and going
to create node NEW_FLOW. When a job waiting at FLOWALLCTE gets
a token, it will then generate new jobs representing packets at fission node

PACKETIZE. Set node REMOVE__PKT decrements the message length by
240 (the number of data bits in a packet), and set node NEW__PKT sets
the new packet’s JV(MSG__LNG) to 256 (data, bits plus control bits).

SEC. 10.3 / COMMUNICATION PROTOCOL MODEL 219

SUBMODEL:flow_n_pkt
/* flow control and message packetization submodel. One */
/* invocation of this for every invocation of term_group */

NODE PARAMETERS:cntrl_in
CHAIN PARAMETERS:c
QUEUE:flow_cntr1

TYPE:passive
TOKENS:1
DSPL:fcfs
ALLOCATE NODE LIST:flowallcte

NUMBERS OF TOKENS TO ALLOCATE:1
DESTROY NODE LIST:flowdstroy
CREATE NODE LIST:new_flow

NUMBERS OF TOKENS TO CREATE:1
SET NODES: O U t b n d _ l n g
ASSIGNMENT LIST:jv(msg_leng)=standard(800,1)
SET NODES:remove_pkt
ASSIGNMENT LIST:jv(msg_leng)=jv(msg_leng)-240
SET NODES:new_pkt
ASSIGNMENT LIST:jv(msg_leng)=256
FISSION NODES:packetize
DUMMY NODES:outputport
CHAIN:c

TYPE:external
INPUT:outbnd_lng
OUTPUT:outputport
:outbnd_lng->flowallcte->flowdstroy
:flowdstroy->packetize outputport;if(jv(msg_leng)>256) if(t)
:packetize->remove_pkt new_pkt;fission
:remove_pkt->packetize outputport;if(jv(msg_leng)>256) if(t)
:new_pkt->outputport
:cntrl_in->new_flow->s ink

END OF SUBMODEL FLOW_N_PKT
INVOCATION:groupl

TYPE:term_group
GROUP_NO:1
BEGIN_RT:begin_rt1
END_RT:end_rt1
C : c

INVOCATION:group2
TYPE:term_group
GROUP_NO:2
BEGIN_RT:begin_rt2
END_RT:end_rt2
C : c

INVOCATION:group3
TYPE:term_group
GROUP NO:3

2 2 0 COMMUNICATION NETWORKS / CHAP. 10

BEGIN_RT:begin_rt3
END_RT:end_rt3
C : C

INVOCATION:line
TYPE:pol1_1ine
NO_GROUPS:3
INBOUNDIN:poll_in
INBOUNDOUT:cntrl_rout
C: c

INVOCATION:flow1
TYPE:flow_n_pkt
CNTRL_IN:cntrl_in1
C : c

INVOCATION:flow2
TYPE:flow_n_pkt
CNTRL_IN:cntrl_in2
C: c

INVOCATION:flow3
TYPE:flow_n_pkt
CNTRL_IN:cntrl_in3
C: c

CHAIN:C
TYPE:open
:begin_rt1 begin_rt2 begin_rt3->poll_in
:cntrl_rout->comp_sys;if(jv(msg_type)=data)
:cntrl_rout->cntrl_in1;if(jv(group)=1)
:cntrl_rout->cntrl_in2;if(jv(group)=2)
:cntrl_rout->cntrl_in3;if(jv(group)=3)
:comp_sys->flow1.input;if(jv(group)=1)
:comp_sys->flow2.input;if(jv(group)=2)
:comp_sys->flow3.input;if(jv(group)=3)
:flowl.output flow2.output flow3.output->line.input
:line.output->group1.input;if(jv(group)= 1)
:line.output->group2.input;if(jv(group)= 2)

: line.output->group3.input;if(jv(group)=3)
:group1.output group2.output group3.output->poll_in

QUEUES FOR QUEUEING TIME DIST:rtq
VALUES:.5 1 2 4 8

NODES FOR QUEUEING TIME DIST:begin_rt1 begin_rt2 begin_rt3
VALUES:.5 1 2 4 8

CONFIDENCE INTERVAL METHOD:spectral
INITIAL STATE DEFINITION-
CHAIN : lme.pollingjob

NODE LIST : line . mit_prior
INIT POP:1

CHAIN : c
NODE LIST:groupl.terminals group2.terminals group3.terminals
INIT POP: no_terms no_terms no_terms

CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

CONFIDENCE INTERVAL QUEUES:rtq rtq comp_sysq
MEASURES: qt qtd qt
ALLOWED WIDTHS: 10 10 10

SEC. 10.3 / COMMUNICATION PROTOCOL MODEL 221

CONFIDENCE INTERVAL NODES:begin_rt1 begin_rt2 begin_rt3
MEASURES: qt qt qt
ALLOWED WIDTHS: 100 100 100

INITIAL PORTION DISCARDED:10
INITIAL PERIOD LIMITS-

QUEUES FOR DEPARTURE COUNTS:rtq
DEPARTURES:1000

LIMIT - CP SECONDS:500
TRACE:no

END

The following results from the simulation display some performance
measures for utilizations, throughput, mean queueing time, and mean queue
length. The simulation was continued until the accuracy criteria were satis
fied for another sampling period. Some additional performance measures are
also illustrated.

RESQ2 VERSION DATE: APRIL 3, 1982 - TIME: 17:56:53 DATE: 04/03/82
MODEL:EX 10.3
SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION. 2930 DISCARDED EVENTS

SIMULATED TIME: 5028.19141
CPU TIME: 381.07

NUMBER OF EVENTS: 227673

WHAT:ut(line,msg_in,line.cnt_in,line.msg_out,line.cnt_out)

INVOCATION
LINE
LINE
LINE
LINE

ELEMENT
MSG_IN
CNT_IN
MSG_OUT
CNT OUT

UTILIZATION
0.20631
0.23099
0.48462
0.23007

WHAT:tp(rtq,begin_rt1,begin_rt2,begin_rt3)

INVOCATION ELEMENT THROUGHPUT
RTQ 1.35874
BEGIN_RT1 0.46657
BEGIN_RT2 0.44887
BEGIN_RT3 0.44330

WHAT: qtbo(rtq,begin_r11,begin_rt2,begin_rt3,comp_sysq)

INVOCATION ELEMENT
RTQ

MEAN QUEUEING TIME
2.30391(2.21360,2.39422) 7.8%

2 2 2 COMMUNICATION NETWORKS / CHAP. 10

BEGIN_RT1
BEGIN_RT2
BEGIN_RT3

COMP_SYSQ

2.29731(2.21029,2.38434) 7.6%
2.35772(2.27390,2.44153) 7.1%
2.25636(2.15468,2.35804) 9.0%
1.20234(1.14318,1.26150) 9.8%

WHAT:q1 (rtq,beyin_rt1,beyin_rt2,begin_rt 3,comp_sysq)

INVOCATION ELEMENT
RTQ
BEGIN_RT1
BEGIN_RT2
BEGIN_RT3

COMP_SYSQ

MEAN QUEUE LENGTH
3.13178
1 .07279
1 .05869
1.00030
1.63460

WHAT :
CONTINUE RUN:yes
EXTRA SAMPLING PERIODS:1
LIMIT - CP SECONDS:1000

SAMPLING PERIOD END : RTQ DEPARTURE LIMIT
SAMPLING PERIOD END : RTQ DEPARTURE LIMIT
SAMPLING PERIOD END : RTQ DEPARTURE LIMIT
SAMPLING PERIOD END : RTQ DEPARTURE LIMIT
SAMPLING PERIOD END : RTQ DEPARTURE LIMIT
SAMPLING PERIOD END : RTQ DEPARTURE LIMIT
SAMPLING PERIOD END : RTQ DEPARTURE LIMIT
NO ERRORS; DETECTED DURING SIMULATION. 2930 DISCARDED EVENTS

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS

7542.98047
570.16
34341 1

WHAT:u t (l i n e . m s g _ i n , l i n e . c n t _ i n , line. m s g _ o u t , l i n e . c n t _ o u t)

INVOCATION
LINE
LINE
LINE
LINE

ELEMENT
MSG_IN
CNT_IN
MSG_OUT
CNT OUT

UTILIZATION
0.20599
0.23301
0.47914
0.23180

WHAT:tp(rtq,begin_rt1,begin_rt2,begin_rt3)

INVOCATION ELEMENT
RTQ
BEGIN_RT1
BEGIN_RT2
BEGIN RT3

THROUGHPUT
1.35861
0.45274
0.45141
0.45446

WHAT:qtbo(rtq,begin_rt1,begin_rt2,begin_rt3,comp_sysq)

SEC. 10.3 / COMMUNICATION PROTOCOL MODEL 223
INVOCATION ELEMENT

RTQ
BEGINJRT1
BEGIN_RT2
BEGIN_RT3

COMP_SYSQ

MEAN QUEUEING TIME
2.27488(2.21307,2.33669) 5.4%
2.27176(2.20855,2.33498) 5.6%
2.31046(2.22283,2.39809) 7.6%
2.24264(2.14938,2.33590) 8.3%
1.19929(1.16632,1.23225) 5.5%

WHAT:ql(rtq,begin_rt1,begin_rt2,begin_rt3,comp_sysq)

INVOCATION ELEMENT
RTQ
BEGIN_RT1
BEGIN_RT2
BEGIN_RT3

COMP_SYSQ

MEAN QUEUE LENGTH
3.09146
1.02852
1.04340
1.01954

1.62968

WHAT:qtdbo (*)

INVOCATION ELEMENT
RTQ

BEGIN RT1

BEGIN RT2

BEGIN RT3

QUEUEING TIME DISTRIBUTION
5.00E-01:0.03708(0.03404,0.04012) 0
1.00E+00:0.19633(0.18753,0.20513) 1
2.00E+00:0.54167(0.52525,0.55808) 3
4.00E+00:0.87 529 (0.8654 5,0.8851 3) 2
8.00E+00:0.98985(0.98771,0.99199) 0
5.00E-01:0.03748(0.02998,0.04498)
1.00E+00:0.19590(0.18600,0.20580)
2.00E+00:0.53206(0.51399,0.55013)
4.00E+00:0.87877 (0.86588,0.89166)
8.00E+00:0.99180 (0.98863,0.99497)
5.00E-01:0.03465(0.03048,0.03883)
1.00E+00:0.18767(0.16722,0.20811)
2.00E+00=0.52658(0.49773,0.55543)
4.00E+00:0.86990(0.85482,0.88498)
8.00E+00:0.98913(0.98526,0.99301)
5.00E-01=0.03909(0.03283,0.04535)
1.00E+00:0.20537(0.18920,0.22153)
2.00E+00:0.56622(0.54158,0.59086)
4.00E+00:0.87719(0.86155,0.89283)
8.00E+00:0.98862 (0.98558,0.99166)

WHAT = qt(line.msg_allcte,line.msg_out)

INVOCATION
LINE
LINE

ELEMENT
MSG_ALLCTE
MSG OUT

MEAN QUEUEING TIME
0.19342
0.58095

WHAT = ql(flow1.fIowa1lete,flow2.flowallcte,flow3.flowallcte)

INVOCATION
FLOW1
FLOW 2
FLOW 3

ELEMENT
FLOWALLCTE
FLOWALLCTE
FLOWALLCTE

MEAN QUEUE LENGTH
0.10062
0.10598
0.10036

.6%

.8%

. 3%

.0 %

.4%
1 .5%
2 .0 %
3.6%
2 .6 %
0 .6 %
0 .8 %
4.1%
5.8%
3.0%
0 .8 %
1 . 3 %

3.2%
4.9%
3.1%
0 .6 %

224 COMMUNICATION NETWORKS / CHAP. 10

WHAT:qv

LINE
LINE
LINE
LINE

INVOCATION ELEMENT
CUR GROUP

FINAL VALUES OF GLOBAL VARIABLES
2 . 0 0 0 0 0

CUR_PRIOR(1)
CUR_PRIOR(2)
CUR PRIOR(3)

3.98 30E+05
3.9829E+05
3.9829E+05

10.4. FURTHER READING

The model described in Section 10.1 is a result of some conversations
with J. Voldman [185]. Section 10.2 is based on a model presented in Kadar
[86] and Kadar, MacNair, and Tang [87]. The model in Section 10.3 is
from Sauer, MacNair, and Kurose [159, 160]. There is also a similar model
in Sauer, MacNair, and Kurose [161]. Other communication network model
references include Bharath-Kumar and Kermani [21], Kleinrock [94], Reiser
[143], Sauer and MacNair [156], Schwartz [165, 166], Stewart [176], and
Wong [189].

10.5. EXERCISES

10.1 Construct and solve models of communication networks you are
familiar with.

10.2 Construct models which incorporate the following protocols: ac
knowledgements, time outs, packetizing of messages, adaptive routing,
and flow control.

10.3 Construct models of different local area network schemes.

10.4 Construct a model of a communication system which switches tele
phone conversations between multiple input and output ports.

CHAPTER 11

MANUFACTURING SYSTEMS
Just as the modeling of computer systems and communication networks

has increased in popularity in recent years, modeling of manufacturing
systems is also increasing. With the advent of flexible manufacturing sys
tems, modeling of manufacturing systems is becoming particularly impor
tant. This chapter discusses several simple models of manufacturing systems.
The first section presents a model of tool failures using a preemptive priori
ty queue. In Section 11.2, there is a model of load balancing in a system
with parallel resources. The third section illustrates a simple way of repre
senting a robotic type of system. Section 11.4 depicts a system with merg
ing lines where parts from the different lines have to be synchronized.
Although simulation is used in most of the models of this chapter, analytic
models of flexible manufacturing systems have been used with good success.

11.1. TOOL FAILURES

Manufacturing systems frequently consist of many tools to perform
various types of tasks so that tool failure has a major impact on the per
formance of the system. If these failures are neglected, the model predic
tions will be overly optimistic. The model discussed in this section presents
a simple way of depicting tool failures. Figure 11.1 illustrates a model with
one tool. Tasks arriving at the source of this open model go to a transfer
unit. A portion of the tasks are sent to the tool, and the rest bypass the
tool. All tasks eventually go to another transfer unit and then leave at the
sink. Tool failures are represented by a single task that travels along a
separate path shown at the bottom of the diagram. There is an infinite
server representing the time the tool is in operation. Then the failure task
goes to a set node to take a sample from a distribution to determine the
failure time. A second class at the tool service center represents the failure
time. Since the tool service center is defined as a priority queue, the failure
task has priority over the normal tasks. The time the failure task spends in
service at the tool models the down time. After the failure is repaired, the
failure task goes to another set node to log some statistics related to the
failure and returns to the infinite server for the next operational period.

Because of using a global variable and priority queueing, we are using
simulation to solve the model. The model contains one numeric parameter
representing the mean time between arrivals. The global variable is a vector
with three elements. The first element is the number of failures, the second

225

226 MANUFACTURING SYSTEMS / CHAP. 11

MAINSOURCE BTRANSIN 025 BTOOLIN

'O
-x

O J SETMTR TOOL
TOOLUP

BTRANSOUT SINK

GO-^G
> i J

"AIL LOGMTR

Figure 11.1. Model Diagram of Tool Failures

the total failure time, and the third the average failure time. There is an
active queue for the input transfer unit. The tool is a preemptive priority
queue with two classes. The failure tasks have priority over the normal tasks
processed at the tool. The down time is taken from a value previously stored
in a job variable at set node SETMTR. The output transfer unit is an active
queue. The tool up time is modeled as an infinite server queue. This could
have been an FCFS server, since only a single failure task is in use. There
are two set nodes. SETMTR takes a sample from an exponential distribution
which is used as the tool down time. The other set node, LOGMTR, adds
one to the number of failures, adds the current failure time to the cumula
tive failure time, and divides the total failure time by the number of failures
to calculate the average failure time. The open chain definition is straight
forward. Seventy-five percent of the tasks go to the tool for processing and
25 percent bypass the tool. The regenerative method is used to produce
confidence intervals. The regeneration state is one task at the TOOLUP
queue. A 90 percent level of confidence is being used to determine the
confidence interval widths. Since the sequential stopping rule is not em
ployed, the run will stop after approximately 10,000 departures from the
TOOL queue.

MODEL:EXT 1 . 1

SEC. 11.1 / TOOL FAILURES 227
METHOD:simulation
NUMERIC PARAMETERS:mtba
GLOBAL VARIABLES:faillog(3)

FAILLOG:0 0 0
QUEUE:transin

TYPE:fcfs
CLASS LIST:btransin

SERVICE TIMES:4
QUEUE:tool

TYPE:prtypr
PREEMPT DIST:1
CLASS LIST: btoolm toolfail

SERVICE TIMES:20 constant(jv(0))
PRIORITIES: 2 1

QUEUE:transout
TYPE:fcfs
CLASS LIST:btransout

SERVICE TIMES:4
iQUEUE:qtoolup

TYPE:is
CLASS LIST:toolup

SERVICE TIMES:3600 /* mean time between failures */
SET NODES:setmtr

ASSIGNMENT LIST:jv(0)=exponential(60)
SET NODES:logmtr

ASSIGNMENT LIST:fai1log(1)=fai1log(1)+1 ++
faillog(2)=faillog(2)+jv(0) ++
faillog(3)=faillog(2)/faillog(1)

CHAIN:main
TYPE:open
SOURCE LIST:mainsource
ARRIVAL TIMES': mtba
:mainsource->btransin->btoolin btransout;.75 .25
:btoolin->btransout->sink
:toolup->setmtr->toolfail->logmtr->toolup

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION -
CHAIN:main

NODE LIST:toolup
REGEN POP:1
INIT POP:1

CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:no
RUN GUIDELINES -

QUEUES FOR DEPARTURE COUNTS:tool
DEPARTURES:10000

LIMIT - CP SECONDS:250
TRACE:no

END

The run stops after the 10,000 departures from the TOOL queue. The
elapsed simulation time, CPU time, number of events, and number of
regeneration cycles are shown. We have gotten a large number of regenera-

228 MANUFACTURING SYSTEMS / CHAP. 11

lion cycles. The failures are probably having an effect on the performance
measures. There were 134 failures, with each failure lasting about 60 sec
onds.

RESQ2 VERSION DATE: JANUARY 18, 1984 - TIME: 15:05:59 DATE: 05/13/84
MODEL:EX 1 1 . 1
MTBA:40
WARNING -- MODEL MAY NOT BE TRULY REGENERATIVE

BECAUSE OF USE OF GLOBAL VARIABLES
RUN END: TOOL DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS
NUMBER OF CYCLES

5.2124E+05
18.53
49495
6445

WHAT:ALLBO

ELEMENT
TRANSIN
TOOL
BTOOLIN
TOOLFAIL

TRANSOUT
QTOOLUP

UTILIZATION
0.10128(0.09921,0.10334) 0.4%
0.39835(0.38753,0.40916) 2.2%
0.38270(0.37259,0.39282) 2.0%
0.01564(-0.00604,0.03733) 4.3%

0.09964(0.09761,0.10167) 0.4%
0 .0 0 0 0 0 (0 .0 0 0 0 0,0 .0 0 0 0 0)

ELEMENT
TRANSIN
TOOL
BTOOLIN
TOOLFAIL
TRANSOUT
QTOOLUP
SETMTR
LOGMTR
MAINSOURCE
SINK

THROUGHPUT
0.02517(0.02481,0.02553) 2.8%
0.01919(0.01884,0.01953) 3.6%
0.01893(0.01859,0.01927) 3.6%
2.5708E-04(-3.3968E-06,5.1756E-04) 202.6%

0.02517(0.02481,0.02553) 2.8%
2.5708E-04(-3.3968E-06,5.1756E-04) 202.6%
2.5708E-04
2.5708E-04
0.02517
0.02517

ELEMENT
TRANSIN
TOOL
BTOOLIN
TOOLFAIL

TRANSOUT
QTOOLUP

MEAN QUEUE LENGTH
0.11300(0.11032,0.11567) 4.7%
0.69370(0.64762,0.73977) 13.3%
0.67805(0.63363,0.72248) 13.1%
0.01564(-0.00604,0.03733) 277.3%
0.11010(0.10756,0.11265) 4.6%
0.98436(0.96267,1.00604) 4.4%

ELEMENT
TRANSIN
TOOL
BTOOLIN

STANDARD DEVIATION OF QUEUE LENGTH
0.35553
1.17756
1.15602

SEC. 11.1 / TOOL FAILURES 229
TOOLFAIL
TRANSOUT
QTOOLUP

ELEMENT
TRANSIN
TOOL
BTOOLIN
TOOLFAIL
TRANSOUT
QTOOLUP

ELEMENT
TRANSIN
TOOL
BTOOLIN
TOOLFAIL
TRANSOUT
QTOOLUP

ELEMENT
TRANSIN
TOOL
BTOOLIN
TOOLFAIL
TRANSOUT
QTOOLUP

ELEMENT
TRANSIN
TOOL
BTOOLIN
TOOLFAIL
TRANSOUT
QTOOLUP

ELEMENT
MAIN

ELEMENT
MAIN

WHAT:GV

ELEMENT
FAILLOG(1)
FAILLOG(2)
FAILLOG (3)

0.12409
0.34743
0.12409

MEAN QUEUEING TIME
4.48917(4.40901,4.56933) 3.6%
36.15456(34.2 3720,38.07191) 10.6 55
3 5.8192 3(33.94498,37.69348) 10.5 55
60.84576(52.68535,69.00618) 26.855

4.37425(4.29914,4.44936) 3.455
3829.00464(3269.20581,4 388.80078) 29.2 55

STANDARD DEVIATION OF QUEUEING TIME
4.57808
40.50555
40.10490
58.53436

4.33619
3651.13574

MAXIMUM QUEUE LENGTH
4
16
16
1

5
1

MAXIMUM QUEUEING TIME
41 .93031
408.18262
408.18262
399.50244

46.74709
1.9568E+04

OPEN CHAIN POPULATION
1.90115(1.86011,1.94219) 4.3%

OPEN CHAIN RESPONSE TIME
75.53021 (74.09219,76.96822) 3.855

FINAL VALUES OF GLOBAL VARIABLES
1 3 4 . 0 0 0 0 0
8153.33203
60.84576

Now we solve the model for six different values of the mean time
between arrivals. We start at 40 seconds and reduce it to 15 seconds. We

230 MANUFACTURING SYSTEMS / CHAP. 11

plot the mean queue lengths and the mean queueing times for the input
transfer unit and the tool. These plots are shown in Figure 11.2.

*1O

*-

o

3 a=) o O n

QUEUE LENGTH OF TRANSIN

- I_____ ' ■_____ L_
40 36 30 25 20

MEAN TIME BETWEEN ARRIVALS

15

LlI e-i .3 »
P -
O o Z n ’
ED

QUEUEING TIME OF TRANSIN

40 36 30 25 20

MEAN TIME BETWEEN ARRIVALS

_i
15

8b

i

3o

QUEUE LENGTH OF TOOL

-̂_L-
40 36 30 26 20

MEAN TIME BETWEEN ARRIVALS

15

UJ2
F § o *

O 8

QUEUEING TIME OF TOOL

-* —
40 36 30 25 20

MEAN TIME BETWEEN ARRIVALS

Figure 11.2. Graphical Results of Tool Failure Model

16

11.2. LOAD BALANCING

Some systems contain multiple devices operating in parallel in which we
can increase the throughput in the system by balancing the load delivered to
each device. This section describes such a system where it is not obvious
what proportion of jobs should be sent to each device. Figure 11.3 shows
four mold presses, eight transfer units, and six conveyors. Tasks arriving at
the source go to a transfer unit to be placed on a conveyor or the first mold
press. A transfer unit is always needed after every conveyor and every mold
press. Tasks which complete at a mold press go through a series of transfer
units and conveyors before leaving the system. The problem is to determine
what proportion of jobs to send to each mold press.

The model contains a numeric parameter representing the proportion of
jobs sent to each mold press. It is a vector with four elements. These

SEC. 11.2 / LOAD BALANCING 231

M A IN -

Figure 11.3. Model Diagram of Mold Presses

proportions cannot be used directly as the routing probabilities. A numeric
identifier for the routing probabilities is calculated based on the proportions.
The service centers for all the resources in the system are active queues.
The transfer units and the mold presses are FCFS servers, and the conve
yors are infinite servers. This model can be solved analytically. The chain is
an open chain, and the routing is a straightforward representation of the
information shown in the model diagram. The decision points use the
routing probabilities calculated for the numeric identifier vector Q.

MODEL:EX 11 . 2
METHOD:numerical
NUMERIC PARAMETERS:p(4)
NUMERIC IDENTIFIERS:q(4)

Q:p(U + +
p (2)/(1-q(1)) + +
p (3)/(1-q(1))*(1-q(2)) + +
p(4)/(1-q(1))*(1-q(2))* (1-q(3))

QUEUE:qt11
TYPE:fcfs
CLASS LIST:11 1

SERVICE TIMES:4
QUEUE:qt12

TYPE:fcfs

232 MANUFACTURING SYSTEMS / CHAP. 11

CLASS LIST:t12
SERVICE TIMES:

QUEUE:qt13
TYPE:fcfs
CLASS LIST:t13

SERVICE TIMES:
QUEUE:qt14

TYPE:fcfs
CLASS LIST:t14

SERVICE TIMES:
QUEUE:qt21

TYPE:fcfs
CLASS LIST:t21

SERVICE TIMES:
QUEUE:qt22

TYPE:fcfs
CLASS LIST:t22

SERVICE TIMES:
QUEUE:qt2 3

TYPE:fcfs
CLASS LIST:123

SERVICE TIMES:
QUEUE:qt24

TYPE:fcfs
CLASS LIST:t24

SERVICE TIMES:
QUEUE:qpress1

TYPE:fcfs
CLASS LIST:press 1

SERVICE TIMES:
QUEUE:qpress2

TYPE:fcfs
CLASS LIST:press2

SERVICE TIMES:
QUEUE:qpress 3

TYPE:fcfs
CLASS LIST:press3

SERVICE TIMES:
QUEUE:qpress4

TYPE:fcfs
CLASS LIST:press4

SERVICE TIMES:
QUEUE:qc11

TYPE:is
CLASS LIST:c11

SERVICE TIMES:
QUEUE:qc12

TYPE:is
CLASS LIST:c12

SERVICE TIMES:
QUEUE:qc13

TYPE:is
CLASS LIST:cl 3

: 4

: 4

4

4

4

4

4

40

40

40

40

5

5

SEC. 11.2 / LOAD BALANCING 233
SERVICE TIMES:5

QUEUE:qc21
TYPE:is
CLASS LIST:c21

SERVICE TIMES:5
QUEUE:qc22

TYPE:is
CLASS LIST:c22

SERVICE TIMES:5
QUEUE:qc23

TYPE:is
CLASS LIST:c23

SERVICE TIMES:5
CHAIN:main

TYPE:open
SOURCE LIST:mainsource
ARRIVAL TIMES:15
:mainsource—>t11->press1 c11;q(1) 1-q(1)
:cl 1 —>t12—>press2 c12;q(2) 1-q(2)
:c12—>t13—>press3 c13;q(3) 1-q(3)
:c13—>t14->press4 sink;q(4) 1-q(4)
:press 1->t21
:press2->t22
:press3->t23
:press4->t24
:t21->c21->t22->c22->t23->c23->t24->sink

The most obvious proportion of jobs to send to each mold press is 25
percent. The results that follow use this equal loading scheme, but we will
see that it is not the best solution.

RESQ2 VERSION DATE: JANUARY 18, 1984 - TIME: 15:27:52 DATE: 05/25/84
MODEL:EX 1 1 . 2
P:.25 .25 .25 .25
NO ERRORS DETECTED DURING NUMERICAL SOLUTION

END

WHAT:ALL

ELEMENT UTILIZATION

QPRESS1
QPRESS2
QPRESS3
QPRESS4

QT1 1
QT1 2
QT1 3
QT1 4
QT21
QT22
QT23
QT24

0.26667
0 . 2 0 0 0 0
0.13333
0.10370
0.06667
0.13333
0.16296
0.18089
0.66667
0.66667
0.29630
0.17924

2 3 4 MANUFACTURING SYSTEMS / CHAP. 11

QCi 1 0.00000
Q (' 1 2 0.00000
y< • l 3 0.00000
q< -21 0.00000
QC22 0.00000
QC2 3 0.00000

ELEMENT THROUGHPUT
QT1 1 0.06667
QT 1 2 0.05000
QT 1 3 0.03333
QT 1 4 0.02593
QT21 0.01667
QT22 0.03333
QT2 3 0.04074
QT24 0.04522
QPRESS1 0.01667
QPRESS2 0.01667
QPRESS3 7.4074E-03
QPRESS4 4.4810E-03
QC11 0.05000
QC1 2 0.03333
QCI 3 0.02593
QC 21 0.01667
QC22 0.03333
QC23 0.04074

ELEMENT MEAN QUEUE LENGTH
QT1 1 0.36364
QT1 2 0.25000
QT1 3 0.15385
QT 1 4 0.11570
QT2 1 0.07143
QT 2 2 0.15385
QT2 3 0.19469
QT24 0.22083
QPRESS1 2.00000
QPRESS2 2.00000
QPRESS3 0.42105
QPRESS4 0.21838
QC 1 1 0.25000
QC' 1 2 0.16667
QCI 3 0.12963
QC2 1 0.08333
QC22 0.16667
QC2 3 0.20370

ELEMENT MEAN QUEUEING TIME
QT 1 1 5.45455
QT 1 2 5.00000
QT 1 3 4.61538
QT 1 4 4.46281
QT2 1 4.28571

SEC. 11.2 / LOAD BALANCING 235
QT22 4.61538
QT23 4.77876
QT24 4.88333
QPRESS1 119.99998
QPRESS2 119.99998
QPRESS3 56.84210
QPRESS4 48.73537
QC11 5.00000
QC12 5.00000
QC1 3 5.00000
QC2 1 5.00000
QC22 5.00000
QC23 5.00000

ELEMENT OPEN CHAIN POPULATION-
MAIN 7.16342

ELEMENT OPEN CHAIN RESPONSE TIME
MAIN 107.45126

Figure 11.4 shows a simple graph of different loadings versus the
process time. The process time is the open chain response time. The first
loading was the equal proportion case (.25, .25, .25, .25). The following
table shows all four loadings:

I P (1) P (2) P (3) P (4)

1 I 0..25 0..25 0.. 25 0..25
2 I 0..20 0.. 20 0., 30 0.. 30
3 I 0.. 1 5 0..20 0.. 30 0., 35
4 I 0., 15 0.. 15 0..25 0..45

As the graph shows, when we send a larger proportion of jobs to the furth
est mold press, the process time decreases. This is because of the time it
takes to use the transfer units and the conveyors.

11.3. A ROBOT

The system modeled in this section employs a robot to perform some
simple processing automatically. Pieces to be riveted move along a conveyor
to an orientation station. There is one spot at the orientation station for one
piece to be oriented properly. After being oriented, a single robot picks up
one piece and moves it to the riveting machine. As soon as a piece is
removed from the orientation station, a new piece can begin its orientation.
After moving to the riveting machine, the piece is riveted and moved by the
robot to an output station. There is one spot at the output station, and it
takes time to put a piece down at the output station and to move onto

236 MANUFACTURING SYSTEMS / CHAP. 11

EX 11.2 PROCESS TIMES

LOAD BALANCING PROPORTIONS

1: P = .25 .2 5 .25 .25

2: P = .20 .20 .30 .30

3: P = .15 .20 .30 .35

4: P = .15 .15 .25 .45

Figure 11.4. Graphical Results of Mold Press Model

another conveyor and down the line. A diagram of the model is shown in
Figure 11.5.

The model contains numeric parameters for the mean service times at
the orientation station, the pickup operation, the time to move to the
riveting machine, the riveting time, the time to move to the output station,
the time to put a piece on the output station, and the time to remove a piece
from the output station. The mean interarrival time between the pieces is
also a numeric parameter. There are passive queues for the orientation
staging area, the robot, and the output staging area. Each passive queue is
defined with a single token. The service times are represented by active
FCFS service centers. The routing is a straightforward implementation of
the system description. The regenerative method is used to construct the
confidence intervals at the 90 percent level of confidence. The sequential
stopping rule is employed to detect when the specified level of accuracy is
achieved.

SEC. 11.3 / A ROBOT 237

PIECES AS1 ORIENT ARO PICKUP RS1 MOVETOAD RIVET MOVEFRAD

S1 1 1 ROBOT

f AS2 PUTDOWN RRpT REMOVES2 RS2~ SiNK-

S2 1

Figure 11.5. Model Diagram of a Simple Robotic System

MODEL:EX 1 1 . 3
METHOD:simulation
NUMERIC PARAMETERS:stor stpi stmt stri stmf stpu stre iat
QUEUE:stageareal

TYPE:passive
TOKENS:1
DSPL:fcfs
ALLOCATE NODE LIST:as!

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:rs1

QUEUE:orientq
TYPE:fcfs
CLASS LIST:orient

SERVICE TIMES:stor
QUEUE:robot

TYPE:passive
TOKENS:1
DSPL:fcfs
ALLOCATE NODE LIST:aro

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:rro

QUEUE:pickupq
TYPE:fcfs
CLASS LIST:pickup

238 MANUFACTURING SYSTEMS / CHAP. 11

SERVICE TIMES:stpi
Q UEUE:movetoadq

TYPE:fcfs
CLASS LIS T :movetoad

SERVICE TIMES:stmt
QUEUE: n v e t q

TYPE:fcfs
CLASS LIST:rivet

SERVICE TIMES:stri
QUEUE:movefradq

TYPE:fcfs
CLASS LIST:movefrad

SERVICE TIMES:stmf
QUEUE:stagearea2

TYPE:passive
TOKENS:1
DSPL:fcfs
ALLOCATE NODE LIST:as2

NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:rs2

QUEUE:putdownq
TYPE:fcfs
CLASS LIST:putdown

SERVICE TIMES:stpu
QUEUE:removes2q

TYPE:fcfs
CLASS LIST:removes2

SERVICE TIMES:stre
CHAIN:chainl

TYPE:open
SOURCE LIST:pieces
ARRIVAL TIMES:iat
:pieces->as1->orient->aro->pickup->rs1
:rs1->movetoad->rivet->movefrad
:movefrad->as2->putdown->rro->removes2->rs2->sink

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:robot
MEASURES:qt
ALLOWED WIDTHS:10

SAMPLING PERIOD GUIDELINES -
CYCLES:200

LIMIT - CP SECONDS:50
TRACE:no

END

The model was run with an arbitrary set of parameter values. These
parameter values produced the results that follow. This is a very short
simulation run, but some of the results are fairly accurate.

SEC. 11.3 / A ROBOT 239

RESQ2 VERSION DATE: JANUARY 18, 1984 - TIME: 13:08:06 DATE: 05/26/84
MODEL:EX 11 .3
STOR:1 . 5
STPI:0.5
STMT:1.5
STRI:5.5
STMF:1.5
STPU:0.5
STRE:1.5
IAT: 1 5
SAMPLING PERIOD END: CYCLE GUIDELINE
SAMPLING PERIOD END: CYCLE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME: 2 0172E+04
CPU TIME: 4.89

NUMBER OF EVENTS: 10736
NUMBER OF CYCLES: 400

WHAT:ALLBO

ELEMENT UTILIZATION
STAGEAREA1 0.43068(0.39040,0.47096) CO

ROBOT 0.62161 (0.58882,0.65439) 6.6%
STAGEAREA2 0.12934(0.12261,0.13608) 1 .3%
ORIENTQ 0.10118(0.09547,0.10689) 1.1%
PICKUPQ 0.03273(0.03088,0.03458) 0.4%
MOVETOADQ 0.10032(0.09368,0.10697) 1 .3%
RIVETQ 0.35379(0.33085,0.37674) 4.6%
MOVEFRADQ 0.10029(0.09432,0.10627) 1 .2%
PUTDOWNQ 0.03221(0.03035,0.03407) 0.4%
REMOVES2Q 0.0971 3 (0.09141,0.10285) 1.1%

ELEMENT THROUGHPUT
STAGEAREA1 0.06653(0.06387,0.06919) 8.0%
ROBOT 0.06653(0.06387,0.06919) 8.0%
STAGEAREA2 0.06653(0.06387,0.06919) 8.0%
ORIENTQ 0.06653(0.06387,0.06919) oCO

PICKUPQ 0.06653 (0.06387,0.06919) 8.0%
MOVETOADQ 0.06653 (0.06387,0.06919) CD O

RIVETQ 0.06653(0.06387,0.06919) 8.0%
MOVEFRADQ 0.06653(0.06387,0.06919) oCO

PUTDOWNQ 0.06653(0.06387,0.06919) 8.0%
REMOVES2Q 0.06653(0.06387,0.06919) 6̂OCO

RS1 0.06653
RRO 0.06653
RS2 0.06653
PIECES 0.06653
SINK 0.06653

ELEMENT MEAN QUEUE LENGTH
STAGEAREA1 0.90559(0.71895,1.09224) 41.2%

240 MANUFACTURING SYSTEMS / CHAP. 11

ROBOT 0.91838(0.85112,0.98565) 14.6%
STAGEAREA2 0.13160(0.12443,0.13876) 10.9%
ORIENTQ 0.10118(0.09547,0.10689) 11.3%
PICKUPQ 0.03273(0.03088,0.03458) 11.3%
MOVETOADQ 0.10032(0.09368,0.10697) 13.2%
RIVETQ 0.35379(0.33085,0.37674) 13.0%
MOVEFRADQ 0.10029(0.09432,0.10627) 11.9%
PUTDOWNQ 0.03221(0.03035,0.03407) 11.5%
REMOVES2Q 0.0971 3(0.09141,0.10285) 11.8%

ELEMENT STANDARD DEVIATION OF QUEUE LENGTH
STAGEAREA1 1 .45542
ROBOT 0.81762
STAGEAREA2 0.34465
ORIENTQ 0.30157
PICKUPQ 0 . 17792
MOVETOADQ 0.30043
RIVETQ 0.47815
MOVEFRADQ 0.30039
PUTDOWNQ 0.17656
REMOVES2Q 0.29614

ELEMENT MEAN QUEUEING TIME
STAGEAREA1 13.61248(11.08257,16.14238) 37.2)5
ROBOT 13.80473(13.14850,14.46096) 9.5%
STAGEAREA2 1.97810(1.90309,2.05310) 7.6%
ORIENTQ 1.52090(1 .46083,1.58096) 7.9%
PICKUPQ 0.49195 (0.47108,0.51281) in00

MOVETOADQ 1.50803 (1.43086,1.58521) 10.2%
RIVETQ 5.31809(5.07697,5.55922) 9.1%
MOVEFRADQ 1 .50758(1.44455,1.57062) 00 fee

PUTDOWNQ 0.48420(0.46369,0.50471) 8.5%
REMOVES2Q 1.46005(1.39437,1.52572) 9.0%

ELEMENT STANDARD DEVIATION OF QUEUEING TIME
STAGEAREA1 16.73315
ROBOT 8.72792
STAGEAREA2 1 .55407
ORIENTQ 1.47744
PICKUPQ 0.50944
MOVETOADQ 1.49297
RIVETQ 5.77120
MOVEFRADQ 1.45702
PUTDOWNQ 0.47655
REMOVES2Q 1.43762

ELEMENT MEAN TOKENS IN USE
STAGEAREA! 0.43068(0.39040,0.47096) 18.7%
ROBOT 0.62161 (0.58882,0.65439) feeino

STAGEAREA2 0.12934(0.12261,0.13608) 10.4%

SEC. 11.3 / A ROBOT 241
ELEMENT MEAN TOTAL TOKENS IN POOL
STAGEAREA1 1.00000
ROBOT 1.00000
STAGEAREA2 1.00000

ELEMENT MAXIMUM QUEUE LENGTH
STAGEAREA1 1 1
ROBOT 2
STAGEAREA2 2
ORIENTQ 1
PICKUPQ 1
MOVETOADQ 1
RIVETQ 1
MOVEFRADQ 1
PUTDOWNQ 1
REMOVES2Q 1

ELEMENT MAXIMUM QUEUEING TIME
STAGEAREA1 106.27850
ROBOT 65.42307
STAGEAREA2 12.49809
ORIENTQ 9.92921
PICKUPQ 4.44203
MOVETOADQ 12.54598
RIVETQ 55.68083
MOVEFRADQ 10.61911
PUTDOWNQ 3.37284
REMOVES2Q 11.30502

ELEMENT OPEN CHAIN POPULATION
CHAIN1 1.59160(1.37743,1.80577) 26

ELEMENT OPEN CHAIN RESPONSE TIME
CHAIN 1 23.92429(21 .22171,26.62685)

11.4. MERGING LINES

In manufacturing systems there are often many different types of parts
that must be merged together, and a single unit progresses on down the line.
The diagram in Figure 11.6 shows a simple example of two parts from
different lines merging together and one part continuing after the merger.
This process is basically a synchronization procedure. The parts flowing
down one line must be synchronized with the parts flowing down the other
line. This is a perfect application of passive resources. There is a source
and an active queue for each type of part. There is also a passive queue
with a create, an allocate, and a destroy node for synchronization. A type
one part creates a token for a type two part to use. A type two part creates
a token for a type one part to use. When both types of parts are available,

one part continues on down the line and the other leaves the model through
the sink.

242 MANUFACTURING SYSTEMS / CHAP. 11

This model is solved by simulation because of the passive queues.
There are three active queues, one for each of the two types of parts and
one representing the merged part. The two passive queues are for synchron
izing the two types of parts. The routing contains two sources, one for each
type of part. The regenerative method is used for constructing confidence
intervals. The sequential stopping rule is used until the mean queueing time
of the merged part reaches a specified level of accuracy.

MODEL:EX 11 .4
METHOD:simulation
QUEUE:q1

TYPE:fcfs
CLASS LIST:11

SERVICE TIMES:.5
QUEUE:q2

TYPE:fcfs
CLASS LIST:12

SERVICE TIMES:.5
QUEUE:q3

TYPE:fcfs
CLASS LIST:13

SEC. 11.4 / MERGING LINES 243
SERVICE TIMES:.5

QUEUE:waitl1
TYPE:passive
TOKENS:0
DSPL:fcfs
ALLOCATE NODE LIST:w1

NUMBERS OF TOKENS TO ALLOCATE:1
DESTROY NODE LIST:d1
CREATE NODE LIST:c1

NUMBERS OF TOKENS TO CREATE:1
QUEUE:waitl2

TYPE:passive
TOKENS:0
DSPL:fcfs
ALLOCATE NODE LIST:w2

NUMBERS OF TOKENS TO ALLOCATE:1
DESTROY NODE LIST:d2
CREATE NODE LIST:c2

NUMBERS OF TOKENS TO CREATE:1
CHAIN:ch1

TYPE:open
SOURCE LIST:src1 src2
ARRIVAL TIMES:1 1
:src1->11->c2->w1->d1->l3->sink
:src2->l2->c1->w2->d2->sink

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:q3
MEASURES:qt
ALLOWED WIDTHS:10

SAMPLING PERIOD GUIDELINES -
CYCLES:200

LIMIT - CP SECONDS:50
TRACE:no

END

Twenty-eight regeneration cycles occurred during about 50 seconds of
solution time. Some of the performance measures related to the passive
queues illustrate a lot of variability. Most of the performance measures for
the active queues are fairly accurate.

RESQ2 VERSION DATE: JANUARY 18, 1984 - TIME: 13:17:41 DATE: 05/26/84
MODEL:EX 11 .4
RUN END: CPU LIMIT
NO ERRORS DETECTED DURING SIMULATION. 29439 DISCARDED EVENTS

SIMULATED TIME
CPU TIME

NUMBER OF EVENTS
NUMBER OF CYCLES

1.8251E+04
50.30
90735

28 \

244 MANUFACTURING SYSTEMS / CHAP. 11

WHAT:ALLBO

ELEMENT UTILIZATION
WAITL2 0.00000
Q1 0.50346(0.49644,0.51048) 1 .4%
Q2 0.49686(0.49058,0.50314) 1.3%
Q3 0.49702(0.48994,0.50410) 1 .4%

ELEMENT THROUGHPUT
WAITL1 0.99432(0.98691,1.00173) 1 .5%
WAITL2 0.99432 (0.98691,1.00173) in

Q1 0.99432(0.98691,1.00173) 1 .5%
Q2 0.99432 (0.98691,1 .00173) LD

Q3 0.99432(0.98691,1.00173) 1 .5%
D1 0.99432
Cl 0.99432
D2 0.99432
C2 0.99432
SRC1 0.99432
SRC2 0.99432
SINK 1.98865

ELEMENT MEAN QUEUE LENGTH
WAITL1 19.65564(2.11294,37.19836) 178.5%
WAITL2 10.88694(0.76088,21.01299) 186.0%
Q1 0.99718(0.95723,1.03714) o00

Q2 0.98545(0.94567,1.02523) CO

Q3 0.96349(0.91751,1.00946) 9.5%

ELEMENT STANDARD DEVIATION OF QUEUE LENGTH
WAITL1 27. 18333
WAITL2 15.07572
Q1 1.39796
Q2 1.39158
Q3 1.34793

ELEMENT MEAN QUEUEING TIME
WAITL1 19.76784(2.16205,37.37363) 178.1%
WAITL2 10.94908(0.74751,21.15063) 186.3%
Q1 1.00288(0.96461,1.04114) 7.6%
Q2 0.99108 (0.95440,1.02775) 7.4%
Q3 0.96898(0.92320,1.01476) 9.4%

ELEMENT STANDARD DEVIATION OF QUEUEING TIME
WAITL1 26.91983
WAITL2 15.17125
Q1 1.00655
Q2 0.98196
Q3 0.94441

ELEMENT MEAN TOKENS IN USE
WAITL1 0.00000

SEC. 11.4 / MERGING LINES 245
WAITL2 0.00000

ELEMENT MEAN TOTAL TOKENS IN POOL
WAITL1 10.88694(0.76088,21.01299) 186.0%
WAITL2 19.65564(2.11294,37.19836) 178.5%

ELEMENT
WAITL1
WAITL2
Q1
Q2
Q3

MAXIMUM QUEUE LENGTH
1 14
65
1 3
12
12

ELEMENT
WAITL1
WAITL2
Q1
Q2
Q3

MAXIMUM QUEUEING TIME
102.37941
78.29776
9.09138
7.41888
7.97958

ELEMENT OPEN CHAIN POPULATION
CH1 33.48871(24.57817,42.39923) 53.2%

ELEMENT OPEN CHAIN RESPONSE TIME
CH1 16.83992(12.39086,21.28897) 52.8%

11.5. FURTHER READING

The models discussed in Sections 11.1 and 11.2 about tool failures and
load balancing are from Oates [129], The robot model in Section 11.3 is
based on one presented in Medeiros and Sadowski [121], Taylor and
Clayton [180] have a more complicated version of the merging lines model
described in Section 11.4. Some additional references for models related to
manufacturing systems are Cavaille and Dubois [41], Chow, MacNair, and
Sauer [47], Engelke, Grotrian, Scheuing, Schmackpfeffer, and Solf [59],
Law and Kelton [106], Radloff [138], and Suri [177].

11.6. EXERCISES

11.1 Construct and solve models of manufacturing systems you are familiar
with.

11.2 Generalize the model in Section 11.4 to allow for more than one part
of each type to be merged into one subassembly.

11.3 Construct models representing various work-in-process schemes.

CHAPTER 12

EPILOGUE
Some theoretical aspects of performance modeling require sophisticated

mathematical analysis and techniques. In spite of this, it is our opinion that
people with a limited mathematical background can be taught the . skills
necessary to conduct successful modeling projects. This book addresses
some of the topics necessary to develop these skills. We have seen many
examples of people with limited mathematical background, both students in
classes we have taught and professionals beginning modeling projects, who
are capable of learning the necessary skills.

Performance modeling is an art. As such it is a very difficult skill to
teach. As Fromm [67] has stated in a different context, performing some
thing which is an art "requires knowledge and effort." There is a great deal
to be learned about performance modeling, and it takes a considerable
amount of effort to learn it well. In this book we have tried to present the
practical aspects of performance modeling. If we want to learn about
performance modeling we have to master the theory and the practice.
Knowing just the theory is not enough. A lot of practice is required to meld
theory and practice to yield intuition that can be used in the art of perform
ance modeling.

We discussed the process of modeling and the formulation of models.
We need to understand the system we are trying to model. Without that
understanding, it will be very difficult or impossible to model the system
accurately. We also have to know the purpose of the model. The purpose
will determine the type of model and the level of detail incorporated into
the model. Of the many different types of models, we described several.
Probability distributions are particularly important in the types of models we
focused on, because they allow us to characterize various aspects of the
models. Formulating models with parameters allows us to solve the models
numerous times by simply substituting different parameter values.

A small set of modeling elements is generally sufficient to represent
many different complex systems. We have presented those elements used
with the Research Queueing Package. Other modeling packages have similar
building blocks. Many packages also have symbols to represent the model
elements, which can then be combined to produce a diagram of the model
which explicitly shows its behavior. These model diagrams are particularly
useful in describing to others how the model works. There are many model
ing packages and simulation languages available to aid in the construction

246

CHAP. 12 / EPILOGUE 247

and solution of models of extended queueing networks of contention sys
tems. A modeling package simplifies an analyst’s job of obtaining perform
ance measures for the system to be modeled.

We discussed two main types of solution techniques. An analytic
solution is performed by solving a set of equations relating the input param
eters to the performance measures. This method is usually the quickest and
most accurate for the model being solved. However, it is applicable only in
a limited number of situations. Sometimes when a direct analytic solution
does not apply, an approximation technique can be used. Approximation
techniques are generally difficult to apply, sometimes because of the com
plexity of the solution and sometimes because of a lack of bounds on the
results.

Simulation is the other solution technique we concentrated on. Simula
tion is a very general approach to performance modeling, but it has some
disadvantages. The randomness found in the results and the long solution
time are its two main drawbacks. Confidence intervals allow us to deal
intelligently with the randomness, and as computers are becoming faster and
equipped with more memory, solution time is also becoming less of a prob
lem. A hybrid approach that combines simulation with an analytic solution
can also be attractive in certain cases to reduce the overall solution time.

Structuring a model with submodels aids in clarifying the model, in
repeating similar portions of a model, in sharing common submodels be
tween performance analysts, in varying the model structure, and in decom
posing a model. As with the hybrid approach, decomposition is a technique
which can be used to reduce the total solution time in certain situations. It
can also lead to a pure analytic solution of a nonproduct form model.

Of course, accurately interpreting the results of a performance model is
crucial to the success of a modeling study. We discussed many different
types of performance measures, sources of errors, the accuracy of simulation
results, model validation, the level of detail, modification analysis, sensitivity
analysis, and plotting of results. Modification analysis is a particularly
valuable skill for a performance analyst to develop in order to find the
answers to many different "what if" questions.

We looked at many different case studies dealing with four major
application areas: everyday life systems, computer systems, communication
networks, and manufacturing systems. Very few performance analysts will
ever model systems similar to the ones described in Chapter 8 dealing with
everyday life systems. However, everyone can understand how the systems
work, and the approach to modeling them can be very instructive. The
three other application areas are very pertinent in the world of modeling.

248 EPILOGUE / CHAP. 12

There are many places to continue your study of performance model
ing. The special issues of the ACM Computing Surveys 10, 3 (September
1978) and the IEEE Computer 13, 4 (April 1980) are good starting places
for queueing network models of computer systems. The following books and
papers are also highly recommended: Allen [3], Bruell and Balbo [34],
Buzen 136], Crane and Lemoine [56], Ferrari [62], Ferrari, Serazzi and
Zeigner [63], Fishman [64, 65], Gelenbe and Mitrani [69], Gordon [70, 71],
Heidelberger and Lavenberg [77], Iglehart and Shedler [82], Kleijnen [92,
93], Kleinrock [94, 95, 96], Kobayashi [98], Lavenberg [100], Law and
Kelton [106], Lazowska, Zahorjan, Graham, and Sevcik [108], Maisel and
Gnugnoli [117], Pritsker [133, 134], Pritsker and Pegden [135], Russell
[146], Sauer and Chandy [152], Sauer and MacNair [156], Schriber [164],
Schwartz [165], Shannon [171], and Trivedi [183].

Our purpose in writing this book was to present some easy-to-use
approaches to modeling complex contention systems. We hope we have
added to your knowledge and understanding of performance modeling. It is
difficult for people with little or no background in modeling to get started in
this field without the help of a course and a good instructor. We have tried
to make this task easier.

What does the future hold in store for modeling? There are many more
aids which will be made available to assist performance analysts. Model
construction can be made simpler by designing modeling languages for
specific applications. These types of systems are already available for
computer systems, communication networks, and manufacturing systems.
Faster, more accurate solution techniques will become available. Better
graphics, both for model input and for model results, will make modeling
easier. Animation of a simulation model as it is running is a useful debug
ging tool and can give insight into the behavior of the system operation.
Facilities for making model debugging easier would be beneficial. Powerful
modeling packages available on personal computers would put modeling aids
at the disposal of many more people. The future of performance modeling
looks very promising. We hope you share our enthusiasm for the coming
improvements.

BIBLIOGRAPHY

1. A.K. Agrawala, S.K. Tripathi, M. Abrams, K.K. Ramakrishnan, M.
Singhal, and S.H. Son, "STEP-1: A User Friendly Performance Anal
ysis Tool," Proceedings o f the International Conference on Modelling
Techniques and Tools for Performance Analysis, Paris, May 1984.

2. A.O. Allen, "Elements of Queueing Theory for System Design," IBM
Systems Journal 14, 2 (1975), 161-87.

3. A.O. Allen, Probability, Statistics, and Queueing Theory with Computer
Science Applications. New York: Academic Press, 1978.

4. A.O. Allen, "Queueing Models of Computer Systems," IEEE Com
puter 13, 4 (April 1980), 13-24.

5. H.P. Artis, "Capacity Planning for MVS Computer Systems," in
Performance o f Computer Installations, ed. D. Ferrari. Amsterdam:
North-Holland, 1978, 25-35.

6. B. Avi-Itzhak and D.P. Heyman, "Approximate Queueing Models for
Multiprogramming Computer Systems," Operations Research 21
(1973), 1212-30.

7. G. Balbo and S. Bruell, "Aggregation in Multiclass Queueing Net
works," Proceedings o f the 1981 Computer Measurement Group Inter
national Conference, New Orleans, LA, 1981, 92-96.

8. G. Balbo, A. Marsan, G. Ciardo, and G. Conte, "A Software Tool for
the Automatic Analysis of Generalized Stochastic Petri Nets Models,"
Proceedings o f the International Conference on Modelling Techniques
and Tools for Performance Analysis, Paris, May 1984.

9. J. Banks and J.S. Carson, II, Discrete-Event System Simulation. Engle
wood Cliffs, NJ: Prentice-Hall, 1984.

10. Y. Bard, "An Analytic Model of the VM/370 System," IBM Journal
o f Research and Development 22 (1978), 498-508.

11. Y. Bard, "The VM/370 Performance Predictor," ACM Computing
Surveys 10, 3 (September 1978), 333-342.

12. Y. Bard, "Some Extensions to Multiclass Queueing Network Analy
sis," in 4th International Symposium on Modeling and Performance
Evaluation o f Computer Systems, eds. M. Arato, A. Butrimenko and E.
Gelenbe. Amsterdam: North-Holland, 1979.

13. Y. Bard, "A Simple Approach to System Modelling," Performance
Evaluation 1, 3 (November 1981), 225-48.

249

250 BIBLIOGRAPHY

14. F. Baskett, K.M. Chandy, R.R. Muntz, and F.G. Palacios, "Open,
Closed, and Mixed Networks of Queues with Different Classes of
Customers," Journal o f the ACM 22, 2 (April 1975), 248-60.

15. H. Beilner and J. Mater, "Simulation and Analytic Modelling of
Computer System Performance Using the Software Tool COPE,"
ECOMA 10 Conference Proceedings, 1982, 179-83.

16. H. Beilner and J. Mater, "COPE: Past, Presence and Future," Pro
ceedings o f the International Conference on Modelling Techniques and
Tools for Performance Analysis, Paris, May 1984.

17. B. Beizer, Micro-Analysis o f Computer System Performance. New
York: Van Nostrand Reinhold, 1978.

18. BGS Systems, Inc., "BEST/l-MVS User’s Guide," Waltham, MA,
1983.

19. BGS Systems, Inc., "BEST/l-VM User’s Guide," Waltham, MA,
1983.

20. BGS Systems, Inc., "BEST/l-SNA User’s Guide," Waltham, MA,
1983.

21. K. Bharath-Kumar and P. Kermani, "Performance Evaluation Tool
(PET): An Analysis Tool for Computer Communications Networks,"
IEEE Journal on Selected Areas in Communications SAC-2, 1 (January
1984), 220-25.

22. A. Blum, L. Donatiello, P. Heidelberger, S.S. Lavenberg, and E.A.
MacNair, "Experiments with Decomposition of Extended Queueing
Network Models," Proceedings o f the International Conference on
Modelling Techniques and Tools for Performance Analysis, Paris, May
1984.

23. Boole and Babbage, "Capacity Management Facilities Planning and
Use Guide," Sunnyvale, CA, 1983.

24. M. Booyens, P.S. Kritzinger, A. Krzesinski, P. Teunissen, and S. Van
Wyk, "SNAP: An Analytic Multiclass Queueing Network Analyzer,"
Technical Report ITR83-08-00 (September 1983), Institute for Ap
plied Computer Science, University of Stellenbosch.

25. M. Booyens, P.S. Kritzinger, A. Krzesinski, P. Teunissen, and S. van
Wyk, "SNAP: An Analytic Multiclass Queueing Network Analyser,"
Proceedings of the International Conference on Modelling Techniques
and Tools for Performance Analysis, Paris, May 1984.

26. J.W. Boyse and D.R. Warn, "A Straightforward Model for Computer
Performance Prediction," Computing Surveys 7, 2 (1975), 73-93.

27. A. Brandwajn, "Equivalence and Decomposition Methods with
Applications to a Model of a Time-sharing Virtual Memory System,"
Proceedings International Symposium Rocquencourt, 1974, 58-88.

28. A. Brandwajn, "A Model of a Time-Sharing System Solved Using
Equivalence and Decomposition Methods," Acta Informatica 4, 1
(1974), 11-47.

BIBLIOGRAPHY 251

29. A. Brandwajn, "Issues in Mainframe System Modeling—Lessons from
Model Development at Amdahl," Proceedings o f the International
Conference on Modelling Techniques and Tools for Performance Analy
sis, Paris, May 1984.

30. L. Bronner, "Overview of the Capacity Planning Process for Prod
uction Data Processing," IBM Systems Journal 19, 1 (January 1980),
4-27.

31. L. Bronner, "Capacity Planning Basic Hand Analysis," IBM Techni
cal Bulletin GG22-9344, Gaithersburg, MD, December 1983.

32. R.M. Brown, J.C. Browne, and K.M. Chandy, "Memory Management
and Response Time," Communications o f the ACM 20, 3 (March
1977), 153-65.

33. J.C. Browne, K.M. Chandy, R.M. Brown, T.W. Keller, D. Towsley,
and C.W. Dissley, "Hierarchical Techniques for Development of
Realistic Models of Complex Computer Systems," IEEE Proceedings
63, 6 (June 1975), 966-75.

34. S.C. Bruell and G. Balbo, Computational Algorithms for Closed Queue
ing Networks. New York: Elsevier North-Holland, 1980.

35. S.C. Bruell, G. Balbo, S. Ghanta, and P.V. Afshari, "A Mean Value
Analysis Based Package for the Solution of Product Form Queueing
Network Models," Proceedings o f the International Conference on
Modelling Techniques and Tools for Performance Analysis, Paris, May
1984.

36. J.P. Buzen, Queueing Network Models o f Multiprogramming, Ph.D.
Thesis, Harvard University, Cambridge, MA, 1971. New York:
Garland Publishing, 1980.

37. J.P. Buzen, "Computational Algorithms for Closed Queueing Net
works with Exponential Servers," Communications of the ACM 16, 9
(September 1973), 527-31.

38. J.P. Buzen, "Fundamental Laws of Computer System Performance,"
Acta Informatica 7, 2 (1976), 167-82.

39. J.P. Buzen, "A Queueing Network Model of MVS," ACM Computing
Surveys 10, 3 (September 1978), 319-32.

40. J.P. Buzen, "Skills for Successful Computer Performance Modeling,"
Proceedings o f Symposium on Computer Resource Allocation, Pretoria,
South Africa, April 1979.

41. J.-B. Cavaille and D. Dubois, "Heuristic Methods Based on Mean
Value Analysis for Flexible Manufacturing Systems Performance
Evaluation," Proceedings 21st IEEE Conference on Decision and
Control, 1982, 1061-65.

42. K.M. Chandy, U. Herzog, and L.S. Woo, "Parametric Analysis of
Queueing Networks," IBM Journal o f Research and Development 19,
1 (January 1975), 43-49.

252 BIBLIOGRAPHY

43. K.M. Chandy, J.H. Howard, Jr., and D.F. Towsley, "Product Form
and Local Balance in Queueing Networks," Journal o f the ACM 24, 2
(April 1977), 250-63.

44. K.M. Chandy and D. Neuse, "Linearizer: A Heuristic Algorithm for
Queueing Network Models of Computer Systems," Communication of
the ACM 25, 2 (February 1982), 126-33.

45. K.M. Chandy and C.H. Sauer, "Approximate Methods for Analyzing
Queueing Network Models of Computer Systems," ACM Computing
Surveys 10, 3 (September 1978), 281-318.

46. W.W. Chiu and W.-M. Chow, "A Performance Model of MVS," IBM
Systems Journal 17, 4 (1978), 444-62.

47. W.-M. Chow, E.A. MacNair, and C.H. Sauer, "Analysis of Manufac
turing Systems by the Research Queueing Package," IBM Research
Report RC-10769, Yorktown Heights, NY, October 1984. Also to
appear in the IBM Journal o f Research and Development 29, 4 (July
1985).

48. M. Coome, private communication (1979).
49. J.C. Cooper, "A Capacity Planning Methodology," IBM Systems

Journal 19, 1 (January 1980), 28-45.
50. P.J. Courtois, "Decomposability, Instabilities and Saturation in

Multiprogramming Systems," Communications o f the ACM 18, 7 (July
1975), 371-77.

51. P.J. Courtois, Decomposability: Queueing and Computer System Appli
cations. New York: Academic Press, 1977.

52. P.J. Courtois, "Exact Aggregation in Queueing Networks," Proceed
ings First Meeting AFCET-SMF, Paris, September 1978, 35-51.

53. H. Cramer, Mathematical Methods o f Statistics. Princeton, NJ:
Princeton University Press, 1946.

54. M.A. Crane and D.L. Iglehart, "Simulating Stable Stochastic Systems
Part II: Markov Chains," Journal ACM 21, 1 (1974), 114-23.

55. M.A. Crane and D.L. Iglehart, "Simulating Stable Stochastic Systems.
Part III: Regenerative Processes and Discrete-Event Simulation,"
Operations Research 23, 1 (1975), 33-45.

56. M.A. Crane and A.J. Lemoine, An Introduction to the Regenerative
Method for Simulation Analysis, Lecture Notes in Control and Infor
mation Sciences, Vol. 4. New York: Springer-Verlag, 1977.

57. P.J. Denning and J.P.Buzen, "The Operational Analysis of Queueing
Network Models," ACM Computing Surveys 10, 3 (September 1978),
225-62.

58. M.E. Drummond, Jr., Evaluation and Measurement Techniques for
Digital Computer Systems, Englewood Cliffs, NJ: Prentice-Hall, 1973.

59. H. Engelke, J. Grotrian, C. Scheuing, A. Schmackpfeffer, and B. Solf,
"Structured Modeling of Manufacturing Processes," Annual Simula
tion Symposium, Tampa, FL, 1983, 55-68.

BIBLIOGRAPHY 253

60. W. Feller, An Introduction to Probability Theory and Its Applications,
Vol. I, 3rd ed., New York: Wiley, 1968.

61. W. Feller, An Introduction to Probability Theory and Its Applications,
Vol. II, 2nd ed., New York: Wiley, 1971.

62. D. Ferrari, Computer Systems Performance Evaluation. Englewood
Cliffs, NJ: Prentice-Hall, 1978.

63. D. Ferrari, G. Serazzi, and A. Zeigner, Measurement and Tuning of
Computer Systems. Englewood Cliffs, NJ: Prentice-Hall, 1983.

64. G.S. Fishman, Concepts and Methods in Discrete Event Digital Simula
tion. New York: Wiley, 1973.

65. G.S. Fishman, Principles o f Discrete Event Simulation. New York:
Wiley, 1978.

66. S. Freireich, private communication, 1983.
67. E. Fromm, The Art o f Loving. New York: Harper and Row, 1956.
68. K. Garg, "An Approach to Multiprocessor Performance Analysis

Using Timed Petrinets Models," Proceedings of the International
Conference on Modelling Techniques and Tools for Performance Analy
sis, Paris, May 1984.

69. E. Gelenbe and I. Mitrani, Analysis and Synthesis o f Computer Sys
tems. New York: Academic Press, 1980.

70. G. Gordon, The Application o f GPSS V to Discrete System Simulation.
Englewood Cliffs, NJ: Prentice-Hall, 1975.

71. G. Gordon, System Simulation, 2nd ed. Englewood Cliffs, NJ:
Prentice-Hall, 1978.

72. W.J. Gordon and G.F. Newell, "Closed Queueing Networks with
Exponential Servers," Operations Research 15 (1967), 244-65.

73. G.S. Graham, "Guest Editor’s Overview: Queueing Network Models
of Computer System Performance," ACM Computing Surveys 10, 3
(September 1978), 219-24.

74. G.S. Graham, E.D. Lazowska, and K.C. Sevcik, "Components of
Software Packages for the Solution of Queueing Network Models,"
Proceedings CPEUG ’82, Washington, DC, 1982, 183—87.

75. P. Heidelberger and P.D. Welch, "A Spectral Method for Confidence
Interval Generation and Run Length Control in Simulations," Com
munications o f the ACM 24, 4 (April 1981), 233—45.

76. P. Heidelberger and P.D. Welch, "Simulation Run Length Control in
the Presence of an Initial Transient," Operations Research 31 (1983),
1109-44.

77. P. Heidelberger and S.S. Lavenberg, "Computer Performance Evalua
tion Methodology," IEEE Transactions on Computers, Vol.C-33, 12,
(December 1984), 1195-220.

78. H. Hellerman and T.F. Conroy, Computer System Performance. New
York: McGraw-Hill, 1975.

79. R.V. Hogg and A.T. Craig, Introduction to Mathematical Statistics, 3rd
ed. New York: Macmillan, 1970.

254 BIBLIOGRAPHY

80. IBM Corporation, "OS/VS2 System Logic Library," Vols. 1-7,
SY28-07 13 to SY28-0720.

81. D.L. Iglehart, "Regenerative Method for Simulation Analysis," in ed.
K.M. Chandy and R.T. Yeh. Current Trends in Programming Metho
dology, Volume III: Software Modeling and Its Impact on Perform
ance. Englewood Cliffs, NJ: Prentice-Hall, 1978, 52-71.

82. D.L. Iglehart and G.S. Shedler, Regenerative Simulation o f Response
Times in Networks o f Queues. New York: Springer-Verlag, 1980.

83. Information Research Associates, "CADS—Computer Analysis and
Design System: A Brief Description," Austin, TX, 1981.

84. Information Research Associates, "PAWS/A User Guide," Austin,
TX, 1983.

85. J. R. Jackson, "Jobshop-Like Queueing Systems," Management
Science 10, 1 (October 1963), 131-42.

86. I. Kadar, "An On-Board Digital Processing Multibeam Store-and-
Forward Node Satellite System," Proceedings 1980 National Telecom
munications Conference, Houston, TX, December 1980,
70.2.1-70.2.3.

87. I. Kadar, E.A. MacNair, and D.T. Tang, "On-Board Satellite Process
ing: An Efficient Multibeam Processing Satellite System Via Store-
and-Forward Scheduling," IBM SST-GTA Report 79/2.14, Yorktown
Heights, NY, November 1981.

88. M.G. Kienzle and K.C. Sevcik, "A Systematic Approach to the
Performance Modelling of Computer Systems," Proceedings 4th Inter
national Symposium on Modelling and Performance Evaluation of
Computer Systems, Vienna, 1979, 3-27.

89. M.G. Kienzle and K.C. Sevcik, "Survey of Analytic Queueing Net
work Models of Computer Systems," Proceedings ACM SIGME-
TRICS Conference on Simulation, Measurement and Modeling of
Computer Systems, Boulder, CO, 1979, 113-29.

90. I. Kino and S. Morita, "PERFORMS—A Support System for Com
puter System Performance Evaluation," Proceedings o f the Internation
al Conference on Modelling Techniques and Tools for Performance
Analysis, Paris, May 1984.

91. P.J. Kiviat, R. Villanueva, and H. Markowitz, The SIM SCRIPT II
Programming Language. Englewood Cliffs, NJ: Prentice-Hall, 1969.

92. J.P.C. Kleijnen, Statistical Techniques in Simulation, Part I. New
York: Dekker, 1974.

93. J.P.C. Kleijnen, Statistical Techniques in Simulation, Part II. New
York: Dekker, 1975.

94. L. Kleinrock, Communication Nets: Stochastic Message Flow and
Delay. New York: McGraw-Hill, 1964. Reprinted, Dover Publica
tions, 1972.

95. L. Kleinrock, Queueing Systems. Vol. I: Theory. New York: Wiley,
1975.

BIBLIOGRAPHY 255

96. L. Kleinrock, Queueing Systems. Vol. II: Computer Applications. New
York: Wiley, 1976.

97. D.E. Knuth, The Art o f Computer Programming, Vol. 2, Semi-
Numerical Algorithms. Reading, MA: Addison-Wesley, 1969. '

98. H. Kobayashi, Modeling and Analysis: An Introduction to System
Performance Evaluation Methodology. Reading, MA: Addison-Weslev
1978.

99. S.S. Lam and Y.L. Lien, "A Tree Convolution Algorithm for the
Solution of Queueing Networks," Communications o f the ACM 26 3
(March 1983), 203-15.

100. S.S. Lavenberg, ed., Computer Performance Modeling Handbook. New
York: Academic Press, 1983.

101. S.S. Lavenberg and M. Reiser, "Stationary State Probabilities of
Arrival Instants for Closed Queueing Networks with Multiple Types
of Customers," Journal o f Applied Probability 17 (December 1980)
1048-61.

102. S.S. Lavenberg and C.H. Sauer, "Sequential Stopping Rules for the
Regenerative Method of Simulation, 1 IBM Journal o f Research and
Development 21, 6 (1977), 545-56.

103. S.S. Lavenberg and D.R. Slutz, "Introduction to Regenerative Simula
tion," IBM Journal o f Research and Development 19, 5 (1975)
458-62.

104. A.M. Law, "Statistical Analysis of Simulation Output Data," Opera
tions Research 31 ,6 (November-December 1983), 983-1029.

105. A.M. Law and J.S. Carson, "A Sequential Procedure for Determining
the Length of a Steady-State Simulation," Operations Research 27,
(1979), 1011-25.

106. A.M. Law and W.D. Kelton, Simulation Modeling and Analysis. New
York: McGraw-Hill, 1982.

107. E.D. Lazowska, "The Use of Analytic Modelling in System Selec
tion," Proceedings CMG XI International Conference, Boston, MA,
1980, 63-69.

108. E.D. Lazowska, J. Zahorjan, G.S. Graham, and K.C. Sevcik, Quanti
tative System Performance: Computer System Analysis Using Queueing
Network Models. Englewood Cliffs, NJ: Prentice-Hall, 1984.

109. P.A.W. Lewis, A.S. Goodman, and J.M. Miller, "A Pseudo-Random
Number Generator for the System/360," IBM Systems Journal 8, 2
(1969), 199-220.

110. W.R. Lilegdon and J.J. Talavage, "A MicroNET Application," Pro
ceedings o f the 1983 Winter Simulation Conference, Arlington, VA,
December 1983, 497-506.

111. L. Lipsky and J.D. Church, "Application of a Queueing Network
Model for a Computer System," ACM Computing Surveys 9, 3
(September 1977), 205-21.

256 BIBLIOGRAPHY

112. J.D.C. Little, "A Proof of the Queueing Formula L = \W ," Operations
Research 9, 3 (1961), 383-87.

113. T.L. Lo, "Computer Capacity Planning Using Queueing Network
Models," Proceedings IFIP W.G.7.3 International Symposium on
Computer Performance Modelling, Measurement and Evaluation, To
ronto, 1980, 145-52.

114. E.A. MacNair and C.H. Sauer, "The Research Queueing Package: A
Primer," Proceedings o f SHARE60, San Francisco, CA, February
1983, 29-37.

115. E.A. MacNair and C.H. Sauer, "The Research Queueing Package:
Parametric Solutions and Graphics," IBM Research Report
RC-10585, Yorktown Heights, NY, June 1984.

116. J. Maierhofer and H. Schmidt, "Principles of Modeling with
BORIS—A Block Oriented Interactive Simulation System," Proceed
ings of the International Conference on Modelling Techniques and Tools
for Performance Analysis, Paris, May 1984.

117. H. Maisel and G. Gnugnoli, Simulation o f Discrete Stochastic Systems.
Chicago: Science Research Associates, Inc., 1972.

118. J.B. Major, "Processor, I/O Path, and DASD Configuration Capaci
ty," IBM Systems Journal 20, 1 (January 1981), 63-85.

119. J. McKenna and D. Mitra, "Integral Representations and Asymptotic
Expansions for Closed Markovian Queueing Networks: Normal Us
age," The Bell System Technical Journal 61, 5 (May-June 1982),
661-83.

120. J. McKenna, D. Mitra, and K.G. Ramakrishnan, "A Class of Closed
Markovian Queuing Networks: Integral Representations, Asymptotic
Expansions, and Generalizations," The Bell System Technical Journal
60, 5 (May-June 1981), 599-641.

121. D.J. Medeiros and R.P. Sadowski, "Simulation of Robotic Manufac
turing Cells: A Modular Approach," Simulation 40, 1 (January 1983),
3-12.

122. D. Merle, D. Potier and M. Veran, "A Tool for Computer System
Performance Analysis," in Performance of Computer Installations, ed.
D. Ferrari. Amsterdam: North-Holland, 1978, 195-213.

123. I. Mitrani, Simulation Techniques for Discrete Event Systems. Cam
bridge: Cambridge University Press, 1982.

124. A.M. Mood and F.A. Graybill, Introduction to the Theory o f Statistics.
New York: McGraw-Hill, 1963.

125. B. Mueller, "NUMAS: A Tool for the Numerical Modelling of Com
puter Systems," Proceedings of the International Conference on Modell
ing Techniques and Tools for Performance Analysis, Paris, May 1984.

126. R.R. Muntz, "Queueing Networks: A Critique of the State of the Art
and Directions for the Future," ACM Computing Surveys 10, 3
(September 1978), 353-60.

BIBLIOGRAPHY 257

127. D. Neuse, K.M. Chandy, J. Misra, and R. Berry, "Simulation Tools in
Performance Evaluation," CPEUG 81 (Computer Performance Evalu
ation Users Group), San Antonio, TX, November 1981, 331-34.

128. H.C. Nguyen, A. Ockene, R. Revell, and W.J. Skwish, "The Role of
Detailed Simulation in Capacity Planning," IBM Systems Journal 19
1 (1980), 81-101.

129. W.J. Oates, "Manufacturing Modeling Using RESQ," Proceedings of
the 1984 Winter Simulation Conference, Dallas, TX, November 1984
357-59.

130. E. Parzen, Modern Probability Theory and Its Applications. New York:
Wiley, 1960.

131. C.D. Pegden, "Introduction to SIMAN," Proceedings o f the 1983
Winter Simulation Conference, Arlington, VA, December 1983
231-41.

132. J.L. Peterson, Petrinet Theory and the Modeling of Systems. Engle
wood Cliffs, NJ: Prentice-Hall, 1981.

133. A.A.B. Pritsker, The GASP IV Simulation Language. New York:
Wiley, 1974.

134. A.A.B. Pritsker, Modeling and Analysis Using Q-GERT Networks.
New York: Wiley, 1977.

135. A.A.B. Pritsker and C.D. Pegden, Introduction to Simulation and
SLAM. West Lafayette, IN: Systems Publishing, 1979.

136. Performance Systems, Inc., "An Overview of the SCERT II Computer
Performance Prediction System," Rockville, MD, 1981.

137. Quantitative System Performance, Inc., "MAP User Guide," Seattle,
WA, 1982.

138. R.L. Radloff, "RESQ Manufacturing Modeling System RMMS," IBM
internal report, East Fishkill, NY, March 1984.

139. K.G. Ramakrishnan and D. Mitra, "An Overview of PANACEA, a
Software Package for Analyzing Markovian Queueing Networks,"
Bell System Technical Journal 61 (1982), 2849-72.

140. M. Reiser, "Interactive Modeling of Computer Systems," IBM Sys-
tems Journal 15, 4 (1976), 309-27.

141. M. Reiser and S.S. Lavenberg, "Mean Value Analysis of Closed
Multichain Queueing Networks," Journal o f the ACM 27, 2 (April
1980), 313-22.

142. M. Reiser and C.H. Sauer, "Queueing Network Models: Methods of
Solution and their Program Implementation," in Current Trends in
Programming Methodology, Vol. I ll: Software Modeling and Its Im
pact on Performance, ed. K.M. Chandy and R.T. Yeh. Englewood
Cliffs, NJ: Prentice-Hall, 1978, 115-67.

143. M. Reiser, "Performance Evaluation of Data Communication Sys
tems," IBM Research Report RZ-1092, August 1981.

144. C.A. Rose, "Validation of a Queueing Model with Classes of Cus
tomers," Proceedings International Symposium Computer Performance

258 BIBLIOGRAPHY

Modeling, Measurement and Evaluation, Cambridge, MA, 1976,
318-25.

145. C.A. Rose, "A Measurement Procedure for Queueing Network
Models of Computer Systems," ACM Computing Surveys 10, 3
(September 1978), 263-80.

146. E.C. Russell, Simulation and SIMSCRIPT II.5. Los Angeles, CA:
CACI, Inc., 1976.

147. C.H. Sauer, "Passive Queue Models of Computer Networks," Com
puter Networking Symposium, Gaithersburg, MD, December 1978.
IEEE Catalog No. 78CH1400-1.

148. C.H. Sauer, "Computational Algorithms for State-Dependent Queue
ing Networks," ACM Transactions on Computer Systems 1, 1
(February 1983), 67-92.

149. C.H. Sauer, "Approximate Solution of Queueing Networks with
Simultaneous Resource Possession," IBM Journal o f Research and
Development 25 (1981), 894-903.

150. C.H. Sauer and K.M. Chandy, "Approximate Analysis of Central
Server Models," IBM Journal o f Research and Development 19, 3
(May 1975), 301-13.

151. C.H. Sauer and K.M. Chandy, "Approximate Solution of Queueing
Models," IEEE Computer 13, 4 (April 1980), 25-32.

152. C.H. Sauer and K.M. Chandy, Computer Systems Performance Model
ing. Englewood Cliffs, NJ: Prentice-Hall, 1981.

153. C.H. Sauer and E.A. MacNair, "Simultaneous Resource Possession in
Queueing Models of Computers," Performance Evaluation Review 7, 1
and 2 (1978), 41-52.

154. C.H. Sauer and E.A. MacNair, "Queueing Network Software for
Systems Modeling," Software-Practice and Experience 9, 5 (May
1979), 369-80.

155. C. H. Sauer and E.A. MacNair, "The Research Queueing Package
Version 2: Availability Notice," IBM Research Report RA-144,
Yorktown Heights, NY, August 1982.

156. C.H. Sauer and E.A. MacNair, Simulation o f Computer Communica
tion Systems. Englewood Cliffs, NJ: Prentice-Hall, 1983.

157. C.H. Sauer, E.A. MacNair, and J.F. Kurose, "The Research Queueing
Package: Past, Present and Future," Proceedings 1982 National Com
puter Conference, Houston, TX, 1982, 273-80.

158. C.H. Sauer, E.A. MacNair, and J.F. Kurose, "The Research Queueing
Package Version 2: Introduction and Examples," IBM Research
Report RA-138, Yorktown Heights, NY, April 1982.

159. C.H. Sauer, E.A. MacNair, and J.F. Kurose, "The Research Queueing
Package Version 2: CMS Users Guide," IBM Research Report RA-
139, Yorktown Heights, NY, April 1982.

BIBLIOGRAPHY 259

160. C.H. Sauer, E.A. MacNair, and J.F. Kurose, "The Research Queueing
Package Version 2: TSO Users Guide," IBM Research Report RA-
140, Yorktown Heights, NY, April 1982.

161. C.H. Sauer, E.A. MacNair, and J.F. Kurose, "Queueing Network
Simulations of Computer Communication," IEEE Journal on Selected
Areas in Communications SAC-2, 1 (January 1984), 203-19.

162. C.H. Sauer, E.A. MacNair, and S. Salza, "A Language for Extended
Queueing Networks," IBM Journal o f Research and Development 24,
6 (November 1980), 747-55.

163. C.H. Sauer, M. Reiser, and E.A. MacNair, "RESQ - A Package for
Solution of Generalized Queueing Networks," Proceedings 1977
National Computer Conference, Dallas, TX, 1977, 977-86.

164. T.J. Schriber, Simulation Using GPSS. New York: Wiley, 1974.
165. M. Schwartz, Computer Communication Network Design and Analysis.

Englewood Cliffs, NJ: Prentice-Hall, 1977.
166. M. Schwartz, "Performance Analysis of the SNA Virtual Route

Pacing Control," IEEE Transactions on Communications COM-30, 1
(January 1982), 172-84.

167. P. Schweitzer, "Approximate Analysis of Multiclass Closed Networks
of Queues," Proceedings International Conference on Stochastic Control
and Optimization, 1979.

168. H.D. Schwetman, "Hybrid Simulation Models of Computer Systems,"
Communications o f the ACM 21 ,9 (September 1978), 718-23.

169. K.C. Sevcik, G.S. Graham, and J. Zahorjan, "Configuration and
Capacity Planning in a Distributed Processing System," Proceedings
16th CPEUG Meeting, Orlando, FL, 1980, 165-71.

170. K.C. Sevcik and I. Mitrani, "The Distribution of Queueing Network
States at Input and Output Instants," Journal o f the ACM 28, 2
(April 1981), 358-71.

171. R.E. Shannon, Systems Simulation: The Art and Science. Englewood
Cliffs, NJ: Prentice-Hall, 1975.

172. J.G. Shanthikumar and R.G. Sargent, "A Unifying View of Hybrid
Simulation/Analytic Models and Modeling," Operations Research 31
(1983), 1030-52.

173. S.W. Sherman, F. Baskett and J.C. Browne, "Trace-driven Modeling
and Analysis of CPU Scheduling in a Multiprogramming System,"
Communications o f the ACM 15 (1972), 1063—69.

174. C.E. Skinner, "A Priority Queueing System with Server Walking
Time," Operations Research 15 (1967), 278-85.

175. J. Spragins, "Analytical Queueing Models: Guest Editor’s Introduc
tion," IEEE Computer 13, 4 (April 1980), 9-11.

176. H.M. Stewart, "Performance Analysis of Complex Communications
Systems," IBM Systems Journal 18, 3 (1979), 356-73.

2 6 0 BIBLIOGRAPHY

177. R. Suri, "New Techniques for Modelling and Control of Flexible
Automated Manufacturing Systems," Proceedings o f the IFAC 8th
Triennial World Congress, Kyoto, Japan, 1981, 175-81.

178. R. Suri, "Robustness of Queueing Network Formulas," Journal o f the
ACM 30, (1983), 564-94.

179. L. Svobodova, Computer Performance Measurement and Evaluation
Methods: Analysis and Applications. New York: Elsevier, 1976.

180. B.W. Taylor and E.R. Clayton, "Simulation of a Production Line
System with Machine Breakdowns Using Network Modeling," Com
puters and Operations Research 9, 4 (1982), 255—64.

181. A. Thomasian and B. Nadj, "Aggregation of Stations in Queueing
Network Models of Multiprogrammed Computers," Performance
Evaluation Review 10 (1981), 86-96.

182. S.J. Tolopka and H.D. Schwetman, "Mix-Dependent Job
Scheduling—An Application of Hybrid Simulation." 1979 National
Computer Conference Proceedings, AFIPS Volume 48, AFIPS Press,
1979, 45-49.

183. K.S. Trivedi, Probability and Statistics with Reliability, Queuing, and
Computer Science Applications. Englewood Cliffs, NJ: Prentice-Hall,
1982.

184. M. Veran and D. Potier, "QNAP2: A Portable Environment for
Queueing Systems Modelling," Proceedings o f the International Con
ference on Modelling Techniques and Tools for Performance Analysis,
Paris, May 1984.

185. J. Voldman, private communication, 1984.
186. P. Wessels, private communication, 1982.
187. W. Whitt, "The Queueing Network Analyzer," The Bell Technical

Journal 62, 9 (November 1983), 2779-815.
188. W. Whitt, "Performance of the Queueing Network Analyzer," The

Bell Technical Journal 62, 9 (November 1983), 2817-43.
189. J.W. Wong, "Queueing Network Models of Computer Communication

Networks," ACM Computing Surveys 10, 3 (September 1978),
343-52.

190. J.W. Wong and G.S. Graham, "A Self-Assessment Procedure Dealing
with Queueing Network Models of Computer Systems," Communica
tions o f the ACM 22, 8 (August 1979), 449-54.

191. J. Zahorjan, K.C. Sevcik, D.L. Eager, and B.I. Galler, "Balanced Job
Bound Analysis of Queueing Networks," Communications o f the ACM
25, 2 (February 1982), 134-41.

INDEX

A

Absolute width 74
Abstract representation 11
Accessor 188, 189, 190, 191, 192
Accuracy 66, 69
Accuracy criteria 114,181
Acknowledgement 65
Active resource 13
Active service center 41, 136
Actual value 51
Aggregate model 53, 56, 57, 81,

90, 95, 98, 100, 102, 103
Allocate 14,31,41,55,136,140,

144,151
Allocate node 107, 241
Allowed width 74
Analytic model 22
Analytic solution 5, 8, 21, 31, 46,

47, 51, 105, 108, 131, 135,
163, 166, 188, 199, 231

Approximate solution 56, 91
Approximation techniques 53
Archival storage 188
Arrival distribution 15,21
Arrival pattern 13
Arrival rate 3,48,50,116,117,

127, 163, 164, 188, 199
Arrival time 60
Arrival time distribution 108
Attribute 29, 64
Automatic stopping 108
Average delay 210
AND allocate 34

B

Barbershop 130
Baseline 123
Baseline case 114
Baseline model 163, 177

Batch 115, 163, 164, 166, 169,
171

Batch workload 23
Batches of jobs 116
Benchmark 166
Block structuring 81
Branching probability 117
Break down 25
Buffer 205
Buffered DASD 116
Bus 177, 178, 181
Busy time 105
BEST/1 42
BORIS 43

C

Capacity planning 115,163,177,
197

Cartridge load 189, 190, 192
Catalog store 150,161
Ceiling 156
Central server model 14,23,61,

76
Chain 38, 47
Chain definition 117
Chain parameter 82
Chain population 49, 55, 105,

108,116
Channel 115
Channel contention 95
Class 13, 30, 40, 47, 52, 217
Clock 151
Closed chain 49, 116, 134, 163,

169,178
Closed model 14, 23, 46, 49, 50,

52, 55, 60, 177
Coefficient of variation 189, 192
Collision 205,210
Communication line 25, 116, 215

261

262 INDEX

Communication network 1, 8, 12,
14, 25, 27, 108, 116, 199

Communication protocol 116
Communication system 2
Completion time 60
Computer system 1,2,3,8,12,

14, 22, 27, 46, 49, 53, 56,
108, 109, 115, 163, 177

Computer system models 198
Confidence interval 69,71,74,

83, 108, 111, 115, 145, 146,
156, 169, 171, 178, 181,
190, 192, 226, 236, 242

Confidence level 69,71,74,75,
83, 111

Configuration 2, 163, 177
Constant 17,31
Constant distribution 189
Constant service time 177
Contention 1,2,5
Contention systems 2
Continue 221
Control unit 115
Conveyor 230, 235
Copier 144
Copy 41, 65
Correlation 74
Counter 64
Create 33
Create node 145, 241
Critical parameter 108, 124, 127
Customer 1,6,13,14,28
Customer attribute 35, 38, 40, 82,

107, 144, 145, 156
Cycle 72
Cyclic model 14,134
Cylinder fault 188
CADS 43
CICS 23
CMF 42
COPE 43
CPU 1,2,3, 14,20,22,41,46,

115, 116, 163, 164, 166,
171, 177, 178, 181, 192

D

Data-base application 115
Data transfer 189,190,192
Data Recording Controller 188
Data Recording Device 188
Debugging 107
Decomposition 53, 56, 76, 80,

103,188
Demount command 188
Destroy 33
Destroy node 144, 241
Diagram 3, 6, 28
Discrete 31
Discrete distribution 145
Distribution 16, 22, 31, 64, 107,

108
Downtime 25, 226
DASD 3, 115
DRC 188, 189, 192
DRD 188, 189, 190, 192

E

Earth station 205
Equal loading 233
Equilibrium 61,70,71,74,

109
Erlang 17, 31
Error 69
Estimating parameters 108
Event 76
Exact result 69
Existing system 108,114
Exponential 17,31,47,52,61,

63, 65,72
Exponential distribution 141,145,

188,226
Exponential service time 177
Extended queueing network 5, 72

INDEX 263

F

Final queue length 153
Fission 29, 41
Fission node 218
Fixed rate 31,52
Flexible manufacturing system 225
Flow control algorithm 34
Flow equivalent server 53, 57, 76,

80, 81, 90, 91, 95, 98, 102,
188

Flow of customers 7, 40
Flow of tokens 32
Flow of work 12
Full duplex 3, 200, 214
Fusion 29, 41
Future behavior 2, 177
Future workload 108
FCFS 20,31,47,52,55
FIVE 42

G

Global variable 35, 38, 40, 64,
107,151,225

Graph 202
Graphical results 128
Graphics 127
Guidelines for modeling 11
GASP 42
GPSS 42

H

Half duplex line 25
Hardware monitor 2,108
Head of string 115
Hierarchical decomposition 80, 90
Hierarchical model 14
Hybrid model 14,75
Hyperexponential 17,31

/

I/O 2, 163, 166, 177, 178, 181,
188

I/O device 22, 41, 116
I/O path contention 163
1/ O path sharing 116
I/O subsystem 95, 98, 116
Identical submodels 91
Identically distributed 74
Inaccuracy 6
Inbound message 25
Include 86
Independent 72, 74
Independent replications 69, 70,

74, 109, 169
Infinite population 46, 50
Infinite server 20, 30, 41, 52, 116,

138, 151, 156, 163,199,
225

Initial state 60, 66, 70, 71, 73, 75,
83 ,111

Initialize 169, 178
Input parameter 114,124,131,

133,138
Insight of system behavior 11
Interactive computing system 214
Interactive workload 23
Interarrival time 41, 46, 47, 52,

116, 117, 130, 144, 188,
189, 191,200, 205,210

Invocation 83, 84, 85, 88, 215
IMS 23, 163, 164, 166, 169, 171
IS 20, 30, 52

J

Job 2
Job variable 82, 145, 188,216,

226
JV 82, 145, 156

264 INDEX

L

Level of accuracy 108,242
Level of confidence 226, 236
Level of detail 7, 11 22, 115, 128
Little’s rule 48, 64, 105
Load balancing 230, 245
Logical error 108, 115
Loosely coupled 116
LCFS 20,31,52
LNG 153

M

M /M /l 65, 73, 75, 106, 127
Machine failure 116
Manufacturing line 2
Manufacturing system 1, 8, 12, 14,

25, 27, 84, 116, 225
Manufacturing system models 245
Markov process 72
Mass storage subsystem 188
Maximum delay 210
Maximum queue length 106
Maximum queueing time 106,146
Mean queue length 105,171,181,

221
Mean queueing time 105,181,

192,221
Mean response time 105
Mean service time 107
Mean Value Analysis 50
Measurement 2, 8, 21, 60, 108,

114, 177
Measurement interval 114
Memory 14
Memory constraint 23, 109, 163,

166, 169, 171
Memory contention 32,41,55,

109,115
Memory partition 41,53,55
Memory units 181
Merging lines 241,245
Message 2

Micronet 43
Mixed model 14,52
Model 2, 6, 8
Model construction 3
Model diagram 41
Model element 3, 7, 28, 161, 178
Model formulation 3,8, 11
Model parameter 6, 21, 46, 52,

80, 116, 124
Model purpose 11,115
Model solution 3
Model status 36, 38
Model structure 22, 80, 108, 115
Modeling package 42, 48
Modeling skill 8, 124, 128
Modeling tool 7
Models

EX4.1 47
EX4.2 49
EX4.3 55
EX4.4A 57
EX4.4S 56
EX5.1 62
EX5.2 65
EX5.3 67
EX5.4 77
EX6.1 81
EX6.2 85
EX6.3 88
EX6.4 89
EX6.5 92
EX6.5I 93
EX6.50 94
EX6.6I 96
EX6.6O 98
EX6.7 100
EX6.7I 102
EX6.70 102
EX7.1 109
EX7.2 117
EX8.1 131
EX8.2 134
EX8.3 138
EX8.4 141
EX8.5 145

INDEX 265

EX8.6 152
EX8.7 157
EX9.1 164
EX9.2 169
EX9.3 178
EX9.4 190
EX10.1 201
EX10.2 206
EX10.3 215
EX11.1 226
EX11.2 231
EX11.3 237
EX11.4 242

Modification analysis 21,116,
118, 124, 128

Modulo 61
Mold press 230
Mount request 188
Multiple chains 115
Multiple processors 177
Multiple server 52, 132
Multiprogramming level 23, 49,

95, 101, 115,163,177,181
Multiserver 156, 177, 199
MAP 43
MSS 188, 192
MV A 50
MVS 115, 163, 197

N

Network 5
Network delay 116
Node 28,178
Node parameter 216
Nonpreemptive 20
Nonpreemptive priority 31
Normal 17, 31
Number of cycles 57
Number of departures 107, 210
Number of events 84, 227
Number of tokens 108
Numeric identifier 151, 156, 200,

230

Numeric parameter 47, 56, 69, 75,
82, 89, 117, 138, 140, 145,
151, 156, 178, 199, 225, 230

Numerical 47, 56, 69, 76
NUMAS 43

O

Open chain 105, 116, 163, 200,
231

Open model 14,21,46,47,50,
52, 60, 130, 156, 225

Orientation station 235
Outbound message 25
OR allocate 34

P

Pacing 34
Packet 214
Paging 115
Panacea 43
Parallel processing 65,116
Parallelism 3
Parameter 3, 5, 8, 20, 164, 166,

171, 181, 189
Parameter estimation 3
Parameter space 199
Parameter value 127
Parametric study 91,100
Parking lot 136
Passive center 31
Passive queue 76, 178, 181, 188,

189,192,243
Passive resource 13, 52, 53, 55,

65, 105, 107, 136, 140, 141,
144,145,151,241

Path 28,47
Peak period 166,177
Performance measure 2, 5, 6, 8, 20,

21, 46, 48, 50, 52, 64, 66,

266 INDEX

71, 74, 91, 105, 107, 124,
127, 181, 204

Performance modeling 3
Performance prediction 114
Peripheral processor 100, 102
Point estimate 69,71
Polling 34, 214
Pool of tokens 32
Predicting parameters 108
Prediction 2, 21, 116
Preemptive priority 31, 169, 226
Preemptive-resume 20
Priority 20, 40, 52, 65, 141, 151,

152, 163, 169, 171, 188,
189,217

Priority queue 225
Priority scheduling 115
Probability 8, 15,41,47
Probability density function 17
Probability distribution 27,60,61
Probability distribution function 16,

61
Process of modeling 3
Process time 235
Processor sharing 20, 31, 163
PAWS 43
PERFORMS 43
PET 43
PNET 43
PRTY 20
PRTYPR 20
PS 20, 52

0

Q-GERT 43
Quantum 20, 83
Queue 2, 5, 13, 29, 30, 31, 47,

178
Queue dependent rate 13
Queue dependent server 52, 57,

81
Queue length 22, 46, 48, 50, 52,

64

Queue length distribution 52, 105,
127

Queueing discipline 19, 29, 31, 47,
65,108,163

Queueing network model 5, 6, 9
Queueing time 22, 46, 48, 50, 52,

64
Queueing time distribution 106,

107,127
QNA 43
QNAP 43
QNET4 43

R

Random 108
Random number 60, 61, 63, 66,

68, 70, 79
Random number generator 178,

181
Random output 60
Random result 108
Rate of arrival 131
Rate of service 25
Regeneration cycle 84, 227, 243
Regeneration state 72, 73, 74, 75,

83, 111, 156, 226
Regenerative method 70, 71, 73,

74, 75, 76, 83, 110, 145,
157, 190, 226, 236, 242

Relative 41
Relative degradation 202
Relative width 74, 78
Release 14,32,41,55,136,140,

145
Release node 107,216
Remote delay 202
Remote terminal 199,214
Repair 25
Repetition 84
Resource 1, 5, 6, 12, 13
Resource contention 5
Response time 107, 235
Response time distribution 52

INDEX 267

Result 8, 105
Retransmission 205
Rework 116
Robot 235,245
Rotational position sensing 116,

164
Round-robin 20, 31, 65, 82, 84
Routing 29
Routing decision 15, 40, 47, 52,

64,118
Routing predicates 108
Routing probability 46, 48, 60,

230
Routing statement 55
Run continuation 192
Run length 65, 67, 74, 91, 109,

115
Run limit 178
Run time 74
RESQ 8, 9, 43, 46, 48, 50, 130,

145

5

Sample 144, 145, 156
Sampling 107, 108
Sampling period 114
Satellite 204
Schedule 205
Scheduling algorithm 13, 19, 21,

27, 29, 47, 82
Seed 61, 68, 178, 181
Seek 189,190, 192
Semaphore 33
Sensitivity analysis 124
Sequential sampling 144,145
Sequential stopping procedure 158
Sequential stopping rule 74, 75,

84, 111, 114, 127, 190, 236,
242

Server 13, 30
Service center 13,29,40,47,48,

49

Service demand 3, 13, 21, 29, 115
Service pattern 13
Service rate 13, 31, 57, 102
Service request 1,2,20,47,60
Service time 31,46,47,48,60,

63, 64, 119, 158, 217
Service time distribution 16, 31,

41, 52, 108
Set node 40, 144, 145, 151, 156,

156, 188, 216, 225
Shared memory units 177
Sharing 86
Simulation 5, 6, 8, 21, 31, 51, 52,

53, 55, 60, 64, 78, 82, 84,
106, 107, 108,115, 128,
130, 142, 144, 146, 151,
153, 158, 161, 169, 171,
188, 204, 225, 227, 238,
242

Simulation accuracy 109,110
Simulation run length 169
Simultaneous 33
Simultaneous execution 41
Simultaneous linear equations 48
Simultaneous resource possession

14, 41, 52, 53, 65
Single resource model 52
Single service center model 13
Sink 46, 47, 52
Skills of modeling 21
Slot 205
Small sample problem 114,127
Software monitor 2, 108
Solution techniques 21
Source 46,47, 52, 151, 190
Source of arrivals 116
Sources of error 107, 115
Spectral method 70, 74, 75, 178
Split 29
Split node 216
Stage operation 188
Staging adapter 189,192
Standard deviation 106
State 60
Statistical experiment 60

268 INDEX

Statistical variability 66, 68, 69,
108, 115

Statistics 8
Status 64
Steady state 60, 66, 109
Stepwise refinement 81,84
Stopping criteria 114
Store-and-forward 204
Structure 7
Structure clarification 81
Structure of a model 41
Submodel 22, 39, 53, 56, 75, 80,

81, 82, 83, 84, 85, 88, 90,
100, 102, 103, 178, 188, 215

Submodels
RRQUEUE 86

Substitution 76, 81
Supermarket 156, 161
Supernet 43
Swapping 115
Symbol 3
Symbols 28
Synchronization 33, 241, 242
Synchronize 141
System 1, 8
System configuration 124
System design 108,114,115
System memory model 197
System memory units 178
System performance 2, 6
System resource 2
System state 107,111
System tuning 115
SCERTII 43
SIMAN 42
SIMSCRIPT 42
SLAM 42
SNAP 43
SNAP/SHOT 43
STEP-1 43

T

Tape drive 115
Terminal controller 215
Terminals 20, 23, 41, 116
Think time 25, 164, 216
Throughput 22, 46, 48, 50, 52, 56,

64, 105, 119, 181, 210, 221
Tightly coupled 116
Time frame 205
Time scale 91
Token 14, 32,41, 55, 107, 136,

140, 144, 151, 217, 236
Tool failure 25, 225, 245
Top-down 22
Trace 115
Trace data 31,60
Traffic light 140
Transaction processing workload

23
Transfer unit 25, 225, 230
Transient 61, 66, 68, 70, 71
Transient solution 109
Transmission rate 25
Transmission schedule 205
True value 66, 69
Types of models 11,13
TSO 115, 163, 164, 166, 169, 171
TSO workload 23

U

Uniform 17,31
Uniform distribution 156
Utilization 22, 46, 48, 50, 52, 63,

105, 119, 153, 158, 166,
171, 181, 221

V

Validate 163
Validation 114, 128
Variability 88

INDEX 269

Vector notation 89
Visit ratio 48, 50, 116,
VM 115
VM Predictor 43

W

Wait 36
Waiting 105
Waiting line 2, 5, 13

Window flow control 215
118 Work demand 31

Work demand distribution 16
Workload 2, 115, 124, 163, 177
Workload characterization 21

X

XL 43

c

