
COMPUTER
SYSTEMS

PERFORMANCE
MODELING

Charles H. Sauer / K. Man i Chandy

Creative Commons Attribution-Noncommercial-No Derivative Works
3.0

United States

http://creativecommons.org/licenses/by-nc-nd/3.0/us/

This book was previously published by Pearson Education, Inc

http://creativecommons.org/licenses/by-nc-nd/3.0/us/

COM PUTER SYSTEM S
PERFORM ANCE M ODELING

Charles H. Sauer
IBM Thomas J. Watson Research Center

K. Mani Chandy
The University of Texas at Austin

Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

Library o f Congress Cataloging in Publication Data

Sauer, Charles H.
Com puter system s perform ance m odeling.

(Prentice-Hall series in advances in com puting
science and technology)

Bibliography : p.
Includes index.
1. Electronic digital com puters—Evaluation.

2. Queueing theory. I. Chandy, K. Mani, joint author.
II. Title. III. Series.
Q A 76 .9 .E 94S28 0 0 1 .6 4 80-21439
ISBN 0-13-165175-7

Prentice-Hall Series in Advances in Computing Science and Technology
Raymond T. Yeh, editor

©1981 by Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632

All rights reserved. No part of this book
may be reproduced in any form or
by any means without permission in writing
from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2

Editorial production/supervision: Nancy Milnamow
Cover design: Edsal Enterprises
Manufacturing buyer: Joyce Levatino

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall of Canada, Ltd., Toronto
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

To Caroline and Elizabeth, Jean and Christa

CONTENTS
PREFACE IX

1

INTRODUCTION
1.1 Need for Performance Evaluation. 1
1.2 Performance Evaluation Methods. 2
1.3 Survey of Case Studies. 4

1

2

GENERAL PRINCIPLES 13
2.1 Service Time Distributions. 13
2.2 Scheduling Algorithms. 20
2.3 Relationships between Distributions

and Scheduling. 24
2.4 Relationships between Performance Measures. 26
2.5 Further Reading. 29
2.6 Exercises. 29
2.7 Summary of Chapter Notation. 29

MARKOVIAN QUEUEING MODELS OF COMPUTER SYSTEMS 30
3.1 Difficulty of Finding Tractable Representations

of Computer Systems. 30
3.2 Markov Processes. 32
3.3 Sparse Matrix Solutions. 41
3.4 Exponential Stages Representations of Distributions. 46

*3.5 Recursive Solution Methods. 50

‘Asterisks indicate sections are of a relatively advanced na
ture. These sections may be skipped without significant loss
of understanding of the remaining material.

3

V

VI CONTENTS

3.6 Further Reading. 57
3.7 Exercises. 57
3.8 Summary of Chapter Notation. 58

ISOLATED QUEUES AND OPEN NETWORKS OF QUEUES
4.1 Isolated Queues. 60
4.2 Open Networks of Queues. 78
4.3 Further Reading. 83
4.4 Exercises. 83
4.5 Summary of Chapter Notation. 85

5

CLOSED PRODUCT FORM QUEUEING NETWORKS 86
*5.1 The Theory of Local Balance. 86
*5.2 Networks. 91
*5.3 Non-exponential Service Times. 98
*5.4 Some Important Local Balance Systems. 100
*5.5 Properties of Closed Local Balance Networks. 101
5.6 An Introduction to Closed Networks. 115
5.7 Computational Algorithms. 124
5.8 Exercises. 163
5.9 Summary of Chapter Notation. 164

6

APPROXIMATION 165
*6.1 Introduction. 165
*6.2 System Characteristics which Suggest

Approximate Solution. 172
*6.3 Flow-equivalent Aggregation. 175
*6.4 Approximation Extensions to Local

Balance Algorithms. 185
*6.5 Diffusion Approximation. 187
*6.6 Further Reading. 193
*6.7 Exercises. 193

7

SIMULATION
7.1 Construction of Simulation Programs. 195
7.2 Statistical Analysis of Simulation Results. 213
7.3 Simulation of General Queueing Networks. 234

*7.4 Definition and Simulation of
Extended Queueing Networks. 264

*7.5 Response Time Distributions. 278
7.6 Further Reading. 280
7.7 Exercises. 281

CONTENTS

8

MEASUREMENT AND PARAMETER ESTIMATION
8.1 Measurement and Related Methods for

Existing System Parameters. 283
8.2 Parameters for System Modifications. 288
8.3 Further Reading. 289

9

CASE STUDIES
9.1 A Simple Batch System Model. 290
9.2 An Evaluation of Multiprocessor Systems. 295
9.3 A Data Management System Model. 307
9.4 A Model of an Interactive System. 313
9.5 The VM/370 Performance Predictor. 319
9.6 Computer Communication Models. 325
9.7 Exercises. 328

10

MANAGEMENT OF MODELING PROJECTS
10.1 The Manager’s Viewpoint. 329
10.2 Evaluation of Modeling Technology. 333
10.3 Organizational Structure. 337
10.4 In-house Training. 340

vii

194

283

290

329

BIBLIOGRAPHY

viii
341

CONTENTS

INDEX
351

PREFACE

If a computer system is to be used as intended, it must have
"acceptable" performance, e.g., response times must be "small." It is
common, but unfortunate, that performance is not seriously considered until
the later stages of system evolution and that many systems have unaccepta
ble performance when completed. By then, there will be relatively few
avenues available to improve performance and the most frequently chosen
will be to acquire additional hardware. Though the cost of computing has
dropped sharply, both in the last few years and the time since electronic
computers became available, computer systems are not free and almost
certainly never will be.

If performance is to be considered in the design and development
stages of a system, modeling must be used because the system is not yet
operational, and thus its performance is not measurable. Though modeling
is relatively well understood by researchers in the area and those with the
mathematical background required by much of the literature, it is not widely
understood. The purpose of this book is to make modeling methodology
accessible to a wide audience of system designers, system developers and
others who would benefit from modeling. As far as possible, we avoid
sophisticated mathematics and deal with modeling on an intuitive basis.
Some portions of the book require familiarity with elementary calculus and
linear algebra. We do assume the reader has a thorough understanding of
computing systems and programming.

The basic format of the book is to introduce the concepts of modeling
in Chapters 2-8 and then to examine the practical application of these
concepts in a series of six case studies in Chapter 9. In addition to more
specific motivation for and description of modeling, the introductory chapter
gives a brief overview of each of these case studies. Chapter 2 discusses
general principles required for understanding of the remainder of the book.
Modeling is heavily dependent on probability theory, and this chapter
introduces some elementary concepts from probability theory as well as
some other concepts fundamental to modeling. Chapter 3 is devoted to
Markov processes, a basic tool for algebraically or numerically obtaining
performance measures from models. A dominant factor in computer sys
tems performance is queueing for system resources. Thus we focus our
attention of models which consist of a network of queues (for system re
sources). Queueing networks are introduced in Chapter 3. Chapter 4

IX

X PREFACE

focuses on queues in isolation and on a particularly simple kind of networks,
open networks. In open networks, the number of "jobs," the term used for
the entities contending for resources, is potentially infinite. Though that
may be realistic for some systems, particularly communication systems,
closed networks, which have a limited population of jobs, are usually more
appropriate as computer system models. Closed networks are more complex
than open networks because of the stronger interactions between queues.
Chapter 5 discusses both the mathematics required for obtaining perform
ance measures for closed networks and the appropriate computational
algorithms. In Chapters 3-5, the queueing networks have certain restricting
assumptions which are necessary for exact solutions for performance meas
ures. When these assumptions are unacceptably unrealistic, we must either
use approximations (Chapter 6) or simulation (Chapter 7) to obtain per
formance estimates. The chapters prior to Chapter 8 assume that the input
parameters to the models are given. In Chapter 8 we briefly cover methods
for obtaining input parameters for models. Chapter 10 covers the manage
ment of modeling activities.

In addition to being a guide for the audience of practicing systems
designers and developers, this book is intended as a text for an introductory
(senior or first-year graduate) course in performance modeling and as
supplementary reading for graduate systems courses. Portions of the mate
rial in this book have been used at the University of Texas at Austin in
courses titled "Systems Modeling I" and "Advanced Operating Systems." In
an introductory modeling course it is not necessary, or intended, that the
book be covered strictly sequentially. In particular, the simulation material
(Chapter 7) should be spread out over as much of the course as possible
(concurrently with other material) once the first two chapters have been
covered. Some of the case studies do not depend strongly on the preceding
chapters. For example, the multiprocessor system study (Section 9.2) can
be covered once Chapter 3 is finished, and the batch system study (Section
9.1) is primarily dependent on Chapter 3 and the first part of Chapter 8.

An instructor using this book is encouraged to skip sections or add
supplementary material, depending on the particular situation and students.
Section 3.5, Sections 5.1-5.5, Sections 5.7.2 and 5.7.3, Chapter 6, Sections
7.4 and 7.5 and some of the case studies are likely candidates for omission.
An instructor may wish to supplement Chapters 2 and 3 with material from
texts in probability theory such as DRAK67 or FELL68. The exercises
given are fairly closely tied to the material discussed. Other exercises
inspired by the students’ background, e.g., local computing systems, are
strongly encouraged. Except in Chapters 3 and 7, we have not included
exercises involving computer implementation, partly to avoid language
dependent exercises. However, such exercises will often be appropriate
with some of the other chapters, particularly 4 and 5.

PREFA CE xi

In Chapters 3 and 7 we have used PASCAL programs [JENS74] to
illustrate numerical and simulation techniques. (These programs should be
understandable to those familiar with other block structured languages, e.g.,
PL/I, even if they are not familiar with PASCAL.) We have used

standard" PASCAL entirely, and have tested these programs on both IBM
370 series and CDC 6000 series equipment. The program listings have
been machine generated to avoid typographical errors. Most of the example
output of the programs was the same for either the 370 or 6000 series
equipment. However, in a few of the simulations the differences in numeri
cal precision have a noticeable effect. The reader may not be able to
precisely duplicate the program output, but should be able to obtain similar
results.

Though we have covered the material which we consider most impor
tant in performance modeling of computer systems, and suggest further
reading on these topics, there are a number of topics we have ignored.
Most of these are covered in Current Trends in Programming Methodology
Volume III: Software Modeling, edited by K.M. Chandy and R.T. Yeh and
also published by Prentice-Hall. In discussing queueing network models we
have taken a fairly traditional approach, neglecting the more recent and
somewhat controversial "operational" approach. The operational approach
is still in its infancy and not nearly as general as more traditional
("stochastic") approaches, at least at present. We refer readers interested
in operational analysis to DENN78 and SEVC79.

ACKNOWLEDGEMENTS

We are grateful for the support of the Computer Sciences Departments
of the University of Texas at Austin and the IBM Thomas J. Watson Re
search Center in preparing this book. We would like to thank K.V. Karl-
strom for his initial suggestion that we write the book and for his continuing
editorial support.

A number of persons have contributed corrections and suggestions for
improvement, especially Y. Bard, E.A. MacNair, D.F. Towsley and R.T.
Yeh. We are also grateful to past and present colleagues and students for
their collaboration in work discussed here. Thanks are also due to M.B.
Bollard, B. Brown, D. Davis and B.A. Smalley for their typing of portions of
the manuscript.

Finally, we thank the following authors and publishers for granting
permission for republication of the cited material.

PREFACExii

Cover figure, pages 11 and 12 and Section 9.6 based on L. Klein-
rock, "Analytic and Simulation Methods in Computer Network
Design" Proc. Spring Joint Computer Conference 36 (AFIPS Press,
Montvale, New Jersey, 1970), 569-579.

Pages 5 and 6 and Section 9.1 based on W. Chiu, D. Dumont and
R. Wood, "Performance Analysis of a Multiprogrammed Comput
er System," IBM J. o f Research and Development 19 (May 1975),
263-271. Copyright 1975 by International Business Machines
Corporation; reprinted with permission.

Pages 7 and 21-24 and Section 9.2 based on C.H. Sauer and
K.M. Chandy, "The Impact of Distributions and Disciplines on
Multiple Processor Systems," Communications o f the ACM 22
(January 1979), 25-34. Copyright 1979, Association for Com
puting Machinery, Inc., reprinted by permission.

Pages 7 and 8 and Section 9.3 based on J.C. Browne, K.M.
Chandy, R.M. Brown, T.W. Keller, D.F. Towsley and C.W.
Dissley, "Hierarchical Techniques for Development of Realistic
Models of Complex Computer Systems," Proc. IEEE 63, (June
1975), 966-975. Copyright © 1975 by the Institute of Electrical
and Electronics Engineers, Inc.

Pages 9 and 10 and Section 9.4 based on R.M. Brown, J.C.
Browne and K.M. Chandy, "Memory Management and Response
Time," Communications o f the ACM 20, 153-165 (March 1977).
Copyright 1977, Association for Computing Machinery, Inc.,
reprinted by permission.

Page 11 and Section 9.5 based on Y. Bard, "The VM/370 Per
formance Predictor," Computing Surveys 10, (September 1978),
333-342. Copyright 1978, Association for Computing Machin
ery, Inc., reprinted by permission.

Pages 124-163 based on K.M. Chandy and C.H. Sauer,
"Computational Algorithms for Product Form Queueing Net
works," Communications o f the ACM 23, 10 (October 1980).
Copyright 1980, Association for Computing Machinery, Inc.,
reprinted by permission.

Chapter 6 and Section 9.5 based on K.M. Chandy and C.H.
Sauer, "Approximate Methods for Analysis of Queueing Network
Models of Computer Systems," Computing Surveys 10,

PREFACE xiii

(September 1978) 263-280. Copyright 1978, Association for
Computing Machinery, Inc., reprinted by permission.

Quotation on page 196 from D.E. Knuth, The Art o f Computer
Programming Volume 2: Seminumerical Algorithms, (Addison-
Wesley Publishing Co., Reading, Massachusetts, 1969), p. 5.

CHAPTER 1

INTRODUCTION
1.1 NEED FOR PERFORMANCE EVALUATION

Our most important concern with a computer system is that it correctly
perform its intended functions. By "computer system" we may mean an
entire computer facility or some subset of that facility, e.g., an operating
system, a data base system or a particular application program. Thus
"intended function" may be quite general or fairly specific.

Usually our second concern with a computer system is that it have
"adequate" performance at a "reasonable" cost. (We may have roughly
comparable concern for reliability, security and other aspects of the system,
depending on intended functions.) Definitions of "adequate performance"
and "reasonable cost" may be explicitly or implicitly given, and the defini
tions will usually be determined largely by the intended functions. Someone
using a text editor or a word processing system may reasonably expect
"instantaneous" response to all but a few commands. A user of a data base
system, e.g., for travel reservations, may tolerate somewhat slower response
but will find the system unacceptable if typical response times are more
than say 10 seconds and unusable if response times are much longer than
that. On the other hand, a programmer requiring compilation of a signifi
cant program may well be willing to wait several minutes without complaint.

It is unfortunately, and unnecessarily, the case that performance and
cost are given little consideration until late in the development of most
computer software systems. The developers’ thoughts may be that "If the
performance isn’t adequate, we can always use a faster CPU or more
memory or more disks to get adequate performance." There are numerous
examples of systems which have gone through their entire development with
little consideration for performance and which had totally unacceptable
performance when complete. If one ends up with unacceptable performance
with a reasonable amount of hardware, then the only options are to aban
don the system entirely (which happens too frequently) or to go through
redesign and redevelopment phases until the system is acceptable. Either of
these options is much more expensive than a design and development
process which explicitly considers performance.

The objective of this book is to describe performance estimation
methods that can be used throughout the evolution of a computer system: to
reject infeasible alternatives in the early design stages, to guide the develop

1

2 INTRODUCTION / CHAP 1

ment process, to suggest hardware and software configurations when the
system is complete and to guide redesign and redevelopment when function
al changes are required. We cannot hope to describe the integration of
performance evaluation in each of these system evolution phases. What we
will do is describe methods that can be used in all of these phases and then
examine a number of published studies of the application of the methods to
computer systems in various stages of evolution.

1.2 PERFORMANCE EVALUATION METHODS

The obvious approach to evaluation of system performance is to direct
ly measure that performance, either with hardware dedicated to measure
ment or with code embedded in software to obtain performance estimates or
a combination of hardware and software. Direct measurement is both
accurate and credible. We distinguish between accuracy and credibility
because the approaches we discuss are capable of sufficient accuracy for
their intended use but may not be credible to those who do not understand
them. This lack of credibility is perhaps the-principal liability of the ap
proaches we advocate. Hopefully, this book will make these approaches
accessible to a broad audience and thus make them more credible.

There are two major problems with measurement: First, measurement is
not feasible in the design and development stages of the system; the system
is not measurable if it is not operational. Second, measurement of most
systems is a complex activity which involves considerable human and ma
chine costs. How do we set up the measurement experiments? Do we use a
"live" workload, not knowing whether that workload will be representative
of the typical operating conditions, or do we try to use a controlled work
load, e.g., a benchmark or synthetic workload, which we think represents
typical usage? How do we attach the measurement tools to the system to
get our desired estimates? In any case we are likely to need a large amount
of dedicated time on the computer system and may require significant
processing of the output of the measurement data to get it into meaningful
terms, especially if we are using a software tool for measurement. We will
discuss measurement in more detail in Chapter 8. We should point out now
that measurement may well be the most appropriate approach, in fact a
necessary approach, if we are trying to "tune" a system for "optimal"
performance once we have obtained adequate performance.

Modeling should be used when measurement is intractable. We devise
a model that captures the main factors determining system performance,
determine performance measures in the model and use these measures from
the model as estimates of performance of the actual system. Depending on
how we plan to determine performance measures in the model, the model
may seem very abstract relative to the actual system or may be a very

SEC. 1.2 / PERFORM ANCE EVALUATION METHODS 3

detailed representation of the actual system. Generally, the more detailed
the model, the less manageable it is and the more human and machine
expense will go into obtaining its performance measures. However, as we
will see, very abstract and seemingly simplistic models can provide relatively
accurate estimates of system performance.

In the design of a system we do not need very accurate estimates; we
are much more interested in rejecting terrible designs (from a performance
viewpoint) than in selecting a "best" design. In the design stages we cannot
produce a very detailed model because we do not know the details of the
design. However, we may find very simple models helpful in the design
process. These models may be so simple that we can construct them and
obtain performance measures by hand; certainly the computational costs are
negligible and the principal cost is the learning necessary to be able to
construct the model. The cost savings are enormous if we can determine at
the design stage that a particular design cannot give adequate performance
rather than waiting until the system is operational to make this same deter
mination.

(We do not mean to imply that model performance measures are
usually determined by hand or even by writing a new program for each
model. Usually one would use existing software written for modeling
purposes. We will describe the algorithms peculiar to such software in
sufficient detail, including example programs, that the reader will be able to
construct modeling software. For discussion of existing software, see
SAUE78a.)

As we proceed from the design stages to development of the system,
we obtain more detailed designs. From these new designs we can develop a
more detailed model and can use this model to gradually eliminate inappro
priate designs until we settle on the final design. If the system of interest is
an operating system or major piece of system software, then we may use
this model in configuring specific installations of the software, i.e., to
determine hardware requirements, file placement, etc. Once the system is
operational, we may use measurements to correct deficiencies in the model.
The model can then be used to configure other installations with greater
confidence (and credibility) and, if functional changes are required, the
model can be used in redesign and redevelopment.

The evolution process we have described may seem somewhat ideal
ized, but it is not unrealistic; these stages can be recognized whether or not
performance is considered. There are likely to be iterations through the
stages as functional specifications change and as performance problems are
encountered. Incorporation of performance evaluation, particularly per
formance modeling, can greatly decrease both the number of iterations

4 INTRODUCTION / CHAP. I

caused by performance problems and the expense of discarding designs
which have unacceptable performance. Once the methodology is under
stood, incorporating modeling in the evolution process is inexpensive,
especially when one considers the potential savings.

1.3 SURVEY OF CASE STUDIES

In Chapter 9 we will study in some detail six published examples of
computer system performance models; Chapters 2-8 will provide the neces
sary background for full understanding of these models. Of the six models,
the results of five have been carefully compared with measurements and
shown to give sufficient accuracy for the intended use of the model. (The
definition of "sufficient accuracy" depends on the stage of evolution of the
system, as we suggested before.) The sixth model was used to evaluate some
hypothetical multiprocessor systems proposed in the literature. Of the five
models of implemented systems, two of the models were constructed in the
design stages of the systems and used throughout the evolution of the
systems. Of the remaining three, all of which were constructed after the
systems were operational, two were constructed as research efforts in
modeling methodology; the third is widely used in configuring specific
installations of the system.

We are about to give a brief summary of the characteristics of the
modeled systems and of the structural characteristics of the model, but first
a few comments about characteristics common to these models and most
models used in practice. A major aspect of most modern computing systems
is the sharing o f resources. The classic illustration is the multiprogrammed
operating system. Put simply, the objective of multiprogramming is to have
one program’s use of a processor overlap with other programs’ use of I/O
devices so that several programs may share the machine, with each making
progress similar to the progress it would make if it had sole use of the
machine. This sharing of resources reduces the cost attributed to each
program, i.e., if a program has sole use of the machine, it must be charged
for the idle time of resources as well as the busy time. In the idealized
multiprogramming system, programs are only charged for the time spent
using resources. However, the sharing of resources inherently causes
contention for resources', if two programs need the processor, one must wait.
In a well designed system, the gains due to sharing more than make up for
the losses due to contention. But the contention for resources is usually a
very significant factor in performance and the most difficult performance
factor to quantify. Relatively speaking, if there is no resource contention,
then performance evaluation is usually simple. Our attention is thus focused
on resource contention, and most of our performance models may be char
acterized as networks o f queues or queueing networks. The models principally
consider the queues associated with resources and the interactions between

SEC. 1.3 / SURVEY OF CASE STUDIES 5

resources and their queues. We define a queue associated with a resource
to be the entities (e.g., the programs) waiting for or using the resource.
(Note that some resources, e.g., memory, consist of many homogeneous
units and many entities may simultaneously use units of the resource.)

Our other general comment is that performance evaluation is an art, not
a science. This is true with measurement as well as modeling. In construct
ing a model, particularly in deciding which system characteristics to consider
and which to ignore (it is usually impractical to consider all system charac
teristics), we must rely heavily on intuition and use methods which are not
particularly rigorous. Unlike sciences where we strive for very precise
characterizations, we must recognize that the complexity of the systems
precludes great precision within practical limitations of cost and time. Our
model structures may very well be influenced by pressures from those who
will use its results, e.g., designers, implementors, purchasers, administrators,
and users of the computer system. Though we will devote most of our
attention to rigorous methods for solving a model, i.e., obtaining its per
formance measures, there are situations where rigorous solution methods are
impractical and/or prohibitively expensive, especially when we need to solve
a model repeatedly for different parameter values. In Chapter 6 our atten
tion will be focused on methods appropriate to this common situation.
These methods are practical and inexpensive, and are inspired by rigorous
results, but are heuristic in actual application.

Figure 1.1

1.3.1 A Simple Batch System Model

Figure 1.1 depicts a queueing network model which can be used effec
tively to estimate system throughput and device utilizations of simple batch
systems. We will refer to this network as a cyclic queue model because of
the cycling of programs between the two queues representing the CPU and
the disks. Such networks have been used as models of non-computer
systems for decades. An early proposal of this network as a computer
system model is found in GAVE67. We will look at the cyclic queue model
as used by Chiu et al to evaluate the performance of an IBM 360/75

6 INTRODUCTION / CHAP. 1

running the standard OS/MVT operating system at the University of Cali
fornia, Santa Barbara [CHIU75], Only four parameters, the degree of
multiprogramming, the average CPU service time (between a program’s
successive I/O activities), the number of disks, and the average disk service
time (positioning and transfer), were used to describe this model in
CHIU75, yet the model results agreed well with measurements. There are a
number of assumptions implicit in the structure of the model and the choice
of parameters and these assumptions are not immediately justifiable, but
most of these assumptions have little effect on model results. Some of the
assumptions are that (1) The degree of multiprogramming is essentially
constant and determined by memory contention. Thus whenever a program
finishes, it is replaced immediately by another. (2) The programs are
homogeneous, i.e., we cannot distinguish their behavior. (3) The disks are
equivalent, with a single queue for all accesses. (4) Scheduling may be
treated as if it were First-Come-First-Served. (5) Successive CPU service
times are independent and may be characterized by the exponential probabil
ity distribution (probability distributions are defined in Chapter 2). Similarly
for disk service times. CPU and disk times are independent. (6) Programs
do not overlap CPU and disk activities. (7) There is no memory interfer
ence between the CPU and disks. The list of assumptions could go on and
on, depending on the level of detail we wish to consider.

The solution of this model depends on its characterization as a Markov
process. Markov processes are key to most of our solution methods; they
will be introduced in Chapter 3. We characterize the model by the possible
combinations of programs at the CPU and disks. If the degree of multipro
gramming is TV, then there are TV+ 1 such combinations: TV programs at the
CPU and 0 programs at the disks, TV—1 programs at the CPU and 1 pro
gram at the disks, etc. From these combinations we can obtain a set of
TV+1 linear equations which can be solved to obtain the probability of each
combination, i.e., the fraction of time that the system has that combina
tion of programs at the CPU and disks. Performance measures can then be
obtained from these probabilities. For example, the CPU utilization is the
sum of the probabilities of the combinations with at least one program at
the CPU. Thus, if the degree of multiprogramming is not enormous, obtain
ing performance measures for this model is trivial. Further, we don’t really
have to numerically solve the linear equations in this case because of some
algebraic simplifications which result in a product form solution. As we will
see in Chapters 4 and 5, the product form solution exists for some very
complex models. Where the product form solution exists, we can find
simple algorithms for obtaining performance measures, even when the
number of equations is enormous.

SEC. 1.3 / SURVEY OF CASE STUDIES

1.3.2 An Evaluation of Multiprocessor Systems

7

Though multiprocessor systems have been moderately popular for
years, there has been an enormous increase in interest in multiprocessing
because of the increasing availability of inexpensive small processors. There
have been many published studies of uniprocessor system performance, but
few of multiprocessor systems. In SAUE77b we examined performance
effects of multiprocessor systems as compared to uniprocessor systems. Our
objective was to study the effects of a variety of parameters and assump
tions, particularly the number of processors, the degree of multiprogram
ming, relative balance between CPU and I/O services times, scheduling
algorithms (including priorities) and characterization of service times by
various probability distributions. Most of the models we used were varia
tions on the cyclic queue model of Figure 1.1. Most of the models could be
represented as Markov processes and solved as such. For one scheduling
algorithm this was not possible and we used simulation. In a simulation
solution, one constructs a program which behaves like the model and meas
ures the behavior of that program. We will look at simulation from a
queueing network point of view in Chapter 7.

1.3.3 A Data Management System Model

The Advanced Logistics System is a very large data management
system developed by the United States Air Force. During the design of the
system, Browne, Chandy and four other consultants developed two models
which were used to guide the development and hardware selection
[BROW75], The primary model was a complex hierarchical queueing
network model; its results were initially corroborated by a companion
simulation model (well before the system was operational). At the time the
model was constructed, the planned hardware included two CDC Cyber 70
mainframes, each with CPU, central memory and peripheral (I/O) proc
essors. The two mainframes shared over a million 60 bit words of memory,
approximately 100 disks for the data bases, eight disks for system and
scratch files and 24 tape drives. The queueing network model began with
four submodels: one for the CPU’s, one for the central memories and
shared memory, one for the data base disks, and one for the system/scratch
disks and for the tape drives. The heuristic aggregation of the results of
these models yielded the queueing network model of Figure 1.2. The
modeling process is termed hierarchical because of the two levels of models.
Though the network of Figure 1.2 is structurally more complex than the
cyclic queue model, particularly in the detail of the I/O systems, there is
much in common between the two models, both in terms of assumptions
made and solution methods. The numerical solution of the network of
Figure 1.2 has negligible computational cost. This model predicted that the
proposed system was inadequate because of insufficient capacity in the

8 INTRODUCTION / CHAP. 1

system/scratch disk subsystem, and that, if sufficient system/scratch disk
capacity were obtained, performance would still be inadequate because of
insufficient CPU capacity. Both of these predictions were confirmed by
subsequent operational experience and measurements. The entire modeling
effort, including construction, solution and documentation of both the
queueing network and simulation models, required two months for the six
consultants to complete.

SEC. 1.3 / SURVEY OF CASE STUDIES

1.3.4 A Model of an Interactive System

9

The queueing network model of Figure 1.3 is representative of a
variety of models which have been used to evaluate the performance of
general purpose interactive systems [BRAN74, BOYS75, BROW77]. We
will look at the model in BROW77 of an interactive system at the Universi
ty of Texas at Austin. At the time of the modeling effort, the system
consisted of a CDC 6400 running a locally written operating system and
using a large, non-executable core memory as a swapping device. Though
the cyclic queue model and similar networks can be used successfully to
estimate utilizations of processors and disks and to estimate throughput, it is
difficult to use such a model to estimate response time. Such models pro
vide estimates of the time a program spends in memory, but cannot provide
estimates of the time spent waiting for memory, a significant portion of
response time. The model of Figure 1.3 considers contention for memory
explicitly rather than implicitly, and also considers the varying load on the
system due to the time users spend thinking and typing.

There is no convenient algebraic solution of the linear equations for
this network and the number of equations will be quite large, even when the
number of users is moderate, say 30. Exact numerical solution of the
equations is impractical because of the memory and processing required.
However, without the memory contention, a product form solution would
exist. Using results from product form networks, we can obtain a conven-

10 INTRODUCTION / CHAP. 1

ient solution to the network of Figure 1.4. The solution of that network
can be used in a hierarchical (heuristic) manner to obtain a network of the
form of Figure 1.5, where the service times at the "composite queue"
depend on the queue length. The solution of that network is also convenient
and will give response time estimates similar to those of the network of
Figure 1.3 at negligible computational cost.

SEC. 1.3 / SURVEY OF CASE STUDIES

1.3.5 The V M /370 Performance Predictor

1 1

VM/370 is a general purpose operating system for the IBM 370 series
of computers. VM/370 provides a Virtual Machine Monitor [BUZE73]
which is a special kind of operating system which gives each user the im
pression of having their own 370. Each user may run their own copy of the
CMS uniprogramming interactive system or a conventional operating system
(e.g., OS/MVS) in their "virtual 370". The VM/370 Performance Pre
dictor [BARD77b, BARD78a] is a software package based on a queueing
network model similar to that of Figure 1.3. Some of the principal differ
ences are that each user may have entirely different characteristics (unlike
the homogeneity of users assumed in BROW77) and that paging must be
considered. The solution approach is similar to that of BROW77 but is a
three level process, with the third level considering the I/O systems, and
involves iterative solution of the three levels until certain consistency
criteria are satisfied. (Since hierarchical solutions are usually heuristic, we
may observe, and attempt to correct, inconsistencies in the performance
measures.)

Figure 1.6

12 INTRODUCTION / CHAP. 1

1.3.6 Computer Communication Models

One of the most influential computer networks is the ARPANET
linking facilities at universities and research centers in North America,
Hawaii and Europe. In studying the performance of the ARPANET, queue
ing models have played a central role [KLEI70]. In addition to evaluating
the performance of the individual computer systems, we must consider the
effects of messages sent between computer systems. When a user is physi
cally connected to one computer but logically using another, a principal part
of the user’s response time will be the transmission delay of messages sent
between the computers. In addition to such "user traffic" there will also be
significant traffic of messages used to control the network and maintain
coordination of the computers. The cost of the communication links will be
a significant portion of the cost of using the network. A principal use of
the queueing network model will be to ensure appropriate utilization of the
communication links. Figure 1.6 depicts a queueing network model of a
hypothetical subset of ARPANET. As with the cyclic queue model, a
number of strong assumptions are usually made to allow a convenient
solution, but the results of the model for link utilizations and average
response time agree well with measurements.

CHAPTER 2

GENERAL PRINCIPLES
2.1 SERVICE TIME DISTRIBUTIONS

In modeling many resources of a computer system, we may be princi
pally interested in the service times of programs which use the resources.
(Aside — From an operating systems point of view we might use "process"
or "task" instead of "program." From a queueing theory point of view we
might use "customer" or "job" instead of "program." Generally we will
assume all of these terms are synonymous and use "job.") For example, if
the resource is a processor, a program’s service time will consist of execu
tion of instructions and the amount of time spent will be determined
(principally) by the particular instructions executed, the processor times for
these instructions, I/O requirements and memory management, if the system
has virtual memory. If the resource is a moving head disk, then a program’s
service time will consist of a positioning time and a transfer time, and the
amount of time will be determined (principally) by the distance (if any) the
arm must move, the mechanical speed and the amount of information to be
transferred.

All of the determining factors in the above examples are measurable
(or observable) and in a sense deterministic. Thus we could include these
factors directly in a model,at least conceptually. Such an approach would
usually be totally impractical. We will pursue the issue of practicality in
future chapters, especially in Section 3.1. It is usually appropriate and
practical to characterize service times as random phenomena. The purpose
of this section is to informally defend the claimed appropriateness and to
describe the characterizations we will use in all of our models.

If we observe service times without directly observing the determining
factors of those times, then the service times will usually appear to be
random, i.e. unpredictable. For example, if we are observing disk service
times, the initial position of the arm which holds the heads and rotating
platters is unpredictable (without very detailed knowledge). The required
position of the arm and platters is, perhaps, more predictable, but still
unpredictable without detailed knowledge. The amount of data transferred
is especially unpredictable (unless transfers are always a full buffer of fixed
size). For processor times, the instruction paths will usually depend heavily
on (unpredictable) data. (In a virtual memory system, the processor times
will also depend heavily on memory management which may, in turn,

13

depend heavily on the behavior of the entire multiprogramming set of
programs.)

Though service times are not predictable, that does not mean we
cannot characterize them. For example, we can observe many service times
and compute the average service time. This simple characterization is
sufficient for many of our models. However, for proof of this statement
and for some models we must consider more detailed characterizations.

The most detailed characterization we consider is that of a probability
distribution, an assignment of probabilities to possible values or continuous
intervals of possible values. We assume that distinct service times are
independent and identically distributed. Though this is not always realistic, it
is usually reasonable. Consideration of dependencies is beyond the scope of
this book. When we say "identically distributed", we do not mean that
CPU and I/O service times have the same distribution nor do we necessarily
mean that all jobs have the same CPU service time distribution, etc.

Let us first consider the case where there is a finite set of possible
values. In this case we can simply enumerate the possible values and
perhaps display them graphically as in Figure 2.1.

14 GENERAL PRINCIPLES / CHAP. 2

Here P(x) is the probability of value x. (Informally we may define
probability" as "relative frequency." There is a close formal relationship

between the two terms.) We must have 0 < P(x) < 1 for all jc and
2 P{x) = 1.

Usually it is inconvenient to work with distributions directly; we prefer
simple characterizations. The most important of these is the mean or
expected value which corresponds to the average value in less formal termi
nology. The mean is written E[x\ and defined by

SEC. 2.1 / SERVICE TIME DISTRIBUTIONS 15

E[x] =]T xP(x)
X

For the distribution of Figure 2.1

E[x] = 1.3x.3 + 2 x .5 + 2.8 x .2 = 1.95.

A generalization of the mean is the mean of some function of the service
times. The most important cases are the moments and central moments. The
n moment is the expected value of the service time raised to the n,h power,
i.e.,

E[xn] = ^ x nP(x).
X

The mean and first moment are identical. The second moment is of particu
lar interest. For the distribution of Figure 2.1

£[*2] = (1.3)2x .3 + (2)2 x .5 + (2.8)2x.2 = 4.075

The n‘h central moment is the expected value of the nth power of the differ
ence between the service time and the mean, i.e.,

E[(x - E[x])n] = £ (x - E[x])"P(x). (2.1)
JC

The first central moment is identically zero. The second central moment is
called by a special name, the variance. The square root of the variance is
called the standard deviation. The Greek letter "a" is often used as a
symbol for the standard deviation. For the distribution of Figure 2.1

ox = V (1.3—1.95)2 x .3 + (2—1.95)2x .5 + (2.8-1.95)2x .2

= V .2125 « .522.

Rather than use the definition (2.1) for the variance, it is often more
convenient to use

a 2 = E[x2] - (E[x])2. (2.2)

16 GENERAL PRINCIPLES / CHAP. 2

The mean gives us an indication of the magnitude of the service time; the
variance gives us an indication of the variability. However, we would often
like a more direct indication of variability that is independent of the mean.
For this purpose we use the coefficient o f variation, C , defined by

C = —
v E[x] '

Processor service time distributions in general purpose computer systems are
usually highly variable; values of C x of 10 or more are not unusual. I/O
service time distributions are much less variable; values of Cx much less
than 1 are typical. (Note that Cx = 0 implies that all services times are the
same.)

If the number of possible values is infinite (and this is usually the case)
then we cannot depend on simple enumeration. If the possible values are
discrete, i.e., countable, then we may be able to provide a function describ
ing the probability of each possible value. For our purposes, the most
important example is the geometric distribution with parameter p such that
0 < p < 1 and

P(x) = (1 - p)x~ Xp , x = 1,2,3,....

By using the relationship
cx

5 > ' = T 1 - - 0 < l« l < (2.3)
/ to 1 - *

we can easily show that 2 P(x) = 1. By repeated use of (2.3) we can also
show that

E[x] = 1 (2.4)

and

El*2] - I X I . .
P2

2(Obtaining E[x] directly is very tedious; indirect approaches using
transforms or generating functions are usually more convenient
[DRAK67,FELL68].) Thus we also have

'J \ —p

SEC. 2.1 / SERVICE TIME DISTRIBUTIONS 17

and Cx = V 1 — p for the geometric distribution. We usually will not use
the geometric distribution to represent service times. However, what we say
about service times also applies to other behavior, i.e., we can characterize
random variables by probability distributions. In Chapter 4, we will intro
duce the use of the geometric distribution in regard to other system charac
teristics.

Figure 2.2

In considering service times we are usually interested in continuous
portions of the positive real line. With a continuous range of possible
values, the number of values is not countable and we must use alternate
characterizations of the distribution. In particular, we are not interested in
the probability of a particular value (which will always be zero for distribu
tions we consider) but in the probability of a range of values. There are
two common, complementary approaches: probability density functions and
probability distribution functions. We will use the notation Fx(xq) for the
distribution function, /^ (xq) is defined as the probability that a value x is
less than or equal to xQ. It is required that Fx(—°o) = 0, Fx(°o) = 1, and
F A a) < Fx(b) for a < b. The density function is the derivative (where it
exists) of the distribution function. We use the notation f x(x0) for the
density function. It is required that

and

fx(* o)
dFx(x 0>

dx o

Fx^Xo) = P /*(*.0^*0’
J - oc

fx(xo)dxo = !•

18 GENERAL PRINCIPLES / CHAP. 2

An important example is the uniform distribution on the interval (a,b). With
the uniform distribution each value in the interval (a,b) is equally likely.
(Though what we say may seem self-contradictory, zero probability does
not necessarily mean that a particular value is impossible.) Figure 2.2 shows
the density and distribution functions for the uniform distribution.

Our definitions of mean, moment, variance, etc. all apply to continuous
distributions if we replace P(x) with f x(x0) and replace summation with
integration. For example,

oc
E[x] = | x f x(x0)dx0,

oc

and

oc

For the uniform distribution

b—a
, a < x0 < b,

f x(x0)
0, otherwise,

0,

1, x 0>b,

xn - a
— ------, a < x 0 < b,

2 (b - a)o.. = --------------

2

12

SEC. 2.1 / SERVICE TIME DISTRIBUTIONS

and

19

CX
b — a

(b + a)v/y

If we want the probability that a < x < b, we can obtain this from the
density function as

rb
Prob[a < x < b] = I f x(x0)dxQ

Ja

or from the distribution function as

Prob[a < x < b] = Fx(b) — Fx(a).

Figure 2.3

Perhaps more important in our work is the (negative) exponential distri
bution with "rate" a. For the exponential distribution

E[x] = 1 (2.6)

aA
E[x2] =

20 GENERAL PRINCIPLES / CHAP 2

2ax
1
2a

and

1.

Figure 2.3 shows the density and distribution functions for the exponential
distribution with a = 1.

The use of the exponential distribution is crucial to mathematical
models of computer systems. However, as we discuss in detail in the next
chapter it is possible to represent essentially arbitrary distributions with the
method of exponential stages. Modelers often categorize distributions by
their variability, relative to the exponential distributions. A class of distri
butions with greater variability than the exponential is known as
hyperexponential. Similarly, some distributions with less variability are
known as hypoexponential. Figure 2.4 shows density and distribution func
tions for some hyperexponential distributions with mean 1, and Figure 2.5
shows some hypoexponential distributions with mean 1.

2.2 SCHEDULING ALGORITHMS

Besides the mean service time of a program using a resource, the most
important characteristic of a resource is the scheduling algorithm which
decides how the resource is to be allocated to the competing programs.
(We will often use queueing discipline synonymously with "scheduling
algorithm.")

The simplest, and occasionally, most appropriate scheduling algorithm
is First-Come-First-Served (FCFS). However, as we discuss graphically in
the next section, FCFS is often inappropriate for resources with highly
variable service time distributions. Thus there has been much research on
scheduling algorithms, particularly for processors [COFF68, SHER72,
SAUE77b],

There are two principle questions in scheduling: (1) Which job should
be currently served? and (2) If the job in service is not the one we would
now choose (because of a change in the system state) should we allow the
job in service to finish or should we preempt it?

SEC. 2.2 / SCHEDULING ALGORITHMS 21

Figure 2.4

With FCFS the choice of job to be served is made according to time of
arrival; the job with the earliest arrival time is served. The preemption
question does not arise since a change of system state (e.g., an arrival)
cannot change the choice.

The opposite of FCFS is Last-Come-First-Served (LCFS). With LCFS
every arrival changes the choice, so we have to decide about preemption. A

22 GENERAL PRINCIPLES / CHAP. 2

principal sub-question with regard to preemption is whether it is possible to
resume the preempted job where it left off (when the choice is made to
reservice that job) or whether the job’s service must begin anew. Proc
essors are usually designed to facilitate resumption of the preempted job (by
providing for saving the values of the program counter and other registers).
With an I/O device it is usually necessary to reposition the device to service
the preempting job; the preempted jobs’s service is restarted in the future.
Thus preemptive scheduling of I/O devices is unusual. Last-
Come-First-Served-Preemptive-Resume (LCFSPR), which is strictly preemp
tive, has some desirable theoretical characteristics and has been used for
processor scheduling in interactive systems.

SEC. 2.2 / SCHEDULING ALGORITHMS 23

Among the most common processor scheduling algorithms are
round-robin (RR) and more complex algorithms based on RR. (RR is
sometimes referred to as "time-slicing.") RR is defined with respect to an
interval of time called the quantum (or "time-slice"). Jobs are served in
first-come-first-served order as long as their service times do not exceed the
quantum. When a job’s current service time (ignoring previous quanta)
reaches the quantum, the job is preempted (with state information saved for
future resumption) and the job is placed at the end of the queue (as if it
had just arrived). Thus the job’s service time is broken up into several
quanta, all but the last of which are of fixed length. The processor is
effectively shared among the jobs; a job with short service time is not
forced to wait for the completion of service times of jobs ahead of it. The
principal sub-question with RR is the choice of quantum size. There will be
overhead (processor time used in implementing the scheduling and preemp
tions). If the overhead is large relative to the quantum, then performance
will suffer. This overhead is usually at least a hundred microseconds per
preemption. A common rule of thumb is to choose a quantum roughly two
orders of magnitude larger than the overhead for a preemption. (As the
quantum becomes large, RR becomes the same as FCFS and the sharing
effects are lost.)

The processor sharing (PS) discipline can not be actually implemented,
but is valuable in modeling RR scheduling. PS is defined as the limiting
case of the RR algorithm with zero overhead as the quantum goes to zero.
PS is usually a reasonable representation of RR when the quantum is very
large with respect to the overhead and small with respect to the mean
service time.

In terms of minimizing mean response times, the optimal scheduling
algorithm is shortest-remaining-time-first (SRTF). SRTF always chooses to
serve the job with the smallest remaining service time. If an arriving job
has a smaller service time than the job in service, the arriving job preempts.
(SRTF is intuitively optimal with respect to mean response time since it
maximizes the number of response times completed in a given interval of
time.)

SRTF assumes service times are known in advance, and this is not
usually the case with processors. However, in modeling we can use SRTF
as a standard for comparison with practical algorithms. It is often possible
to use past behavior as a predictor of future behavior and approximate
SRTF [SHER72]. For I/O devices we may very well be able to determine
service times in advance (although we cannot use preemption). For drum
(-like) devices shortest-latency-time-first (SLTF) is often optimal [FULL75].
For moving head disks, shortest-seek-time-first (SSTF) is often considered
optimal but there are exceptions [TEOR72, WILH76],

24 GENERAL PRINCIPLES / CHAP 2

We have assumed that jobs are not given external priorities (e.g. by the
system administration). If this is not the case, then the above algorithms
can be applied within a priority group after jobs are classified by priorities.
Preemption may be applied across priority groups as well as within groups.
(We use the term "external priority" since almost all algorithms have
implicit internal priorities, e.g., FCFS has internal priorities based on arrival
times.)

2.3 PERFORMANCE RELATIONSHIPS BETWEEN
DISTRIBUTIONS AND SCHEDULING

In order to make our discussions more specific, in this section we will
assume a cyclic queue model of the type used by Chiu et al discussed in the
last chapter. The conclusions we draw apply in much more general circum
stances, including all of the closed networks discussed in this book. Similar
conclusions apply in open networks.

In determining performance, our measure will be throughput, the mean
number of jobs passing through a point in the cyclic network per unit of
time. As we will see in the next section, maximum throughput in this model
coincides with maximum resource utilization and minimum mean response
time, assuming that workload remains unchanged.

If service times are highly variable, i.e., Cx > 1, then most of the
service times will be much smaller than the mean, but a few will be much
much larger. (For the exponential distribution, which has Cx = 1, about
22% of the times will be less than one-fourth of the mean, about 39% of
the times will be less than half the mean and about 63% of the times will
be less than mean.) This variability causes poor performance with FCFS
scheduling, since one job with long service time will delay many other jobs
with short service times once it begins service. This effect is compounded
by effects on other resources — if all of the jobs pile up at the CPU queue,
then the I/O devices become idle and the performance benefit of multipro
gramming is lost.

With RR, the effect of high variability in service times is much less
noticeable. A job with a long service time is preempted after reaching the
quantum and jobs with short service times proceed with very little interfer
ence from the long job. As we will show in Chapters 4 and 5, the limiting
case of RR, PS, is insensitive to all distribution characteristics other than
the mean (and gives the same performance as FCFS with exponential
service times).

Let us assume that our cyclic queue model has a single processor, five
I/O devices and five jobs. The mean CPU service is 10 ms. and the mean

SEC. 2.3 / PERFORM ANCE RELATIONSHIPS 25

Coefficient of variation

Figure 2.6

I/O service is 50 ms. (Thus the effective rate of the I/O system is the
same as the processor when all devices are active.) Regardless of distribu
tion characteristics other than the mean, with PS the throughput will be
roughly .072 jobs/ms., the processor utilization will be 72% and each I/O
will have 72% utilization. These values are easily obtained by the methods
of Chapter 5. Regardless of I/O distribution forms, with FCFS these
measures will be higher for Cx < 1, the same for Cx = 1 and lower for
Cx> 1. (The FCFS results can be obtained, with more effort, by the me
thods of Chapter 3.) Figure 2.6 compares the PS throughputs to FCFS
throughputs for processor service times with .75 < Cx < 5. Figure 2.6 also
gives similar results with the single processor replaced by two processors
which are half as fast, i.e., the mean CPU service becomes 20 ms. (The PS
and FCFS exponential results give a throughput of .067 and utilizations of
67%.) Notice that the difference between scheduling algorithms is much
smaller in the dual processor case. With two processors, a single job with
long service time is much less disruptive in the FCFS case; other jobs can
use the second processor. Figure 2.7 is similar to Figure 2.6 but compares
SRTF to FCFS. We will pursue this discussion again in Chapter 9.

26 GENERAL PRINCIPLES / CHAP. 2

Figure 2.7

2.4 RELATIONSHIPS BETWEEN PERFORMANCE MEASURES

In this section we discuss two very simple relationships between per
formance measures. More complex relationships will be evident from results
in the remaining chapters.

2.4.1 Throughput, Utilization and Mean Service Time

Let us assume (as we almost always will) that the system has attained
equilibrium, in particular, that the flow of jobs out of a queue (for a re
source) is equal to the flow into the queue. We call the flow the through
put. Suppose we have a single resource at the queue and the effective
service rate of the server is independent of queue length. (This last assump
tion will not hold for most preemptive schedules with non-zero overhead.)
Since the mean service time per job is E[x], the mean service rate is \ /E \x \ .
Call the utilization, the fraction of time the resource is busy, U. The
throughput must be equal to the service rate of the resource, when it is
busy, times the fraction of time it is busy. In other words

SEC. 2.4 / RELATIONSHIPS BETWEEN MEASURES 27

throughput = (2.7)
E[x]

If there are k identical units of the resource, U is the utilization of each
unit, and the other assumptions above are valid, then

throughput = (2.8)
E[x]

Similar results can be obtained from the queue length distribution in more
complex situations. (The methods of subsequent chapters can be used to
obtain the queue length distribution.)

2.4.2 Throughput, Mean Queue Length and Mean Response Time

Let us define the queue length as the number of jobs waiting for or
using a resource. Let us define queueing time (response time) as the time
between arrival of a job at a (queue for a) resource and completion of use
of the resource. The mean queue length can be obtained as

oc
l = e [i] = ^ m o

1= 1

where P(l) is the probability of queue length /. The mean queueing time
can be obtained as

Q = E[q] = | qof (qQ)dq0
J 0

where f q(q0) is the density function for the queueing times. Though not
immediately obvious, it is generally true that

L = \ Q (2.9)

where A is the throughput. This result was first formally proved by J.D.C.
Little [LITT61] and is known as "Little’s Rule."

We will intuitively justify (2.9) for a finite period of observed time and
FCFS scheduling. Neither of these assumptions are necessary for formal
proof; Little’s Rule holds for all models in this book and under most other
circumstances. (Since Little’s proof, simpler proofs have been devised; see
KOBA78, for example, for a formal proof and a statement of sufficient
conditions for (2.9).)

Consider Figure 2.8, which shows queue length versus time. The area
under l(t) is partitioned and numbered according to the sequence of the

28 GENERAL PRINCIPLES / CHAP. 2

4
/(/i

5

3 5

1
1

2 i
l

3 4 5

/

Figure 2.8

jobs’ arrivals and their queue positions (assuming FCFS). A job is in
service when its sequence number is in a rectangle adjacent to the horizon
tal axis.

Assume we are observing for a period starting at time 0 and ending at
time T. Let n(T) be the sequence number of the last job to complete
service by time T. Thus

X = 4<Z2.
T

Let A(T) be the area under /(/) up to time T, i.e.,

A(T) = f Tl(t)dt.
*'0

We can easily show that

l = 2<Z2
T

and that

n(T)

(2 . 10)

(2 . 11)

Thus

SEC. 2.5 / FURTHER READING 29

L = M] l = < r 1 MT1 = XQ
T T „(D

Little’s Rule (2.9) also holds if we define L only with respect to jobs not in
service and Q as time waiting for service. Further, we can apply (2.9) to
sub-groups of jobs, e.g., priority groupings. Finally, we can apply (2.9) to
subsystems, e.g., an entire computer system, if L is defined with respect to
the number of jobs in the sub-system and Q is defined with respect to total
time in the subsystem!

2.5 FURTHER READING

A more introductory and thorough treatment of the material of Section
2.1 can be found in DRAK67 and FELL68. Further discussion in general is
found in KOBA78 and more discussion of individual topics is found in the
cited references.

2.6 EXERCISES

2.1 Derive (2.2) from (2.1)
2.2 Derive (2.4) from repeated application of (2.3)
2.3 Derive (2.5)
2.4 Derive (2.6)
2.5 Justify (2.10) and (2.11)

2.7 SUMMARY OF CHAPTER NOTATION

P(x) Discrete distribution: probability of value x
E[x] Mean (expected) value of random variable x
E[xn] nlh moment of random variable x
ax Standard deviation of random variable x
Cx Coefficient of variation of random variable x
Fx(x0) Continuous distribution: probability distribution function of

random variable x, i.e., probability x < x0
f x(x0) Continuous distribution: probability density function of random

variable x
U Utilization of a (unit of a) resource
L Mean queue length for a resource, including jobs in service
Q Mean queueing time for a resource, including service time

CHAPTER 3

MARKOVIAN QUEUEING M O DELS
OF COM PUTER SYSTEM S

Markov processes are extremely powerful tools which can be used to
provide accurate, yet mathematically tractable, models of computing systems
performance. This chapter will provide an informal description of a subset
of Markov processes which is sufficient to describe very general queueing
network models of computing systems. (This subset is also sufficient for
description of many other computing system models, but we will restrict
attention to queueing network models.) There are three issues we will face:
(1) definition of Markov processes, (2) mapping computer system models
to Markov processes, and (3) solution of Markov processes.

Performance models are usually used to estimate the performance of
computing systems over a period of time. The time period may be explicit
for some performance measures and implicit for others. The two most
important measures, throughput and response time, represent explicit and
implicit time periods, respectively. Throughput is measured in the amount
of work, e.g., the number of batch programs or interactive commands,
handled during a time period. Though we might wish to estimate the
response time for an individual command (or the turnaround time for an
individual batch job), usually we will be content to estimate the mean or
some other measure of the response time distribution. (We might estimate
the fraction of response times that exceed 3 seconds, for example.) In this
second case we usually have a period of time in mind, whether or not it is
well defined. The period may be the entire day, or a portion of a morning
when the system is lightly loaded, or late in the afternoon when everyone is
trying to get finished and go home, etc.

3.1 DIFFICULTY OF FINDING TRACTABLE REPRESENTATIONS
OF COMPUTING SYSTEMS

Since a multiprogrammed computer exhibits very dynamic behavior,
and since the behavior at a particular time depends strongly on contention
for and sharing of resources, a model of a given system must attempt to
represent the internal state of the system. However, a detailed representa
tion of internal state will usually leave us without solution methods other
than direct simulation. For example, towards the extreme of detailed
representation, if we paid attention in our state representation to the in-

30

SEC. 3.1 / DIFFICULTY OF REPRESENTATION 31

struction streams of individual programs and the data for those programs,
then the most appropriate solution method would be to use the system
itself!

The representation of internal state gives us memory of the current and
past condition of the system. If this memory includes too little detail then
we will have difficulty estimating the behavior of the system. However, if
we allow very much memory we will find numerical solution impractical.

Let us consider some simplified representations which still preclude
tractable solutions. (We claim, without proof, that these representations
usually, but not always, preclude tractable solution other than simulation.)
Since we have ruled out consideration of specific instruction and data
streams, a less detailed representation would be one which only considered
system and workload timings, e.g., the time until a program using a CPU
relinquishes the CPU in order to perform I/O, the times between page
faults for a given program and memory policy, or the times between the
running of a system scheduler. If we look at the specific times then we will
still be overwhelmed with information.

Another simplification is to (1) represent the timings by probability
distributions, i.e., a distribution for CPU time used between I/O operations,
another for the times between page faults, another for the times between
scheduler activations, etc., and (2) assume that successive timings are
independent with the respective distributions. However, if we allow arbi
trary probability distributions as defined in Chapter 2, we will still be
overwhelmed with information. Suppose we wish to represent the time until
completion for a request arriving at the CPU when the CPU is busy doing
something else. If we wish to estimate the distribution for this period of
time, then we will have to determine the distribution for the sum of the time
for the request plus the time until the CPU is given the request. This latter
time will depend on the time already spent on work ahead of the arriving
request and that time would be included in our state representation. Thus
our state space will in general be infinite and not countable. If we cannot
enumerate the state space of our representation, then we can only hope for
a solution under very restricted conditions.

We have an apparent impasse — we want to study the time dependent
behavior of the computer system but we cannot consider time in our repre
sentation of the system. The Markov process representation allows us to
consider time in a very controlled manner and thus overcome the apparent
obstacle.

32 MARKOVIAN QUEUEING MODELS / CHAP. 3

3.2 MARKOV PROCESSES

3.2.1 The Exponential Distribution

The key to the Markov process representation is a very special proba
bility distribution, the (negative) exponential distribution defined in Chapter
2. The exponential probability distribution function has the form
F x(Xq) = 1 — e~ax°, for x 0 > 0. The parameter a is referred to as the
"rate" of the distribution, for reasons which will soon be evident. The
mean of the distribution is 1/a. See Figure 3.1.

The exponential distribution is unique among continuous distributions
(those that allow values along continuous portions of the real line) because
it has a so called "memoryless" property. The memoryless property is that
if we know that a random variable has an exponential distribution, and we
know that the value of the random variable is at least some other value, say
t, then the distribution for the remaining value of the variable (e.g., the
difference between the total value and t) has the same exponential distribu
tion as the total value. For example, if we know that a program’s CPU
times between I/O activities have an exponential distribution, and we know
that a given CPU time has already lasted 10 milliseconds, then the remain
der of the current CPU time will have the same exponential distribution as
the total CPU time.

Though timings in computer systems usually do not have exponential
distributions, 1) we can often assume the timings do have exponential
distributions and get accurate results in spite of the incorrect assumption,
and 2) we can use combinations of exponential distributions, as we shall see
later in this chapter.

Figure 3.1 - Exponential Distribution

SEC. 3.2 / MARKOV PROCESSES 33

Figure 3.2 - Memoryless Property

We prove that the exponential distribution has the memoryless property
as follows. We want to show that Prob[x < x0 + t given x > /] = Prob
[x < x0],

A probability of one event given the occurrence of another event, e.g.,
Prob[Event A given Event B], is known as a conditional probability. We

34 MARKOVIAN QUEUEING MODELS / CHAP 3

define, for ProblEvent R]>0,

Prob[Event A given Event B] = Prob[Event A and Event B\
Prob[Event B]

We have informally used the term independence before. Formally, events A
and B are independent if

Prob[Event A given Event B] = Prob[Event A],

or equivalently, if

Prob[Event A and Event B] = Prob[Event /l]Prob[Event B],

From the definition of conditional probability we know that

Prob[x < x0 + t given x > /]

Prob[x < x0 + t and x > r]
Prob[x > /]

= 1 - e~a^ +,) - (1 - e~at)

1 - (1 - e~a')
= l - e 0

= Prob[x < x0].

Figure 3.2 illustrates this proof.

3.2.2 The Poisson Process

Suppose the times between events in a stream of events are independ
ent and the durations of the inter-event times have the exponential distribu
tion Fr(t0) = 1 - e~al°. For example, the events might be completion of
service at a CPU, when the CPU is busy. Since the mean time between
events is 1 /a, the rate of occurrence of events will be a. It can be shown
that the events form a Poisson process.

The Poisson process is defined as follows:

1. Occurrences of events during non-overlapping intervals of time are
independent.

2. For a sufficiently small interval of time, At, the probability of zero
events occurring during the interval is 1—aAt, the probability of
one event occurring during the interval is aAt, and the probability
of more than one event during the interval is negligible.

SEC. 3.2 / MARKOV PROCESSES 35

Note that part 1 of the definition gives the Poisson process a memoryless
property; occurrence of events during a current interval of time is independ
ent of occurrences in previous intervals. It is equivalent to say that "events
form a Poisson process" and that "inter-event times are independent with
identical exponential distributions."

Now suppose we have two independent streams, each forming a Pois
son process with rates a x and a2, respectively. Let us consider the merging
of the two streams, i.e. the stream of events consisting of all events from
both streams. We would like to show that the merged stream is also a
Poisson process. Since each stream satisfies part 1 of the definition and
since the streams are independent, the merged stream also satisfies part 1 of
the definition and since the streams are independent, the merged stream also
satisfies part 1 of the definition. The probability of zero arrivals in the
merged stream in interval At is

(1 — a xAt)(l - a2At) = 1 — (ax + a2)At + a xa2At2

which is 1 — (a, + a2)At for sufficiently small At. The probability of one
arrival in the merged stream in interval At is

2 2(1 - a x At)a2At + a x Ar(l - a2At) = a2At - a xa2At -\-axAt - a xa2At
= (ax + a 2)At — 2axa2At2

which is (ax + a2)At for sufficiently small At. The probability of two
arrivals in the merged stream in interval At is

2a2Ata2At — a xa2At

which is negligible for sufficiently small At. Thus the merged stream forms a
Poisson process with rate a x + a2. Further, the inter-event times will have
the exponential distribution Ft(t0) = 1 - e -^ iW 'o . This last observation
is also key to the Markov processes we discuss.

If we observe an event in the merged stream, then with probability

a xAt a x
a x At + a2At a x + a2

it is from stream 1 and with probability

a 2
a x + a2

it is from stream 2.

36 MARKOVIAN QUEUEING MODELS / CHAP. 3

Also note that if we accept only certain events, with fixed probability
P, and reject the other events, then the stream of accepted events is a
Poisson process with rate Pa.

3.2.3 Markovian States

Let us assume that we can represent the possible conditions of a system
by a set S {1 < / ' < « } of mutually exclusive, collectively exhaustive
states. Further, the future behavior of the system is dependent only on the
current state of the system, i.e., it is independent of previous states of the
system. Finally, the "holding times" for state S(, i.e., the times between
corresponding entrances to and departures from state S t, are independent
and identically exponentially distributed with rate ar Then the states for
this system are Markovian.

We can define a Markov process to be a set of Markov states
{Sf. 1 < i < n} and a set of transition probabilities {qlj\ 1 < i < n,
1 < j < n, ^ Qij = !}• See Figure 3.3.

The circles in Figure 3.3 represent states of the process and the arcs
represent state transitions. If a system is in state S', then it will make state
transitions at rate ar The rate of transitions from state S , to Sj given that
the system is in state S t, will be afl^.

With the above definitions, we note that the Markov process has a very
limited amount of memory; the only memory is the current state. Yet time
is included in our representation and we can represent very complex, time
dependent systems.

SEC. 3.2 / MARKOV PROCESSES 37

Figure 3.4

3.2.4 State Probabilities and Balance Equations

Let us assume that there exists a probability Pt(t) that the system is in
state S, at time t. Further, a system equilibrium exists such that

lim PjO) = Pj , 1 < i < n
t —► 00

Note that this implies that there is only one possible equilibrium. Figure 3.4
illustrates a Markov process with two equilibria.

Let us also assume that P, > 0 for 1 < i < n. Since an equilibrium exists,
we expect that the rate of transitions out of state S, is equal to the rate of
transitions into state S,-. The rate of transitions out of state S', will be P,a,.
The rate of transitions into state S, will be

2 Pj aj Vji ■
j

Thus we have n equations of the form

p i a i = 2 p j a j Qji A < i < n .
j

These may be rewritten as

~ P , a i + 2 P j a j * j i = 0 , 1 < i < n. (3 . 1)
j

Note that the nth equation is redundant, i.e., given any n-1 of the equations
we can derive the remaining one. We also know that X P, = 1. We can
solve a set of linear ("balance") equations

38 MARKOVIAN QUEUEING MODELS / CHAP. 3

- P, ai + 2 PJ aj Qji = 0, 1 < i < n - 1
j

J

to obtain P;, 1 < i < n. From these equilibrium probabilities we can obtain
performance measures such as mean response time, throughput, utilization,
etc.

3.2.5 An Example

Consider the closed queueing network of Figure 3.5. In Chapter 1 we
described this network as a model of a batch computer system. We now
represent this network as a Markov process.

2 I/O devices

Figure 3.5 - Cyclic Queue Model

Let us assume that there is one CPU, there are two identical I/O
devices and the (fixed) degree of multiprogramming is three. As in the
work of Chiu et al, we assume that both queues have FCFS scheduling
disciplines and that service times are independent and identically distributed
with exponential distributions. Let the rate of the CPU distribution be
and the rate of the I/O distribution be b2.

Given these assumptions, we can define a set of Markov states of this
system as {(3,0), (2,1), (1,2), (0,3)} where the couple (i j) means that there
are i jobs at the CPU queue and j jobs at the I/O queue. (We know that j
= 3 — but we include j for clarity.)

It is obvious that these states are mutually exclusive and collectively
exhaustive. We can show that the holding time for each state is exponen
tial. For example, the holding time for state (1,2) is exponential with rate
b { + 2b2 since all three jobs are in service and have exponential service
time distributions.

SEC. 3.2 / MARKOV PROCESSES 39

Though we could have other Markov process representations of this
system with more states, we must have at least four states in any Markov
process description of this system. The first part of this claim is easy to
demonstrate by example. On the other hand, if we have fewer than four
states for this system we will lose the "independent of previous states"
property.

Given a transition out of state (1,2), the probability of entering (0,3) is

b j ■+■ 2b 2

and the probability of entering (2,1) is

l b 2
b j + 2b2

Thus when the system is in state (1,2) the rate of flow into (0,3) is

(bx + 2 b 2)
2b 2

f l (l ,2) <7(1,2),(0,3)
(rate) (probability)

Similarly, the rate of flow into (2,1) is 2b2. The full state transition diagram
is given in Figure 3.6.

Using the notation P(i,j) for the equilibrium probability of state (i j) ,
we have the following equations equating the flow in and out of each state:

state equation
(3,0) - ^ (3 , 0) + b2P(2,1) = 0
(2,1) b xP(3,0) ~ (b l + b2)P(2,1) + 2b2P(1,2) = 0
(1,2) b xP{2,1) ~ (b x +2b2)P(l,2) +2Z>2P(0,3) = 0
(0,3) b xP(1,2) -2Z>2P(0,3) = 0

Notice that any one of these may be obtained from the other three. We can
replace any one equation by

P(3,0) + P(2,l) + P(1,2) + P(0,3) = 1

and solve for each probability. Doing so we obtain

40 MARKOVIAN QUEUEING MODELS / CHAP. 3

where

P(3,0) = b ^ / G (3.2)

P{2,1) = b~2bz ' / G (3.3)

P(1,2) = U ^ b ^ / G (3.4)

/>(0,3) = - b ^ / G 4
(3.5)

i A — 2i — 1 . 1 i —1 l — 2 , 1 l — 3
+ b \ b2 + 2 b \ bZ + J b2 ■

Figure 3.6

This solution is easily verified by substitution. Note that G explicitly forces
the probabilities to sum to 1; it is called a "normalizing" constant. From
these probabilities we can easily obtain performance measures of interest.
Some interesting measures are

CPU utilization = P(3,0) + P(2,l) + P(l,2)
CPU throughput = b^PO.O) + P(2,1) + P(1,2))
CPU mean queue length (including job in service)

= 3P(3,0) + 2P(2,\) + P(1,2)
CPU mean queueing time (including service)

= (CPU mean queue length)/(CPU throughput)
I/O utilization (of each identical device)

= ,5P(2,1) + P(1,2) + .P(0,3).

As we shall show in Chapter 5, this model belongs to the class of
models with a "product form" solution. For models with product form
solution we need not explicitly solve for state probabilities to obtain many
interesting performance measures, including the ones above. However,
many interesting models will not have product form solutions. For these we
must use numerical solution, approximation (Chapter 6) or simulation

SEC. 3.3 / SPARSE MATRIX SOLUTIONS 41

(Chapter 7). The remainder of this chapter will consider methods for
numerical solution.

3.3 SPARSE MATRIX SOLUTIONS

A set of equations for the previous example may be represented in
matrix notation as

Bp = e

where p is a column vector (P(3,0), P(2,l), P(1,2), P(0,3))T (T stands for
transpose), e is a column vector (0,0,0,1)T and B is a matrix

b2 0 0 "
{b j + b2) 2Z>2 0

b x — (Aj + 2 b2) 2b2
1 1 1

(We are omitting the equation equating flow in and out of state (0,3).)

For this model we may use any one of a variety of methods to obtain a
solution for the vector p. However, more complex models may result in
very large sets of states (possibly infinite). For the purposes of this section
let us assume that the number of states is on the order of a few thousand.

An immediate observation is that it is impractical to store the state
transition matrix (e.g., B) as a two dimensional array. If there are a few
thousand states, then such an array would require several million words of
storage. Fortunately, for queueing models of computer systems, the state
transition matrix is usually sparse, i.e., most of the elements are zero. Thus
we can use a data structure which only stores the non-zero elements. For
example, we can use a table of triples (row, col, value) where row and col are
the subscripts of a non-zero element. For the matrix B we should have

0
1

row col value
1 1
1 2 b2
2 1
2

etc.
2 ~ (b l + b2)

(Though B is not sparse, note that if we increase the degree of multi
programming then the corresponding matrix will have roughly 3N non-zero
elements, where N is the degree of multiprogramming. Thus the fraction of

42 MARKOVIAN QUEUEING MODELS / CHAP. 3

non-zero elements is roughly 3/N .)

A direct approach to solving the balance equations, such as Gaussian
elimination, will be inappropriate because it will change the elements of the
matrix, making many elements non-zero which previously had been zero.
The increase in storage will often be prohibitive. There are other disadvan
tages of direct solutions which we will ignore.

The interesting alternatives to direct solution are iterative solutions and
specialized recursive algorithms. We will defer discussion of the recursive
algorithms until the end of the chapter. The iterative solutions are generally
applicable provided the number of states is not too large.

Let S be a matrix such that

s .. = \ ai qi " l * j
U l - a , (1 — qa), i = j

i.e., S' is the matrix corresponding to the redundant set of equations (3.1)
without replacing one by S Pi = 1. Then Sp= 0 where p is the column
vector (P | , P n) and 0 is the column vector containing all zeroes.
Then we also have that ASp = 0 where A is an arbitrary scalar. Further
ASp + p = p so that (AS + I)p = p, where / is the identity matrix consist
ing of ones on the diagonal and zeroes elsewhere.

The last equation suggests the iterative formula

pk+l = (AS + I)pk

where pk is the estimate for p on the k th iteration. It can be shown that,
with appropriate choice of A, this iteration will converge to p with any
initial estimate p®. As discussed in WALL66, a value of A which is usually
appropriate is

.99
max | S„ |

/

Note that the iteration leaves AS + / unchanged.

As a numerical example consider the model of Section 3.2.5 with mean
CPU service 6.67 ms. and mean I/O service 10 ms. Thus b\ = .15
jobs/ms. and b2 = .1 job/ms. From (3.2-3.5) we know that /T3,0) =
.224, P(2,1) = .336, P(1,2) = .252 and />(0,3) = .189. (Thus the CPU
utilization is 81% and the I/O utilization is 61%.)

SEC. 3.3 / SPARSE MATRIX SOLUTIONS 43

Figure 3.7 shows a PASCAL program which applies this iterative
solution method to this model. Figure 3.8 shows the output of this pro
gram. The program is written to allow an arbitrary number of jobs in the
system and an arbitrary number of I/O devices. Note that mechanically
generating the matrix S is non-trivial for more complex systems. The
iteration terminates when the error estimate (the sum of the magnitudes of
the differences between the elements of p k and p k+*) is small. Note that
the algorithm converges in spite of p being so poor. (p°(3,0) = 1,
P°(2,D = p°(1,2) = ^ (0 ,3) = 0.)

PROGRAM ITERATE(OUTPUT);
(♦PROGRAM TO ITERATIVELY SOLVE BALANCE EQUATIONS
FOR A CYCLIC QUEUE MODEL OF A COMPUTER SYSTEM. ASSUMES
FIXED DEGREE OF MULTIPROGRAMMING, EXPONENTIAL CPU TIMES
WITH MEAN 1/B1, ONE CPU, EXPONENTIAL I/O TIMES WITH MEAN
1/B2 AND NIO I/O DEVICES*)

CONST B1=0.15; B2=0.1; NIO=2;
(*NSTATES=DEG. OF M.P. + 1
MATSIZE=3*NSTATES - 2*)

NSTATES=4; MATSIZE=10;
TOLERANCE=0.001;

TYPE PVECTOR=ARRAY[1..NSTATES] OF REAL;
'7' R MATRIX: ARRAY [1 .. MATS IZE] OF

RECORD
ROW, COL: 1..NSTATES;
VALUE: REAL

END;
OLDP, NEWP: PVECTOR;
MAXDIAG, DELTA: REAL;
I, ITERATION: INTEGER;

FUNCTION MIN(V1,V2:INTEGER):INTEGER;
BEGIN

IF V1<V2 THEN MIN:=V1
ELSE MIN:=V2

END; (*MIN*)
FUNCTION NORM(VI, V2: PVECTOR): REAL;

VAR I: INTEGER;
TEMP: REAL;

BEGIN
TEMP:= 0.0;
FOR I:=1 TO NSTATES DO

TEMP:=TEMP+ABS(V1[I]-V2[I]) ;
NORM:=TEMP

END; (*NORM*)
BEGIN

44 MARKOVIAN QUEUEING MODELS / CHAP. 3

(*BUILD TRANSITION MATRIX. STATE I HAS NSTATES-1 -(I-1)
JOBS AT CPU, 1-1 JOBS AT I/O*)

WITH MATRIX[1] DO
BEGIN ROW:=1; COL:=1; VALUE:=-B1 END;

WITH MATRIX[2] DO
BEGIN ROW:=1; COL:=2; VALUE:=B2 END;

FOR I:=2 TO NSTATES-1 DO
BEGIN

WITH MATRIX[3*1-3] DO
BEGIN ROW:=1; COL:=1-1; VALUE:=B1 END;

WITH MATRIX[3*1-2] DO
BEGIN ROW:=1; COL:=I; VALUE:=-B1-MIN(I-1,NIO)*B2

END;
WITH MATRIX[3*1-1] DO

BEGIN ROW:=I; COL:=I+1; VALUE:=MIN(I,NIO)*B2 END
END;

WITH MATRIX[MATSIZE-1] DO
BEGIN ROW:=NSTATES; COL:=NSTATES-1; VALUE:=B1 END;

WITH MATRIX[MATSIZE] DO
BEGIN ROW:=NSTATES; COL:=NSTATES; VALUE:=-MIN(NSTATES-1,

NIO)*B2 END;

(*DETERMINE DELTA*)
MAXDIAG:=0.0;
FOR I:=1 TO MATSIZE DO

WITH MATRIX[I] DO
IF ROW=COL THEN

IF ABS(VALUE)>MAXDIAG THEN
MAXDIAG:=ABS(VALUE);

DELTA:=0.99/MAXDIAG;
(♦MULTIPLY TRANSITION MATRIX BY DELTA AND ADD IDENTITY
MATRIX*)

FOR I:=1 TO MATSIZE DO
WITH MATRIX[I] DO

BEGIN
VALUE:=DELTA*VALUE;
IF ROW=COL THEN VALUE:=VALUE+1.0

END;
(* INITIAL ESTIMATE OF STATE PROBABILITIES*)
NEWP[1]:=1.0;
FOR I:=2 TO NSTATES DO

NEWP[I]:=0.0;
ITERATION:=0;
WRITE(' ':11,'P ');

FOR I:=1 TO NSTATES DO

SEC. 3.3 / SPARSE MATRIX SOLUTIONS 45

WRITE(I:7) ;
WRITELN;

(♦ITERATIVE REFINEMENT OF ESTIMATE*)
REPEAT

ITERATION:=ITERATION+1;
FOR I:=1 TO NSTATES DO

BEGIN
OLDP[I] : =NEWP[I] ;
NEWP[I]:=0.0

END;
FOR I:=1 TO MATSIZE DO

WITH MATRIX[I] DO
NEWP[ROW];=NEWP[ROW] + VALUE*OLDP[COL];

WRITE('ITERATION',ITERATION:3);
FOR I:=1 TO NSTATES DO

WRITE(NEWP[I]:7:4);
WRITELN(' ERROR',NORM(OLDP,NEWP):7:4)

UNTIL NORM(OLDP,NEWPXTOLERANCE
END.

Figure 3.7

P 1 2 3 4
ITERATION 1 0.5757 0.4242 oo oo ERROR 0.8485
ITERATION 2 0.4514 0.3685 0.1800 oo ERROR 0.3600
ITERATION 3 0.3641 0.4013 0.1581 0.0763 ERROR 0.2183
ITERATION 4 0.3231 0.3615 0.2150 0.1002 ERROR 0.1615
ITERATION 5 0.2883 0.3646 0.2122 0.1347 ERROR 0.0753
ITERATION 6 0.2691 0.3491 0.2330 0.1485 ERROR 0.0692
ITERATION 7 0.2537 0.3483 0.2345 0.1634 ERROR 0.0325
ITERATION 8 0.2445 0.3423 0.2425 0.1704 ERROR 0.0301
ITERATION 9 0.2376 0.3412 0.2441 0.1769 ERROR 0.0160
ITERATION 10 0.2333 0.3388 0.2473 0.1804 ERROR 0.0133
ITERATION 1 1 0.2301 0.3381 0.2483 0.1833 ERROR 0.0077
ITERATION 12 0.2281 0.3371 0.2496 0.1849 ERROR 0.0060
ITERATION 1 3 0.2267 0.3367 0.2501 0.1862 ERROR 0.0036
ITERATION 14 0.2258 0.3363 0.2507 0.1870 ERROR 0.0027
ITERATION 1 5 0.2251 0.3361 0.2510 0.1876 ERROR 0.0017
ITERATION 16 0.2247 0.3359 0.2512 0.1879 ERROR 0.0012
ITERATION 1 7 0.2244 0.3359 0.2514 0.1882 ERROR 0.0007

Figure 3.8

46 MARKOVIAN QUEUEING MODELS / CHAP. 3

3.4 EXPONENTIAL STAGES REPRESENTATIONS
OF DISTRIBUTIONS

When an exponential distribution is both unrealistic and unsatisfactory
for representing service (or inter-arrival) time dis, lbutions then the usual
approach is to use the "method of (exponential) stages." This method is
both general and compatible with definition of Markov processes. It is
general in that we can represent arbitrary distributions arbitrarily closely. It
is compatible with Markov processes because the only m mory introduced is
the distribution stage. To accommodate this additional memory we merely
refine our state definition.

Let us define a service time to consist of visits to one or more of k
subservers (stages), each visit having an exponential distribution with rate
associated with the subserver. When a job is visiting a subserver, all other
jobs are prevented from visiting any subservers of that server. Figure 3.9
illustrates this general description where we place no restriction on the
routing of the job among subservers.

Figure 3.9 - Method of Stages

Only one job is allowed inside the rectangle at a time. A job initially enters
subserver (stage) i with probability V0n a job leaving subserver i visits
subserver j with probability V and a job leaving subserver i departs the
entire server with probability VjQ. For Figure 3.9 all of these probabilities
are zero except as follows: E0, = .2, VQ4 = .8, Vl2 = 1, V23 = .9,
V22 = -1, V45 - .5, V46 = .5, V30 — 1, F50 = 1 and V60 = 1. Each subser
ver has an exponential visit time with rate ar

Some well known special cases of this representation are

SEC. 3.4 / EXPONENTIAL STAGES REPRESENTATIONS 47

1. Erlang: a, = a2 = ... = ak, V01 = 1, Vk0 = 1,
^ 1 2 = ^ 2 3 = ■ •■ V k - \ , k = 1 -

2. Hypo-exponential: same as Erlang but equality of rates not
required.

3. Hyper-exponential: Vtj = 0 unless i or j but not both are zero.

The reader may find it helpful to draw diagrams analogous to Figure 3.9 for
these cases.

There is very little generality lost if we restrict ourselves to the so
called "branching Erlang" case of Figure 3.10. We do not require equality
of the rates of the visit times. (It can be rigorously shown that the branch
ing Erlang is as general as our original description if we allow the artifice of
complex values for the rates and probabilities. We will not pursue this
artifice.)

Figure 3.10 - Branching Erlang

It is immediately apparent that the Erlang and hypo-exponential cases
are included in the branching Erlang cases. It is not apparent, but still true,
that many other special cases of our original description are equivalent to
the branching Erlang with judicious choice of the probabilities. For exam
ple, consider the hyper-exponential case with k = 2. Let us assume that

* «2. F01 > 0 and ^02 > 0 since we would simply have the exponential
case without these assumptions. Further, the labeling of the subservers is
unimportant for the hyperexponential distribution, so we can assume
a, > a2- The distribution function for the hyper-exponential case is

^<*0> = 1 - V0 ^ X° - V02 ^ a2X°

and the distribution function for the branching Erlang case is

4X MARKOVIAN QUEUEING MODELS / CHAP. 3

F x(x0) = ' -
v ioa \ ~

a \ ~
V \2a 2 - a , x a
a2

^ \ 2a 1 ~ a2V\0 c-a 2̂ o
a i — a2

for a | # a2. If we define VU) for the branching Erlang to be
V0I + (1 - VQ])a2/ a ,, then it is easily shown that these functions are
identical. However, we cannot represent an arbitrary branching Erlang
form with the hyper-exponential. The branching Erlang is most convenient
for the solution algorithms of the next section.

Usually we will be satisfied to find a method of stages representation
which matches the mean and variance of an observed or assumed distribu
tion. The exponential distribution allows us to match the mean but the
variance will always be the square of the mean. Thus we will usually not be
able to match the mean and the variance with the exponential.

For the branching Erlang form the mean is given by

£ M = i v l2v „ y M ...yl_ i J Kj0£ i,
/=1 j = 1 J

the second moment is given by

£ [-*] = ^ V l 2 V 2 3 V 34-- -V i - \ , i J X \ + (X ^ r) T
'=1 L=1 > 1 1 J

and the variance is given by

a2 = E[x2] - (E[x])2.

The complexity of these expressions is a direct result of the generality of the
form. However, since we are only interested in the mean and variance, we
can simplify things considerably by making arbitrary restrictions on the
values of the distribution parameters, i.e., k, ai and Vr .

Our discussion will also be simplified if we consider the mean and the
coefficient of variation. Since the coefficient of variation is defined to be
the standard deviation divided by the mean, i.e., Cx = ax/E (x) , if we match
the mean and coefficient of variation then we have also matched the vari
ance. Note that Cx is always 1 for an exponential distribution.

An inherent limitation of the method of stages is that Cx > \ / \T k .
Thus many stages are required for small Cx. Fortunately, when Cx is small,
small changes in its value have very little effect on the results of queueing
models. Thus we can arbitrarily enforce a reasonable upper bound on k.

SEC. 3.4 / EXPONENTIAL STAGES REPRESENTATIONS 49

Returning to restricted forms of the branching Erlang let us consider
two separate cases, 1 />Tk < Cx < 1 and Cx > 1. For the first of these a
traditional approach is to let a j = a2 = ... = ak and allow F;0 and V0i to be
nonzero for at most one fixed value of i ^ k. (The other traditional ap
proach is the hypoexponential form.)

For example, let us say that only VlQ and VkQ may be non-zero. (VkQ
must be identically one for the branching Erlang form.) Let k =
ceil(l/ C 2X), i.e., the smallest integer at least equal to 1/C^. Then F10 is
uniquely determined by

and = a2 = ... = ak = (k — F10(A: — 1))/E[x], Though this special case
has minor efficiency advantages in simulations there are no compelling
reasons for this choice.

For the case Cx > 1 we only need for k to be at least 2. With k = 2
we have three free parameters, F10, a j, and a2, so we may make additional
constraints. One possible constraint is that each subserver make an equal
contribution to the mean. The following choices accomplish this:

2(C2x + l) (k - l)

F[x]

a2 =
E[x]

Again we point out the choice of additional constraints is reasonable but
arbitrary. Alternate choices might be more appropriate in a particular
situation.

50 MARKOVIAN QUEUEING MODELS / CHAP. 3

3.5 RECURSIVE SOLUTION METHODS

In many cases a direct numerical solution of the balance equations,
e.g., Gaussian elimination, will require excessive memory and computation.
This may also be true of the iterative method. So called "recursive" solu
tions may usually be applied to a fixed class of models, e.g., the model of
Figure 3.5 with an arbitrary number of jobs, an arbitrary branching Erlang
distribution at the CPU, FCFS scheduling at both queues and an arbitrary
number of I/O devices has a single solution method which we will describe.
If we modify some of the characteristics of the class of models, then we
usually have to devise a new (though usually similar) solution method. For
example, if we changed scheduling disciplines in the above characterization,
then we would have to change the solution method. The recursive solutions
are usually much more efficient in use of memory and computation than
direct or iterative solutions. The price of this efficiency is a lack of flexibil
ity.

These solution methods are termed "recursive" because of the form of
the equations used. The actual algorithms are usually iterative rather than
recursive.

As an example, let us consider the class of models described above
(i.e., Figure 3.5) with the additional restriction that the service times at the
CPU are also exponential. Assuming the CPU service times have rate b x,
the I/O service times have rate b2, the number of I/O ’s is L, and the
number of jobs is N, then we have the following state transition diagram
(state i indicates i jobs at the CPU):

min (L , N)b2 min (L, N - 1)b2 min (L, N - 2)b2

© = = © = ^ - - = ^ ©
Figure 3.11

For 2 < n < N we can write the balance equation for state n -1 as

(b | + min(L,A- (n - 1))b2)P(n - 1)
= bxP(n) + min(L , N - (n - 2))b2P(n - 2).

This may be rewritten as

P(n) = ((bx + min(L,N - (n - 1))b2)P(n - 1)
- min(L,N - (n - 2))b2P(n — 2)) / b x.

SEC. 3.5 / RECURSIVE SOLUTION METHODS 51

Thus P(n) is recursively defined in terms of P(n — 1) and P(n—2). Similarly
we can use the balance equation for state 0 to obtain

P(l) = min (L,N)b2P (0)) /b x.

Thus we can compute the probabilities of all states in terms of P(0). We
can use the knowledge that the probabilities of all states sum to one to
determine P(0).

The following algorithm uses these recursive formulas to determine
CPU utilization, throughput, mean queue length and mean queueing time.
It assumes P(0) = 1/G and determines G to determine these performance
measures. Note that after P{n) is determined the storage for P(n—2) may
be reclaimed. Thus the memory required is very small, regardless of N.

Algorithm 3.1

Pi 0) = 1
G = 1
P (l) = min(L,N)b2/ b l
Q = P(1)
G = G + P (l)
For n = 2 to N

P(n) = ((&! + m i n (L ,N - (n - \)) b 2P (n - \)
— min(L,N—(n—2))b2P(n—2)) /b l

Q = Q + nP{n)
G = G + P(n)

utilization = 1 — 1 / G
throughput = bx x utilization
mean queue length = Q/G
mean queueing time = mean queue length/throughput

Let us now assume that L = 1 and generalize to allow the branching
Erlang distribution at the CPU. We can define the system states by the pair
0 ,0 where n is the number of jobs at the CPU and the job in service is at
subserver i. Figure 3.12 gives the transition diagram for N = 3 and k = 2.
(When n = 0 i is not meaningful. We use the pair (0,1) for notational
convenience in expressing the algorithms.) Let the CPU distribution have
rates a x and a2 and probabilities V10 and Vl2. Let the I/O times be expo
nential with rate b2.

52 MARKOVIAN QUEUEING MODELS / CHAP. 3

We present two algorithms for this case. The first is the preferred
algorithm because of lower memory requirement and complexity. The
second algorithm illustrates a technique which is useful in other circum
stances, e.g., where both queues have the branching Erlang discipline. (A
subsequent priority model also utilizes this technique.)

We can write the balance equation for (1,2) as

(a2 + b2)P(1,2) = VX2a xP{ \ , \)

which yields

P(1,2) = Vn a xP (l , \) / (a 2 + b2). (3.6)

We can write the equation for (0,1) as

b2P(0,1) = Vw a xP(1,1) + a2P(1,2).

Substituting (3.6) yields

b2P(0,1) = Vl0a xP(1,1) + V n a xa2P (l , l) / (a 2 + b2)

which yields

/>(1,1) = b2P (0 , \) / (V lQa x + Vn a xa2/ (a 2 + b2)).

Similar arguments yield recursive expressions for P(n, 1) and P(n,2),
2 < n < N — 1, and for P(N,\) and P(N,2). The expressions are included
in Algorithm 3.2 (Note that the algorithm omits calculations of the desired
performance measures; the addition of these is straightforward.)

Algorithm 3.2 (assumes N > 2)

P(0,1) = 1
G = 1
.P(l , l) = b2P (0 ,\) / (E jq<3j + Ej2a ia2 / (a2 + b2))
P(1,2) = Vn a xP (l , l) / (a 2 + b2)
G = G + />(1,1) + P{ 1,2)
For n = 2 to N — 1

P(n, 1) = ((nt + b2) P (n - 1,1) - b2P (n - 2 , l)
- a2b2P(n —1,2) / (a2 + b2)) / (V 10a,
+ Ej2a la2 /^2 3" ^2)̂

P(n, 2) = (E12a ,P (n - l)
+ (>2/>(«—1,2))/(a2 + >̂2)

SEC. 3.5 / RECURSIVE SOLUTION METHODS 53

G = G + P(n, 1) + P(n, 2)
P(N, 1) = ((a, + b2) P (N - 1,1) - b2P (N - 2,1) - b2P { N - \ , 2)) / a x
P(N, 2) = (V12a1/>(]V,1) + b2P { N - \ , 2)) / a 2
G = G + P(N, 1) + P(N,2)
R(0,1) = 1/ G

Suppose we wish the recursion (iteration) to proceed in ascending
(descending) values of n. By the balance equation for (A,l) we can obtain

W - 1 ,1) = a xP (N , \) / b 2,

and from the balance equation for (N,2) we obtain

P (N - 1,2) = (a2/ b 2)P(N,2) - (V l2ai/ b 2)P(N, 1).

However, these equations depend on both P(./V,l) and P(N,2) and there is
no straightforward expression of one of these in terms of the other. We can
proceed to define P(N— 2,1) and P(N— 2,2) in terms of P(N , l) and P(N,2)
and so forth and eventually determine values for P(N, 1) and P(N,2). Al
gorithm 3.3 does this by representing state probabilities as two element
vectors. We use the notation p(n,i) for such a vector. We will also use two
element vectors g and d. The elements of these vectors will be referred to
as g v g2, d x and d2.

Figure 3.12

54 MARKOVIAN QUEUEING MODELS / CHAP. 3

Algorithm 3.3 (assumes A > 2)

p(A,l) = (1,0)
P(N, 2) = (0,1)
q = N(j>(N, 1) + p(N, 2))
g = />(A,1) + p(N, 2)
p (N —1,1) = (a ,/b 2) p(A,l)
p(A— 1,2) = (a2/6 2) p(A,2) - (E12ai/A2)p(A,l)
q = q + (A -l) (p(N— 1,1) + p (A -l,2))
g = g + p(N — 1,1) + p (N - 1,2)
For n = A—2 down to 1

p{n,\) = (1 + a x/ b 2) p(n+ 1,1) - (V xoa x/ b 2)p(n + 2,1)
- (a2/A2)^(« + 2,2)

p(n,2) = (1 + a2/ b 2) p (n + 1,2) - (E,2a 1/6 2)p(«+ 1,1)
q = q + n(p(n, 1) + />(/i,2))
g = g + /K«,l) + /K«,2)

p(0,l) = (1 + a x/ b 2)p(1,1) - (E10Oi/62)p(2,l)
- (a2/ b 2)p(2,2)

g = g + P(0,1)
J = p(1,2) - {Vl2a x/ (a 2 + 62))p(l,l)
Solve the following equations for />(A,1) and P(N,2)

</jP(A,l) + d2P(N,2) = 0
g,R(A,l) + g2P(N,2) = 1

mean CPU queue length = <7|.P(A,1) + q2P(N,2)

Note that the vector d is the difference of the value of p(l,2) deter
mined from the balance equation for (2,2) and the value of p{ 1,2) as
determined by the balance equation for (1,2). Thus d xP(N,l) +
d2P(N, 2) = 0.

This algorithm illustrates how the recursive method may be used to
greatly reduce the number of linear equations to be solved. Let us apply
this method to do the following priority model: There are A, high priority
jobs and A2 low priority jobs. CPU times for high priority jobs are expo
nential with rate b xx and CPU times for low priority jobs are exponential
with rate b x2. High priority jobs have a dedicated I/O device with exponen
tial rate b2X. Similarly, low priority jobs have a dedicated I/O device with
exponential rate b22. See Figure 3.13.

SEC. 3.5 / RECURSIVE SOLUTION METHODS 55

2̂] t>2\ b2\

Figure 3.14
Because of the memoryless property of the exponential distribution, the

service time of a low priority job is independent of preemptions. Thus we
can represent a state of the system by the pair (nl ,n2) where /?, is the
number of high priority jobs at the CPU and n2 is the number of low
priority jobs at the CPU. Figure 3.14 gives the state transition diagram for
N j = 3 and N 2 = 2.

Algorithm 3.4 uses the recursive method to solve for the probabilities
of states (Ar1,0),(A,l),...,(Ar1,A2). The notation <?, is used for the vector

56 MARKOVIAN QUEUEING MODELS / CHAP. 3

with the ilh element equal to 1 and all other elements equal to 0. All
vectors have length A2 + 1.

Algorithm 3.4 (assumes A, > 0 , N 2 > 0)

For n2 = 0 to A2
p(N \ ,n2) = e,h+I

p(A| — 1,0) = (((>ii + b22) /b 21)/>(A| ,0)
For n2 = 1 to N 2 — 1

p(N | —l,n2) = ((^ m + b22) / b2 i)p(N\,n2) — (b22/ b 2i)p(N^,n2—l)

/> (A,-1 ,A2) = (bu / b 2])p(Nl ,N2) - (b22/ b 2l) p (N„N2- 1)
g = (0,0,...,0)
For = N\ — 1 to A,

For n2 = 0 to A2

g = g + P(«i,«2)
For n x = A]—2 down to 0

p(«j,0) = ((6 ,l +b22) / b 2l)p(nl + l,0) - ((>11/(>21)^(n1 + 2,0)
For n2 = 1 to A2— 1

/>(/?,,n2) = (((>11+(>22)/(>21)/>(/j1 + 1,/i2)
- (622/(>21)^(/21 + 1,/i2-1)
- (b, , / b 2,)/>(«! + 2,n2

/>(«!, A2) = (bn / b 2\)p(,nx + \ ,N2)
— (b22/ b2y)p(ri\ + 1 ,A2— 1)
— (b] [/ b2\)p (n i +2 ,A 2)

For n2 = 0 to A2

g = g + «2)
For n2 = 1 to A2— 1

= p(0,n2) — (b22/ (b \ 2 + b2\ + b22))p(0,n2—\)
— (b \ \ / (b \2 + b2 1 + b22))p(l ,n2)
— ((>12/((>12 + b i2 + b22))p(0,n2+ 1)

<ijV = p(0,N2) — (b22/ \ b \ 2 + b2\))p(0,N2—l)
- (6u /(6 12 + (>21))/>(1,A2)

Solve

SEC. 3.6 / FURTHER READING 57

dx P{NX, 0) 0
d2 P (N V 1) 0

d N 2 P(N v N 2 - 1) 0
8 P(N v N2) 1

We have used the notation dt for the ith row of a matrix D with N2
rows and N2+ 1 columns.

3.6 FURTHER READING

A more thorough introduction to Markov processes can be found in
DRAK67 and FELL68.

A discussion of a variety of iterative solution methods is found in
STEW78.

The complete generality of the method of stages is found in COX55.
Additional description of our more restricted form is found in SAUE75a.
Further discussion of matching distributions is found in BUX77, LAZ077
and SEVC77b.

Further examples of application of the recursive solutions are found in
HERZ75, SAUE75a and SAUE77b. An alternate recursive solution ap
proach, which avoids potential numerical problems of the approach we have
discussed, is given in MARI80.

3.7 EXERCISES

3.1 Generalize the program of Figure 3.7 to allow the branching Erlang
distribution at the CPU.

3.2 Generalize the program of Figure 3.7 to allow the branching Erlang
distribution at the I/O devices.

3.3 Generalize the program of Figure 3.7 to allow M queues with probabil
ities Pjj that a job leaving queue i goes to queue j.

3.4 Generalize Algorithm 3.2 to allow two CPU’s.
3.5 Combine Algorithms 3.2 and 3.3 to allow the branching Erlang distri

bution at the 1/O device as well as the CPU.
3.6 Construct an algorithm for the model of Figure 3.13 without preemp

tion.

58 MARKOVIAN QUEUEING MODELS / CHAP. 3

3.7 Construct an algorithm for a model similar to that of Figure 3.13
except that the two disjoint groups of jobs have equal priority and CPU
scheduling is FCFS.

3.8 SUMMARY OF CHAPTER NOTATION

a Rate of an exponential distribution
Sj State of a Markov process
q:j Probability of transition from state / to state j given a transi

tion out of state i.
Pt Equilibrium probability of state i of a Markov process
G Normalizing constant
p A column vector consisting of P 1> ^2’ PN’ where N is the

number of states of the Markov process (Section 3.3)
p k k th estimate of p
V(j Probability of visiting subserver (stage) j after visiting subser

ver i in a distribution consisting of exponential stages

CHAPTER 4

ISOLATED Q UEUES AND OPEN
NETW ORKS OF QUEUES

Though the numerical methods of the last chapter are very general, in
the sense that they apply conceptually to very complex system models, these
methods by themselves are of limited practical application. They are limited
because they require solution of a set of linear equations and because that
set may be enormous. For the queueing models we consider in this chapter,
the set of equations is infinite. Thus we cannot hope to numerically solve
the linear equations nor can we cope with performance measures which
require numerical values for all of the state probabilities. We must first
seek algebraic simplification of the problem.

Fortunately, a convenient algebraic simplification, the product form
solution, applies to a very large group of queueing network models. We
defer formal definition of the product form solution, but informally it is
expressed as follows

P(S x ,S 2t“
P X{ S X)P2(S 2)...PM{SM)

G (4.1)

where P (S X,S2,...,SM) is the probability of a network state in a network of
M queues (for example, S m might be the queue length of queue m), Pm(Sm)
is a factor reflecting the probability that queue m is in state S m and G is a
normalizing constant. (G explicitly forces the probabilities of the network
states to 1.) We have already seen this form in (3.2 - 3.5). The formal
definitions we give will be associated with specific groups of networks.

Most software packages for numerical solution of queueing networks
depend on product form solutions [SAUE78a]. Most of this chapter and all
of Chapter 5 will be devoted to queueing networks with product form
solution. When a network does not have a product form solution and has
too many states for numerical solution for the state probabilities, then our
alternatives are approximation, to be covered in Chapter 6, and simulation,
to be covered in Chapter 7. Even approximation techniques are dependent
on results for product form networks.

All of the models of this chapter will assume that there is an infinite
source of jobs arriving at the network (or queue in Section 4.1) with expo
nential interarrival times with mean l / R . (In other words, arriving jobs

59

60 ISOLATED QUEUES AND OPEN NETWORKS / CHAP. 4

form a Poisson process with an average arrival rate of R jobs per unit time.)
There is also a sink which jobs enter when they leave the network. The
assumption of a potentially infinite population of jobs in the network is
usually not reasonable in computer system models. This is because there is
usually some resource which limits the total population of jobs in the net
work. For example, in the simple batch system model of Chiu et al, the
number of jobs at the CPU and I/O queues is kept small by contention for
memory. In a timesharing system model such as the ones of Brown et al
and Bard, the number of jobs is limited by the number of terminals (or
terminal ports). However, the infinite job population assumption is not
unreasonable in communication system models where the number of jobs
may be very large. Also, the infinite population assumption is very impor
tant in the history of queueing models and results in a simpler solution for
the networks of this chapter in comparison with those of the next chapter.

4.1 ISOLATED QUEUES

Throughout this section we will be principally interested in systems as
depicted in Figure 4.1. We will look at such systems with differing service
time distributions and scheduling algorithms.

Source Queue Sink

r \ ____ , r \
/ ’ i v J

Mean service time
a

Figure 4.1
4.1.1 Exponential Service Times

Consider the system of Figure 4.1 with FCFS scheduling and a single
server. In classical queueing notation, this system is the M /M /l queue,
where the first symbol indicates the interarrival time distribution, the second
symbol indicates the service time distribution and the third symbol indicates
the number of servers. M, for "Markov," indicates exponential distribu
tions. We can define the Markov states of this system according to the
number of jobs at the queue. See Figure 4.2.

R

a

R

Figure 4.2

SEC. 4.1 / ISOLATED QUEUES 6 1

In state 0, no service is in progress, so the only transition corresponds
to a job leaving the source. In all other states there is a transition for a job
leaving the server as well as the source. The balance equation for state 0 is

RP(0) = aP(l),

so

p (d = 4 * 0) .

For the system to be stable the arrival rate R must be less than the service
rate a; otherwise the queue will become infinitely long. As we will show
below the utilization U = R/a . (This can also be immediately observed
from (2.7) and holds for single server queues of the form of Figure 4.1
regardless of distributions.) The equation for state n, n = 1, 2, 3, ..., is

(R + a)P(n) = RP(n - 1) + aP(n + 1).

However, this equation can be simplified to

RP(n) = aP(n + 1) (4.2)

as follows. For state 1,

(R + a) * !) = RP(0) + aP(2)

implies

7?P(1) + a 4 P(0) = R P (°) + a* 2)

implies

RP(1) = aP(2)

and

* 2) = 4 p (i) -

This derivation can be repeated for states 2, 3, ... to obtain (4.2). From
(4.2),

P(n) = P{n — !) ,« = 1, 2, 3, ...

and

62 ISOLATED QUEUES AND OPEN NETWORKS / CHAP. 4

P(n) = (I -)" P (0) , n = 0, 1, 2, ... (4.3)

We also know that

n = 0
1,

so

i (4) " p < ° > - 1-/? = ()

Applying (2.3) we have

---- t — W) = 1
1 - 4

and

P(°) = i - 4 -

Since the server is idle in state 0 and busy in all other states,

U = 1 - P{0) = 1 - (1 - 4 } = 4 -

(4.4)

(4.5)

Substituting (4.4) and (4.5) in (4.3)

P{n) = U ' \ 1 - £/),« = 0, 1, 2, ... (4.6)

Note that P(n) has the geometric distribution (starting at 0 instead of 1)
with parameter 1 — U. Thus indirectly from the geometric distribution
starting at 1 or by repeatedly applying (2.3),

L = £ nP{n)
n = 100

= £ nu\ 1 - U)
n= 1

= C
1 - c (4.7)

Note that (4.7) is consistent with intuition; as U = R / a goes to zero, the
mean queue length goes to zero, and as U goes to one, the mean queue
length goes to infinity. We can rewrite (4.7) as

SEC. 4.1 / ISOLATED QUEUES 63

L = — + U (4.8)
1 - U

where the first term is the mean number of jobs waiting for service and U is
interpreted as the mean number of jobs in service.

Figure 4.3

Since the queue is not saturated, i.e., U < 1, the throughput must be
R. By Little’s Rule (2.9), L = XQ = RQ, Q = L / R and the mean queue
ing (response) time

U R_ 1
1 — U _ a _ a

R ~ 1 - U ~ 1 - U
R

_ 1
a - R

The form corresponding to (4.8) is

Q = l - u

(4.9)

(4.10)

(4.11)

where the first term is the mean waiting time and the second term is the
mean service time.

Let us now consider the M /M/2, system, i.e., the same system but
with two servers. The states are identified as before; Figure 4.3 gives the
transitions. We now must have R < 2a for stability; by (2.8) U = R/2a.
By arguments similar to the ones we just used,

/>(!) = Ai>(0) (4.11)

and

Pin) = (^ -) ” '4 ^ (0) , n = 2, 3, (4.12)

64 ISOLATED QUEUES AND OPEN NETWORKS / CHAP. 4

Then
n — 1

z (£) -
n= 1

R
P(0) +

P(0)

1 - —
2a

= 1,

and

Pi 0) = 2a - R
2 a + R

In state 0 both servers are idle. In state 1, one server is idle, so

U = 1 - P (0)-1 P (1) =2 2 a

As before, by repeated application of (2.3)

L =

AaR
Aa2 - R 2

By Little’s Rule (2.9)

Q = A a
A a2 - R 2

(4.13)

(4.14)

(4.15)

We can proceed similarly for 3,4,5,... servers; the algebra is more
tedious, but there are no real problems. Of special interest is the limiting
case where there is an infinite supply of servers, i.e., the M/M/°o "queue."
Of course, there is never any waiting for a server and thus scheduling is
irrelevant. Since there is never any waiting,

Q =
1
a '

and by Little’s Rule

SEC. 4.1 / ISOLATED QUEUES 65

This is also the mean number of busy servers. (Note that, by our definition,
U = 0.) Note that these results apply to any service time distribution with
mean 1 /a. With general (arbitrary) service distribution, this is known as
the M/G/oc queue.

Now consider a single server queue with PS scheduling. The Markov
states may again be defined by the number of jobs in the queue. With 1 job
in the queue, that job’s rate of completion is a. With two jobs in the queue
each job is getting one half of the effective rate of the server. Thus each
job completes at rate a/ 2 and their combined completion rate is a. Similar
ly for the other states with non-zero queue lengths, the total completion
rate is a. Thus the state diagram of Figure 4.2 is still valid and so the PS
results are the same as the FCFS results. Since both FCFS and PS give the
same results, any RR discipline with zero overhead will give these results
also. Consideration of SRTF is beyond the scope of this book.

4.1.2 General Service Times

Let us consider a single server, FCFS scheduling and general service
time distribution, i.e., we consider the M /G /l queue. If we represent the
distribution by the method of stages, e.g., the branching Erlang distribution
(Figure 3.10), then we can describe the states by the current queue length
(counting the job in service, if any) and the current distribution stage of the
job in service. Thus our state diagram would be essentially the same as
Figure 3.12 but with additional states for queue lengths 4,5,6,... Solution of
such a Markov process is quite difficult and requires methods beyond the
scope of this book.

However, we can obtain U, L and Q rather easily. As before,

U = R£[.x]

where £[x] is the mean service time. We obtain the mean queue length and
queueing time by first obtaining the mean waiting time (excluding the
service time) which we call W. A randomly arriving job will have

W = (L — U)E[x] + UE[x] (4.16)

where E[x] is the mean remaining service time of a job in service at the
arrival. The arriving job finds a job in service with probability U; thus it
expects to wait UE\x] time units for a job in service to complete. The

arriving job expects to find L - U waiting jobs and also must wait for their
service times. By Little’s Rule we also know that

L - U = RW. (4.17)

Substituting (4.1 7) into (4.16) and solving for W we obtain

W = ----—— E[x']. (4.18)
1 - U

Thus we only need to obtain E[x'] to get W and thus Q and L.

66 ISOLATED QUEUES AND OPEN NETWORKS / CHAP. 4

i I i 11 i __l_i____l__ i __i_l__i___ 1______ ►
0 1 2 3 4 5 6 7 8 9 1 0 T i m e

Figure 4.4

Suppose the service times have a discrete distribution P(x). Though
P(x) is the probability a job has a service time x, an arriving job finding a
job in service does not necessarily find the service time of the job in prog
ress to be x with probability P(x). This is because the arriving job is more
likely to arrive during a long service time than a short one. Consider the
distribution

x = 1 or x = 2,
otherwise.

and Figure 4.4. The rectangles represent service times. Even though the
service times are equally likely, it is twice as likely that a job arriving during
a service time arrives during a service time of 2. In general, the probability
a job arrives during service time x is proportional to xP(x) and thus equal to

xP(x) xP(x)
----------- = —r ; ■ (4.19)
X xP(x) E M

Given that a job arrives during a service time x, it is equally likely that the
job arrives at any time during that service time and thus the expected
remaining time is x/2. So summing over all possible service times,

SEC. 4.1 / ISOLATED QUEUES 67

E[x']
2 f * P M
X Z______

£ [x]
E[x2]
2E[x]

A similar argument for continuous distributions gives

E[x']
f 0>dx0J0 2_________

E[x]
E[x2]
2 E[x\

Substituting into (4.18) we get

w = UE[x'] =
1 - U 2(1 — U)

Since £[jc2] = (E[x])2(1 + C2),

UE[x](l + C2x)
W = ---------------— .

2(1 - U)

Then

Q = W + E[x] =
UE[x\(1 + C2)

2(1 - U)
+ E[x]

and by Little’s Rule
2 2

£/ 0 + C2)
2 (1 - U)

+ £/.

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

These last four equations are all variations on what is known as the
Pollaczek-Khintchine Formula. Our information derivation of this formula is
based on the derivation given in WOLF70. Alternate derivations and
derivations of other M /G /l characteristics such as the queue length distri
bution can be found in KLEI76 and KOBA78.

Note that (4.25) reduces to (4.7) for exponential service times, i.e., for
Cx = 1. Figure 4.5 shows L versus U for Cx = 0, 1,2 and 5. Notice the
sharp rise in L with U, regardless of Cx, and the dramatic differences
between the curves at the larger utilizations.

Now consider a single server queue with PS scheduling and the branch
ing Erlang distribution with 2 stages (Figure 3.10). Let the branching
Erlang parameters be a v a2’ VlO and Vn , as before. (Recall that
V w + V j2 = 1.) Every job in the queue is in service, so the distribution

68 ISOLATED QUEUES AND OPEN NETWORKS / CHAP. 4

Figure 4.5
stage of each job must be included in the state description. Let the states
be defined by the pair (nx,n2) where there are n x jobs in the first stage and
n2 jobs in the second stage. See Figure 4.6.

In state (nx,n2) each job gets \ / { n x + n2) of the server. The n x jobs
in stage 1 each have a completion rate of a x/ (n x + n2) thus the transition
rate to («, - 1,«2) is n xVXQa x/ { n x + n2) and the transition rate to
(«j — \ ,n2 + 1) is n xVl2a x/ (n x + n2). Similarly, the transition rate to
(n x,n2 - 1) is n2a2/ (n x + n2).

Some of the balance equations are, for states (0,0), (1,0) and (0,1),

RP(0,0) = Vxoa xP(l,0) + a2P(0,1) (4.26)

(R + a x)P{\, 0) = RP(0,0) + VXQa xP{ 2,0) + (4.27)

V\0a2 />(1,1) + a2P(0,2) (4.28)(R + a2)P(0,1) = Vx2a xP (1,0) + 2

SEC. 4.1 / ISOLATED QUEUES 69

Figure 4.6
There is no obvious solution to the collection of equations, but a fairly
simple solution exists. How do we find it? Suppose that

a :P(l , 0) = RP(0,0) (4.29)

and

/?E(1,0) = Vxoa xP{ 2,0) + ^ P (1,1). (4.30)

A solution of both (4.29) and (4.30) must also satisfy (4.27). (A solution
of an equation, e.g., (4.27), need not necessarily satisfy equations obtained
by partitioning that equation, e.g., (4.29) and (4.30).)

If (4.29) holds, then

70 ISOLATED QUEUES AND OPEN NETWORKS / CHAP. 4

P(1,0) = - f P(0,0)a .1
(4.31)

and by (4.26)

(4.32)

In, fact (4.29) holds, as will be apparent when we give a general expression
for P(«1,/t2). The balance equations which consider all transitions, e.g.,
(4.27), are called global balance equations. Equations (4.29) and (4.32) are
termed local balance (or independent balance or separable balance) equations.
A subset of local balance equations or equivalently, the global balance
equations, are used to verify that the proposed solution is correct.

How do we obtain the local balance equations? For example, why did
we not suggest that

from equation (4.27)? The rule is to equate flow into a state due to flow into
a distribution stage to flow out o f that state due to flow out o f that distribution
stage. For equation (4.29), RP(0,0) is the flow into (1,0) due to a job
entering the first service stage and a 1P(l,0) is the flow out of (1,0) due to
a job leaving the first service stage. (Note that (4.2) for the M /M /l queue
is analogously obtainable.) Here the job "entering the distribution stage"
begins service, but this is not always necessary, e.g., for FCFS queues with
exponential service local balance applies, but jobs entering a distribution
stage do not necessarily begin service until later because there is no distinc
tion between jobs in service and jobs waiting, as far as remaining service
time is concerned. We may also apply the rule to sources if we consider
jobs going to a sink to join the infinite population at the source. For
(4.30), E10a 1P(2,0) + (a2/2)P (l,l) may be viewed as the flow into (1,0)
because of a job entering a source distribution stage (though the interarrival
time for the job does not begin until later) and /?/*(l,0) the flow out of
(1,0) due to a job leaving a source distribution stage. Similarly, for equa
tion (4.28) we can obtain

RP(l , 0) = RP(0,0)

(4.33)

and

«2m i) = VX2a xP{ 1,0). (4.34)

Equation (4.34) provides no new information. From state (2,0) we can get

SEC. 4.1 / ISOLATED QUEUES 71

a xP{ 2,0) = /CP(1,0)

so

p (2,0) = 4 ^ 0 - 0) = (4) > (0,0).

Similarly, from state (1,1)

RP(0,1) = -^-/»(1,1)

and

P (l,l) = 2/?_p(0,l) =v ’ ' a] a2 P(0,0).

Now using (4.33) we have

R V RV,
P i0,2) = - j ^ - m i) = (- j ^) / >(0,0).

Proceeding in this manner we find that

(«i + «?)! / /? ."V v " 2
^ i , « 2) = , (-H -) T ^(0,0).rtj!/i2! V a i 2 \ «2 '

Summing over all states such that «j + n2 = n, we find

f<">-(lr + ^ f) mo)'
But notice that the mean service time

E[x] = -L + Fl2

and

R V, .
+ — ^ = RE[x] = U.

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

Thus

72 ISOLATED QUEUES AND OPEN NETWORKS / CHAP. 4

P(n) = Unp(0,0).

(Of course, P(0,0) = 1 — U.)

So the PS queue with this arbitrary two stage branching Erlang distri
bution has the same queue length distribution as the PS queue with expo
nential service times and the same mean service! Since PS and FCFS give
the same queue length distribution with exponential service times, this PS
queue has the same queue length distribution as the M /M /l queue. This
derivation extends directly to any distribution represented by the method of
stages. Thus for essentially arbitrary service distributions: The PS queue
lengths and mean queueing times depend only on the mean service time and the
arrival rate; other characteristics o f the service distribution are irrelevant.
These PS performance measures are the same as those o f a FCFS queue with
exponential service time with the same mean service time and arrival rate. This
result also applies to multiple server PS queues. It can be derived by other
means for service time distributions which cannot be exactly represented by
the method of stages [CHAN77b].

With this result in mind, refer back to Figure 4.5. The curve for
Cx = 1 also applies to PS with any distribution. Notice the enormous
improvement of PS over FCFS with Cx > 1. With Cx < 1, PS is worse than
FCFS, but the difference is small. (With Cx = 0, FCFS and SRTF are
identical, so FCFS is optimal.)

4.1.3 Job Classes

So far we have been assuming that all jobs are homogeneous, that they
have the same behavior and characteristics. The usual way to eliminate this
assumption is to partition the jobs into classes. Within a class all jobs are
homogeneous, but different job classes may have different service time
distributions, priorities, routing, etc. (Some restrictions on class distinctions
are necessary for a product form solution to exist.) In networks with finite
population we can have enough classes so that there is only one job per
class; thus if we go to the effort we can consider jobs individually.

With FCFS we must consider orderings of the jobs when they have
different characteristics. With PS we can ignore orderings and then the
derivations are much simpler. Consider Figure 4.7. Here an arriving job
joins class c with probability p0c , c = 1, 2, ..., C. (An alternative repre
sentation would be to have a separate source for each class. By the charac
teristics of merging and splitting Poisson event streams discussed in Section
3.2.2., the two representations are equivalent as long as we have Poisson
sources. The representation we use is simpler notationally. Notation is,

SEC. 4.1 / ISOLATED QUEUES 73

perhaps, the most difficult aspect of job classes in networks with product
form solution.) We assume PS and, for the moment, exponential service
distributions. With C = 2 we have the state diagram of Figure 4.8. Here
state («j,n2) indicates that there are /ij class 1 jobs and n2 class 2 jobs at
the queue.

Note that this state diagram is exactly the same as the one for PS with
a two stage hyperexponential distribution (see Section 3.4) if we consider
p 0l and Pq2 to be ^01 and ^02- respectively, and if we consider \ / a x and
1 / a2 to be the means of the exponential stages 1 and 2! Thus, by the local
balance arguments of the last section,

P(0,0) = 1 - R (^ - + ^)
\ a \ “ 2 '

and

(n, + n2)\ / Rpm Rpm N”2
~ - ^ r (- i r) (^ f) w ’0»- (4.42)

In other words, with two different system characterizations, we discover
that the underlying Markov process is the same.

In general, with C classes, P(n1,...,/2 C) is given by

(», + ... + « ^ C . * g g l / ^ £ o £ \ ”c/>(0 o)
n x\...nc \ V «i) V ac) (4.43)

where

74 ISOLATED QUEUES AND OPEN NETWORKS / CHAP 4

P(0,...,0) = 1 - R (^ l + ... + (4.44)
V a \ ac '

Further, the overall queue length distribution is

P(n) = R n(^LL + ... + P(0,.,0), (4.45)v a \ ac /

by simple summations of (4.43). Since the parenthesized expression is the
mean service time of all jobs, this is the same as (4.41).

We can extend these results to general service time distributions as
before; the only new problem is notation. If the mean service at class c is
1 / a , c = 1, 2, ..., C, then (4.43 - 4.45) are valid for general service times.

SEC. 4.1 / ISOLATED QUEUES 75

By arguments and algebra similar to before we can show that

(4.46)

(4.47)

and

(4.48)1 - U

Where Uc , c = 1,2, ..., C, is the utilization of the server by class c jobs, Lc
is the mean queue length of class c jobs and Qc is the mean queueing time
for class c jobs.

There are two problems with FCFS: the ordering problem already
mentioned and the requirement that all classes have the same, exponential
service time distribution for the product form solution to be valid. Assum
ing a j = ... = ac and exponential distributions, then the ordering problem
becomes principally a problem of notation. For a given number of jobs of
each class at the queue (nx,...,nc) each possible ordering has the same
probability and (4.43 - 4.48) are valid.

It is of some consolation in computer system models that I/O devices
(which often have FCFS scheduling) often have the same service time
distributions for all jobs and that the actual distributions are usually only
slightly less variable than the exponential distribution. In networks with
general FCFS queues we must use approximations (Chapter 6) or simulation
(Chapter 7).

If we eliminate the exponential distribution requirement or the require
ment that all classes have the same distributions, then the FCFS queue will
not have a simple solution for the queue length distribution nor can we
incorporate such queues into product form networks. However, the
Pollaczek-Khintchine Formula is easily extended. If E[xc\ and E[x2] are
the mean and second moment, respectively, for class c service times, then

c
E[x] = 2 P o M xc]’

C = 1

ISOLATED QUEUES AND OPEN NETWORKS / CHAP. 4

E[x2]
C
S ^ o c £ K 2]-

c = 1

,2 = E[x2] - (EUD2

(£ M)2

t/c = ^Oc W

U = RE[x],

t/£[x](l + C2)
2(1 — 17)

0C
U EM d + C2)

2(1 — t/)
+ £[*c]

(4.49)

(4.50)

LC

t /2/>0c(l + C2)-----—--------— + u
2(1 — IT)

(4.51)

Pn

« l/a.

Figure 4.9

Figure 4.10

SEC. 4.1 / ISOLATED QUEUES

4.1.4 Multiple Visits (Loops)

77

Usually a job in a computer system model will visit a queue several
times with intervening visits to other queues. For example, in the batch
system model of Chiu et al, a job’s processing includes many alternating
CPU-I/O cycles. Before proceeding to networks of queues, let us consider
isolated queues with multiple visits to the queue per job. Consider Figure
4.9. Assume FCFS and exponential service with mean \ / a x. A job depart
ing the queue (from class 1) rejoins the queue (in class 1) with probability
P ii- ^ goes to the sink with probability p xo. Figure 4.10 gives the Markov
state diagram. Since we can immediately drop the p xxa x transitions from
our balance equations, we obtain

P M = () *«>• (4.52)

<< 2

1IIo

(4.53)

U = R ,
P 10a l

(4.54)

and
2

L = U + U.
1 - U

(4.55)

Notice that these are precisely the same expressions as
queue with arrival rate R / p xo. The mean queueing time is

for an M /M /l

0 = UR + 1 , 1 - U a x a \
(4.56)

which is not Q for the M /M /l queue, but the mean response time is
Q/p 10, which is the mean queueing time for the M /M /l queue with arrival
rate R / p x0-

It is of some interest in obtaining solutions for networks by hand or
with a calculator that the number of visits to the queue has a geometric
distribution with parameter p 10, i.e.,

Prob[l visit] = p 10,

Prob[2 visits] = P\ \P j0>

78 ISOLATED QUEUES AND OPEN NETWORKS / CHAP. 4

Prob[3 visits] = p 2xxp x0,

Prob[« visits] = p nxx Xp XQ = (1 - p 10)" />10.

It turns out that a critical parameter in the solution of a network is the
expected number of visits a job makes to a class. We call this the relative
throughput of the class. Though we can find the relative throughputs by
solution of a (small) set of linear equations, if we are solving the model
without a program, then we would like to avoid the extra solution step.

4.2 OPEN NETWORKS

Consider the network of Figure 4.11. There are two queues in series,
with each queue consisting of a single class. Assume that both queues are
FCFS with exponential service with respective means 1/a, and 1 / a2- If we
let state (nx,n2) be the state with n x jobs at queue (class) 1 and n2 jobs at
queue (class) 2, then we have the state transition diagram of Figure 4.12.

Queue 1 Queue 2

r \ ~~n o 7 1
L / _ 7

R 1/a, la2

Figure 4.11

We can see that Ux = R / a x and U2 = R / a 2. Using local balance or by
solving the global (full) balance equations we get

P{nx,n2) = UxnHI - Ux)U2n2(1 - U2) (4.57)

= P x(n l)P2(n2). (4.58)

where /*,(«,) is the queue length distribution for an M/ M/ l queue with
arrival rate R and mean service 1 / a r This is not a particularly surprising
result since we can show that the two queues are independent of each other
and that the arrivals at the second queue are Poisson with rate R.

Now consider Figure 4.13 which is the same as Figure 4.11 with an
added loop. With the same assumptions as before, this produces the state
diagram of Figure 4.14.

SEC. 4.2 / OPEN NETWORKS 79

Figure 4.13

Let r, be the expected number of visits a job makes to queue 1 and r2
be the expected number of visits a job makes to queue 2. The number of
visits has a geometric distribution with parameter p 20, so by (2.4)

l = r2 = 1
P20

r (4.59)

80 ISOLATED QUEUES AND OPEN NETWORKS / CHAP. 4

Figure 4.14
Assuming that neither queue is saturated, i.e., Ux < 1 and U2 < 1, then by
equation (2.7)

Rr 1

and

Using these values for Ux and U2, equations (4.57) and (4.58) are still
valid!

This is a restricted form of a result known as Jackson’s Theorem be
cause Jackson was first to recognize this product form solution [JACK63].
Jackson’s Theorem allows us to say that in an open network of queues with

SEC. 4.2 / OPEN NETWORKS 81

Poisson arrivals (from outside the network), FCFS queues with exponential
service times and no saturated queues,

1. Each individual queue may be treated as an M /M /l queue with
arrival rate equal to the throughput to obtain its queue length
distribution.

2. In a network of M queues, the joint queue length distribution of
the network is the product of the queue length distributions of
each of the queues, i.e.,

f>(n \>n2’---’nHi) = P \ (n l

Since Jackson’s work, this result has been extended to include all of the
queues of Section 4.1 except FCFS queues with non-exponential or class
dependent service time distributions. If we look at (4.1) and assume
S m , m = 1, 2, ..., M is a state description we have used for an isolated
queue other than the excluded FCFS queues, then (4.1) holds for G = 1.
This result extends to other kinds of queues, e.g., queues with LCFSPR
scheduling [CHAN72, BASK72, CHAN75a, REIS75, CHAN77b],

For an individual queue of the network, we can apply all of our isolat
ed queue results (except for those for the excluded FCFS queues) once we
have determined the arrival rate at the queue. The most interesting network
measures, e.g., mean network population and response time, can be deter
mined without ever dealing with probabilities of network states. The only
remaining problem is determining the relative throughputs, i.e., the expected
number of visits a job makes to a queue (or a class at that queue). The
arrival rate at the queue (or class) will be Rr where r is the relative through
put. For many systems we may be able to determine the relative through
puts by inspection as in Figure 4.13. We now give a general approach.

Let us assume that there are C classes and M queues in the network;
each queue has at least one class. Let p 0c be the probability an arriving job
from the source first joins class c, let pc0 be the probability a job leaving
class c goes to the sink, and let pcd be the probability a job leaving class c
goes to class d, 1 < c < C, 1 < d < C. Let rc be the relative throughput
for class c. We must have

c
rc = Poc + 'Z 'd P d c - (4 -6 °)

4=1

The first term of (4.60) is the direct contribution of the source to rc. Each
term of the summation is the contribution of class d to rc. By letting c range
from 1 to C, (4.60) gives us a system of C linear equations in C unknowns;
C is usually small enough that a numerical solution is trivial.

For the example of Figure 4.13, p()1 = 1, pQ2 = 0, p H) = 0, P\\ = 0,
p 12 = 1 and p 22 = 0- From (4.60)

/■j = 1 + r, x 0 + r2p 2i (4.61)

82 ISOLATED QUEUES AND OPEN NETWORKS / CHAP. 4

and

r2 = 0 + r i x 1 + r2 x 0.

By (4.62), r x = r2, so by (4.61)

r \ = l + r \P2\

= 1
1-^21
1

P20

(4.62)

To summarize, to obtain solutions for individual queues of an open,
product form network of single server queues, we

1. Obtain rc , c = 1, 2, ..., C by (4.60).
2. Obtain Uc , c = 1,2, ..., C as RrcE[xc].
3. Let # (m) be the set of classes at queue m and denote these classes

as <̂’(OT) = {C|,c2,...,cC(} where C(m) is the number of classes in
(m). Then for queue m

U (m) = u c, + u c0 + ••• + U c

4. Obtain for class c in (m)

Lc 1 - U,
+ u„

(«)

5. Obtain for queue m

, _ U U

(m) 1 - U, + U,
(«)

(m)'

Obtain for class c in ^ («)

= C- t/,(m)1

SEC. 4.3 / FURTHER READING

7. Obtain for queue m

83

U(m)E lX(m)\

8. Obtain the mean network population
c

Population = ^ Lc.
C— 1

9. Obtain the mean network response time for a job

There are two cautions:

1. The results are not valid if is greater than or equal to one for
any queue m.

2. The results are not valid if any FCFS queue has non-exponential
or class dependent service times.

4.3 FURTHER READING

We will look at open networks as models of communication systems in
Chapter 9. For a more thorough treatment of queues in isolation and open
queueing networks, see KLEI75.

4.4 EXERCISES

4.1 Obtain U, L and Q for a FCFS queue with 3 servers and exponential
service time, i.e., the M/M/3 queue.

4.2 Obtain the queue length distribution for the M/M/oo queue. Hint: for
— 00 < X < 00,

Response Time = Population
R

84 ISOLATED QUEUES AND OPEN NETWORKS / CHAP. 4

4.3 Verify (4.40).
4.4 Derive (4.41) from (4.40).
4.5 Obtain the queue length distribution, U, L and Q for a PS queue with

two servers and service times with the branching Erlang distribution
with two stages.

4.6 Repeat 4.5 with an infinite number of servers.
4.7 Define and obtain state probabilities for a Markov process represent

ing a single server PS queue with two classes. Each class has a branch
ing Erlang distribution with two stages and class dependent probabili
ties and means.

4.8 Define and obtain state probabilities for a Markov process represent
ing a single server FCFS queue with two classes. Each class has the
same exponential service time distribution. Obtain the queue length
distribution.

4.9 Obtain the queue length distribution for an M /M /l queue with queue
dependent service times, i.e., with queue length n, the remaining
service time is exponential with mean l /a (n) . Assume that a(n) is
constant for n > N, i.e., a(N) = a(N + 1) =

4.10 Obtain the queue length distribution for an M /M /l queue with queue
dependent arrival rates, i.e., with queue length n, the arrival rate is
R(n). Assume that R(n) is constant for n > N, i.e.,
R(N) = R (N + 1) =

4.11 Repeat 4.10 for the network of Figure 4.11, where the arrival rate
depends only on the total network population of jobs. You need not
solve for P(0,0).

4.12 Obtain the mean network population and response time for the follow
ing model. You may assume exponential service times at all queues
and PS at the CPU. I/O scheduling is FCFS. Use the notation we
have used, i.e., R for the arrival rate, 1 / ac for the mean service at
class c etc.

CPU I / O ’s

^
to

SEC. 4.4 / EXERCISES 85

4.13 Generalize the algorithm for networks of single server queues at the
end of Section 4.3 to allow product form networks with an arbitrary
number of servers at each queue.

4.5 SUMMARY OF CHAPTER NOTATION

M Number of queues
G Normalizing constant
R Poisson arrival rate (throughput if queue not saturated)
a Mean service rate, i.e., 1 l a is mean service time
U Utilization
L Mean queue length

Mean queueing time
Mean waiting time

Cx Coefficient of variation of random variable x
Vjj Probability of visiting stage j of branching Erlang distribution

after leaving stage i
p tj Probability of visiting class j after visiting class i
C Number of classes
r Relative throughput

CHAPTER 5

CLOSED PRODUCT FORM
QUEUEING NETW ORKS

We next discuss the concept of local balance which provides the theo
retical underpinning for many of the results of queueing networks. The
concept is simple, the mathematics is straightforward and the algebra is
minimal. We assume no background of the reader other than the earlier
chapters.

The reader who is primarily interested in applications may skip Sections
5.1 through 5.5 and go directly to Section 5.6. Readers who study these
sections will find some of the concepts reviewed in Section 5.6.

5.1 THE THEORY OF LOCAL BALANCE

We shall briefly review some of the concepts of Chapter 4 which are
necessary to the understanding of local balance. Local balance is a charac
teristic of some Markov processes. We will speak of "queueing systems
satisfying local balance" when we mean that the underlying Markov proc
esses satisfy local balance. Typically, a queueing system will satisfy local
balance if the queues have queueing disciplines, service time distributions
and arrival processes compatible with local balance in the underlying Mar
kov process.

Consider a queue with C customer classes fed by a Poisson source,
where the arrival rate of class c customers is R c, c = 1 ,...,C. (R c = Rrc
where R and rc are defined as before.) See Figure 5.1. Assume that the
service time for class c is an independent exponential random variable, c =
1 ,...,C. We shall next define queueing disciplines which satisfy local bal
ance. We shall illustrate the definition by considering two disciplines:
LCFSPR and FCFS. In this section we restrict attention to single queues
(in isolation) fed by Poisson sources as shown in Figure 5.1, and we assume
that this system reaches equilibrium.

5.1.1 Feasible States for the Single Queue Case (Figure 5.1)

Let S be any feasible state and let there be n jobs in the queue. In the
LCFSPR case a state is a stack (cl ,...,cn) where c(is the class of the ith job
in the stack, and the first job is on top of the stack. The job on top of the

86

SEC. 5.1 / THE THEORY OF LOCAL BALANCE 87

Class 1

Figure 5.1
stack is currently being served. When it finishes, it is popped off the stack,
and the new state becomes (c2,...,cn) and the next job on top of the stack
(with class c2) begins service. If a job in class cQ arrives while the system is
in state (cx,...,cn), the job at the top of the stack is preempted in favor of
the new job and the new state becomes (c0,Cj,...,cM). A state in the FCFS
case is a queue (cj ,c2,...,cn) where c; is the class of the job in the ith posi
tion in the queue. Only the job at the head of the queue (in position 1) is
served. New jobs join the tail of the queue.

5.1.2 State Transitions for the Single Queue Case (Figure 5.1)

5.1.2.1 Job departure. I f a class c job can be served in state S, let
■S'—(c) be the state resulting from the departure of a class c job from the
system, when the system is in the state S. S -(c) is undefined if class c jobs
are not served in state S. In the LCFSPR case only the job in class cx can
be served in the state S = (cx,...,cn). Hence we only define
S — (cj) = (c2,...,cn). The same definition holds for FCFS. We restrict
attention to disciplines where, for any class c, S —(c) is either a unique state,
or is undefined.

5.1.2.2 Job arrival. Let S+(c) be the state resulting from the arrival
of a class c job to the system when it is in state S. For LCFSPR if
S = (cl ,...,cn) then S + (c0) = (c0,c,,...,cn). For FCFS, S + (c0) =
(cj , . . . , cw,Cq). We restrict attention to disciplines where, for any class c,
S+(c) is a unique state.

5.1.3 The Local Balance Equation

Let ac(S) be the rate at which class c jobs are served in state S. If
class c jobs are not served in state S' then ac(S) = 0. Let P(S) be the
equilibrium probability of state S. We assume the convention that if S is an
infeasible state P (S) = 0. The local balance equation is:

88 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

P(S)ac(S) = P (S - (c)) R c (5.1)

and its dual is

P(S + (c))a(XS + (c)) = P (S) R C (5.2)

The first (second) equation states that the rate of entry into state S due to
the arrival (departure) of a class c job is equal to the rate of departure from
state S' due to the departure (arrival) of a class c job. We also require that
the arrival of a class c job, when the system is in state S —(c), take the
system to state S, and the dual of this requirement is that the departure of a
class c job when the system is in state S+(c) take the system to S. In other
words (S—(c)) + (c) = S and (S+(c)) — (c) = S. Thus equation (5.1) states
that: the rate of transaction from 5 to S —(c) equals the rate of transition
from S—(c) to S. Equation (5.2) states the dual: the rate of transition from
S+(c) to S equals the rate of transition from S to 5'+(c). The local balance
equation is depicted in Figure 5.2. The concept of local balance is indeed
very simple. In a nutshell, it states that between any pair of states there
should either be no transition at all or transitions should be in both direc
tions and the rates in both directions should be equal. For LCFSPR, the
reader should show that (S+(c)) —(c) = S’ for any S and any c and also
show that (S'—(c)) + (c) = S for any S and c where S —(c) is defined.
Hence we know that for LCFSPR, between any pair of states, there are
either no transitions at all, or transitions are in both directions. The Mar
kov diagram (Figure 5.3) shows this fact pictorialiy. For FCFS the reader
should show that (S+(c)) — (c) is defined and is equal to S' if and only if S
= () or S = (cj,...,cn) where cx = ... = cn = c. Similarly (S'—(c)) + (c) is
defined and equals S only if c x = ... = cn = c. Hence unless there is only
one customer class, we could have the case that there is a transition from
some state S' to a state S' but no transition back from S' to S'.

Rate of arrival ■. Rate of departure
of class c jobs , r of class c jobs

j State S

Rate of arrival < - Rate of departure
of class c jobs , of class c jobs

Figure 5.2 The local balance equation in pictorial form

SEC. 5.1 / THE THEORY OF LOCAL BALANCE 89

A queue (Figure 5.1) satisfies local balance if and only if it satisfies
local balance for every state S and every class c. Then, for every pair of
(feasible) states S' and S ' , we have:

transition rate from S r to S ,
, (5.3)= transition rate from S to S

A queueing system (or a corresponding Markov process) does not need
to satisfy local balance but just the balance equations introduced in Chapter
3. The balance (or equilibrium) equation for a state S is that the rate of
transition into S equals the transition rate out of S. This equation is called
global balance to distinguish it from local balance. Global balance: For
every (feasible) state S,

transition rate from S' to S
(5.4)

= ^ transition rate from S to S '
S'

Local balance is a sufficient (though not necessary) condition for
global balance because if local balance is satisfied, then summing the local
balance equation (5.3) over all S' gives the global balance equation, (5.4).

Let us consider whether LCFSPR satisfies local balance. Though we
could consider a more general case as in CHAN77 let us construct the
Markov diagram with 2 classes (Figure 5.3).

Let Uc = R c/ a c. (The fraction of time the server spends on class c
jobs is Uc.) We shall show that

P(cl ,...,cn)
t/,

(5.5)

where G is a normalization constant, satisfies the local balance equations.
We must show that the transition rate from S to S 1 equals the rate from S r
to S for every pair of states S, S'. The rate of transition from (ct ,...,cn) to
(c2,...,c„) is

P(cj,...,cn)aCi = -R, (5.6)

The rate of transition from (c2,...,c„) to (c,,...,cM) is

90 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

P(c2,...,cn)RCi =
U.. ...£/„

— R, (5.7)

Figure 5.3 Markov diagram for LCFSPR.

Since the right hand sides of (5.6) and (5.7) match, all of the local balance
equations are satisfied. Thus equation (5.5) is correct.

In the two-class FCFS case there are states S' such that (S+(c)) —(c) is
not defined; hence FCFS does not satisfy local balance in this case. The

SEC. 5.2 / NETWORKS 91

reader is encouraged to compare the Markov diagrams for fhe FCFS and
LCFSPR cases.

5.2 NETWORKS

5.2.1 Definitions

Let there be M queues in the network. Associated with queue m is a
set of classes, referred to as *<£(m). Let there be a total of C classes in the
network indexed 1,...,C. We shall assume that any sources and sinks belong
to class 0 (Figure 5.4). The probability that a job completing service in
class i joins class j is p t ■, i = 0,...,C, j = 0,...,C The service times and the
disciplines for each queue are independent of all other queues in the net
work.

If a class i job can become a class j job, possibly after passing through
intermediate classes, we shall say that j is reachable from i. We define a
chain k to be a set of classes such that for any pair of classes i and j in
chain k, j is reachable from i and i is reachable from j\ furthermore, there is
no class c in the network, where c is not in chain k, such that c is reachable
from any class in chain k or that any class in chain k is reachable from c.

In Figure 5.4, classes 1, 2 and 4 belong to one chain; classes 0, 5 and 6
belong to another. Class 3 does not belong to any chain. It is easy to see
that class 3 is a transient class, i.e., there will be no jobs in that class at
equilibrium. Since we are only considering equilibrium conditions we shall
ignore all classes which are not in chains because they must be transient
classes. The chain which includes class 0 is said to be the open chain.
(Note that with our definitions of class 0 and chains, it is not possible for a
network to have more than one open chain. If desired it is simple to use
alternate definitions and consider multiple open chains.) A chain which is
not open is said to be closed. The number of jobs in a closed chain is
constant at all times: this number is called the population of the chain. Let
there be A closed chains in the network. The population vector N of the
network is N = (N^,...,NA) where Nk is the population of chain k, k =

Of course, the population vector is not concerned with open chains.
A network with an open chain and no closed chains is said to be an open
network. A network with closed chains and no open chain is said to be a
closed network. A network with both open and closed chains is said to be
mixed.

A network in which all queues satisfy local balance in isolation is called
a local balance network. In the following discussion we restrict attention to
local balance networks.

92 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

Figure 5.4 Example of a network.

Let R c be the throughput of class c jobs in the network, i.e., R c is the
equilibrium rate at which jobs leave class c. Since the rate of flow of jobs
into a class must equal the rate of flow of jobs out of the class, we must
have:

2 * c P ' S - K " (5.8)c

R {), the rate of flow of jobs from the source (or to the sink) is given.

If c belongs to a closed chain k , we define the relative throughput, r .,
as any set of positive numbers such that

SEC. 5.2 / NETWORKS 93

Y j rcPcy = rc' <5-9)
C

for all c in chain k. If we multiply the relative throughputs by a positive
constant D, we see that equation (5.9) is still satisfied because both sides of
the equation are multiplied by D. Thus if {rc \ c in closed chain k} is a set
of relative throughputs, then so is {Drc \ c in closed chain k}. Thus we
cannot solve equation (5.9) to get unique values for the relative through
puts. However, if we set the relative throughput of any class c in chain k to
an arbitrary positive value, we can use equation (5.9) to solve for the
relative throughputs of all other classes in the chain. The magnitudes of the
relative throughputs are immaterial; what is material is that the relative
throughputs be consistent, i.e., that they satisfy equation (5.9).

(What we have said here should be qualified somewhat in regard to
computational algorithms. Until recently, the best available algorithms were
sensitive to the magnitudes of the relative throughputs, particularly when
network populations were large [REIS78b]. The Mean Value Analysis
Algorithm of REIS78a is insensitive to the magnitudes of the relative
throughputs. One of the other algorithms we present, though less sensitive
to the magnitudes of the relative throughputs than the algorithms in
REIS78b, is still somewhat sensitive. We will discuss the Mean Value
Analysis Algorithm and numerical requirements on the choice of relative
throughputs in Section 5.7.3.)

From equations (5.8) and (5.9), we have

R c = rcB(k) , c in chain k, (5.10)

where B(k) is a positive proportionality constant for chain k.

Let L c be the mean number of class c jobs in the network. For any
closed chain k:

2 L c = N k>
c in k

where Nk is the population of chain k, since the number of chain k jobs
within the system must always be Nk .

5 . 2 . 2 The Markov Process Solution of a Local Balance Network

For any queueing network representable as a Markov process, in
obtaining its solution we could take the following steps:

L Determine the set of feasible network states. (We will use an overbar
to indicate network states, e.g., S' is a network state but S is an indi
vidual queue state.)

2. Determine if it is possible to go from every feasible network state S to
every feasible network state S' after one or more transitions with
non-zero probability; if it is possible to go from S to S 1 with non-zero
probability, then S' is said to be reachable from S. If every state is
reachable from every state, then we do not have to worry about the
initial condition of the network, because we know that regardless of
where the network starts every state will be traversed eventually. We
assume here that this is the case.

3. Determine the global balance equations for each state.

4. Solve the global balance equations and obtain performance measures
from the solution.

These steps may be difficult in general, but they are fairly simple for local
balance networks.

5.2.2.1 The set of feasible network states. If we have no simple
algorithm to construct the network state space, then network analysis is
quite difficult! Fortunately, for local balance networks, there is a simple
relationship between the state space of each queue in isolation, e.g., fed by a
Poisson source as in Figure 5.1, and the network state space.

We shall consider mixed networks because they are the most general.
The analysis for closed or open networks is straightforward. Let the net
work have K chains the first A of which are closed. Let N = (N^,...,NA) be
the population vector of the network. Let S m be any feasible state of queue
m in isolation (Figure 5.1). Let POP(5'OT) be an A element vector whose k,h
element is the number of chain k jobs in queue m in state S m.

A state 5 is a feasible network state if and only if S' = (S ,
where S m is a feasible state of queue m in isolation, and

POP(Sj) + ... + POP (S M) = N

94 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

Furthermore, every state in the network state space is reachable from every
state m the space. A transition from a network state S to another network
state S' is permitted if and only if:

SEC. 5.2 / NETWORKS 95

(S„ . . . ,SM)

S ’ = (S - (c),Si+ v ...,Sj _ v SJ + (c'),Sj+l,...,SM)

and

P ’ / 0,

for some c and c , where class c belongs to queue i and class c to queue j.
The transition takes place because a job in class c becomes a member of
class c . The reader should prove this is true. (The proof is not completely
trivial; consider a network in which none of the queues have local balance
in isolation such as Figure 5.5. Note that it is impossible for the system to
go from state (1, 2, 3) to state (1, 3, 2) in the network shown in Figure 5.5.
This shows that if the network is not a local balance network, investigation
of the state space is not likely to be trivial.)

Figure 5.5 A non-local balance network

5.2.2.2 The balance equations for a local-balance network. Fortunately,
we do not have to derive the balance equations for each network from
scratch! We shall now write down the generic form for balance equations
for all local balance networks. To simplify notation we shall write:

(S + (c) - (c'))

S l , . . . ,Sj_l ,Sj + (c),Sj+],...,Si_ l ,Si - (c) ,S j+l,...,SM

for

96 CL OSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

The rate of transition from (S + (c) — (</)) to S is:

P((S + (c) - (c'))ac(Sj + (c))pcy . (5.11)

This transition occurs because a class c job enters class c . Note that
(S + (c) — ()) is a network state in equation (5.1 l)_but that S j + (c) is
an individual queue state. The net rate at which state S is entered because
a job enters class c is:

^ rate (S + (c) — (c')) to S. (5.12)
C

Hence the net rate at which S is entered is:

£ 2 rate (S + (c) - (c')) to 5. (5.13)

The rate at which class c jobs are served in state S is aci(S ^i^), where we
define q(c') as the queue to which c belongs. Hence the rate at which the
system departs state S' because a job leaves class c is

P(S)acl(Sq{c>)). (5.14)

The net rate at which the system departs state S is

^ P (S) a c(Sq(cl)). (5.15)

The global balance equation equates the rates of arrival to (5.13) and
departure from (5.15) state S.

5.2.2.3 Equilibrium state probabilities. Fortunately, we do not have to
solve the global balance equations numerically for each local balance net
work separately to compute equilibrium state probabilities! When we were
describing the state space of the network we did so by relating the network
state space to the state space of each queue in isolation. We shall use the
same method here: we shall obtain network state probabilities from the
state probabilities of each queue in isolation. Since we can analyze a local
balance queue in isolation very simply from the local balance equations, the
equilibrium state probabilities for each queue in isolation are readily obtain

SEC. 5.2 / NETWORKS 97

able. Computing network state probabilities is then conceptually straight
forward.

We now discuss the setting of the arrival rates for each job class when
we analyze a queue in isolation. Recall that rc is the relative throughput of
class c, if c is a member of a closed chain, see equations (5.8-5.10). For
each closed chain choose a set of relative throughputs. If class c belongs to
queue m, and class c is a member of a closed chain, set the arrival rate for
class c to queue m in isolation, to the relative throughput of class c. If class
c is a member of the open chain, set its arrival rate to queue m in isolation
to the actual throughput, R c of class c. The actual throughput for classes in
the open chain are determined easily from equation (5.8) since we know R 0,
the source rate. (R 0 is equivalent to R of Chapter 4; equation (5.8) is
equivalent to equation (4.60).) We assume that the arrival rates for the
closed chains are small enough so that queue m reaches equilibrium in
isolation. (We can always choose the relative throughputs to satisfy this
assumption.)

In the following proofs it is helpful to define:

S = S V...,SM (5.16)

(5 - (c')) = S , , . S , - - (c '),Si+l,...,SM (5.17)

and

p(S) = P (S X). . .P(SM) (5.18)

Note that P(S() is obtained from analyzing queues in isolation.

Theorem:

P (S) = (5.19)

if S is feasible, where G is a normalization constant.

Proof:

We are given that all queues satisfy local balance, i.e., satisfy equations
(5.1) and (5.2), in isolation. Applying local balance equation (5.2) to
(5.11) and assuming (5.19) we get

98 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

rate (S + (c) - (c '» to S - H (S ^ M rcpc c,. (5.20)

Hence from (5.12) and (5.9) the net rate at which S' is entered because a
job enters class c is:

P « S - (c'))) ------------------/*. ' (5.21)

Applying local balance equation (5.1) to (5.14), the rate at which the
system departs S because a job leaves c is also:

p a s - (c')))------------------/■ / (5.22)

Hence the balance equations are satisfied by P(S) defined in (5.19). This
completes the proof.

The normalization constant, G, can be obtained from

P(S) = 1. (5.23)
f e a s i b l e S

Hence

G = ^ p (S) (5.24)
s

where the summation is taken over all S = (Sj,...,SM) where S m is feasible
for queue m in isolation and

POP(S,) + ... + POP(SM) = N. (5.25)

We have now completed the analysis of the Markov process for local bal
ance networks.

5.3 NON-EXPONENTIAL SERVICE TIMES

Up to this point we have assumed that all service times are exponential.
We now consider non-exponential service times which can be represented as
a network of exponential stages. An Erlang distribution and a branching

SEC. 5.3 / NON-EXPONENTIAL SERVICE TIMES 99

Erlang distribution are shown in Figure 5.6. Consider a local balance
network in which all classes have exponential service times and in which
some queue m has 2 classes, say c and c , and suppose a job leaving class c
immediately enters class c (Figure 5.7). Assume that class c and class c
have the same mean service time. Now consider another network in which
queue m has an Erlang service time with two stages: each stage has the
same service time as each of the classes c and c . It is possible to show that
if queue m satisfies local balance and if it has a class independent discipline
(i.e., one in which jobs are not given priority based on their class or amount
of service received) then the Markov process for the network with two
exponential classes of Figure 5.7 is identical to that for the network in
which queue m has the 2 stage Erlang service distribution. The reader
should check this out for the LCFSPR case. Similarly, the 2 class network
of Figure 5.8 models two stage branching Erlangs. If queue m has a class-
independent discipline, satisfies local balance and has classes cl ,...,ck , then
by suitably interconnecting the classes, any fc-stage service time can be
modeled. The reader should prove this to be true for the LCFSPR case.
We shall hereafter ignore non-exponential service times and restrict atten
tion to local balance networks in which all classes have exponential service
times. As stated in Chapter 4, only the mean time and the number of visits
to each queue are relevant.

Erlang Branching Erlang

Figure 5.6

Figure 5.7 A class representation of an Erlang distribution

100 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

Figure 5.8
A class representation of a branching Erlang distribution

5.4 SOME IMPORTANT LOCAL BALANCE SYSTEMS

The reader should prove that queues with LCFSPR, PS or Infinite
Servers (IS) with an arbitrary number of classes satisfy local balance. For
these disciplines show that non-exponential service times can be modeled by
suitably connecting classes with exponential service times. Also show that
queues with FCFS and a single exponential class satisfy local balance. The
reader can "cook-up" other local balance systems (indeed may enjoy cook
ing one up); however, few other local balance systems are practically
meaningful. We next discuss an important, though apparently unusual, local
balance system with an arbitrary number of classes. We call this system the
composite queue. The composite queue with C classes is defined by a
C-dimensional, positive matrix H, called the rate matrix. The states of the
queue in isolation are C-tuples, (/ij ,...,nc) where nc is the number of class c
jobs in the queue. The rate at which class c jobs are served in state
S = (n j ,...,nc) is

ac(S)
H (n x,...,nc_ x,nc - 1,/»C+I,...,wc)

H(S)
, for nc > 0. (5.26)

We leave it to the reader to show that

P(S) = —— — ---- £_ (5.27)

Where G is a normalization constant and P(S) is the equilibrium probability
of the queue, in isolation, when the arrival rate of class c jobs is R ,
c = 1,...,C.

SEC. 5.5 / PROPERTIES OF CLOSED NETWORKS 101

Note: Given any set of state probabilities P{S) where S is a C-tuple,
we can find a composite queue which has the same equilibrium state proba
bilities by setting:

H (S) = P(S) (5.28)

This is quite remarkable! It implies that we cannot tell whether a system
satisfies local balance by inspecting the numerical values of the equilibrium
state probabilities.

We will find the composite queue useful when we model a complex
system consisting of several queues by a single composite queue with the
same equilibrium state probabilities.

A special case. A FCFS queue, with 2 or more classes, in which all
classes have the same exponential service distribution behaves like a local
balance queue as far as equilibrium probabilities are concerned provided all
the states of the queue in isolation are also feasible states of the queue in
the network, and every state is reachable from every other [BASK75].
Figure 5.5 gives an example of a network in which every state is not reacha
ble from every other, and which does not behave like a local balance net
work as far as equilibrium probabilities are concerned even though all
classes have the same exponential service distribution. Even though net
works such as Figure 5.5 do not have the solution given in (5.19), the queue
length distribution of such a network (and all performance measures deriva
ble from the queue length distribution) will be the same as for a local
balance network, provided that for each FCFS queue all classes of the
queue have the same exponential service time distribution. The reader can
prove these results from the Markov balance equations as in the local
balance case.

5.5 PROPERTIES OF CLOSED LOCAL BALANCE NETWORKS

This section is restricted to closed local balance networks. The state
space, state probabilities, performance measures and the normalization
constant of closed networks depend on the population vector N. We shall
show this dependence explicitly by writing G(N), R C(N), LC(N), and
QC(N). Note that the relative throughput rc is independent of N. Define ek
to be a vector with a 1 in the k th position and 0 elsewhere. Then (N — ek)
is a population vector with one less job in chain k than N.

102 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

5.5.1 Throughputs

Throughput Theorem:

The throughput of class c customers when the population vector is N is

G(N - ek)
RAN) = ----------- — rc

c G(N)
(5.29)

where class c is in chain k.

Proof:

Let class c belong to queue m. From (5.22), the rate at which jobs
leave class c is

X ' (S) * , (S .) = 2 p((Sr l ‘C)))V <5 -30>

From the fact that queue m is in local balance in isolation, we know that the
set of feasible states S m in which ac(S m) > 0 is identical to the set of
feasible states S m — (c), for queue m in isolation. The summation in
(5.30) is taken over all feasible states M such that

POP(S,) + ... + POP (SM) = N

and ac(Sm) > 0, i.e., S m — (c) is feasible. Hence the summation is being
taken over all feasible states S m — (c), S m + l ,...,SM such
that

POP(Sj) + ... + POP(Sm - (c)) + ... + POP(SM) = N - ek ,

and the theorem follows from the definition of G (see equations (5.24) and
(5.25)).

5.5.2 Probabilities of Queue States (Marginal Probabilities)

Let | N) be the probability that queue m in the network is in
state S m given that the population vector is N. Note that \ N) is
concerned with queue m within the network, whereas P(S) is concerned
with queue m in isolation. (P^m^(Sm \N) is an example of a marginal
probability because it considers only the state of queue m and not the states
of other queues in the network. The network state probabilities we have
been dealing with are referred to as compound probabilities; a marginal
probability is then the sum of compound probabilities.)

SEC. 5.5 / PROPERTIES OF CLOSED NETWORKS 103

We use lower case letters to represent unnormalized probabilities; for a
feasible network state S' we have defined p(S \ N) = P(S \ N)G(N) (see
equations (5.18) and (5.19)). Define

/>(„)<«„ I N) - PM (S m I (5.31)

The following theorem is crucial to algorithms for computing performance
metrics of the models.

The Marginal Local Balance Theorem:

P (.) (S , I V M -S J = PI (5.32)

where class c belongs to chain k and is in queue m.

Proof:

For notational simplicity, assume m = 1. By definition

P l (S l | TV) = P(Sj) X P (S2). ..P(SM) (5.33)

where the summation is taken over feasible S 2,- -,SM (in isolation), such
that

POP(S2) + ... + POP(SM) = N - POP(S!) (5.34)

(P(Sm), m = 1 is still the probability that queue m, in isolation, is in
state S m.) Applying local balance equation (5.1)

^ (S j IA O ^S j) = rcP (S l - (c)) X P(S2). ..P(SM)

where the summation is taken over S2,...,SM satisfying (5.34), which is
equivalent to

POP(S2) + ... + POP(SM) = N — ek — POP(Sj - (c)),

and the theorem follows from the definition of P\(S^ — (c)|7V — ek)
(see equation (5.33)).

Lemma:

P{m) ^ m \N)ac(S m) = P{m)(Sm - (c) \ N - ek)R c(N) (5.35)

The proof follows from the Marginal Local Balance and Throughput
Theorems.

104 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

Equations (5.32) and (5.35) look exactly like the local balance equa
tion except that they deal with (unnormalized and normalized) marginal
probabilities; hence we refer to these equations as marginal local balance
equations.

Repeated use of the Marginal Local Balance equation yields perform
ance statistics. Briefly, the approach is (1) Assume that we know the
unnormalized state probabilities for a population vector of N —ek . (2) Use
the Marginal Local Balance equation to compute the unnormalized marginal
probability of queue m being in state S m given a population N, for all states
S m for which S m - (c) is defined. (3) Compute the unnormalized mean
queue length given a population N from the unnormalized marginal proba
bilities given population N. (4) Since the sum of the mean number of jobs
in chain k over all queues must be Nk , it follows that the sum of the unnor
malized mean number of chain k jobs over all queues must be G(N)Nk .
Hence compute the normalizing constant G(N). (5) Normalized probabili
ties and mean queue lengths are obtained by dividing the unnormalized
values by G(N). Throughputs are obtained from the Throughput Theorem
and mean queueing times from Little’s Rule. (We will discuss algorithms
using this approach in detail in Section 5.7.)

5.5.3 Marginal Probabilities of Subsystems

It is helpful to partition the set of queues 1 of the network into
subsystems. For example, a model of a computer system may be partitioned
into the processor subsystem and the I/O subsystem. Assume that the
network is partitioned into K subsystems: SUBj.....SUB^-. Each queue (and
its classes) belongs to exactly one subsystem. Let Z X,...,ZK be population
vectors and let P (Z X,...,ZK) be the equilibrium probability that the popula
tion of subsystem i is Z(, / = given that the network population is
N = Z, + ... + Z K. Let G ^ Z J be the normalization constant for a network
containing only subsystem i with a population of Z(. (We may think of this
network as being obtained by setting mean service times for all classes not
in subsystem i to zero.) In other words G,(Z;) is the normalization constant
for a network consisting of subsystem i alone, when the population of this
network is Z(. Formally, if subsystem i consists of queues /(l),...,/(^), then:

W = (l))"W ,(,)> <5.36)

where the summation is taken over all feasible states of the
queues in isolation, and where:

POP(S/(1)) + ... + POP (S Kq)) = z,

SEC. 5.5 / PROPERTIES OF CLOSED NETWORKS

Subsystem Lemma:

105

P (Z V...,ZK) G i (Z i)... G ̂ (Z ^)
G W (5.37)

The proof follows directly from the definition of G(N) and C,(Z,) by
summing state probabilities over subsystems.

V a r y

Suppose we wish to repeatedly analyze a network while we vary param
eters in some subsystem SUBj as shown in Figure 5.9. The Aggregation
Theorem helps us to carry out a parametric analysis of SUBj very easily.

The Aggregation (Decomposition) Theorem (Norton’s Theorem)

For the purpose of computing statistics about SUBj, all the queues,
except those in SUBj, can be replaced by a single composite queue whose
rate matrix H is computed in the following way. Let all the queues in the
rest of the network (i.e., not in SUBj) belong to SUB2. For any population
vector Z2, define the matrix H as:

H (Z 2) = G2(Z2)

where G2(Z2) is defined in equation (5.36).

Proof:

The subsystem lemma states that P(Zj,Z2) is proportional to
G j (Z j) G 2(Z 2) , regardless of what SUBj is, provided the network is a local
balance network. If we replace SUB2 by a composite queue with rate

106 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

matrix H = G2, we get the same values for P (Z l,Z2) because the composite
queue satisfies local balance, and the subsystem lemma states that P(Z \ ,Z 2)
is proportional to G {(Z i)G2(Z2)-

This theorem is also referred to as a decomposition theorem and/or as
Norton’s Theorem. We have described the aggregation of queues into
subsystems, but we could have equivalently described the decomposition of
subsystems into queues. The description used is partly a matter of taste and
partly dependent on particular situations; in Section 6.3 we will be focusing
on decomposition. The Aggregation Theorem is analogous to Norton’s
Theorem for electrical circuits [CHAN75a].

5.5.4 Common Local Balance Disciplines

We next study the more useful local balance disciplines in detail. We
shall restrict attention to the probability that there are nc jobs in class c, c =
1,...,C. Let us first consider a PS discipline where the capacity of the server
varies with the number of jobs in the queue. The total rate at which class c
jobs are serviced when there are nc jobs of class c, c = 1,...,C is
acCAP(n)nc/n , where n = n j + ... + nc is the total number of jobs in the
queue; CAP(n) is said to be the capacity of the queue when the queue
length is n. We assume that the rates are normalized so that CAP(l) = 1.
Our notation is simplified if we assume CAP(O) = 0.

If there is only one processor CAP(n) = 1 for all positive n. If we
want to model overhead in job switching, we may want CAP(n) to decrease
with n. In the infinite server case CAP(n) = n. Define SHARE(n)
= CAP(n)/n. SHARE(n) is the fraction of processing power given to each

of the n jobs when there are n jobs in the queue.

Since LCFSPR has the same queue length distribution as PS (see
Chapter 4), we shall not continue to discuss LCFSPR separately. The
following results for PS hold for LCFSPR and the special FCFS cases as
well. The results hold for IS by suitably defining SHARE(n).

For the PS case, the Marginal Local Balance equation (5.32) becomes,
after simplification

/>(,„)(* I A)
Pim)(n ~ ec \ N — ek)uc

nc SHARE(n)
(5.38)

where uc = rc/ a c and where n is defined as n l ,...,nc, n = w, + ... + n and
class c belongs to chain k. Recall that p (m)(n \ N) is the unnormalized
probability of n jobs (regardless of class) in queue m given population

SEC. 5.5 / PROPERTIES OF CLOSED NETWORKS

vector N. Hence
107

/»(«)(" l ^) = S /»(«)(»IN) (5-39)
feasible «

where the summation is taken over all non-negative integral values of
nl ,...,nc such that

n l + ... + nc = n. (5.40)

Define lc(N) as the unnormalized mean queue length at class c given popu
lation N, i.e.,

lc(N) = LC(N)G(N). (5.41)

Then

lcw = 2 _ ncP(m)(n 1^0 (5-42)
feasible n

where the summation is taken over all non-negative integer values of
n x,...,nc where (5.40) holds and

nc > 1. (5.43)

From equations (5.38) to (5.43), the unnormalized mean queue length at
class c is

lc(N) =
I AM
2

P{m)in - 1 I N - ek)

SHARE (n)
(5.44)

where | A | = N x + ... + Nk is the total job population over all chains, and
from the Throughput Theorem the normalized queue length at class c is

LC(N) = UC(N)
1AM
2

P (m)(n ~ l I N ~ ek)

SHARE(«)
(5.45)

where

UC(N) = R C(N) (5.46)

Note that this U is related to, but not the same as, the U of the previous
chapters. This U would have to be divided by the number of servers to be
consistent with the previous usage. After this section we will return to the

108 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

previous definition of U. In the infinite server case, SHARE(n) = 1, hence
from equation (5.45)

LC(N) = UC(N) (5.47)

and

lc(N) = ucG(N - ek). (5.48)

In the single server case, SHARE(n) = 1 /n, and simplifying equation (5.44)

LC(N) = UC(N)(1 + L (m)(N - ek)) (5.49)

where — ek) is the mean queue length of queue m, and

lc(N) = uc(G(N - ek) + l(m)(N - ek)). (5.50)

There is no closed form expression for the mean number of class c jobs for
a composite queue with an arbitrary rate matrix. If we are given the unnor
malized probabilities for a population vector N — ek , we use the Marginal
Local Balance equation (5.32) to compute the unnormalized probabilities
for a population vector N, and then compute unnormalized mean queue
lengths from the unnormalized state probabilities.

Given the unnormalized mean queue lengths we can compute the
normalization constant from

X L C(N) = Nk . (5.51)
c in k

It follows from this equation that

2 lc W
G(N) = c in * ------- . (5.52)

Nk

These equations suggest an iterative approach to computing normalizing
constants. We know that G(0) = 1. Assume we have normalizing con
stants and other statistics for all population vectors less than N. Compute
the unnormalized mean number of class c jobs from the Marginal Local
Balance equations and use equation (5.52) to compute G(N). We will
describe this approach in detail in Section 5.7.

Another set of equations is useful in determining G(N) for closed
networks with many (e.g., 50 or more) single or infinite server queues,
especially when memory is severely constrained (e.g., when using program

SEC. 5.5 / PROPERTIES OF CLOSED NETWORKS 109

mable calculators). For notational simplicity we shall restrict attention to
the 2 chain case. For chain k, k = 1,2, and queue m let u(k m) = 1 uc, for c
in chain k and queue m where uc = rc/ a c. Similarly, let l[k m) = 2 lc. For
fixed rate single server queues from equation (5.50)

= “ (1,„)«?(*! - 1 ,N2) + /(„)(* , - \ ,N 2)) (5.53)

and

= “(2,m)(G{Nv N 2 - 1) + l{m)(N {,N2 - l)). (5.54)

For infinite server, queues from equation (5.48),

h U m) W = - 1 ,N2) (5.55)

and

'(2,*)(*) = u(2,m)G(Nv N 2 - 1). (5.56)

Let us assume that single server fixed rate queues are numbered from 1 to /
and that infinite server queues are numbered from 7+1 to J. Define
CUM(«],«2) as follows (CUM is an abbreviation for cumulative):

CUM(1,0) = 2 > (l.m).
m = 1

(5.57)

J

CUM(0,1) = £ u (2,m)>
m = 1

(5.58)

and
(n, + n2)\ I nx n2

CUM(«„«2) = 2/ for n \ + n2 > 1. (5.59)

Aggregate Queue Theorem:

For (N v N 2) *(0,0)
n v n 2

G (N l ,N2) =
G (N i - n l ,N2- n 2)CUM(nx,n2)

(«,,n2)5t (0,0) + N 2
(5.60)

Proof:

For the purpose of the proof we define a function E(m)(n1,/i2) for each

queue m as follows:

For a fixed rate server

1 10 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

F(m)(n \ ’n2'> f.
(n, +n7)\

n , \n ~U(1 ,m)U (2,m) for /j| > 0, n2

elsewhere

> 0

and for an infinite server

F(m M v n2)
u(\,m) if n \ = «2 = °
"(2,«) if n \ = 0’ n2= 1
0 elsewhere.

We shall now show by induction that

n v n 2

1 -^ 2) = S G (N \ - n l ,N2- n 2)F(m)(n v n2)
rt] ,«2#0'0

for fixed rate and infinite servers.

This equation is obviously true for (N l ,N2) = (0,0), (0,1) and (1,0).
Assume the equation is true for all (K X,K2) such that either (1) K , < N x
and K 2 < N 2 or (2) K x < N x and K 2 < N 2. We shall now prove the
equation for (K X,K2) = (N X,N2).

For a fixed rate server, from equations (5.53) and (5.54) and applying
the induction assumption,

= «(1,W)G(^V1 - 1^ 2)

N i - \ , N 2

+ S G(<N \ - X- n \ ’N 2- n2)U(\,n,)F (m)(n \ ’n2)
nj n2^0,0

SEC. 5.5 / PROPERTIES OF CLOSED NETWORKS 111

+ U(2,m)G^N VN 2 ~ !)

^lW2- l

+ X G(N \ - n VN2 - \ - n2)u(2,m)F(m)(n Vn2)
rtj,«2^ 0,0

yv ,- i n 2

= 2 2 G<<N \ - l - n VN 2 - n2)u(\,m)F(tn)(n \ ’f'2) n|=0 n2 = 0

N { N2- 1

+ 2 2 G(jVl - nl ’Ar2 - 1-« 2)M(2,m)F(m)(«l>/J2)/I] =0 «2 = 0

yv, yv2

= 2 2 G (^ i - « i , ^ 2 - « 2) M(l,w)^(OT)(«l - l>«2)
h,=0 n2=0

N, N2

+ 2 2 G ^ l - , J l>^r2 _ /z 2) u (2,m)'f ’(m)(,1l ’,J2 _ 1)Mj=0 n2=0

Ay, yv2

= 2 2 G ^N \ - n \ ’N 2 - n 2 ^ u (l ,m)F (m ^ n \ - l ’n 2^
n , = 0 «2= 0

+ M(2,W)ir(m)(«l>«2- D)

n v n 2

= — « i ,AT2 —« 2) ^ (W) (« 1 ,« 2)
n , , « 2^ 0,0

The very last step follows from the fact that for (n l ,n2) # (0,0)

u (1 , m)F (m) (n \ 1,w2^ + M(2,m)i r («1) (" l - M2 - 1) = F (m) («1 -«2>-

When («,,/i2) = (0,0) the left hand side of the above equation is zero (0)
while the right hand side is unity (1). The proof of the above equation for
/(m)(Ari,Ar2) for the IS case follows trivially from equations (5.55) and
(5.56).

The theorem follows from the fact that

1 12 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

and

' Z F (m)(N {,N2) = CUM(A,,A2).
m

Convolution

Consider a closed network with K chains consisting of 2 subsystems: 1
and 2. Assume that all queues in the network are either processor-sharing
queues, with service rates which may vary with queue length, or composite
queues. Let G\(N), G2(N) and G(N) be the normalization constants for
subsystem 1, subsystem 2 and the entire system (respectively) given a
population vector of N. From the subsystem lemma we know that the
probability of ni jobs in subsystem i, i = 1,2, (where ni is a vector of length
K) given a population vector n = «, + n2 for the system is

P(nv n2 | n)
G l (n l)G2(n2)

Gi^)

Summing over all n2, we have

P(nl , n - n l | n) = 1
=0

Hence

G(n) = 2 C1(«,)G2(« - «,) (5.61)
= o

Let G be an (N j + 1) x . . . x (N K + 1) matrix of G(n), with nk varying from
0 to Nk + 1, where Nk are arbitrary non-negative integers for all k. G\ and
G2 are defined similarly. We shall write

G = G l *G2 (5.62)

and * is called the convolution operation.

Convolution Theorem:

Consider a network consisting of M subsystems, and let Gm(n) be the
normalization constant for the subsystem given a population vector n,

SEC. 5.5 / PROPERTIES OF CLOSED NETWORKS 113

m 1 Let Gm be a matrix of Gm(n) whose indices range from
(0,...,0) to (N l ,...,NK), m = 1 Let G(n) be the normalization con
stant for thê entire network given population vector n , and let G be a
matrix of G(n), with indices ranging from (0,...,0) to (N l ,...,NK).

G = G x*...*Gm . (5.63)

Proof:

This result follows by induction on the number of subsystems, since the
arguments given earlier show that the theorem holds for a network consist
ing of two subsystems. Note that the convolution operation is both associa
tive and commutative.

Deleting a queue

We now discuss the computation of normalization constants for a
network consisting of queues 1 from the normalization constants
for a network consisting of queues 1

Queues I , . . . , M - \ Queues 1, . . . , M - 1

1 3 3
3

1
1
I Queue M ! 3 0

i
1
1
1
1

ri i3 h 1O-i ri iO h
: iO I

I
1 i 1 3 1

1
1

L_ J L_
1

J

Old network New network

Figure 5.10

Consider a network with queues 1 Let COLD(«) be the normali
zation constant for this network given a population vector n. Let CNEW(n)
be the normalization constant for the network with queue M removed (e.g.,
shorted out). From the subsystem lemma, the unnormalized probability of
nk jobs of chain k, all k, in queue M (in the OLD system), given a popula
tion vector N is

P(M)(n I **) ~ X (M)(n^GN E W ^ “ ”) (5.64)

1 14 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

where is the normalizing constant for a network consisting of
queue M by itself. From this equation, we have

I A) = Gne w(N)

and

P(M)(n | A) = X {M)(n)p{M){0 \ A) (5.65)

We shall use equation (5.64) in computing GNEW.

We now derive equations for the special case where queue M is a fixed
rate server. For notational simplicity we now consider a 2 chain case. The
Marginal Local Balance equation can be written as

(P (m) (n 1 ~ l ’n 2 I N l ~ ^ 2 ' n \ * °>

P(m)(n Vn2\ N VN2) = j „ +n
P(m) (n l ’n 2 ~ 1 I N \ ’N 2 ~ ^ u (2,m) ^ 2 ’ w2 ^

From this equation, for (n l ,n2) ± (0,0) we have

P(m)(«l —L « 2 I Aj - h N 2)u(] m)+ p (m)(nv n2 - 1| N VN 2 - 1)«(2>w)

= / , (m) (" l ’" 2 I ^ i ^ 2)

where we define P(m)(i,j I A:,/) to be 0 if y, &, or / is negative. Summing
the above equation over all rt\,n2 we have

G OLD^N l ~ i N̂ 2 û (l,m) + G OLD^N l ' N 2 ~ ^ u (2,m)

~ ^OLD^l ’N 2) - P (m)(Q,0 I A, ,N2)

where GOLD is the normalizing matrix for the entire network, i.e., for
queues Recall that GNEW is the matrix of normalizing constants for
a network obtained by deleting queue M. Hence

SEC. 5.6 / AN INTRODUCTION TO CLOSED NETWORKS 115

= /J(m)(0 ,0 |iV1 ,A2)

= GOLD(A„W2)

For a fixed rate queue, we know that the normalization constant for a
matrix consisting of queue M by itself is

We can use equations (5.65) and (5.66) to compute the marginal probability
for queue M if it is a fixed rate queue.

5.6 AN INTRODUCTION TO CLOSED NETWORKS

The reader who has completed Sections 5.1 through 5.5 may skip this
section and go directly to Section 5.7. Some of the material of those
sections is repeated in this section before we discuss computational algo
rithms. Readers who have skipped the earlier sections will find a non-
theoretical introduction in this section.

Jobs neither enter nor leave a closed network. There is a constant
number of jobs in a closed network at all times. This number is called the
job population of the network. Figure 5.11 is an example of a simple two
queue closed network model where one queue represents a CPU and the
other a disk. In this model, when a job finishes service at the CPU it joins
the disk queue, and when a job finishes service at the disk it joins the CPU

C P U I / O

Figure 5.11 A simple closed network

116 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

queue. The total number of jobs in the network (and hence the sum of the
queue lengths of all jobs in the network) must always equal the population,
TV.

Figure 5.12 A simple model of a time-sharing system

Figure 5.13 CPU utilization as a function of population

In open networks, any queue length can range from zero to infinity and
no restriction is placed on the total number of jobs in the network. In most
computing systems, the total number of jobs in device queues is limited by
the amount of memory, or the number of control points or some other
resource. For example, in a time-sharing system with TV users, there must
be a total of AT jobs in the system, where the system includes the terminals
as well. (Here we assume that there is at most one job per user and that
there are no additional system jobs. Though neither assumption is neces
sarily correct, the statement that the total number of jobs is fixed is essen

SEC. 5.6 / AN INTRODUCTION TO CLOSED NETWORKS 117

tially true.) In practice, N is not truly constant over all time; for example, in
a time-sharing system there may be 1 0 users for 1 0 minutes, and then 9

users for the next 5 minutes, and then 10 users for the next minute, and so
on. It is preferable to model such a system as a closed network with a fixed
population N, and study the behavior of the model for different values of N.
For instance, we might want to determine the CPU utilization as a function
of N. In computing such a function, we are really analyzing several
equilibrium models: one in which N = 1, another in which N = 2, and so
on. Strictly speaking, we should only have a single model which incorpo
rates the transient behavior of N, i.e., the way N changes with time; how
ever, such models are difficult to analyze and we choose to approximate the
true model by one in which the system is assumed to switch from one
equilibrium model (and value of N) to another. If we wished to determine
the CPU utilization for a period of time during which N = 9 for 50% of the
time and N = 10 for 50% of the time, we could do so (approximately) by
averaging the CPU utilizations in equilibrium closed models in which N = 9
and N = 10.

The previous discussion should convince the reader that closed network
models are more appropriate than open network models for a variety of
systems. There is another basic difference between open and closed mod
els: the computation of queue throughput (the rate at which jobs complete
service at the queue). As shown in Chapter 4, the throughput of a queue in
an open network depends only on the rates at which the sources produce
jobs and the expected number of visits that jobs make to a queue; in partic
ular, the throughputs are independent of the service times, provided, of
course, that equilibrium conditions exist. An inspection of Figure 5.11 will
show that the throughput of the CPU queue must decrease with increasing
CPU and disk service times. Queue throughputs in closed networks depend
on service times and branching probabilities (the probability of making a
transition from queue / to queue j). There seems to be no simple way of
computing throughputs in closed networks. However, it is possible to
compute the throughput of one queue relative to the throughput of another
quite easily as will be shown in the next paragraph; for instance, the
throughput of the CPU queue in Figure 5.11 must equal the throughput of
the disk queue.

We now restrict attention to closed, product form networks in which a
job of any class i can become a job of any other class j (possibly after
making transitions through other classes k j, /c2, k 3,...) with non-zero proba
bility; such networks are called single-chain networks. Consider the closed
networks of Figure 5.14. There are 4 classes in each network. In Figure
5.14a, a job in any class i can eventually become a job in any class j\ for
example, a job of class 2 can become a job of class 1 after passing through
classes 3, 4 and 1. In Figure 5.14b, a job in class 1 can become a job in

118 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

Figure 5.14 Networks with one and two chains
class 2 but can never join classes 3 and 4. We will consider networks of the
form shown in Figure 5.14b (which are called multiple-chain networks) later
in this chapter, but we shall ignore them for the rest of this section.

The notation used in this chapter is the same as that used in Chapter 4.
It is reviewed here. Let there be C classes. Let R c = Rrc be the through
put of class c. Let pcd be the probability that a job leaving class c immedi
ately joins class d. Then we must have

c
R c = 7 J R dPdc^ c = l —.C. (5.67)

d= l

This equation states that the rate of flow of jobs into class c must equal
the rate of flow out of class c. Equation (5.67) is a system of C equa
tions, but one of the equations is linearly dependent on the other C - l
because the equation for any class c can be obtained by summing the
equations for all other classes (and then simplifying). Hence, if we knew

SEC. 5.6 / AN INTRODUCTION TO CLOSED NETWORKS 119

the throughput of any class, we could use (5.67) to find the throughput of
all the other classes because we would have only C— 1 unknowns and C— 1
independent equations.

Let the relative throughputs, r , c = 1 ,...,C be a set of numbers such
that

r
C D R^ , c — 1 ,

where D is any positive constant. Note that

(5.68)

(5.69)

i.e., the ratio of throughputs is equal to the ratio of relative throughputs.
Substituting (5.68) in (5.67) the set of rc must satisfy

rc = X rdPdc - c = (5 -7 °)
d= 1

Let nc be the number of class c jobs, c
bles, but at all times

c

C = 1

where N is the population. Taking the means of both sides of (5.71)
c
X Lc = N (5.72)

C = 1

where Lc is the mean number of jobs in class c, i.e., Lc is the mean queue
length at class c. Let Qc be the mean queueing time at class c. Lrom
Little’s Rule

= 1,...,C. The nc are random varia-

= N (5.71)

Qc = (5.73)

Note that equations (5.67) through (5.73) hold regardless of the service
disciplines and distributions. (These results hold for networks without
product form solution.) We next consider results that only hold for special
distributions or disciplines.

Consider the network of Ligure 5.11. Refer to the CPU queue as
queue 1 and to the disk queue as queue 2. All jobs in queue c belong to

120 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

a a a

yv, o ©a

Figure 5.15 The Markov diagram for the network of Figure 5.11

class c, c = 1,2. Let ac be the service rate of class c, c = 1,2, i.e., 1 / ac is
the mean service time at class c. Assume that all service times are inde
pendent exponential random variables. Let nc be the number of jobs in
class c, and let N be the total job population. The states for the Markov
process for this network are (n l ,n2) where n { + n2 — N, as shown in Figure
5.15. Note the similarity of this diagram to that of Figure 4.2. Solving the
balance equations exactly as we did for the example in Figure 4.2 (the
reader should perform the solution) we get

The utilization of class 1 is 1 — P(0,N). Note that if we interpret a2 as R
for the isolated queue of Section 4.1 and p as U, with p < 1, the state
probabilities P(n,N — n) for the closed network tend to the P(n) of equa
tion 4.6, as the population N gets arbitrarily large. As N gets arbitrarily
large, the queue length at the disk (queue 2) will get arbitrarily large since it
is the slowest queue in the network, because p is assumed to be less than 1 .
In the limit the utilization of queue 2 will tend to 1, in which case the
inter-arrival time at queue 1 will be the service time of queue 2. Thus, in
the limit, the arrival process to queue 1 will be Poisson at rate a2, which
allows us to use an open network model to analyze queue 1. The same
analysis can be applied to general networks. Let & be the set of queues
with the maximum value of relative utilization, i.e., where

where p = a2/ a \ and

P(0,N) = 1 (5.75)
\ + p + p 2 + . . . + p N

u (m) = 2 Uc = 2 ~
c c in

let

SEC. 5.6 / AN INTRODUCTION TO CLOSED NETWORKS 1 2 1

^MAX - MAX

and

0 = { m \ u(m) = UMAX}

For any population N, a queue in f f will have a greater utilization than a
queue not in & because the ratio of queue utilizations is equal to the ratio
of relative queue utilizations. As the population tends to infinity, the
utilization of queues in If will approach 1. Hence, departures from these
queues will become Poisson with rates equal to the queue service rates. In
this case we can analyze every queue not in f f by analyzing an open

Figure 5.16 Creating the asymptotic open network from a closed one
network, which is obtained from the given closed network by replacing
every queue in f f by a source and sink pair, as shown in Figure 5.16.

Let us examine the relationship between the CPU (queue 1) utilization
and job population more closely. Computing the utilization as discussed
earlier, we get the graph shown in Figure 5.17. With p < 1, the CPU
utilization tends to p as N tends to infinity for the reasons given earlier.

122 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

With p > 1, the CPU utilization tends to 1 as A tends to infinity. When p
is much smaller or much larger than 1 the CPU utilization rises sharply and
then flattens out for relatively small values of N, whereas the curve rises in
a gentler fashion when p is approximately 1. The reason for this is seen by
examining the mean queue length of either queue as a function of the
population. When p = 1, the queues are symmetric and the mean queue
length must be N/ 2 for each queue. When p is much greater than 1, each
additional unit increase in N will increase the mean queue length of the
heavily utilized queue (queue 1) greater than the less utilized queue, until,
in the limit L, asymptotically approaches a 45° line. When p < 1, each
additional job added to the system spends more time in the more heavily
utilized disk queue, till in the limit the mean CPU queue length approaches
a constant value.

Figure 5.17 CPU utilization as a function of N

Figure 5.18 Mean queue length as a function of population

SEC. 5.6 / AN INTRODUCTION TO CLOSED NETWORKS 123

Figure 5.19
We next consider networks in which some of the queues have PS,

LCFSPR or IS disciplines. All classes belonging to a queue with a FCFS
discipline are assumed to have the same exponential service distribution.
Consider, for example, a simple extension of Figure 5.11, shown in Figure
5.19. The notation used here is designed to fit the open network in Figure
4.7 with the disk representing the source. Let ac be the service rate of class
c, c = 1,...,C and let R be the service rate of the disk (class 0).

Let C = 2, let nc be the number of jobs in class c and let (nx,n2) be the
state of the network. The number of jobs at the disk is TV — («, + n2).
The Markov diagram for this closed network is the same as that for the
open network (see Figure 4.8) with infeasible states (those with n x + n2 >
TV) removed. Calculation (as in equations (4.41-4.48)) shows that the
equilibrium state probabilities are given by equation (4.42), and the proba
bility of n jobs at the disk and TV — n in the CPU is given by (4.45). The
mean CPU service time is

P 0 1 P 0 2

a2 '

Setting p to be the ratio of the CPU service time to the disk service time,
we get

)■
Hence, the probability of n jobs in the CPU and TV — n jobs in the disk is
exactly the same as for Figure 5.10. Thus the queue length distributions
and other measures we have considered in detail are dependent only on
mean service time and are independent of class distinctions.

124 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

It has been shown that only the relative utilizations are relevant in
computing the probability that there are nm jobs in queue m, m = 1 , 2

in an arbitrary network provided that (1) at each FCFS queue all classes
have the same exponential service time distribution, and (2) at non-FCFS
queues the service time distributions are differentiable, and the queueing
disciplines are processor sharing, last come first served preemptive resume,
infinite servers or other members of a special set of disciplines defined in
CHAN77b. (Most of these results are in Chapter 4 and Sections 5.1
through 5.5. The exponential stages characterization of distributions we
have considered is slightly more restrictive than the differentiable character
ization mentioned above and used in CHAN77b.) This class of networks
satisfies product form, i.e.,

P (S X,...,SM)
P\ (S \)...P M(S M)

G
(5.76)

where P(S { is the probability of a feasible network state in a
network of M queues, where Prn(Sm) is a factor reflecting the probability
that queue m is in state S m and G is a normalizing constant. The queue
states S m for queue m, and the functional form of the probabilities Pm{Sm)
are the same as in the case where class c of queue m is fed by Poisson
arrivals with rate equal to the relative throughput of class c in the closed
network. (See Figure 5.1.) The derivation of this last result is found in
Section 5.4.

5.7 COMPUTATIONAL ALGORITHMS

There are a number of criteria that must be considered in choosing a
computational algorithm for queueing network models. These include
generality, computational effort, storage requirements, numerical stability
and implementation effort. There are four generic types of algorithms
which we find interesting. In historical order, these are the Convolution
Algorithm as first discussed in BUZE71 and most refined in REIS78b, the
Mean Value Analysis Algorithm of REIS78a, and two algorithms we pro
posed in CHAN79, the Local Balance Algorithm for Normalizing Constants
(LBANC) and the Algorithm to Coalesce Computation of Normalizing
Constants (CCNC). LBANC was derived from Mean Value Analysis.

Generality. CCNC is restricted to networks with fixed rate single
server queues and infinite server queues. (It can be augmented by the
Convolution Algorithm to solve networks with other queues.) The Mean
Value Analysis Algorithm and LBANC allow fixed rate single server queues,
infinite server queues and variable service rate queues where the service rate
depends only on the total queue length, e.g., multiple chain composite
queues (Section 5.4 and Chapter 6) are not allowed. Mean Value Analysis

SEC. 5.7 / COMPUTATIONAL ALGORITHMS 125

has not been applied to mixed networks, i.e., networks with both open and
closed chains; it seems likely that Mean Value Analysis can be easily ex
tended to mixed networks using the approach described for LBANC, but it
is not clear whether the approach would work for Mean Value Analysis with
variable rate queues. Convolution is the only algorithm which has been
applied to the full class of product form networks.

Computational Effort. Computational effort is tied to storage require
ments since one may choose to recompute values to save storage. We may
think of the computational effort associated with Convolution, Mean Value
Analysis and LBANC to be essentially the same, depending on implementa
tions and which performance measures are obtained. (E.g., mean queueing
times are necessarily obtained by Mean Value Analysis but optionally
obtained by Convolution and LBANC.) For the single chain case, the effort
of LBANC for networks without variable rate queues is roughly
3MN + N + M additions, multiplications and divisions, which compares
favorably with Convolution [REIS76] and Mean Value Analysis [REIS78a],
Computational effort is usually not a problem except when we are dealing
with many closed chains and/or large closed chain populations or when we
are using very slow processors, e.g., programmable calculators. Approxi
mate methods have been proposed based on Mean Value Analysis which
have much lower computational requirements [REIS78a, BARD78]. Essen
tially the same approaches can be used with LBANC, as we will discuss in
Chapter 6 .

Storage Requirements. It is difficult to generalize about storage re
quirements, since the requirements are dependent on both the problem
solved and the implementation. CCNC has much lower storage require
ments than the other algorithms when the number of queues is large, assum
ing we save the intermediate result vectors of the Convolution Algorithm,
rather than recompute them. In fact, its requirements are so low that
multiple chain problems can be solved on a programmable calculator using
this algorithm. However, it is of limited generality and has poorer numerical
properties than the Mean Value Analysis Algorithm and LBANC, so it is
only appropriate when storage is at a premium. The Mean Value Analysis
Algorithm and LBANC have small storage requirements as long as variable
rate queues and/or queue length distributions are not considered. (In the
multiple chain case the obvious looping structures for these algorithms will
require large amounts of storage, but alternate structures can be used to
obtain reasonable storage requirements.) The Convolution Algorithm has by
far the lowest storage requirements for general variable rate queues in
multi-chain networks; depending on specific variations it may have smaller
storage requirements when queue length distributions are estimated.

126 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

Numerical Stability. The Mean Value Analysis Algorithm has remark
able numerical stability for models with only fixed rate and infinite server
queues; it is the algorithm of choice for such models when extreme parame
ter values are considered. (Mean Value Analysis, as originally defined
[REIS78a], does not retain its numerical stability for variable rate queues.
Modifications have been proposed which eliminate the numerical problem
but may be quite expensive in computation and storage, depending on the
number of variable rate queues in the network [REIS80].) Though LBANC
is closely related to the Mean Value Analysis Algorithm it may fail for
extremes of parameters which can be handled by Mean Value Analysis.
The Convolution Algorithm has poorer numerical properties for fixed rate
and infinite server queues than those two algorithms, but has better numeri
cal properties for variable rate queues when the probability of small queue
lengths at those queues is small. (It also has better numerical properties for
queue length distributions.)

Implementation Effort. Mean Value Analysis, LBANC and CCNC are
very simple to implement. The Convolution Algorithm is significantly more
complex, particularly because of the intermediate values involved which
have little intuitive relationship to the performance measures.

None of these algorithms is entirely satisfactory. However, LBANC
supplemented by the Convolution Algorithm will be satisfactory under most
circumstances. For extreme parameter values the Mean Value Analysis
Algorithm will be the only satisfactory choice, but it may be expensive if
variable rate queues are involved. Where storage is severely constrained
CCNC may be useful. CCNC seems the best choice for programmable
calculator implementations when there is a significant number of queues,
while LBANC or Mean Value Analysis are preferred when there is a small
number of queues and a large population(s). The best approach for general
purpose use is a mixture of algorithms; we would suggest that LBANC be
used for the portion of the network restricted to fixed rate single server and
infinite server queues, and that the Convolution Algorithm be used to
complete the computation.

In Section 5.7.1 we discuss, for single chain networks, LBANC, CCNC
and then the Convolution Algorithm. (We defer discussion of the Mean
Value Analysis Algorithm to Section 5.7.3 since it is so similar to LBANC.)
In Section 5.7.2 we extend the discussion to multiple chains. In Section
5.7.3 we consider the numerical properties and requirements of all four
algorithms.

SEC. 5.7 / COMPUTATIONAL ALGORITHMS

5.7.1 Algorithms for Single Chain Networks

127

We shall first restrict attention to PS queues where the total service
capacity varies with the number of jobs in the queue, since LCFSPR and
FCFS queues which satisfy local balance have the same queue length distri
bution and the same values for performance measures obtainable from the
queue length distribution. (In the multiple chain case there are queues
which are not equivalent to this restricted characterization.)

As motivation for queue with capacities which vary with the number of
jobs in the queue, consider a single queue, say queue m, with two servers.
When there is only one job in queue m, only one of the two servers can be
active, whereas when there are 2 or more jobs in the queue, both servers are
active. (If there are two or more jobs in queue m, the two servers
processor-share the jobs.) Let ac be the rate at which class c jobs are served
when there is only one class c job in queue m. Then, when there are 2 or
more class c jobs in queue m, and if all jobs in queue m are class c jobs, we
may expect the total service rate for class c jobs to become 2 ac, because
both servers will be busy. However, the servers may interfere with one
another. For example, two processors may not be able to work twice as
fast as one because of memory interference, and it is possible that the
service rate with 2 or more jobs may be an arbitrary positive number times
the rate for one job.

Let SH A R E ^^aj) be the fraction of processing power given to each
job when there are n jobs in the queue. In a single server, PS case,
SHARE(m)(n) = \ / n for all positive n, and in the infinite server case
SHARE(m)(n) = 1 for all positive n. In the 2 processor case discussed
above SHARE(mj(n) = 2/n for n > 2. The service rate for a single, specif
ic class c job, when there are a total of n jobs in queue m is
acSHARE(m)(n). The total service rate for all class c jobs when there are a
total of n jobs in queue m, nc of which belong to class c, is
acSHARE(m) (n)nc. Define CAP(w?)(«) = «SHARE(m) (n). For a single
server PS queue CAP(m)(«) = 1 for positive n. For an IS queue
CAP(m)(n) = n for positive n. For a two server PS queue CAP(m)(l) = 1
and CAP(m)(«) = 2 for n > 2.

LBANC

With the exception of the Mean Value Analysis Algorithm of REIS78a,
all efficient algorithms for performance metrics require computation of the
normalizing constant, G. LBANC iteratively applies the Marginal Local
Balance equation (5.32) to obtain the normalizing constant. The normaliza
tion constant, mean queue length and other statistics depend on the popula
tion. We shall show this dependence explicitly by writing G(n) and L (m){n)

I 28 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

for the normalization constant and mean queue length of queue m, respec
tively, given a population of n. Let l(mA AO be the unnormalized mean
queue length of queue m given population N, where

',„)< « - Ltm(5.77)

The use of (5.32) in LBANC yields unnormalized mean queue lengths as
intermediate results. Thus the mean queue lengths are immediately availa
ble once G is determined. From the fact that £ L, An) = n , we getm y '

2 W » >
Gin) « -2!— ------. (5.78)

Applying local balance we have shown (equations (5.48) and (5.50))
that for fixed rate queues (i.e., CAP(„;)(«) = 1 for all positive n)

= U(m)(<G(<n - D + /(„,)(« - D) (5.79)

and for infinite server queues

W " > = - »• <5-80>

The queue length distribution is necessarily obtained for queue length
dependent queues other than IS queues by LBANC. For queues other than
single server and infinite server (and to obtain the queue length distribution
for fixed rate and IS queues) we use equation (5.38),

P(m)G l «)
/>(,„)(/-! 1 n - \) u (m)

CAP („,,(/)
for i > 0 , (5.81)

to compute the queue-length distribution given population n, and then
compute from

W ”) = S ,> (m)(/ l«)- (5.82)
(= 1

We next compute

P(«)(° I «) = C(«) - 5) /»(«)(*' I «)• (5.83)
/= 1

LBANC is simply the application of these equations, /(,„)(0) = 0 and
P (m)(0 | 0) = 1. We can obtain throughputs directly from G and the relative
throughputs by the Throughput Theorem (5.29), i.e.,

SEC. 5.7 / COMPUTATIONAL ALGORITHMS 129

R (m) r (m)
G(N — 1)

G(N)

The mean queueing times can then be obtained from Little’s Rule. Utiliza
tions can be obtained from (2.7) for most cases; in general it may be
necessary to use the queue length distribution to determine utilizations, but
this is still conceptually trivial.

We will now give a more program-like definition of LBANC. Let us
assume that queues 1 ,...,/ are single server fixed rate queues, that queues
7+1,...,/ are IS queues and that queues have general CAP func
tions. We assume that we are primarily interested in metrics for population
N and will reuse variables along the way, i.e., we will drop the n subscripts
from all of the above variables, except G.

G(0) = 1
For m= 1 to M

l(m) ~ 0

P(m)< 0) = 1
For n= 1 to N {Iterate over populations}

G{n) = 0
For m=l to I {Fixed rate queues}

l (m) = U(m)(G(n “ D + W
G(jt) = Gin) + l (m)

For m = I + 1 to J {Infinite server queues}

130 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

l(m) = u(m)G(" ~ ^
G(n) = G{n) + l (m)

For m=J+l to M {Variable rate queues}
l (m) = 0

For i=n down to 1 {Iterate over queue lengths}
/»(«,)(') = ~ 1 2)W(w)/CAP(m)(/)
^(m) ~ I(m)

G(n) = G(n) + l (m)
G{n) = G{n)/n {Finished computing Gin)}
For m=J+ 1 to M {Variable rate queues}

/>(m)(°) = Gin)
For i= 1 to n

= P{m)W-P{m)W
For m= 1 to M

q™, = '(„>/<?<«
For m= 1 to M

R (m) = r(m)G i N - \) / G i N)

Q(m) = L (m)/R (m)

Note that we do not have to save G(0), G(N—2). However, if we
do save these values, then we can readily recompute measures for individual
queues for populations less than N, without recomputing measures for other
queues. This is especially significant when using machines with very limited
memory, e.g., programmable calculators and home computers. LBANC has
been implemented on two popular programmable pocket calculators
[REYN80]. This appears to be an advantage of LBANC over Mean Value
Analysis in such memory limited situations. Note that LBANC and Mean
Value Analysis can be used with pocket calculators with large single chain
populations because the storage required is independent of the populations
(assuming we do not save G(0), ..., G(N— 2) with LBANC).

We illustrate LBANC with the example of Figure 5.20. Since each
queue has exactly one class, we will not parenthesize the queue subscripts.
We have a, = .5, a2 = 1, a3 = .25, CAP3 (1) = 1, CAP3 (2) = CAP3 (3) =
2, p 2X = .5, and p 2 3 = .5.

1. Compute relative throughputs.
Let r2 = 1.
Then r, = r2 x 0.5 = 0.5. Also r2 = r2 x 0.5 = 0.5.

2. Compute relative utilizations.

SEC. 5.7 / COMPUTATIONAL ALGORITHMS 131

u , = r ,/a , = 1 .0 , m2 = 1 -0 . u 3 = 2 .0 .
3. Computation for N = 1

G(0) is defined to be 1.
Single server: /j (1) = u , = 1.0
Infinite server: /2(1) = u2 = 1.0
Variable rate: p3(1 | 1) = u3 = 2.0

/3 (1) = 1 . 0 x p 3 (1 | 1) = 2 . 0

G(l) = /,(1) + /2 (1) + /3 (1) = 4
P3(0 I 1) = G(l) - p3(1 | 1) = 2.0
L ,(l) = 1/4 = .25 , L2(1) = .25, L3 (l) = .5
/? x(l) = rjG (0)/G (l) = .125, R 2 (l) = .25, R 3 (l) = .125
0 1 (1) = .25/.125 = 2.0, (>2d) = LO, 0 3(1) = 4.0
G ,(l) = .125/.5 = .25, U2 (l) = .25/°c = 0, G3 (l) = .25

4. Computation for N = 2
Single server: /j(2) = Mj(G(1) + /](!)) = 1(4+1) = 5
Infinite server: /2 (2) = m2 G(1) = 4
Variable rate: p3(2 | 2) = p3(l | l)u 3 /CAP 3 (2)

= (2 x 2) / 2 = 2

p3(l I 2) = p 3 (0| 1)u3 /CAP 3 (1)
= 2 x 2 = 4

/3 (2) = 2 x p 3 (2 | 2) + 1 x p3(1 | 2) = 8

_ M 2) + /2 (2) + /3 (2) _ g 5
2

/73(0 | 2) = G(2) - p 3(2 | 2) - p3(l | 2) = 2.5
Ld2) = 10/17, L2 (2) = 8/17, L3 (2) = 16/17
R,(2) = 4/17, R 2(2) = 8/17, R 3 (2) = 4/17
0,(2) = (10/17)/(4/17) = 2.5, 0 2 (2) = 1.0, 0 3 (2) = 4.0
17,(2) = (4/17)/.5 = 8/17, t/2 (2) = 0, G3 (2) = 8/17

5. Computation for N = 3
Single server: 7,(3) = 1(8.5 + 5) = 13.5
Infinite server: /2 (3) = 8.5
Variable rate: p 3(3 | 3) = (2 x 2)/2 = 2

p3(2 | 3) = (4 x 2) /2 = 4
p3(l I 3) = (2.5 x 2)/l = 5
/3 (3) = (3 x 2) + (2 x 4) + (1 x 5) = 19

132 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

(jry) — 13.5 + 8.5+19 _ 41
3 3

/»3(0 | 3) = 41/3 - (5 + 4 + 2) = 8/3
L,(3) » .988 , L2 (3) « .622, L3 (3) « 1.390
7?,(3) « .311, R 2(3) ~ .622, R 3 (3) « .311
2,(3) » 3.176, 0 2 (3) = 1.0, 0 3 (3) « 4.471
£7,(3) « .622, £72 (3) = 0, £73 (3) « .622

The CCNC Algorithm

The name arises from the fact that all fixed rate and infinite server
queues coalesce into a single (composite) queue. CCNC is principally
intended for use with programmable calculators, though it certainly is not
restricted to calculator implementations. It applies only to queues with
fixed rate servers or infinite servers; it can be used in conjunction with the
Convolution Algorithm for networks with queues with variable rates of
service. It takes advantage of exponentiation and factorial operations
usually provided as machine instructions and is trivial to implement to
obtain normalizing constants. Other performance measures would typically
be obtained by the unnormalized mean queue length expressions of LBANC
(equations (5.79) and (5.80)) and other standard expressions, but on a
queue by queue basis, since G has already been obtained.

As before, let queues 1,...,/ have fixed rate servers and let queues
7+1,...,/ be infinite server queues. Define CUM(n) as follows (CUM is an
abbreviation for cumulative):

CUM(l) =
m= 1

/
CUM(n) = Y j M(m) f°r n > 1.

m= l

Then from the Aggregate Queue Theorem (equation (5.60))

r (G(n — l)CUM(l) + ... + G(0)CUM(«)

Since the algorithm which follows from these equations is trivial, we shall
not present a program-like description.

SEC. 5.7 / COMPUTATIONAL ALGORITHMS 133

Using CCNC with the pocket calculator. The difficulty with using
LBANC on pocket calculators is that there may not be enough registers to
store the for all queues if there is a large number (say, over 15) of
queues. (Similar, if not more severe, problems arise in using convolution or
Mean Value Analysis on pocket calculators.) With CCNC, after the user
enters any single the calculator program computes the partial sums of
the CUM array. When the user enters + it can be placed in the
register which previously held u(m). After all the |u (m)} are entered, the G
array is computed directly from the CUM array using equation (5.60). To
compute metrics for any queue m, the user reenters U(m), and metrics are
computed from and the G array using the LBANC equations. The
difficulty with using CCNC with large populations is that there may not be
enough registers to store the CUM array. In this case LBANC is prefera
ble.

The Convolution Algorithm

We assume that either LBANC or CCNC has been used to obtain the
normalization constant for a network consisting of fixed rate and infinite
server queues 1,...,/. Note that such queues could be directly considered in
the following algorithm, but this would usually not be appropriate. Let the
normalization constant for queues 1 be Gj(n) given a population of n.
The remainder of the M queues, i.e., queues are variable rate
queues. Lor queue m, m = define a vector X(m) of length N + 1
(N is the population), where A^^O) is defined to be 1 and

l(m)(«) =
_______________________u (m)

CAP(m)(n)...C A P ^(l)
n > 0 .

(m)'

A(m)(n) is the normalization constant for a network consisting only of
queue m given a population of n.

We define a Convolution operator * as follows: if X and Y are vectors
of length N + 1, then Z = X*Y is also a vector of length N + 1 where

n
Z(n) = X X(i)Y(n - i), n = 0

/ = 0

After computing Gj (i.e., the normalization constants for queues with fixed
rate or infinite servers), the Convolution Theorem (5.63) tells us that we
may compute G for the entire network as

G = G j ’X u+

134 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

Though we can still apply the Throughput Theorem, for other measures we
must obtain the queue length distribution. This can be done most efficient
ly by applying equations (5.81) and (5.83). However, it may be numerical
ly more appropriate to use the following (see Section 5.7.3). Let GM_(m-)
be the normalization constant vector for the network with queue m omitted.
Then

=
3f(m)(n)CA/_(m)(Ar - n)

for n = 0 (5.84)

Though GM_ (m ̂ could be obtained from GM and X^m), such an approach
has poorer numerical properties than computing GM_^mx directly. (Such
direct computation will require significant additional storage and/or redun
dant computational effort.) Utilizations and mean queue lengths can be
directly obtained from the queue length distribution and mean queueing
times from Little’s Rule.

We now repeat the example of Figure 5.20 with CCNC and the Con
volution Algorithm. Again we do not parenthesize subscripts. We first
compute normalization constants for the network consisting of the fixed rate
and infinite server queues, i.e., queues 1 and 2 .

CUM(l) = W| + u2 = 2 (only fixed rate and IS queues)
2CUM(2) = »! = 1 (only fixed rate queues)

CUM(3) = w, = 1 (only fixed rate queues)

G2(n) is the normalization constant for a network consisting of queues 1
and 2 given a population of n.

G2(0) = 1 (Initial condition)
G2 (l) = G2 (0)CUM(1) = 2
G2(2) = (G2 (1)CUM(1) + G2 (0)CUM(2))/2 = 2.5
G2 (3) = (G2 (2)CUM(1) + G2 (1)CUM(2) + G2 (0)CUM(3))/3

= 8/3

For queue 3 in the example we have CAP3 (1) = 1 and CAP3 (/j) = 2
for n > 1 because the service capacity of the queue with 2 or more jobs is
twice that of the service with only one job. Hence

* 3 (1) = u3 /CAP3(1) = 2

AT3(2) = u] / (C A P3(2) x CAP3(1)) = 22/ 2 = 2

SEC. 5.7 / COMPUTATIONAL ALGORITHMS 135

* 3 (3) = u] / (CAP3 (3) x CAP3 (2) x CAP3 (1)) = 2

Thus we have
G2 = G2 (0),...,G2 (3) = (1 2 2.5 8/3)

and
X3 = * 3 (0),...,* 3 (3) = (1 2 2 2).

Then G = G2 * X 3, i.e.,

G(0) = G2(0)X3(0) = 1
G(l) = G2 (0)* 3 (1) + G2 (l)2r3 (0) = 4
G(2) = G2(0)X3(2) + G2(1)X3(1) + G2(2)X3(0)

= 8.5
G(3) = G2 (0)* 3 (3) + ... + G2 (3)* 3 (0) = 41/3

All performance measures could be computed exactly as before (in the
LBANC version of the example). The computation of the queue length
distribution for queue 3 by equation (5.84) would be

J»3 (0 | 1)
P3d I 1)
^3(0 I 2)

U)
P 3 (2 I 2)
^ 3(0 | 3)
^3(1 I 3)
P3(2 I 3)
P3(3 I 3)

(* 3 (0)*G2 (1))/G(1)
(* 3 (1)*G2 (0))/G(1)
(X3(0)*G2(2))/G(2)
(X3(1)*G2(1)) /G(2)
(* 3 (2)*G2 (0))/G(2)
(X3 (0)*G2 (3))/G(3)
(X3(1)*G2(2)) /G(3)
(X3(2)*G2(1)) /G(3)
(2f3 (3)*G2 (0))/G(3)

= 2/4 = .5
= 2/4 = .5
= 2.5/8.5 = 5/17
= 4/8.5 = 8/17
= 2/8.5 = 4/17
= (8/3)/(41/3) = 8/41
= 5/(41/3) = 15/41
= 4/(41/3) = 12/41
= 2/(41/3) = 6/41

Performance Metrics by Class

Let c be a class in ^ m, the set of classes of queue m, and let qc be the
probability that a random job in queue m is in class c. Then

?c = Mc / u(m) (5'85)

The conditional probability of nc jobs of class c in the queue, given a total
of n jobs in queue m is the multinomial

136 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

n\

n nc'
c in <€m

(5.86)

We can use this conditional probability to compute queue length distribu
tions by class from the queue length distribution for all jobs. Mean queue
lengths are readily available from

Lc = gcL (m). (5.87)

Throughputs can be determined from relative throughputs, i.e.,

R C(N)
G (N - 1)

^ G(N)

Mean queueing times can then be determined from Little’s rule.

(5.88)

Retrieving Discarded Measures

Because of storage limitations, one may discard performance estimates
and then discover that they are needed. For example, in programming
LBANC one can discard the measures for smaller populations once the
measures for the current population are obtained. We now discuss the
computation of performance metrics for a population of N - 1 from the
metrics obtained for a population of N. To compute queue length distribu
tions we rewrite equation (5.38) as

/>(«)<" I N - 1) = + 1 | A0CAP(m)(« + 1) / u [m).

For fixed rate servers equation (5.79) can be rewritten

W « - 1) = (W «) / « (W)) - G(N - 1)•

For infinite servers, we can use equation (5.80).

Changing the Relative Utilization of a Queue

Suppose we change the relative utilization of queue m from wOLD to
u n e w - I N) and I ^ e Q u i l i b r i u m probability of n
jobs in queue m given a population of N, when the relative utilization is
m o l d a n c l “ n e w - respectively. Then, from equation (5.64)

PnewC" I N) = Pold(' 1 I A) (^ w) . (5.91)
v m o l d ’

Let ^NEW^^) be the normalization constant for the new model. Then

(5.89)

(5.90)

SEC. 5.7 / COMPUTATIONAL ALGORITHMS 137

^NEw(-W) “ 5>NEw(»UV). (5.92)
n

(Now we can compute the queue length distribution for queue m and the
normalization constant for a population N — 1 as discussed above. We can
repeat this process for all populations from N - 1 down to 1.) This method
can be extended to the case where the relative utilizations of several queues
are altered.

Queues 1, . . . , M Queues 1, . . . , M
l------------------------------ 1

Figure 5.21

Adding a Queue

Suppose we wish to add a queue, M + 1, along a path of the current
system, which we call the OLD system, to get an altered system, the NEW
system. Let and ^NEw(n) be the values of the normalization
constant for the old and new systems. From the Convolution Theorem,
equation (5.63)

t̂ NEW - ^OLD^Af+l) (5.93)

Note that this applies to fixed rate and infinite server queues as long as we
define X^M+l ̂ appropriately.

Deleting a Queue

Suppose we delete queue m from the old (i.e., current) system to get a
NEW system. We wish to compute statistics for the NEW system from the
old one. Let I ^0 he the probability of n jobs in queue m given a
population of N, in the OLD system. Then (see equation (5.64))

138 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

Queue 1, . . . , M - 1 Queues 1, . . . , M - 1

POLD^n I N)
X(m)(n)G NEW^ — n)

^OLD^)
(5.94)

Hence

CNEw(”)
Pql dW - n \ N) G OLD(N)

- ")
(5.95)

These methods can be used to handle the case where several queues are
added and deleted.

5.7.2 Algorithms for Multiple Chain Networks

5.7.2.1 Multiple Closed Chain Networks

We now consider multiple chain closed networks (see Figure 5.14).
We will follow the same development as in the single chain case.

Equation (5.67) relating the throughputs of all classes holds independ
ent of the number of chains:

c
R c = 1 R d P d c for c = 1.....C. (5.96)

d = 1

Note that pdc = 0 if d and c belong to different chains. Hence, we can
rewrite (5.96) as:

(5.97)

SEC. 5.7 / COMPUTATIONAL ALGORITHMS 139

where the summation is taken over all classes d in the same chain as class c.

Let rc, c = 1 ,...,C be a set of numbers such that for all classes c in
chain j,

rc = Dj R c, for all chains j , (5.98)

where Dj is any positive constant for chain j. Note that Dj can be set
independently of Z)(if j ^ i thus we could have different proportionality
factors relating the relative throughput rc to the true throughputs R c for
different chains.

Further,

-=y- = ~r~ if c and d are in the same chain, (5 .9 9)
R d rd

but the above equation usually will not hold if c and d are not in the same
chain. Clearly, we cannot solve for the true throughputs from equation
(5.96) because any set of relative throughputs will satisfy the equation (see
equation (5.97)). However, if we arbitrarily f i x the relative throughput of
any class in a chain, we can compute the relative throughputs of all classes
in that chain from (5.97).

Let nc be the number of jobs in class c, for any c. The nc are random
variables, but at all times:

5 > c = N k (5.100)
c in chain k

where Nk is the population of chain k jobs. Taking the means of both sides
of (5.100)

= Nk (5101)
c in chain k

where Lc is the average number of jobs in class c. Note that equations
(5.96) through (5.101) hold regardless of service disciplines and distribu
tions.

As before we restrict ourselves to local balance networks in which all
queues have the PS discipline and where the service capacity may vary with
the total number of jobs in the queue.

The exposition that follows assumes only two chains for notational
simplicity. The theory (see Sections 5.1-5.5) is general and uses a general

140 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

notation.

LBANC

Consider a network with two chains. Let Nk be the population of
chain k, k = 1,2. Let G(NX,N2) be the normalizing constant given popula
tions of N l and N2 for chains 1 and 2 respectively. Let lc (N x,N2) and
LC(N , ,N2) be the unnormalized and true (i.e. normalized) class c mean
queue lengths respectively, given populations of N j and N2 for chains 1 and
2 respectively, i.e.,

L c{Nx,N2) = lc{Nx,N2) / G { N x,N2). (5.102)

Indeed, all normalized mean queue lengths and queue length probabilities
are found from the corresponding unnormalized values by dividing by the
normalization constant.

Let l(m) (N x,N2) and L (m^(NX,N2) be the unnormalized and normal
ized mean queue length of queue m given populations of N, and N2 for
chains 1 and 2 respectively.

For f ixed rate queues we have shown that (see equation (5.50)) if class
c belongs to chain 1 and queue m

r UC(G(N{ - 1 ,N2) + l(m)(N x - 1 ,N2)) if A, > 0
ic(n v n 2) = <

 ̂0 if A, = 0 (5.103)

and if class c belongs to chain 2 and queue m

f u c(G(Nl ,N2 - 1) + l(m)(N l ,N2 - 1)) if A2>0
l M ltN 2) = <

 ̂0 if N2 = 0 (5.104)

For IS queues we have shown that (see equation 5.50) if class c belongs to
chain 1

!ucG(N j - 1 ,N2) if A ,>0

0 if A, = 0 (5.105)

and if class c belongs to chain 2

SEC. 5.7 / COMPUTATIONAL ALGORITHMS 141

f ucG(Nl ,N2 - 1) if N 2 > 0

0 if N 2 = 0.

We temporarily defer the general variable rate case. Since

^ L c(N v N2) = TV,
c in chain 1

it follows (see equation 5.52) that

g (n v n 2) = ' Z ic(n v n 2) / n v
c in chain 1

Similarly

G(TV,,TV2) = £ /c(TV,,TV2)/TV2
c in chain 2

and

G (N v N2)
S W , » !)
c____________

Ai +TV2

(5.106)

(5.107)

(5.108)

(5.109)

(5.110)

We can easily extend LBANC to multiple chains using the above
equations. However, to do so would require storing / (TV,,TV2) for all
classes c. We can improve the speed of the algorithm and reduce the
amount of memory required, in some cases, if we store information by
chains rather than classes. We can then determine individual class values in
a manner analogous to the one used with the single chain algorithms.

Let l (k m)(TV,,TV2) and L {k m)(Nl ,N2) be the unnormalized and normal
ized average number of chain k jobs in queue m, respectively, given a
population vector (N l ,N2). Thus

' (t . r t f A W - S W W (5.111)
c in chain k and queue m

and L(k . (TV, ,N2) is defined similarly. Let u^k m) be the relative utiliza
tion of chain k jobs in queue m, i.e.,

u(k,m)(N \ ’N 2̂ = S Mc-
c in chain k and queue m

(5.112)

Summing equation (5.103) and (5.104) over all c in chain 1 and queue m
we get for fixed rate servers

/(l,,„)(^ i^ 2) = - 1 ,N2) + l(m)(N l - 1 ,N2)) (5.113)

142 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

for A, > 0 and /,, m)(A, ,A2) = 0, otherwise. Similarly,

l(2,n,)(N \ ’N 2) = " (2 ,„,)«?(A,, A2 “ D + km)^N VN2 ~ D) (5‘114)

for 7V2 > 0 and / (2 m)(A,,A2) = 0, otherwise. Similarly, for IS queues,

/ I(1 ,m) G(N\ - 1 ,N2) if A] > 0

0 if A, =0 (5.115)

and

(2 , m)
(A, ,A2) =)' (2 ,m) G(A,,A 2 - 1) if A2 > 0

0 if A2 = 0. (5.116)

For variable rate queues let P(m) («i ,n2 I At ,A2) be the unnormalized
probability of n,,n 2 jobs at queue m given populations N l,N2- Similarly, let
p,) {n | A j ,A2) be the probability of n jobs at queue m given populations
A,,A2. From equation (5.38), for (nx,n2) ^ (0,0), P(m)(nx,n2 I A,,A2)

(P (m) (n 1 - ! .« 2 I N \ ~ l ’N 2^U(1 ,m) .

= {

n j SHARE(m)(« j +«2)

P(m)(nl’n2 - 1 I ^ 1 * ^ 2 - D u (2 ,

if n,, A, > 0

(2 ,m) .
«2 SHARE(m)(«,+rt2)

if n2, A, > 0

^0 if Aj and A2 = 0.

We can then determine

(5.117)

N1 N2
l (l ,m)(7Vi,A2) = X (5.118)

/lj = l «2 = 0

and

SEC. 5.7 / COMPUTATIONAL ALGORITHMS 143

* 1 N2
l(2,m)(N \ ’N 2>> = 2 S 'J2 P(m)(«l’ ' J 2 I (5.119)

Alternatively, if we are only interested in c/iam independent values for the
variable rate queues, we can simply determine l(m) (N x,N2) from the fol
lowing equations. By appropriate summations we can show that

P (m M \ N v N2) =
P(mM-UNx - 1 ,A2)«(1>m)

+

nSHARE(m)(«)

/»(«)("- 1 I ^ 1 ^ 2 “ 1)M(2 ,m)
«SHARE(m)(«)

(5.120)

if n, A, and N2 > 0. If either N x or A2 is zero, then p (m)(n I A j,A2) can be
determined from equation (5.117). Then

Nx + N2
v N 2> = S np{m) (n \ N XtN 2). (5.121)

n = 0

Rewriting equation (5.108) we have
M

G (N x,N2) = 2 (5.1 22)
m =l

Similarly,
M

G{Nx,N2) = S / (2 ,w) (^ 1 .^ 2) / ^ 2 (5-123)
m — 1

and

C(A!,A2)
M l
1 -

m= 1
A, + A2

(5.124)

where ((m)(A 1 ,A2) is, of course, /(i,m)UVi,A2) + l(2 ,m)^N v N 2^ FinallY’ for
the variable rate queues we can use

P(m)(0 , 0 \ N x,N 2) = G(NX,N2) - X P(m)^n 1,n2 I A],A2) (5.125>

or

144 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

Nt+N2
P{m)(0 \ N l ,N2) = G(A„A2) - £ p(m)(«| A,,A2). (5.126)

The extension of LBANC to multiple chains is simply the application of
an appropriate subset of equations (5.111) through (5.126). We iterate on
increasing values of Af and A2, computing the unnormalized mean queue
lengths and then computing G(A|,A2) from the unnormalized mean queue
lengths. We can then determine normalized mean queue lengths. From the
Throughput Theorem (equation (5.29), we can determine

R
(1 , o t) (N v N 2) = r,(Lot)

G (N l ~ l , N2)
G(A,,A2)

(5.127)

and

R (2,m)^N \'N2 ̂ ~ r(2,ot)
G (N , ,N2 — 1)

G (N ltN 2)
(5.128)

where r(k is the sum of rc such that class c is in chain k and queue m.
We can then obtain utilizations from equation (2.7) and mean queueing
times from Little’s Rule.

As an example consider a three queue network in which queues 1 and 2
are fixed rate servers and queue 3 is an infinite server queue. Let there be
2 chains. The relative utilization of queues by chains is:

“ (i , l) = 1 “ (1 , 2) = 2 “ (1 , 3) = 1

“ (2 , 1) = 1 “ (2 , 2) = 1 “ (2 , 3) = 2

Suppose we wish to compute the G matrix for a population vector (Nl,N2)
= (2,1). We may proceed as follows.

1. Initialization:

/(£,m)(0 ’0) = 0 f°r aH k,m

and (7(0,0) = 1
2. A, = 1, N2 = 0:

Fixed Rate Server: Queue 1, Chain 1

' (L n d ’O) “ “ (i,i)(G (0 ,0) + /(1)(0,0)) = 1(1 + 0) = 1

SEC. 5.7 / COMPUTATIONAL ALGORITHMS

Lixed Rate Server: Queue 2, Chain 1

/d ,2) (1-°) = « n ,2) (G (0 ,0) + / (2}(0 ,0)) = 2(1 + 0) = 2

Infinite Server: Queue 3, Chain 1

/ (l . S i O . O) = “ (1 ,3)G ((M » = 1

/(2 ,«)(1.°) = 0 and hence /(m)(l, 0) = / (1 m)(l, 0) for all m.

G(1 0) = /(1)(1’Q) + /(2)(-1,0 ̂+ _ 4

3. N x = 0, N2 = 1

Lixed Rate Server, Queue 1, Chain 2

/(2 ,i)(°,l) = m2 1 (G(0 ,0) + /(1)(0 ,0)) = 1 (1 + 0) = 1

Lixed Rate Server, Queue 2, Chain 2

^(2,2)(d’l) = u(2,2)(^(0’0) + (̂2) C0»0)) = 1(1 + 0) = 1

Infinite Server, Queue 3, Chain 2

^(2,3)(0>1) = u(2i3)G(0,0) = 2

l (l ,™)(°-l) = 0 and hence /(m)(0 ,l) = /(2 ,m)(0 , 1) for all m.

Normalizing Constant

(̂2 1) 1) + f(2 2)(d’f) T f(23)^d,f)G(0,1) = --------- — ------ = 4

4. N, = 2, N2 = 0
Lixed Rate Server: Queue 1, Chain 1

/ (U) (2 ,0) = w(1 1}(G (1 ,0) + / (j} (1 ,0)) = 1(4 + 1) = 5

Lixed Rate Server: Queue 2, Chain 1

l(h2)(2,0) = u(1 2)(G(1,0) + /(2)(1,0)) = 2(4 + 2) = 12

Infinite Server, Queue 3, Chain 1

/ (1 3)(2,0) = «(1 3)G(1,0) = 4

146 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

1(2 = 0 and hence / („,)(2 ,0) = (̂1 for a11 w '

Normalizing Constant

/,,T2,0) + /(2)(2,0) + /(3)(2,0)
G(2,0) = — -----------—---------- —------ 24

2

5. N, = 1, N2 = 1
Fixed Rate Server, Queue 1, Chain 1

/(, ,n (l ,l) = h(1 >1)(G(0,1) + /(1)(0,1)) = 1(4 + 1) = 5

Fixed Rate Server, Queue 2, Chain 1

/< i,2) (U) = m(1 ,2)(G(0,1) + /(2)(0,1)) = 2(4 + 1) = 10

Infinite Server, Queue 3, Chain 1

/(,,3) (U) = M(1 ,3)0 (0 ,1) = 1x4 = 4

Fixed Rate Server, Queue 1, Chain 2

l (2, 1 }(U) = m(2 i1)(C(1,0) + /(1)(1,0)) = 1(4 + 1) = 5

Fixed Rate Server, Queue 2, Chain 2

/(2,2)0-1) = W(22)(C(1,0) + /(2)(1,0)) = 1(4 + 2) = 6

Infinite Server, Queue 3, Chain 2

((2 -3)0 >l) = w (2 ,3) ̂ 1) = 2x4 = 8

Mean Queue Fengths - Jobs of Both Chains

((1)(L1) = (̂i i)(l,l) + ((2 ,i)(lil) = 5 + 5 = 10

= ^(1 ,2) ^ ’^ T /(2 ,2)(1 1) = 1 0 + 6 = 16

((3)(1>1) = ((i 3)(1>1) + ((2 3)(in) = 4 + 8 = 12
i

SEC. 5.7 / COMPUTATIONAL ALGORITHMS

Normalizing Constant

<3(1,1) - '<'><1' 1) + ;»>(U > + ,(3)(U > _
n , + n 2

6 . N, = 2, N2 = 1

Fixed Rate Server, Queue 1, Chain 1

^(l.i) (2> 1) = w(U)(C (l,l) + /(1)(1 , 1)) = 1(19 + 1 0) = 29

Fixed Rate Server, Queue 2, Chain 1

/(I 2)(2 ,i) = w(i 2)(C(1,1) + /(2)C1,1>) = 2(19 + 16) = 70

Infinite Server, Queue 3, Chain 1

= m(1 ,3)(G(M) = 1x19 = 19

Fixed Rate Server, Queue 1, Chain 2

/(2,l)(2,l) = U21(G(2,0) + /(1)(2,0)) = 1(10.5 + 5) = 15.5

Fixed Rate Server, Queue 2, Chain 2

/ (2 2)(2 ,1) = n(2 2)(G(2,0) + /(2)(2,0)) = 1(10.5 + 12) = 22.5

Infinite Server, Queue 3, Chain 2

/(2 ,3)(2’1) = w(2 ,3)(g (2>°) = 2x10.5 = 21

Mean Queue Lengths - Jobs of Both Chains

/(1)(2,1) = / u (2,l) + /(2 >1)(2,1) = 29 + 15.5 = 44.5

/ (2) (2,1) = + l(2 , 2) W = 7 0 + 22-5 = 92.5

/(3)(2,1) = /, 3 (2,1) + / (2 3)(2,1) = 19 + 21 = 40

Normalizing Constant

/(1)(2 , 1) + /(2)(2 , 1) + /(3)(2 , 1)

147

G(2 , 1) =
n , + n 2 = 59

Hence the matrix of normalization constants is:

148 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

G(0,0) = 1
(7(1,0) = 4
<7(2,0) = 10.5

<7(0,1) = 4
(70,1) = 19
(7(2,1) = 59

CCNC

We next discuss CCNC for networks of fixed rate and infinite server
queues with multiple chains. This algorithm is based on equation (5.60).
As before, let queues 1,...,/ be fixed rate single server queues and let queues
I+l, . . . ,J be infinite server queues. Define CUM(/ij,n2) as follows:

J
CUM(1,0) = 2 > (hm) (5.129)

m= 1

J
CUM(0,1) = 2>(2,m) (5.130)

m= 1

CUM(«,,n2) = (/l; \ ~ f - - X “(1 .«)“(2 ,m) for n \ + n2 > L (5-131)
1 l m— 1

Then

C (N „ N 2) - 2 g < A ' 1 ~ ~ (5 |32)
(«1 ,«2)#(0 ,0) A, + A2

for (N v N 2) * (0,0).

We apply CCNC to the example just solved with LBANC.
1. CUM(/ij,/i2)

CUM(1,0) = u
CUM(0,1) = u

(1 . 1) + m (1 , 2) + M(1 , 3) “ 4

(2 . 1) + u (2 , 2) + w (2 , 3) = 4

CUM(1,1) - m i (U(1 ,1)W(2 , 1) + u(l,2)w(2 ,2)) - 6

CUM(2,0) = m(1 ,) + 2)) = 5

CUM(2,1) = 2 !i i (u(l,i)M(2 ,l) + “(l,2)M(2 ,2)) = 1 5

2 . G(nl ,n2)

<7(0,0)CUM(1,0) ,(7(1,0) = ---------- ------------ = 4

SEC. 5.7 / COMPUTATIONAL ALGORITHMS 149

G(2,0)

G(0,1)

G (l,l)

G(0,0)CUM(2,0) + G(1,0)CUM(1,0) _
2

G(0,0)CUM(0,1)---------------------- = 4
1

G(0,0)CUM(1,1) + G(1,0)CUM(0,1) + G(0,1)CUM(1,0)
1 + 1

<7(2,1)

= 19

G(0,0)CUM(2,1) + G(1,0)CUM(1,1) + G(2,0)CUM(0,1) * 1
2 + 1

G(0,1)CUM(2,0) + G(1,1)CUM(1,0) = 5 9

2 + 1

The Convolution Algorithm

As in the single chain case, we assume that either LBANC or CCNC
has been used to obtain the normalization constant for a network consisting
of fixed rate and infinite server queues 1,...,/. Note that such queues could
be directly considered in the following, but this would usually not be appro
priate. Let the normalization constant for queues 1,...,/ be GJ(n],n2) given
a population of nI ,n2. The remainder of the M queues, i.e., queues

are variable rate queues. For queue m, m = define a
matrix X (m) of dimension N x + 1 by N2+ 1, where A(m)(0 ,0) is defined to be
1 and

X(m)(n \ ’n2̂

(nx+n2)\ n 2

CAP(m)(«j + n2)...CAP(m)(l)
, n j ,n2 ± (0 ,0).

(CAP(m)(n) = n SHARE(m){n) is the service capacity when there are n jobs
in the queue.) As before, X(m) corresponds to the normalization constant
for a network consisting only of queue m. However, a more general defini
tion of X(m) is possible such that X(m) is the normalizing constant matrix
for an entire subnetwork! In this case, X(m) would have the form

X (m)(nv n2) = H{nx,n2)rn(\ m)r \ l m) (5.133)

where the matrix H is as defined in equations (5.26-5.28).

We redefine the Convolution operator * as follows: if X and Y are
matrices of dimension Aj + 1 by A2 + l, then Z = X*Y is also a matrix of
dimension Aj + l by A2+ l where

150 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

" 1 " 2

Z(nl ,n2) = ^ Yj X(i \ , i 2)Y(n , - /, ,«2 - i2).
/ ,=() i2= o

After computing Gj (i.e., the normalization constants for queues with fixed
rate or infinite servers), the Convolution Theorem (5.63) tells us that we
may compute G for the entire network as

C. — C. * Y * * V-
° - u j A (J + 1) a (M) '

Notice that the Convolution operator is both commutative and associa
tive. Thus we can apply the Convolution to the X matrices for several
queues and then treat the resulting matrix as the X vector for a composite
queue. This may be appropriate computationally in parametric analysis of
networks. It is extremely important as a basis for aggregation approxima
tions, as discussed in Chapter 6 .

Again as before, we can apply the Throughput Theorem, but for other
measures we must obtain the queue length distribution. Let G be the
normalization constant matrix for the network with queue m omitted. Then
equation (5.84) becomes

P(m)(nv n2 \ N i,N2) =
X (m){nv n2)GM — (m) (N , - n l ,N2 - n2)

Gm ^ x,N2)
(5.134)

Utilizations and mean queue lengths can be directly obtained from the
queue length distribution and mean queueing times from Little’s Rule.

5.7.2.2 Mixed Networks

We have focused our attention on closed networks because they are
most important in computer system modeling. Open networks are important
in communication system modeling. With rare exceptions, published appli
cations of queueing network models have not used mixed networks. How
ever, mixed networks can be reasonably proposed as models of computer
communication systems and other systems. We will indicate how the
previous discussion of algorithms may be extended to consider mixed net
works. We will assume the mixed network has exactly one closed chain and
exactly one open chain and consists entirely of fixed rate single server and
infinite server queues. Extension to mixed networks with multiple closed
chains is trivial. Extension to mixed networks with variable rate queues is
straightforward but algebraically tedious. (The tedium is directly related to
the complexity of the capacity function and comparable to that of dealing
with variable rate queues in isolation.)

SEC. 5.7 / COMPUTATIONAL ALGORITHMS 151

Queues which are not visited by jobs of the closed chain are not
affected by the closed chain and may be treated as queues in isolation as in
open networks. Thus we assume that all M queues are visited by the closed
chain. We also assume that the network would not be saturated if the
closed chain had zero population. (As observed in REIS75, the pioneering
work on algorithms for mixed networks, closed chains do not affect the
stability of mixed networks.) For the moment, let us assume that only queue
m is visited by the open chain and that queue m is fixed rate single server.
Let P(m)(nOP(m)’nCL(m) I ^ 0 be the distribution of open and closed chain
jobs at queue m, given the closed chain has population N. Then it is easy to
show from earlier results (see equations (5.18), (5.19), (5.24) and (5.84))
that for nQ?(m) = 0 ,...,oo, and ncL(m) = 0

where « c l (™)> ^ o p («)> and « o p (m) are> respectively, the closed chain
relative utilization, the open chain actual utilization and the open chain
relative utilization and GM{N) is the normalizing constant for the mixed
network with closed chain population N. Then

P (m) (n OP(m) > " C L (m) I N) ~ (5.135)

Gm (N)

"O P(m) - 0 n
2

Cl \m)

(5.136)

The derivation of (5.136) and many of the following equations is straight
forward if we use the relationship

152 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

2 L p p V = ------ - for < 1 and j « 0 , 1 , 2
i= o ' W

Equation (5.136) has an intuitive explanation. The first term is simply the
inverse of the probability that queue m is empty if the closed chain were
ignored. Uc’Umj as defined in (5.136) is what X(m)(nCL(m)) would be if the
effective closed chain mean service rate were used, where by "effective" we
mean the rate after taking away the time spent on open chain jobs. The
open chain has a very localized impact on the network, affecting only our
characterization of queue m and its contribution to the normalizing con
stant.

In general,

G M ~ X (\) * (5.137)

where for fixed rate single server queues

MC L(/n)
- — f

a -tfo p (m))
X (m^n) ~ (5.138)

and for infinite server queues

X (m) (n) -
U C L (m)

e” “OP(m) n\ (5.139)

(Equation (5.139) uses the probability that an infinite server queue is empty
as obtained in Exercise 4.2. Equation (5.137) also holds for variable rate
queues with appropriate definition of X^m^(n).)

We can rewrite (5.84) for the closed chain queue length distribution as

P C L (m) (n I ~
X (m)(n ')GM-(m)(N ~ ”)M-(m)''

g m W
for n = 0 (5 . 1 4 0)

Equations (5.138-5.140) are the ones relevant to the Convolution
Algorithm; LBANC can be easily applied to mixed networks, also. We can
rewrite equations (5.79) and (5.80) as

/CL(m)(^) = «CL(m)(GM(N ~ D + 'CL(m)(N ~ D) (5.141)

SEC. 5.7 / COMPUTATIONAL ALGORITHMS

and
153

ZCL(„) (#) = “(m)GAf(N - 1). (5.142)

Letting

GM(0) = I (i) (0) ..J (A/)(0) (5.143)

and rewriting (5.78) as

~ 2 l C L (m) (N)

GM(") = - ----- j;------- (5.144)

is all we need to complete revision of LBANC for the closed chain for our
restricting assumptions (single closed chain, single server and infinite server
queues). Closed chain throughput is obtained using GM, i.e.,

^CL(m)W - rCL(m) 73---------- (5.145)
Gm (N)

and closed chain utilization is obtainable from this throughput by equation
(2.7).

Queue 1 Queue 2

Ligure 5.23

154 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

For the open chain, for the single server queues,
N

(« + <)! , ,n

PQ ? I ~
i = 0 /ill! ^ O P f m) “ C L (r a) G M - (m) ^ -

, (5.146)
CM(^)

and

'O P (m) (W) =
1 - u ,O P (m) (= 0

Gm (N)

U OP (m) l C L

1 - c,
(5.147)

O P(m) y
C L (w) C (A)

For the infinite server queues the closed chain has no effect on the open
chain and we can use the standard formulas for an infinite server queue in
isolation.

Let us consider the network of Figure 5.23 with the following parame
ters: N = 2, t/0p(1) = .6 , « C L (1) = 2> wO P(2) = 3 > an<3 WC L (2) = 3.
Then

*(i)(°) = 7Z~6 = 2‘5’ * (2)<°> = e 3 ~ 2 0 1

G (0) = — « 50.2
2 1 — .6

^CLd)^1) - 2
1 — . 6 1 — . 6

251

/CL(2)(1) - 3
1 — . 6

151

G2 (l) - /CL(1)(1) + ^CL(2)(1) ~ 4 0 2

^ O P (2) = 3 -

SEC. 5.7 / COMPUTATIONAL ALGORITHMS 155

^CL(l)(2) = ~ r ~ r (402 + 251) » 3263 I — .o

1 — .6

/CL(2)(2) ~ 3(402) = 1206

G2(2)

/CL(1)(3) = y ^ -(2 2 3 5 + 3263) » 27490

^OP(i)(2) - ^ ____27490_ „ 3 6g
1 - . 6 —2—2235

1 —.6

5.7.3 Numerical Properties of Computational Algorithms

So far we have essentially ignored the numerical properties of the
computational algorithms. For most models which are used in practice, all
of the algorithms are fairly stable. However, for some quite reasonable
parameter values, some or all of the algorithms will experience numerical
difficulties. Except for Reiser’s thorough treatment of the Convolution
Algorithm [REIS76], there has been little formal analysis of numerical
properties. We will not attempt a formal analysis of the numerical proper
ties of the algorithms. Rather, we will informally indicate some of the
difficulties likely to be encountered and methods for coping with these
difficulties. There are two basic difficulties that we know of:
(1) Algorithms that rely on normalizing constant vectors may fail because
the normalizing constant exceeds the floating point range for some popula
tions. (2) The recursive expressions for queue length distributions used by
mean value analysis and LBANC may fail for relatively small populations;
thus these algorithms may not be able to handle variable rate queues for
some networks. We will focus our attention on single chain networks, but
will consider multiple chains as appropriate.

156 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

Mean Values: Fixed Rate and Infinite Server Queues

Let us first consider LBANC. Further, let us assume that all queues
are either fixed rate single server or infinite server and that we do not
estimate queue length distributions. The principal problem in this case is
that the normalizing constant, G(N), may become too small or too large.
For some models with performance measures near unity and some choices
of the set of relative throughputs, {rc}, G(N) may exceed the limits of
floating point representations.

For example, suppose that in Figure 5.12 we number the queues as
follows: CPU - queue 1, Disk - queue 2, Drum - queue 3 and Terminals -
queue 4. Let us suppose the mean CPU time is 20 ms., the mean disk time
is 44 ms., the mean drum time is 8 ms. and the mean think (terminal) time
is 15 sec. Thus a x = 1/.02, a2 = 1/.044, a 3 = 1/.008 and a 4 = 1/15. Let
us further suppose that servicing of each terminal command requires an
average of 5 CPU-I/O cycles and that 20% of the I/O accesses are to the
disk. We can interpret this statement as p2 \ = / > 3 j = .2, p 2 4 = / ? 3 4 = .8 ,
p l 2 = .2 and p] 3 = .8 . (All other probabilities are either 0 or 1, as indi
cated by the figure.) This completely specifies the model except for the
population, i.e., the number of terminals. The modeled system is lightly
loaded, and none of the queues becomes saturated until the population
nears 200. If we let r4 = 1, then r, = 5, r2 = 1 and r3 = 4. With these
choices we have u x = ,\, u2 — .044, u3 = .032 and u4 = 15. Then (7(1) =
15.176 and G(N) increases with N until G(15) ~ 401382. For N > 15
G(N) decreases with increasing N until G(143) « 10~78. Attempting to
compute (7(144) exceeds the floating point range of the IBM 360/370
series of computers, and computation terminates on such machines. (We
could illustrate the same phenomenon for machines with larger floating
point ranges without unreasonable choice of parameters.) Suppose, alterna
tively, we let r4 = 10. Then (7(1) = 151.76 and for N< 200 G(N) is
apparently monotonically non-decreasing with N, with an apparently limiting
value of approximately 3.66 x 1065. (Actually, G(N) decreases slowly for
N > 200, but it is still quite large with N = 3000. Since the CPU queue
saturates with N near 200, larger values of N are not very interesting with
this model.) In particular (7(200) is comfortably within the floating point
range of the 360 and 370. So with proper choice of {rc} we have no numeri
cal difficulties with this model with LBANC. Algebraically, the absolute
values of are irrelevant, so we are free to make the choice to alleviate
(and hopefully eliminate) numerical problems.

How do we make this choice? The following method is suggested in
RElS78b. We can try to choose {rf} so that G(N) is always large but
within the floating point range of our machine (e.g., less than 1 0 7 5 for the
360/370 series.) Certainly,

SEC. 5.7 / COMPUTATIONAL ALGORITHMS 157

G(N) < ^ G (n) , (5.148)
n = 0

so if we can make the right hand side of (5.148) large but not out of range
then we will not have overflow in computing G(N), for any N. This is very
easily done if we make the following interpretation of the right hand side of
(5.148).

Let us assume that we are using the queue numbering scheme described
before, i.e., queues 1 to 7 are fixed rate single server and queues 7+1 to J
are infinite server. (Since we are only considering those two queue types
for the moment, M = J.) Let us further assume that we have initially
chosen {rc} so that u^ < 1, for i = 1,...,/. Then we can speak of a corre
sponding open network with a source and sink and the same values for {rc}
and {acj as the closed network. This open network will be stable for R =
1, where R is the arrival rate of jobs from the source. The right hand side
of (5.148) is simply the inverse of the probability that the open network is
empty! I.e., if P() is the probability the open network is empty, from
equation (5.24)

P()
C (0)

S c (»)
K = 0

1

' Z G(n)
n = 0

(5.149)

This suggests an intuitive explanation of the situation where overflow may
occur in computing G(N): Overflow is a potential problem when the corre
sponding open network is saturated! So to avoid overflow, we need simply
choose {rc} so that P() is not too small, e.g., for the 360/370 we might
choose {rc} so that 7*() is greater than 10'75. Fortunately, P() is trivial to
calculate. By Jackson’s Theorem,

P() = P(1)()...P{M)(), (5.150)

where P(m)(), m = 1 is the probability that queue m in isolation is
empty, i.e., from equation (4.4) P ^ () = 1 — «(,•), i = 1 and from
Exercise 4.2 P(j)() = e~uG), j = 7+1,...,/.

The following algorithm will scale the relative throughputs and utiliza
tions so that overflow cannot occur in computing G(N). It assumes 7 > 0.
S is an arbitrary constant near but less than 1, e.g., .99. e is chosen so that
l / e is near the limit of the floating point range of the computer being used
(e.g., e = 10' 7 5 could be used for the 360/370 series.)

158 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

Choose an arbitrary, algebraically valid {rc.}.
Determine {uc} and

Let D = 1/ max(w(| ().

Repeat
D = SD

P = (1 - Du(\))•••(! ~ Z)M(/))exp(-Z)(M(/+1) + ... + u(J)))

Until P > e
For c = 1 to C: rc = Drc.

Redetermine {uc} and { u ^ } .

We leave it to the reader to verify that the algorithm terminates, to
modify the algorithm to allow 1 = 0 and to modify the algorithm to allow
variable rate queues. We point out that it is not usually necessary to even
execute this algorithm as given, i.e., without executing the loop one can
predict with sufficient accuracy the final value of D from the initial value of
D , S and ln(-e). The prediction method is also left to the reader. (Notice
that for the initial choice of {rc} in the example, S = .99 and e = 10'75, the
final value of D is 9.9.) There is some freedom in extending the algorithm
to multiple chains. The approach used in REIS78b is to require that

m ax(u(i i) , . . . , m (i M)) = . . . = m z x {u (K Xy.. . ,U(K M)),

where u(k is the sum of uc such that class c is in chain k and queue m.
We can enforce this requirement in initially determining |r c}, and then, for
the purposes o f scaling only, determine = W(j m) + + u(k m) before
initially determining D. The remainder of the algorithm is then the same.

Unfortunately, for extremes of parameter values in otherwise reasona
ble models, it is not possible to keep G within floating point range for all
values of N. (This statement assumes we use a single set of relative
throughputs for all populations. If we are willing to use different relative
throughputs for different populations, then we can keep G within floating
point range for all populations [LAM80].) The most common situation is
when service times at IS queues very strongly dominate service times at all
other queues. For example, if this is true and there is exactly one IS queue,
then G(N) a X^j^(N) where

SEC. 5.7 / COMPUTATIONAL ALGORITHMS 159

N
H n
Nl

Regardless of what we do, for some values of N the numerator will be much
larger than the denominator and we must be concerned about overflow, and
for other values of N the reverse is true and we must be concerned about
underflow. If in the example the terminal think time were 300 sec., and the
other parameters the same, we could not avoid both overflow and underflow
on a 360 or 370. Using the above scaling algorithm, G(N) increases with N
until G(171) « 6 . 6 x 107 2 but then G(N) decreases with N until (7(618) ~
1.06 x 10-™. Yet no queue in the model is saturated until N approaches
3000!

Mean Value Analysis

Thus any solution method which depends on G(N) must fail for some
potentially interesting models. The Mean Value Analysis Algorithm of
Reiser and Lavenberg [REIS78a] does not depend on G(N) and is most
suited to extremes of parameter values in our current context. (There is a
numerical problem with both LBANC and Mean Value Analysis in more
general situations; we discuss this below.) As we said before, Mean Value
Analysis is very similar to LBANC; LBANC was inspired by the Reiser and
Lavenberg algorithm. Let us normalize equation (5.79):

W*)
G(N)

= + L (m)(N - l)). (5.151)

Applying Little’s Rule,

e („) (« = + i („) < J V - D) . (5.152)
(m)

where

a(m) ~
(m)

(Of course, for IS queues Q(m) = l / a fmj.) Further,

160 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

----- --------■ <5.153)

2 ' u) Q u) W
1 = 1

This is simply Little’s Rule applied to the mean cycle time (the denomina
tor) which is the mean time for a job to make a complete cycle around the
network. Thus we can get (?(,„) (A) and R(m) from the model parameters
and N — 1). Assuming we know L(m)(A — 1), we can then get
L(m)(N) from Little’s Rule. Since we know that L(m)(0) = 0 for all m, we
can iteratively determine these mean values for N from 1 up to the desired
population. As long as these mean values have reasonable magnitude, there
will be no numerical difficulties. In the multi-chain case, Mean Value
Analysis will require approximately twice the storage of LBANC since both
queueing times and queue lengths are stored.

For the example problem as stated initially, LBANC and Mean Value
Analysis give the same results to three significant digits for U, L, R and Q
for all interesting values of N when the computation is performed on an
IBM 370. (By interesting N we mean at most 200; we have not made the
comparison for larger TV.) For the modified example problem (think time
300 sec.) run on a 370, both methods agree for N up to 616. For N = 617
and 618 they disagree slightly, and for larger N LBANC cannot be used
because G(N) is too small.

With CCNC and the Convolution Algorithm we have an additional
problem: even though G(N) is quite large, some of the intermediate values
used in its computation may be quite small, small enough to cause under
flow. The intermediate values we speak of are wj'^and products of such
values for several queues). In the (initial) example problem, with Wj =
.3168 after scaling, computation of u3n will cause underflow on a 360 or
370 for N in the vicinity of 155. Fortunately, since there are no negative
values involved, if we replace the small intermediate values by zero, we get
satisfactory results for G(N) except for extreme parameter values. For the
initial example problem run on a 370, LBANC, CCNC and the Convolution
Algorithm agree to three significant digits for U, L, R and Q for N up to
200, and they agree to seven significant digits for G(N) for N up to 200.
But when we do have extreme parameter values, we may get grossly inaccu
rate results with no warning! (This assumes we proceed upon occurrence of
underflow. LBANC fails very gracefully, without misleading results, when
it fails.) For the modified example problem run on a 370, LBANC, CCNC
and the Convolution Algorithm agree on the above values for N up to 607.
However, CCNC and the Convolution Algorithm behave very poorly for N
between 608 and 618; at N = 618, these algorithms underestimate G(N) by
an order o f magnitude and estimate L4(618) as 842!

SEC. 5.7 / COMPUTATIONAL ALGORITHMS

Queue Length Distributions and Variable Rate Queues

161

Before we make any hasty conclusions about the overall numerical
properties of these algorithms, let us consider queue length distributions and
variable rate queues. With only slight modification of the above examples,
we can illustrate the less stable characteristics of LBANC and Mean Value
Analysis. We focus on LBANC, but the discussion applies directly to Mean
Value Analysis. With either of these algorithms it is necessary to estimate
the queue length distribution at variable rate queues in order to handle such
queues. In LBANC we do this with equations (5.81) and (5.83). (In Mean
Value Analysis we can use the normalized equivalents of those two equa
tions. To perform the Mean Value Analysis we also need an equation for
mean queueing time of variable rate queues, such as equation (2.14) of
REIS78a, which would be used in place of equation (5.152).) This will be
reasonably stable except when the probability o f small queue lengths at a
queue is very small. To be more specific, as P(m)(0 12V) tends to zero
LBANC will fail very gracelessly. Because of the recursive nature of
(5.81), as /?(m)(0|iV — 1) tends to zero we will severely underestimate
P(m){n I N) for n > 0. Thus we will severely overestimate P(m)(0 I N), and
subsequently, Pim\ (« IN + 1). Chaotic behavior ensues, with negative
estimates of probabilities for small populations!

In the following discussion we assume double precision arithmetic on
an IBM 370 which yields about 16 decimal digits of significance. The
behavior would be somewhat worse with less precision, and somewhat
better with more precision, but basically the same. Let us consider a
hypothetical queueing network, not necessarily a computer system model,
which is the same as the initial example network above except that the
infinite server queue is replaced by one with 10 servers. If we were not
forewarned of potential trouble, we would expect the same behavior ob
served before for the various algorithms for N not much larger than 10. In
fact, LBANC (and Mean Value Analysis) have trouble with N = 10 if we
do not recognize the terminals queue as an infinite server queue but treat it
in the more general context of variable rate queues. Then we get a negative
estimate for pA{0 | 10). (With 370 single precision, approximately 6 signifi
cant digits, we get a negative estimate for pA(0 | 5). With 370 extended
precision, approximately 33 significant digits, we first get a negative esti
mate for p A(0 | 22).) Though at first (with increasing N) there is no notice
able effect on the mean performance measures, eventually these suffer
severely, as well. Queue 4 becomes saturated for N = 12, but if we contin
ue the algorithm for larger N, at N = 50 we see a decrease in UA from 1 to
approximately .998. Further increases in N see t/ 4 > 1 and other impossi
ble performance estimates.

162 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

With the Convolution Algorithm we have none of these difficulties, i.e,
as long as G(N) and the terms which contribute to it are of reasonable
magnitude, we have no problems. This is because variable rate queues are
treated in the same way as fixed rate and infinite server queues by the
Convolution Algorithm. Further, there are no additional numerical prob
lems in estimating queue length distributions if equation (5.84) is used and
GM-(m) *s calculated directly. (This direct calculation may be quite expen
sive in processing and/or memory.)

Of course, if one was careful, one might notice the peculiar behavior of
LBANC (or Mean Value Analysis) for a particular model with variable rate
queues. In the above example, one does not really care to estimate per
formance measures for N > 13, but one may not realize that i f one simply
picks N (larger than 13) in advance. There are also obvious heuristics for
dealing with these difficulties, such as replacing negative probabilities by
zero and scaling P(m)(n\ N) so that they sum to G(N). However, by the
time a negative probability is discovered, it is likely too late to properly deal
with the problem. The reader may object that this last example network is
not relevant to computer system modeling, but similar behavior can be
observed in other models with a large variation in CAP(m){n) with n, for
example models of multiprocessor systems such as C.mmp (see Section 9.2
and WULF72).

Reiser has proposed a modification of Mean Value Analysis which
avoids this problem [REIS80]. The modification requires the additional
solution of the network with the queue of interest (the one for which we
desire the queue length distribution or which has variable service rates)
removed. Solving that network properly with Mean Value Analysis may in
turn require solution of networks with other queues removed because those
queues also have variable service rates. Thus the computational effort may
be dramatically increased. A similar modification can be proposed for
LBANC. Instead of estimating /?(m)(0 |«) using equation (5.83), we can
use

p (m)(0 \ n) = GM_ (m)(n). (5.154)

This will be numerically appropriate provided that GM_ (m) does not exceed
the floating point range of our computer and provided that GM_ (m) is
computed in a numerically appropriate way (this will require solution of a
network or networks with a queue removed, as with Reiser’s modifications
to Mean Value Analysis).

In summary, the approach we suggest is to use LBANC for the fixed
rate and infinite server queues to obtain G}(N), the normalizing constant for
the network of queues 1 ,...,/, and then to finish computation with the

SEC. 5.8 / EXERCISES 163

convolution algorithm. (Note that if we wish to use convolution in conjunc
tion with Mean Value Analysis we must compute Gj from the throughputs
determined by Mean Value Analysis, and thus lose all the advantages of
Mean Value Analysis over LBANC.) If we really need queue length distri
butions, then they should be obtained by equation (5.84) as previously
described.

5.8 EXERCISES

5.1 For LCFSPR, show that (S + (c)) — (c) = S for any S' and any c
and also show that (S — (c)) + (c) = S for any S and c where
S — (c) is defined.

5.2 For FCFS show that (S + (c)) — (c) is defined and is equal to S if
and only if S = () or S = (cj,...,cn) where c, = ... = cn = c. Simi
larly show that (S - (c)) + (c) is defined only if Cj = ... = cn = c.

5.3 Prove the feasibility and reachability statements in Section 5.2.2.1.
5.4 Prove that if queue m has a LCFSPR discipline, satisfies local balance

and has classes c 1,...,ck , then by suitably interconnecting the classes,
any k stage service time can be modeled.

5.5 Prove that queues with LCFSPR, PS or IS with an arbitrary number
of classes satisfy local balance.

5.6 Show that queues with FCFS and a single exponential class satisfy
local balance.

5.7 Suggest a discipline which satisfies local balance other than the ones
discussed here (it need not be a practical discipline).

5.8 Verify equation (5.27).
5.9 Show that a network such as the one of Figure 5.5 has the same

queue length distribution as for a local balance network, provided
that for each FCFS queue all classes of the queue have the same
exponential service time distribution.

5.10 Verify equation (5.74).
5.11 In the multiple chain version of LBANC (and Mean Value Analysis)

if we use the obvious sequence of chain population values (i.e., nested
loops over the chain populations) then the storage required is roughly
proportional to the product of the chain populations if we don’t allow
variable rate queues. How might we use a different sequence of
chain populations to obtain storage requirements roughly proportional
to the sum of the chain populations?

5.12 Extend the results of Section 5.7.2.2 to mixed networks with multiple
closed chains. ^

5.13 Provide the definition of X ^ for queues with two fixed rate servers
with equal rates. ^

5.14 Provide the definition of for variable rate queues.
5.15 How may we handle mixed networks with Mean Value Analysis?

Restate equation (5.147) in a form suitable for Mean Value Analysis.

5.16 Verify that the Scaling Algorithm of Section 5.7.3 terminates.
5.17 Modify the Scaling Algorithm of Section 5.7.3 to allow 1 = 0 and to

allow variable rate queues.
5.18 How would you predict the final value of D without running the

Scaling Algorithm of Section 5.7.3?
5.19 Suppose we are not going to use LBANC in conjunction with another

algorithm. How can we then eliminate the overflow and overflow
problem which would occur with the example model with think time
300 seconds?

5.9 SUMMARY OF CHAPTER NOTATION

164 CLOSED PRODUCT FORM QUEUEING NETWORKS / CHAP. 5

M
G
R
a
U

L
l

Q
Pu
c
r
S
A
r4
N

ek
P(S)
CAP
SHARE
X

Number of queues
Normalizing constant
Poisson arrival rate (throughput if queue not saturated)
Mean service rate, i.e., 1 / a is mean service time
Sections 5.1-5.5: Throughput times mean service time. Sec
tions 5.6-5.7: utilization
Mean queue length
Unnormalized mean queue length
Mean queueing time
Probability of visiting class j after visiting class i
Number of classes
Relative throughput
System state
Number of closed chains in a mixed network
Set of classes
Chain population
Vector with 1 in k th position, 0 elsewhere
Unnormalized probability of state S'
Service capacity function
A job’s share of service capacity function
Normalization constant for queue by itself

CHAPTER 6

APPROXIM ATION

Though product form queueing networks are quite useful, detailed
computer system models will often have characteristics which violate prod
uct form conditions. If a model does not have a product form solution, and
if it has too many Markov states for a numerical solution to be feasible,
then we must use approximations or simulation (Chapter 7). The most
important approach to approximation is aggregation. We have already
discussed some aspects of aggregation from the point of view of product
form networks. In this chapter we will further discuss aggregation from that
point of view and consider its application to approximate solution. We will
also discuss two other approaches to approximation, diffusion and heuristic
extensions to LBANC and the mean value analysis algorithm discussed in
the last chapter. We will be principally concerned with closed networks, but
much of what we say can be applied to open networks.

6.1 INTRODUCTION

In aggregation we replace a subnetwork by a single queue with queue
length dependent service rates (or, equivalently, service times). This com
posite queue is intended to behave as the entire subnetwork in its interaction
with the remaining queues of the network. (This is the motivation for our
discussion of composite queues in Section 5.4. Our discussion here is
compatible with that one, but may seem different because we will be using
an alternate representation for a special case. The seeming difference
should disappear with our discussion in Section 6.3.2.) What we are trying
to do is make the composite queue flow-equivalent to the subnetwork in the
sense that job flow through the composite queue is equivalent to job flow
through the subnetwork. See Figure 6.1. The resulting network, i.e., the
network with the composite queue, will usually have fewer states and may
have few enough states to be solved numerically. If not, the aggregation
process can be repeated until the resulting network has a tractable solution.
This aggregation process can be performed exactly for product form net
works [CHAN75, VANT78, COUR78, SAUE79a] and limiting cases of
some other networks [COUR75, COUR77]. As such, aggregation is useful
in parametric analysis. For example, if we wish to study a wide range of
CPU parameters, it will take less effort to repeatedly solve the second
network of Figure 6.1 than the first. However, our principal interest in
aggregation is in approximate solution methods. These approximate me
thods are strictly heuristic in the sense that we cannot defend them formally.

165

166 APPROXIMATION / CHAP. 6

By basing our approximations on methods which are exact for product form
networks (and limiting cases of some other networks), we can expect little
error to be introduced for networks which are "similar" to those networks.
However, it is exceedingly difficult to characterize the error since character
ization of the error implies a solution for a (presumably) unsolvable net
work. In general, we can only provide empirical evidence that the error is
small. Approximations are still very attractive because they are usually
computationally inexpensive. (Simulation is usually computationally expen
sive.)

40 ms

i i i
-J L.\ /\ / V

CPUlK>
40 ms

Composite queue

-Tk>
40 ms

CAP (1) = 1 CAP(2) = 4/3

Figure 6.1

If the network of Figure 6.1 satisfies product form, then with two jobs
in the network the CPU utilization will be 72.7%. However, if the CPU
scheduling is FCFS and the service time distribution has greater variance
than the exponential distribution, then we would expect lower CPU utiliza
tion. How much lower? If the coefficient of variation is 5, and we use the
branching Erlang form of Section 3.4 to represent the distribution, then the
CPU utilization of the first network is 67.1%. Thus even for this trivial
network, if we assume product form to simplify the solution the relative
error is over 8 %. However, if we use aggregation and find the CPU utiliza
tion of the second network, the result is 67.1%; there is no error in the first
three digits. (In general, e.g., for TV > 2, we would expect FCFS with
non-exponential service times to cause a greater deviation from product

SEC. 6.1 / INTRODUCTION 167

form results, and would expect aggregation to be only an approximation,
i.e., to cause a more noticeable deviation from the exact results.)

How do we obtain the composite queue characteristics? We could give
it a service time equal to the expected time spent in service in the subnet
work it replaces. However, this estimate may be much too high if several
jobs may be in service simultaneously in the subnetwork. We could propose
alternative estimates but would quickly recognize that any characterization
of the composite queue which ignores congestion is likely to be unsatisfacto
ry. One characterization which is exact for product form networks is to let
the composite queue have a service rate which depends on the queue length.
The service rate for a given queue length is the throughput in a network
with corresponding population, where the network is obtained by connecting
the output of the subnetwork to its input. See Figure 6.2. (We state this
without proof; the proof should be trivial for the reader who has understood
Sections 5.1-5.5.) For our example, the throughput with one job in Figure
6.2 is 25 jobs per second and the throughput with two jobs is 33.3 jobs per
second. Using our characterization of queue length dependent queues from
the last chapter, i.e., characterizing a queue in terms of mean service rate a
for queue length one and a capacity function CAP(«), we obtain the param
eters for the composite queue of Figure 6.1, a~l = 40 ms., CAP(1) = 1 and
CAP(2) = 4/3.

Of course, for either model of Figure 6.1, with two jobs the numerical
solution is computationally trivial. However, if we increase the number of
I/O ’s and/or the number of jobs while retaining the non-exponential service
times and FCFS scheduling, then the number of Markov states quickly
exceeds the limitations of the numerical methods of Section 3.3 for the first
model. (Recall that we said the iterative methods were only practical for a
few thousand states or less. The recursive methods of Section 3.5 do not
easily apply to networks where a job can visit more that two queues.) The

168 APPROXIMATION / CHAP. 6

I/O ’s 1 2 3 4 5 6 7 8

1 3 5 7 9 1 1 13 15 17
2 4 9 16 25 36 49 64 81
3 5 14 30 55 91 140 204 285
4 6 2 0 50 105 196 336 540 825
5 7 27 77 182 378 714 1254 2079
6 8 35 1 1 2 294 672 1386 2640 4719
7 9 44 156 450 1 1 2 2 2508 5148 9867
8 1 0 54 2 1 0 660 1782 4290 9438 19305

Table 6.1
Numbers of States for Hyperexponential Central Server Model

1 2 3 4 5 6 7 8 Jobs
3 5 7 9 11 13 15 17

Table 6.2
Numbers of States for Aggregation of Hyperexponential C.S.M.

model resulting from aggregation remains trivial, regardless of the number
of I/O ’s, even for very large numbers of jobs. See tables 6.1 and 6.2.

As another example, consider the queueing network model of Figure
6.3. This represents an interactive computer system. A user at a terminal
submits a command. Processing of the command requires memory. Once
memory is allocated, the processing requires alternate CPU and I/O activity
until processing is complete, memory can be released, the user reacts to the
response and the user submits a new command. This is a simplification of a

SEC. 6.1 / INTRODUCTION 169

very common computer system model as we suggested in Chapter 1 and will
discuss in detail in Chapter 9; for other examples see BRAN74 and
BOYS75. The inclusion of the memory queue in this network will violate
product form except in limiting cases (e.g., where there is only enough
memory for one command’s processing, where there is no memory conten
tion or where the number of CPU-I/O cycles tends to infinity).

Let us consider a model as suggested by Figure 6.3 with homogeneous
jobs, where each job requires exactly one memory partition in order to use
the CPU or a disk. Even if we make the strongest assumptions possible,
i.e., FCFS scheduling and exponential service time distributions at all
queues, the number of states will be quite large if we have more than a few
jobs, partitions and/or disks. Table 6.3 gives the numbers of states under
these assumptions for a system with 4 disk queues. The combinatorial
explosion of the set of states is much worse with more disk queues. Clearly,
an exact solution for this model is not reasonable.

Jobs 2 4 6 8 1 0 12 Partitions
5 6 6 196 252 252 252 252

1 0 141 546 1302 2277 3003 3003
15 216 896 2352 4752 8008 11648

2 0 291 1246 3402 7227 13013 20748
25 366 1596 4452 9702 18018 29848
30 441 1946 5502 12177 23023 38948
35 516 2296 6552 14652 28028 48048
40 591 2646 7602 17127 33033 57148
45 6 6 6 2996 8652 19602 38038 66248
50 741 3346 9702 22077 43043 75348

Table 6.3
Numbers of States for Extended Central Server Model

The usual approach to aggregation of this model is to collect the CPU
and I/O queues together into a composite queue. See Figure 6.4. Solution
of the network after aggregation is then much simpler than solution of the
original network. (Error will usually be introduced in the aggregation
process. However, empirical studies [BOYS75, KELL76, BROW77,
SAUE80a] and analytic studies [BRAN74] show the error to usually be
small.) The solution of the network of Figure 6.4 will be computationally
inexpensive except in extreme cases [SAUE80b]. In the case where all jobs
(commands) are considered homogeneous, one can modify the composite
queue service rates to reflect the memory contention. The resulting two
queue network (Figure 6.5) may then satisfy product form.

170 APPROXIMATION / CHAP. 6

Terminals

r o i
Composite

queue
i
i
i

l o j
— - 1 O i

Figure 6.5
How do we obtain the composite queue characteristics? Consider the

network of Figure 6 .6 , which is in a sense the complement of Figure 6.4
with respect to Figure 6.3, i.e., it is obtained by removing from Figure 6.3
all queues to be represented by the composite queue in Figure 6.4, i.e., the
CPU and I/O queues. The flow-equivalent approach would solve the
network of Figure 6 . 6 for each possible population o f jobs in the correspond
ing subnetwork o f the original network. The throughput of jobs through the
outer loop of Figure 6 . 6 (corresponding to the loop through the terminals
and memory queues of Figure 6.3) for a given population is used as the
service rate of the composite queue when it has the corresponding number
of jobs at the queue. It should be apparent that this is the same procedure
we went through for the model of Figure 6.1. As we said before, these
steps, plus the steps below, would provide an exact solution of the network
of Figure 6.3 in the limiting cases, e.g., no memory contention.

A solution of the network of Figure 6.4 or Figure 6.5 will usually yield
at least the throughput of jobs through that network and the queue length
distributions. Using Little’s Rule we can obtain the mean queueing times as

SEC. 6.1 / INTRODUCTION 171

the mean queue lengths divided by the throughput. The mean queueing
time for the memory queue in Figure 6.4 or the composite queue in Figure
6.5 will correspond to mean response time in the modelled system. We can
obtain the throughputs and utilizations for the individual queues of Figure
6 . 6 from the throughput through the composite queue and the knowledge of
relative throughputs and service times in the network of Figure 6 .6 . We can
obtain the queue length distribution for the individual queues of Figure 6 . 6

as weighted sums of the queue length distributions for each possible popula
tion in that network, with the weights being the queue length distribution of
the composite queue of Figure 6.4 (or an appropriate function of the queue
length distribution of the composite queue of Figure 6.5). We will discuss
these steps in detail in Section 6.3.3.

Disk

Queue U R L Q
Terminals .49 1.65 4.93 3.00

Memory .90 1.65 5.07 3.08
CPU .82 16.4 1.98 . 1 2

Disk .49 8 . 2 2 .82 . 1 0

Disk .49 8 . 2 2 .82 . 1 0

Table 6.4

As a numerical example consider the network of Figure 6.3 with two
disks with the following parameters: ^ t e r m i n a l s = a CPU = 0 ^ ,

a DISK = ° 6 ’ PCPU.DISK = -5 ’ / ’DISK,TERMINALS = -1 ’ a n d PDISK.CPU = -9 '
All times are in seconds. The disks are identical. There are 10 jobs and 4
memory partitions. Each job requires one partition to use the CPU or a
disk. All queueing disciplines are FCFS and all service times are exponen
tial. (The parameters are such that there are only 125 Markov states for
the model, so approximation is not necessary. However, since this model
violates product form conditions, it is more convenient to use flow-

172 APPROXIMATION / CHAP. 6

equivalent approximation or simulation to obtain a solution than to obtain
an exact numerical solution. The parameters are chosen partly so that the
approximate solution may be performed by hand, if the reader wishes.) The
terminals queue is an infinite server queue. The model of Figure 6 . 6 satis
fies product form conditions, and thus its solution is trivial by the methods
of Chapter 5. From these methods we determine the throughput through
the outer loop of Figure 6 . 6 is 0.909 with 1 job in that network. For 2 jobs
the outer loop throughput in Figure 6 . 6 is 1.341, for 3 jobs 1.583 and for 4
jobs 1.730. For the flow-equivalent approximation the following values are
used for the "composite queue" of Figure 6.5: a = 0.909, and

!1 , n = 1 ,
1.475, n = 2,

1.741, n = 3,
1.903, 4 < n < 10.

(aCAP(«), 1 < n < 4, is the throughput through the outer loop of Figure
6 . 6 with n jobs in that network. Since no more than four jobs can be in
memory at once, we heuristically consider the memory contention by letting
CAP(n) = CAP(4) for n > 4.) Table 6.4 gives the results from the aggre
gation approximations. All values are mean values. Utilizations for the
terminals and memory are for each terminal and partition, respectively.
Simulation results for this model will be given in Chapter 7; we note now
that all results agree well with simulation.

6.2 SYSTEM CHARACTERISTICS WHICH
SUGGEST APPROXIMATE SOLUTION

In previous chapters we have outlined the class of models which can be
solved exactly. In this chapter we attempt to motivate the reader to consid
er the use of approximations. Models which represent systems very realisti
cally often do not have exact solutions. There are at least two immediate
questions: (1) Are the performance estimates of the more realistic model
significantly different than those of the less realistic model? (2) If so, is
the error introduced by approximate solution less than the error introduced
by simplistic assumptions? These questions can only be answered empirical
ly. However, if a model ignores the existence of a resource, that model
cannot be used to design or schedule the resource. For example, if memory
contention is ignored in a computer system model, we cannot use the model
to determine the effect on performance of the amount of memory available.
If we wish to evaluate memory contention effects, then they must be con
sidered in our model.

The following are system characteristics which suggest the use of
approximation because they are likely to significantly affect performance

SEC. 6.2 / SYSTEM CHARACTERISTICS 173

and because models with these characteristics have been solved by approxi
mations with acceptable accuracy.

6.2.1 Multiple Resource Holding

A job may hold more than one resource at a time as in our second
example above. When a job is holding more than one resource, usually one
resource dominates the other resources held in the sense that the job’s
activity with the dominant resource determines how long the other resources
are held. In the example, the CPU and I/O activity dominates possession
of memory (though a job does not simultaneously hold the CPU and I/O
resources in this model). In a situation such as this the dominant resources
are referred to as active resources and the others are referred to as passive
resources. (We will refer to active and passive queues according to the type
of resource associated with the queue. For example, we refer to the memo
ry queue of Figure 6.3 as a passive queue and to all the other queues of that
Figure as active queues.) Flow-equivalent approximation may be used
hierarchically when a job holds several passive resources. A principal
difference between active and passive resources in models is that active
resources have service time distributions associated with them but passive
resources do not. Channels, controllers and peripheral processors in I/O
systems are examples of resources often treated as passive.

6.2.2 Blocking

The model above allows arbitrarily long queues for resources. How
ever in some systems there are bounds on queue lengths such that a job
which no longer needs a resource holds it anyway because it is blocked from
joining a queue which has reached its bound. Blocking is common in
communication systems [KFEI76, KOBA78]. Blocking is a difficult prob
lem to deal with except in simple networks; we will not attempt to consider
solution of networks with blocking. For an example of a blocking problem
solved by approximation, see FAM76 and CHAN78.

6.2.3 Parallelism

Many operating systems allow a job to spawn subservient processes
which progress in parallel with the spawning job and may require additional
(possibly entirely different) resources. For example, a job may attempt to
overlap CPU and I/O activity by spawning a task to perform I/O while it
continues computation. Flow-equivalence approximation techniques are
relatively easily applied to such systems once one has a solution method for
the model corresponding to Figure 6.5. Since these problems are usually
not considered to have significant impact on general purpose computer
systems, we refer the reader to TOWS78. In a communication system a

174 APPROXIMATION / CHAP. 6

message may be split into several packets which are transmitted indepen
dently, perhaps on different communication links. For discussion of this
problem, see KLEI76.

6.2.4 Distributions and Disciplines

If service times in the model do not have an exponential probability
distribution and the scheduling discipline is one such as FCFS which does
not result in product form solutions with non-exponential distributions, then
we may notice significant differences in performance measures if exponen
tial distributions and/or product form scheduling disciplines are assumed.
This is illustrated even in the trivial example at the beginning of this chap
ter. Usually CPU service times are quite different from the exponential
distribution and CPU scheduling is complex with time-slicing and priority
effects. However, results for product form disciplines and other simple
disciplines (e.g., FCFS) can often be used to bound the effects of a more
complex scheduler. For example, consider a round robin fixed quantum
scheduler. As the quantum gets arbitrarily large, the scheduling becomes
FCFS. If there is no switching overhead, then the limiting case as the
quantum tends to zero is processor sharing, a product form discipline. Thus
FCFS and processor sharing can be used to bound the effects of a round
robin scheduler, provided the switching overhead is negligible. We have
seen in our first example how aggregation may be used to reduce the com
plexity of solving models with queues which violate product form (i.e., the
CPU queue in the example).

6.2.5 Routing

Most queueing network models assume that the probability a job will
join class j after leaving class i is a constant p tj, independent of the state of
the system. However, there are systems in which the route that a job takes
through a network of queues is designed to depend on the state of the
system. For instance, a job requiring the use of a computing system in a
multi-computer network may be allowed to use any one of a pool of com
puters. In this case a reasonable scheduling policy is to direct the job
toward the computer with the least expected delay; thus the job’s path
depends upon the relative congestion at different computers. Systems with
such dynamic routing strategies (also referred to as load balancing strategies)
sometimes satisfy product form [TOWS75], but usually do not. Diffusion
approximations have been successfully applied to some dynamic routing
problems, but general approaches to the problem have yet to be devised.

SEC. 6.3 / FLOW-EQUIVALENT AGGREGATION

6.3 FLOW-EQUIVALENT AGGREGATION

175

We have illustrated the application of flow-equivalents in two examples
and have discussed the system characteristics which suggest approximation.
The flow-equivalent technique is conceptually quite simple, i.e., we replace
a subnetwork by a queue with queue dependent service rates as in the
examples. The principal remaining question is "What heuristics do we use
in particular cases?" In this section we try to answer the question by exam
ple, by further developing the application of flow-equivalence to models
with passive queues and models with non-product form distribution and/or
discipline assumptions.

6.3.1 Single Chain Equivalents

As usual, things are simple when there is only one closed chain, so we
consider that case first. (The transition from single to multiple chains is
generally more difficult in networks without product form solution.)

Figure 6.7

6.3.1.1 Passive Queues. We assume that each job has a fixed demand
for the passive resource, e.g., each job always requires one memory parti
tion. (This assumption is usually made because of the great difficulties
encountered without it. However, in the study of BROW77 in Section 9.4
we will not make this assumption.) With these assumptions (single chain,
fixed demand), the basic heuristic for passive queues is the one of the
numerical example: I f the passive resource limits the population o f the subnet
work represented by the composite queue to T, then let CAP(«) = CAP(7) for
n > T. This heuristic allows us to eliminate the passive queue from the
reduced model, e.g., we can solve the network of Figure 6.5 rather than the

176 APPROXIMATION / CHAP. 6

one of Figure 6.4. An alternate way to view this heuristic is suggested by
Figure 6.7. Figure 6.7 is the complement of Figure 6.5 in the same sense
that Figure 6 . 6 is the complement of Figure 6.4. The throughput through
the passive queue is limited by the amount of passive resource available;
once the resource is fully utilized, adding jobs to the network does not
affect the throughput.

As we said, we can repeat the aggregation as necessary. Consider the
model of a CDC 6000 series system in Figure 6 .8 . In addition to the
memory contention of Figure 6.3, we also have contention for peripheral
(I/O) processors (PP’s). A job must have a PP continuously while doing
I/O. The PP’s are identical; typical operating systems reserve a pool of PP’s
for user I/O commands. We can begin the solution of this model by solving
the model of Figure 6.9 to obtain the throughput through the passive queue.
For populations not greater than the number of PP’s, we can ignore the PP’s
and the solution will be trivial if the disk queues satisfy product form. For
populations greater than the number of PP’s, the additional jobs do not
affect the throughput and we use the throughput for the number of jobs
equal to the number of PP’s. Having the throughputs for the PP/Disk
subnetwork, we can (heuristically) replace that by a (composite) queue with
a = 7?pP/Disk(l) and CAP(n) = ^pp/Disk(n) / a> n= \,...,N . We then proceed
to the network of Figure 6.10. The process is essentially the same as
before. We can determine the throughputs through the memory queue
easily if that passive queue is the only characteristic violating product form.
Then we can characterize the composite queue of Figure 6.5 to obtain a
solution of the aggregate model. The results of this model can then be used
to obtain performance estimates of the CPU, PP and Disk queues, as we
discussed briefly before and will discuss in detail in Section 6.3.3.

6 .3.1.2 Distributions. Another major use of aggregation is with
models where one or more queues have non-exponential service time distri
butions and non-local balance queueing disciplines (e.g., FCFS). When
such queues are to be explicitly considered in the model after aggregation,
as in our first example, then the principal difficulty is in obtaining the
numerical solution for the non-product form network, e.g., the second
network of Figure 6.1. (That may not be difficult at all, as in the example.)
However, when such queues are to coalesce into a composite queue, the
situation is conceptually difficult. A number of heuristics have been pro
posed for this situation, but none of these have such an intuitive defense as
the passive queue heuristic above. At least three issues must be faced:

1. How do we estimate the throughputs in the subnetwork to be
replaced by the composite queue? This seems to be the most
crucial issue.

177

178 APPROXIMATION / CHAP. 6

Figure 6.9

Allocate memory CPU PP/Disks Release memory

Figure 6.10
2. How do we characterize the service distributions and capacities of

the composite queue?
3. How do we characterize the queueing discipline of the composite

queue?

Issue 1: Since the subnetwork does not satisfy product form and may
be large, we must consider alternatives to direct application of the numerical
methods of Chapter 3. An obvious, crude alternative is to assume the
subnetwork satisfies product form even though it doesn’t. The accuracy of
this approach depends both on the characteristics of the subnetwork and of
the network outside of the subnetwork. In the past iterative refinements
have been proposed to overcome the inaccuracy of this approach
[CHAN75b], However, there is no guarantee that such refinements will
converge nor that even if the iteration does converge that it will converge to
the correct values. Empirical results on single chain networks were promis
ing but extensions to multiple chain networks would fail unpredictably

SEC. 6.3 / FLOW -EQUIVALENT AGGREGATION 179

[CHAN75b, MACN75], A more sophisticated approach is to simply use
aggregati°n repeatedly to make the problem tractable, as suggested in
ZAH077. The obvious result is that we recursively face the three issues
again, but at least the first issue is easier to face. For example, if we have a
numerical solution program for an arbitrarily connected network of two
composite queues, then we can partition the subnetwork into pairs of
queues, solve each of those resulting subnetworks, replace each of them by
composite queues, group the new composite queues in pairs and so on until
we have a solution for the original subnetwork. If we can efficiently deal
with more than two queues at a time, we may save both' computation and
accuracy by doing so.

Issue 2: This issue is tied to the third issue, for it is only material if we
choose a non-local balance discipline (e.g., FCFS) for the composite queue.
Assuming this is the case, then we may want to characterize the composite
queue by more than just the mean service time (cr1) and capacity
(CAP(n)). To be most general it would be appropriate to (re)evaluate
remaining service times for all jobs whenever jobs arrive at or depart from
the composite queue. However, this has been considered too complex to
attempt. Note that the memoryless property of the exponential distribution
enormously simplifies (eliminates) the reevaluation of the remaining service
times. An attempt at improvement over assuming exponential distributions
has been to characterize the distribution of service times independent of
congestion and then use a capacity function to consider congestion. Even
this is not straightforward, so additional assumptions are made, e.g., that the
times will be represented by exponential stages (with the rates of the stages
determined in part by the capacity function), that only the mean and coeffi
cient of variation should be considered and that the coefficient of variation
is determined by the coefficient of variation of the subnetwork delay when
there is only one job in the network. A more thorough treatment of this
issue is given in SEVC77b and CHAN78.

Issue 3: The queueing discipline of the composite queue does affect the
network which contains it. Unfortunately, there has been very little work in
the area of selecting queueing disciplines. Queueing disciplines have been
selected more to reduce computational complexity than to better represent
the subnetwork. Note that a discipline such as processor sharing will likely
discard any efforts to characterize distribution form (issue 2); however, a
discipline such as FCFS forces a sequencing of jobs which may not have
been present in the subnetwork.

6.3.2 Multiple Chain Flow Equivalents

Consideration of multiple chains greatly increases complexity. This is
not only because the size of the problem grows quickly with the additional

180 APPROXIMATION / CHAP. 6

detail (of distinguishing between jobs) but also because of new problems
and limitations. The composite queue characterization is a problem; the
applicability of the "passive queue heuristic" above is limited to cases where
chains are treated differently by the passive queues (or visit separate passive
queues).

6.3.2.1 Composite queue characterization. The characterization which
we have been using for composite queues, a and CAP(n), is not sufficiently
general for multiple chain problems. However, the rate matrix H of Section
5.4 is not directly usable for non-product form networks; i.e., it would be
difficult to define the Markov process for a (non-product form) queueing
network containing a composite queue with rate matrix H. What is usually
used is a characterization of the service rates for each class given a specific
state of the composite queue, i.e., what we really want is ac(S) of equation
(5.26), the rate at which class c jobs are served when the composite queue
is in state S. It is important that we recognize that each class of jobs is
receiving service simultaneously. This is necessary for aggregation to be
exact in multiple chain product form networks and considerably restricts our
freedom in choosing queueing disciplines for the composite queue, i.e., the
scheduling of one class of jobs cannot affect the scheduling of another class.
(This is of no consequence in product form networks; in other networks it
may be significant. The discussion of issue 3 of the previous Section applies
here.)

How do we represent ac(S) for approximation purposes and how do we
obtain its values? Assume that there is exactly one class per chain at the
composite queue, as is usually appropriate. Let ak(n) be the rate at which
chain k jobs are served when the composite queue has population vector
n = n v ...,nK, where K is the number of chains. Let R k(n) be the chain k
throughput in the subnetwork to be replaced by the composite queue when
the population vector of the subnetwork is n. Then ak(n) = R k(n). (Proof
of this is immediate from equations (5.26-5.29).)

We can now extend the single chain characterization if we let ak be a
scalar equal to R k(ek), where ek is the vector with a 1 in the k lh position
and 0 elsewhere, and let CAP*(«) = R k(n) /a k, where CAP^(n) is the
capacity function for chain k jobs when the population vector is n.

6.3.2.2 Passive Queues. Suppose we wish to obtain an aggregation
approximation for a network similar to Figure 6.3 but with two chains.
Further suppose that there are effectively separate FCFS memory queues
for each chain, e.g., that there is memory dedicated to jobs of each chain.
Let Tk, k = 1,2, be the maximum number of jobs in memory for each chain
and let us assume the ak and CAP*(n) representation of the last paragraph.
Then, because of the dedication of the passive resources to each chain we

SEC. 6.3 / FLOW -EQUIVALENT AGGREGATION 181

can extend the single chain passive queue heuristic as CAP1(«,,«2) =
CAP1 (minCn, ,T|),n2) and CAP2(«1?/j2) = CAP2(«],min(/J2, r 2)). However,
suppose that the passive resource is not so dedicated, that there is simply a
limit T on the number of jobs in memory, still with FCFS scheduling. Then
there is no obvious way to successfully extend the single chain heuristic.
We know that CAP^(«1;n2) seems reasonable for «| + n2 < T, but when
n \ + n 2 > T there is no obvious choice for CAPk(n i,n2)- I.e., do we
choose CAP^fCbr) or C A P^fl.T-l) or ... or CAP^fT.O) or some function
of these? The most appropriate approach seems to be not to attempt to use
the "passive queue heuristic" but instead to ignore the passive queue in the
subnetwork, e.g., use the aggregation suggested by Figures 6.4 and 6.6
rather than Figures 6.5 and 6.7. This approach can be used successfully,
but it may be computationally expensive for an approximation [SAUE80a,
SAUE80b],

6.3.2.3 Aggregation of Chains. Even after aggregation of queues
ultimately resulting in a two queue network, with multiple chains the numer
ical solution of that network may still be expensive or infeasible. For
example, if one of the queues is not a composite queue but simply a FCFS
queue, then an exact numerical solution would require a state for each
possible ordering of jobs at the queue. Thus the number of states might be
enormous even with two chains with large populations and certainly would
be so with several such chains. One reason for considering multiple chains
is priority scheduling; with priority scheduling there are fewer possible
orderings, but the state space may still be unwieldy with moderate numbers
of chains (e.g., five). In such cases we may attempt aggregation of chains
as well as aggregation of queues. In aggregation of queues one replaces
several queues by a composite queue that is approximately flow-equivalent
as far as the other queues are concerned. In aggregation of chains one
replaces several chains by a composite queue that is approximately equiva
lent as far as the remaining chains are concerned.

Unfortunately, aggregation of chains is not exact even for product form
networks except in limiting cases, so there has been no formal basis for
aggregation of chains. The population of the "composite chain" is simply
the sum of the populations of the component chains, but how do we choose
service time distributions, routing probabilities and priorities? One ap
proach is to use weighted sums. In SAUE75b the weights were obtained
from throughputs in a product form network as similar as possible to the
given network. MacNair and Woo report better results from simply using
the relative populations, i.e., the weight for a given chain is its population
divided by the composite chain population [MACN75]. Some of the ap
proaches of REIS78a and REIS78c provide an alternative to aggregation of
chains; these approaches may also be used with LBANC.

1 X2 APPROXIMATION / CHAP. 6

6.3.3 Individual Queue Performance Measures

Now that we have dealt with the principal question, we look at the
decomposition side of the problem, i.e., once we have obtained the aggregate
solution, how do we obtain solutions for individual queues? We describe an
approach that is exact for product form networks and extends directly to
general networks. We assume, without loss of generality, that the aggrega
tion process has yielded the solution of a two queue network, of which one
queue was queue m in the original network and the other is a composite
queue representing the remaining queues of the original network. For
example, such networks would be the second network of Figure 6.1 with
queue m being the CPU queue or the network of Figure 6.5 with queue m
being the terminals queue. Extension to networks such as the one of Figure
6.4 or with multiple composite queues is straightforward and left to the
reader.

As usual, we consider single chain networks first. We assume that we
are given the queue length distributions for queue m in the two queue
network Ptm\{n \ N) (which is also the queue length distribution for queue
m in the original network). Also, we have R^m^(N), the throughput through
queue m in the two queue network and the original network and

i # m, the mean queue length for queue i in the network with
queue m omitted, e.g., the network of Figure 6.2, with population N.

For throughputs we know that

The extension to multiple chains is straightforward. Having throughputs, we
can usually apply equation (2.7) to obtain utilizations.

To obtain utilizations when equation (2.7) does not apply it is neces
sary obtain queue length distributions. For this reason, and to justify our
method for obtaining mean queue lengths, we show how to obtain the queue
length distribution for queue i in the original network. Note that this is
only necessary when the distribution is directly required or equation (2.7)
does not apply. In this case we also need P ^ ~ (m>(n \ N), i ^ m, the queue «;
length distribution for queue i in the network with queue m omitted. Then
we have the following theorem.])

Theorem 6.1:

I.....M.
(m)

(6 . 1)

N

Note that — j \ N) is the probability the number of jobs in the
composite queue is j and is thus the probability that the total number of
jobs in queues other than m is j.

Proof:

Using equation (5.88) and letting G M-(m) (/) t>e the normalizing
constant vector for the network with both queues m and i omitted, we have

- j\N
j=n

_ y ~ j) G M_(m)(J) X (j)(n)GM-(m),(i)(J ~ w)
j=n GA GM-(m)W

*(/)<»> 2 *(«)<* ~ J ^ A /- (*).(/)(/-")
_ _____ j^n___________________________

Gm (N)

SEC. 6.3 / FLOW -EQUIVALENT AGGREGATION 183

X 0)(n)GM-(i)(N ~ ”)
^CAO

= /*(,)(« I AT).

Thus we can obtain the queue length distributions for an individual queue in
the subnetwork represented by the composite queue as a weighted sum of
the distributions for each possible population, where the weights are the
composite queue length distribution.

However, the following result allows us to bypass obtaining the individ
ual queue length distributions unless we really want them.

Theorem 6.2:

h i)< « = S ' W * - "I AO
n = 1

(6.3)

In words, the mean queue length in the original network is obtained as the
weighted sum of the queue lengths in the network with queue m omitted.

184 APPROXIMATION / CHAP. 6

Proof:

S ' W " - « I
,1 = I

y “ «)G' jW_ („,)(rt) " X (,)(j) G ~ •/)

= „ r , M T V) ,= / GM_ (m){n)

_ y y J X i ,) ^ X 0>,)(N - n) G M- (m) , U) {n ~ ^

" ,= .,= ! M * 0

= * * T * (,)M (,„) (T V - ^ G M- (m) X i) {n -

= L (;)(TV).

Both of these theorems extend directly to multiple chains; most impor
tantly, equation (6.3) becomes

(TV) =
NK

2 ••• 2 '
/V,

(6.4)

(/»)'(TV. — n | — w*r I TV. ,...,TV' G (k,i) (”
rt j = 0 "k = 0

We leave it to the reader to state and prove the multiple chain version of
Theorem 6.1 and to prove equation (6.4).

Having the throughputs and mean queue lengths for the individual
queues, we use Little’s Rule to obtain the mean queueing times.

6.3.4 Limiting Case Justifications for Aggregation

The primary justification we have used for aggregation approximation
is the exact aggregation of product form networks. This justification be
comes less credible as the network to be solved becomes "less similar" to a
product form network. Examples include the number of queues violating
product form conditions (e.g., distributions and disciplines) increasing, an
individual queue tending to deviate greatly from product form conditions
(e.g., service times at a FCFS queue having very small or very large coeffi
cients of variation), and conditions such as multiple resource holding be
coming dominant. There is another justification for aggregation, weakly

coupled subnetworks [COUR75, COUR77], which is independent of prod
uct form conditions. The product form justification holds regardless of the
degree of coupling of subnetworks; the weakly coupled justification holds
regardless of product form conditions.

The essence of the weakly coupled justification is that in the limiting
case of disjoint subnetworks, aggregation must be exact because the subnet
works do not interact. So if a subnetwork is essentially independent of the
remainder of the network, i.e., its internal events are much more frequent
and much more dominant in its behavior than its interactions with the rest
of the network, then we should introduce little error in replacing it by a
composite queue. As an example, consider the network of Figure 6.3. As
the number of CPU-I/O cycles tends to infinity, the CPU-I/O subsystem
becomes independent of the remainder of the system. Thus if we replace
the CPU-I/O subsystem by a composite queue, we expect little error to be
introduced. Taking this point of view it is possible to characterize the error
introduced by aggregation [COUR77],

6.4 APPROXIMATION EXTENSIONS TO
LOCAL BALANCE ALGORITHMS

We have emphasized aggregation approximations because they have
been fairly widely used and empirically justified, because they are relatively
easy to apply and because they are fairly general. Diffusion approximations
have been used for quite some time but are principally successful in open
networks with heavy traffic. A third, and relatively untested, approach to
approximation has recently appeared. Along with the mean value analysis
algorithms for product form networks, Reiser and Lavenberg proposed
heuristic extensions for non-product form networks in REIS78a. Subse
quently, Bard proposed additional extensions for other characteristics
violating product form [BARD78b], These extensions are often much
simpler to program and less computationally expensive than the aggregation
approximations we have discussed. However, we emphasize that there has
been very little empirical justification for these methods. The extensions
may be applied to LBANC as well as mean value analysis. Since we prefer
LBANC, we will translate some of the extensions of REIS78a, REIS78c and
BARD78b to that algorithm. Other mean value analysis extensions, e.g., for
reducing computational costs for networks with many closed chains, also
translate directly to LBANC. We will discuss another extension, for multi
ple resource holding, in Section 9.5. We note without further discussion
that some of the aggregation approaches may be used together with this
approach.

Let us assume that queue m has FCFS scheduling, a single fixed rate
server, a single class and a non-exponential service time distribution with

SEC. 6.4 / APPROXIMATION EXTENSIONS TO ALGORITHMS 185

186 APPROXIMATION / CHAP. 6

mean a (J (and coefficient of variation CV(m). Using the same arguments as
in Section 4.1.2, we would expect the mean queueing time to be

+ *'(«><* - D - U lm){N - l))
2 (6.5)

. /», n -1 1 + c v ("0
+ U(m)(N ~ ^ a(m) 2 '

The first term represents the expected service times for the jobs not yet
served; the second term represents the expected service time for a job in
service. Notice that equation (6.5) is equivalent to equation (5.103) for
exponential service time distributions. To apply this equation to LBANC,
we want an expression for the unnormalized mean queue length
Applying Little’s rule, multiplying by G(N) and simplifying, we have

CV2 — 1
/„,,)(« = - v , (c w - 1) + W w- n + “M— - j —)- <6-«

Similar arguments for the multiple chain case with one class per chain
yield (for K — 2)

, m)

p y 2 _ 1 /-’w 2/ LV(l,m) 1
+ w(1 ,m) ---------- ----------- + u

C V (2,W) - 1
*(2,w)"

(6.7)

and

\ 'N2>

= U

+ u(2,m)(“d.m) + U)

(6.8)

Note that these reduce to our previous equations for FCFS queues where all
classes have the same exponential distributions. We emphasize that these
tantalizing expressions are approximations. For example, it can be shown
that characteristics of the service time distribution other than the mean and
the coefficient of variation have some effect on performance in closed
networks [PRIC76], but equation (6.5) ignores such other characteristics.

SEC. 6.5 / DIFFUSION APPROXIMATION

6.5 DIFFUSION APPROXIMATION

187

We may think of a diffusion process as a Markov process with a con
tinuous state space. Diffusion approximations use the theory of diffusion
processes to analyze queueing problems. The apparently difficult mathe
matics discourages most analysts from using diffusion approximations.
However, it is possible to use the diffusion approximation formulae without
understanding their derivation in detail. It is not necessary to understand
the derivations provided that empirical evidence justifies the use of the
formulae. Diffusion approximations are principally successful in open
networks with heavy traffic. For such networks numerical methods are not
feasible and, as we shall discuss in Chapter 7, simulations may be quite
expensive, thus the importance of diffusion. The only cases where an
analyst really needs a thorough understanding of the mathematics of diffu
sion are when attempting to develop better approximations or to extend the
approximations to new problems. We will first discuss diffusion processes
from an informal point of view. Then we discuss mapping of queueing
problems to diffusion processes.

Movement of particle d

<o g 6 (X-"
- i - i - i - i

Movement of particle d*

Movement of particle c (diffusion)

Figure 6.11

1 8 8 APPROXIMATION / CHAP. 6

Consider a FCFS Gl/G/1 queue, i.e., a single server queue fed by a
source where service and interarrival times are independent random varia
bles having general distributions. Even mean response time for this system
cannot be expressed simply [KLEI75]. Let n(t) be the number of jobs in
the queue at time t. n(t) can take on the values 0,1,2,... . We may think of
n(l) as the position of a particle d (for discrete) that makes a jump (of +1)
to the right when a job arrives and a jump (of —1) to the left when a job
departs (see Figure 6.11). In general, the probability that d will make a
jump of +1 or - I in the next time interval depends upon the past behavior
of d. For example, the length of time d will stay in its current place de
pends (partly) upon the time since the last arrival or departure.

Our goal is to deduce the probability of the future behavior of d given
its past behavior. The difficulty with predicting the behavior of particle d is
that it has memory in addition to its current position, i.e., the state of the
system is not merely the particle’s current position. (In the GI/G/1 sys
tems we must remember remaining service time and remaining time until the
next arrival.) In the diffusion approximation we represent the behavior of
particle d approximately by the behavior of a particle c (for continuous)
which has no memory.

Whereas d can only take on the values 0,1,2,..., we let c take on all
values on the non-negative real line. Let us decide how c should move
along the real line. Since we are used to dealing with discrete state spaces
we shall treat the continuous state space of c as the limiting case of a
discrete state space. The informal treatment here is based on the discussion
in COX65.

Position of particle at time t Position of particle at time t + dt

x (t) v (t + dt)

Particle moves along this line

Figure 6.12

Assume that particle c can only move at times 0, T, 2 T, 3T, ..., where T
is some small constant time interval, c can only take small steps of magni
tude M. Thus if we take the limit as T and M approach 0, we see that c
moves continuously along the real line. In each time interval T we assume
that the particle takes a step z where z = +M with probability p and
z = —M with probability 1 — p. In time i'T, the total displacement of the
particle will be the sum of i independent, identically distributed random
variables, each with the same distribution as z. As i gets large, the distribu
tion of the displacement approaches that of a normal or Gaussian random
variable. (The normal or Gaussian random variable is extremely important

SEC. 6.5 / DIFFUSION APPROXIMATION 189

in simulation. Since some readers will likely skip diffusion approximations,
we defer a more detailed discussion of the normal random variable until
Section 7.2. The reader may wish to defer reading this section until having
read Section 7.2, but this should not be necessary to get an informal under
standing of diffusion approximations.)

: A large number of
: particles, all at point
• y at time t

Particles move in
different directions
in interval (t, t + dt)

Figure 6.13

I

Fet the position of c at time t be x(f) (see Figure 6.12). Fet the
displacement of the particle in the interval [t,t + dt] be dx{t) where

dx(t) = x(t + dt) -x(t) . (6.9)

190 APPROXIMATION / CHAP. 6

Assume that dx(t) is normally distributed with mean fidt and variance ydt.
To help picture the process, imagine an arbitrarily large number of particles
that move according to the above assumptions. Suppose that all the parti
cles are at a point y at time t (see Figure 6.13). Then at time t + dt the
particles would have moved, some one way and some in the opposite direc
tion. The function showing the density of particles around a given point at
time t + dt has the familiar bell shape of the normal distribution with a
mean at y + jidt and variance ydt. The particle is memoryless in the sense
that its future displacement, relative to its current position, is independent
of the past. (The particle does have memory in the sense that it doesn’t
cross the boundary into the negative queue length region.) Let p(x0,x t) be
the density function for the process x(t) given that x(0) = xQ. The density
function of the particle has been studied in depth and methods exist for
computing it [COX65].

We wish to deduce the behavior of particle d from the behavior of
particle c. To do this we shall simulate the behavior of d by a particle d*
that also jumps between points 0, 1,2, ... but whose movement is driven by
the movement of c in the following way. Partition the real line into inter
vals; place d* in position i when c is in the ith interval. When c moves into
the i — \ ,h (or i + I th) interval, move d* to position i — 1 (or i + 1).
Statistics regarding d* are said to be diffusion approximations of the corre
sponding performance measures regarding d.

The accuracy with which d* models d depends upon:

1. How values are assigned to the parameters jS and y that character
ize the diffusion process (and hence characterize the movement of
the particle c).

2. How the real line is partitioned into intervals.
3. How we place a boundary condition on the diffusion process.

Typically we want c to move on the non-negative real line just as
d does. There are different conditions we might place at the
boundary x = 0 to ensure x(t) > 0 for all t. These boundary
conditions affect the behavior of c and thus the behavior of d*.

We now consider these issues in turn.

Setting and y

To make the computation of and y tractable we shall make the
(invalid) assumption that the queue is never empty. This assumption is
more reasonable in heavy traffic (when the queue approaches saturation)
and thus the approximation gives better results under heavy traffic condi
tions.

SEC. 6.5 / DIFFUSION APPROXIMATION 191

Consider a time interval [/,/ + dt]. Fet n(t) be the queue length at
time t. During this interval the expected number of jobs to arrive is Rdt
where R is the arrival rate and the expected number of departures is adt
where a is the service rate. Hence

E[n(t + dt) - n(t)] = (R - a)dt. (6.10)
We want to position x(t) of particle c to reflect the queue length n{t). Note
from the earlier discussion that the displacement x(t + dt) — x(t) is a
random variable with mean pdt. Hence, it is reasonable to set

P = R - a. (6.11)
By similar (though more complex) arguments we set

y = C V 2AR + CV\a (6.12)

where CVA and CVS are the coefficients of variation of the interarrival and
service times, respectively.

Selecting Intervals

A reasonable heuristic is to place d* in the i,h position when c is be
tween i and i + 1 as depicted in Figure 6.11. Using this method of select
ing intervals,

* r n + l
p (nQ,n\t) = I p(xQ,x-,t)dx. (6.13)

Boundary Conditions

The reflective barrier is the boundary condition normally used
[COX65]. This boundary condition states that the particle c must always be
on the non-negative portion of the real line. The density function for
particle c with this boundary condition is known and we can compute
p (nQ,n t). We are primarily interested in the equilibrium queue length
distribution p («) = p (n0 ,n °°). Using the methods described for setting p
and y and for selecting intervals, with this boundary condition we get

p \ n) = { \ - U) l f , n = 0,1,2,... (6.14)

where
= 2(1 — t/)/(C V § + t/CV A) (6 . 15)

and U = R / a is the utilization. Fet p(n) be the (true) equilibrium proba
bility of n jobs in the queue. We know that the fraction of the time the
server is idle is /?(0) = 1 - U, whereas p*(0) = 1 - U, which is erroneous.
A heuristic to deal with this is to let

1 9 2 APPROXIMATION / CHAP. 6

pi n) 1 - U , . A’ A A
(J(1 - U)U"~

n = 0,
, n > 0. (6.16)

Other boundary conditions have been proposed. For example, Gelenbe
reports improved accuracy with a boundary condition where the particle
reaching the boundary sticks there for an exponentially distributed time and
then jumps back into the region x > 0 according to some distribution
[GELE75], For example, the particle might jump from x = 0 to x = 1,
representing an arrival of a new job. The exponentially distributed time the
particle is stuck has the same mean as the interarrival distribution.

Networks
B r a n c h

A r r i v a l

Figure 6.15
D e p a r t u r e

S e r v i c e

a (D e p a r t u r e) - U t i l i z a t i o n 2 ■ a (S e r v i c e) + (1 - U t i l i z a t i o n 2) • a (A r r i v a l)

Figure 6.16

B r a n c h 1

Pi - (B r a n c h i f l o w) / (M e r g e d f l o w)

a (M e r g e) = 2 p j a (B r a n c h i)

Figure 6.17

SEC. 6.6 / FURTHER READING 193

In an open network of G I/G /1 queues, we can use the diffusion
approximation as follows [KOBA74], We essentially assume that the
product form holds, i.e.,

A M
P(nv ...,nM) = [I Pm(n J . (6.17)

m= 1
We treat the queues as independent except for determining the coefficient
of variation of the interarrival time for each queue. To do that, we first
determine the mean interarrival time for each queue from the source rate
and the relative throughputs. Then we determine the utilization at each
queue. Then we use the following procedure proposed in SEVC77b based
in part on earlier work [DISN74, GELE76, KOBA74, REIS74], For sim
plicity we assume exactly one class per queue. Let CVA m̂̂ be the coeffi
cient of variation of the interarrival times at queue m, and let am =
CVA(W) — 1- We determine am for each queue according the the equations
in Figures 6.15, 6.16 and 6.17 and then determine CVA(m).

Similar approaches have been used for closed networks, but are less
successful because of the difficulty in determining throughputs (which would
then be used for interarrival distributions). Two ways to determine the
throughputs are to either assume product form [KOBA74] or to assume one
queue is saturated.

6.6 FURTHER READING

For further discussion of aggregation approximations, see CHAN78,
COUR77, KOBA78, and MARI79. For further discussion of approximation
extensions for mean value analysis see REIS78a, REIS78c and BARD78b.
For further discussion of diffusion approximations, see COX65, KOBA74
and FOSC77.

6.7 EXERCISES

6.1 In the discussion of Section 6.3.2.2 it is assumed that the passive
resource scheduling is FCFS. What if the scheduling was preemptive
priority? Non-preemptive priority? Which is more likely to be realistic
for passive resource scheduling?

6.2 How would Theorems 6.1 and 6.2 be applied to networks such as the
one of Figure 6.4 or with multiple composite queues?

6.3 State and prove the multiple chain version of Theorem 6.1. Prove
equation (6.4).

6.4 Justify equations (6.7) and (6.8).
6.5 Restate equations (6.7) and (6.8) for multiple classes per chain.

CHAPTER 7

SIM ULATIO N

The most popular approach to the solution of a computer system model
is to simulate it, i.e., to use a program which behaves like the model and
observe the behavior of the program. The principal advantage of simulation
is its great generality. There are three main problems with simulation: the
expense of constructing a simulation program, the computational expense of
running the program, and the statistical analysis of the program behavior.
We will give little direct attention to the computational expense of simula
tion. There exist specific techniques for reducing this expense but the
techniques are of a relatively advanced nature. (Some of these specialized
techniques are closely related to the flow-equivalent approximations of
Chapter 6.)

When a model does not have a product form solution (e.g., because it
has some of the characteristics described in Chapter 6 as precluding a
product form solution) and is of sufficient size that memory and computa
tional costs of numerical solution are excessive, then the reasonable alterna
tives are approximations and simulation. Approximations have the advan
tage of low computational costs but may introduce an unknown amount of
error and may be difficult to apply. Simulation will usually be more expen
sive computationally, but with sufficient computational expense, the error
can be made very small and the application will be relatively straightfor
ward. Note that simulation results are usually not exact; the error can be
reduced by additional computational time in most situations.

Even though the Markov process formalism of Chapters 3-5 is not
necessary for simulation, it is helpful to keep this formalism in mind. For
one thing, the queueing network representations provide a convenient
framework for model formulation. Having an appropriate formulation of
the model will help eliminate programming errors, a major source of error in
simulation. Perhaps more importantly, the Markov process representation
allows us to take advantage of rigorous statistical methods. The most
important of these is the regenerative method for confidence intervals, which
we discuss later in this chapter.

Some of the characteristics violating product form solution conditions
are of little consequence with respect to simulation. For example, simulation
techniques will be essentially the same whether or not distributions are
exponential. (The use of the method of exponential stages may be neces

194

SEC. 7.1 / SIMULATION PROGRAMS 195

sary if we wish to apply the regenerative method.) Use of Scheduling disci
plines which violate product form introduces little additional complexity.
Other characteristics, e.g., simultaneous resource possession, can easily be
simulated, but product form queueing networks provide no framework for
representing these characteristics. In these cases we find it appropriate to
define extensions to the queueing network representation such as the
passive queues discussed in Chapter 6. We will discuss passive queues

from a simulation point of view toward the end of this chapter, and also
discuss other extensions to queueing network representations. Our objec
tive is to treat extended queueing networks as a unified approach to model
ing, regardless of solution method.

7.1 CONSTRUCTION OF SIMULATION PROGRAMS

Our objectives in this section are (1) to give a thorough introduction
to random number generation and event list mechanisms, the two program
ming techniques relatively unique to simulation, (2) to give a very brief
introduction to estimation of performance measures, and (3) to give an
example simulation program for the cyclic queue model which was solved
numerically in Chapter 3.

7.1.1 Random Number Generation

One of the central aspects of the models we consider in this text, and
most simulation models, is that of random variables characterized by proba
bility distributions. These are used to represent service times, interarrival
times and other system characteristics. However, computer systems are
designed to be deterministic with respect to individual programs, so we can
hardly expect a program to have truly random behavior. We can devise
methods for programming apparently random behavior, behavior which
appears to be "random" as far as we can determine from statistical tests.
Further, we can program this behavior so that the random variables appear
to have the intended probability distributions. Since the numbers are actual
ly deterministic, but appear to be random, the term "pseudo-random" is
often used.

We are given Fx(x0), defined to be the probability that a given value
of the random variable x is not greater than x0, and we wish to deterministi
cally generate a sequence of values ("samples") which have this probability
distribution defined so that every value in the interval (0,1) is equally likely.
This is known as the uniform distribution (Chapter 2) for this interval and
has the probability distribution function

196 SIMULATION / CHAP. 7

CO, u o ^ 0
F;> ,)) =) wo> 0 < u0

M,

Ao3

We are arbitrarily eliminating the endpoints of the interval to avoid taking
the logarithm of zero, which is undefined. Given the capability to obtain
samples from this distribution and the inverse of the distribution function
for random variable x, F ~ l(), we can obtain a sample of the random_ 1 ■*
variable x as Fx (u0) where u0 is a sample from the above uniform random
variable. This is depicted in Figure 7.1 for an exponential random variable.
We will return to this general sampling problem after showing how we may
obtain samples from the above uniform distribution.

There are many possible approaches to obtaining the samples from the
uniform distribution. Nearly all known approaches define some function
which will determine a new uniform value based on the previously obtained
values (or some chosen initial values). Experience has repeatedly demon
strated that one must be very careful in choosing such a "random number
generator." As Knuth has said, "... random numbers should not be generat
ed with a method chosen at random." [KNUT68] The chosen function
should have been carefully selected and then subjected to rigorous statistical
testing to ensure that it has the desired characteristics. We will not attempt
to discuss the extensive theoretical foundations of the selection process nor
the many statistical tests which have been proposed and applied. We will
describe in detail one of the most highly regarded generators, one which can
be efficiently implemented on most known computers. In doing so we will
try to mention a few of the significant theoretical considerations.

SEC. 7.1 / SIMULATION PROGRAMS 197

For a variety of reasons, including theoretical tractability and computa
tional efficiency, most random number generators utilize integer representa
tions and arithmetic. Given a random integer in the interval [1 ,m — 1], m
an arbitrary positive integer, such that each value in this interval is equally
likely, then we can obtain the desired value in the interval (0,1) by dividing
by m.

The generator we use will be based on a specific case of the following
general approach: Given a positive integer a, a non-negative integer b and a
positive integer initial value Z0, subsequent values are obtained from the
expression

Z, = (<aZ/_j + b) modulo m, i = 1,2,3,...

(The modulo operation gives the remainder of integer division by m.) As we
have tried to suggest, the choice of a , b and m is critical. Consider a = b =
1. The sequence produced will obviously not be satisfactory. However,
other choices may be worse, though not obviously unsatisfactory. Given
appropriate choices of a, b and m, the choice of Z0 may be more or less
arbitrary.

We would like for m to be very large, so a common criterion is that m
be nearly equal to the maximum representable integer for a given computer.
If there are p bits in the representation of an integer, not counting the sign
bit, then usually the maximum integer will be 2P — 1 except that double
word products and dividends may be allowed. If these double word values
are allowed, then 2P will be a very convenient choice for m. Suppose p = 5
and we choose m = 25 = 32. Consider a = 7, b = 0 and Z0 = 1. Then we
will have Z x = 7, Z2 = 17, Z3 = 23, Z4 = 1, Z5 = 7, etc., an obviously
unsatisfactory situation. We say that this sequence has a period of four.
Clearly we would like to obtain a period relatively close to m. If we modify
the generator to have a = 5, then we would get the sequence 1, 5, 25, 29,
17, 21, 9, 13, 1, 5, ... , which has a period of 8, a definite improvement. In
fact it is the best we can do with b = 0 and m = 32. In general, it can be
shown that with p greater than 2, m = 2P and b = 0, the maximum period
obtainable is m / 4. If we make a better choice of b, then we can obtain the
period m, but, given our definition of random variable u on the interval
(0,1) we will have to discard somehow the Z’s = 0. Though generators
with m - 2P may have adequate characteristics, we reject this choice of m
because the least significant bits of the generated integers will not be very
random and for reasons of convenience not related to the generators’
statistical properties. We prefer to let m be the largest prime less than 2P.
For p = 5 this would be m = 31. For prime m, the maximum period will be
m - 1, with the missing value conveniently being zero, if we make the
proper choice of a, and if b = 0. If a given value of a produces the maxi

198 SIMULATION / CHAP. 7

mum period, then a will also produce the maximum period, provided that c
is less than m and and m is not divisible by c. For m = 31, a = 3 gives the
full period. (3 and 33 do not, but 34 does, also.) The reader may wish to
use this choice of a and m to see the period m — 1 is obtained, and might
also try another value of a, say 5, to see that a smaller period is obtained.

There are many other considerations in the choice of a and m, most of
which are related to properties under statistical tests, and we shall ignore
these considerations. The generator we will use was very carefully chosen
and has performed well under thorough statistical testing. It was originally
designed for the IBM 360 family of computers, but can be efficiently
implemented on nearly any computer. We know of no other generator
which has been as thoroughly tested, and the great transportability of the
algorithm allows us to get similar simulation results on quite different
computers.

For the 360 we have p = 31. Conveniently, the largest prime less than
231 is 231 — 1 = 2147483647. For this choice of m, an appropriate choice
of a is 75 = 16807. Note that the computation

Z, = (16807Z,_1) modulo 2147483647, i = 1,2,3,... (7.1)

can be performed efficiently on any machine allowing 48 bit products and
dividends. Even the CDC 6600 and its successors, which have unusual
integer arithmetic, allow efficient implementation of this computation.

The generator of (7.1) is widely used and has been implemented in a
variety of software packages, including non-IBM software for non-IBM
machines. However, like any random number generator, some subtle
deviations from desired behavior are indicated by some statistical tests. (For
many generators we would have to omit "subtle" from this statement.) A
technique that can be used to improve upon almost any generator is called
"shuffling," analogous to picking a card from a shuffled deck of cards. A
table with n entries (n approximately 100) is initialized with Z ,, Z2, ..., Z„.
Then when the generator is called, we obtain Z n+j, use this value to select a
table entry and return that table entry. The table entry is replaced by Z n+j.
(A variation on this approach is to use two sub-generators, one for filling
the table entries and one for picking the table entry.) The generator
LLRANDOM [LEAR73] uses n = 128 and uses the least significant 7 bits
of Z n + i to select the table entry. Figure 7.2 shows a PASCAL function for
this generator and the statements to initialize the table. (We should point
out that random number generators are often implemented in assembly
language, and that it is possible to avoid relatively expensive division in
structions if this is done. It is doubtful that there is any noticeable saving in

SEC. 7.1 / SIMULATION PROGRAMS 199

the simulations we discuss, but the savings may be noticeable in other
applications of random number generators.

CONST M=2147483647.0; A=16807.0;
TYPE RANDINT=1..2147483646;
VAR Z: RANDINT;

TABLE: ARRAY[0..127] OF RANDINT;
I: INTEGER;

FUNCTION RANDOM(VAR Z: RANDINT): REAL;
BEGIN

(*Z:=(A*Z) MOD M*) Z:=TRUNC(A*Z - (TRUNC((A*Z)/M)*M));
RANDOM:=TABLE[Z MOD 128]/M;
TABLE[Z MOD 128]:=Z

END; (*RANDOM*)

Z:=314159; (*AN ARBITRARY VALUE*)
FOR I:=0 TO 127 DO (*INITIALIZE TABLE *)

BEGIN
(*Z:=(A*Z) MOD M*) Z:=TRUNC(A*Z - (TRUNC((A*Z)/M)*M));
TABLE[I]:=Z

END;

Figure 7.2

Given a generator for uniform random variables in the interval (0,1),
we return to the generation of other random variables. Consider the uni
form random variable on the interval (a,b) where a and b are arbitrary real
numbers such that a is less than b. The distribution function is
Fx(x0) = (x0 — a) / (b — a) for in the interval (a,b), as shown in Figure
7.3. Given a value uQ in the interval (0,1) we would like to obtain the
appropriate value of x0. Starting with uQ = (x0 — a)/ (b — a), we can
directly obtain x 0 = (b — a)u0 + a.

Suppose we wish to obtain a sample from the exponential distribution
shown in Figure 7.1. For positive x Q, Fx(x0) = 1 — e~ax°. Thus we have

1 — ax *Uq = 1 e °,

~ u0 ~

In (1 - m0) = In e “ ° = - ax0 In e = - axQ,

and

200 SIMULATION / CHAP. 7

*0 = - (1 / a) In (1 - m0).

Notice that 1 — u{) has the same distribution as u0, so a program would
actually use x () = - (1 /a) In w().

Figure 7.3

Suppose we have a discrete distribution with n possible values, a ,,
a2, ..., an, with corresponding probabilities p x, p 2, •••, p n, which sum to 1.
If we define qt to be the cumulative probability for the ilh value, i.e., =
p i + p 2 + ... + Pj, then we sample from this distribution by choosing a,
where i is the smallest value such that m0 < qr Figure 7.4 illustrates this
procedure for n = 3 and a x < a2 < a3. Note that this latter condition is
required only for clarity of the figure. Usually we would choose the sub
scripts so that Pj > pj for i < j , to allow the procedure to inspect the
fewest values in determining a given sample.

Figure 7.4

These three distributions, the uniform, the exponential and the discrete,
along with the branching Erlang distribution discussed in Chapter 3, are the

SEC. 7.1 / SIMULATION PROGRAMS 201

only ones we will need for our simulations. The above techniques can be
used in a straightforward way to sample from the branching Erlang distribu
tion; the details are left as exercises. The inverse distribution approach we
have used can be applied whenever we have a convenient expression or
efficient algorithm for obtaining the inverse of the distribution function.
However, we should point out that alternate approaches are available. For
example, there are alternate approaches to sampling from the exponential
distribution which are more computationally efficient but are more complex
and may require more memory. These approaches for the exponential
distribution are entirely reasonable; we ignore them because of their com
plexity. Further, there are interesting distributions for which there is no
practical way to obtain the inverse distribution function. In these cases we
must use alternative approaches. Regardless of the specific approach we
will need a generator for the uniform distribution on the (0,1) interval.

7.1.2 Event List Mechanisms (Simulated Time)

Perhaps the principal difference between simulation programs and other
programs is that is that the simulation program must provide the timing
mechanism for the simulated system and take simulated time into considera
tion in its actions. The usual approach to this problem is to identify signifi
cant events in the simulated system, i.e., times when noticeable changes
occur. It is at those points in simulated time that the simulation program
must take action. Each event is described by the time it is to occur and by
the action that takes place. For a queueing network model, a typical event
is the completion of a job’s service time. The simulation program maintains
a list of events ordered by time of occurrence. The program cycles through
the following steps: (1) Select the event with the earliest time. (2) Set the
simulated clock to this time. (3) Perform the action.

Suppose we wish to simulate the cyclic queue model which we have
solved numerically. Assuming FCFS scheduling, the only events we need to
consider are the service completions. While jobs are in service, the simula
tion program does not need to take any action. However, when a job
finishes service the program must reassign the server to a waiting job, if
there is one, and the program must move the job to the other queue and
possibly initiate service for the job. The program can view simulated time
as moving forward in discrete leaps, with leaps ending because of CPU or
I/O completions. If we assume exponential service times in our queue
model, then the probability of two simultaneous events (service comple
tions) is negligible. Ŵ ith nonexponential service times or other models,
simultaneous events may occur frequently. See Figure 7.5. In these cases
we must have a rule for determining which of two simultaneous events to
handle first; for our purposes we will arbitrarily choose the event which was
placed on the event list first.

202 SIMULATION / CHAP. 7

j | j Simulated time

CPU CPU I/O CPU I/O CPU Service completions
I/O

Figure 7.5
There are a variety of ways in which we can store and manipulate the

event list in our simulation program. Since we must keep the list ordered by
event times, since we will make insertions (and possibly, deletions) any
where in the list, and since the list will vary in size, an array or similar table
will be inappropriate unless the number of events on the list is always small.
This is because of the cost of moving many elements when a change is
made. The most common, and often the most appropriate, representation is
a simple linked list. Each list element consists of (at least) the time of the
event, data associated with the event (e.g., the queue for completion events
in the cyclic queue model) and a pointer to the next event in the ordering.
In addition to list elements, there will be a pointer to the first element in the
list, and it is convenient to have a pointer to the last element in the list. See
Figure 7.6.

Time Queue Pointer Element format

First

Last

Figure 7.6

TYPE ELEMPTR: tELEMENT;
ELEMENT=RECORD

TIME: REAL;
QUEUE: INTEGER;
NEXT: ELEMPTR

END;
VAR FIRST, LAST, AVAIL: ELEMPTR;

Figure 7.7a

SEC. 7.1 / SIMULATION PROGRAMS 203

PROCEDURE INSERTEVENT(T: REAL; Q: INTEGER);
(*INSERTEVENT ADDS EVENT AT TIME T FOR QUEUE Q TO LIST*)
VAR TEMP, L: ELEMPTR;
BEGIN

IF AVAIL=NIL THEN
NEW(TEMP)

ELSE
BEGIN (*PREVIOUSLY USED STORAGE AVAILABLE*)

TEMP:=AVAIL;
AVAIL:=AVAILt.NEXT

END;
TEMPt.TIME:=T;
TEMPt.QUEUE:=Q;
IF FIRST=NIL THEN

BEGIN (*LIST WAS EMPTY*)
FIRST:=TEMP;
LAST:=TEMP;
TEMPt.NEXT:=NIL

END
ELSE IF T<FIRSTt.TIME THEN

BEGIN (*INSERT AT BEGINNING OF LIST*)
TEMP t.NEXT:=FIRST;
FIRST;=TEMP

END
ELSE IF T>LAST t .TIME THEN

BEGIN (* INSERT AT END OF LIST*)
LAST t .NEXT:=TEMP;
LAST:=TEMP;
TEMPt.NEXT:=NIL

END
ELSE

BEGIN (*INSERT SOMEWHERE IN MIDDLE OF LIST*)
L :=FIRST;
WHILE T>Lt.NEXTt.TIME DO

L:=Lt.NEXT;
TEMP t .NEXT:=Lt .NEXT;
Lt.NEXT:=TEMP

END;
END; (*INSERTEVENT*)

Figure 7.7b

204 SIMULATION / CHAP. 7

PROCEDURE REMOVEFIRSTEVENT(VAR T :REAL; VAR Q: INTEGER);
(♦REMOVEFIRSTEVENT RETURNS TIME T AND QUEUE Q OF FIRST
EVENT*)

VAR TEMP: ELEMPTR;
BEGIN

IF FIRST=NIL THEN
BEGIN

WRITELN(’REMOVEFIRSTEVENT — EMPTY LIST');
HALT

END
ELSE

BEGIN
T :=FIRST t.TIME;
Q :=FIRST t.QUEUE;
TEMP:=FIRST;
FIRST:=FIRST t .NEXT;
IF FIRST=NIL THEN
LAST:=NIL;

TEMPt.NEXT:=AVAIL;
AVAIL:=TEMP

END
END; (*REMOVEFIRSTEVENT*)

FIRST:=NIL;
LAST:=NIL;
AVAIL:=NIL;

Figure 7.7c
Figures 7.7a, 7.7b and 7.7c show PASCAL procedures for inserting an

element in this linked list representation and for removing the first element.
PASCAL provides the NEW procedure for obtaining storage for elements,
but provides no complementary procedure for returning storage. So the
procedures maintain an auxiliary list of previously used elements with the
AVAIL pointer and only calls NEW when this list is empty. The represent
ation of the figures will be adequate for our simulations, but eventually we
will want to add a backward pointer to the elements so that we can effi
ciently remove events in the middle of the list.

Many other organizations can be used for the event list but these will
only be appropriate when the list usually has many (more than 30) ele
ments. For our cyclic queue model the maximum list length will be the
number of servers (the CPU and the I/O devices).

SEC. 7.1 / SIMULATION PROGRAMS

7.1.3 Basic Performance Estimates

205

We have presented most of the mechanics of a simulation of the cyclic
queue model except for the procedures for handling the completion event.
These procedures are fairly simple and will be described in Section 7.1.4.
The data structures and details of those procedures will depend to a certain
extent on what performance measures we wish to obtain, so we provide a
brief discussion of performance estimates first. We cannot overemphasize
that we obtain only estimates for the performance measures of the model, in
much the same sense that the approximations of Chapter 6 provide only
estimates. In either approximation or simulation, there will usually be some
error in the estimates. With approximations we usually cannot estimate the
error. With simulation we can provide estimates of the variability of the
basic estimates, and can make the error "small" if the simulation run is
"long" enough. We will return to these topics in later sections.

For now we will be content with simple estimates for utilization,
throughput, mean queue length and mean queueing time. As before, we will
count jobs in service as part of the queue length and service time as part of
the queueing time. Let us assume the simulation stops at simulated time T.
Since utilization is defined as the fraction of time the server is busy, we can
estimate the utilization by summing the busy times of the server during the
simulation run and dividing by T when the run is over. If there are k identi
cal servers, then we can accumulate the busy times for the k servers togeth
er, and then estimate the utilization of each one by dividing this aggregate
busy time by kT. There are two obvious ways to accumulate the busy time
for a server. One is to simply add the service times at some appropriate
point, e.g., when the sample is obtained, when a job begins service or when
a job ends service. However, this may become tricky when we need to
include or exclude partial service times at the end of the run. Further, this
does not easily generalize to certain cases of interest, so we take a more
direct approach. When a server becomes busy, we record the time for future
use. Then, when the server becomes idle or the simulation terminates, we
take the difference of the current time and this recorded time and add this
difference to our sum of busy times. See Figure 7.8. Note that, except for
possible numerical differences, we can break the busy periods into discrete
subperiods and add the length of the subperiod to our accumulated busy
time. This is more convenient with multiple identical servers and allows us
to combine the utilization estimation process with the queue length estima
tion process described below.

For throughput, we need only count the number of jobs going through
the queue and divide by T to get our estimate. Again, we have a problem
with jobs in service at the end of the run. We will arbitrarily omit these
jobs in our throughput estimates.

206 SIMULATION / CHAP. 7

Figure 7.8
There are at least two ways we can estimate the mean queue length.

One would be to estimate the queue length distribution and then use that
estimate to obtain the mean queue length. This approach is expensive in
memory if the potential queue length is large and so is only appropriate if
we want the distribution estimate as well. An alternative is closely related
to our discussion of Little’s Rule in Chapter 2. We can look at queue
length as a function of time (Figure 7.9) and estimate the mean queue
length as the integral of that function divided by T. In other words we
estimate the mean queue length by the enclosed area in Figure 7.9 divided
by T. We can estimate this area easily, in a manner analogous to our
preferred approach to estimating busy time. Each time the queue length
changes, we record the time for future use. We subtract the previously
recorded time from the current time, multiply this difference by the previous
queue length and add that product to our summation of the area.

There are also two obvious ways to estimate the mean queueing time.
We could simply observe the queueing times and use their average as our
estimation of the mean. However, this effort is unnecessary if we are only
interested in the mean. By Little’s Rule we know the mean queueing time is
equal to the mean queue length divided by the throughput. Using our
estimators for the queue length and throughput, we can eliminate T from
numerator and denominator and use the integral of the queue length func

SEC. 7.1 / SIMULATION PROGRAMS 207

tion (the area of Figure 7.9) divided by the number of completions as our
estimate of mean queueing time.

7.1.4 Cyclic Queueing Network Simulator

We are now prepared to present a complete simulation program for the
simple cyclic queueing network model described in earlier chapters. The
only missing components are the data structures for the queues and the
mechanics of handling the completion events. If we are only interested in
the above performance measures, if the jobs are homogeneous, and if we
assume FCFS scheduling, then a counter giving the length of the queue is all
we need to represent each queue. In Section 7.3 we will consider more
general data structures for the queue. So the mechanics of the completion
event will be to (1) decrease the counter for the queue where the comple
tion occurs, (2) schedule another completion event for that queue if there is
a waiting job, (3) increase the counter for the other queue, and
(4) schedule a completion event for the other queue if there is an idle
server. Since the following generalizations add no complexity and slightly
simplify the code, we will allow the number of queues in series to be arbi
trary, and we allow multiple identical servers at each queue. We will actual
ly simulate the same model that we solved using the iterative numerical
method in Chapter 3. For this model we only obtained state probabilities in
Chapter 3. Figure 7.10 gives the numerical values for the above measures
for this model.

Queue U R L Q
1 0.812 0.122 1.596 13.082
2 0.609 0.122 1.404 11.508

Figure 7.10

We will run the simulation three times, for 100, 1000 and 10000
events. Figures 7.11a, 7.11b and 7.11c show the complete simulation
program except for the bodies of procedures previously defined. The han
dling of the completion events is separated into two procedures, one for the
queue where the completion occurs and one for the queue where the job
arrives. This definition of procedures allows easy generalization to networks
with other routing paths between queues. Figure 7.12 shows the output
from the simulation program.

We arbitrarily initialized the simulated system with all jobs at the first
queue. As we look at this model further in Section 7.2, it will be apparent
that this choice is of little consequence. This is not to say that choice of
initial state is irrelevant for more complex models.

208 SIMULATION / CHAP. 7

PROGRAM CYCLIC(OUTPUT);
(*PROGRAM TO SIMULATE A CYCLIC MODEL WITH NQ QUEUES AND NJ
JOBS*)

CONST M=2147483647.0; A=16807.0;
NQ=2; NJ= 3; B1= 0. 15; B2 = 0.1 ; NIO=2;

TYPE RANDINT=1..2147483646;
ELEMPTR: tELEMENT
ELEMENT=RECORD

TIME: REAL;
QUEUE: INTEGER;
NEXT: ELEMPTR

END;
VAR Z: RANDINT;

TABLE: ARRAY[0..127] OF RANDINT;
I: INTEGER;
FIRST, LAST, AVAIL: ELEMPTR;
CLOCK: REAL;
QUEUES: ARRAY[1..NQ] OF

RECORD
NUMBERSERVERS: INTEGER;
MEANSERVICE: REAL;
LENGTH: INTEGER;
TIMELENGTHCHANGED: REAL;
SUMTIMELENGTH: REAL;
SUMBUSYTIME: REAL;
NUMBERCOMPLETIONS: INTEGER

END;
RUN, NUMBEREVENTS, EVENTLIMIT: INTEGER;

FUNCTION RANDOM(VAR Z: RANDINT): REAL;

PROCEDURE INSERTEVENT(T: REAL; Q: INTEGER);

PROCEDURE REMOVEFIRSTEVENT(VAR T :REAL; VAR Q: INTEGER);

FUNCTION MIN(V1,V2:INTEGER):INTEGER;

Figure 7.11a
The three runs required roughly 33 ms., 330 ms. and 3.3 seconds,

respectively of CPU time on a CDC 6400. These certainly are inexpensive
runs, but then this model is trivial for nearly any solution method. Using the
methods of Chapter 5, one can obtain these results easily by hand, with
appropriate use of a minimal calculator. Even the brute force iterative
solution of Chapter 3 requires a few milliseconds on a CDC 6400. For this

SEC. 7.1 / SIMULATION PROGRAMS 209

PROCEDURE COMPLETE(Q: INTEGER);
(♦HANDLES COMPLETION OF A JOB AT QUEUE Q*)
BEGIN

WITH QUEUES[Q] DO
BEGIN

(*STATISTICS*)
NUMBERCOMPLETIONS:=NUMBERCOMPLETIONS+1;
SUMTIMELENGTH:=SUMTIMELENGTH+(CLOCK

-TIMELENGTHCHANGED)*LENGTH;
SUMBUSYTIME;=SUMBUSYTIME+(CLOCK-TIMELENGTHCHANGED)

*MIN(LENGTH,NUMBERSERVERS);
TIMELENGTHCHANGED:=CLOCK;
(*MECHANICS*)
LENGTH;=LENGTH-1;
IF LENGTH>NUMBERSERVERS THEN

INSERTEVENT(CLOCK-MEANSERVICE*LN(RANDOM(Z)),Q)
END

END; (*COMPLETE*)
PROCEDURE ARRIVE(Q : INTEGER);
(*HANDLES ARRIVAL OF A JOB AT QUEUE Q*)
BEGIN

WITH QUEUES[Q] DO
BEGIN

(*STATISTICS*)
SUMTIMELENGTH:=SUMTIMELENGTH+(CLOCK

-TIMELENGTHCHANGED)*LENGTH;
SUMBUSYTIME:=SUMBUSYTIME+(CLOCK-TIMELENGTHCHANGED)

*MIN(LENGTH,NUMBERSERVERS) ;
TIMELENGTHCHANGED:=CLOCK;
(♦MECHANICS*)
LENGTH:=LENGTH+1;
IF LENGTH<NUMBERSERVERS THEN

INSERTEVENT(CLOCK-MEANSERVICE*LN(RANDOM(Z)),Q)
END

END; (*ARRIVE*)

Figure 7.11b
trivial model, even the longest simulation run does not produce results
correct to three significant digits. These statements emphasize a principal
liability of simulation: a relatively long simulation run may produce relatively
inaccurate results. We are assuming that the longer the simulation run the
more likely it is that the results will be accurate. This will usually be a
correct assumption.

210 SIMULATION / CHAP. 7

BEGIN
(♦INITIALIZATION*)
Z:=314159; (*AN ARBITRARY VALUE*)
FOR I:=0 TO 127 DO ^INITIALIZE TABLE *)

BEGIN
(*Z: = (A*Z) MOD M*) Z:=TRUNC(A*Z - (TRUNC((A*Z)/M)*M)) ;
TABLE[I]:=Z

END;
AVAIL:=NIL;
EVENTLIMIT: = 1 0 ;
FOR RUN:=1 TO 3 DO

BEGIN
FIRST:=NIL;
LAST:=NIL;
CLOCK:=0.0;
NUMBEREVENTS:=0;
EVENTLIMIT:=10*EVENTLIMIT;
FOR I:=1 TO NQ DO
WITH QUEUES[I] DO

BEGIN
LENGTH:=0;
TIMELENGTHCHANGED:=0.0;
SUMTIMELENGTH:=0.0;
SUMBUSYTIME:=0.0;
NUMBERCOMPLETIONS:=0

END;
QUEUES[1].NUMBERSERVERS:=1;
QUEUES[1].MEANSERVICE:=1.0/B1;
QUEUES[1].LENGTH:=NJ;
INSERTEVENT(CLOCK-QUEUES[1].MEANSERVICE

*LN(RANDOM(Z)),1);
QUEUES[2].NUMBERSERVERS:=NIO;
QUEUES[2].MEANSERVICE:=1.0/B2;

(*RUN*)
WHILE (FIRSTONIL) AND (NUMBEREVENTS<EVENTLIMIT) DO

BEGIN
NUMBEREVENTS:=NUMBEREVENTS+1;
REMOVEFIRSTEVENT(CLOCK,I);
COMPLETE(I);
ARRIVE(I MOD NQ + 1)

END;

(♦PRINT STATISTICS*)
WRITELN;

SEC. 7.1 / SIMULATION PROGRAMS 2 1 1

WRITELN('NUMBER OF EVENTS:',NUMBEREVENTS:8,
' SIMULATED TIME:',CLOCK:10:3);

WRITELN;
WRITELN(

'QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME');
FOR I:=1 TO NQ DO

WITH QUEUES[I] DO
IF NUMBERCOMPLETIONS>0 THEN
BEGIN

SUMTIMELENGTH:=SUMTIMELENGTH+
(CLOCK-TIMELENGTHCHANGED)* LENGTH;

SUMBUSYTIME:=SUMBUSYTIME+
MIN(LENGTH,NUMBERSERVERS)*
(CLOCK-TIMELENGTHCHANGED) ;

WRITELN(I:5,
SUMBUSYTIME/(NUMBERSERVERS * CLOCK) : 1 2:3 ,
NUMBERCOMPLETIONS/CLOCK:11:3,
SUMTIMELENGTH/CLOCK:13:3,
SUMTIMELENGTH/NUMBERCOMPLETIONS:14:3)

END;

(* PUT LEFTOVER EVENTS ON AVAIL LIST*)
IF FIRSTONIL THEN
BEGIN

LAST t .NEXT:=AVAIL;
AVAIL:=FIRST

END
END

END.

Figure 7.1lc
The reader may also notice that the programming effort to produce this

simulation is significantly greater than the effort to produce a numerical
program to solve this model. However, this is not an entirely fair compari
son. Some of the procedures, i.e., those for random number generation and
event list manipulation, can be used with little or no modification in very
general simulation programs. This program can be used essentially without
modification to simulate networks with many queues and varying numbers
of servers per queue. This certainly is not true of the iterative or recursive
techniques of Chapter 3, though it is true of the numerical techniques of
Chapter 5. Those techniques are based on a product form solution and will
not be applicable with FCFS scheduling and non-exponential service times.
The simulation program, on the other hand, requires relatively trivial modifi
cation to consider other distribution functions. It is difficult to numerically

2 1 2 SIMULATION / CHAP. 7

NUMBER OF EVENTS: 100 SIMULATED TIME: 397.416

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
1 0.807 0.128 1.407 10.964
2 0.700 0.123 1.593 12.920

NUMBER OF EVENTS: 1000 SIMULATED TIME: 3995.699

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
1 0.797 0.125 1.535 12.238
2 0.631 0.125 1.465 11.735

NUMBER OF EVENTS: 10000 SIMULATED TIME: 40884.621

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
1 0.805 0.122 1.567 12.814
2 0.619 0.122 1.433 11.717

Figure 7.12
obtain the queueing time distributions for this model, and it would be
virtually impossible to do so if we were to increase the number of queues
and allow non-exponential service times. The simulation program, on the
other hand, requires relatively trivial modification to consider other distribu
tion functions. It is difficult to numerically obtain the queueing time distri
butions for this model, and it would be virtually impossible to do so if we
were to increase the number of queues and allow non-exponential service
times. With a few modifications to our data structures for the queues and
additions to the completion and arrival procedures, the simulation program
could be used to estimate the queueing time distributions. These extensions
to the simulation program would cause a modest increase in the program’s
computational requirements, and might require significantly longer runs to
obtain sufficiently accurate results, depending on the nature of the service
time and queueing time distributions.

The discussion so far has, hopefully, given the reader a feel for the
problems cited in the introduction of this chapter. There is another problem
worth mentioning. As a consequence of the generality of simulation, simula
tion models often contain excessive detail and are unwieldy for this reason.
We have emphasized, and will continue to emphasize, some of the system
characteristics with the most impact on performance. Our intent is to help
the reader to avoid excessive detail in models, especially simulation models.
The reader should be aware of our intent, and be prepared to consider other
characteristics with respect to models of particular systems.

7.2 STATISTICAL ANALYSIS OF SIMULATION RESULTS

SEC. 7.2 / STATISTICAL ANALYSIS 213

We have emphasized the variability and potential for error in perform
ance estimates obtained by simulation. In this section we will take a some
what more formal view of this estimation problem. Our ultimate objective
in this section is to show how "confidence interval" estimates may be
obtained and interpreted with respect to model performance measures. We
will find it most convenient to focus our discussion on estimating the mean
queueing time. The same approaches can be applied to most other perfor
mance measures of interest, and we will do so in the program examples.

7.2.1 Sample Means and Laws of Large Numbers

A deterministic sequence x j, x 2, x 2, ... is said to converge to a limit C
if for all a > 0 there exists a finite number n0 such that \ xn- C \ < a for
n > «q. This is written

lim xn — C.
n -+■ oc

We can similarly define convergence of a sequence of random variables. A
sequence y lt y 2, of random variables is said to converge in probability
("stochastically converge") to C if for all a > 0,

lim Prob[\ yn- C \ > a] = 0.

In general, if the value of a performance measure is well defined, we want
to say that the simulation estimator converges in probability to this value.
This will usually be true, but we must be careful not to read too much into
such a statement of convergence.

Let us consider the average of the queueing times as an estimator of
the mean queueing time. (The alternative estimator used in the program of
Section 7.1.4 will give the same numerical values except for effects of
queueing times in progress at the end of the run. These effects should be
negligible if the number of queueing times in progress is small relative to the
total number.) In traditional terminology, the collection of observed queue
ing times would be called a "sample," and their average would be called the
"sample mean." The sample mean of n observed queueing times, n =
1,2,3,..., will be our random variable, y n, and it can be shown under fairly
mild assumptions that if the mean queueing time is well defined, the se
quence of sample means, y v y 2, y 3,..., converges in probability to the mean
queueing time. This statement of convergence would be known as a "law of
large numbers."

2 1 4 SIMULATION / CHAP. 7

This law of large numbers allows us to say that if out sample size is
large enough (i.e., our simulation run is long enough) then the sample mean
(i.e., the average queueing time) is probably very close to the expected
value (i.e., the mean queueing time). This does not allow us to say that the
sample mean cannot be far from the expected values, but only that the
probability of this occurring is small.

Similar statements can be made about the other performance measures
we have considered, but the statements are more awkward because the
sample size (i.e., simulated time) is not discrete. The reader may more
easily imagine these statements if we were to measure the sample size in
numbers of events.

7.2.2 The Normal Distribution and Central Limit Theorems

We would like to make a probabilistic statement about the potential
error in our simulation estimates. Nearly all approaches to this problem are
dependent on a very special probability distribution, the normal distribution,
or on distributions closely related to the normal distribution. (The normal
distribution is also known as the Gaussian distribution.) The normal distri
bution has distribution function

The mean of this distribution is m and the standard deviation is o. Notice
that the distribution is completely specified by these two parameters. Given
a normal distribution of the form (7.2) we can use the transformation
z0 = (x() — m) / o to obtain a normal distribution with mean 0 and stan
dard deviation 1. This transformed distribution is known as the standard (or
unit) normal distribution. There is no simple expression for the normal
distribution (7.2) so we usually depend on a numerical characterization.
There are extensive tables of the standard normal distribution, and we can
use these tables in combination with the above transformation to obtain
numerical values for an arbitrary normal distribution. Figure 7.13 shows
both the density function and the distribution function for the standard
normal distribution. Note the symmetry of the density function around the
mean.

There are some very remarkable properties associated with the normal
distribution. We are most interested in the following one. If x 2, ..., xn
are independent random variables with identical distributions (not necessari
ly normal) and finite mean and variance, then the distribution of their sum
tends toward a normal distribution as n becomes large. This is one version
of a class of results known as central limit theorems. Such a result may be

(7.2)

SEC. 7.2 / STATISTICAL ANALYSIS 215

accurate for fairly small values of n, e.g., 10 to 20, depending on the specif
ic distributions involved. (Aside — The normal distribution is one of the
ones we alluded to in Section 7.1.1 as one where an alternative approach to
random variable generation is appropriate because of difficulty in character
izing the inverse distribution. One approach to generating normal random
variables is to use the sum of 12 uniform random variables on the (0,1)
interval and appropriately standardize this sum with the transform described
above. Though this approach by itself is rather crude, it can be refined to
produce a usable method.)

7.2.3 Confidence Intervals

Suppose z0 is a random variable with the standard normal distribution.
Let F ~ 1(a) be the inverse of Fz(z0), i.e., Prob[z0 < F J^ a)] = a,
0 < a < 1. From the symmetry of the density function (Figure 7.13), it is
clear that Prob[0 < z0 < F J J(a)] = a — .5, .5 < a < 1, and
Prob[-Fz_1(a) < z0 < Fz_1(a)] = 2 « - l . Thus,

Prob[—F~*((l + a) /2) <z Q< F J X{{\ + a) / 2)] = a , 0 < a < 1. (7.3)

Tables of F~^(a) are readily available. For example, for a = .9,
/ ^ (^ S) = 1.645 and we say that Prob[— 1.645 < z0 < 1.645] = .9.
Notice that if we have a known value z0, either it is contained in the interval
[-1.645,1.645] or it is not. The probabilistic statement only makes sense if
z0 is unknown. However, if we obtain many values from the distribution
Fz, we would expect 90% of them to be contained in the interval
[-1.645,1.645].

216 SIMULATION / CHAP. 7

Now suppose we have random variables x j, x 2, x n which are inde
pendent and identically distributed, each with mean m and variance a .
Then x x/n, x 2/n, ..., x j n are also independent and identically distributed,
each with mean m/ n and variance (a / n) . Let us take a sample consisting
of one value from each random variable x x, x 2, ■■■, x n. Let us consider the
sample mean (the average of these values) and call it y n. Then y n = (x\ /n)
+ (x2/ n) + ... + (xn/ n) has mean n(m/ n) = m. Further, since y n is the
sum of independent random variables, its variance is the sum of the individ
ual variances, i.e., n(o / n) 2 = a2/n. If n is large enough, we can reasonably
assume that y n has a normal distribution and that (yn - m)f~n / a has the
standard normal distribution. From (7.3) we have

P rob[-F 7 l((l + a) /2) < (yn-m)V~n / a < F “ 1((l + a) /2)] = a ,

and simple algebra allows us to write

Prob[yn- d < m < y n + d] = a,

where

d = F ~1 ((1 + a) /2)o/ s /n.

Notice that m is not a random variable, but [yn — d,yn + d] is a random
interval, i.e., its endpoints are random variables. We must be very careful in
our interpretation of this interval with respect to m. The interpretation is
similar to our statements with respect to the interval obtained in (7.3), but
here the interval is random while there it was not, and here m is fixed but
there z0 was random. Before obtaining a sample from jcj, x 2, ..., x n, we can
plan to construct the above interval and say that the interval will contain m
with probability a. Once we have obtained the sample, either m is con
tained in the interval or it is not; we should not make a probabilistic state
ment. However, if we repeat this process many times, we would expect that
a x 100% of the intervals would contain m. The interval \yn — d,yn + d]
is called a confidence interval for m\ a x 100% is called the confidence
level. Typical confidence levels are 90%, 95% and 99%. We will always
use 90% in our examples.

Finally, notice that the variance, o , of the individual random variables
is known. In practice, it is unlikely that we would know the variance
without also knowing the mean, in which case we would have no use for the
confidence interval. Again assuming n is large, we could estimate the vari-
ance by using the sample variance s , where

SEC. 7.2 / STATISTICAL ANALYSIS 217

2s 1
n - 12(=i i

n - 1
2

x , (7.4)

Since we are using an estimate of the variance in producing the interval, the
interval is properly called a confidence interval estimate, but we will just use
the term "confidence interval."

Having stated the basic results, we will now discuss the two most
theoretically sound methods for producing confidence intervals in simula
tion, independent replications and the regenerative method.

7.2.4 Independent Replications

In most of our discussion so far, we have implicitly or explicitly as
sumed that (1) the modeled system appears to reach an equilibrium condi
tion and (2) that we are interested in estimating system performance, given
that the system has reached this equilibrium. This will be true for most of
the models we have considered, with the obvious exception being open
networks where one or more queues has an arrival rate greater than its
service rate. Hopefully this will also be true of the modeled system as well,
provided that we consider appropriate time periods and are aware of our
assumptions in interpreting performance measures.

We may also be interested in transient behavior of the system, whether
or not the system reaches equilibrium. Lor example, we may be interested
in knowing the mean time until all jobs are at the CPU queue, given the
current location of jobs. Or we may be interested in the mean response time
for an interactive command, given the current state of the system. In both
of these examples the system may be an equilibrium condition, but this is
irrelevant. Suppose we wish to estimate the mean number of terminals
during the day. If we are considering a single day as our measurement
period, then it is probably not reasonable to consider the system as being in
equilibrium, though we might reasonably consider a different period of time
and make equilibrium assumptions.

Lor the sorts of models we have considered, numerical solutions for
transient behavior are much more difficult than numerical solutions for
equilibrium behavior. We have ignored such solutions for that reason.
However, with simulation, estimation of transient behavior is no more
difficult, in general, than estimation of equilibrium behavior. In fact, estima
tion of transient behavior is a simpler problem.

Consider our simulation of cyclic queueing networks. If our objective is
to estimate the mean utilization of the servers, given that we initially have

2 1 8 SIMULATION / CHAP. 7

all jobs at the first queue and observe the system for some number of
service completions, say 100, then we have already given in Figure 7.12 the
results of a single experiment with these specifications. One difficulty with
using the results of that figure for equilibrium estimates is that the system
was not initially in an equilibrium condition, or at least we have not justified
our assumption that it was in equilibrium. If our interest is in the above
transient measure, or something similar, then we do not have to justify an
equilibrium assumption. However, we must still be aware that we are
dealing with random processes and that the results of a single experiment
may or may not be close to the desired measure. The obvious step is to
repeat the experiment many times and use the average of the experimental
results as our final estimate. In other words, we replicate the experiment.

We now have all we need to provide confidence intervals for our
desired performance measure, using the method known as independent
replications. If we make identical replications of our experiment, i.e., we
make identical simulation runs except that we do not reinitialize the random
number generator, then we can reasonably assume that the distributions of
the performance measures have finite mean and finite variance, then if the
number of replications is large enough, we can reasonably assume that the
average over the replications has a normal distribution and we can estimate
confidence intervals as described in the last section. (We can almost cer
tainly assume a finite mean for the measures of interest if the system has an
equilibrium, and this may be a safe assumption otherwise. The finite vari
ance assumption may be harder to justify, but will usually be correct for the
cases we are interested in.)

So we essentially know all we need to estimate confidence intervals for
transient behavior. We can also use the method of independent replications
to estimate equilibrium behavior, but we must make some additional as
sumptions, and these assumptions may be difficult to justify. Essentially we
must assume that each replication accurately reflects the equilibrium behav
ior of the system. We may separate this assumption into the following two:
First, the system is an equilibrium for most of each replication. Second, the
results are not significantly affected by the choice of initial conditions.
Notice that we would probably be making these assumptions even if we
were attempting point estimates only, as in the simulation program of Figure
7.11. Figures 7.14a and 7.14b show the modifications to use the method of
independent replications with the program of Figure 7.11. Each replication
is 500 events long, and otherwise is the same as the previous runs that we
made. Figure 7.15 gives the results of this program for 20 replications.

We can see that all of the known values given in Figure 7.10 are
contained in the corresponding confidence intervals. We emphasize that it is
not meaningful at this point to say that the probability that the utilization at

SEC. 7.2 / STATISTICAL ANALYSIS 219

VAR Z: RANDINT;
TABLE: ARRAY[0..127] OF RANDINT;
I: INTEGER;
FIRST, LAST, AVAIL: ELEMPTR;
CLOCK: REAL;
QUEUES: ARRAY[1..NQ] OF

RECORD
NUMBERSERVERS: INTEGER;
MEANSERVICE: REAL;
LENGTH: INTEGER;
TIMELENGTHCHANGED: REAL;
SUMTIMELENGTH: REAL;
SUMBUSYTIME: REAL;
NUMBERCOMPLETIONS: INTEGER;
SUMUTIL: REAL;
SUMSQUTIL: REAL;
SUMTPUT: REAL;
SUMSQTPUT: REAL;
SUMQL: REAL;
SUMSQQL: REAL;
SUMQT: REAL;
SUMSQQT: REAL

END;
RUN, NUMBEREVENTS, EVENTLIMIT: INTEGER;
UTIL, TPUT, QL, QT: REAL;
DUTIL, DTPUT, DQL, DQT: REAL;

Figure 7.14a
queue 1, .812, is contained in the interval (.806,.828) is .9; we know the
number .807 is in that interval. Of course, we would not have used the
simulation at all if we knew the utilization was .807, but knowing or not
knowing the true value does not change the appropriate interpretation of
the confidence interval.

If we use independent replications and find that the confidence inter
vals are larger than we had desired, then we can simulate further to try to
obtain narrower intervals. If we are interested in transient behavior, then it
is clear that we do not want to make the replications longer, so we simply
run more replications. If we have retained the summary results from our
previous replications, e.g., SUMUTIL, SUMSQUTIL, etc., then we can use
the results from previous replications in producing our new estimates. If we
are interested in equilibrium results, then the problem is somewhat more

220 SIMULATION / CHAP. 7

BEGIN
(* INITIALIZATION*)
Z : = 3 1 4159; (*AN ARBITRARY VALUE*)
FOR I:=0 TO 127 DO (*INITIALIZE TABLE *)

BEGIN
(*Z: = (A*Z) MOD M*) Z:=TRUNC(A*Z - (TRUNC((A*Z)/M)*M)) ;
TABLE[I]:=Z

END;
FOR I:=1 TO NQ DO

WITH QUEUES[I] DO
BEGIN

SUMUTIL:=0;
SUMSQUTIL:=0;
SUMTPUT:=0;
SUMSQTPUT:=0;
SUMQL;=0;
SUMSQQL:=0;
SUMQT:=0;
SUMSQQT;=0

END;
AVAIL:=NIL;
EVENTLIMIT:=500;
FOR RUN:=1 TO NREP DO

BEGIN
... (*ONE REPLICATION OF THE SIMULATION. *)
FOR I:=1 TO NQ DO

WITH QUEUES[I] DO
IF NUMBERCOMPLETIONS>0 THEN
BEGIN

SUMTIMELENGTH:=SUMTIMELENGTH+
(CLOCK-TIMELENGTHCHANGED)*LENGTH;

SUMBUSYTIME:=SUMBUSYTIME+
MIN(LENGTH,NUMBERSERVERS)*
(CLOCK-TIMELENGTHCHANGED);

UTIL:=SUMBUSYTIME/(NUMBERSERVERS*CLOCK);
SUMUTIL:=SUMUTIL+UTIL;
SUMSQUTIL:=SUMSQUTIL+UTIL*UTIL;
TPUT:=NUMBERCOMPLETIONS/CLOCK;
SUMTPUT:=SUMTPUT+TPUT;
SUMSQTPUT:=SUMSQTPUT+TPUT*TPUT;
QL:=SUMTIMELENGTH/CLOCK;
SUMQL:=SUMQL+QL;
SUMSQQL:=SUMSQQL+QL*QL;
QT:=SUMTIMELENGTH/NUMBERCOMPLETIONS;
SUMQT:=SUMQT+QT;

SEC. 7.2 / STATISTICAL ANALYSIS 221

SUMSQQT:=SUMSQQT+QT*QT
END;

(* PUT LEFTOVER EVENTS ON AVAIL LIST*)
IF FIRSTONIL THEN

BEGIN
LAST t .NEXT:=AVAIL;
AVAIL:=FIRST

END
END;
WRITELN;
WRITELN('REPLICATIONS:',NREP:4,

' EVENTS PER REPLICATION:',EVENTLIMIT:6) ;
WRITELN;
WRITELN(

'QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME');
FOR I:=1 TO NQ DO

WITH QUEUES[I] DO
BEGIN

UTIL:=SUMUTIL/NREP;
DUTIL:=1.645

*SQRT((SUMSQUTIL-SUMUTIL*UTIL)/((NREP-1)*NREP));
TPUT:=SUMTPUT/NREP;
DTPUT:=1.645

*SQRT((SUMSQTPUT-SUMTPUT*TPUT)/((NREP-1)*NREP));
QL:=SUMQL/NREP;
DQL:=1.645

*SQRT((SUMSQQL-SUMQL*QL)/((NREP-1)*NREP));
QT:=SUMQT/NREP;
DQT:=1.645

*SQRT((SUMSQQT-SUMQT*QT)/((NREP-1)*NREP));
WRITELN('UPPER',UTIL+DUTIL:12:3,TPUT+DTPUT:11:3,

QL+DQL: 13:3,QT+DQT: 14 : 3) ;
WRITELN(I:5,UTIL:12:3,TPUT:1 1 :3,QL: 13:3,QT: 14 : 3) ;
WRITELN('LOWER',UTIL-DUTIL:12:3,TPUT-DTPUT:11:3,

QL-DQL:13:3,QT-DQT:14:3);
END

END.

Ligure 7.14b

222 SIMULATION / CHAP. 7

REPLICATIONS: 20 EVENTS PER REPLICATION: 500

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0.828 0.125 1.651 13.763

1 0.817 0.123 1 . 606 13.186
LOWER 0.806 0.120 1 . 562 12.609
UPPER 0.622 0.125 1 .438 11.776

2 0.605 0.122 1 . 394 11.443
LOWER 0.588 0.119 1 . 349 11.110

Figure 7.15
complex, at least conceptually. If we are satisfied with the assumption that
the replications are adequate examples of equilibrium behavior, then we can
proceed as in the transient case. However, this assumption is difficult to
justify, so it would be more appropriate to lengthen each replication rather
than to increase the number of replications. There are two obstacles, if we
wish to use the data from the replications already made. First, we will have
difficulty resuming replications where they ended unless we have anticipated
doing so and have recorded the state of the system, e.g., current queue
lengths, pending event times, etc., and the values of the statistics accumula
tor variables, e.g., TIMELENGTHCHANGED, SUMTIMELENGTH, etc.
Even with advance planning the programming effort and memory required
may make this impractical since we must do this for every replication.
Second, we will be in an awkward position with respect to our random
number generator. We would like it to continue for each replication where
it was left at the previous end of the replication. However, we have already
used these values for other replications, so we must use some alternative if
we wish the replications to be independent. Though this second obstacle can
be overcome, we will usually find that the first one is intractable and be
forced to choose between discarding our existing results and using longer
replications on the one hand, or saving our previous results and making
more replications of the original length, on the other hand.

There is a less rigorous method for estimating confidence intervals for
equilibrium behavior which is similar to the method of independent replica
tions and is known as batch means. This method uses batches which are
treated analogously to replications but which are obtained in a different
manner. Rather than reinitializing the system at the beginning of each
batch, one batch begins in the state in which the previous batch ended.
Thus our "independent and identically distributed" assumption will be
difficult to defend. However, for some systems this is a defensible assump
tion, i f the batches are long enough, and this method has some advantages of
convenience. We can reasonably use batch means for our cyclic queue

SEC. 7.2 / STATISTICAL ANALYSIS 223

model with the parameters as before. Ligure 7.16 shows that the results are
similar to those of Ligure 7.15.

BATCHES: 20 EVENTS PER BATCH: 500

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0.827 0.125 1.641 13.640

1 0.816 0.122 1 .601 13.136
LOWER 0.805 0.120 1.561 12.632
UPPER 0.623 0.125 1 .439 11.738

2 0.608 0.122 1 . 399 11.444
LOWER 0.592 0.120 1 . 359 11.150

Ligure 7.16

7.2.5 The Regenerative Method

We know from our discussion in Chapter 3 that the future behavior of
a Markov process is dependent only on the current state of the process,
then each time the process enters that state the process will have the same
expected future behavior. We must emphasize "expected"; the actual future
behaviors will be different. We may say that the Markov process
regenerates each time it enters the specified (regeneration) state and calls the
periods between successive entrances to the state regeneration cycles. (We
should be a little more careful. We can define Markov processes which
never return to a specified state, and thus are not regenerative. However, all
Markov processes of the subset defined in Chapter 3 are regenerative.
There are also regenerative processes which are not Markovian, but we will
ignore these.)

We can take advantage of the regenerative structure of a simulation
model to estimate confidence intervals for equilibrium behavior, provided
we can determine a regeneration state which is entered sufficiently frequent
ly, i.e., the regeneration cycles are sufficiently short. (We can define
"frequently" and "short" in pragmatic terms. Though theoretical restrictions
exist, they will usually be weaker restrictions than those imposed by practi
cal considerations.) The regenerative method for confidence intervals is
independent of our ability or lack of ability to obtain numerical solutions for
the model. It is principally dependent on our ability to observe enough
regeneration cycles that we may apply the results of an appropriate central
limit theorem. Note that this second condition is similar to our requirement
in the method of independent replications that the number of replications be
large. (Aside — it is possible to apply the method of independent replica
tions with a few replications using different assumptions about distributions.

This approach will be Ihe same as the one we use for sufficiently large
numbers of replications.)

A principal advantage of the regenerative method, given the above
conditions, is that if we initialize the simulation in a regeneration state, then
we can reasonably assume we have initialized the simulation in an equilibri
um condition! Observing regeneration cycles will then be observing periods
of equilibrium behavior. We can formally justify the least supportable
assumption of the method of independent replications for equilibrium
behavior, that each replication accurately represents equilibrium behavior of
the system. (Aside — if we know that several regeneration cycles occur
during each replication, then this is strong support for this equilibrium
behavior assumption. Our knowledge of the regenerative structure of the
cyclic queue model was part of the basis for our choice of replication and
batch lengths in the previous section.)

Besides recognizing the entrances to the regeneration state, the regen
erative method is somewhat more complex for our estimators because the
regeneration cycles are of random length. Consider estimators for mean
queueing time. For each replication we estimated mean queueing time as
SUMTIMELENGTH/NUMBERCOMPLETIONS, and our final estimate
was simply the average of these values. This was reasonable because each
replication had a fixed length (measured in events) and was long enough
that we could reasonably assume that NUMBERCOMPLETIONS had
essentially the same value for each replication. However, the number of
completed queueing times during a regeneration cycle may be very small
and/or highly variable. Thus if we take the average of
SUMTIMELENGTH/NUMBERCOMPLETIONS over all of the regenera
tion cycles, we may get a quite different result from the value of
SUMTIMELENGTH/NUMBERCOMPLETIONS taken over a single long
run and ignoring regeneration cycles. This is unsatisfactory, of course, so we
take a more careful approach. Rather than use the average of
SUMTIMELENGTH/NUMBERCOMPLETIONS over the regeneration
cycles, we use the average of SUMTIMELENGTH divided by the average
of NUMBERCOMPLETIONS. In other words, we use the quotient of the
averages rather than the average of the quotient. It is easy to see that this
is algebraically equivalent to what we would do if we were ignoring regener
ation cycles, i.e., SUMTIMELENGTH/NUMBERCOMPLETIONS equals
(SUMTIMELENGTH/n)/ (NUMBERCOMPLETIONS/n) where SUM
TIMELENGTH, NUMBERCOMPLETIONS and n are taken over the entire
run and n is the number of regeneration cycles. In programming this esti
mate, we will not actually do the divisions by n when we are obtaining point
estimates. Thus with respect to point estimates there is no difference me
chanically whether we consider regeneration cycles or not.

224 SIMULATION / CHAP. 7

SEC. 7.2 / STATISTICAL ANALYSIS 225

However, the computations are more complex with respect to confi
dence intervals as compared with our previous methods. For notational
convenience, let us call the value of SUMTIMELENGTH for the ith regen
eration cycle ur and the value of NUMBERCOMPLETIONS for the i,h
cycle, Vj, i = 1 ,2 , ..., n. Because of regenerative structure of our system,
Ml> m2’ •••> un are independent and identically distributed. Similarly, Vj, v2,
•••> vn are independent and identically distributed. Further, the pairs
(“ i»v1)> i u2,v2^’ (w„>v„) are independent and identically distributed. If
we define wn as the average of i/j, «2> ■■■» xn as the average of v,, v2,
..., vn and y n as wn/ x n, then we can obtain a law of large numbers to show
that y n converges to m, where m is our mean queueing time. Further, we can
prove a central limit theorem and eventually produce the confidence interval
estimate [yn - d,yn + d] where

J F - \ (\ + a) / 2) s d = z
x y n

>

- 23 V „ v
, 2 2

+ y„ s v >

n
/ V 1 2 2 \

- (Z j Ui ~ n w n)
\ = i

and

1 n
Suv = UiVi - nWnXn) .

2 1 / v 2 2 \

/= 1

Thus our simulation program must recognize when the i,h cycle has
2 2ended and maintain sums of w; , u-v;, v(, and v; , for / = 1, 2, ..., n. For

mean queueing time, we will maintain these sums in the variables TL,
TLSQ, TLXNC, NC and NCSQ, respectively. Figures 7.17a, 7.17b and
7.17c show the modifications to the program of Figure 7.11, and Figure
7.18 shows the output of this program.

In this program we use the initial state that we have used before: all
jobs at the first queue. As discussed in Chapter 3, the Markov states for
the cyclic queue model are uniquely specified by the number of jobs at each
queue, assuming that service times are exponential. Thus our initial state is
also a regeneration state, and is used as the regeneration state for determin
ing confidence intervals. We could use other choices for our regeneration

226 SIMULATION / CHAP. 7

VAR Z: RANDINT;
TABLE: ARRAY[0..127] OF RANDINT;
I: INTEGER;
FIRST, LAST, AVAIL: ELEMPTR;
CLOCK: REAL;
QUEUES: ARRAY[1..NQ] OF

RECORD
NUMBERSERVERS: INTEGER;
MEANSERVICE: REAL;
LENGTH: INTEGER;
TIMELENGTHCHANGED: REAL;
SUMTIMELENGTH: REAL;
SUMBUSYTIME: REAL;
NUMBERCOMPLETIONS: INTEGER;
(*SUMS OF CYCLE VALUES*)
(*BT=BUSYTIME;
SQ=SQUARED;
X=TIMES;
CL=CYCLELENTGH;
NC=NUMBERCOMPLETIONS;
TL=TIMELENGTH;*)

BT: REAL;
TL: REAL;
NC: REAL;
BTSQ: REAL;
BTXCL: REAL;
NCSQ: REAL;
NCXCL: REAL;
TLSQ: REAL;
TLXCL: REAL;
TLXNC: REAL

END;
RUN, NUMBEREVENTS, EVENTLIMIT, EVENTMAX: INTEGER;
NOEVENTSDURINGCYCLES, NUMBERCYCLES, NOCYCM1: INTEGER;
TIMECYCLESTARTED, CYCLELENGTH,

SUMCL, SUMCLSQ, VARCL, DCL: REAL;
UTIL, DUTIL, VARBT, COVARBTCL, VART: REAL;
TPUT, DTPUT, VARNC, COVARNCCL: REAL;
QL, DQL, VARTL, COVARTLCL: REAL;
QT, DQT, COVARTLNC: REAL;

Figure 7.17a

SEC. 7.2 / STATISTICAL ANALYSIS 227

FUNCTION ENDCYCLE: BOOLEAN;
(♦DETERMINES WHETHER AT END OF REGENERATION CYCLE.
IF SO, ENDCYCLE UPDATES ACCUMULATORS.*)
VAR Q: INTEGER;
BEGIN

IF (QUEUES[1] ,LENGTH=NJ) AND (NUMBEREVENTSXD) THEN
BEGIN

ENDCYCLE:=TRUE;
NOEVENTSDURINGCYCLES:=NUMBEREVENTS;
NUMBERCYCLES:=NUMBERCYCLES+1;
CYCLELENGTH:=CLOCK-TIMECYCLESTARTED;
TIMECYCLESTARTED:=CLOCK;
SUMCL:=SUMCL+CYCLELENGTH;
SUMCLSQ:=SUMCLSQ+SQR(CYCLELENGTH);
FOR Q :=1 TO NQ DO

WITH QUEUES[Q] DO
BEGIN

SUMTIMELENGTH:=SUMTIMELENGTH
+ (CLOCK-TIMELENGTHCHANGED)*LENGTH;

SUMBUSYTIME:=(SUMBUSYTIME
+ (CLOCK-TIMELENGTHCHANGED)

*MIN(LENGTH,NUMBERSERVERS))/NUMBERSERVERS;
TIMELENGTHCHANGED:=CLOCK;
(*BT=BUSYTIME;
SQ=SQUARED;
X=TIMES;
CL=CYCLELENTGH;
NC=NUMBERCOMPLETIONS;
TL=TIMELENGTH;*)

BT:=BT+SUMBUSYTIME;
TL:=TL+SUMTIMELENGTH;
NC:=NC+NUMBERCOMPLETIONS;
BTSQ:=BTSQ+SQR(SUMBUSYTIME);
BTXCL:=BTXCL+SUMBUSYTIME*CYCLELENGTH;
SUMBUSYTIME:=0.0;
NCSQ:=NCSQ+SQR(NUMBERCOMPLETIONS);
NCXCL:=NCXCL+NUMBERCOMPLETIONS*CYCLELENGTH;
TLSQ:=TLSQ+SQR(SUMTIMELENGTH);
TLXCL:=TLXCL+SUMTIMELENGTH*CYCLELENGTH;
TLXNC:=TLXNC+SUMTIMELENGTH*NUMBERCOMPLETIONS;
NUMBERCOMPLETIONS:=0;
SUMTIMELENGTH:=0.0

END
END

ELSE

228 SIMULATION / CHAP. 7

ENDCYCLE:=FALSE
END; (*ENDCYCLE*)

Figure 7.17b
state, but it can be shown that the expected width of the confidence inter
vals is independent of the choice of regeneration state, given the same
simulated time [CRAN74], Our main criteria in choosing the regeneration
state are that we can easily identify entrances to the state and that the
number of regeneration cycles not be too small. Procedure ENDCYCLE is
used to determine whether or not the system is in the regeneration state
after such event. Notice that the completion events correspond exactly to
state transitions of the Markov process. Thus if we find all of the jobs at
the first queue after handling an event, we know the system has just entered
the regeneration state.

We would like to have the simulation end at the end of a regeneration
cycle, for both practical and theoretical reasons. For this reason, the run
lengths are specified by both a "soft" limit (EVENTLIMIT) and a "firm"
limit (EVENTMAX). If a cycle end does not occur between these two
limits, then the program produces confidence interval and point estimates
based only on the completed cycles. (If there is only one completed cycle,
or there are no completed cycles, then only point estimates are produced.
The user of the program should disregard the confidence interval estimates
if the number of cycles is small.)

The three runs described in Figure 7.18 correspond to the three runs of
Figure 7.12, with the difference (besides the confidence intervals) being
that the first and third runs were extended so that the last cycle would be
complete. Essentially the same computational effort went into the third runs
of these Figures, the 20 replications of Figure 7.25 and the 20 batches of
Figure 7.16.

Notice that the confidence intervals for mean queue length from the
first run of Figure 7.18 do not include the expected queue lengths given in
Figure 7.10. Recall that we would expect the confidence intervals for a
particular value for a particular model to contain the expected value for
90% of the runs if we made a larger number of runs, assuming a 90%
confidence level. Notice that the confidence intervals from a given run are
strongly dependent on each other and thus we should not attempt a similar
statement for the set of confidence intervals from a run. (Notice that the
queue length intervals for one queue are directly obtainable from the queue
length intervals for the other queue, the throughput intervals are identical
for the two queues, etc.) It happens that all the other intervals in Figure

229
BEGIN

(* INITIALIZATION*)
Z:=314159; (*AN ARBITRARY VALUE*)
FOR I:=0 TO 127 DO (*INITIALIZE TABLE *)

BEGIN
(*Z : = (A*Z) MOD M*) Z:=TRUNC(A*Z - (TRUNC((A*Z)/M)*M)) ;
TABLE[I]:=Z

END;
AVAIL:=NIL;
EVENTLIMIT:=10;
FOR RUN:=1 TO 3 DO

BEGIN
FIRST:=NIL;
LAST:=NIL;
CLOCK:=0.0;
NUMBEREVENTS:=0;
NUMBERCYCLES:=0;
TIMECYCLESTARTED:=0.0;
SUMCL:=0.0;
SUMCLSQ:=0.0;
EVENTLIMIT:=10*EVENTLIMIT;
EVENTMAX:= 2 *EVENTLIMIT;
FOR I:=1 TO NQ DO

WITH QUEUES[I] DO
BEGIN

LENGTH:=0;
TIMELENGTHCHANGED:=0.0;
SUMTIMELENGTH:=0.0;
SUMBUSYTIME:=0.0;
NUMBERCOMPLETIONS:=0;
BT:=0.0;
TL:=0.0;
NC:=0.0;
BTSQ:=0.0;
BTXCL:=0.0;
NCSQ:=0.0;
NCXCL:=0.0;
TLSQ:=0.0;
TLXCL:=0.0;
TLXNC:=0.0

END;
QUEUES[1].NUMBERSERVERS:=1;
QUEUES[1].MEANSERVICE:=1.0/B1;
QUEUES[1].LENGTH:=NJ;
INSERTEVENT(CLOCK-QUEUES[1].MEANSERVICE*LN(RANDOM(Z)),

SEC. 7.2 / STATISTICAL ANALYSIS

230

D ;

SIMULATION / CHAP. 7

QUEUES[2].NUMBERSERVERS:=NIO;
QUEUES|2].MEANSERVICE:=1.0/B2;

(*RUN*)
WHILE (FIRSTONIL) AND (NUMBEREVENTS<EVENTMAX)

AND ((NUMBEREVENTS<EVENTLIMIT) OR NOT ENDCYCLE) DO
BEGIN

NUMBEREVENTS:=NUMBEREVENTS+1;
REMOVEFIRSTEVENT(CLOCK,I);
COMPLETE(I);
ARRIVE(I MOD NQ + 1)

END;
(*PRINT STATISTICS*)
WRITELN;
WRITELN(1 NUMBER OF EVENTS: ' ,NUMBEREVENTS:8,

' SIMULATED T I M E C L O C K : 10 : 3) ;
WRITELN;
WRITELN(

'QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME');
IF NUMBERCYCLES>1 THEN

(*PRODUCE CONFIDENCE INTERVAL ESTIMATES*)
BEGIN

CYCLELENGTH:=SUMCL/NUMBERCYCLES;
NOCYCM1;=NUMBERCYCLES-1;
VARCL: = (SUMCLSQ-SQR(SUMCL)/NUMBERCYCLES)/NOCYCM1 ;
FOR I:=1 TO NQ DO

WITH QUEUES[I] DO
IF NC>0 THEN
BEGIN

UTIL:=BT/SUMCL ;
VARBT:=(BTSQ-SQR(BT)/NUMBERCYCLES)

/NOCYCM1;
COVARBTCL: = (BTXCL-BT* SUMCL/NUMBERCYCLES)

/NOCYCM1;
DUTIL: = 1 .645*SQRT((VARBT-2 * UTIL* COVARBTCL

+SQR(UTIL)*VARCL)/NUMBERCYCLES)
/CYCLELENGTH;

TPUT:=NC/SUMCL;
VARNC:=(NCSQ-SQR(NC)/NUMBERCYCLES)

/NOCYCM1;
COVARNCCL:=(NCXCL-NC*SUMCL/NUMBERCYCLES)

/NOCYCM1;
DTPUT:=1.645*SQRT((VARNC-2*TPUT*COVARNCCL

+SQR(TPUT)*VARCL)/NUMBERCYCLES)

SEC. 7.2 / STATISTICAL ANALYSIS 231

/CYCLELENGTH;
QL:=TL/SUMCL;
VA RTL : = (T L S Q - S Q R (T L) /NUMBERCYCLES)

/N0CYCM1;
COVARTLCL:=(TLXCL-TL*SUMCL/NUMBERCYCLES)

/NOCYCM1;
D Q L :=1 . 6 4 5 * S Q R T ((V A R T L - 2 *QL*COVARTLCL

+ S Q R (Q L) * VARCL) /NUMBERCYCLES)
/CYCLELENGTH;

QT:=TL/NC;
COVARTLNC: = (TLXNC-TL*NC/NUMBERCYCLES)

/NOCYCM1;
DQT : = 1 . 6 4 5 * S Q R T ((V A R T L - 2 * QT*COVARTLNC

+ S Q R (Q T) * VARNC) /NUMBERCYCLES)
/ (NC/NUMBERCYCLES);

WRITELN('UPPER',
UTIL+DUTIL: 12:3,TPUT+DTPUT: 1 1 :3 ,
QL+DQL:13:3,QT+DQT:14:3);

WRITELN(1:5,UTIL: 12:3,TPUT: 11 :3 ,
QL:1 3 : 3 , QT:1 4 : 3) ;

WRITELN('LOWER',
UTIL-DUTIL:12:3,TPUT-DTPUT: 1 1 : 3 ,
QL-DQL:13:3,QT-DQT:14:3)

END;
WRITELN;
WRITELN('NUMBER OF CYCLES:',NUMBERCYCLES:8) ;
IF NOEVENTSDURINGCYCLESONUMBEREVENTS THEN
WRITELN('NUMBER OF DISCARDED EVENTS:',

NUMBEREVENTS-NOEVENTSDURINGCYCLES: 8) ;
WRITELN('AVERAGE NUMBER OF EVENTS:',

NOEVENTSDURINGCYCLES/NUMBERCYCLES: 10 : 3) ;
DCL:=1.645*SQRT(VARCL/NUMBERCYCLES);
WRITELN('AVERAGE LENGTH:',CYCLELENGTH:10:3,

' C .I.:(',CYCLELENGTH-DCL:10:3,',',
CYCLELENGTH+DCL:10:3,')')

END
ELSE

(♦PRODUCE POINT ESTIMATES ONLY*)
FOR I:=1 TO NQ DO

WITH QUEUES[I] DO
IF NUMBERCOMPLETIONS+TRUNC(NC)>0 THEN

BEGIN
SUMTIMELENGTH:=SUMTIMELENGTH+TL;
SUMBUSYTIME:=SUMBUSYTIME+BT*NUMBERSERVERS;
NUMBERCOMPLETIONS:=NUMBERCOMPLETIONS

232 SIMULATION / CHAP. 7

+TRUNC(NC);
SUMTIMELENGTH:=SUMTIMELENGTH+

(CLOCK-TIMELENGTHCHANGED)*LENGTH;
SUMBUSYTIME:=SUMBUSYTIME+

MIN(LENGTH,NUMBERSERVERS)*
(CLOCK-TIMELENGTHCHANGED);

WRITELN(1:5,
SUMBUSYTIME/(NUMBERSERVERS*CLOCK):12:3,
NUMBERCOMPLETIONS/CLOCK:11:3,
SUMTIMELENGTH/CLOCK:13:3,
SUMTIMELENGTH/NUMBERCOMPLETIONS:14:3)

END;

(*PUT LEFTOVER EVENTS ON AVAIL LIST*)
IF FIRSTONIL THEN
BEGIN

LAST t.NEXT:=AVAIL;
AVAIL:=FIRST

END
END

END.

Figure 7.17c
7.18 contain the expected values. We would tend to question the intervals
from the first run because of the small number of cycles.

If the confidence intervals obtained are wider than we would like, then
it is relatively easy to have the program continue the simulation for addi
tional cycles until the intervals are satisfactory.

In comparing the regenerative method and the method of independent
replications for equilibrium behavior, we prefer the regenerative method
because the assumptions made are relatively easy to justify. The principal
difficulty with the regenerative method is in finding a frequently occurring
regeneration state. This is easy for simple models, but may be quite diffi
cult for complex models. The principal problem with the method of inde
pendent replications is in justifying the assumption that the replications
represent equilibrium behavior. As with the regenerative method, this is easy
for simple models but may be quite difficult otherwise.

In the following sections, we will principally discuss the mechanics of
simulating more complex systems. However, as appropriate, we will discuss
choice of regeneration states for these more complex models.

SEC. 7.2 / STATISTICAL ANALYSIS 233
NUMBER OF EVENTS: 104 SIMULATED TIME: 423.1 32

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0.896 0.143 1.583 13.368

1 0.812 0.123 1 .395 11.354
LOWER 0.727 0.103 1 . 208 9.341
UPPER 0.779 0.143 1 . 792 16.073

2 0.708 0.123 1 .605 13.057
LOWER 0.638 0.103 1.417 10.042

NUMBER OF CYCLES:
AVERAGE NUMBER OF
AVERAGE LENGTH:

10
EVENTS: 10.400
42.313 C.I.:(26.193, 58.433)

NUMBER OF EVENTS: 1000 SIMULATED TIME: 3955.809

QUEUE UTILIZATION THROUGHPUT QUEUE :LENGTH QUEUEING TIME
UPPER 0.828 0.134 1.641 13.366

1 0.795 0.126 1 .523 12.046
LOWER 0.761 0.119 1.404 10.726
UPPER 0.680 0.134 1 . 596 12.656

2 0.636 0.126 1.477 1 1.689
LOWER 0.592 0.119 1 . 359 10.722

NUMBER OF CYCLES:
AVERAGE NUMBER OF
AVERAGE LENGTH:

120
EVENTS: 8.333
32.965 C.I.:(27.571 , 38.359)

NUMBER OF EVENTS: 10006 SIMULATED TIME: 40899.099

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0.817 0.124 1.604 13.241

1 0.805 0.122 1.567 12.812
LOWER 0.793 0.120 1 .530 12.384
UPPER 0.632 0.124 1 .470 12.022

2 0.619 0.122 1.433 11.713
LOWER 0.605 0.120 1 . 396 11.403

NUMBER OF CYCLES:
AVERAGE NUMBER OF
AVERAGE LENGTH:

1312
EVENTS: 7.627
31.173 C.I.:(29.724 , 32.622)

Figure 7.18

234 SIMULATION / CHAP. 7

It is the objective of this section and the accompanying exercises to
extend the program of Figure 7.17 to allow simulation of queueing networks
with any or all of the characteristics discussed in Chapters 3, 4 and 5, e.g.,
networks with sources and sinks, general queueing disciplines, non
exponential service times, job classes, probabilistic routing, etc. Section 7.4
and the exercises will further extend the program to consider some of the
characteristics cited in Chapter 6 as precluding exact solution, e.g., simulta
neous resource possession, state dependent routing, overlapped job activi
ties, etc. (Notice that some of the characteristics of this section may also
preclude exact solution for networks with moderate size, e.g., FCFS sched
uling with non-exponential service times.)

In order that the programs of this section be understandable, we will
proceed in two separate steps. First we will modify the earlier program to
allow sources and sinks, an essentially trivial modification. Then we will
ignore sources and sinks, but consider simulation of a close network with
the FCFS, LCFSPR and PS queueing disciplines, Erlang service times, job
classes and probabilistic routing. The combination of these two steps, as
well as other refinements, will be left as exercises. In both steps we will
illustrate use of the regenerative method for confidence intervals.

7.3.1 Sources and Sinks (Open Networks)

Consider a network similar to the cyclic network we have been consid
ering, but in which there is a source of jobs which arrive at the first queue
and in which jobs leaving the last queue leave the network rather than
returning to the first queue. See Figure 7.19. We assume that the queues
are characterized as before, both externally and in the internal data struc
tures. The number of jobs in the network is variable and potentially infinite.
We will keep track of the number of jobs with the variable TOTAL-
LENGTH. Jobs arrive from the source in a Poisson manner, i.e., the
interarrival times are exponential. We are not proposing this network as a
computer system model. However, networks with sources and sinks often
are appropriate models of communication systems and sometimes are appro
priate models of computer systems.

7.3 SIMULATION OF GENERAL QUEUEING NETWORKS

Source Queue 1

Figure 7.19

SEC. 7.3 / GENERAL QUEUEING NETWORKS 235

Queue U R L Q
1 0.833 0.125 5.000 40.000
2 0.625 0.125 2.051 16.410

Figure 7.20

CONST M=2147483647.0; A=16807.0;
NQ=2; NJ=3; B1=0.15; B2=0.1; NIO=2;
MEANINTERARRIVAL=8.0;

TYPE RANDINT=1..2147483646;
ELEMPTR: tELEMENT
ELEMENT=RECORD

TIME: REAL;
PARAM: INTEGER;
NEXT: ELEMPTR

END;
VAR Z: RANDINT;

TOTALLENGTH: INTEGER;

PROCEDURE INSERTEVENT(T: REAL; Q: INTEGER);
(*INSERTEVENT ADDS EVENT AT TIME T FOR PARAM Q TO LIST*)
VAR TEMP, N, L: ELEMPTR;
BEGIN

IF AVAIL=NIL THEN
NEW(TEMP)

ELSE
BEGIN (*PREVIOUSLY USED STORAGE AVAILABLE*)

TEMP:=AVAIL;
AVAIL:=AVAIL t .NEXT

END;
TEMPt.TIME:=T;
TEMP t.PARAM:=Q;

Figure 7.21a
The principal changes required in the program are with respect to

definition and handling of events and with respect to definition of the
regeneration state. In addition to the completion event, we also need an
event for arrivals from the source. There will always be exactly one such
event in the event list assuming one source, and in general there will be an
arrival event in the list for each source if there is more than one source.
Each time an arrival event occurs we add another job to the network (i.e.,

236 SIMULATION / CHAP. 7

PROCEDURE REMOVEFIRSTEVENT(VAR T :REAL; VAR Q: INTEGER);
(*REMOVEFIRSTEVENT RETURNS TIME T AND PARAM Q OF FIRST
EVENT*)

VAR TEMP: ELEMPTR;
BEGIN

IF FIRST=NIL THEN
BEGIN

WRITELN('REMOVEFIRSTEVENT — EMPTY LIST');
HALT

END
ELSE

BEGIN
T : =FIRST t .TIME;
Q :=FIRST t .PARAM;

FUNCTION ENDCYCLE: BOOLEAN;
(♦DETERMINES WHETHER AT END OF REGENERATION CYCLE.
IF SO, ENDCYCLE UPDATES ACCUMULATORS.*)
VAR Q: INTEGER;
BEGIN

IF (TOTALLENGTH=0) AND (NUMBEREVENTS>0) THEN

Figure 7.21b
increment TOTALLENGTH), place that job at the first queue and schedule
the next arrival event at the current time plus a sample from the interarrival
time distribution. We need no event for sinks; each time a job leaves the
last queue we remove it from the network (i.e., decrement TOTAL-
LENGTH). Since the only information for the source arrival event is its
time and type, and since the variable QUEUE with each event will never be
zero for a completion event, we can use the value 0 to indicate a source
arrival event. However, the old variable name is misleading, so we rename
it PARAM and interpret an event as a source arrival event if PARAM is
zero and otherwise interpret an event as a completion event for the queue
identified by PARAM.

Since the number of jobs in the network is variable, we must consider
the number of jobs in our regeneration state definition. As along as no
queue is saturated, i.e., has an arrival rate greater than its service rate, the
state where no jobs are in the network will be a regeneration state. Fur
ther, this state will be one of the most frequently occurring for many net
works. To be more specific, the expected time between entrances to a
Markov state is inversely proportional to the state’s probability. Thus we

SEC. 7.3 / GENERAL QUEUEING NETWORKS 237

QUEUES[1].MEANSERVICE:=1.0/B1;
QUEUES[2].NUMBERSERVERS:=NIO;
QUEUES[2].MEANSERVICE:=1.0/B2;
TOTALLENGTH:=0;
INSERTEVENT(-MEANINTERARRIVAL*LN(RANDOM(Z)),0);

(*RUN*)
WHILE (FIRSTONIL) AND (NUMBEREVENTS<EVENTMAX)

AND ((NUMBEREVENTS<EVENTLIMIT) OR NOT ENDCYCLE) DO
BEGIN

NUMBEREVENTS:=NUMBEREVENTS+1;
REMOVEFIRSTEVENT(CLOCK,I);
IF 1=0 THEN
BEGIN

TOTALLENGTH:=TOTALLENGTH+1;
ARRIVE(1);
INSERTEVENT(CLOCK

-MEANINTERARRIVAL*LN(RANDOM(Z)),0)
END

ELSE
BEGIN

COMPLETE(I);
IF IONQ THEN
ARRIVE(1+1)

ELSE
TOTALLENGTH:=TOTALLENGTH-1

END
END;

(♦PRINT STATISTICS*)

Figure 7.21c
can loosely say that the expected frequency of occurrence of a Markov state
is directly proportional to the state probability. For a queue with exponen
tial interarrival times, exponential service times and service rate independent
of queue length, i.e., a single fixed rate server, the queue length distribution
is given by P(N) = (1 — U)U , N = 0, 1, 2, ..., where U is the server
utilization. Since U is strictly less than 1, F(0) must be the most probable
queue length. This same result holds for LCFSPR and PS queues with a
single fixed rate server and arbitrary service time distributions. (Note that
the empty system will be a Markov state for such a system and that the
probability of any other Markov state for such a system can be no greater

238 SIMULATION / CHAP. 7

NUMBER OF EVENTS: 147 SIMULATED TIME: 412.487

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0 . H78 0.132 2.488 22.435

1 0.722 0.119 1 .652 13.910
LOWER 0.567 0.106 0.817 5. 384
UPPER 0.94 5 0. 1 32 5.314 47.800

2 0.810 0.119 3 . 398 28.607
LOWER 0.674 0.106 1 .483 9.413

NUMBER OF CYCLES: 2
AVERAGE NUMBER OF EVENTS: 73.500
AVERAGE LENGTH: 206.244 C.I .:(107.965», 304.522)

NUMBER OF EVENTS: 1362 SIMULATED TIME: 3400.368

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
1 0.973 0.134 15.838 118.622
2 0.627 0.134 1 .986 14.874

NUMBER OF EVENTS: 10200 SIMULATED TIME: 27031.674

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0.886 0.129 13.178 103.849

1 0.843 0.126 8.026 63.810
LOWER 0.801 0.122 2.874 23.770
UPPER 0.658 0.129 2.280 17.854

2 0.629 0.126 2.078 16.525
LOWER 0.600 0.122 1 .877 15.196

NUMBER OF CYCLES: 1 29
AVERAGE NUMBER OF EVENTS: 79.070
AVERAGE LENGTH: 209.548 C.I .:(143.271 , 275.824)

NUMBER OF EVENTS: 100290 SIMULATED TIME: 266918.844

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0.847 0.126 5.670 45.107

1 0.837 0.125 5.131 40.969
LOWER 0.828 0.124 4.592 36.830
UPPER 0.633 0.126 2.142 17.042

2 0.626 0.125 2.073 16.551
LOWER 0.618 0.124 2.004 16.060

NUMBER OF CYCLES: 1 2 2 9

SEC. 7.3 / GENERAL QUEUEING NETWORKS 239

AVERAGE NUMBER OF EVENTS: 81.603
AVERAGE LENGTH: 217.184 C.I.:(199.888, 234.480)

Figure 7.22
than P(0).) This result also holds for queues with job classes. We can also
show that the empty system is the most probable state for other types of
queues. However, for queues with variable rate, e.g., multiserver queues,
some other state may have higher probability. For any network satisfying
Jackson’s Theorem, i.e., that the probability of a network state is the
product of the probabilities of the states of the individual queues, the most
frequent state must be the one where each queue is in its most frequent
state, e.g., the empty state. (See Chapter 4 for Jackson’s Theorem.) The
empty state will also be the most frequent state for some networks not
satisfying Jackson’s Theorem.

Using the parameters for queues 1 and 2 as before and a mean interar
rival time of 8, the most probable queue length for queue 1 is 0 with a
probability of 1/6 ~ 0.167. For queue 2, P(0) » 0.231, P(l) « 0.288, and
all other states have smaller probabilities. Thus the most frequently occur
ring network state will be the one with 0 jobs at queue 1 and 1 job at queue
2. But the empty network state has nearly the same expected frequency
and is easier to test for. Thus we let ENDCYCLE determine the system is
in the regeneration state if TOTALLENGTH = 0.

Figure 7.20 shows the expected values of the performance measures for
this network. Even though the throughputs and utilizations are essentially
the same as for our corresponding closed network, the queue lengths and
queueing times are much higher. In general this system is much more varia
ble than the corresponding closed system because of the variability in the
total number of jobs in the system. Figures 7.21a, 7.21b and 7.21c show
the modifications to the program of Figure 7.17. Figure 7.22 shows the
output of this program for EVENTLIMIT = 100, 1000, 10000 and 100000
and EVENTMAX twice EVENTLIMIT. The first run consisted of only 2
regeneration cycles and its confidence intervals should be ignored. The
second run consisted of only a single regeneration cycle and thus no confi
dence interval estimates were produced. The third run consisted of 129
cycles and thus its confidence interval estimates may be considered valid but
useless because of their great width, at least for queue 1. For example, the
queue 1 queueing time interval, (23.77,103.85), contains the expected value
but has a width of 125% relative to the point estimate, and even greater
width relative to the expected value. Only the final run, consisting of 1229
cycles, has usefully narrow confidence intervals for queue 1. For example,
the relative width of the queueing time interval is 20%, with respect to the
point estimate. (In comparing the runs for this model with those of the

closed model, we should remember that only 2/3 of the open network
events are completions.)

7.3.2 Disciplines, Distributions, Classes and Routing

Up until now we have been content without explicit representations of
the jobs and the queues. An explicit representation is also necessary if we
wish to estimate characteristics of the queueing time (and response time)
distributions other than the means, and an explicit representation may also
be desirable for other reasons. Our data structure will be a simple linked list
for each queue, with the elements of the lists representing the jobs. The
elements contain information about the job specific to the current queue,
for example the current job class, an indicator stating whether a sample has
been taken from the service time distribution, the remaining service time if a
sample has been taken, a pointer to the next job in the queue and a pointer
to a pending event for this job, if one has been scheduled. The variables for
this information will be called CURRENTNODE, REQUESTGRANTED,
REQUEST, NEXTJOB, and EVENT, respectively. See the definition of
type JOBELEMENT in Figure 7.23. (JOBELEMENT also has a variable
SUBSERVER to be described shortly and other variables to be defined in
Section 7.4.) The elements are moved from list to list as the jobs move from
queue to queue. Each queue has a pointer to the beginning of the list,
FIRSTINQUEUE, and a pointer to the end of the list, LASTINQUEUE.
Each list is maintained in an order appropriate to the queueing discipline.
For FCFS and LCFSPR, the appropriate orders are increasing time of
arrival, and decreasing time of arrival, respectively. We do not need to
record the time of arrival for this purpose, though we would want to do so
if we were estimating characteristics of the queueing time distribution other
than the mean. For PS the appropriate order is increasing values of RE
QUEST, as we will describe shortly.

Since the elements representing jobs now contain much of the impor
tant dynamic information in the program, the information associated with an
event (other than the time) will be a pointer to the job which the event
affects. (A second kind of event will be defined in Section 7.4.) Since we
want to implement preemptive queueing disciplines, we need to be able to
efficiently cancel a pending service completion event. We add a pointer to
the previous event to the event elements, modify INSERTEVENT accord
ingly, and replace REMOVEFIRSTEVENT with a new procedure REMO-
VEEVENT. (See Figure 7.26.)

Thus far we have only used exponential distributions in our simulation
examples. Incorporation of other distributions is a simple matter, providing
we have an algorithm for obtaining samples from the distribution and
providing we are not using the regenerative method for confidence intervals.

240 SIMULATION / CHAP. 7

241
CONST M=2147483647.0 ; A=16807.0;

NN=2; NQ=2; NJ = 3; B1=0.15; B2=0.1; NIO=2;
TYPE RANDINT=1..2147483646;

EVENTTYPE=(COMPLETION, NODEDEPARTURE);
JOBPTR: tJOBELEMENT;
EVENTPTR: t EVENTELEMENT;
EVENTELEMENT=RECORD

KINDOFEVENT: EVENTTYPE;
TIME: REAL;
JOB: JOBPTR;
NEXT: EVENTPTR;
PREVIOUS: EVENTPTR

END;

J OBELEMENT=RECORD
CURRENTNODE: 1..NN;
REQUEST: REAL;
REQUESTGRANTED: BOOLEAN;
SUBSERVER: INTEGER;
NEXTJOB: JOBPTR;
TOKENHOLDER: JOBPTR;
PARENT, CHILD: JOBPTR;
EVENT: EVENTPTR

END;

ROUTINGELEMENT=RECORD
DESTINATION: 1..NN;
PROBABILITY: REAL;
NEXTROUTING: tROUTINGELEMENT

END;
REGENELEMENT=RECORD

NODEREGEN: 1..NN;
LENGTHREGEN: INTEGER;
NEXTREGEN: tREGENELEMENT

END;

SEC. 7.3 / GENERAL QUEUEING NETWORKS

Figure 7.23 - Constant and Type Declarations
We must take distributions into consideration with the regenerative method,
and it will be most convenient if we restrict ourselves to distributions
represented by the method of exponential stages described in Chapter 3.
As we discussed in Chapter 3, the method of stages is very general in the
sense that we can represent other distributions closely. But using this
method we can still describe our system as a Markov process by incorporat
ing the distribution stage in our state definition, and we can use a state of

242 SIMULATION / CHAP. 7

VAR Z: RANDINT;
TABLE: ARRAY[0..127] OF RANDINT;
I: INTEGER;
FIRSTEVENT, LASTEVENT, AVAILEVENT: EVENTPTR;
CLOCK: REAL;
QUEUES: ARRAY[1..NQ] OF

RECORD
DISCIPLINE: (FCFS,LCFSPR,PS);
NUMBERUNITS: INTEGER;
NUMBERSUBSERVERS: INTEGER;
MEANSUBSERVICE: REAL;
FIRSTINQUEUE: JOBPTR;
LASTINQUEUE: JOBPTR;
LENGTH: INTEGER;
TIMELENGTHCHANGED: REAL;
SUMTIMELENGTH: REAL;
SUMBUSYTIME: REAL;
NUMBERCOMPLETIONS: INTEGER;
(*SUMS OF CYCLE VALUES*)
(*BT=BUSYTIME;
SQ=SQUARED;
X=TIMES;
CL=CYCLELENTGH;
NC=NUMBERCOMPLETIONS;
TL=TIMELENGTH;*)

BT: REAL;
TL: REAL;
NC: REAL;
BTSQ: REAL;
BTXCL: REAL;
NCSQ: REAL;
NCXCL: REAL;
TLSQ: REAL;
TLXCL: REAL;
TLXNC: REAL

END;
RUN, NUMBEREVENTS, EVENTLIMIT, EVENTMAX: INTEGER;
NOEVENTSDURINGCYCLES, NUMBERCYCLES, NOCYCM1: INTEGER;
TIMECYCLESTARTED, CYCLELENGTH,

SUMCL, SUMCLSQ, VARCL, DCL: REAL;
UTIL, DUTIL, VARBT, COVARBTCL: REAL;
TPUT, DTPUT, VARNC, COVARNCCL: REAL;
QL, DQL, VARTL, COVARTLCL: REAL;
QT, DQT, COVARTLNC: REAL;
AVAILJOB, TEMPJOB: JOBPTR;

SEC. 7.3 / GENERAL QUEUEING NETWORKS 243
TEMPKIND: EVENTTYPE;
FIRSTREGEN, AVAILREGEN: tREGENELEMENT;
AVAILROUTING: tROUTINGELEMENT;
NODES: ARRAY[1..NN] OF

RECORD
KINDOFNODE: (CLASS,ALLOCATE,RELEASE,

FISSION,FUSION);
QUEUE: INTEGER;
LENGTHNODE: INTEGER;
FUSIONPTR: JOBPTR;
ROUTINGPTR, CHILDROUTING: tROUTINGELEMENT

END;

Figure 7.24 - Variable Declarations
that process as our regeneration state. (If we use other distribution forms
we will not be able to describe our system as a Markov process. If there are
recurring system states such that no nonexponential times are in progress,
then we may be able to use one of these as a regeneration state.) In Chap
ter 3 we discussed the method of stages in terms of subservers, with each
subserver visit time having an exponential distribution. Thus each service
time is a sum of one or more visits to a set of subservers, with each subser
ver visit time having an exponential distribution. Thus each service time is
a sum of one or more exponential values, the selection of which may itself
have been a random process. This is a very natural characterization from a
simulation point of view. In fact, it is the standard characterization for
simulation purposes because of the relative difficulty of obtaining the
inverse distribution functions for these distributions. For example, the usual
way to obtain a value from an Erlang distribution with k stages is to obtain
k independent exponential values and sum them. Though the usual practice
is to obtain the exponential values together, this is not necessary. Since we
must include the jobs’ current distribution stages in our regeneration state
definition, we redefine our interpretation of the completion event to be the
completion of a distribution stage, i.e., the completion of a visit to a subser
ver. The COMPLETE procedure (Figure 7.27) and the ARRIVE procedure
(Figure 7.29) assume that service distributions at each queue are independ
ent of job class and have an Erlang distribution with NUMBERSUBSER-
VER stages. The variable SUBSERVER in type JOBELEMENT keeps
track of the current distribution stage of the job. The generalization to the
branching Erlang distribution and class dependent distributions is left to the
reader. An obvious efficiency improvement is also left as an exercise.

Since we did not provide class dependent service distributions, the job
classes principally serve as nodes in the routing. (The allocate, release,
fission and fusion nodes are defined in Section 7.4.) Still, we must consider

244 SIMULATION / CHAP. 7

PROCEDURE INSERTEVENT(K: EVENTTYPE; T: REAL; J; JOBPTR);
(*INSERTEVENT ADDS EVENT OF KIND K AT TIME T FOR JOB J TO
LIST*)

VAR TEMP, L; EVENTPTR;
BEGIN

IF AVAILEVENT=NIL THEN
NEW(TEMP)

ELSE
BEGIN (*PREVIOUSLY USED STORAGE AVAILABLE*)

TEMP:=AVAILEVENT;
AVAILEVENT:=AVAILEVENTt.NEXT

END;
TEMPt.KINDOFEVENT:=K;
TEMPt.TIME:=T;
TEMPt.JOB:=J;
Jt.EVENT:=TEMP;
IF FIRSTEVENT=NIL THEN
BEGIN (*LIST WAS EMPTY*)

FIRSTEVENT:=TEMP;
LASTEVENT:=TEMP;
TEMPt.NEXT:=NIL;
TEMPt.PREVIOUS:=NIL

END
ELSE IF T<FIRSTEVENTt.TIME THEN

BEGIN (* INSERT AT BEGINNING OF LIST*)
TEMP t .NEXT:=FIRSTEVENT;
TEMP t .PREVIOUS:=NIL;
FIRSTEVENT t .PREVIOUS:=TEMP;
FIRSTEVENT:=TEMP

END
ELSE IF T>LASTEVENTt.TIME THEN

BEGIN (* INSERT AT END OF LIST*)
LASTEVENT t .NEXT:=TEMP;
TEMP t .PREVIOUS:=LASTEVENT;
LASTEVENT:=TEMP;
TEMPt.NEXT:=NIL

END
ELSE

BEGIN (* INSERT SOMEWHERE IN MIDDLE OF LIST*)
L :=FIRSTEVENT;
WHILE T>Lt.NEXTt.TIME DO

L:=Lt.NEXT;
TEMPt.NEXT:=L t .NEXT;
Lt.NEXT:=TEMP;
TEMPt.PREVIOUS:=L;

245
TEMP t .NEXT t .PREVIOUS:=TEMP

END;
END; (*INSERTEVENT*)

Figure 7.25 - INSERTEVENT
the number of jobs at each class in our regeneration state definition. Our
new definition of ENDCYCLE makes some arbitrary restrictions on the
choice of regeneration state; relaxation of these restrictions is left as an
exercise. ENDCYCLE assumes that the regeneration state can be detected
by checking the number of jobs at each class on the list of classes pointed
to by FIRSTREGEN and by checking that each job which has begun service
is in the first stage of the distribution, i.e., SUBSERVER = 1. Note that the
first part of this assumption excludes regeneration states where more than
one class has jobs at a FCFS or LCFSPR queue, since we would have to
take the ordering of jobs as part of the regeneration state definition. The
procedure ADDREGEN is used to add a class to the list of classes to be
checked and to initially place jobs at those classes.

We have described the principal modification and additions to the data
structures, with emphasis on the aspects relevant to the closed cyclic model
we have previously simulated. We are about to discuss the aspects relevant
to the other characteristics which motivated the revisions, but first let us
consider the rest of the program for the previous cyclic model. There are
two procedures for the routing to be described in detail later. NEXTNODE
determines which node a job should go to next and ADDESTINATION is
used to add a node to the list of jobs leaving another node. Figure 7.32
shows the rest of the program relevant to this model. Notice that there are
no changes with respect to performance estimates. The output of this
program is identical to that shown in Figure 7.18 for the previous version of
the program. We have changed the variable NUMBERSERVERS to NUM-
BERUNITS because of an alternative meaning for passive queues in Section
7.4. Since a job may or may not be ready to leave a queue after a subser
vice completion, COMPLETE will change its job pointer parameter to NIL
only if the job is not ready to leave. The procedures defined in Section 7.4
for other kinds of nodes will follow this convention indicating whether jobs
can leave those nodes or not. (For this model and the remaining models of
this section, we have assumed queue 1 consists only of class 1, queue 2
consists only of class 2, etc. This will not be true of the last model in
Section 7.4.)

The LCFSPR Queueing Discipline. (Last Come First Served Preemptive
Resume). As we said in Chapter 2, this discipline is principally of theoretical
interest even though it has been used for CPU scheduling. It is a good
example for our purposes because it illustrates the handling of preemption in

SEC. 7.3 / GENERAL QUEUEING NETWORKS

246 SIMULATION / CHAP. 7

PROCEDURE REMOVEEVENT(E: EVENTPTR; VAR K: EVENTTYPE;
VAR T: REAL; VAR J; JOBPTR);

(♦REMOVEEVENT RETURNS KIND K, TIME T AND JOB J
OF EVENT E*)

VAR TEMP: EVENTPTR;
BEGIN

IF FIRSTEVENT=NIL THEN
BEGIN

WRITELN('REMOVEEVENT - EMPTY LIST');
HALT

END
ELSE IF E=FIRSTEVENT THEN

BEGIN
K :=FIRSTEVENT t .KINDOFEVENT;
T:=FIRSTEVENTt.TIME;
J :=FIRSTEVENTt.JOB;
TEMP:=FIRSTEVENT;
FIRSTEVENT:=FIRSTEVENT t.NEXT;
IF FIRSTEVENT=NIL THEN

LASTEVENT:=NIL
ELSE FIRSTEVENTt.PREVIOUS:=NIL;
TEMP t .NEXT:=AVAILEVENT;
AVAILEVENT:=TEMP

END
ELSE IF E=LASTEVENT THEN

BEGIN
K:=LASTEVENTt.KINDOFEVENT;
T :=LASTEVENTt.TIME;
J :=LASTEVENTt.JOB;
TEMP:=LASTEVENT;
LASTEVENT:=LASTEVENTt.PREVIOUS;
LASTEVENTt.NEXT:=NIL;
TEMPt.NEXT:=AVAILEVENT;
AVAILEVENT:=TEMP

END
ELSE

BEGIN
TEMP:=FIRSTEVENT;
WHILE (TEMPOE) AND (TEMPONIL) DO

TEMP:=TEMP t.NEXT;
IF TEMPOE THEN
BEGIN

WRITELN('REMOVEEVENT - EVENT NOT FOUND');
HALT

END

SEC. 7.3 / GENERAL QUEUEING NETWORKS 247

ELSE (*E IS BETWEEN FIRSTEVENT AND LASTEVENT*)
BEGIN

K :=TEMPt.KINDOFEVENT;
T :=TEMP t .TIME;
J:=TEMPt.JOB;
TEMP t.NEXT t.PREVIOUS:=TEMPt.PREVIOUS ;
TEMP t .PREVIOUS t.NEXT:=TEMPt .NEXT;
TEMP t .NEXT:=AVAILEVENT;
AVAILEVENT:=TEMP

END
END

END; (*REMOVEEVENT*)

Figure 7.26 - REMOVEEVENT
an otherwise simple mechanism. In the single server case, whenever a job
arrives at a queue and another job is in service, the job in service is
preempted, the new job is placed at the beginning of the queue and the new
job is assigned to the server. In procedure ARRIVE, the preemption is
effected by a call to REMOVEEVENT. The remaining service time for the
preempted job is the difference between the (future) time of the scheduled
event and the current time. This time is stored in REQUEST for future use
when the preempted job is reassigned to the server. The mechanism in
COMPLETE is the same as for FCFS except that a new sample from the
service time distribution is not obtained when a job is assigned to the server;
the value stored in REQUEST by ARRIVE is used. The multiple server case
is different only in that a job is preempted only if a server is not available
and in that if a preemption does occur, the job in service which has been in
the queue the longest is the one preempted.

The PS Queueing Discipline. (Processor Sharing). In Chapter 2 we
defined PS as the limiting case of the Round Robin (RR) discipline without
switching overhead as the quantum goes to zero. PS is used in numerically
solved models in place of RR because of the resulting tractability. This
substitution will usually have little effect on the performance estimates if
the quantum actually used is large in comparison with the switching over
head and small in comparison with the mean service time. Though there are
no difficult problems in implementing RR in a simulation, if the quantum is
small relative to the mean service time, there will be a large number of
preemptions resulting in significant computational expense.

A few observations lead to a fairly simple simulation implementation of
PS. We assume a single observer and then generalize to the multiple server
case. Since the server is shared equally among all jobs in the queue, if a job
has a service time of X and there are L jobs in the queue the time to serve

2 4 X SIMULATION / CHAP. 7

PROCEDURE COMPLETE(VAR J: JOBPTR);
(♦HANDLES COMPLETION OF SUBSERVER FOR JOB J.
IF SERVICE COMPLETE, J REMAINS UNCHANGED.
OTHERWISE J BECOMES NIL.*)
VAR LENG: INTEGER; L: JOBPTR; T: REAL;
BEGIN

WITH QUEUES[NODES[Jt.CURRENTNODE].QUEUE] DO
BEGIN

IF Jt.SUBSERVERCNUMBERSUBSERVERS THEN
BEGIN

J t .SUBSERVER:=J t .SUBSERVER+1 ;
IF (DISCIPLINE IN [FCFS,LCFSPR]) OR (LENGTH=1)
THEN
BEGIN

J t .REQUEST:=-MEANSUBSERVICE*LN(RANDOM(Z));
INSERTEVENT(COMPLETION,CLOCK+Jt.REQUEST,J);
J :=NIL

END
ELSE (*DISCIPLINE=PS*)

BEGIN
T :=J t .REQUEST;
Jt .REQUEST:=-MEANSUBSERVICE*LN(RANDOM(Z)) ;
FIRSTINQUEUE:=FIRSTINQUEUEt.NEXTJOB;
UPDATEPSQUEUE(NODES[Jt.CURRENTNODE].QUEUE,T,

J) ;
INSERTEVENT(COMPLETION,

CLOCK+FIRSTINQUEUEt.REQUEST*
LENGTH/MIN(LENGTH,NUMBERUNITS),
FIRSTINQUEUE);

J :=NIL
END

END
ELSE

BEGIN
(♦STATISTICS*)
NUMBERCOMPLETIONS:=NUMBERCOMPLETIONS+1;
SUMTIMELENGTH;=SUMTIMELENGTH

+ (CLOCK-TIMELENGTHCHANGED)*LENGTH ;
SUMBUSYTIME:=SUMBUSYTIME

+ (CLOCK-TIMELENGTHCHANGED)
♦MIN(LENGTH,NUMBERUNITS);

TIMELENGTHCHANGED:=CLOCK;
(♦MECHANICS*)
NODES[J t.CURRENTNODE] .LENGTHNODE: =

NODES[Jt.CURRENTNODE].LENGTHNODE-1;

SEC. 7.3 / GENERAL QUEUEING NETWORKS 249

LENGTH:=LENGTH-1;
IF (DISCIPLINE IN [FCFS,LCFSPR]) OR (LENGTH=0)

THEN
BEGIN

IF J=FIRSTINQUEUE THEN
BEGIN

FIRSTINQUEUE:=FIRSTINQUEUEt.NEXTJOB;
IF FIRSTINQUEUE=NIL THEN

LASTINQUEUE:=NIL
ELSE

BEGIN
LENG:=1;
L : =FIRSTINQUEUE

END
END

ELSE
BEGIN

L :=FIRSTINQUEUE;
LENG:=2;
WHILE JOLt .NEXTJOB DO

BEGIN
LENG:=LENG+1;
L := Lt.NEXTJOB

END;
IF Jt.NEXTJOB=NIL THEN

LASTINQUEUE:=L;
L t .NEXTJOB:=Jt.NEXTJOB;
L :=Lt.NEXTJOB

END;
IF LENGTH>NUMBERUNITS THEN

BEGIN
WHILE LENG<NUMBERUNITS DO

BEGIN
L:=Lt.NEXTJOB;
LENG:=LENG+1

END;
IF NOT Lt.REQUESTGRANTED THEN

BEGIN
Lt.REQUEST:=-MEANSUBSERVICE

*LN(RANDOM(Z));
L t .REQUESTGRANTED:=TRUE

END;
INSERTEVENT(COMPLETION,CLOCK+L t.REQUEST,

L)
E N D

250 SIMULATION / CHAP. 7

END
ELSE (*DISCIPLINE=PS*)

BEGIN
T :=J t .REQUEST;
FIRSTINQUEUE:=FIRSTINQUEUEt.NEXTJOB;
L :=FIRSTINQUEUE;
WHILE LONIL DO

BEGIN
L t .REQUEST:=L t .REQUEST-T;
L:=Lt.NEXTJOB

END;
INSERTEVENT(COMPLETION,

CLOCK+FIRSTINQUEUEt.REQUEST*
LENGTH/MIN(LENGTH,NUMBERUNITS) ,
FIRSTINQUEUE)

END
END

END
END; (*COMPLETE*)

Figure 7.27 - COMPLETE
that job will be LX. (This assumes the queue length does not change during
the job’s service.) Further, the job with the smallest remaining service time
must be the first to leave the queue. Thus we do not need to have events
pending for each job in the queue, but rather can have an event pending for
each job in the queue with the smallest service time and interpret this event
as one for all of the jobs in the queue. When the event occurs, all of the
jobs have received service equal to the request of the job with the smallest
request. Thus that amount of time may be subtracted from the request of
each job to obtain that job’s remaining request. The job with the smallest
request, which has had its request satisfied, leaves the queue and, if there
are jobs still in the queue, a new event is scheduled at the current time plus
LX, where L is the new queue length and X is the new smallest request.
This implementation is the basis for our earlier statement that the list of
jobs at the queue should be kept in order of increasing service requests.

There is one complication which arises when a job arrives at the queue
when an event is already pending. That event was scheduled based on the
queue length before the arrival, but now the jobs will progress at a slower
rate. Thus we must cancel the pending event and subtract from each of the
old jobs the service already received. This service already received is
X — (T — C) /L , where X is the smallest old service request, T is the
sch edu led time of the pending event, C is the current time and L is the old

251

PROCEDURE UPDATEPSQUEUE(Q: INTEGER; T: REAL; J: JOBPTR);
(*SUBTRACTS T FROM REQUEST FOR JOBS CURRENTLY IN QUEUE Q.
THEN INSERTS J IN THE QUEUE ACCORDING TO Jt.REQUEST*)
VAR TEMP: JOBPTR;
BEGIN

WITH QUEUES[Q] DO
BEGIN

TEMP:=FIRSTINQUEUE;
WHILE TEMPONIL DO

BEGIN
TEMP t .REQUEST:=TEMPt .REQUEST-T;
TEMP:=TEMPt.NEXTJOB

END;
IF Jt,REQUEST<FIRSTINQUEUEt.REQUEST THEN

BEGIN
J t .NEXTJOB:=FIRSTINQUEUE;
FIRSTINQUEUE:=J

END
ELSE IF Jt,REQUEST>LASTINQUEUEt.REQUEST THEN

BEGIN
LASTINQUEUE t.NEXTJOB:=J ;
Jt.NEXTJOB:=NIL;
LASTINQUEUE:=J

END
ELSE

BEGIN
TEMP:=FIRSTINQUEUE;
WHILE Jt,REQUEST>TEMPt.NEXTJOBt.REQUEST DO

TEMP:=TEMPt.NEXTJOB;
J t.NEXTJOB:=TEMP t.NEXTJOB;
TEMPt.NEXTJOB:=J

END
END

END; (*UPDATEPSQUEUE*)

Figure 7.28 - UPDATEPSQUEUE
order and a new event is scheduled based on what is now the smallest
service request and the new queue length.

With the distribution sampled by stages, a similar action takes place
upon completion of a subservice other than the last one for the job. The
service received by the job with the completed stage is subtracted from all
of the jobs, the service time for the next stage is obtained, and the job is
reinserted in the queue. Then a new event is scheduled. Because of this

SEC. 7.3 / GENERAL QUEUEING NETWORKS

252 SIMULATION / CHAP. 7

PROCEDURE ARRIVE(VAR J: JOBPTR; C: INTEGER);
(♦HANDLES ARRIVAL OF A JOB J AT CLASS C. J BECOMES NIL*)
VAR DUMMYKIND: EVENTTYPE; T: REAL; DUMMYJOB, TEMP: JOBPTR;

LENG: INTEGER;
BEGIN

J t.CURRENTNODE:=C;
Jt.SUBSERVER:=1;
J t .REQUESTGRANTED:=FALSE;
WITH QUEUES[NODES[C].QUEUE] DO

BEGIN
(♦STATISTICS*)
SUMTIMELENGTH:=SUMTIMELENGTH

+(CLOCK-TIMELENGTHCHANGED)*LENGTH;
SUMBUSYTIME:=SUMBUSYTIME+(CLOCK-TIMELENGTHCHANGED)*

MIN(LENGTH,NUMBERUNITS);
TIMELENGTHCHANGED:=CLOCK;
(♦MECHANICS*)
IF (DISCIPLINE=FCFS) OR (FIRSTINQUEUE=NIL) THEN

BEGIN
Jt.NEXTJOB:=NIL;
IF FIRSTINQUEUE=NIL THEN
FIRSTINQUEUE:=J

ELSE
LASTINQUEUE t.NEXTJOB:=J ;

LASTINQUEUE:=J;
NODES[C].LENGTHNODE:=NODES[C].LENGTHNODE+1;
LENGTH:=LENGTH+1;
IF LENGTH<NUMBERUNITS THEN
BEGIN

Jt.REQUEST:=-MEANSUBSERVICE*LN(RANDOM(Z));
J t .REQUESTGRANTED:=TRUE;
INSERTEVENT(COMPLETION,CLOCK+J t .REQUEST,J)

END
END

ELSE IF DISCIPLINE=LCFSPR THEN
BEGIN

IF LENGTH=NUMBERUNITS THEN
BEGIN (*PREEMPT LASTINQUEUE*)

REMOVEEVENT(LASTINQUEUE t .EVENT,
DUMMYKIND,T,DUMMYJOB);

LASTINQUEUEt.REQUEST:=T-CLOCK
END

ELSE IF LENGTH>NUMBERUNITS THEN
BEGIN (*PREEMPT LAST JOB IN SERVICE*)

LENG:=1;

SEC. 7.3 / GENERAL QUEUEING NETWORKS 253

TEMP:=FIRSTINQUEUE;
WHILE LENG<NUMBERUNITS DO

BEGIN
LENG:=LENG+1;
TEMP:=TEMPt.NEXTJOB

END;
REMOVEEVENT(TEMP t .EVENT,

DUMMYKIND,T,DUMMYJOB);
TEMP t .REQUEST:=T-CLOCK

END;
J t .NEXTJOB:=FIRSTINQUEUE;
FIRSTINQUEUE:=J;
NODES[C].LENGTHNODE:=NODES[C].LENGTHNODE+1;
LENGTH:=LENGTH+1;
Jt.REQUEST:=-MEANSUBSERVICE*LN(RANDOM(Z));
J t .REQUESTGRANTED:=TRUE;
INSERTEVENT(COMPLETION,CLOCK+Jt.REQUEST,J)

END
ELSE (*DISCIPLINE=PS*)

BEGIN
REMOVEEVENT(FIRSTINQUEUE t.EVENT,

DUMMYKIND,T,DUMMYJOB);
T :=FIRSTINQUEUE t.REQUEST-(T-CLOCK)

*MIN(LENGTH,NUMBERUNITS)/LENGTH;
J t.REQUEST:=-MEANSUBSERVICE*LN(RANDOM(Z)) ;
J t.REQUESTGRANTED:=TRUE;
UPDATEPSQUEUE(NODES[C].QUEUE,T,J);
NODES[C].LENGTHNODE:=NODES[C].LENGTHNODE+1;
LENGTH:=LENGTH+1;
INSERTEVENT(COMPLETION,

CLOCK+FIRSTINQUEUEt.REQUEST*LENGTH
/MIN(LENGTH,NUMBERUNITS),
FIRSTINQUEUE)

END
END;

J :=NIL
END; (*ARRIVE*)

Figure 7.29 - ARRIVE
similarity we define a procedure UPDATEPSQUEUE which is used by both
ARRIVE and COMPLETE.

The multiple server case is identical to the single server case except
that events are scheduled at the current time plus LX/min(L,K), where K is

254 SIMULATION / CHAP. 7

FUNCTION ENDCYCLE: BOOLEAN;
(♦DETERMINES WHETHER AT END OF REGENERATION CYCLE.
IF SO, ENDCYCLE UPDATES ACCUMULATORS.*)
VAR RESULT: BOOLEAN; TEMP: JOBPTR; L,Q: INTEGER;

RTEMP: tREGENELEMENT;
BEGIN

IF FIR.STEVENT=NIL THEN
BEGIN

WRITELN('ENDCYCLE - EVENT LIST EMPTY');
ENDCYCLE:=FALSE

END
ELSE

BEGIN
IF FIRSTEVENTt .KINDOFEVENT=COMPLETION THEN
RESULT:=TRUE

ELSE
RESULT:=FALSE;

RTEMP:=FIRSTREGEN;
WHILE RESULT AND (RTEMPONIL) DO

BEGIN
IF NODES[RTEMPt.NODEREGEN].LENGTHNODE

ORTEMPt . LENGTHREGEN THEN
RESULT:=FALSE;

RTEMP:=RTEMPt.NEXTREGEN
END;

IF RESULT THEN
BEGIN

Q: = 1 ;
WHILE RESULT AND (Q<NQ) DO

BEGIN
WITH QUEUES[Q] DO

IF LENGTH>0 THEN
IF NUMBERSUBSERVERS>1 THEN
BEGIN

IF DISCIPLINE=FCFS THEN
BEGIN

TEMP:=FIRSTINQUEUE;
L: = 1 ;
WHILE RESULT AND

(L<MIN(LENGTH,NUMBERUNITS))
DO
BEGIN

IF TEMPI . SUBSERVERO 1 THEN
RESULT:=FALSE;

L:=L+1;

SEC. 7.3 / GENERAL QUEUEING NETWORKS 255

TEMP:=TEMPt.NEXTJOB
END

END
ELSE

BEGIN
TEMP:=FIRSTINQUEUE;
L: = 1 ;
WHILE RESULT AND (LSLENGTH) DO

BEGIN
IF TEMP t . SUBSERVER01 THEN

RESULT:=FALSE;
L :=L+1;
TEMP:=TEMPt.NEXTJOB

END
END

END;
Q:=Q+1

END
END;

IF NUMBEREVENTS=0 THEN
IF NOT RESULT AND

(FIRSTEVENT♦.KINDOFEVENT=COMPLETION) THEN
BEGIN

WRITELN(
'ENDCYCLE - NOT INITIALLY IN REGENERATION STATE');

HALT
END

ELSE
ENDCYCLE:=FALSE

ELSE IF RESULT THEN
BEGIN

ENDCYCLE:=TRUE;

Figure 7.30 - ENDCYCLE
the number of servers. Similarly, when a pending event must be rescheduled,
the amount of received service is X — (T — C)min(L,K)/L.

Let us consider the cyclic queue model with LCFSPR at queue 1 and
PS at queue 2. Further, let the mean service times be as before but the
distributions be two stage Erlang. From our discussion in Chapter 5, we
know that for the performance measures we are estimating the FCFS
exponential results and the results from this revised model have the same
expected values, those given in Figure 7.10. This is because the LCFSPR

256 SIMULATION / CHAP. 7

PROCEDURE ADDREGEN(N,L: INTEGER);
(♦INITIALIZES L JOBS AT NODE L. SETS REGENERATION
STATE DESCRIPTION TO HAVE L JOBS AT NODE L*)
VAR TEMP: tREGENELEMENT; J: JOBPTR; I: INTEGER;
BEGIN

FOR I:=1 TO L DO
BEGIN

IF AVAILJOB=NIL THEN
NEW(J)

ELSE
BEGIN

J :=AVAILJOB;
AVAILJOB:=AVAILJOBt.NEXTJOB

END;
J t.TOKENHOLDER:=NIL;
Jt.PARENT:=NIL;
J!.CHILD:=NIL;
ARRIVE(J ,N)

END;
IF AVAILREGEN=NIL THEN
NEW(TEMP)

ELSE
BEGIN

TEMP:=AVAILREGEN;
AVAILREGEN:=AVAILREGENt.NEXTREGEN

END;
TEMP t .NODEREGEN:=N;
TEMP t .LENGTHREGEN:=L;
TEMP t .NEXTREGEN:=FIRSTREGEN;
FIRSTREGEN:=TEMP

END; (*ADDREGEN*)

Figure 7.31 - ADDREGEN
and PS results are dependent only on the mean service time and not on
other distribution characteristics. We are using this network to empirically
verify this result; we are not proposing it as a computer system model.
Figure 7.33 shows the model specific parameters for this network. Since
there are two events for each service completion, we doubled the event
limits for the runs of this model. The results of these runs are shown in
Figure 7.34. We ignore the confidence intervals for the first run because of
the small number of regeneration cycles. The confidence intervals from the
second and third runs contain the expected values in Figure 7.10, so these
empirical results support the discussion of Chapter 5.

SEC. 7.3 / GENERAL QUEUEING NETWORKS 257

BEGIN
(*INITIALIZATION*)
Z:=314159; (*AN ARBITRARY VALUE*)
FOR I:=0 TO 127 DO (*INITIALIZE TABLE *)

BEGIN
(*Z : = (A*Z) MOD M*) Z:=TRUNC(A*Z - (TRUNC((A*Z)/M)*M)) ;
TABLE[I]:=Z

END;
AVAILEVENT:=NIL;
AVAILJOB:=NIL ;
AVAILROUTING:=NIL;
AVAILREGEN:=NIL;
EVENTLIMIT:= 1 0 ;
FOR RUN:=1 TO 3 DO

BEGIN
FIRSTEVENT:=NIL;
LASTEVENT:=NIL;
CLOCK:=0.0;
NUMBEREVENTS:=0;
FIRSTREGEN:=NIL;
NUMBERCYCLES:=0;
TIMECYCLESTARTED:=0.0;
SUMCL:=0.0;
SUMCLSQ:=0.0;
EVENTLIMIT:=10*EVENTLIMIT;
EVENTMAX:=2*EVENTLIMIT;
FOR I:=1 TO NQ DO

WITH QUEUES[I] DO
BEGIN

DISCIPLINE:=FCFS;
NUMBERSUBSERVERS:=1;
NUMBERUNITS: =1 ;
FIRSTINQUEUE:=NIL;
LASTINQUEUE:=NIL;
LENGTH:=0;
TIMELENGTHCHANGED:=0.0;
SUMTIMELENGTH:=0.0;
SUMBUSYTIME:=0.0;
NUMBERCOMPLETIONS:=0;
BT:=0.0;
TL:=0.0;
NC:=0.0;
BTSQ:=0.0;
BTXCL:=0.0;
NCSQ:=0.0;

258 SIMULATION / CHAP. 7

NCXCL:=0.0;
TLSQ:=0.0;
TLXCL:=0.0;
TLXNC:=0.0

END;
FOR I:=1 TO NN DO

WITH NODES[I] DO
BEGIN

KINDOFNODE:=CLASS;
QUEUE:=1;
LENGTHNODE:=0;
ROUTINGPTR:=NIL;
FUSIONPTR:=NIL;
CHILDROUTING:=NIL

END;
(*PARAMETERS SPECIFIC TO THIS MODEL*)
ADDDESTINATION(1,2,1.0,FALSE);
QUEUES[1].MEANSUBSERVICE:=1.0/B1;
ADDDESTINATION(2,1,1.0,FALSE);
QUEUES[2].NUMBERUNITS:=NIO;
QUEUES[2].MEANSUBSERVICE:=1.0/B2;
ADDREGEN(1,NJ);

(*RUN*)
WHILE (FIRSTEVENTONIL) AND (NUMBEREVENTS<EVENTMAX)

AND ((NUMBEREVENTS<EVENTLIMIT) OR NOT ENDCYCLE) DO
BEGIN

REMOVEEVENT(FIRSTEVENT,TEMPKIND,CLOCK,TEMPJOB);
IF TEMPKIND=COMPLETION THEN
BEGIN

NUMBEREVENTS:=NUMBEREVENTS+1;
COMPLETE(TEMPJOB)

END;
WHILE TEMPJOBONIL DO

BEGIN
I:=NEXTNODE(TEMPJOB);
CASE NODES[I].KINDOFNODE OF

CLASS: ARRIVE(TEMPJOB,I);
ALLOCATE: ALLOC(TEMPJOB,I);
RELEASE: RELEAS(TEMPJOB,I);
FISSION: FISS(TEMPJOB,I);
FUSION: FUS(TEMPJOB,I)

END
END

END;

259SEC. 7.3 / GENERAL QUEUEING NETWORKS
(♦PRINT STATISTICS*)

(*PUT LEFTOVERS ON AVAIL LISTS*)
IF FIRSTEVENTONIL THEN

BEGIN
LASTEVENTt.NEXT:=AVAILEVENT;
AVAILEVENT:=FIRSTEVENT

END;
FREEJOBS;
FREEROUTING;
FREEREGEN

END
END.

Figure 7.32 - Program Body

(*PARAMETERS SPECIFIC TO THIS MODEL*)
ADDDESTINATION(1,2,1.0,FALSE);
QUEUES[1].DISCIPLINE:=LCFSPR;
QUEUES[1].NUMBERSUBSERVERS:=2;
QUEUES[1].MEANSUBSERVICE;=0.5/B1;
ADDDESTINATION(2,1,0.5,FALSE);
QUEUES[2].DISCIPLINE:=PS;
QUEUES[2].NUMBERUNITS:=NIO;
QUEUES[2] .NUMBERSUBSERVERS:=2 ;
QUEUES[2].MEANSUBSERVICE:=0.5/B2;
ADDREGEN(1,NJ);

Figure 7.33
Routing. We would like to simulate networks where a job leaving class i

is routed to class j with probability p tj. Conceptually this is the problem of
sampling from a discrete distribution discussed in Section 7 . 1.1 and depicted
in Figure 7.4. There we said that the selection would be the smallest value j
such that n0 < q- , where uQ is a sample from the uniform distribution on
the (0,1) interval and q- is the cumulative probability, i.e.,
pn + p i2 + ... + Pij. The method used in function NEXTNODE (see Figure
7.35) is algebraically equivalent, somewhat more convenient, and somewhat
less efficient. It is used with the assumption that the number of possible
destinations is small enough that the efficiency loss is negligible. Rather
than obtain the cumulative probability in preparation for calls to NEX
TNODE, we subtract the individual probabilities from uQ until we find j
such that w0 < p tj. (Notice that the PARENT variable for a job will always
be NIL for jobs created by ADDREGEN. This variable will have other
values only for jobs created at fission nodes, as defined in Section 7.4.)

260 SIMULATION / CHAP. 7

NUMBER OF EVENTS: 240 SIMULATED TIME: 517.452

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0.904 0.133 2.015 17.611

1 0.814 0.115 1 . 702 14.683
LOWER 0.724 0.098 1 . 390 11.756
UPPER 0.672 0.133 1.609 14.784

2 0.555 0.115 1 . 297 11.188
LOWER 0.439 0.098 0.984 7.593

NUMBER OF CYCLES: 8
AVERAGE NUMBER OF EVENTS: 30.000
AVERAGE LENGTH: 64.681 C.I.:(32.898 , 96.464)

NUMBER OF EVENTS: 2096 SIMULATED TIME: 4234.877

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0 . 8 3 1 0 .127 1 . 6 0 8 1 3 . 0 9 5

1 0 . 8 1 0 0 .1 23 1 . 550 1 2 .5 3 1
LOWER 0 . 7 8 9 0 .120 1 . 4 9 2 1 1 . 9 6 7
UPPER 0 . 6 5 0 0 .1 27 1 . 507 1 2 . 2 8 7

2 0 . 6 2 9 0 .123 1 . 4 4 9 1 1 . 7 1 4
LOWER 0 . 6 0 9 0 .120 1 .3 9 1 1 1 . 1 4 0

NUMBER OF CYCLES: 28
AVERAGE NUMBER OF EVENTS: 7 4 . 8 5 7
AVERAGE LENGTH: 1 5 1 . 2 4 5 C. I.:(9 9 . 6 3 5 , 2 0 2 .8 5 5)

NUMBER OF EVENTS: 20124 SIMULATED TIME: 4 1 2 9 2 . 0 9 6

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0 . 8 2 1 0 .123 1 . 6 1 9 1 3 . 3 8 5

1 0 . 8 1 4 0 .121 1 . 5 9 7 1 3 . 1 1 3
LOWER 0 . 8 0 7 0 .1 20 1 . 575 1 2 . 8 4 2
UPPER 0 . 6 1 6 0 .1 23 1 . 4 2 4 1 1 . 7 2 3

2 0 . 6 0 8 0 .121 1 . 4 0 2 1 1 . 5 0 8
LOWER 0 . 5 9 9 0 .120 1 . 380 1 1 . 2 9 4

NUMBER OF CYCLES: 350
AVERAGE NUMBER OF EVENTS: 5 7 . 4 9 7
AVERAGE LENGTH: 1 1 7 . 9 7 7 C. I.:(1 0 6 . 0 1 6 , 1 2 9 .9 3 7)

Figure 7.34

261SEC. 7.3 / GENERAL QUEUEING NETWORKS

Procedure ADDDESTINATION of Figure 7.36 is used to build the list of
possible destinations for each class. (The parameter C is only true for
possible destinations of jobs created at fission nodes.)

FUNCTION NEXTNODE(J : JOBPTR): INTEGER;
(♦FINDS THE NEXT NODE FOR JOB J TO GO TO*)
VAR PROB: REAL; TEMP: tROUTINGELEMENT;
BEGIN

IF (NODES[Jt.CURRENTNODE].KINDOFNODE=FISSION) AND
(J t . PARENTONIL) THEN
TEMP:=NODES[J t .CURRENTNODE] .CHILDROUTING

ELSE
TEMP:=NODES[Jt.CURRENTNODE].ROUTINGPTR;

IF TEMP=NIL THEN
BEGIN

WRITELN('NEXTNODE - UNDEFINED ROUTING FROM NODE',
J t .CURRENTNODE) ;

HALT
END;

IF TEMPt.PROBABILITY<1 .0 THEN
BEGIN

PROB:=RANDOM(Z);
WHILE (PROB>TEMPt.PROBABILITY) AND

(TEMPt .NEXTROUTINGONIL) DO
BEGIN

PROB:=PROB-TEMP t.PROBABILITY;
TEMP:=TEMP t .NEXTROUTING

END
END;

NEXTNODE:=TEMPt.DESTINATION
END; (*NEXTNODE*)

Figure 7.35 - NEXTNODE

We have considered several models with such probabilistic routing in
earlier chapters. Figure 7.37 shows a model similar in structure to the
model Brown et al used as a model of an interactive computer system. The
figure is simpler than their model in several aspects, most notably in that
memory contention is ignored. Let us suppose this is a model of a small
system used for rather simple purposes, e.g., text editing. There are ten
users at terminals. Each user thinks for a moment, keys in a command and
waits for a response. Upon receiving a response, the user repeats this cycle.
The mean time for thinking and keying has an exponential distribution with
mean 3 seconds. Each command requires an average of ten cycles of alter
nating CPU-I/O activity. CPU scheduling is PS and the CPU service times

262 SIMULATION / CHAP. 7

PROCEDURE ADDDESTINATION(I,J : INTEGER; P :REAL; C: BOOLEAN);
(*ADDS DESTINATION NODE J TO ROUTING LIST
FOR NODE I WITH PROBABILITY P.
IF C THEN ROUTING IS FOR CHILD, OTHERWISE PARENT*)
VAR TEMP: tROUTINGELEMENT;
BEGIN

IF AVAILROUTING=NIL THEN
NEW(TEMP)

ELSE
BEGIN

TEMP:=AVAILROUTING;
AVAILROUTING:=AVAILROUTINGt.NEXTROUTING

END;
TEMPt.PROBABILITY:=P;
TEMPt.DESTINATION:=J ;
IF C THEN
BEGIN

TEMP t.NEXTROUTING:=NODES[I] .CHILDROUTING;
NODES[I].CHILDROUTING:=TEMP

END
ELSE

BEGIN
TEMP t.NEXTROUTING:=NODES[I] .ROUTINGPTR;
NODES[I].ROUTINGPTR:=TEMP

END
END; (*ADDDESTINATION*)

Figure 7.36 - ADDDESTINATION

are exponential with mean 50 ms. Each disk is chosen with probability 0.5,
disk scheduling is FCFS and the mean disk service is 60 ms. Figure 7.38
shows the expected values for the individual queue measures. The expected
length of a think-key-response cycle can be obtained by use of Little’s Rule,
i.e., 10/1.72 = 5.81 seconds. Figure 7.39 gives the model specific state
ments for this network (with NN = NQ = 4) and Figure 7.40 shows the
program output with EVENTLIMIT = 40000. (Note that scheduling is
irrelevant at queue 1 because there is always a server for each job. We use
PS there to keep the event list small.)

SEC. 7.3 / GENERAL QUEUEING NETWORKS 263

10 jobs

Queue U R L Q
1 0.517 1.72 5.17 3.00
2 0.861 17.2 2.91 0.17
3 0.517 8.61 0.96 0.11
4 0.517 8.61 0.96 0.11

Figure 7.38 - Expected Values

(*PARAMETERS SPECIFIC TO THIS MODEL*)
ADDDESTINATION(1,2,1.0,FALSE);
QUEUES[1].DISCIPLINE:=PS;
QUEUES[1].NUMBERUNITS:=10;
QUEUES[1].MEANSUBSERVICE:=3.0;
ADDDESTINATION(2,3,0.5,FALSE) ;
ADDDESTINATION(2,4,0.5,FALSE);
QUEUES[2].DISCIPLINE:=PS;
QUEUES[2] .MEANSUBSERVICE:=0.050 ;
ADDDESTINATION(3,1,0.1,FALSE);
ADDDESTINATION(3,2,0.9,FALSE) ;
QUEUES[3].MEANSUBSERVICE:=0.060;
ADDDESTINATION(4,1,0.1,FALSE);
ADDDESTINATION(4,2,0.9,FALSE);
QUEUES[4].MEANSUBSERVICE:=0.060;
ADDREGEN(1,10);

Figure 7.39

264 SIMULATION / CHAP. 7

NUMBER OF EVENTS: 41076 SIMULATED TIME: 1117.410

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0.523 1 . 778 5.236 3.030

1 0.504 1.721 5.046 2.930
LOWER 0.485 1 . 665 4.855 2.831
UPPER 0.872 17.790 3.108 0.176

2 0.859 17.519 2.958 0.168
LOWER 0.846 17.247 2.808 0.160
UPPER 0.535 8.952 1 .040 0.117

3 0.521 8.755 0.985 0.112
LOWER 0.507 8.557 0.931 0.107
UPPER 0.538 8.940 1 . 046 0.118

4 0.528 8.764 1 .009 0.115
LOWER 0.517 8.587 0.972 0.112

NUMBER OF CYCLES: 42
AVERAGE NUMBER OF EVENTS: 978.000
AVERAGE LENGTH: 26.605 C.I.:(18.321 , 34.888)

Figure 7.40
7.4 DEFINITION AND SIMULATION OF

EXTENDED QUEUEING NETWORKS

The principal advantage of simulation is its generality; with enough
investment of human and machine resources we can produce very realistic
models of systems. This generality leads to one of simulation’s greatest
liabilities, the difficulty of deciding which system characteristics to try to
represent and which to ignore. With computer system models, the queueing
networks we have discussed provide a reasonable, relatively abstract ap
proach to this model formulation problem. In Chapter 6 we discussed some
of the limitations of the usual characteristics of queueing networks with
respect to computer system models. This section will discuss extensions to
queueing networks which overcome some of these limitations. The exercises
will deal with other extensions which can be used to overcome the other
limitations we cited. We are proposing extended queueing networks as a
unified approach to computer systems. We choose to discuss two extensions
which we consider both useful and relatively tricky to implement: passive
queues and fusion nodes.

7.4.1 Passive Resources

In Chapter 6 we termed some resources (and their associated queues)
as "passive" because the holding of these resources is determined by activi

SEC. 7.4 / EXTENDED QUEUEING NETWORKS 265

ties at other (active) resources. An active resource and one or more
passive resources may be held simultaneously by a job. The job needs the
passive resources to use the active resources; time of holding the passive
resources to use the active resources, routing, etc. A natural example of a
passive resource in a computer system is primary memory. A job needs
memory to use a CPU or I/O device; the job’s time in memory is largely
determined by CPU and I/O times.

Figure 7.41
Central Server Model with Terminals and Memory

We define a passive queue as a set of tokens analogous to the servers of
an active queue, a set of allocate nodes and a set of release nodes. A job
wanting a token goes to an allocate node. If a token is available, the job
receives the token and proceeds without delay. Tokens are allocated in
FCFS order. When a job is through with a token, it proceeds to a release
node where it returns the token and proceeds without delay. (This is a very
restricted definition. A general definition is given in [SAUE77c].) Figure
7.41 shows our interactive computer system model with a passive queue
added to represent memory contention. It is assumed that memory is
divided into a fixed number of partitions and that a token represents a
partition. Node 2 is an allocate node and node 6 is a release node. Figure
7.42 gives performance estimates for this model obtained by a flow-
equivalence approximation discussed in Chapter 6. (Queue 2 is the passive
queue.) The queueing time for a passive queue is defined as the time of
request for tokens to the time of release of tokens. Thus the queueing time

266 SIMULATION / CHAP. 7

for the passive queue in this model is also our estimate of mean response
time, and this estimate is noticeably higher than our 2.81 estimate without
memory contention.

Queue U R L Q
1 0.493 1.64 4.93 3.00
2 0.904 1.64 5.04 3.08
3 0.822 16.4 1.98 0.12
4 0.493 8.22 0.82 0.10
5 0.493 8.22 0.82 0.10

Figure 7.42 - Approximation Values

Element format T O K E N H O L D E R N E X T J O B

1 2 3
FIRSTINQUEUE

Figure 7.43 - Tokenholders

The principal problem with implementation of passive queues is that a
job must be in several queues at the same time, i.e., in our data structure
the job must appear in several lists. To accomplish this, we have several
instances of type JOBELEMENT which collectively represent the job.
There is exactly one entry in a queue list for each resource (active or
passive) that the job has requested or possesses. These list elements collec
tively representing the job are also linked to each other with the TOKEN-
HOLDER variable. We refer to the elements at the passive queues where
the job holds tokens as "tokenholders" for the job. When a job is to be
allocated a token, a new job element is obtained, this new element is placed
in the queue where the job was, the new element is put in the job’s list of

SEC. 7.4 / EXTENDED QUEUEING NETWORKS 267

PROCEDURE ALLOC(VAR J: JOBPTR; A: INTEGER);
(♦HANDLES ARRIVAL OF JOB J AT ALLOCATE NODE A*)
VAR TH: JOBPTR;
BEGIN

J t .CURRENTNODE:=A;
WITH QUEUES[NODES[A].QUEUE] DQ

BEGIN
(♦STATISTICS*)
SUMTIMELENGTH:=SUMTIMELENGTH

+ (CLOCK-TIMELENGTHCHANGED)*LENGTH;
SUMBUSYTIME:=SUMBUSYTIME+(CLOCK-TIMELENGTHCHANGED)*

MIN(LENGTH,NUMBERUNITS);
TIMELENGTHCHANGED:=CLOCK;
(♦MECHANICS*)
NODES[A].LENGTHNODE:=NODES[A].LENGTHNODE+1;
LENGTH:=LENGTH+1;
IF LENGTH<NUMBERUNITS THEN

BEGIN
IF AVAILJOB=NIL THEN
NEW(TH)

ELSE
BEGIN

TH:=AVAILJOB;
AVAILJOB:=AVAILJOBt.NEXTJOB

END;
TH t .CURRENTNODE:=A;
TH t.REQUESTGRANTED:=TRUE;
TH t .TOKENHOLDER:=J t.TOKENHOLDER;
J t.TOKENHOLDER:=TH;
IF FIRSTINQUEUE=NIL THEN

FIRSTINQUEUE:=TH
ELSE

LASTINQUEUE t.NEXTJOB:=TH ;
LASTINQUEUE:=TH;
TH t .NEXTJOB:=NIL

END
ELSE

BEGIN
IF FIRSTINQUEUE=NIL THEN

FIRSTINQUEUE:=J
ELSE

LASTINQUEUE t.NEXTJOB:=J;
LASTINQUEUE:=J;
Jt.NEXTJOB:=NIL;
J t .REQUESTGRANTED:=FALSE;

268 SIMULATION / CHAP. 7

J :=NIL
END

END
END; (*ALLOC*)

Figure 7.44 - ALLOC
tokenholders, and the job proceeds. Figure 7.43 shows the queue and
tokenholder lists for a hypothetical state of a hypothetical system. The job
at queue 3 holds tokens at both queues 1 and 2. The second job at queue 2
is waiting for a token there but holds a token at queue 1. The third job at
queue 1 holds no tokens. Figure 7.44 shows the ALLOC procedure for
allocate nodes. ALLOC sets its parameter J to NIL if a token is not allocat
ed. (Refer back to Figure 7.42.) Figure 7.45 shows the RELEAS procedure
for release nodes. If the job possesses no tokens from the release node’s
queue, there is no effect on the job. RELEAS searches the tokenholder list
to find a tokenholder for its queue. If a tokenholder is found, the token is
returned to the queue. RELEAS checks to see if a job is waiting for a
token, and if so, reuses the tokenholder for that job. Otherwise the token-
holder is put on the AVAILJOB list.

The implementation of the release node encounters another problem:
we may have more than one job moving around the network at the same
simulated time, i.e., both the releasing job and the job just allocated a
token. (If the releasing job then releases a token at another queue, or if we
have a more general definition of passive queues, there may be more than
two jobs simultaneously moving.) There are a variety of ways we could deal
with this, e.g., by keeping a list of jobs in motion or by recursive procedure
calls, but the most convenient way is to define a new kind of event,
"nodedeparture" and to schedule such an event for each job set in motion
because of the activities of another job. Though this may increase the size
of our event list, this approach is easily generalized, is likely to be more
efficient than recursive procedure calls, and can be applied to other situa
tions such as the fission nodes about to be defined. We would like to
maintain the property that our events correspond directly to state transitions
of our implicit Markov process, so we will not think of nodedeparture
events as "real" events and will not count them in NUMBEREVENTS.

Figure 7.46 show this model specific statements for the model of
Figure 7.41, and Figure 7.47 shows the program output with EVENTLIMIT
= 40000, as before. We are using state with all jobs at the terminals as the
regeneration state, as we did before. Even though this is certainly not the
most frequently occurring state, we do observe a reasonable number of
regeneration cycles. Though the results for this model in Figure 7.42 are

269

PROCEDURE RELEAS(VAR J: JOBPTR; R: INTEGER);
(♦HANDLES ARRIVAL OF JOB J AT RELEASE NODE R*)
VAR FOUND: BOOLEAN; TH, TEMP, TEMPNEXT: JOBPTR;
BEGIN

J t .CURRENTNODE:=R;
FOUND:=FALSE;
TEMP:=J ;
WHILE NOT FOUND AND (TEMP t . TOKENHOLDERONIL) DO

IF NODES[TEMPt.TOKENHOLDERt.CURRENTNODE].QUEUE=
NODES[R].QUEUE THEN
FOUND:=TRUE

ELSE
TEMP:=TEMPt.TOKENHOLDER;

IF FOUND THEN
BEGIN

TH:=TEMPt.TOKENHOLDER;
TEMP t.TOKENHOLDER:=THt.TOKENHOLDER;
WITH QUEUES[NODES[R].QUEUE] DO

BEGIN
(♦STATISTICS*)
NUMBERCOMPLETIONS:=NUMBERCOMPLETIONS +1 ;
SUMTIMELENGTH:=SUMTIMELENGTH

+ (CLOCK-TIMELENGTHCHANGED)*LENGTH;
SUMBUSYTIME:=SUMBUSYTIME

+ (CLOCK-TIMELENGTHCHANGED)
♦MIN(LENGTH,NUMBERUNITS);

TIMELENGTHCHANGED:=CLOCK;
(♦MECHANICS*)
NODES[TH t .CURRENTNODE] .LENGTHNODE: =

NODES[THt.CURRENTNODE].LENGTHNODE-1;
LENGTH:=LENGTH-1;
IF TH=FIRSTINQUEUE THEN

BEGIN
FIRSTINQUEUE:=FIRSTINQUEUE t.NEXTJOB;
IF FIRSTINQUEUE=NIL THEN

LASTINQUEUE:=NIL
END

ELSE
BEGIN

TEMP:=FIRSTINQUEUE;
WHILE THOTEMPt .NEXTJOB DO

TEMP:=TEMP t.NEXTJOB;
TEMP t.NEXTJOB:=THt.NEXTJOB;
IF TEMPt.NEXTJOB=NIL THEN
LASTINQUEUE:=TEMP

SEC. 7.4 / EXTENDED QUEUEING NETWORKS

270 SIMULATION / CHAP. 7

END;
IF LENGTH>NUMBERUNITS THEN

IF NOT FIRSTINQUEUEt.REQUESTGRANTED THEN
BEGIN

{*MAKE TH A TOKENHOLDER FOR FIRSTINQUEUE*)
TH t .NEXTJOB:=FIRSTINQUEUEt .NEXTJOB;
IF THt.NEXTJOB=NIL THEN
LASTINQUEUE:=TH;

THt.TOKENHOLDER:=
FIRSTINQUEUEt.TOKENHOLDER;

TH t .REQUESTGRANTED:=TRUE;
TEMP:=FIRSTINQUEUE;
FIRSTINQUEUE:=TH;
TEMP t .TOKENHOLDER:=TH;
INSERTEVENT(NODEDEPARTURE,CLOCK,TEMP)

END
ELSE

BEGIN (*MAKE TH A TOKENHOLDER FOR TEMPNEXT*)
TEMP:=FIRSTINQUEUE;
WHILE TEMPt.NEXTJOBt.REQUESTGRANTED DO

TEMP:=TEMPt.NEXTJOB;
TEMPNEXT:=TEMPt.NEXTJOB;
TEMP t .NEXTJOB:=TH;
TH t.NEXTJOB:=TEMPNEXTt.NEXTJOB;
IF THt,NEXTJOB=NIL THEN
LASTINQUEUE:=TH;

TH t .TOKENHOLDER:=TEMPNEXTt.TOKENHOLDER;
TH t .REQUESTGRANTED;=TRUE;
TEMPNEXT t.TOKENHOLDER:=TH;
INSERTEVENT(NODEDEPARTURE,CLOCK,TEMPNEXT)

END
ELSE

BEGIN
THt.NEXTJOB:=AVAILJOB;
AVAILJOB:=TH

END
END

END
END; (*RELEAS *)

Figure 7.45 - RELEAS

SEC. 7.4 / EXTENDED QUEUEING NETWORKS 271

(*PARAMETERS SPECIFIC TO THIS MODEL*)
ADDDESTINATION(1,2,1.0,FALSE);
QUEUES[1],DISCIPLINE:=PS;
QUEUES[1].NUMBERUNITS:=10;
QUEUES[1].MEANSUBSERVICE:=3.0;
NODES[2].KINDOFNODE:=ALLOCATE;
ADDDESTINATION(2,3,1.0,FALSE);
QUEUES[2].NUMBERUNITS:=4;
ADDDESTINATION(3,4,0.5,FALSE);
ADDDESTINATION(3,5,0.5,FALSE);
QUEUES[3].DISCIPLINE:=PS;
QUEUES[3].MEANSUBSERVICE:=0.050;
ADDDESTINATION(4,3,0.9,FALSE);
ADDDESTINATION(4,6,0.1,FALSE);
QUEUES [4] .MEANSUBSERVICE:=0.060;
ADDDESTINATION(5,3,0.9,FALSE);
ADDDESTINATION(5,6,0.1,FALSE);
QUEUES[5] .MEANSUBSERVICE:=0.060 ;
NODES[6].KINDOFNODE:=RELEASE;
NODES[6].QUEUE:=2;
ADDDESTINATION(6,1,1.0,FALSE);
ADDREGEN(1,10);

Figure 7.46
approximate, the two sets of results are in close agreement. We can reason
ably conclude that memory contention may be significant in this system.

7.4.2 Fission and Fusion Nodes

In some computer systems a job may consist of several concurrent
processes which are simultaneously active with different resources, e.g.,
simultaneously performing computations and I/O transfers, simultaneously
performing several I/O transfers, etc. In communication systems a message
may be divided into several "packets" which are transmitted simultaneously,
often on different communication lines. We extend our definition of queue
ing networks so that a job may go through a fission node to produce a
second job associated with the first. We refer to the first job as the
"parent" and the second job as a "child." It would be difficult to make the
child identical to the parent because the parent may already possess tokens.
So the asymmetry is intentional and not easily avoided. The passage of the
parent through the fission node is instantaneous and the child departs
immediately. We again take advantage of the node departure event in our
implementation of procedure FISS (see Figure 7.48).

272 SIMULATION / CHAP. 7

NUMBER OF EVENTS: 43582 SIMULATED TIME: 1256.610

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0.503 1 . 678 5.0 54 3.052

1 0.484 1.631 4.842 2.968
LOWER 0.463 1 . 583 4.631 2.884
UPPER 0.926 1 .678 5 . 368 3 . 370

2 0.910 1.631 5.157 3.161
LOWER 0.893 1 . 583 4.945 2.952
UPPER 0.836 16.773 2.051 0.123

3 0.825 16.525 2.002 0.121
LOWER 0.814 16.276 1 .953 0.119
UPPER 0.494 8.271 0.820 0.100

4 0.484 8.140 0.792 0.097
LOWER 0.475 8.009 0.765 0.093
UPPER 0.516 8.538 0.876 0.103

5 0.504 8.384 0.845 0.100
LOWER 0.492 8.230 0.815 0.098

NUMBER OF CYCLES: 31
AVERAGE NUMBER OF EVENTS: 1405.870
AVERAGE LENGTH: 40.535 C.I. : (25.164, 55.907)

Figure 7.47
Our definitions of fission and fusion nodes allow a parent at most one

child in existence at the same time and do not allow a child to have child
ren. More general definitions are found in [SAUE76, SAUE77c], but the
former is rather awkward and the latter is not as general as it could be.

A fusion node complements a fission node (or nodes) by providing a
place for parents to wait for their children and vice versa. As soon as both a
parent and its child are at a fusion node together, the child is destroyed and
the parent leaves the node immediately. The variable FUSIONPTR is used
to keep a list of waiting jobs. See Figure 7.49.

Our definition of fission nodes provides a separate list of possible
destinations for the children. The last parameter of ADDDESTINATION is
used to indicate whether the destination is to be added to the parent’s list or
the child’s list.

To illustrate the use of fission and fusion nodes to represent CPU-I/O
overlap, let us suppose that in our interactive computer system model that
before 50% of the CPU services a job is able to produce another job which
can do I/O while the creating job is still at the CPU. After either of these

SEC. 7.4 / EXTENDED QUEUEING NETWORKS 273

PROCEDURE FISS(J : JOBPTR; F: INTEGER);
(*HANDLES ARRIVAL OF JOB J AT FISSION NODE F*)
VAR TEMP: JOBPTR;
BEGIN

J t.CURRENTNODE:=F;
IF (J t . CHILDONIL) OR (J t . PARENTONIL) THEN

BEGIN
WRITELN('FISS - MULTIPLE GENERATIONS ATTEMPTED');
HALT

END
ELSE

BEGIN
IF AVAILJOB=NIL THEN

NEW(TEMP)
ELSE

BEGIN
TEMP:=AVAILJOB;
AVAILJOB:=AVAILJOB t.NEXTJOB

END;
TEMPt.CHILD:=NIL;
Jt.CHILD:=TEMP;
TEMP t .PARENT:=J ;
TEMP t .CURRENTNODE:=F;
TEMPt.TOKENHOLDER:=NIL;
INSERTEVENT(NODEDEPARTURE,CLOCK,TEMP)

END
END; (*FISS*)

Figure 7.48 - FISS
(hopefully) overlapped activities is finished, the process which is finished is
forced to wait for the other to finish. Then another CPU-I/O cycle
(possibly again with overlapped activities) begins for the job if the com
mand is not finished. Figure 7.50 shows the addition of fission node 7,
fusion node 11 and classes 8, 9 and 10 which belong to queues 3, 4 and 5,
respectively.

Figure 7.51 shows the model specific statements for this network.
Again the regeneration state has all of the jobs at the terminals. Figure 7.52
shows the output of the program with EVENTLIMIT=40000.

Notice that the CPU-I/O overlap has an apparently dramatic effect on
response times in this system. We chose the parameters that this might
happen, but it is not unlikely that a widely used program such as a text
editor would be designed to achieve such overlap. We would not expect

274 SIMULATION / CHAP. 7

PROCEDURE FUS(VAR J: JOBPTR; F: INTEGER);
(♦HANDLES ARRIVAL OF JOB J AT FUSION NODE F*)
VAR L, TEMP: JOBPTR; FOUND: BOOLEAN;
BEGIN

J t .CURRENTNODE:=F;
IF (Jt . PARENTONIL) OR (J t . CHI LDONIL) THEN

IF (Jt .PARENTONIL) AND
((Jt .CHILDONIL) OR (J t . TOKENHOLDERONIL)) THEN
BEGIN

WRITELN(
'FUS - MULTIPLE GENERATIONS OR CHILD HOLDS TOKENS');
HALT

END
ELSE
WITH NODES[F] DO

BEGIN
FOUND:=FALSE;
IF FUSIONPTR=NIL THEN
BEGIN

Jt.NEXTJOB:=NIL;
FUSIONPTR:=J;
LENGTHNODE:=1;
J :=NIL

END
ELSE (*THERE ARE WAITING JOBS*)

BEGIN
IF J t .PARENT=NIL THEN

IF Jt.CHILD=FUSIONPTR THEN
BEGIN

FOUND:=TRUE;
TEMP:=J t.CHILD;
FUSIONPTR:=FUSIONPTRt.NEXTJOB

END
ELSE (*Jt .CHILDOFUSIONPTR*)

BEGIN
L :=FUSIONPTR;
WHILE NOT FOUND AND (Lt . NEXTJOBONIL)

DO
IF Lt,NEXTJOB=Jt.CHILD THEN
FOUND:=TRUE

ELSE
L:=Lt.NEXTJOB;

IF FOUND THEN
BEGIN

TEMP:=J t .CHILD;
L t .NEXTJOB:=L t .NEXTJOB t .NEXTJOB

END

SEC. 7.4 / EXTENDED QUEUEING NETWORKS 275

END
ELSE (* J t . PARENTONIL*)

IF J t .PARENT=FUSIONPTR THEN
BEGIN

FOUND:=TRUE;
FUSIONPTR:=FUSIONPTRt.NEXTJOB;
TEMP:=J ;
J :=Jt.PARENT

END
ELSE (* J t . PARENTOFUSIONPTR*)

BEGIN
L :=FUSIONPTR;
WHILE NOT FOUND AND (Lt . NEXTJOBONIL)

DO
IF Lt,NEXTJOB=Jt.PARENT THEN
FOUND:=TRUE

ELSE
L:=Lt.NEXTJOB;

IF FOUND THEN
BEGIN

L t .NEXTJOB:=L t.NEXTJOB t .NEXTJOB;
TEMP;=J ;
J :=J t .PARENT

END
END;

IF FOUND THEN
BEGIN

LENGTHNODE:=LENGTHNODE- 1 ;
Jt.CHILD:=NIL;
TEMP t.PARENT:=NIL ;
TEMP t.NEXTJOB:=AVAILJOB;
AVAILJOB:=TEMP

END
ELSE (*NOT FOUND*)

BEGIN
LENGTHNODE:=LENGTHNODE+1 ;
Jt.NEXTJOB:=FUSIONPTR;
FUSIONPTR:=J;
J :=NIL

END
END

END
END; (*FUS*)

Figure 7.49 - FUS

276 SIMULATION / CHAP. 7

such design effort would be put into most programs, and measurements of
general purpose computer systems usually show a small degree of CPU-I/O
overlap.

Also notice that the mean response time (queue 2 queueing time)
estimate is near to the response time estimate of Section 7.3, 2.81, which
was based on a much simpler model. The increase in mean response time
due to memory contention and the decrease in mean response time due to
CPU-I/O overlap roughly negate each other to make the estimates of the
relatively unrealistic model fairly accurate. This is one explanation of the
success of some queueing network models which appear to be unacceptably
simplistic: the models capture the contention for the principal resources
while the effects of secondary resources and other characteristics are small
when considered together. If we have the time and money to investigate the
effects of secondary resources and characteristics, and if we need a high
degree of accuracy in our estimates, then we should pursue these effects. On
the other hand, if we are limited in human and machine resources and can
tolerate a fair amount of error, then we may well get by on our intuition
and simplistic models.

SEC. 7.5 / RESPONSE TIME DISTRIBUTIONS 277

(*PARAMETERS SPECIFIC TO THIS MODEL*)
ADDDESTINATION(1,2,1.0,FALSE);
QUEUES[1].DISCIPLINE:=PS;
QUEUES[1].NUMBERUNITS:=10;
QUEUES[1] .MEANSUBSERVICE:=3.0;
NODES[2] .KINDOFNODE:=ALLOCATE ;
ADDDESTINATION(2,3,0.5,FALSE);
ADDDESTINATION(2,7,0.5,FALSE) ;
QUEUES[2].NUMBERUNITS:= 4;
ADDDESTINATION(3,4,0.5,FALSE) ;
ADDDESTINATION(3,5,0.5,FALSE) ;
QUEUES[3].DISCIPLINE:=PS;
QUEUES[3] .MEANSUBSERVICE:=0.050 ;
ADDDESTINATION(4,3,0.45,FALSE);
ADDDESTINATION(4,6,0.1,FALSE) ;
ADDDESTINATION(4,7,0.45,FALSE) ;
QUEUES[4].MEANSUBSERVICE:=0.060;
ADDDESTINATION(5,3,0.45,FALSE) ;
ADDDESTINATION(5,6,0.1,FALSE);
ADDDESTINATION(5,7,0.45,FALSE) ;
QUEUES[5].MEANSUBSERVICE:=0.060;
NODES[6].KINDOFNODE:=RELEASE;
NODES[6].QUEUE:=2;
ADDDESTINATION(6,1,1.0,FALSE);
NODES[7].KINDOFNODE:=FISSION;
ADDDESTINATION(7,8,1.0,FALSE);
ADDDESTINATION(7,9,0.5,TRUE) ;
ADDDESTINATION(7,10,0.5,TRUE);
NODES[8].QUEUE:=3;
ADDDESTINATION(8,11,1.0,FALSE);
NODES[9].QUEUE:=4;
ADDDESTINATION(9,11,1.0,FALSE);
NODES[10].QUEUE:=5;
ADDDESTINATION(10,11,1.0,FALSE);
NODES[11].KINDOFNODE:=FUSION;
ADDDESTINATION(11,3,0.45,FALSE);
ADDDESTINATIION(11,6,0.1,FALSE);
ADDDESTINATION(11,7,0.45,FALSE);
ADDREGEN(1,10);

Figure 7.51

2 7 8 SIMULATION / CHAP. 7

NUMBER ()F EVENTS: 41073 SIMULATED TIME: 1133.542

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0.533 1.739 5 . 328 3.148

1 0.515 1 . 684 5.147 3.056
LOWER 0.497 1 .629 4.965 2.964
UPPER 0.904 1.739 5.035 3.063

2 0.885 1 . 684 4.853 2.882
LOWER 0.866 1 .629 4.672 2.701
UPPER 0.881 17.524 2 . 369 0.137

3 0.870 17.275 2 . 303 0.133
LOWER 0.859 17.026 2.237 0.130
UPPER 0.522 8.790 0.892 0.102

4 0.509 8.630 0.855 0.099
LOWER 0.496 8.471 0.819 0.096
UPPER 0.517 8.828 0.873 0.100

5 0.505 8.645 0.840 0.097
LOWER 0.493 8.461 0.807 0.095

NUMBER OF CYCLES: 50
AVERAGE NUMBER OF EVENTS: 821.460
AVERAGE LENGTH: 22.671 C.I. : (15.707 , 29.635)

Figure 7.52
7.5 RESPONSE TIME DISTRIBUTIONS

One apparently intractable problem with almost all interesting queueing
network models is to numerically obtain response time distributions. Exact
solutions have been found for some simple central server models
[CHOW78] and restricted open networks [TAKA63, WONG78a] and
approximate solutions have been proposed for other networks [YU77].

Yet we are often very interested in response time distributions. Users
of a computer system are likely to prefer a distribution with a larger mean if
they are compensated by less variability in the response times, i.e., if they
are better able to predict the response they will get. Vendors are often
asked to make statements about system response times such as "95% of the
response times will be less than 5 seconds".

A common heuristic used with respect to this last situation is to assume
the response time distribution has a convenient form, e.g., exponential or
Erlang, and make a statement based on the mean [MART67], For example,
if the mean is 3 seconds and we assume an exponential distribution then we
can say that a x 100% of the response times will be less than

279

— 31n(l — a), e.g., 95% of the response times will be less than 8.99 sec
onds. The exponential assumption is correct for a FCFS single server queue
with exponential interarrival times and exponential service times, i.e., the
M /M /l queue. The Erlang assumption is thus correct for some open
networks. One of Chow’s results was that certain limiting cases of central
server model cycle times have an Erlang distribution [CHOW78],

With simulation, response time distribution estimation is no more
difficult, in principle, than estimation of the measures we have been consid
ering. We have seen in the last two simulations that the queueing times for
the passive queue were also the computer system response times. This is no
coincidence, but a natural consequence of the meaning of the resource and
our definition of queueing time for passive queues. We can use passive
queues to measure response times in arbitrary subnetworks, whether or not
there is a corresponding actual (physical or logical) resource. For example,
suppose our interactive computer system of the previous simulations has an
abundance of memory and no memory contention. We can still use the
passive queue for the response time purpose by providing an "infinite"
number of tokens. (For that system 10 tokens would be sufficient.)

Thus estimating response times is reduced to estimating queueing times.
To estimate queueing times other than the mean we must record them in
some way. We record the arrival time when a job arrives at a queue so that
we can determine the time the job spent in the queue when it leaves. Then
if we want to estimate the variance or higher moments we can apply stand
ard formulas based on these individual queueing times. (For the variance
this would simply be (7.4).) If we want to estimate the fraction of queueing
times less than 5 seconds, we need only count the number of times less than
5 seconds and divide by the total number. We can do this for several values
of interest, or if we want an estimate of the entire distribution, we can do
this for selected values throughout the range of possible queueing times. (If
we want the actual distribution of the individual queueing times, then we
should maintain a sorted list of the observed times and calculate the cumula
tive frequency. This will be computationally expensive, but conceptually
simple.)

Estimating confidence intervals with respect to the queueing time
distribution may or may not be more difficult depending on the measure of
interest and the confidence interval method. The entire cumulative frequen
cy will cause difficulty regardless of confidence interval method, as will
measures based on it. For most other measures we can apply independent
replications in a straightforward manner. (Some measures will be much
more variable than the mean values we have estimated — thus much more
computational effort will be needed for narrow intervals to be obtained.)

SEC. 7.5 / RESPONSE TIME DISTRIBUTIONS

280 SIMULATION / CHAP. 7

With the regenerative method some measures, in particular the vari
ance, require more complex estimators, but other measures, for example the
fraction of times less than a specified value, use exactly the same methods
we applied to the measures in the previous sections. However, there is one
very important consideration in regards to choice of regeneration state. That
consideration is that we cannot assume the queueing time processes during
different regeneration cycles are independent and identically distributed if
there are queueing times of interest in progress in that state. (There is no
problem with respect to the mean queueing time since we use a "Little’s
Rule" approach to its estimation.) The Markov state which is a regeneration
state for the population process, i.e., the queue lengths, is not necessarily a
regeneration state for the queueing time process. However, if the queue is
empty in the regeneration state, then no queueing times can be in progress
and we have a regeneration state for the queueing time process. This is part
of the basis for our choice of the state with all jobs at the terminals in our
interactive system model; that state is a regeneration state for the response
time process for the computer system. This consideration is another argu
ment in favor of the empty system state in simulation of open networks.

7.6 FURTHER READING

A more thorough and general treatment of simulation can be found in
[FISH73,FISH78]. A general discussion of random number generation,
including testing of uniform generators and methods for obtaining non-
uniform random variables, is given by [KNUT68]. A comparison of several
popular generators is provided by [LEAR73],

Discussion of more efficient event list mechanisms can be found in
[FRAN77] and [MEAR79],

An excellent introduction to the regenerative method is given in
[CRAN77]. Some more advanced material is presented in [IGLE78a] and
[FISH78]. Some solutions to the "queueing times in progress" problem are
proposed by [IGLE78b] and [FISH79]. A heuristic approach for systems
with infrequent regeneration states is studied empirically in [SAUE77a].

We have entirely ignored programming languages specifically designed
for simulation. Such languages provide random number generators, event
list mechanisms, and other features such as specialized list processing
facilities and statistics gathering. An introduction to such languages is found
in the Fishman texts. Discussion of specialized queueing languages is found
in [SAUE78a],

SEC. 7.7 / EXERCISES 281

More examples of extended queueing network models of computer and
communication systems, including use of the regenerative method, are given
in [SAUE77c,SAUE78b],

7.7 EXERCISES

7.1 Modify the data structures, ARRIVE and COMPLETE to allow the
branching Erlang distribution for service times. Provide a procedure
that allows specification of the standardized forms in Chapter 3 by
giving the mean and coefficient of variation.

7.2 We have omitted the procedures FREEJOBS, FREEROUTING and
FREEREGEN which are used in Figure 7.32. Provide definitions of
each of these.

7.3 With our definitions of INSERTEVENT and REMOVEEVENT we
would expect that we would have to search half of the list to insert an
event or to remove an event other than the first or the last. Provide a
third pointer, in addition to FIRSTEVENT and LASTEVENT, so that
we would only expect to search one fourth of the list. Can you gener
alize this for further efficiency? (At what point do the additional
pointers become a burden?)

7.4 Revise the data structures, ARRIVE and COMPLETE to allow class
dependent service times.

7.5 Revise the data structures, ARRIVE and COMPLETE to avoid the
inefficiency of scheduling completion events for each stage for jobs at
classes which are empty in the regeneration state.

7.6 The simulation program as presented allows us to specify run length in
terms of numbers of events. If the confidence intervals are "too
wide," we must run the simulation again with a larger number of
events. Provide the following rule as an alternative: We wish to stop
the simulation every k cycles and determine whether, for a specified
queue’s mean queueing time, and relative width of the confidence
interval, i.e., 2d /y n , is less than g. If so we terminate the run, other
wise we continue for another k cycles. We always use the data from
all simulated cycles in our estimates. (Formal and empirical justifica
tion for this rule is given in [LAVE77].)

7.7 Implement a non-preemptive priority scheduling algorithm for active
queues, as described in Chapter 3. Each class is to be assigned a
priority for scheduling purposes.

7.8 Repeat 7.7 with preemptive priority.
7.9 Implement a Round Robin scheduling algorithm for active queues.
7.10 Implement the Shortest Remaining Time First scheduling algorithm for

active queues.
7.11 Implement composite queues (Chapter 6) assuming each class belongs

to a different chain.

2X2 SIMULATION / CHAP. 7

7.12 Revise the data structures, ALLOC and RELEAS so that the number
of tokens a job requests may random with a finite discrete distribution,
i.e., with probability p i a job requests r, tokens, with probability p2 a
job requests t2 tokens, etc.

7.13 Provide new nodes for passive queues: A destroy node which throws
away a job’s tokens rather than returning them to the queue, and a
create node which adds to the total number of tokens at a queue. The
number of tokens added has a finite discrete distribution. The create
node affects only the queue; it has no direct effect on the job going
through it.

7.14 Allow regeneration states which have jobs at allocate nodes. Be sure
that you do not allow states which are not a regeneration state to be
counted as such. (You may want to separate initialization of jobs
from the other functions of ADDREGEN.)

7.15 Provide performance estimates for individual nodes as well as for
queues.

7.16 Provide estimates of the number of queueing times less than or equal
to specified values. Be careful about queueing times in progress with
respect to confidence intervals.)

7.17 Provide sources and sinks with the new data structures. Provide for
efficient determination of regeneration state by partitioning nodes into
chains.

7.18 Implement split nodes which are similar to fission nodes except that
there is no future association between the created job and the creating
job.

7.19 In addition to routing based on probabilities, provide routing based on
predicates, e.g., a job may select a node to go to based on queue
lengths, number of tokens available, etc.

7.20 Allow jobs to carry data with them from node to node to be used (if
desired) in routing decisions and service time calculations. Provide
nodes to define and alter this data.

CHAPTER 8

M EASUREM ENT AND
PARAMETER EVALUATION

In the preceding chapters we have focused our attention on solution of
models and on system characteristics we consider most likely to significantly
impact performance. In doing so, we have assumed that numerical parame
ters are given to use or are readily available. Now we turn our attention to
measuring and estimating model parameters.

Obtaining model parameters usually requires a combination of ap
proaches, with the particular approaches and combinations strongly depend
ent on the particular system and its current evolution stage. We will consid
er the most important approaches and combination strongly dependent on
the particular system and its current evolution stage. We will consider the
most important approaches and try to discuss them in as general a context
as possible; as a result, we will omit some details relevant (and required) in
particular situations. These details will usually require system specific
knowledge and/or specific knowledge of measurement tools used.

We assume that we are formulating a model of modifications to an
existing system in order to conveniently cover the entire range of possibili
ties suggested in Chapter 1. In the limiting case of an entirely new system,
the "modifications" are actually the entire system, while in the limiting case
of modeling an existing system, there are no modifications. Thus we need
to characterize the parameters of the existing system and we need to char
acterize the parameters of the modifications or new system. We will consid
er the existing system parameters first.

8.1 MEASUREMENT AND RELATED METHODS
FOR EXISTING SYSTEM PARAMETERS

There are three main sources of measured data: existing accounting
software, hardware monitors attached to the system, and software monitors,
i.e., software added to the system specifically for measurement. Measure
ments are usually obtained principally by a hardware or software monitor
supplemented by accounting software and hardware specifications. Depend
ing on particular situations and parameters, we may be able to get the
parameter values directly or we may have to obtain the parameter values
from intermediate values which we can obtain directly. This latter case is

283

284 MEASUREMENT AND PARAMETER EVALUATION / CHAP. 8

very similar to methods used in simulation to obtain performance measures,
for example, the "Little’s Rule" approach to mean queueing times (Section
7.1.3).

8.1.1 Accounting Software and Hardware Specifications

Most computing systems of significant size include software to deter
mine users’ resource usage so that they may be billed for their activities (or
at least discouraged from wasting resources in an environment without
charges for system use). Though nearly every different site will have differ
ent accounting policies, and correspondingly different accounting software,
there is information such as CPU time per user which will almost always be
gathered. Other readily available information may include the number of
I/O accesses (perhaps by device), memory required, number of page faults,
connect time for interactive users, turnaround time for batch jobs and active
time for batch jobs. (More information is likely to be available than is
actually used for accounting purposes.) In addition to such user specific
data, general information such as the average degree of multiprogramming
may be obtainable from the accounting data.

A principal problem with using accounting data for model parameters is
that accounting data often excludes resource usage by the operating system
not directly invoked by user programs. (Since such resource usage cannot
be attributed to individual users, it is usually not directly charged to users.)

If the operating system resource usage not included in the accounting
data is negligible, then accounting data and intuitive use of system and
hardware specifications may be sufficient to determine parameters for
simple models (for existing system portions). For example, if we assume
negligible overlap of CPU and I/O activity by individual programs, then
mean CPU service time can be estimated by total CPU time divided by the
number of I/O accesses. (This can be done for an individual user, a group
ing of users, operating system components, users and operating system
components together, etc.) If we are willing to make assumptions about
cylinder access patterns for the disks, then we can easily estimate seek times
from the hardware specifications. (See WILH76 for detailed discussion of
such calculations and the effects of various assumptions.) We can reason
ably assume that the latency will be uniformly distributed between zero and
one revolution. If we know the buffer size and assume that most transfers
consist of a full buffer, then the mean transfer time can be estimated by the
buffer size divided by the transfer rate. We may estimate the mean disk
service time then as the sum of the mean seek, latency and transfer times.
(With position sensing devices and several devices per channel and/or
controller, we may need to consider these disk service time components
individually. We will pursue this further in Section 9.3.) Similar approaches

SEC. 8.1 / MEASUREMENT AND RELATED METHODS 285

may be used for drums, tapes and other I/O devices. Thus we have the
essential parameters (mean degree of multiprogramming, mean CPU service
time and mean I/O time) for the cyclic queue model used in CHIU75 and
SAUE77b. If we need to consider several I/O queues then we can obtain
the branching probabilities from the relative frequency of access to the
devices of each queue.

8.1.2 Hardware Monitors

Since accounting data and hardware specifications are usually not
sufficient for supplying model parameters, it is usually necessary to use a
hardware or software monitor to supplement these other sources. A hard
ware monitor is simply a collection of digital circuitry which is attached to
the hardware of the computer system. Existing hardware monitors range
from devices consisting of a few circuits to complete computer systems
including disks and other peripherals. Hardware monitors are widely used to
estimate system performance directly (without modeling); there are com
mercially available hardware monitors for most significant computer sys
tems. Though hardware monitors may be quite complex, they are fairly
simple from our point of view.

We are primarily interested in the probes and accumulators which may
be associated with the probes and the probe points in the system where we
attach the probes. The probe points are places where we can measure
voltage levels corresponding to system states such as CPU busy (or idle),
channel busy, (a particular) memory location being referenced, etc. By
attaching the probes to these points we can observe system behavior and
use the counters to record the number of changes in system state during an
observation period and the accumulators to record the amount of time spent
in interesting system states. This measurement process will usually be
transparent to the observed system, i.e., there will be no difference in system
performance with or without the monitor attached. This is one of the
principal advantages of hardware monitors over software monitors.

A principal difficulty in using hardware monitors is knowing where to
place the probes, e.g., knowing where is the probe point which corresponds
to the CPU being busy. Fortunately, the system manufacturers and the
monitor manufacturers have developed libraries of probe points for many
common architectures.

Hardware monitors are principally limited by the available probe points
and our ability to interpret the available data in terms of the interesting
system parameters. For example, suppose we wish to estimate CPU service
times. Further, there is a probe point which is "on" whenever the CPU is
switched to another process. Thus we can determine the number of times

286 MEASUREMENT AND PARAMETER EVALUATION / CHAP. 8

this probe point changes state, and we can obtain the CPU busy time by
accumulating the time this point is on. The CPU busy time will be the sum
of the service times (regardless of scheduling algorithm, if we ignore switch
ing overhead) and we can obtain the mean service time by dividing CPU
busy time by the number of CPU services. However, if the CPU scheduling
is preemptive, e.g., Round Robin, then the count from this probe point will
include preemptions as well as the number of services. In general, it is
unlikely that there will be a probe point which can give us a count of the
number of services and we must obtain the number of services from some
other source. Such a source would be the accounting data, as described in
the previous section. In estimating mean CPU times, hardware monitors
and accounting data complement each other well; the hardware monitor can
give us the sum of the CPU times including operating system activities and
the accounting data can give us the number of CPU services, excluding the
preemptions.

Hardware monitors can provide very accurate estimates for other
parameters of importance, such as mean seek times (without making as
sumptions about cylinder access patterns). However, hardware monitors are
inherently limited to measuring information we can interpret at the hard
ware level without knowledge of operating system activities. This means
that we cannot easily obtain CPU service times by process, for example, and
implies that we cannot obtain distribution estimates other than the mean for
parameters such as CPU service times. For these reasons, hardware moni
tors by themselves will usually not be sufficient for our purposes, but
hardware monitors supplemented by accounting data, hardware specifica
tions and educated guesses (e.g., "The CPU service time distribution form
doesn’t matter since scheduling is similar to Processor Sharing.") may well
be sufficient.

8.1.3 Software Monitors

A software monitor is a collection of pieces of code embedded in the
operating system to gather performance data. (Depending on the architec
ture and operating system, some of the code may be run at user level
processes.) There are two major approaches to the design of such a monitor,
the event approach and the sampling approach. Any software monitor will
perturb system performance somewhat, since it requires system resources to
execute. The event approach has the advantages of maximum flexibility and
generality, but it is likely to perturb performance more than a sampling
monitor. In addition to providing more control over the overhead introduced
by the monitor, in the sampling approach it may be more convenient to add
a monitor to an existing operating system.

SEC. 8.1 / MEASUREMENT AND RELATED METHODS 287

In the event approach, the designer or user of the monitor must define
significant events, e.g., CPU is switched from one process to another, I/O
request issued, etc. The operating system modules which effect such events
must be modified so that when the events occur, the module records (e.g.,
writes to a tape file) the type of event, the time it occurred, and any other
important data associated with the event. The event records are processed
after the measurement period to obtain the desired parameters. (Though
data reduction might be done during the measurement period, this usually is
avoided because of the additional perturbation of system performance.) This
approach allows us to obtain very detailed information. For example, from
the event trace we can observe the duration of each individual CPU service
time (including preemptions and resumptions) and accumulate estimates of
the distribution form as well as the mean. The principal limitation on detail
is that of being able to observe and record the appropriate events.

With the sampling approach, monitor code is enabled periodically to
determine whether the CPU is busy, what a particular device is doing, etc.
From this information we can directly estimate performance metrics such as
CPU utilization, and thus indirectly estimate total CPU service time. The
sampling approach is much less general and flexible than the event ap
proach, e.g., there are parameters such as variances of service times which
cannot be feasibly estimated with the sampling approach. The advantages
of the sampling approach are potentially simpler implementation and the
ability to directly reduce system perturbation by reducing sampling frequen
cy. However, if we reduce sampling frequency we must compensate for the
loss of data by lengthening the measurement period. We prefer the event
approach because of its generality and flexibility.

Depending on the particular system and monitor, a software monitor
may consume 20% or more of the system resources (particularly CPU and
channel time) and thus produce very questionable results. By appropriate
definition of events and implementation, this overhead may be kept to
roughly 5%, and the software monitor results should be sufficiently accu
rate for our purposes.

Besides the inherent perturbation of system performance, there are two
other significant problems with software monitors. First, the amount of
data produced by the event trace may be overwhelming, particularly in
terms of reducing the trace data after the measurement period. (It is not
unusual for the measurement period to be limited to a fairly short

period of time, say twenty minutes, by the capacity of a reel of tape
[SHER72b].) Second, unlike hardware monitors, software monitors must be
specifically designed for particular architectures and operating systems. Thus
there are no commercially available software monitors for many significant
computer systems. Further, implementing a software monitor for an operat

288 MEASUREMENT AND PARAMETER EVALUATION / CHAP. 8

ing system that already exists may require a significant amount of effort and
expertise.

Before leaving measurement we should point out that any of the above
sources of parameters may also be very valuable in providing data for
validation of our models. For example, we can estimate the CPU utilization
by the sum of CPU times divided by the length of the measurement period.
If our model estimate of CPU utilization agrees well with our measurement
estimate for the system without modifications, then we can place more faith
in the model estimates for the modified system.

8.2 PARAMETERS FOR SYSTEM MODIFICATIONS

As we said in Chapter 1, we cannot measure a system unless it is
operational. In particular, if we are adding a new subsystem to an existing
system or building a new system entirely, then we cannot measure it during
the design and development stages of its implementation. To obtain numer
ical parameters for our models we must use our knowledge of the existing
system and the planned modifications to produce estimates of the numerical
parameters. Early in the evolution process it will be difficult to produce
accurate estimates, but since we are only interested in rejecting poor designs
at that time, we can make our estimates intentionally pessimistic. As long as
this is done in a reasonable manner, we should not incorrectly reject good
designs but we may unnecessarily reject a marginal design. This should not
be of concern as long as we have better designs left.

For example, let us consider the resource demands of module X. We
discuss X with its designer and are told that a call to X will "probably"
result in the execution of 400,000 instructions but the designer is confident
that no more than 1,000,000 instructions will be executed. The designer’s
estimate of the working set of X is 5 pages, the estimated number of page
faults (including initial loading) is 7, and the estimated number of I/O
operations is 3. We also know that the CPU executes instructions at a rate
of 1.5 MIPS (million instructions per second), so we can estimate the total
CPU time of module X as .667 seconds. Similarly, from our discussion with
the designer we come up with estimates of which files will be accessed and
the amount of data transferred. From this information we can determine
which devices will be involved and estimate I/O times for module X. If X
makes calls on the operating system which will cause significant resource
demands, then these demands should also be included as part of the de
mands of X. We proceed in this manner for all of the modules of the sys
tem. If the number of modules is small, then we may be able to include this
information directly in our model, using a separate class for each module
and reflecting the module execution order by the class transitions. If the
number of modules is large then we must first aggregate modules and then

SEC. 8.3 / FURTHER READING 289

represent the aggregate modules as classes. (Though we could aggregate all
of the modules and avoid class distinctions, class dependent performance
estimates can be used to determine which modules are likely to be bottle
necks, and thus are candidates for redesign.)

As the system evolves, we will be able to get more accurate, less
pessimistic estimates of resource demands and thus get more accurate
performance predictions. When the system is operational, we can use meas
urements in place of some of our resource demand estimates, and we can
use measurements of performance metrics to validate our model or suggest
improvements.

8.3 FURTHER READING

We have given a very superficial treatment of measurement and param
eter estimation, partly because there are so many books devoted to these
topics, particularly measurement. See DRUM73 and FERR78, for example.

A survey of measurement tools and practices for many popular comput
ing systems is given in ROSE78. That article discusses these topics from a
queueing network point of view.

For a more detailed discussion of parameter estimation during the
design process and a specific example, see SMIT79.

CHAPTER 9

CASE STUDIES

We now discuss in detail the six modeling examples of Chapter 1.

9.1 A SIMPLE BATCH SYSTEM MODEL

9.1.1 The Modeled System

The hardware studied by Chiu et al consists of an IBM 360/75 with
512 kilobytes of high speed core memory, two megabytes of slower core
memory, two selector channels, each with 8 2314 disk drives, and a multi
plexor channel controlling printers, tape drives and other peripherals. During
the modeling project, the slower core memory was changed from one with
an eight microsecond cycle time to one with a 1.8 microsecond cycle time
(each with the same two megabyte capacity).

The operating system is the standard IBM OS/MVT with HASP,
modified to support a locally implemented time sharing system. The time
sharing uses a small amount of the CPU capacity (approximately 8% with
the 1.8 microsecond slow core) and very little of the remaining resources.
Thus the focus of the modeling effort is the batch workload, but the effect
of the time sharing system is taken into consideration.

9.1.2 The Model

The principal model used is the cyclic queue model we have discussed
frequently. In addition, a similar central server model [BUZE71], is used for
comparative purposes. See Figure 9.1. The difference between the between
the structures of the cycle queue model and the central server model is that
the central server model has more than one queue for the I/O devices.

In using this model, it is assumed that there is a sufficient backlog of
jobs and there is sufficient memory contention that the degree of multipro
gramming is essentially constant. This is not strictly true, and so the aver
age degree of multiprogramming is usually not an integer. In using the
model, one interpolates between the two integer degrees of multiprogram
ming containing the average. Chiu et al obtained the average degree of
multiprogramming from accounting software, the standard IBM SMF
(System Management Facility) package.

290

SEC. 9.1 / A SIMPLE BATCH SYSTEM MODEL 291

I/O 2
Figure 9.1

The CPU service time distribution was measured (using unstated
methods, presumably a special purpose software monitor) and observed to
have a coefficient of variation greater than one. Figure 9.2 shows the
measured service time distribution and a hyperexponential distribution
which could have been used to fit that distribution. However, an exponen
tial distribution is used in the model. This is principally justified by the
effects of the heuristic CPU scheduling algorithm which attempts to approx
imate SRTF. Figure 9.3 shows the effective CPU service time distribution in
the sense that the CPU times between I/O requests have this distribution
(This effective distribution has lowercoefficient of variation because long
CPU bursts are broken into smaller ones by the scheduler. One time
between I/O requests may be attributed to several jobs service.) Figure 9.3
also shows this effective distribution fitted by an exponential distribution.
(Note that the distributions in these figures are scaled to have mean one.)
The authors concluded from this and other evidence that they could treat
the CPU as if it had FCFS scheduling and an exponential distribution. This
consistent with our previous observations that some scheduling disciplines,
such as PS and LCFSPR, give the same performance measures with essen
tially arbitrary distributions as FCFS does with exponential distributions.

In modeling the I/O system, several observations are used to simplify
the model. First, all I/O to or from the slow speed peripherals is negligible.
Second, there is minimal use of the tape drives. So the tape drives and slow
peripherals are ignored in the model. Finally, though it is feasible for more
than one disk drive on a channel to be active, this is rare, so in the model
each channel and its disk drives are treated as a single I/O device, i.e., a
single high capacity disk.

292 CASE STUDIES / CHAP. 9

Figure 9.2

Figure 9.3
With the 2314 disk it is possible to perform the seek operation without

the channel attached, once the seek has been initiated by the channel, but
the channel must be attached for rotational positioning and transfer opera
tions. (If more than one disk per channel were simultaneously active, then
the model would have to consider possible overlap of seek with other
operations. We will discuss this problem in Section 9.3.) The authors meas
ured the channel busy time distribution (where channel busy time consists
of rotational positioning and transfer) but were unable to measure the
distributions of seek time or total service time. The busy time distribution
has a coefficient of variation of one, like the exponential distribution, but
does not closely fit the exponential distribution function. It is quite reason
able to assume the seek time has a uniform distribution [TEOR72], Based

SEC. 9.1 / A SIMPLE BATCH SYSTEM MODEL 293

on results for sums of random variables, one can easily conclude that the
coefficient of variation of the total 1/O service time is significantly less than
one. The authors assumed an exponential distribution for I/O times. This
is not unreasonable since the effect of distribution form is relatively small
when the coefficient of variation is less than one. (Refer back to Figure
4.5.) Also, the parameters used in this work were such that there was little
queueing for I/O; we know from Chapters 4 and 5 that distribution form
does not have an effect when there is no queueing. The authors assumed
FCFS scheduling at the I/O queue (queues in the central server model).

The mean CPU service time is obtained as the CPU busy time
(obtained from a hardware monitor) divided by the number of disk trans
fers. The mean I/O service time is obtained as the sum of the selector
channel busy times and the total seek time (obtained by a hardware moni
tor) divided by the number of disk transfers.

9.1.3 Experiments with the System and Model

The authors conducted a number of experiments comparing model
results with measurements, using a controlled workload for some experi
ments and eight "live" measurement sessions. We discuss the controlled
workload experiments first.

The controlled workload consisted of fifty jobs selected as representa
tive of the daily submissions. Since one of the objectives of these experi
ments was a reproducible environment, the time sharing system was disa
bled. The experiments were used to verify the ability of the model to predict
performance while varying the slow core used (8 microsecond vs. 1.8
microsecond) and the number of initiators. (In the MVT operating system
an "initiator" was required for each active job. Thus the number of initia
tors enforces an upper bound on the degree of multiprogramming.)

In the first experiment, with the 8 microsecond slow core and five
initiators, the estimated degree of multiprogramming from SMF was 2.2.
(The low degree of multiprogramming was due to memory contention.)
From the hardware monitor, the CPU busy time was 1746 seconds (out of
an elapsed time of 2580 seconds), one selector channel was busy 691
seconds, the selector channel was busy 928 seconds, the total seek time was
1246 seconds and the number of transfers was 60802. Thus the mean CPU
time was 28.7 ms. and the mean I/O time was 46.8 ms. Using N = 2, the
state probabilities are then .353, .412 and .336 for 2, 1 and 0 jobs at the
CPU, respectively. Thus the CPU utilization is 66.5% and the I/O utiliza
tion is 54.2%. With N = 3, the state probabilities are .198, .323, .264 and
.215 for 3, 2, 1 and 0 jobs at the CPU, respectively, the CPU utilization is
78.5% and the I/O utilization is 64.1%. Interpolating for N = 2.2, we get

294 CASE STUDIES / CHAP. 9

the CPU utilization as 68.9% and the I/O utilization as 56.2%. From the
measurements above, the actual CPU utilization was 67.7% and the actual
I/O utilization was 55.1%. The model estimate of CPU throughput is
.689/28.7 = .024 jobs per ms. and of system CPU throughput is .689/28.7
= .024 jobs per ms. and of system throughput is 24/(60802/50) = .0197
jobs per second. The actual system throughput was 50/2580 = .0194 jobs
per second. Thus the model estimates for both utilization and throughput
are very close to the measured values.

Repeating the experiment with the 1.8 microsecond core, the estimated
degree of multiprogramming was again 2.2. The CPU busy time was 1225
seconds out of 2160 elapsed seconds, the channel one busy time was 834
seconds, the channel two busy time 760 seconds, and the seek time and
number of transfers were the same as before. Thus the mean CPU time was
20.1 ms. and the mean I/O time was 46.7 ms. With N = 2 the model
estimated CPU utilization is 55.2% and the model I/O utilization is 64.1%.
With N = 3 the corresponding values are 65.8% and 76.4%. Interpolation
gives CPU utilization 57.3% and I/O utilization 66.6%. The throughput
estimate is .0234 jobs per second. The corresponding values from measure
ments were 56.7%, 65.7% and .0231 jobs per second; the agreement is
even better.

Initiators N Measurement CQM CSM
1 1.00 60% 56% 56%
2 1.93 78% 80% 74%
3 2.82 85% 90% 84%
4 3.14 91% 91% 86%
5 3.99 92% 95% 89%

Figure 9.4

The remaining controlled workload experiments we consider were
intended to study the effect of varying the degree of multiprogramming,
principally by varying the number of initiators from one to five. Two others
system changes were made: the jobs were executed in the larger, slower
core (1.8 microsecond) to reduce the effect of memory contention, and
memory scheduling was FCFS rather than the HASP algorithm. The esti
mated degrees of multiprogramming were 1, 1.93, 2.82, 3.14 and 3.99 for 1,
2...... 5 initiators, respectively. The elapsed times were 3445, 2662, 2435,
2278 and 2258, respectively, the I/O times (total) were 1611, 1890, 1978,
2123 and 2243, respectively, and the numbers of transfers were 45050,
47440, 47528, 47749 and 47665, respectively. Figure 9.4 shows the CPU
utilizations from measurements, from the cyclic queue model (CQM) and
from the central server model (CSM). (For the central service model the

SEC. 9.2 / MULTIPROSCESSOR SYSTEMS 295

branching probabilities to the first I/O queue are .556, .526, .544, .528 and
.521, respectively.) Except for the one initiator case, the cyclic model seems
to slightly overestimate the utilization and the central server model slightly
underestimates the utilization.

The authors made measurements during 8 periods of the system run
ning in its normal production environment, 2 with the 8 microsecond slow
core and 6 with the 1.8 microsecond core. The authors were unable to
measure the total seek time because of too few probes in the hardware
monitor (the controlled experiments were run through the system twice to
overcome this) and used the mean seek time from the first controlled
experiment, 20.5 ms., for the model. Apparently for sake of convenience,
the authors also used 2.2 as the degree of multiprogramming. For the
session with the highest CPU utilization, 80%, the mean CPU time
(including the time sharing load as overhead) was 49.7 ms. and the mean
I/O time was 49.9 ms. The cyclic model estimate of CPU utilization is then
82.1%.

Note that all of the above models can be represented by Markov
processes with at most fifteen states. Further, the models have product
form solutions, so the results can be trivially obtained with a hand calculator,
if necessary.

9.2 AN EVALUATION OF MULTIPROCESSOR SYSTEMS

Multiple CPU systems have been available for some time, but have
only recently achieved popularity. Bell and Newell [BELL71] suggested
that the range of performance spanned by the IBM 360 family of single
CPU systems could also be spanned by a smaller product line and the use of
multiple CPU systems may be cost-effective in comparison with single CPU
systems; for a detailed discussion see Bell and Newell [BELL71] and Fuller
[FULL76],

The economics of large scale integrated circuits has made multi
miniprocessing units an alternative to systems with single large central
processing units. The decreasing costs of hardware relative to software and
the growing importance of security and reliability may tend to result in
simpler software and relatively underutilized or redundant hardware. This
trend could result in multi-miniprocessing systems with simplified system
scheduling strategies. In SAUE77b we compared performance metrics for
different architectures for a variety of scheduling strategies and work loads.
An important objective was to study the impact of CPU service service
distributions and disciplines on the behavior of multiprocessing systems. The
primary goal of that work was to use modeling techniques to make quantita
tive analyses of possible trends in architecture and their impact on operating

296 CASE STUDIES / CHAP. 9

systems. The multiple processor systems considered were essentially restrict
ed to those with tightly coupled homogeneous CPU’s, for example C.mmp
[WULF72], where the CPU’s share main memory and most other resources.

A multiple CPU system may have multiprogramming and/or multitask
ing. In multiprogramming, two or more independent programs reside in main
memory and are processed in parallel. In multitasking, a program is decom
posed into a partially ordered set of tasks where each task may be processed
in parallel subject to precedence constraints. The interdependence between
tasks causes the time required to process a program by N CPU’s, (N at least
2) to be significantly greater than l / N times the time required to process
the same program by one processor. (Multitasking is desirable in multipro
cessor systems to avoid idle processing capacity when only one job needs a
CPU.)

Both multiprogramming and multitasking create contention for CPU’s.
With multiple processors we are likely to have memory interference
(memory interference also occurs between channels and processors in single
processor systems, but the amount of interference is usually small). Memo
ry interference has been analyzed by Baskett and Smith [BASK76], Burnett
and Coffman [BURN75] and Bhandarkar and Fuller [BHAN73], among
others. Fuller [FUFF76] says that memory interference studies consistently
predict degradation factors of less than 10% for actual and proposed
C.mmp configurations. Our paper did not study multitasking or memory
interference in detail; however, results from these areas were used to sug
gest parameter values for our models.

9.2.1 First Come First Served CPU Scheduling

We shall compare, for different service distributions, a single CPU
system with a dual CPU system where each CPU of the dual processor
system has half the rate of the CPU of the single processor system. Degra
dation due to memory interference will be considered by reducing the rate
of each CPU in a multiple CPU system. Multiple CPU systems allow for
graceful degradation in service. However, the metric of interest in this
subsection is system throughput, when the system is functioning normally.

9.2.1.1. Impact of CPU service distributions. It is reasonable to expect
the single processor system to perform better than the multiprocessor
system, since some of the CPU’s in a multiprocessor system will be idle
when there is only one program ready for CPU service. However, there is a
compensating factor in favor of the multiprocessing system when the CPU
service time has a high coefficient of variation. A single program requiring
very long CPU service can bottleneck the CPU of a single processor system,
while other programs queue up for CPU service, whereas it will monopolize

SEC. 9.2 / MULTIPROSCESSOR SYSTEMS 297

Ratio of CPU-I/O processing rates

With interference, C = 1

No interference, C = i

With interference, C = 4

No interference, C = 4
With interference, C = 8

No interference, C = 8

Single processor throughput/Dual processor throughput
Degree of multiprogramming = 5; Number of I/O’s = 5

No memory interference; Dual processor memory interference

Figure 9.5
only one of the processors in a multiprocessor system allowing other jobs to
go through remaining processors. Note that for small coefficients of varia
tion (one or less) of CPU service times, the compensating factor in favor of
multiprocessor systems does not generally apply. This is because with very
large coefficients of variation it is more likely that there will be many short
service times, and a few very long ones which bottleneck the single CPU.
We should expect multiprocessor systems to perform better than single
processor systems when CPU service time coefficients of variation are large.

9.2.1.2. Impact of multiprogramming level. When the level of multipro
gramming is very small, the probability is also very small that there are
enough jobs requiring CPU service to keep all CPU’s busy in a multipro
cessing system. Thus we should expect multiprocessing systems to have
smaller throughputs than single processor systems for low degrees of multi
programming. As the level of multiprogramming increases, the average
number of busy CPU’s in a multiprocessing system goes up, thus exploiting
parallelism in the system. We should therefore expect the throughput of
multiprocessing systems to improve more than that of single processor
systems with increased levels of multiprogramming. This intuitive notion is

298 CASE STUDIES / CHAP. 9

Single processor throughput/Dual processor throughput
Equal CPU and I/O processing rates; Number ot' I/O’s = 5

No memory interference; Dual processor memory interference

Figure 9.6
supported by results from the models for all CPU service distributions
studied.

9.2.1.3. Models. Two sets of models were used to analyze these
systems. A cyclic queue model was used and recursive techniques (see
Chapter 3) were used to analyze the model. I/O service times were assumed
to be exponential, and it was assumed that all L I/O devices shared a
common queue. Three different CPU distributions were compared:
(a) exponential (coefficient of variation (C) one), (b) hyperexponential
with coefficient of variation 4, and (c) hyperexponential with coefficient of
variation 8. Central server models with several I/O queues were analyzed
using flow equivalence approximations and regenerative simulation techni
ques; this analysis yielded results similar to the cyclic queue model. We
consider models with and without memory interference.

9.2.1.4. Results for the interference free case. The results obtained
from the cyclic queue model are graphed in Figures 9.5 and 9.6; Similar
results (not shown) were obtained for the central server model. The service
rate of each CPU in the dual processor case was set to half that of the

SEC. 9.2 / MULTIPROSCESSOR SYSTEMS 299

Single processor availability

Single processor throughput/Dual processor throughput
Equal CPU and I/O processing rates; Number of I/O’s = 5

Degree of multiprogramming = 5, C = 5

Figure 9.7

single processor CPU. When the system is CPU-bound, (i.e. when the
mean CPU queue length is much greater than the I/O queue length) the
single processor system does not perform much better than the dual proc
essor system since there are usually a sufficient number of programs desiring
CPU service to keep all processors utilized in the multiprocessor system.
When the system is I/O bound, changes in CPU processing rates do not
significantly affect system throughput. Significant differences in system
throughput between single and dual processor systems occur only when the
system is well-balanced. The ratio of single to dual processor throughputs
decreases with increase in the coefficient of variation of CPU service time
(Figure 9.5) and with the degree of multiprogramming (Figure 9.6), as
expected. Since CPU service time coefficients of variation are generally
larger than 1, and often 8 or greater, we may conclude that no substantial
reduction in throughput (more than 5) occurs by replacing single CPU
systems by dual CPU systems with moderate or high levels of multiprogram
ming (i.e. greater than 3). Note that dual processor systems may be better
than single processor systems in some cases!

300 CASE STUDIES / CHAP. 9

1.60

4 6 8 10 12

— No interference, C = 4
With interference, (' = 8

— With interference, C = 4

No interference, C = 1

— With interference, C = 1

No interference, C = 8

Degree of multiprogramming

Figure 9.8
9.2.1.5. Results for the with-interference case. Fuller’s analysis

[FULL76] shows that an estimate of 10% degradation in CPU service rates
due to memory interference is pessimistic for most C.mmp configurations.
The degree of memory interference at any given time depends on the
number of active CPU’s at that time. A realistic model of multiprocessor
systems with memory interference is to make the effective CPU service rate
for each CPU decrease with the number of active CPU’s; thus the effective
service rate reflects the expected amount of memory interference. Our goal
here is to obtain a clearly pessimistic estimate; the behavior of models with
a realistic degree of memory interference will lie between the optimistic
estimate of no interference and the pessimistic estimate. A clearly pessimis
tic estimate is to use Fuller’s worst-case estimate and set the service rate for
each processor in an n-processor system to 0.9/times the service rate of the
CPU in a single processor system, independent of the number of busy

As expected, CPU interference degrades the performance of multipro
cessor systems with reference to single processor systems, especially when
the system is CPU-bound, as shown in Figure 9.5. When the CPU service
has an exponential distribution (C = 1) the ratio of single processor to
multiprocessor throughput is larger for balanced systems than for CPU
bound systems for the same reason that this effect is observed in the

CPU’s.

SEC. 9.2 / MULTIPROSCESSOR SYSTEMS 301

PS single processor throughput/FCFS dual processor throughput
Equal CPU and I/O processing rates; Number of I/O’s = 5

Degree of multiprogramming = 5

Figure 9.9
interference-free case: When the system is CPU bound both processors in
the dual processor system are busy all the time resulting in a combined
throughput of 0.9 times that of the single processor system, resulting in a
throughput ratio of 1/0.9. As the system gets more balanced the fraction
of time that there are sufficient jobs to keep all CPU’s in the dual processor
system busy decreases, thus increasing the throughput ratio. However, for
coefficients of variation of 4 and 8, the throughput ratio decreases as the
system gets balanced because single processor systems are more likely to get
bottlenecked by jobs with very long CPU bursts. For balanced systems, with
typical CPU coefficients of variation the difference between single and dual
processor throughputs is not substantial, even for pessimistic estimates of
the degree of memory interference.

The ratio of single to dual processor throughputs decreases with in
creasing levels of multiprogramming as in the interference-free case.

9.2.1.6. Impact of CPU availability. It is instructive to study the impact
of CPU availability on system performance. Assume that the fast CPU (in
the single CPU system) and the slow CPU’s (in the multiple CPU system)

302 CASE STUDIES / CHAP. 9

Ratio of CPU-I/O processing rates

Throughput without multitasking/Throughput with multitasking
Degree of multiprogramming = 5; Number of I/O’s = 5

No memory interference; Multitasking memory interferenc

Figure 9.10
have the same up-time and repair time distributions, and assume further that
these times are independent random variables. If only one of the CPU’s in
the multiprocessor system is down, the system continues to function in
degraded mode. We make the conservative assumption that if both ma
chines are down, only one of them is repaired at a time. As Figure 9.7
shows, for certain ranges of single CPU system availability the multiproces
sor system has a significantly better overall throughput. Additional discus
sion is found in [SAUE76b],

9.2.1.7. Several processor configurations. Configurations with a large
number of CPU’s may become more common as the cost of hardware
decreases. Consider systems in which there are as many processors as there
are jobs (degree of multiprogramming); in the cyclic model there are N
processors, each with 1 / Nlfl the processing rate of the uniprocessor, where
N is the degree of multiprogramming. Each job in this system is assigned a
dedicated processor. Figure 9.8 shows that the reduction in (CPU) resource
sharing generally results in poor performance; however the throughputs of
multiprocessing systems improve in comparison with uniprocessor systems

SEC. 9.2 / MULTIPROSCESSOR SYSTEMS 303

Single processor throughput/Multiprocessor throughput; Fast high priority jobs
Mean I/O time for all jobs = 40; Number of I/O’s = 4
Single processor mean CPU time for high priority = 1
Single processor mean CPU time for low priority = 10

Preemptive priority; Non-preemptive priority

Figure 9.11
with increasing CPU service time coefficient of variation and with increas
ing levels of multiprogramming. (The latter part of this statement assumes
the processors do not become more numerous and slower with increasing
levels of multiprogramming, unlike Figure 9.8.) For certain cases
[SAUE76b] multiprocessor systems may have greater throughput than
uniprocessor systems.

In summary, high CPU service time coefficients of variation and levels
of multiprogramming improve the performance of multiprocessor systems in
comparison to single processor systems; in some case multiprocessor systems
have throughputs competitive with single processor systems.

We may take the idea of reducing resource sharing to an extreme, as
suggested by Martin and Frankel [MART75] and study a multiprocessing
system in which each job is assigned a dedicated CPU and a dedicated
scratch disk; jobs only share the permanent file system. As expected
[SAUE76b] reduced resource sharing may result in substantial (up to 67%)
reduction in throughput.

304 CASE STUDIES / CHAP. 9

Single processor throughput/Multiprocessor throughput; Slow high priority jobs
Mean I/O time for all jobs = 40; Number of I/O’s = 4

Single processor mean CPU time for high priority = 100
Single processor mean CPU time for low priority = 10

Preemptive priority; Non-preemptive priority

Figure 9.12
9.2.2. Other Disciplines

CPU service disciplines have been studied intensively with respect to
single processor systems. We shall attempt to extend the study to multipro
cessor systems. If the CPU discipline is changed from first come first served
to round robin fixed quantum, the performance of single processor systems
improves more than that of multiprocessor systems for typical hyperexpo
nential CPU service distributions. Figure 9.9 compares the throughput
ratios of a single processor system with a processor sharing discipline to a
dual processor system with a first come first served discipline as a function
of the coefficient of variation of CPU service time. Note that the dual
processor system is never better than the single processor system in this
case, and the single/dual throughput ratio may exceed 1.1. Generally
speaking, multiprocessor systems are less sensitive to scheduling disciplines
than uniprocessing systems as illustrated by Figure 2.6. Figure 2.6 shows
the ratio of the throughput of a system with processor sharing CPU disci
pline to that of a system with a first come first served discipline for the
single processor and dual processor systems as a function of CPU coeffi-

SEC. 9.2 / MULTIPROSCESSOR SYSTEMS 305

cient of variation. FCFS is the simplest scheduling discipline to incorporate
into the operating system, and it has less overhead than Round Robin. The
curves suggest that first come first served is satisfactory for dual processor
systems for typical CPU coefficients of variation and degrees of multipro
gramming; the same is not true for single processor systems.

CPU scheduling has been an important part of system performance
tuning and a great deal of work has been done in this area; see [SHER72a]
for instance. The literature contains discussions of various schemes to
predict future job behavior on the basis of past behavior using statistical
estimators such as moving point averages and exponential smoothing, and to
schedule CPU’s on the basis of predicted job behavior. Let us make the
optimistic assumption that all future service times can be predicted with
total accuracy and that the Shortest-Remaining-Time-First (SRTF) discipline
is used to schedule CPU’s. Figure 2.7 shows the ratio of throughputs in the
SRTF and FCFS cases. The percentage improvement in going to the SRTF
discipline from the FCFS discipline is small for dual CPU systems. An even
smaller gain in throughput would accrue from using statistical predictors of
job behavior such as exponential smoothing. We conclude that CPU sched
uling has much less impact on multiple CPU systems than on single CPU
systems. Equivalently, multiple CPU systems favor simplicity in scheduling
strategies.

9.2.3. Multitasking

A great deal of work has been carried out on scheduling two or more
processors to concurrently process a single program. We next address the
question: How effective is multitasking in improving system throughput, and
in particular, what impact do CPU service distributions have on multitask
ing? We compare two multiprocessing systems, one which allows multitask
ing and the other which does not. We shall use very optimistic models of
multitasking with a view towards getting an upper bound on the improve
ment in throughput due to multitasking; more realistic models are consid
ered later. We assume that in the multitasking system two or more CPU’s
cooperate on a single program if, at any given time, there are fewer pro
grams requiring CPU service than there are CPU’s. However, if there are at
least as many programs requiring CPU service as there are CPU’s, then each
CPU works on an independent program. Thus CPU bound systems do not
offer much opportunity for multitasking. Multitasking of I/O ’s is not per
mitted in this model. If the system is I/O bound, multitasking the CPU
does not impact performance. Thus we would expect the greatest percentage
increase in system throughput with a well balanced system.

Consider the cyclic queue model. Assume that when two processors
cooperate on a single program, the time required to complete CPU service

306 CASE STUDIES / CHAP. 9

for that program is 1 / K times the time required to complete CPU service on
a single CPU, where K is between 1 and 2. As shown in Figure 9.10, the
maximum benefit from multitasking is obtained when the system is well
balanced and the CPU coefficient of variation is high. Similar results are
obtained for central-server models with multiple I/O queues. Note that the
results of Figure 9.10 are very optimistic, since we assume perfect coopera
tion between processors (A! = 2). The benefit of multitasking increases
with the variance of CPU service time because the ratio of the probability
of exactly one job in the CPU queue increases with CPU variance. In other
words, increasing CPU variance results in greater opportunity for multitask
ing.

The actual benefits of multitasking will be significantly less than indi
cated in the figures due to the overhead involved in the multitasking process
and due to the interference between processors. Ramamoorthy and Gonza
lez [RAMA69] suggest that K is generally less than 1.5 and that values of
1.1 are not atypical. For K = 1.1 and the other parameters as in Figure
9.10, the improvement obtained by multitasking is less than 1%. We may
conclude that multitasking does not have substantial impact at reasonable
degrees of multiprogramming. Once again our analysis suggests that multi
processor systems favor simplicity in scheduling strategies if the objective is
to maximize throughput.

The concept of multitasking is closely related to that of CPU-I/O
overlap, where a program splits itself into two subtasks, with one subtask
requiring CPU service and the other requiring I/O service. Price [PRIC75]
and Towsley [TOWS75] have shown that the benefit of CPU-I/O overlap
also decreases with increasing levels of multiprogramming.

9.2.4. Priority Disciplines

It can be argued that though fast single CPU systems are not a greater
deal better than systems with several slow processors when the metric of
interest is overall throughput, there is an important metric for which fast
single CPU systems are clearly better. There are some environments where
it is crucial that a small number of special jobs have very short turn-around
times while the bulk of jobs are not time-critical. Intuitively, one expects
fast single processor systems to yield shorter turn-around times of high
priority jobs because the entire CPU resource can be devoted to a single
high priority job. The models show that though this assumption is generally
true, it does not always hold!

Once again let us compare a single CPU system with an N CPU system
where each CPU is l / N times as fast. We may consider memory interfer
ence by reducing the rates of each CPU in the multiprocessor system by an

SEC. 9.3 / A DATA M ANAGEMENT SYSTEM MODEL 307

appropriate amount. Let the degree of multiprogramming be TV, and assume
that one of the TV jobs is a high priority job while the remaining TV - 1 jobs
are low priority. Consider the case where the single CPU has a priority
scheduling policy, either preemptive resume or nonpremptive. Figures 9.11
and 9.12 show the ratios of the throughputs of uniprocessing and multipro
cessing systems for the high priority (and low priority) jobs. The figures
differ in the relative processing requirement of the high and low priority
jobs. We assume exponential CPU service times, but we expect performance
trends to be the same with realistic CPU service distributions. The single
processor system behaves considerably better if the metric of interest is the
throughput (or response time) of the high priority program and the I/O
subsystem is not heavily loaded. As shown in Figure 9.11, the multiproces
sor system may actually perform better for high priority jobs when the I/O
subsystem is heavily loaded and the degree of multiprogramming is high!
This is because the uniprocessor system has much higher throughput for low
priority jobs and these jobs cause high priority jobs to spend more time
queueing for 1/O. (Of course this effect could be decreased or eliminated if
a priority discipline is used for I/O.) When the I/O subsystem is not satu
rated, or when the CPU requirements of the high priority jobs are high
relative to the I/O requirements, these effects do not occur, as shown in
Figure 9.12. If the CPU discipline is non-preemptive priority, the advan
tage of the single CPU system is not as great.

In summary, the interaction between CPU priorities and multiprocess
ing is complex; care must be used in exercising intuition in such cases.

9.3 A DATA MANAGEMENT SYSTEM MODEL

The Advanced Logistics System (ALS) modeled by Browne et al is
considerably more complex than the systems of the previous two sections.
Yet, the final model used in the ALS study is not all that different from the
simpler queueing network models of these systems. There are several expla
nations for this situation: First, the modeling project was hierarchical in
both models and personnel. The "final model" was the top level of a two
level hierarchy of models. Second, the purpose of the model was to estimate
system capacity (throughput) and device utilizations, not response times.
Third, the queueing network model and companion simulation model were
to be constructed in a very short period of time.

Because the Cyber 73 and 74 mainframes share the Extended Core
Storage (ECS) of one million words and use it in many ways analogous to
primary memory (with the private memories of the 73 and 74 analogous to
cache memory) and because the 100 Data Management System (DMS) disk
drives are shared between the two machines, it is reasonable to use a varia
tion on the central server model as the top level model of the system.

308 CASE STUDIES / CHAP. 9

(Figure 9.13, a copy of Figure 1.2, shows the top level model.) Though not
physically tightly coupled, it is reasonable to consider the CPU’s to be
logically tightly coupled. Figure 9.13 gives the model parameters except for
the degree of multiprogramming, the CPU service times and the branching
probabilities PI, P2, P3 and P4. As is common in models of this sort, model
results are obtained for all possible degrees of multiprogramming, from 1 to
17 in this case. The CPU service times are determined to be 8.3 ms. for the

SEC. 9.3 / A DATA MANAGEMENT SYSTEM MODEL 309

R

Transitions among the phases

Figure 9.14
Cyber 84 and 13.3 for the Cyber 73, as described below. (All service times
are treated as if exponential.) The remaining branching probabilities depend
on details of the I/O system.

9.3.1 CPU, Central Memory and ECS Submodel

In the basic mode of operation, a transaction is serviced by a collection
of modules in central memory of one of the Cybers. Usually a portion of
only one transaction’s modules will be resident in one of the central memo
ries. A module executes until it issues a monitor call to either call upon
some other module or to carry out an I/O activity. In the first case, the
module may either already be in memory or need to be swapped in from
disk or need to be swapped in from ECS. In the second case the I/O access
may be either to the DMS or to the system disk or tape. In the second case,
the module is swapped out to ECS, that transaction’s I/O is handled, a
module for another transaction is swapped in and that transaction’s execu

310 CASE STUDIES / CHAP. 9

tion begins (or continues after the completion of I/O). Note that the CPU
carries out swapping functions. Figure 9.14 shows the phases of CPU
activity and the transitions between phases. The variables A through E
identify mean CPU times for each phase and the variables P through S
identify probabilities of results of monitor calls. From Figure 9.14 we can
derive the probability of an access to the DMS given a swap out as

p DMS = e /(G + s) . (9.D

Similarly, the probability of an access to the system disk or tape given a
swap out is

PSYS = S / (Q + S). (9.2)

The mean time between swap outs (mean CPU service time) is obtained as

^ CP U
(9.3)

= A + B + C + (R(A + B) + P{A + B + C) + QD + S E)/{Q + S)

by treating Figure 9.14 as a Markov state diagram. Figure 9.15 gives these
values for each CPU, with times in microseconds.

CPU A B C D E p Q R S P DMS P S Y S ^ C P U

74 113 152 7652350 600 .05 .025 .9 .025 .5 .5 8305
73 2 0 0 293 8502850 727 .05 .025 .9.025 .5 .5 13349

Figure 9.15

The discussion so far has assumed that the two CPU’s do not interfere
with each other. Actually, the ECS is divided into two independent seg
ments. As long as both CPU’s do not try to access the same segment simul
taneously, there is no interference. However, if both attempt simultaneous
access to the same segment, one must wait. Browne et al used a five state
Markov model to estimate the amount of interference. In the worst case it
was estimated that the CPU service times would be increased by 8.3% and
10.6% for the 73 and 74, respectively, because of this interference in the
worst case.

9.3.2 Tape and System/Scratch Disk Submodels

The tape system needs little consideration because of the small fraction
of I/O accesses (about 3) to it. For our purposes Figure 9.13 is enough.

SEC. 9.3 / A DATA M ANAGEMENT SYSTEM MODEL 311

The system/scratch disks are separated into two banks of four, with
one bank dedicated to each CPU and a single controller for each bank.
Because of the software characteristics, there is no concurrency within a
bank. Thus each bank may be treated as a single server queue with service
time equal to the sum of the mean seek, latency and transfer times. The
model treats the banks as if they were accessible by either Cyber for sim
plicity. This gives the effect of slightly more capacity than actually available.
As we said in Chapter 1, the model shows the system/scratch disk system to
be the most severe bottleneck, even with this optimistic assumption.

9.3.3 DMS Submodel

The Data Management System consists of roughly 100 disks, separated
into two banks. Each bank has a channel and a controller attached to each
Cyber 70 mainframe. The disks have position sensing capabilities and only
need be connected to the channel and controller during transfer operations.
A disk access consists of the following stages, once the disk is acquired:
Initiation — The controller is acquired and used to initiate positioning; the
controller is then free to service some other disk. This stage is very sort,
i.e. less than 1 ms. long. Positioning — The arm is moved to the necessary
cylinder and the disk rotates to the necessary sector for transfer. This stage
has a mean length of 30 ms. Transfer — The controller is reacquired and
information is transferred to or from the disk. This stage has a mean length
of 10 ms. Figure 9.16 illustrates these stages.

Figure 9.16

3 1 2 CASE STUDIES / CHAP. 9

This figure is based on figures and discussion in BROW75 but did not
appear there. The figure and discussion above ignore potential performance
effects of the actual system, for example, if the controller cannot be quickly
reacquired after the positioning stage, then a repositioning stage (another
rotation to get back to the sector) may be necessary. Still, a model as
detailed as Figure 9.16 as part of the top level model would preclude exact
numerical solution of the top level model (Figure 9.13). (With large popula
tions, exact numerical solution of the submodel of Figure 9.16 would also
be impractical. Regenerative simulation of such a model is feasible
[SAUE77c].) The authors decided that the most important aspect of the
DMS disks was the possible simultaneous positioning and transfer stages of
two (or more) disks in the same bank. This led to the representation in
Figure 9.13, with separate queues for positioning and transfer. Note that
Figure 9.13 allows some impossible situations in the actual system, e.g.,
simultaneous transfer and positioning on the same disk. After studying six
such inaccuracies of the representation of Figure 9.13, using submodels, the
authors concluded that the inaccuracies had little effect on the model
results. In the figure there are four queues (per bank) labelled "Disk Bank."
These represent the positioning stage. The initiation stage is ignored. The
number four was chosen because it was highly unlikely that more than four
positioning stages would occur concurrently, based on system data. The two
server queue labelled "Controllers" represents the transfer stage.

9.3.4 Simulation Model, Validation and Predictions

The model as described was intended to be used to study the effects of
a large number of system parameters, so that model results could be used to
guide development and configuration of the system. However, since the
system was not yet operational, there was no way to directly assess the
accuracy of the model. A more detailed simulation model was constructed,
both to convince the analysts that their model was sufficiently accurate, and
to convince the designers and others that the model was valid. The simula
tion model was also constructed in a hierarchical manner, with four analysts
constructing relatively independent components and a fifth constructing the
control and interface portions of the simulation program. This division of
labor allowed the entire program to be completed in approximately one and
a half months. (As we said in Chapter 1, the entire modeling effort took
about 2 months for the six analysts to complete.) The published utilization
estimates as produced by the two models were within 5% agreement.

As we said in Chapter 1, the (numerically solved) model was used to
make two major predictions: First, that the system/scratch disk subsystem
would be a major bottleneck. Second, that if that subsystem were rede
signed to increase scratch disk capacity, then performance of the system

313

would be unacceptable because of insufficient CPU capacity. Both of these
predictions were confirmed by subsequent operating experience.

We have necessarily omitted many details of the modeling effort,
particularly in details of the submodels. The reader is referred to the
original paper [BROW75] for a more thorough discussion.

9 . 4 A MODEL OF AN INTERACTIVE SYSTEM

In the cyclic queue model, the central server model and the modified
central server model of BROW75, memory contention is indirectly consid
ered by restricting the population of jobs in the model. This is usually
sufficient to get estimates of utilizations and throughputs, but there is no
attempt to estimate times spent waiting for memory and thus there is no
attempt to estimate response times. (Though our attention is now on
interactive systems, the same statements apply to turnaround times in batch
systems.) The approach used in BROW77 is an excellent example of a
general approach used to consider memory contention and estimate response
time. Though the model is of a nonpaged system, the approach is also
suitable for paged systems, as we will see in Section 9.5.

The modeled system consists of a CDC 6600 and a CDC 6400 at the
University of Texas at Austin. The operating system (UT-2D) is locally
implemented with its roots in early CDC operating systems. The usual
mode of operation has the interactive service on the 6400 and the batch
service on the 6600. 500,000 words of Extended Core Storage (ECS) are
used as a swapping device to the 64,000 words of central memory of the
6400. There are also 4 CDC 808 disks and 8 CDC 841 disks.

Figure 9.17 describes the activity phases of an interactive job in the
system. After completion of terminal input (block 1) the job is ready to run.
It waits for the memory scheduler to be run (block 2), which does not occur
until there is a change in status of a job already in memory. When the
scheduler runs (block 3) the job may or may not be allocated memory.
After the scheduler allocates memory to the job it must wait for resources
needed to swap the job into memory (block 4). The resources required are a
contiguous block of memory (compaction may be necessary to make availa
ble memory contiguous) and a peripheral processor to initiate the swap-in.
After the swap-in (block 5), the job can perform its computation while
resident in memory (block 6). The job will leave memory either because it
completes its computation or because its memory is being preempted. (In
the UT-2D system, unfinished interactive jobs are preempted from memory
after one second of memory residence. Memory scheduling is partially
based on a round robin strategy with this one second quantum.) After
completion of computation, the job again waits for a scheduler run (block

SEC. 9.3 / A DATA M ANAGEMENT SYSTEM MODEL

314 CASE STUDIES / CHAP. 9

Figure 9.17
7) until the scheduler recognizes the job’s status has changed. The job then
waits for a peripheral processor to initiate the swap-out (block 8). After
the swap-out (block 9) the job returns to wait for the scheduler, if it has
been preempted, or to wait for completion of terminal input, otherwise.

Figure 9.18 is the queueing network model corresponding to Figure
9.17. (Figures 9.18, 9.19 and 9.20 are copies of Figures 1.3, 1.4 and 1.5,
respectively.) In Figure 9.18 the times spent waiting for scheduler runs
(blocks 2 and 7 of Figure 9.17) are included as part of other times which
are explicitly shown. The "swap delay" queue corresponds to block 4. The

o o

SEC. 9.4 / M ODEL OF AN INTERACTIVE SYSTEM 315

Figure 9.18

Figure 9.19
contention for peripheral processors is not directly considered in the model,
but the mean time to wait for a peripheral processor for a swap-in is includ
ed in the swap delay queue service time. The mean time to wait for com
paction is also included in that service time. A central server model is
embedded within the model to represent CPU and I/O activity.

Numerical parameters for the model are obtained from the software
monitor built-in to UT-2D. The measurements indicate that it is reasonable
to consider all service times except the CPU times to be exponential. CPU

316 CASE STUDIES / CHAP. 9

Job field lengths (K = 1024HI)

Figure 9.21
scheduling is round robin with a 16 ms. quantum and about 0.5 ms. switch
ing overhead. The mean interactive CPU time is slightly less than the
quantum, contrary to our criteria for representing round robin as processor
sharing in Chapter 2, but it is not unreasonable to represent the CPU
scheduling as processor sharing since the criteria are nearly satisfied. Thus
the model of Figure 9.18 would satisfy product form conditions if it were
not for the memory queue.

From our discussion in Chapter 6 , a flow-equivalence approximation is
appropriate for this model. By eliminating the terminals and memory from
Figure 9.18, we get the network of Figure 9.19, which does satisfy product
form and is easily solved. The throughputs from Figure 9.19 for the possible
populations, along with the characterization of the memory requirements,
can be used to produce a composite queue characterization in Figure 9.20.

SEC. 9.4 / MODEL OF AN INTERACTIVE SYSTEM 317

That figure’s model also will have a product form solution and can be easily
solved. The one difficult aspect of this approximation which we have not
considered before is the more detailed memory contention representation in
BROW77.

Before, we have assumed that each job required the same amount of
memory (in Chapters 6 and 7). However, even though jobs may have fairly
homogeneous behavior, the amount of memory they require fluctuates from
time to time. It is more reasonable to assume that there is a probability
distribution characterizing a job’s memory requirements. Figure 9.21 shows
a probability density function observed by Brown on the CDC 6400. The
UT-2D system limits interactive jobs to 32K of memory. Note the three
high density spikes in the distribution. These correspond to frequently used
utilities and systems (editors, Basic, etc.).

Let us assume that there are A jobs in the system. We desire a value a
and a function CAP(n) such that aCAP(n) is the service rate of the com
posite queue with length n, n = 1 , 2 We have obtained, by solution of
the model of Figure 9.19, R(n), the throughput in that model with a popula
tion of n jobs, n — 1,2,...,A. Let us assume we can find a function h(i \ n)
which is defined as the probability there are / jobs in memory given n ready
jobs, i = 1 , 2 n = 1,2,...,A. Then

flCAP(n) = X R(i)h(i \ n) ,n = 1,2,...,A. (9.4)
i = l

So our problem is to find h(i\n). This can be fairly easily done under two
assumptions made in BROW77, for certain scheduling algorithms. Except
for the cases considered in BROW77, this problem has received little atten
tion and remains unsolved (except for simulation).

It is assumed that (1) with each scheduler run, the memory require
ment of each job is determined from the distribution (e.g. Figure 9.21)
without regard to the job’s previous memory requirement, and (2) with
each scheduler run a fresh decision is made with regard to each job, regard
less of whether it is currently allocated memory or not. (Thus a job holding
memory may have that memory preempted regardless of other scheduling
policies, e.g., the one second round robin policy of UT-2D.) The scheduler
most like the UT-2D scheduler is First Fit (FF) which allocates memory to
jobs in FCFS order as far as possible. However, if a job cannot fit in the
available memory, and another job with a later arrival time can fit in the
available memory, then that job is allocated memory, in violation of FCFS
order.

318 CASE STUDIES / CHAP. 9

Let there be C units of memory, let p(c) be the probability that a job
requires c units of memory, c = 1,2,...,C, and let P(c) be the cumulative
function of p(c), i.e., P(c) = p (l) + p{2) + ... + p(c). Consider the
scheduler as it decides on the jobs of the queue, in order. Let g(c,n \ l) be
the probability that the scheduler has allocated c units of memory to n jobs
given that it has considered / jobs, c = 0,1,2,...,C, n = 0,1,2,...,A,
/ = 0,1,2,...,A. From the definition,

)1 , for c = n = l = 0 ,
0, for c > 0, n = l = 0, (9.5)

0 , for n > /, for all c.
In general,

g(c,n | / + 1)

= g(c,n I /)(1 - P(C - c)) + ^ g (i , n - 1 | l)p{c - /'),
1 = 0

(9.6)

for n = 1,2,...,A, / = 1,2,...,A — 1. The first term of (9.6) corresponds to
the /+ \ 'h job requiring more memory than is available, (c units have been
allocated to the n jobs after consideration of / jobs. P(C — c) is the
probability the /+ \ ,h job requires at most C — c units, so the probability
the /+ l lh job requires more than C — c units is 1 — P(C — c).) The
remaining terms correspond to i units having been allocated to n — 1 jobs
after consideration of / jobs. In each of these cases the nth job allocated
memory must require c — i units. Using (9.5) and (9.6) we can obtain
g(c,n | /) for all required values.

Having g(c,n \ l) we can determine
C

h(i I n) = ^ g(c,i | n). (9.7)
c = 0

Equations (9.4), (9.5) and (9.7) apply to all scheduling algorithms consid
ered by Brown et al. Schedulers other than FF will result in different
equations (possibly more than one per scheduler) corresponding to equation
(9.6).

One of the objectives of the modeling effort was to demonstrate that a
systems designer could effectively use such a model. In such usage, some
parameters will vary but the designer will be unable to predict the variation.
Thus the designer is forced to use fairly fixed estimates. In comparing the
model with measured results, some parameters were held fixed even though
more accurate values for the parameters were known. In particular: (1) The

SEC. 9.5 / THE V M /370 PERFORM ANCE PREDICTOR 319

amount of memory available to user programs (C) was assumed to be 33K.
The remainder of memory is used for the operating system and for terminal
buffers. The actual amount of available memory fluctuated from about 32K
to 34K depending on the number of logged on users. (2) The mean user
think time was assumed to be 18.7 seconds. (3) In the system, user activity
accounts for only a small fraction of CPU activity. The model CPU times
are obtained by dividing the measured CPU times by this fraction. This
fraction was assumed to be .165. The actual values for three measurement
periods ranged from .15 to .18. (4) The mean disk service times were
assumed to be 100 ms. (5) The swap delay, swap in and swap out queue
mean service times were assumed to be 60, 2 0 and 30 ms., respectively.

The input parameters to the model were (1) the number of users,
(2) the probability that a job releasing memory has been preempted (the
probability of going from block 6 to block 8 in Figure 9.17, or, equivalently,
the probability of going from the release node to the allocate node in Figure
9.18), (3) the job memory requirement distribution, p(c), (4) the probabili
ty a job is swapped out after finishing the CPU queue, and (5) the mean
user CPU time.

CPU Util. Mean Resp. Deg. of M.P.
Period Users Meas. Mod. Meas. Mod. Meas. Mod.

1 52 0.93 0.80 1.32 1.27 3.67 3.47
2 30 0.93 0 . 8 6 1.24 1.60 3.30 3.99
3 49 0.83 0.71 0.97 0.74 2.35 3.13

Figure 9.22

Figure 9.22 shows some of the performance metrics as measured and
predicted for three measurement periods. Though the agreement is not as
close as we might hope, such accuracy should be sufficient in the design and
development stages of a system. Note that this is a very simple model of a
fairly complex system, and recall that several model parameters are intention
ally fixed beforehand rather than based on the measured data. In particular,
the authors report much better agreement between measured and predicted
values when the measured fraction of CPU time attributed to users is used
rather than the fixed value (.165).

9.5 THE VM /370 PERFORMANCE PREDICTOR

Vendors of computer systems need methods for predicting performance
of the computer systems they provide. Otherwise, they may either
(1) underestimate the resources required and provide a system with unac
ceptable performance, or (2) overestimate the resources required and lose
the customer to a competitor with a lower bid. The VM/370 Performance

320 CASE STUDIES / CHAP. 9

Predictor [BARD77b,BARD78a] is used by IBM personnel to estimate
performance of System 370 computer systems using the VM/370 operating
system. It is principally intended for estimating performance of existing
VM/370 installations which are being reconfigured and of new VM/370
installations.

CPU

10—fI/O system

Figure 9.23

Chain

Non
trivial
jobs

Figure 9.24

We are principally interested here in the model portion of the Pre
dictor, but we should point out that it includes facilities for determining the
model parameters. The VM/370 operating system includes its own software
monitor which can be selectively enabled. The Predictor includes a Fortran
program for producing the model inputs from the software monitor output.
(When estimating performance of a new installation, the model input must
be provided from other sources.)

SEC. 9.5 / THE V M /370 PERFORM ANCE PREDICTOR 321

Think state

Chain 2:

Non
trivial
jobs

Allocate memory Release memory

Figure 9.25

A principal difference between the model in the Predictor and almost
all of the other models considered in this chapter is that it considers jobs in
the system to be heterogeneous. Both the VM/370 schedulers and the
model classify jobs as "trivial" or "non-trivial" according to their demon
strated resource requirements. In addition, the model allows arbitrary
partitioning of jobs into separate chains. Our discussion will assume that
only two chains, trivial and non-trivial, are being considered.

The input to the model is partitioned into categories, the system de
scription and the workload description. The system description gives the
CPU model, the main storage size, the number and types of channels and
secondary storage devices and the assignment of paging and file data sets to
the secondary storage devices. The workload description is given by chains;
the number of users, the mean think time and the mean resource demands
are given for each chain. The predictor transforms the workload description
appropriately when it is based on a different system than the one specified,
e.g., if different CPU’s are involved, the CPU time is multiplied by the ratio
of CPU speeds. Details of the workload description and transformation are
found in BARD77a.

322 CASE STUDIES / CHAP. 9

The model consists of a three level hierarchy: the I/O subsystem
model, the active (i.e., multiprogrammed) set model and the transaction
flow model (i.e., the entire system). The I/O subsystem model is an open
queueing network model which represents details of the channel-disk archi
tecture such as those discussed in Section 9.3.3 in regard to the ALS model.
We will not discuss this model but refer the interested reader to WILH77
for discussion of this type of model. In addition to the system and work
load description described above, the I/O subsystem model requires esti
mates of the arrival rate of requests for each data set. The output of the
I/O subsystem model consists of the mean response times by data set. The
active set model is depicted in Figure 9.23. It is a cyclic queue model with
an infinite server queue for the I/O system; the response times from the
I/O subsystem model are used as the service times at the infinite server
queue. (The dynamic behavior of the system might be captured more
accurately if the I/O subsystem model and its interface with the active set
model considered state dependent behavior instead of mean values. Howev
er, the approach used is more convenient and seems to be sufficiently accu
rate in practice.) The active set model satisfies product form and can be
easily solved by the methods of Chapter 5. The degree of multiprogram
ming (by chain) is required as input to this model; the model output is the
mean memory residence time (by chain). The transaction flow model
(Figure 9.24) uses the mean memory residence times from the active model
as service times in an infinite server queue. Rather than go to the effort of
attempting an exact solution of the transaction flow model, a solution is
obtained by the mean value arguments given below. The final solution of
the hierarchy of models is interpreted as a solution of the overall model
shown in Figure 9.25.

Hopefully, the reader is wondering "Which came first, the chicken or
the egg?" in regard to the model inputs and outputs for the three models of
the hierarchy. The I/O system model requires arrival rates at the data sets
which should be obtained from the transaction flow model, the active set
model requires the response times from the I/O system model and the
transaction flow model requires residence times from the active set model.
The answer is that we start with a guess for the residence times. Then we
can solve the transaction flow model, the I/O system model and the active
set model, in that order. The residence times from the solution of the active
set model will usually be different from our initial guess. We can use the
new value and repeat the cycle. We continue to repeat the cycle until there
is little change in the residence times. There is no guarantee that such
convergence will be achieved, and there is no guarantee that the results will
be a correct solution for the model(s), but in practice convergence usually is
achieved within five to ten cycles and the model results agree well with
measurement values [BARD78].

SEC. 9.5 / THE V M /370 PERFORMANCE PREDICTOR 323

Trivial Resp. Non-trivial Resp.
CPU Logged CPU Util. (seconds) (seconds)

Model Users Meas. Pred. Meas. Pred. Meas. Pred.
135 4 17.1 17.2 0.70 1 . 0 0 19.0 24.1
145 8 84.0 84.8 0.25 0.24 3.9 3.1
145 15 96.6 97.4 0.51 0.44 26.6 19.7

155-11 2 0 2 2 . 2 2 2 . 2 0.05 0.06 1 . 1 1 . 1
155-11 23 36.9 35.7 0.08 0 . 1 1 2 . 8 3.6

158 37 59.2 55.4 0 . 2 1 0.26 2 1 . 8 18.4
158 46 70.3 69.0 0.14 0 . 1 2 2.5 1 . 6
158 24 6 8 . 8 71.3 0.07 0.09 6 . 1 5.3
168 72 36.0 35.2 0.13 0 . 1 1 7.8 6.7
168 117 96.3 99.7 *0.46 0.41 8 . 0 9.7

*0.48 0.53 13.9 10.7
*0.55 0.58 19.2 19.2
*0.83 0.73 28.3 26.0

‘These response times refer to four separate user classes. Classifica
tion was based on ratio of trivial to nontrivial transaction counts.

Figure 9.26
Let us now consider the solution of the transaction flow model (Figure

9.24). A user is assumed to make transitions between states in a cyclic
fashion: THINK - MEMORY WAIT - ACTIVE - THINK - ..., or equiva
lently, 1, 2, 3, 1, Let us designate the trivial jobs as chain 1 jobs and
the non-trivial jobs as chain 2 jobs. A trivial job is assumed to be immedi
ately admitted to service, i.e., it is assumed to spend no time in the memory-
wait state. Thus its state transitions are THINK - ACTIVE - THINK, ... or
1,2,1, A non-trivial job may have to spend time in the memory-wait
state.

We are given the numbers of jobs N t in chain i, the mean think times
Ti j (i.e., time in state 1 for chain i jobs), the mean active times (residence
times) 7 ^ 3 , the mean main memory requirements (resident set sizes) and
the total main memory available S. We are required to compute the
throughputs of each chain (so that we can determine the arrival rates at the
data sets for the I/O subsystem model) and the mean number of jobs of
each chain in the active state (which is used as the degree of multiprogram
ming in the active set model. We will determine N jk and Tjk , the mean
number of jobs of each chain in each state and the mean time spent by jobs
of each chain in each state, respectively, for chain / = 1 , 2 and state k = 1 ,
2, 3. N j 3 will be the input to the active set model. The input to the I/O
subsystem model can be determined from 3 and T{ 3 using Little’s rule.
We can also obtain desired performance measures, e.g., utilizations and
response times, by appropriate use of these values and the model inputs.

324 CASE STUDIES / CHAP. 9

The probability of p jk that a random chain i job (/ = 1, 2 for trivial,
non-trivial) is in state k (k = 1, 2, 3 for think, memory-wait, and active) is
proportional to the time spent by that job in that state, i.e.,

Pi,k =
i,k

T i, 1 + T i,2 + T i,3
for all i,k. (9.8)

Hence the mean number of chain i jobs in state k is

*i.k = NiP,k = * f
1 i,k

T i , \ + T i,2 + T i, 3
(9.9)

Note that we are given Ni,Tl , and Ti 3 Further, we have assumed that
T { 2 = 0. Thus we only need to obtain T2 2-

The mean amount of main storage used by chain i jobs S t, is simply
given by

S t = A,. 3 Wr (9.10)

Thus we can immediately obtain S'] from equations (9.9) and (9.10). If S']
is less than S then there is enough main storage to accommodate trivial jobs,
on the average, and our assumption that T, 2 = 0 is reasonable; if S, is
greater than S the system is saturated by trivial jobs and our solution
terminates unsuccessfully. These equations and arguments are not necessari
ly correct because they are based on mean values rather than distributions.
(Recall that the mean value analysis of Chapter 5 rests on formal deriva
tions and the underlying Markov processes.) Strictly speaking, a trivial job
will experience memory wait if all of main storage is filled with other trivial
jobs; the only case where trivial jobs never experience memory wait is when
S is at least N XW x. However, our goal here is not formal analysis but
effective performance prediction. The methods may be heuristic, but they
are reasonable and are supported by extensive empirical results.

To obtain T2 2, let us first assume it is zero. Then we can obtain S 2
from equations (9.9) and (9.10). If S 2 is less than S'-S’,, then we conclude
that T2 2 = 0. Otherwise, we assume that storage is saturated, i.e.,
S 2 - S — S {, and we have

SEC. 9.6 / COMPUTER COMMUNICATION MODELS 325

S - S

(9.11)

or equivalently

(9.12)

Having determined T 2 2> we are through with the solution of the transaction
flow model. We can proceed to the I/O subsystem model and then the
active set model. Then, if necessary, we repeat the cycle through the
models.

The Predictor is widely used within IBM (it is not expected to become
available outside of IBM) and has been validated with measurements from a
range of systems and workloads. See Figure 9.26 for some sample results
with live workloads. The Predictor is a satisfying example of a fairly simple
queueing network model being used effectively to estimate the performance
of complex computer systems.

9.6 COMPUTER COMMUNICATION MODELS

When several geographically separate computers are connected in a
network, or when terminals are not located near their computer system, a
substantial portion of response times and a substantial portion of system
cost will be due to communication between these entities. Queueing network
models have played an important role in estimating the performance of
computer and communication networks. We provide here a brief summary
of some of the results in one of the early papers about the ARPANET
[KLEI70].

For the purposes of that paper, the ARPANET consists of nineteen
"host" computers located at universities and research centers through the
United States. (This description was out of date even at the time that paper
was written, as acknowledged by the author.) Associated with each host is
an Interface Message Processor (IMP), a minicomputer which handles all
network dealings for the host. The IMP’S are connected by leased telephone
lines with bandwidths of 50K bits per second. (A few lines are of different
bandwidths.) However, there is not a direct connection between every pair

326 CASE STUDIES / CHAP. 9

of IMP’s. This would be rather expensive and unnecessary. A message sent
from one host to another will typically pass through several intermediate
IMP’s. So that the communication lines will not be monopolized by large
messages and for other reasons messages are divided into packets with a
maximum length of 1000 bits. Different packets of a message may take
different paths to the same destination, thus the term "packet switching
network." The network is also referred to as "store-and-forward" because
the IMP’s store copies of the packets they forward until they receive
acknowledgement messages saying that the packets have been successfully
received by the subsequent IMP’s of the packets’ paths.

The response time for a packet will be the sum of several delays in
transmission from IMP to IMP. The delays in transmission will typically
consist of (1) an IMP processing time of roughly 1 ms., (2) a waiting time
until the communication line is available, (3) a propagation delay for the
first bit to travel from the sender to receiver, and (4) a service time de
pending on the packet length and line capacity.

An open queueing network is a reasonable model of the network
because the number of packets in the network may be quite large. It is
fairly reasonable to assume that messages arrive from the hosts in a Poisson
manner. However, there are several problems if we wish to use a product
form network as our model. The packet lengths (and thus service times)
have a more regular distribution than the exponential, while scheduling is
typically first come first served. The length of a packet remains constant as
it goes from IMP to IMP, and thus a packet’s successive service times are
not at all independent. Choice of routing paths for a packet may depend on
congestion of the possible paths. None of these problems seem to be trou
blesome in this case. Kleinrock assumes exponential packet lengths, that
routing may be specified probabilistically and that an independence
assumption holds, i.e., successive service times for a packet are independent.
With these assumptions our model is simply a network of FCFS queues with
exponential service times and the results of Chapter 4 apply directly.

The average packet length is 560 bits. For each packet there is
(hopefully) an acknowledgement with average length 140 bits. So the mean
service time is

SEC. 9.6 / COMPUTER COMMUNICATION MODELS 327

560+140
2—-__^ — — .007 seconds = 7 ms.50000

We can determine R and r(m), m = by measuring the traffic flow in
the network, including acknowledgements. Then U(m) = 7Rr(m) (assuming
R is expressed in traffic per ms.) and

Q (m)

1U,On)
l - U

+ 7 ms.
On)

Then the mean response time is
M
2 r (m) Q (m) '

m= 1

(9.13)

This analysis, unfortunately, is insufficient in that it severely underestimates
the response time as estimated by a detailed simulation. Figure 9.27 shows
response time estimates for various fractions of R up to 100%. The curve
labelled "theory without acknowledgement adjustment" is obtained from
equation (9.13).

There are several things we can do to improve the estimate, though
they will violate product form conditions so our analysis is not rigorously
defensible, particularly in regard to assumed independence of the queues.

328 CASE STUDIES / CHAP. 9

First, though the mean service time for all traffic is 7 ms., the mean service
time for packets is 1 1.2 ms., so we should increase by 4.2 ms. Second,
we have ignored the propagation delay and should add this to Q(my The
propagation delay will depend on the distance traveled. Third, we need to
add the IMP processing time for every time the packet is transmitted, plus
one more for the destination. With all of these changes our estimate of
mean response time for a packet is

M
1 '< e („ , + -> .2 + D(m)+1) + 1, (9.14)

m = I

where ZTm) is the propagation delay on line m. This estimate agrees very
well with the simulation; it is labelled "theory with correct acknowledge
adjustment and propagation delays" in Figure 9.27. (The remaining curve is
for an analysis which considers the priority given to acknowledgements.)

This model allows much room for variation to consider special charac
teristics of particular networks. In addition, if we wish to vary the capacities
of the lines to improve the cost effectiveness of the model, it is possible to
determine optimal capacity assignments given cost and/or performance
constraints [KLEI70, CHAN77a], Many other queueing network models
have been proposed for computer communication systems. For further
discussions see KFEI76, SAUE77c, SAUE78b, SCHW77, and WONG78b.

9.7 EXERCISES

9.1 Derive the values in Figure 9.4.
9.2 Using algorithm 3.2, the algorithm of exercise 3.4 and the results of

Chapter 5, duplicate Figures 9.5 and 9.6.
9.3 Using algorithm 3.4, the algorithm of exercise 3.6 and the results of

Chapter 5, duplicate Figures 9.11 and 9.12.
9.4 Justify equations 9.1, 9.2, and 9.3.
9.5 Determine the equation corresponding to equation 9.6 for First Fit

scheduling with a bound on the number of jobs in memory.
9.6 Determine the equations corresponding to equation 9.6 for First Come

First Served scheduling.
(Exercises 9.5 and 9.6 assume that the previously stated assumptions of
BROW77 apply.)

9.7 Show that expression (9.13) gives the same response time result as the
algorithm at the end of section 4.2.

CHAPTER 10

M ANAGEM ENT OF
M O DELING PROJECTS

This chapter is based upon our experience working and consulting with
industry and government on performance problems. We address typical
questions that arise in the practice of performance modeling such as
(1) How does one manage a performance prediction project? (2) What
methods should be used for performance predictions? Our viewpoint is
pragmatic. We begin with the fundamental premise that unless the money
earned from a performance group exceeds the money spent on it, there is no
point in having the group. The acid test of an investment in a performance
group is the same as in any other investment: is the cost/benefit ratio
satisfactory?

10.1 THE MANAGER’S VIEWPOINT

Performance groups are used in the phases of system evolution referred
to in chapter 1: design and development, configuration and tuning. In
system design and development we are concerned with new systems (as
opposed to configuring existing systems to meet specific needs). Configura
tion is concerned with selection of hardware and software components from
the sets of available components. Tuning usually consists of making rela
tively minor modifications (e.g., changing scheduling policies) to an existing
system to improve performance, perhaps to dramatically improve perform
ance. The objectives to be set for a performance group depend on whether
its primary function is to participate in design, development, configuration
or tuning.

10.1.1 Consequences of Decisions

A wrong recommendation made by a performance group participating
in a system design may have disastrous consequences, affecting a large
group of potential users as well as the suppliers of system components. An
incorrect decision in system configuration may be severe, but is not likely to
be as catastrophic as a wrong decision in design because fewer users will be
affected. System tuning decisions can be altered quite easily and hence the
cost associated with wrong tuning decisions is relatively small. The impor
tance of a decision (measured in money lost in making a wrong one) plays a
key role in determining the modeling technology to be used.

329

330 MANAGEMENT OF MODELING PROJECTS / CHAP. 10

10.1.2 Frequency of Use of Technique

There are many more cases of system configuration than there are of
systems design and development because there are normally several installa
tions of each system design. A given configuration may be tuned several
times in its lifetime. Vendors and companies specializing in performance
find it profitable to develop configuration and tuning tools because there are
a large number of potential users/customers for these tools. Individual
customers usually find it more cost-effective to purchase configuration and
tuning tools than to develop their own.

An organization which does not develop computing systems will typi
cally obtain configuration and tuning tools from external sources. Perform
ance groups in such organizations must understand the tools they obtain and
be able to validate predictions made by using these tools against measure
ments made in their own installations. The management of such perform
ance groups is very different from the management of performance groups
in organizations which do develop computing systems. (These latter per
formance groups will likely develop their own performance tools.)

10.1.3 Number of Alternatives

The space of design alternatives is vast. Performance models used in
systems design must be flexible since very different aspects of the system
may have to be modeled in the design and development stages. The number
of alternatives that needs to be considered in system configuration is consid
erably smaller. The alternatives in system tuning are even more well-
defined and limited. The modeling techniques to be used depend heavily on
the size of the parameter space.

10.1.4 Validation

The credibility of a tuning model is usually demonstrated by showing
that it has successfully predicted the effects of previous modifications. A
user’s faith in a good tuning model is bound to increase if it successfully
predicts the behavior of his or her modifications. Similarly, the validity of a
configuration model may be demonstrated by comparison with measure
ments obtained from previous installations.

However, it is difficult to have faith in a model during design and
development because it may be some time after the modeling effort before
the system is operational. It is difficult to gain credibility for a design or
development model by showing that the same technique has been applied on
earlier systems, because it is not self-evident that the same technique will
work satisfactorily for a radically different system. Even if a

SEC. 10.1 / THE M ANAGER’S VIEWPOINT 331

designer/developer has faith in a modeling technique, he or she may not
have faith in a particular model because some aspects of the system are
ignored. For these reasons it is critical that the designers/developers have
faith in the modeling team. Further, the modeling team must demonstrate
that all important aspects of the system are considered in the model.

10.1.5 Workload Definition

The workload definition provides the input to the model and thus
determines its output. The workload is relatively well defined in tuning
models and relatively poorly defined in designing and developing models. It
is difficult, but necessary, for designers and modelers to agree on a set of
workload scenarios. A clear definition of workload is necessary for a
successful modeling project.

10.1.6 Summary of Performance Group Objectives

10.1.6.1 Design and development groups.

(1) Demonstrate the credibility of the performance group by success
fully predicting the performance of designs.

(2) Work closely with designers/developers to understand the intrica
cies of each design. Understanding and explaining the interactions
between different aspects of a system is the most important con
tribution a performance group can make.

(3) Make the best possible predictions, given the limited data on hand,
and justify the predictions. A prediction that is to have impact on
a design must be made early in the design/development cycle.
Such predictions are necessarily made with incomplete data. It is
tempting for a performance group to protect itself by refusing to
make predictions until measurements can be made. Indeed, per
formance teams can (and often do) play totally safe by restricting
their activities to measurement. Predictions may be wrong. How
ever, in the long run, good performance groups can save their
organizations a great deal of money by recognizing poor design
decisions early in the design/development cycle.

(4) Set up performance goals for each system. Each system, however
novel, must meet certain performance goals to be useful. It is the
duty of the performance group to work closely with marketing
groups (or corresponding groups in non-profit organizations) in
determining suitable ranges for key performance measures. Far
too often, systems are implemented without stated performance
goals. It is safer to abdicate the responsibility of stating perform
ance goals until the system is operational. However, avoiding the
statement of performance requirements is costly because poor

332 MANAGEMENT OF MODELING PROJECTS / CHAP. 10

designs can be allowed to develop into poor systems, precisely
because goals are nebulous.

(5) Make measurements on prototypes and early systems. Validate
models as much as possible. If necessary, explain to the
designers/developers why the system does not behave in the
manner that they expected it to behave.

(6) Use the experience from the design/development models in help
ing to build configuration models.

10.1.6.2 Configuration: Vendor’s Performance Group.

(1) Determine the range of configuration alternatives that customers
want considered.

(2) Validate the model by comparison with measurements for all (or
several) points in the range of alternatives.

(3) Suggest guidelines for choosing the best configuration for a given
customer.

10.1.6.3 Configuration: Customer’s Performance Groups.

(1) Understand the modeling techniques used by the vendor and
capacity planning consultants. Far too often, a customer treats a
capacity planning program offered by a consulting firm as a black
box encapsulating magic or incomprehensible mathematics. Model
ing techniques are generally very simple. Certainly, every reader
of this book should be able to understand the technology underly
ing capacity planning models. It is necessary to understand the
programs one is buying because one must (a) choose between
competing capacity planning programs and (b) know the fallibility
of the programs one is purchasing.

(2) Understand measurement tools, and the data they report.
(3) Quantify anticipated workloads by extrapolating from current

measurements.
(4) Use configuration tools to predict the performance of proposed

configurations with anticipated workloads.

10.1.6.4 Tuning. The goals for groups working on tuning are similar to
the goals of groups on configuration, except that (1) tuning efforts place
greater emphasis on measurement and (2) tuning "models" are likely to be
guidelines or decision rules. The analyst should have an intuitive under
standing of these rules.

10.2 EVALUATION OF MODELING TECHNOLOGY

10.2.1 Measurement

Measurement is conceptually simple. To determine performance,
measure the behavior of a system running a representative workload. To
determine how changes to the system will impact performance, implement
the changes and measure the changed system running the representative
workload. Measurement is a necessary aspect of modeling techniques.
However, reliance on measurement exclusively is short-sighted because
(1) it may not be possible to implement a proposed system and (2) it may
be prohibitively expensive to develop a detailed synthetic workload to
represent an anticipated workload. Measurement is attractive because it
deals with real, tangible things. The drawbacks to measurement are that
(1) predictions based on this approach alone may come too late to be of
any use and (2) the approach may be prohibitively expensive.

10.2.2 Simulation

Simulation is a flexible and powerful approach. A simulation model
can be arbitrarily detailed, representing all system characteristics. Abstract
models are made of the anticipated workload and of the proposed system,
and measurements are taken from the simulation program. Simulation has
advantages of security in the applicability of the technique, of comprehensi
bility, of comprehensiveness (particularly with respect to time dependent
behavior) and of application to software development. Simulation has
disadvantages of potentially containing programming errors, of time and
cost for simulation program development, of unavailable input data and of
computational expense.

Security. A performance group can embark on a major project know
ing that the simulation approach will work provided there is sufficient time
to write and run the simulation. The performance team can be secure in
their choice of method since the limitations are known, at least qualitatively,
in advance. The same cannot be said about mathematically solved queueing
models.

Comprehensibility. Most computer professionals have some understand
ing of simulation; the concepts are simple. Most computer professionals do
not understand queueing-theoretic models and as a consequence may feel
threatened by proponents of such models. (This is partly a result of the
jargon and notation often associated with queueing theory.) Readers of this
book understand queueing theory, but many computer professionals are
suspicious of performance methods other than measurement and simulation.
To convince a manager or designer that the results of a model should be

SEC. 10.2 / EVALUATION OF MODELING TECHNOLOGY 333

334 MANAGEMENT OF MODELING PROJECTS / CHAP. 10

taken seriously one must first convince him or her that the modeling techni
que is reasonable.

Comprehensiveness and time dependent behavior. Besides the obvious
generality of simulation, there is the ability to accurately capture transient
behavior. Decisions are made in the design of some systems (e.g., transac
tion oriented data base systems) to allow certain kinds of deadlocks to
occur in the expectation that these kinds of deadlocks will not occur fre
quently (and the knowledge that recovery is not prohibitively expensive).
Simulation can be used to determine the frequency of deadlocks, and may
uncover unanticipated deadlocks. Queueing theoretic models are very
limited in applicability to transient behavior.

Application to software development. Algorithms and programs used in
a simulation model may be used, in some cases, in the actual system with
only minor modification. Such transfer from model to system is facilitated
by use of a common language.

Correctness. Simulation models, like any complex program, are likely
to contain errors. Even if a model is conceptually correct (i.e., specified
correctly) it’s simulation implementation may have errors which cause very
poor performance estimates. This is a severe problem.

Development time and expense. Simulation models take a significant
amount of time to develop, especially when constructed in general purpose
(non-simulation) programming languages. Detailed simulation development
consumes a critical resource in system development: programmer time.

Availability of input data. A detailed simulator requires detailed input
data, and such detailed data may not be available. A grievous mistake made
by some purchasers of simulation models is to insist on an excruciating level
of detail, in the hope that the more detailed the model the better its predic
tions. The purchaser may find too late that he or she only has guesses for
the required input data. There is no point in detail if there is not a corre
sponding level of credible detail in the input data.

Computational expense. Credible simulation results may depend on
fairly long simulation runs. For this reason, simulation may be infeasible
for studying the sensitivity of a system to a number of parameters.

10.2.3 An Engineering Approach to Queueing Theory

This approach is based on the tenet that all significant aspects of a
system must be represented, regardless of mathematical tractability. Some
submodels may be solved by numerical methods, others by simulation and

others by heuristic approximations, with the overall result being a heuristic
approximation to the solution of a detailed model. The approach attempts
to develop prediction methods which are "reasonable" and appeal to the
intuition of its users.

Advantages. This approach is flexible in that almost any system charac
teristic can be represented (by use of simulation for a submodel, if necessar-
y). The computational time necessary may be dramatically less than that
for a simulation or an exact solution. The memory required may be dramat
ically smaller, as well.

Disadvantages. This approach may produce poor predictions either
because the conceptual model is inaccurate or because the intuitively plausi
ble solution fails. It is very difficult to estimate the error or to defend the
approach from attacks on its credibility. The time to develop approximate
solutions and to empirically validate them (e.g., by comparison with simula
tion) may be prohibitive. One is more likely to be able to find staff for a
simulation model, i.e., programmers, than for a heuristically solved model.

10.2.4 The Formal Queueing Theory Approach

Formal, numerically solved models may not suffer the credibility
problems of heuristic approaches if system characteristics are adequately
represented. However, a numerical solution is likely to be intractable if the
model does not satisfy product form.

Advantages. The algorithms for product form models are very simple
and have been implemented for pocket calculators as well as larger ma
chines. Many of the programs for product form models have been used
extensively, and experience has established the credibility of the programs.
Thus the credibility of the model can only be attacked by faulting the
fidelity of the model itself. The computational requirements for solution of
product form networks are negligible unless there are many closed chains.
Thus one can interactively evaluate a parameter space of models.

Disadvantages. The principal disadvantage is that one may have to
ignore important system characteristics to obtain a mathematically tractable
model. If the model does not have a product form solution, even though its
solution may be computationally tractable the implementation cost of
programming the solution may be significant. Finally, there is a problem of
skepticism of those unfamiliar with queueing models. The only practical
way to establish the credibility of a queueing model before a skeptical
computer professional is empirical validation.

SEC. 10.2 / EVALUATION OF MODELING TECHNOLOGY 335

336 MANAGEMENT OF MODELING PROJECTS / CHAP. 10

10.2.5 The Method of Choice

The best method to use depends upon the stage of evolution of the
system being analyzed (i.e., design/development, configuration/tuning) and
the affiliation of the performance group. We consider the important classi
fications.

Design/development. A design analyst should be capable of carrying
out "back of the envelope" calculations to determine whether a design in its
early stages is reasonable and worthy of further consideration. Since there
are interactive performance modeling packages on the market, it is prefera
ble to do "front of the terminal" calculations instead of "back of the enve
lope" calculations, both for sake of analyst efficiency and modeling accura
cy. If an analyst does not have access to a performance analysis package,
he or she can implement the algorithms we have given (on a machine as
small as a programmable calculator for some of the algorithms). The design
analyst should understand the queueing network models and the approxima
tion techniques described in this book so that these techniques may be used
to cull potentially good design ideas from the definitely bad ones. The
design analyst does not need much mathematics but must understand the
models, i.e., what is represented in detail, what is being simply represented
and what is being ignored.

Some designers say that they would rather rely on intuition and trivial
"paper and pencil" calculations than on modeling. These people do not
realize that even trivial paper and pencil calculations deal with models,
albeit simplistic ones. Since queueing network model technology has prog
ressed to the point of providing packages which allow users to (1) define
sophisticated models interactively, (2) solve the models in real time and
(3) obtain reports of model estimates, there is no longer any excuse for
designers to avoid queueing network models.

Design analysts must also develop (relatively detailed) simulation
models to help detect performance problems. Though the cost of develop
ing simulations may be significant, the cost of redesign will likely be even
higher. In our experience, designers are more likely to be convinced by
estimates from simulations than from queueing theoretic results. Further,
issues of vital interest to designers (such as frequency of deadlock) may not
be feasibly considered without simulation.

Configuration/tuning - vendor/consultant. The performance team for a
vendor or performance consulting firm should be capable of developing
relatively detailed models to be configured or tuned. Such detail will usually
force the use of approximate solutions or simulation or both in a hybrid
solution. The team should be capable of carrying out intensive measure-

SEC. 10.3 / ORGANIZATIONAL STRUCTURE 337

merits on the system being marketed and the models must be validated with
measurements. Validation is the most important aspect of configuration and
tuning models.

Configuration and tuning models should (ideally) run while the analyst
is sitting at a terminal. The requirement for short execution times will
usually preclude complex models and detailed simulations. The designer of
a configuration model does not (normally) need to know more mathematics
than there is in this book. However, designers of such models should have
a strong grasp of how approximate models may be constructed from simple
submodels.

The natural questions asked by a buyer of a configuration/tuning
model are "What am I paying for? If the mathematics is simple and the
models are not complex then the cost of the modeling package should be
small. Why shouldn’t I develop my own model for less money than the
vendor or consultant demands?" The answers are "Validation! Validation!"
A vendor or performance consultant has much better opportunity for
obtaining measurements from a large number of systems and carrying out
intensive validation. Gathering and reducing the data to drive the model
and human engineering of the modeling software is also a sizable cost.

Configuration/tuning - customer. The performance group of a computer
system user has less stringent requirements than groups developing models,
unless there are no satisfactory models for the user’s system. The primary
responsibility of a computer system user’s group is to understand the system
itself and the performance tools marketed by the system vendor and per
formance consultants. There are many different performance tools on the
market. Most of these tools are concerned with measurement though some
are modeling tools. It is important to have some understanding of how the
tools work so that the analyst will place the correct amount of credibility
(too much or too little can be dangerous) on the reports generated by the
tools. These reports predict performance measures but are not directive;
the reports do not suggest changes to the system. Hence the analyst must
understand the system and the reports thoroughly so that correct changes
can be made.

10.3 ORGANIZATIONAL STRUCTURE

What effect does the organizational relationship of the performance
group with other groups have on the quality of performance evaluation?
We address this question, first considering design and development and then
configuration and tuning.

338 MANAGEMENT OF MODELING PROJECTS / CHAP. 10

10.3.1 Design and Development

Peformance analysts are used in the design of computing systems in
two modes:

1. Performance analysts are members of the design team. The ana
lysts report to the same managers as other members of the design
team. The analysts are responsible for helping designers in evalu
ating design strategies.

2. A single performance group services the entire organization or an
entire division. Analysts do not report to the same managers as
designers. There are separate chains of command for analysts and
designers which meet at relatively high levels of management.

There are advantages with each mode of organization. We consider the
advantages and disadvantages of the first mode (analysts are part of the
design team) in comparison with the second mode (distinct performance
group).

10.3.1.1 Advantages. Designers have to choose between alternate
designs. They will do so one way or another, usually by using intuition,
past experience or models. The designer must make choices quickly even
though this results in wrong choices. In many cases the designer will be
able to make choices without the aid of an analyst; however, when the
designer needs an analyst he or she usually needs a quick analysis and a
(subjectively) convincing argument that the analysis is correct. The design
er does not require the analyst to use the most sophisticated modeling
techniques available.

An analyst who is part of a design team is more likely to be responsive
to a designer’s needs than an analyst who belongs to a totally different
group. Being responsive to the needs of a design group implies coming up
with quick analyses even though the analyses may not always be correct. It
is tempting for an analyst to be "absolutely sure" that his or her analysis is
correct before reporting it. Many analysts are unwilling to use their best
judgement; they would rather not give any analysis at all. Certainty can
only be achieved by extensive measurement and designers can not afford to
wait for measurement.

The business of making predictions is inherently risky. The analyst is
hired to make better predictions in a manner which is timely and responsive
to the needs of the designers. If an analyst has a different reporting chain
than the design team, he or she is more likely to avoid risks by avoiding
timely predictions because (1) Performance groups have a time honored
excuse: "There isn’t enough data to carry out this analysis." Note that

SEC. 10.3 / ORGANIZATIONAL STRUCTURE 339

design groups are not permitted to make this same excuse!
(2) Performance groups are (unfortunately) evaluated by the accuracy of
their predictions rather than by the successes of the entire design effort.
Hence, they may have less commitment than they ought to in helping make
design choices.

An analyst s most important role is to gather all the facts relevant to a
design and to relate different aspects of a design (in a quantitative manner
where possible). The model serves as a framework and a discipline for
gathering facts. The mathematics o f the model is much less important than the
discpline engendered by the modeling process. It is less important whether a
model is based on numerical or simulation solution than that modeling be
carried out. Once the facts are gathered together, the consequences of the
facts are often intuitively obvious, i.e., the facts speak for themselves. The
discipline of modeling helps one arrange facts.

An analyst is likely to (1) find it easier to gather the relevant facts and
(2) have greater success in explaing the results of the modeling effort if he
or she is a member of the design team. When analysts and designers belong
to different groups it is likely that an adversary relationship will develop
between the two groups. The design team will very likely consider an
analyst to be a person who evaluates and passes judgement on their design.
Designers are less likely to spend time interacting with the analyst because
they see no direct benefit to themselves. As one design group manager told
us: "As far as the design groups are concerned the modeling project is all
‘give’; we get nothing in return." It is equally dangerous for the analyst to
think of himself or herself as a person who "certifies" a design. Ideally,
such a counter-productive adversary relationship can be avoided if the
analyst belongs to the design group.

10.3.1.2 Disadvantages. Given the time pressures on design teams it is
not surprising that capable analysts on design teams are often subborned
into becoming full time designers and giving up their role of analytic service
to other designers. Recall that the primary role of an analyst is to gather
and piece together facts from different designers. Thus an analyst should
have a more comprehensive view of the overall design than most designers.
It is tempting for the group to use the analysts knowledge in a design
capacity.

It is helpful to centralize the experience gained from analyzing several
designs into a single performance analysis group. It is easier for a single
performance group to develop and keep abreast of the most advanced
techniques than for several analysts dispersed among several groups. In-
house training of analysts is also easier when there is a centralized perform
ance analysis group.

340 MANAGEMENT OF MODELING PROJECTS / CHAP. 10

10.3.2 Configuration and Tuning

Performance groups dealing with configuration and tuning may not be
organizationally tied to systems engineering and sales groups. However,
even though the performance tools are developed in other organizations it is
necessary that there be significant expertise in the use of these tools within
systems engineering and sales groups. In practice, performance analysts
usually report to the same management as other information systems profes
sionals except in very large organizations where performance groups may be
centralized. The tradeoffs between organizational structures are much the
same as in the design case.

10.4 IN-HOUSE TRAINING

At present, performance analysts are in short supply. Thus organiza
tions will often have to train analysts in order to obtain them. It is not
difficult to train analysts. A sophisticated mathematical background is
usually not necessary. The critical prerequisite for performance analysis is
an understanding of systems. Thus systems programming is an ideal back
ground; an experienced systems programmer can be converted into a per
formance analyst relatively easily. Unfortunately, systems programmers are
also in short supply!

The first thing to teach a budding analyst is the detailed organization
of system hardware and software. The second thing an analyst ought to be
taught is measurement. Third, the analyst should learn simulation; a pro
grammer can easily learn to write simulation programs. Currently, training
for most analysts stops at this stage. An analyst can do an excellent job on
configuration and tuning problems with a thorough knowledge of systems
and measurement tools and a reasonable knowledge of simulation. For
design and development problems and for maximum efficiency in configura
tion and tuning problems, an understanding of the fundamentals of queueing
models (as provided in this book) is necessary. Only a small minority of
analysts will need more sophisticated modeling techniques.

The best training in modeling is experience. After an intensive
(perhaps two week) course based on this book, supplemented with addition
al material on measurement, an analyst should be given on-the-job training.
Analysts learn best when faced with real problems and real deadlines.

BIBLIOGRAPHY

BARD77a

BARD77b

BARD78a

BARD78b

BARD80a

BARD80b

BASK75

BASK76

BELL71

BHAN73

BOYS75

BRAN74

BROW75

Y. Bard, "A Characterization of VM/370 Workloads," Model
ing and Performance Evaluation o f Computer Systems, H. Beil-
ner and E. Gelenbe (Eds.), North-Holland, Amsterdam (1977)
pp. 35-56.
Y. Bard, "The Modeling of Some Scheduling Strategies for an
Interactive Computer System," in Computer Performance, K.M.
Chandy and M. Reiser (Eds.), Elsevier North-Holland, Inc.,
New York, 1977, pp. 113-138.
Y. Bard, "The VM/370 Performance Predictor," Computing
Surveys 10, 3 (Sept. 1978), 333-342.
Y. Bard, "Some Extensions to Multiclass Queueing," G320-
2124, IBM Cambridge Scientific Center, Cambridge, Mass.
(Nov. 1978). In M. Arato, A. Butrimenko, and E. Gelenbe,
editors, Performance o f Computer Systems, North Holland,
Amsterdam, pp. 51-61 (1979).
Y. Bard and C.H. Sauer, "IBM Contributions to Performance
Modeling and Simulation," IBM Research Report RC-8364,
Yorktown Heights, NY (July 1980).
Y. Bard, "A Model of Shared DASD and Multipathing,"
CACM 23, 10 (October 1980).
F. Baskett, K.M. Chandy, R.R. Muntz, and F. Palacios-Gomez,
"Open, Closed, and Mixed Networks of Queues with Different
Classes of Customers," JACM 22, 2 (April 1975).
F. Baskett and A.J. Smith, "Interference in Multi-processor
Systems with Interleaved Memory," CACM 19, 6 (June 1976).
C. G. Bell and A. Newell, Computer Structures: Readings and
Examples, McGraw-Hill (1971).
D. P. Bhandarkar and S.H. Fuller, "A Survey of Techniques for
Analyzing Memory Interference in Multiprocessor Systems,"
Carnegie-Mellon University Technical Report, Pittsburgh, Pa.
(April 1973).
J.W. Boyse and D.R. Warn, "A Straightforward Model for
Computer Performance Prediction," Computing Surveys 7, 2
(1975).
A. Brandwajn, "Equivalence and Decomposition Methods with
Application to a Model of a Time-sharing Virtual Memory
System," Proceedings International Symposium Rocquencourt
(April 1974).
J.C. Browne, K.M. Chandy, R.M. Brown, T.W. Keller, D.F.
Towsley and C.W. Dissley, "Hierarchical Techniques for Devel-

341

BROW77

BURN75

BUX77

BUZE71

BUZE73

BUZE79

CHAN72

CHAN75a

CHAN75b

CHAN77a

CHAN77b

CHAN78

CHAN79

342

CHIU75

opment of Realistic Models of Complex Computer Systems,"
Proc. IEEE 63, 6 (June 1975), 966-975.
R.M. Brown, J.C. Browne and K.M. Chandy, "Memory Man
agement and Response Time," Communications o f the ACM 20,
3 pp. 153-165 (March 1977).
G.J. Burnett and E.G. Coffman, Jr., "Analysis of Interleaved
Memory Systems Using Blockage Buffers," CACM 18, 2 (Feb.
1975).
W. Bux and U. Herzog, "The Phase Concept: Approximation
of Measured Data and Performance Analysis," in Computer
Performance, K.M. Chandy and M. Reiser (Eds.), Elsevier
North-Holland, Inc., New York, 1977, pp. 23-28.
J.P. Buzen, "Queueing Network Models of Multiprogramming,"
Ph.D. Thesis, Harvard University, Cambridge, Mass. (1971).
J.P. Buzen and U.O. Gagliardi, "The Evolution of Virtual
Machine Architecture," AFIPS Conf. Proc. 42 (1973 NCC),
pp. 291-301.
J. P. Buzen and P.J. Denning, "Operational Treatment of Queue
Distributions and Mean Value Analysis," CSD-TR-309, Purdue
University (August 1979).
K. M. Chandy, "The Analysis and Solutions for General Queue
ing Networks," Proc. 6th Annual Princeton Conf. on Information
Science and Systems, (1972) pp. 224-228.
K.M. Chandy, U. Herzog and L.S. Woo, "Parametric Analysis
of Queueing Networks," IBM J. o f Research and Development
19, 1 pp. 43-49 (January 1975).
K.M. Chandy, U. Herzog and L.S. Woo, "Approximate Analy
sis of General Queueing Networks," IBM J. o f Research and
Development 19, 1 pp. 50-57 (January 1975).
K.M. Chandy, J. Hogarth and C.H. Sauer, "Selecting Capaci
ties in Computer Communication Systems," IEEE Trans, on
Software Eng. SE-3, 4 (July 1977) pp. 290-295.
K.M. Chandy, J.H. Howard and D.F. Towsley, "Product Form
and Local Balance in Queueing Networks," JACM 24, 2 pp.
250-263 (April 1977).
K.M. Chandy and C.H. Sauer, "Approximate Methods for
Analysis of Queueing Network Models of Computer Systems,"
Computing Surveys 10, 3 pp. 263-280 (September 1978).
K.M. Chandy and C.H. Sauer, "Computational Algorithms for
Product Form Queueing Networks," RC-7950, IBM Research,
Yorktown Heights, N.Y. (November 1979). CACM 23, 10
(October 1980).
W.W. Chiu, D. Dumont and R. Wood, "Performance Analysis
of a Multiprogrammed Computer System," IBM J. o f Research
and Development 19, 3 (May 1975) pp. 263-271.

BIBLIOGRAPHY

BIBLIOGRAPHY 343

CHIU78

CHOW78

COFF78

COUR75

COUR77

COUR78

COX55

COX65

CRAN74

CRAN77

DENN78

DISN74

DRAK67

DRUM73

FELL68

FERR78

FISH73

FISH78

W.W. Chiu and W-M. Chow, A Performance Model of MVS,"
IBM Systems Journal 17, 4 (1978) pp. 444-462.
W-M. Chow, "The Cycle Time Distribution of Exponential
Central Server Models," AFIPS Conf. Proc. 43 (1978 NCC).
E.G. Coffman and L. Kleinrock, "Computer Scheduling Me
thods and their Countermeasures," AFIPS Conf. Proc. 32
(1968 SJCC) pp. 11-25.
P.J. Courtois, "Decomposability, Instabilities and Saturation in
Multiprogramming Systems," Communications o f the ACM 18,
7 pp. 371-368 (July 1975).
P.J. Courtois, Decomposability: Queueing and Computer System
Applications, Academic Press, Inc., New York (1977).
P.J. Courtois, "Exact Aggregation in Queueing Networks,"
Proc. First Meeting AFCET-SMF, Paris (September 1978).
D.R. Cox, "A Use of Complex Probabilities in the Theory of
Stochastic Processes," Proc. Cambridge Philos. Soc. 51, (1955),
pp. 313-319.
D.R. Cox and H.D. Miller, The Theory o f Stochastic Processes,
Wiley, New York, (1965).
M.A. Crane and D.L. Iglehart, "Simulating Stable Stochastic
Systems II: Markov Chains," JACM 21 (Jan. 1974) pp. 114-
123.
M.A. Crane and A.J. Lemoine, An Introduction to the Regenera
tive Method for Simulation Analysis, Springer-Verlag, New York
(1977).
P.J. Denning and J.P. Buzen, "The Operational Analysis of
Queueing Network Models," Computing Surveys 10, 3 (Sept.
1978) pp. 225-261.
R.L. Disney and W.P. Cherry, "Some Topics in Queueing
Network Theory," Mathematical Methods in Queueing Theory,
A.B. Clarke (Ed.), Springer-Verlag, New York (1974).
A.W. Drake, Fundamentals o f Applied Probability Theory,
McGraw-Hill, New York (1967).
M. E. Drummond, Jr., Evaluation and Measurement Techniques
for Digital Computer Systems, Prentice-Hall, Englewood Cliffs,
N. J. (1973).
W. Feller, An Introduction to Probability Theory and Its Implica
tions, Wiley, New York (1968).
D. Ferrari, Computer System Performance Evaluation, Prentice-
Hall, Englewood Cliffs, N.J. (1978).
G.S. Fishman, Concepts and Methods in Discrete Event Digital
Simulation, Wiley, New York (1973).
G.S. Fishman, Principles o f Discrete Event Simulation, Wiley,
New York (1978).

BIBLIOGRAPHY

FISH79

FOSC77

FOST74

FRAN77

FULL75

FULL76

GAVE67

GAVE68

GAVE76

GELE75

GORD67

HERZ75

IGLE78a

IGLE78b

JACK63

344

JENS74

G.S. Fishman and L.R. Moore, "Estimating the Mean of a
Correlated Binary Sequence," JACM 26, (Jan. 1979) pp. 82-
94.
G.J. Foschini, "On Heavy Traffic Diffusion Analysis and
Dynamic Routing in Packet Switched Networks," Computer
Performance, K.M. Chandy and M. Reiser (Eds.), Elsevier
North-Holland, Inc., New York, 1977, pp. 419-514.
D.V. Foster, P.F. McGehearty, C.H. Sauer and C.N. Waggon
er, "A Language for Analysis of Queueing Models," Proc. Fifth
Annual Pittsburgh Modeling and Simulation Conf. (1974) pp.
381-386.
W.R. Franta and K. Maly, "An Efficient Data Structure for the
Simulation Event Set," CACM 20, 8 (Aug. 1977) pp. 596-602.
S.H. Fuller and F. Baskett, "An Analysis of Drum Storage
Units," JACM 22, 1 (Jan. 1975) pp. 83-105.
S.H. Fuller, "Price/Performance Comparison of C.mmp and
the PDP/10," Third Annual Symp. on Comp. Architecture,
Computer Architecture News 4, 4 (January 1976) pp. 195-202.
D.P. Gaver, "Probability Models of Multiprogramming Com
puter Systems," JACM 14, 3 (1967) pp. 423-428.
D.P. Gaver, "Diffusion Approximations and Models for Certain
Congestion Problems," J. Appl. Prob. 5, (1968) pp. 607-623.
D. P. Gaver and G. Humfeld, "Multitype Multiprogramming:
Probability Models and Numerical Procedures," Computer
Performance, Elsevier North-Holland, New York (1976) pp.
38-43.
E. Gelenbe, "On Approximate Computer System Models,"
JACM 22, 2 (April 1975) pp. 261-269.
W.J. Gordon and G.F. Newell, "Closed Queueing Networks
with Exponential Servers," Operations Research 15 pp. 244-265
(1967).
U. Herzog, L.S. Woo and K.M. Chandy, "Solution of Queueing
Problems by a Recursive Technique," IBM J. o f Research and
Development 19, 3 (May 1975) pp. 295-300.
D.L. Iglehart, "The Regenerative Method for Simulation
Analysis," in K.M. Chandy and R.T. Yeh, editors, Current
Trends in Programming Methodology, Volume III: Software
Modeling and Its Impact on Performance. Prentice-Hall (1978).
D.L. Iglehart and G.S. Shedler, "Regenerative Simulation of
Response Times in Networks of Queues," JACM 25, 3 (July
1978) pp. 449-460.
J. R. Jackson, "Jobshop-like Queueing Systems," Management
Science 10, pp. 131-142 (1963).
K. Jensen and N. Wirth, PASCAL User Manual and Report,
Springer-Verlag, New York (1974).

BIBLIOGRAPHY 345

KELL73

KELL76

KIEN79a

KIEN79b

KLEI70

KLEI75

KLEI76

KNUT69

KOBA74

KOBA75

KOBA76

KOBA78

LAM76

LAM77

LAM80

T.W. Keller, ASQ User’s Manual, TR-27, Dept, of Computer
Sciences, Univ. of Texas at Austin (1973).
T.W. Keller, "Computer Systems Models with Passive Re
sources," Ph.D. Thesis, Univ. of Texas at Austin (1976).
M.G. Kienzle and K.C. Sevcik, "A Systematical Approach to
the Performance Modeling of Computer Systems," Performance
o f Computer Systems, (M. Arato, A. Butrimenko and E. Gelen-
be, Editors), North-Holland (1979).
M.G. Kienzle and K.C. Sevcik, "Survey of Analytic Queueing
Models of Computer Systems," Conference on Simulation,
Measurement and Modeling o f Computer Systems, Boulder, CO
(August 1979).
L. Kleinrock, "Analytic and Simulation Methods in Computer
Network Design" AFIPS Conf. Proc.36 (1970 SJCC) pp. 569-
579.
L. Kleinrock, Queueing Systems Volume I: Theory, Wiley, New
York (1975).
L. Kleinrock, Queueing Systems Volume II: Computer Applica
tions, Wiley, New York (1976).
D.E. Knuth, The Art o f Computer Programming Volume 2:
Seminumerical Algorithms, Addison-Wesley, Reading, Mass.
(1969).
H. Kobayashi, "Application of the Diffusion Approximation to
Queueing Networks I: Equilibrium Queue Distributions,"
JACM 21, 2 (April 1974) pp. 316-328.
H. Kobayashi and M. Reiser, "On Generalization of Job
Routing Behavior in a Queueing Network Model," IBM Re
search Report RC-5252 (1975).
H. Kobayashi, "A Computational Algorithm for Queue Distri
butions via Polya Theory of Enumeration," RC-6154, IBM
Research, Yorktown Heights, N.Y. (August 1976).
H. Kobayashi, Modeling and Analysis: An Introduction to System
Performance Evaluation Methodology, Addison-Wesley, Reading,
Mass. (1978).
5.5. Lam, "Store-and-Forward Buffer Requirements in a Packet
Switching Network," IEEE Trans. Communication 24, (April
1976), pp. 394-403.
5.5. Lam, "Queueing Networks with Population Size Const
raints," IBM J. o f Research and Development 21, A (July 1977)
pp. 370-378.
5.5. Lam, "Behavior of the Normalization Constant and a
Scaling Algorithm for Product Form Queueing Networks,"
Technical Report TR-148, Department of Computer Sciences,
University of Texas at Austin (July 1980).

346 BIBLIOGRAPHY

LAVE75

LAVE77

LAZ077

LEAR73

LITT61

MACN75
MARI79

MARI80

MART67

MART75

MEAR79

MOOR72

NEUS80

PRIC75

PRIC76

5.5. Lavenberg and D.R. Slutz, "Introduction to Regenerative
Simulation," IBM J. o f Research and Development 19, (Sept.
1975) pp. 458-463.
5.5. Lavenberg and C.H. Sauer, "Sequential Stopping Rules for
the Regenerative Method of Simulation," IBM J. o f Research
and Development 21, (Nov. 1977) pp. 545-558.
E.D. Lazowska, "The Use of Percentiles in Modeling CPU
Service Time Distributions," Computer Performance, K.M.
Chandy and M. Reiser (Eds.), Elsevier North-Holland, Inc.,
New York, 1977, pp. 53-66.
G.P. Learmonth and P.A.W. Lewis, "Statistical Tests of Some
Widely Used and Recently Proposed Uniform Random Number
Generators," Proc. o f Computer Science and Statistics: 7th
Annual Symp. on the Interface, Iowa State Univ. (Oct. 1973)
pp. 163-171.
J.D.C. Little, "A Proof of the Queueing Formula L = \ W,"
Operations Research 9, pp. 383-387 (1961).
E. A. MacNair and L.S. Woo, private communication, 1975.
R.A. Marie, "An Approximate Analytical Method for General
Queueing Networks," IEEE Transactions on Software Engineer
ing SE-5, 5 (September 1979).
R.A. Marie, "Calculating Equilibrium Probabilities for
\ (n) /C k/ \ / N Queues," Performance Evaluation Review 9, 2
(Summer 1980).
J. Martin, Design o f Real-Time Computer Systems, Prentice-
Hall, Englewood Cliffs, N.J. (1967).
R.R. Martin and H.D. Frankel, "Electronic Disks in the
1980’s," Computer 8, 2 (Feb. 1975).
C. E. Mear and C.H. Sauer, "A Simple and Robust Data Struc
ture for the Simulation Event Set," IBM Research Report
RC-8001, December 1979.
F. R. Moore, "Computational Model of a Closed Queueing
Network with Exponential Servers," IBM Journal o f Research
and Development 16, 6 pp. 567-572 (June 1972).
D. Neuse and K.M. Chandy, "A Method for Approximate
Analysis of General Queueing Networks," Technical Report,
Department of Computer Sciences, University of Texas at
Austin.
T.G. Price, "Models of Multiprogrammed Computer Systems
with I/O Buffering," Proc. Fourth Texas Conf. on Computing
Systems, (Nov. 1975).
T.G. Price, "A Note on the Effect of the Central Processor
Service Time Distribution on Processor Utilization in Multipro
grammed Computer Systems," JACM 23, 2 (April 1976) pp.
342-346.

BIBLIOGRAPHY 347

RAMA69

REIS74

REIS75

REIS76

REIS78a

REIS78b

REIS78c

REIS80

REYN80

ROSE78

SAUE75a

SAUE75b

SAUE76a

SAUE76b

C.V. Ramamoorthy and M.J. Gonzalez, "A Survey of Techni
ques for Recognizing Parallel Processable Streams in Computer
Programs," AFIPS Conf. Proc. 35, (1969 FJCC) pp. 1-17.
M. Reiser and H. Kobayashi, "Accuracy of the Diffusion
Approximation for Some Queueing Systems," IBM J. o f Re
search and Development 18, (1974).
M. Reiser and H. Kobayashi, "Queueing Networks with Multi
ple Closed Chains: Theory and Computational Algorithms,"
IBM J. o f Research and Development 19, 3 (May 1975).
M. Reiser, "Numerical Methods in Separable Queueing Net
works," IBM Research Report RC-5842, Yorktown Heights,
NY (February 1976).
M. Reiser and S.S. Lavenberg, "Mean Value Analysis of
Closed Multichain Queueing Networks," IBM Research Report
RC-7023, Yorktown Heights, NY (March 1978). JACM 27, 2
(April 1980) pp. 313-322.
M. Reiser and C.H. Sauer, "Queueing Network Models: Me
thods of Solution and their Program Implementation," in K.M.
Chandy and R.T. Yeh, editors, Current Trends in Programming
Methodology, Volume III: Software Modeling and Its Impact on
Performance. Prentice-Hall (1978) pp. 115-167.
M. Reiser, "A Queueing Network Analysis of Computer Com
munication Networks with Window Flow Control," RC-7218,
IBM Research, Yorktown Heights, N.Y. (July 1978).
M. Reiser, "Mean-Value Analysis and Convolution Method for
Queue-Dependent Servers in Closed Queueing Networks," to
appear as an IBM Research Report (Zurich).
P.F. Reynolds, "Queueing Network Algorithms on Programma
ble Pocket Calculators," to appear as a technical report, De
partment of Computer Sciences, University of Texas at Austin.
C.A. Rose, "A Measurement Procedure for Queueing Network
Models of Computer Systems," Computing Surveys 10, 3 (Sept.
1978) pp. 263-280.
C.H. Sauer, "Configuration of Computing Systems: An Ap
proach Using Queueing Network Models," Ph.D. Thesis, Univ.
of Texas at Austin (May 1975).
C.H. Sauer and K.M. Chandy, "Approximate Analysis of
Central Server Models," IBM J. o f Research and Development
19, 3 (May 1975) pp. 301-313.
C.H. Sauer, "Characterization and Simulation of Generalized
Queueing Networks," RC-6057, IBM Research, Yorktown
Heights, N.Y. (May 1976).
C.H. Sauer and K.M. Chandy, "Parametric Modeling of Multi
miniprocessor Systems," RC-5978, IBM Research, Yorktown
Heights, N.Y. (April 1976).

348 BIBLIOGRAPHY

SAUE76c

SAUE77a

SAUE77b

SAUE77c

SAUE78a

SAUE78b

SAUE79a

SAUE79b

SAUE79c

SAUE80a

SAUE80b

SCHW77

SCHW78

SEKI71

C.H. Sauer, L.S. Woo and W. Chang, "Hybrid
Analysis/Simulation: Distributed Networks," RC-6341, IBM
Research, Yorktown Heights, N.Y. (June 1976).
C.H. Sauer, "Confidence Intervals for Queueing Simulations of
Computer Systems," RC-6669, IBM Research, Yorktown
Heights, N.Y. (July 1977). Performance Evaluation Review 8,
(Spring-Summer 1979) pp. 45-55.
C.H. Sauer and K.M. Chandy, "The Impact of Distributions
and Disciplines on Multiple Processor Systems," RC-6621, IBM
Research, Yorktown Heights, N.Y. (July 1977). CACM 22,
(Jan. 1979) pp. 25-34.
C.H. Sauer and E.A. MacNair, "Computer/Communication
System Modeling with Extended Queueing Networks," RC-
6654, IBM Research, Torktown Heights, N.Y. (July 1977).
C.H. Sauer and E.A. MacNair, "Queueing Network Software
for Systems Modeling," RC-7143, IBM Research, Yorktown
Heights, N.Y. (May 1978). Software-Practice and Experience 9,
5 (May 1979).
C.H. Sauer, "Passive Queue Models of Computer Networks,"
Computer Networking Symp., Gaithersburg, Maryland
(December 1978).
C.H. Sauer, "Some Results on Queue Lengths in Queueing
Networks Solved by Aggregation," RC-7607, IBM Research,
Yorktown Heights, N.Y. (May 1979).
C.H. Sauer and K.M. Chandy, "Approximate Solution of
Queueing Models of Computer Systems," RC-7785, IBM Re
search, Yorktown Heights, N.Y. (July 1979). Computer 13, 4
(April 1980) pp. 25-32.
C.H. Sauer, E.A. MacNair and S. Salza, "A Language for
Extended Queueing Networks," IBM Research Report
RC-7996, December 1979. IBM J. o f Research and Develop
ment 24, 6 (November 1980).
C.H. Sauer, "Approximate Solution of Queueing Networks with
Simultaneous Resource Possession," to appear as an IBM Re
search Report.
C.H. Sauer, "Numerical Solution of Some Multiple Chain
Queueing Networks," to appear as an IBM Research Report.
M. Schwartz, Computer-Communication Network Design and
Analysis, Prentice-Hall (1977).
H.D. Schwetman, "Hybrid Simulation Models of Computer
Systems," CACM 21, 9 (Sept. 1978) pp. 718-723.
A. Sekino, "Performance Evaluation of Multiprogrammed
Time-Shared Computer Systems," Proj. MAC TR-103, Mass.
Inst, of Tech., Cambridge, Mass. (Sept. 1971).

b ib l io g r a p h y 349
SEVC77a

SEVC77b

SEVC79

SHER72a

SHER72b

SHUM77

SIM061

SMIT66

SMIT79

STEW78

TAKA63

TEOR72

TOWS75

TOWS78

K.C. Sevcik, "Priority Scheduling Disciplines in Queueing
Network Models of Computer Systems," Proc. IF IP Congress
77, pp. 565-570.
K.C. Sevcik, A. Levy, S.K. Tripathi and J.L. Zahorjan,

Improved Approximations of Aggregated Queueing Network
Subsystems," Computer Performance, K.M. Chandy and M.
Reiser (Eds.), Elsevier North-Holland, Inc., New York, 1977,
pp. 1-22.
K. C. Sevcik and M.M. Klawe, "Operational Analysis Versus
Stochastic Modelling of Computer Systems," Proc. Computer
Science and Statistics: 12th Annual Symposium on the Interface,
University of Waterloo, May 1979.
S.W. Sherman, F. Baskett and J.C. Browne, "Trace Driven
Modeling and Analysis of CPU Scheduling in a Multiprogram
ming System," CACM 15, (1972) pp. 1063-1069.
S. W. Sherman, J.H. Howard and J.C. Browne, "A Study of
Response Time under Various Deadlock Algorithms and Job
Schedulers," ACM 1974 National Conf.
A. Shum and J.P. Buzen, "The EPF Technique: A Method for
Obtaining Approximate Solutions to Closed Queueing Net
works with General Service Times, Measuring Modeling and
Evaluating Computer Systems, H. Beilner and E. Gelenbe (Eds.)
North-Holland, Amsterdam (1977) pp. 201-220.
H.A. Simon and A. Ando, "Aggregation of Variables in Dy
namic Systems," Econometrica 29, 2 pp. 111-138 (April 1961).
J.L. Smith, "An Analysis of Time Sharing Computer Systems
Using Markov Models," AEIPS Conf. Proc. 28, (1966 SJCC)
pp. 87-95.
C. U. Smith and J.C. Browne, "Performance Specifications and
Analysis of Software Designs," Conference on Simulation,
Measurement and Modeling o f Computer Systems, Boulder, CO
(August 1979).
W.J. Stewart, "A Comparison of Numerical Techniques in
Markov Modeling," CACM 21, (Feb. 1978) pp.144-151.
L. Takacs, "A Single Server Queue with Feedback," Bell Sys.
Tech. J. (March 1963) pp. 505-519.
T. J. Teorey and T.B. Pinkerton, "A Comparative Analysis of
Disk Scheduling Policies," CACM 15, 3 (March 1972) pp.
177-183.
D. F. Towsley, "Local Balance Models of Computer Systems,"
Ph.D. Thesis, Univ. of Texas at Austin (Dec. 1975).
D.F. Towsley, J.C. Browne and K.M. Chandy, "Models for
Parallel Processing Within Programs: Application to CPU:I/O
and 1 /0 :1 /O Overlap," CACM 21, 10 (October 1978) pp.
821-831.

BIBLIOGRAPHY

TOWS80

VANT78

WALL66

WILH76

WILH77

WOLF70

WOLF77

WONG78a

WONG78b

WULF72

YU77

350

ZAH077

ZAH079

D.F. Towsley, "Queueing Network Models with State-
Dependent Routing," JACM 27, 2 (April 1980) pp. 323-337.
H. Vantilborgh, H. "Exact Aggregation in Exponential Queue
ing Networks," JACM 25, 4 (October 1978).
V. L. Wallace and R.S. Rosenberg, "Markovian Models and
Numerical Analysis of Computer System Behavior," AFIPS
Conf. Proc. 28, (1966 SJCC) pp. 141-148.
N.C. Wilhelm, "An Anomaly in Disk Scheduling: A Compari
son of FCFS and SSTF Seek Scheduling Using an Empirical
Model for Disk Access," CACM 19, (Jan. 1976) pp. 13-17.
N.C. Wilhelm, "A General Model for the Performance of Disk
Systems," JACM 24, (Jan. 1977) pp. 14-31.
R.W. Wolff, "Work Conserving Priorities," J. Appl. Prob. 7,
(1970) pp. 327-337.
R.W. Wolff, "The Effect of Service Time Regularity on System
Performance," Computer Performance, K.M. Chandy and M.
Reiser (Eds.), Elsevier North-Holland, Inc., New York, 1977,
pp. 297-304.
J.W. Wong, "Distribution of End-to-End Delay in Message-
Switched Networks," Computer Networks 2, 1 (Feb. 1978) pp.
44-49.
J.W. Wong, "Queueing Network Modeling of Computer Com
munication Networks," Computing Surveys 10, 3 (Sept. 1978)
pp. 343-352.
W. Wulf and C.G. Bell, "C.mmp, a Multi-miniprocessor,"
AFIPS Conf. Proc. 41, (1972 FJCC) pp. 765-777.
P.S. Yu, "Passage Time Distributions for a Class of Queueing
Networks: Closed, Open or Mixed, with Different Classes of
Customers, with Application to Computer System Modeling,"
SEL-77-017, Stanford Electronics Laboratories, Stanford,
Calif. (March 1977).
J.L. Zahorjan, "Iterative Aggregation with Global Balance,"
Proj. SAM Notes, Univ. of Toronto, Toronto, Ontario, Canada
(Feb. 1977).
J.L. Zahorjan, "Computational Algorithms for Queueing
Networks with Product Form Solutions," Topics in Performance
Evaluation (G.S. Graham, editor), CSRG-100, Computer Sys
tems Research Group, University of Toronto, Toronto, Ontario,
Canada (July 1979).

INDEX

Aggregation 104, 108, 165, 184, 194, 307,
313, 322

of chains 181

Batch means 222

Calculators 130, 132
CCNC 124, 132, 148, 160
Central Limit Theorem 214
Central server model 290
Chain 91, 117, 138
Classes 72, 86, 123, 135, 243
Coalesce Computation of Normalizing Con

stants, see CCNC
Communication networks 12, 150, 325
Composite queues 104, 124, 165, 180
Confidence intervals 215, 279
Convolution 112, 124, 133, 149, 160
Cyclic queue model 5, 38, 115, 123, 207,

290

Decomposition, see Aggregation
Distribution 13, 65, 98, 166, 174, 176, 194,

240, 291, 296
Branching Erlang 47, 98, 166, 200
Continuous 17
Coefficient of variation 17
Density function 17
Discrete 14, 200
Erlang 47, 98, 243, 279
Exponential 19, 32, 46, 60, 98, 166,

194, 199, 228
Gaussian, see Normal
Geometric 16, 62
Hyperexponential 20, 47
Hypoexponential 20, 47
Mean 15, 18
Method of (exponential) stages 20, 32,

46, 194, 241, 251
Moments 15, 18
Normal 158, 214
Standard deviation 15, 18
Uniform 18, 195

Event list 201, 247, 250, 268

FCFS, see Scheduling, FCFS
First-Come-First-Served, see Scheduling,

FCFS

Hierarchical model 7, 166, 175, 194, 307,
313, 322

Independent Replications 217, 279
Infinite Servers, see Scheduling, IS
IS, see Scheduling, IS

Jackson’s Theorem 80

Last-Come-First-Served-Preemptive-
Resume, see Scheduling, LCFSPR

Laws of large numbers 213
LBANC 124, 127, 140, 152, 156, 160, 161,

185
LCFSPR, see Scheduling, LCFSPR
Little’s Rule 27, 206, 280
Local balance 70, 86, see also Markov proc

esses
Local Balance Algorithm for Normalizing

Constants, see LBANC

M /G / l queue 65
M / G / oo queue 65
M /M /l queue 60, 78
M /M /2 queue 63
M / M / o o queue 64, 83
Markov processes 30, 194, 223, 236

numerical solution 41,51
balance equations 37

global 69
local 70, 86

Mean Value Analysis 124, 159, 161, 185
Measurement 2, 283, 290, 333
Memory contention 9, 168, 173, 175, 180,

265, 313
Mixed networks 125, 150

Norton’s Theorem, see Aggregation
Numerical properties 155

351

352 INDEX

Passive resource (queue) 173, 175, 1X0,
264, 279

Poisson process 34, 234
Probability distribution, see Distribution
Product form solution 59, 80, X6, 97, 104
Processor Sharing, see Scheduling, PS
PS, see Scheduling, PS

Queue length 27, 68, 122, 161, 206
Queueing discipline, see Scheduling
Queueing time 27, 206, 278

Random number generation 195
Regenerative method 194, 223, 236, 241,

280
Response time, see Queueing time
Routing 77 259

Scaling algorithm 157
Scheduling 20, 240, 291, 296, 304, 317

FCFS 20, 24, 60, 86, 123, 166, 174,
185

IS 64, 83, 123, 262
LCFS 21
LCFSPR 22, 86, 123, 245
PS 23, 24, 65, 67, 123, 247
RR 23, 24
SLTF 23
SRTF 23, 25
SSTF 23

Throughput 25, 27, 205

Utilization 26, 68, 1 16, 122, 205

ft

COMPUTER
SYSTEMS

PERFORMANCE
MODELING

* '*4-

Charles H.Sauer/ K.ManiChandy

COMPUTER SYSTEMS PERFORMANCE MODELING was written
to help designers, developers, and others achieve optimum system
effectiveness at the lowest lifetime cost. “It is common, but unfor
tunate,” authors Sauer and Chandy point out, “that performance is
not seriously considered until the later stages of system evolution”
when remedies, such as the acquisition of additional hardware, can
be costly.

An attractive alternative to after-the-fact modifications is the math
ematical model that estimates performance early in the design and
development stages.and permits appropriate adjustments before the
system becomes operational.

This comprehensive volume introduces the key concepts of
modeling, their practical application, and their management. Well
written, detailed chapters cover general principles, Markovian queu
ing models of computer systems, isolated queues and open net
works of queues, closed product form queuing networks, approxima
tion, simulation, measurement and parameter estimation, case
studies, and management of modeling projects.

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632

5175-7

