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PREFACE

If a computer system is to be used as intended, it must have 
"acceptable" performance, e.g., response times must be "small." It is 
common, but unfortunate, that performance is not seriously considered until 
the later stages of system evolution and that many systems have unaccepta
ble performance when completed. By then, there will be relatively few 
avenues available to improve performance and the most frequently chosen 
will be to acquire additional hardware. Though the cost of computing has 
dropped sharply, both in the last few years and the time since electronic 
computers became available, computer systems are not free and almost 
certainly never will be.

If performance is to be considered in the design and development 
stages of a system, modeling must be used because the system is not yet 
operational, and thus its performance is not measurable. Though modeling 
is relatively well understood by researchers in the area and those with the 
mathematical background required by much of the literature, it is not widely 
understood. The purpose of this book is to make modeling methodology 
accessible to a wide audience of system designers, system developers and 
others who would benefit from modeling. As far as possible, we avoid 
sophisticated mathematics and deal with modeling on an intuitive basis. 
Some portions of the book require familiarity with elementary calculus and 
linear algebra. We do assume the reader has a thorough understanding of 
computing systems and programming.

The basic format of the book is to introduce the concepts of modeling 
in Chapters 2-8 and then to examine the practical application of these 
concepts in a series of six case studies in Chapter 9. In addition to more 
specific motivation for and description of modeling, the introductory chapter 
gives a brief overview of each of these case studies. Chapter 2 discusses 
general principles required for understanding of the remainder of the book. 
Modeling is heavily dependent on probability theory, and this chapter 
introduces some elementary concepts from probability theory as well as 
some other concepts fundamental to modeling. Chapter 3 is devoted to 
Markov processes, a basic tool for algebraically or numerically obtaining 
performance measures from models. A dominant factor in computer sys
tems performance is queueing for system resources. Thus we focus our 
attention of models which consist of a network of queues (for system re
sources). Queueing networks are introduced in Chapter 3. Chapter 4

IX



X PREFACE

focuses on queues in isolation and on a particularly simple kind of networks, 
open networks. In open networks, the number of "jobs," the term used for 
the entities contending for resources, is potentially infinite. Though that 
may be realistic for some systems, particularly communication systems, 
closed networks, which have a limited population of jobs, are usually more 
appropriate as computer system models. Closed networks are more complex 
than open networks because of the stronger interactions between queues. 
Chapter 5 discusses both the mathematics required for obtaining perform
ance measures for closed networks and the appropriate computational 
algorithms. In Chapters 3-5, the queueing networks have certain restricting 
assumptions which are necessary for exact solutions for performance meas
ures. When these assumptions are unacceptably unrealistic, we must either 
use approximations (Chapter 6) or simulation (Chapter 7) to obtain per
formance estimates. The chapters prior to Chapter 8 assume that the input 
parameters to the models are given. In Chapter 8 we briefly cover methods 
for obtaining input parameters for models. Chapter 10 covers the manage
ment of modeling activities.

In addition to being a guide for the audience of practicing systems 
designers and developers, this book is intended as a text for an introductory 
(senior or first-year graduate) course in performance modeling and as 
supplementary reading for graduate systems courses. Portions of the mate
rial in this book have been used at the University of Texas at Austin in 
courses titled "Systems Modeling I" and "Advanced Operating Systems." In 
an introductory modeling course it is not necessary, or intended, that the 
book be covered strictly sequentially. In particular, the simulation material 
(Chapter 7) should be spread out over as much of the course as possible 
(concurrently with other material) once the first two chapters have been 
covered. Some of the case studies do not depend strongly on the preceding 
chapters. For example, the multiprocessor system study (Section 9.2) can 
be covered once Chapter 3 is finished, and the batch system study (Section 
9.1) is primarily dependent on Chapter 3 and the first part of Chapter 8.

An instructor using this book is encouraged to skip sections or add 
supplementary material, depending on the particular situation and students. 
Section 3.5, Sections 5.1-5.5, Sections 5.7.2 and 5.7.3, Chapter 6, Sections
7.4 and 7.5 and some of the case studies are likely candidates for omission. 
An instructor may wish to supplement Chapters 2 and 3 with material from 
texts in probability theory such as DRAK67 or FELL68. The exercises 
given are fairly closely tied to the material discussed. Other exercises 
inspired by the students’ background, e.g., local computing systems, are 
strongly encouraged. Except in Chapters 3 and 7, we have not included 
exercises involving computer implementation, partly to avoid language 
dependent exercises. However, such exercises will often be appropriate 
with some of the other chapters, particularly 4 and 5.
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In Chapters 3 and 7 we have used PASCAL programs [JENS74] to 
illustrate numerical and simulation techniques. (These programs should be 
understandable to those familiar with other block structured languages, e.g., 
PL/I, even if they are not familiar with PASCAL.) We have used 

standard" PASCAL entirely, and have tested these programs on both IBM 
370 series and CDC 6000 series equipment. The program listings have 
been machine generated to avoid typographical errors. Most of the example 
output of the programs was the same for either the 370 or 6000 series 
equipment. However, in a few of the simulations the differences in numeri
cal precision have a noticeable effect. The reader may not be able to 
precisely duplicate the program output, but should be able to obtain similar 
results.

Though we have covered the material which we consider most impor
tant in performance modeling of computer systems, and suggest further 
reading on these topics, there are a number of topics we have ignored. 
Most of these are covered in Current Trends in Programming Methodology 
Volume III: Software Modeling, edited by K.M. Chandy and R.T. Yeh and 
also published by Prentice-Hall. In discussing queueing network models we 
have taken a fairly traditional approach, neglecting the more recent and 
somewhat controversial "operational" approach. The operational approach 
is still in its infancy and not nearly as general as more traditional 
("stochastic") approaches, at least at present. We refer readers interested 
in operational analysis to DENN78 and SEVC79.
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CHAPTER 1

INTRODUCTION
1.1 NEED FOR PERFORMANCE EVALUATION

Our most important concern with a computer system is that it correctly 
perform its intended functions. By "computer system" we may mean an 
entire computer facility or some subset of that facility, e.g., an operating 
system, a data base system or a particular application program. Thus 
"intended function" may be quite general or fairly specific.

Usually our second concern with a computer system is that it have 
"adequate" performance at a "reasonable" cost. (We may have roughly 
comparable concern for reliability, security and other aspects of the system, 
depending on intended functions.) Definitions of "adequate performance" 
and "reasonable cost" may be explicitly or implicitly given, and the defini
tions will usually be determined largely by the intended functions. Someone 
using a text editor or a word processing system may reasonably expect 
"instantaneous" response to all but a few commands. A user of a data base 
system, e.g., for travel reservations, may tolerate somewhat slower response 
but will find the system unacceptable if typical response times are more 
than say 10 seconds and unusable if response times are much longer than 
that. On the other hand, a programmer requiring compilation of a signifi
cant program may well be willing to wait several minutes without complaint.

It is unfortunately, and unnecessarily, the case that performance and 
cost are given little consideration until late in the development of most 
computer software systems. The developers’ thoughts may be that "If the 
performance isn’t adequate, we can always use a faster CPU or more 
memory or more disks to get adequate performance." There are numerous 
examples of systems which have gone through their entire development with 
little consideration for performance and which had totally unacceptable 
performance when complete. If one ends up with unacceptable performance 
with a reasonable amount of hardware, then the only options are to aban
don the system entirely (which happens too frequently) or to go through 
redesign and redevelopment phases until the system is acceptable. Either of 
these options is much more expensive than a design and development 
process which explicitly considers performance.

The objective of this book is to describe performance estimation 
methods that can be used throughout the evolution of a computer system: to 
reject infeasible alternatives in the early design stages, to guide the develop

1



2 INTRODUCTION /  CHAP 1

ment process, to suggest hardware and software configurations when the 
system is complete and to guide redesign and redevelopment when function
al changes are required. We cannot hope to describe the integration of 
performance evaluation in each of these system evolution phases. What we 
will do is describe methods that can be used in all of these phases and then 
examine a number of published studies of the application of the methods to 
computer systems in various stages of evolution.

1.2 PERFORMANCE EVALUATION METHODS

The obvious approach to evaluation of system performance is to direct
ly measure that performance, either with hardware dedicated to measure
ment or with code embedded in software to obtain performance estimates or 
a combination of hardware and software. Direct measurement is both 
accurate and credible. We distinguish between accuracy and credibility 
because the approaches we discuss are capable of sufficient accuracy for 
their intended use but may not be credible to those who do not understand 
them. This lack of credibility is perhaps the-principal liability of the ap
proaches we advocate. Hopefully, this book will make these approaches 
accessible to a broad audience and thus make them more credible.

There are two major problems with measurement: First, measurement is 
not feasible in the design and development stages of the system; the system 
is not measurable if it is not operational. Second, measurement of most 
systems is a complex activity which involves considerable human and ma
chine costs. How do we set up the measurement experiments? Do we use a 
"live" workload, not knowing whether that workload will be representative 
of the typical operating conditions, or do we try to use a controlled work
load, e.g., a benchmark or synthetic workload, which we think represents 
typical usage? How do we attach the measurement tools to the system to 
get our desired estimates? In any case we are likely to need a large amount 
of dedicated time on the computer system and may require significant 
processing of the output of the measurement data to get it into meaningful 
terms, especially if we are using a software tool for measurement. We will 
discuss measurement in more detail in Chapter 8. We should point out now 
that measurement may well be the most appropriate approach, in fact a 
necessary approach, if we are trying to "tune" a system for "optimal" 
performance once we have obtained adequate performance.

Modeling should be used when measurement is intractable. We devise 
a model that captures the main factors determining system performance, 
determine performance measures in the model and use these measures from 
the model as estimates of performance of the actual system. Depending on 
how we plan to determine performance measures in the model, the model 
may seem very abstract relative to the actual system or may be a very
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detailed representation of the actual system. Generally, the more detailed 
the model, the less manageable it is and the more human and machine 
expense will go into obtaining its performance measures. However, as we 
will see, very abstract and seemingly simplistic models can provide relatively 
accurate estimates of system performance.

In the design of a system we do not need very accurate estimates; we 
are much more interested in rejecting terrible designs (from a performance 
viewpoint) than in selecting a "best" design. In the design stages we cannot 
produce a very detailed model because we do not know the details of the 
design. However, we may find very simple models helpful in the design 
process. These models may be so simple that we can construct them and 
obtain performance measures by hand; certainly the computational costs are 
negligible and the principal cost is the learning necessary to be able to 
construct the model. The cost savings are enormous if we can determine at 
the design stage that a particular design cannot give adequate performance 
rather than waiting until the system is operational to make this same deter
mination.

(We do not mean to imply that model performance measures are 
usually determined by hand or even by writing a new program for each 
model. Usually one would use existing software written for modeling 
purposes. We will describe the algorithms peculiar to such software in 
sufficient detail, including example programs, that the reader will be able to 
construct modeling software. For discussion of existing software, see 
SAUE78a.)

As we proceed from the design stages to development of the system, 
we obtain more detailed designs. From these new designs we can develop a 
more detailed model and can use this model to gradually eliminate inappro
priate designs until we settle on the final design. If the system of interest is 
an operating system or major piece of system software, then we may use 
this model in configuring specific installations of the software, i.e., to 
determine hardware requirements, file placement, etc. Once the system is 
operational, we may use measurements to correct deficiencies in the model. 
The model can then be used to configure other installations with greater 
confidence (and credibility) and, if functional changes are required, the 
model can be used in redesign and redevelopment.

The evolution process we have described may seem somewhat ideal
ized, but it is not unrealistic; these stages can be recognized whether or not 
performance is considered. There are likely to be iterations through the 
stages as functional specifications change and as performance problems are 
encountered. Incorporation of performance evaluation, particularly per
formance modeling, can greatly decrease both the number of iterations
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caused by performance problems and the expense of discarding designs 
which have unacceptable performance. Once the methodology is under
stood, incorporating modeling in the evolution process is inexpensive, 
especially when one considers the potential savings.

1.3 SURVEY OF CASE STUDIES

In Chapter 9 we will study in some detail six published examples of 
computer system performance models; Chapters 2-8 will provide the neces
sary background for full understanding of these models. Of the six models, 
the results of five have been carefully compared with measurements and 
shown to give sufficient accuracy for the intended use of the model. (The 
definition of "sufficient accuracy" depends on the stage of evolution of the 
system, as we suggested before.) The sixth model was used to evaluate some 
hypothetical multiprocessor systems proposed in the literature. Of the five 
models of implemented systems, two of the models were constructed in the 
design stages of the systems and used throughout the evolution of the 
systems. Of the remaining three, all of which were constructed after the 
systems were operational, two were constructed as research efforts in 
modeling methodology; the third is widely used in configuring specific 
installations of the system.

We are about to give a brief summary of the characteristics of the 
modeled systems and of the structural characteristics of the model, but first 
a few comments about characteristics common to these models and most 
models used in practice. A major aspect of most modern computing systems 
is the sharing o f resources. The classic illustration is the multiprogrammed 
operating system. Put simply, the objective of multiprogramming is to have 
one program’s use of a processor overlap with other programs’ use of I/O 
devices so that several programs may share the machine, with each making 
progress similar to the progress it would make if it had sole use of the 
machine. This sharing of resources reduces the cost attributed to each 
program, i.e., if a program has sole use of the machine, it must be charged 
for the idle time of resources as well as the busy time. In the idealized 
multiprogramming system, programs are only charged for the time spent 
using resources. However, the sharing of resources inherently causes 
contention for resources', if two programs need the processor, one must wait. 
In a well designed system, the gains due to sharing more than make up for 
the losses due to contention. But the contention for resources is usually a 
very significant factor in performance and the most difficult performance 
factor to quantify. Relatively speaking, if there is no resource contention, 
then performance evaluation is usually simple. Our attention is thus focused 
on resource contention, and most of our performance models may be char
acterized as networks o f queues or queueing networks. The models principally 
consider the queues associated with resources and the interactions between
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resources and their queues. We define a queue associated with a resource 
to be the entities (e.g., the programs) waiting for or using the resource. 
(Note that some resources, e.g., memory, consist of many homogeneous 
units and many entities may simultaneously use units of the resource.)

Our other general comment is that performance evaluation is an art, not 
a science. This is true with measurement as well as modeling. In construct
ing a model, particularly in deciding which system characteristics to consider 
and which to ignore (it is usually impractical to consider all system charac
teristics), we must rely heavily on intuition and use methods which are not 
particularly rigorous. Unlike sciences where we strive for very precise 
characterizations, we must recognize that the complexity of the systems 
precludes great precision within practical limitations of cost and time. Our 
model structures may very well be influenced by pressures from those who 
will use its results, e.g., designers, implementors, purchasers, administrators, 
and users of the computer system. Though we will devote most of our 
attention to rigorous methods for solving a model, i.e., obtaining its per
formance measures, there are situations where rigorous solution methods are 
impractical and/or prohibitively expensive, especially when we need to solve 
a model repeatedly for different parameter values. In Chapter 6 our atten
tion will be focused on methods appropriate to this common situation. 
These methods are practical and inexpensive, and are inspired by rigorous 
results, but are heuristic in actual application.

Figure 1.1

1.3.1 A Simple Batch System Model

Figure 1.1 depicts a queueing network model which can be used effec
tively to estimate system throughput and device utilizations of simple batch 
systems. We will refer to this network as a cyclic queue model because of 
the cycling of programs between the two queues representing the CPU and 
the disks. Such networks have been used as models of non-computer 
systems for decades. An early proposal of this network as a computer 
system model is found in GAVE67. We will look at the cyclic queue model 
as used by Chiu et al to evaluate the performance of an IBM 360/75
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running the standard OS/MVT operating system at the University of Cali
fornia, Santa Barbara [CHIU75], Only four parameters, the degree of 
multiprogramming, the average CPU service time (between a program’s 
successive I/O activities), the number of disks, and the average disk service 
time (positioning and transfer), were used to describe this model in 
CHIU75, yet the model results agreed well with measurements. There are a 
number of assumptions implicit in the structure of the model and the choice 
of parameters and these assumptions are not immediately justifiable, but 
most of these assumptions have little effect on model results. Some of the 
assumptions are that (1) The degree of multiprogramming is essentially 
constant and determined by memory contention. Thus whenever a program 
finishes, it is replaced immediately by another. (2) The programs are 
homogeneous, i.e., we cannot distinguish their behavior. (3) The disks are 
equivalent, with a single queue for all accesses. (4) Scheduling may be 
treated as if it were First-Come-First-Served. (5) Successive CPU service 
times are independent and may be characterized by the exponential probabil
ity distribution (probability distributions are defined in Chapter 2). Similarly 
for disk service times. CPU and disk times are independent. (6) Programs 
do not overlap CPU and disk activities. (7) There is no memory interfer
ence between the CPU and disks. The list of assumptions could go on and 
on, depending on the level of detail we wish to consider.

The solution of this model depends on its characterization as a Markov 
process. Markov processes are key to most of our solution methods; they 
will be introduced in Chapter 3. We characterize the model by the possible 
combinations of programs at the CPU and disks. If the degree of multipro
gramming is TV, then there are TV+ 1 such combinations: TV programs at the 
CPU and 0 programs at the disks, TV—1 programs at the CPU and 1 pro
gram at the disks, etc. From these combinations we can obtain a set of 
TV+1 linear equations which can be solved to obtain the probability of each 
combination, i.e., the fraction of time that the system has that combina
tion of programs at the CPU and disks. Performance measures can then be 
obtained from these probabilities. For example, the CPU utilization is the 
sum of the probabilities of the combinations with at least one program at 
the CPU. Thus, if the degree of multiprogramming is not enormous, obtain
ing performance measures for this model is trivial. Further, we don’t really 
have to numerically solve the linear equations in this case because of some 
algebraic simplifications which result in a product form solution. As we will 
see in Chapters 4 and 5, the product form solution exists for some very 
complex models. Where the product form solution exists, we can find 
simple algorithms for obtaining performance measures, even when the 
number of equations is enormous.
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1.3.2 An Evaluation of Multiprocessor Systems

7

Though multiprocessor systems have been moderately popular for 
years, there has been an enormous increase in interest in multiprocessing 
because of the increasing availability of inexpensive small processors. There 
have been many published studies of uniprocessor system performance, but 
few of multiprocessor systems. In SAUE77b we examined performance 
effects of multiprocessor systems as compared to uniprocessor systems. Our 
objective was to study the effects of a variety of parameters and assump
tions, particularly the number of processors, the degree of multiprogram
ming, relative balance between CPU and I/O  services times, scheduling 
algorithms (including priorities) and characterization of service times by 
various probability distributions. Most of the models we used were varia
tions on the cyclic queue model of Figure 1.1. Most of the models could be 
represented as Markov processes and solved as such. For one scheduling 
algorithm this was not possible and we used simulation. In a simulation 
solution, one constructs a program which behaves like the model and meas
ures the behavior of that program. We will look at simulation from a 
queueing network point of view in Chapter 7.

1.3.3 A Data Management System Model

The Advanced Logistics System is a very large data management 
system developed by the United States Air Force. During the design of the 
system, Browne, Chandy and four other consultants developed two models 
which were used to guide the development and hardware selection 
[BROW75], The primary model was a complex hierarchical queueing 
network model; its results were initially corroborated by a companion 
simulation model (well before the system was operational). At the time the 
model was constructed, the planned hardware included two CDC Cyber 70 
mainframes, each with CPU, central memory and peripheral (I/O) proc
essors. The two mainframes shared over a million 60 bit words of memory, 
approximately 100 disks for the data bases, eight disks for system and 
scratch files and 24 tape drives. The queueing network model began with 
four submodels: one for the CPU’s, one for the central memories and 
shared memory, one for the data base disks, and one for the system/scratch 
disks and for the tape drives. The heuristic aggregation of the results of 
these models yielded the queueing network model of Figure 1.2. The 
modeling process is termed hierarchical because of the two levels of models. 
Though the network of Figure 1.2 is structurally more complex than the 
cyclic queue model, particularly in the detail of the I/O systems, there is 
much in common between the two models, both in terms of assumptions 
made and solution methods. The numerical solution of the network of 
Figure 1.2 has negligible computational cost. This model predicted that the 
proposed system was inadequate because of insufficient capacity in the
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system/scratch disk subsystem, and that, if sufficient system/scratch disk 
capacity were obtained, performance would still be inadequate because of 
insufficient CPU capacity. Both of these predictions were confirmed by 
subsequent operational experience and measurements. The entire modeling 
effort, including construction, solution and documentation of both the 
queueing network and simulation models, required two months for the six 
consultants to complete.
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1.3.4 A Model of an Interactive System

9

The queueing network model of Figure 1.3 is representative of a 
variety of models which have been used to evaluate the performance of 
general purpose interactive systems [BRAN74, BOYS75, BROW77]. We 
will look at the model in BROW77 of an interactive system at the Universi
ty of Texas at Austin. At the time of the modeling effort, the system 
consisted of a CDC 6400 running a locally written operating system and 
using a large, non-executable core memory as a swapping device. Though 
the cyclic queue model and similar networks can be used successfully to 
estimate utilizations of processors and disks and to estimate throughput, it is 
difficult to use such a model to estimate response time. Such models pro
vide estimates of the time a program spends in memory, but cannot provide 
estimates of the time spent waiting for memory, a significant portion of 
response time. The model of Figure 1.3 considers contention for memory 
explicitly rather than implicitly, and also considers the varying load on the 
system due to the time users spend thinking and typing.

There is no convenient algebraic solution of the linear equations for 
this network and the number of equations will be quite large, even when the 
number of users is moderate, say 30. Exact numerical solution of the 
equations is impractical because of the memory and processing required. 
However, without the memory contention, a product form solution would 
exist. Using results from product form networks, we can obtain a conven-
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ient solution to the network of Figure 1.4. The solution of that network 
can be used in a hierarchical (heuristic) manner to obtain a network of the 
form of Figure 1.5, where the service times at the "composite queue" 
depend on the queue length. The solution of that network is also convenient 
and will give response time estimates similar to those of the network of 
Figure 1.3 at negligible computational cost.
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1.3.5 The V M /370 Performance Predictor

1 1

VM/370 is a general purpose operating system for the IBM 370 series 
of computers. VM/370 provides a Virtual Machine Monitor [BUZE73] 
which is a special kind of operating system which gives each user the im
pression of having their own 370. Each user may run their own copy of the 
CMS uniprogramming interactive system or a conventional operating system 
(e.g., OS/MVS) in their "virtual 370". The VM/370 Performance Pre
dictor [BARD77b, BARD78a] is a software package based on a queueing 
network model similar to that of Figure 1.3. Some of the principal differ
ences are that each user may have entirely different characteristics (unlike 
the homogeneity of users assumed in BROW77) and that paging must be 
considered. The solution approach is similar to that of BROW77 but is a 
three level process, with the third level considering the I/O systems, and 
involves iterative solution of the three levels until certain consistency 
criteria are satisfied. (Since hierarchical solutions are usually heuristic, we 
may observe, and attempt to correct, inconsistencies in the performance 
measures.)

Figure 1.6
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1.3.6 Computer Communication Models

One of the most influential computer networks is the ARPANET 
linking facilities at universities and research centers in North America, 
Hawaii and Europe. In studying the performance of the ARPANET, queue
ing models have played a central role [KLEI70]. In addition to evaluating 
the performance of the individual computer systems, we must consider the 
effects of messages sent between computer systems. When a user is physi
cally connected to one computer but logically using another, a principal part 
of the user’s response time will be the transmission delay of messages sent 
between the computers. In addition to such "user traffic" there will also be 
significant traffic of messages used to control the network and maintain 
coordination of the computers. The cost of the communication links will be 
a significant portion of the cost of using the network. A principal use of 
the queueing network model will be to ensure appropriate utilization of the 
communication links. Figure 1.6 depicts a queueing network model of a 
hypothetical subset of ARPANET. As with the cyclic queue model, a 
number of strong assumptions are usually made to allow a convenient 
solution, but the results of the model for link utilizations and average 
response time agree well with measurements.



CHAPTER 2

GENERAL PRINCIPLES
2.1 SERVICE TIME DISTRIBUTIONS

In modeling many resources of a computer system, we may be princi
pally interested in the service times of programs which use the resources. 
(Aside — From an operating systems point of view we might use "process" 
or "task" instead of "program." From a queueing theory point of view we 
might use "customer" or "job" instead of "program." Generally we will 
assume all of these terms are synonymous and use "job.") For example, if 
the resource is a processor, a program’s service time will consist of execu
tion of instructions and the amount of time spent will be determined 
(principally) by the particular instructions executed, the processor times for 
these instructions, I/O requirements and memory management, if the system 
has virtual memory. If the resource is a moving head disk, then a program’s 
service time will consist of a positioning time and a transfer time, and the 
amount of time will be determined (principally) by the distance (if any) the 
arm must move, the mechanical speed and the amount of information to be 
transferred.

All of the determining factors in the above examples are measurable 
(or observable) and in a sense deterministic. Thus we could include these 
factors directly in a model,at least conceptually. Such an approach would 
usually be totally impractical. We will pursue the issue of practicality in 
future chapters, especially in Section 3.1. It is usually appropriate and 
practical to characterize service times as random phenomena. The purpose 
of this section is to informally defend the claimed appropriateness and to 
describe the characterizations we will use in all of our models.

If we observe service times without directly observing the determining 
factors of those times, then the service times will usually appear to be 
random, i.e. unpredictable. For example, if we are observing disk service 
times, the initial position of the arm which holds the heads and rotating 
platters is unpredictable (without very detailed knowledge). The required 
position of the arm and platters is, perhaps, more predictable, but still 
unpredictable without detailed knowledge. The amount of data transferred 
is especially unpredictable (unless transfers are always a full buffer of fixed 
size). For processor times, the instruction paths will usually depend heavily 
on (unpredictable) data. (In a virtual memory system, the processor times 
will also depend heavily on memory management which may, in turn,

13



depend heavily on the behavior of the entire multiprogramming set of 
programs.)

Though service times are not predictable, that does not mean we 
cannot characterize them. For example, we can observe many service times 
and compute the average service time. This simple characterization is 
sufficient for many of our models. However, for proof of this statement 
and for some models we must consider more detailed characterizations.

The most detailed characterization we consider is that of a probability 
distribution, an assignment of probabilities to possible values or continuous 
intervals of possible values. We assume that distinct service times are 
independent and identically distributed. Though this is not always realistic, it 
is usually reasonable. Consideration of dependencies is beyond the scope of 
this book. When we say "identically distributed", we do not mean that 
CPU and I/O service times have the same distribution nor do we necessarily 
mean that all jobs have the same CPU service time distribution, etc.

Let us first consider the case where there is a finite set of possible 
values. In this case we can simply enumerate the possible values and 
perhaps display them graphically as in Figure 2.1.
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Here P(x) is the probability of value x. (Informally we may define 
probability" as "relative frequency." There is a close formal relationship 

between the two terms.) We must have 0 < P(x) < 1 for all jc and 
2 P{x) = 1.



Usually it is inconvenient to work with distributions directly; we prefer 
simple characterizations. The most important of these is the mean or 
expected value which corresponds to the average value in less formal termi
nology. The mean is written E[x\ and defined by

SEC. 2.1 /  SERVICE TIME DISTRIBUTIONS 15

E[x] = ]T xP(x)
X

For the distribution of Figure 2.1

E[x] = 1.3x.3 + 2 x .5 + 2.8 x .2 = 1.95.

A generalization of the mean is the mean of some function of the service 
times. The most important cases are the moments and central moments. The 
n moment is the expected value of the service time raised to the n,h power, 
i.e.,

E[xn] = ^  x nP(x).
X

The mean and first moment are identical. The second moment is of particu
lar interest. For the distribution of Figure 2.1

£[*2] = (1.3)2x .3 + (2)2 x .5 + (2.8)2x.2 = 4.075

The n‘h central moment is the expected value of the nth power of the differ
ence between the service time and the mean, i.e.,

E[(x -  E[x])n] = £  (x -  E[x])"P(x). (2.1)
JC

The first central moment is identically zero. The second central moment is 
called by a special name, the variance. The square root of the variance is 
called the standard deviation. The Greek letter "a" is often used as a 
symbol for the standard deviation. For the distribution of Figure 2.1

ox = V  (1.3—1.95)2 x .3 + (2—1.95)2x .5 + (2.8-1.95)2x .2

= V  .2125 « .522.

Rather than use the definition (2.1) for the variance, it is often more 
convenient to use

a 2 = E[x2] -  (E[x] )2. (2.2)
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The mean gives us an indication of the magnitude of the service time; the 
variance gives us an indication of the variability. However, we would often 
like a more direct indication of variability that is independent of the mean. 
For this purpose we use the coefficient o f variation, C , defined by

C = — 
v E[x] '

Processor service time distributions in general purpose computer systems are 
usually highly variable; values of C x of 10 or more are not unusual. I/O 
service time distributions are much less variable; values of Cx much less 
than 1 are typical. (Note that Cx = 0 implies that all services times are the 
same.)

If the number of possible values is infinite (and this is usually the case) 
then we cannot depend on simple enumeration. If the possible values are 
discrete, i.e., countable, then we may be able to provide a function describ
ing the probability of each possible value. For our purposes, the most 
important example is the geometric distribution with parameter p such that 
0 < p < 1 and

P(x) = (1 -  p)x~ Xp , x =  1,2,3,....

By using the relationship
cx

5 > '  = T 1 - - 0 < l« l  < (2.3)
/ to  1 -  *

we can easily show that 2 P(x)  = 1. By repeated use of (2.3) we can also 
show that

E[x] = 1  (2.4)

and

El*2] -  I X I . .
P2

2(Obtaining E[x ] directly is very tedious; indirect approaches using 
transforms or generating functions are usually more convenient 
[DRAK67,FELL68].) Thus we also have

'J  \ —p
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and Cx = V  1 — p for the geometric distribution. We usually will not use 
the geometric distribution to represent service times. However, what we say 
about service times also applies to other behavior, i.e., we can characterize 
random variables by probability distributions. In Chapter 4, we will intro
duce the use of the geometric distribution in regard to other system charac
teristics.

Figure 2.2

In considering service times we are usually interested in continuous 
portions of the positive real line. With a continuous range of possible 
values, the number of values is not countable and we must use alternate 
characterizations of the distribution. In particular, we are not interested in 
the probability of a particular value (which will always be zero for distribu
tions we consider) but in the probability of a range of values. There are 
two common, complementary approaches: probability density functions and 
probability distribution functions. We will use the notation Fx(xq) for the 
distribution function, /^ (xq) is defined as the probability that a value x is 
less than or equal to xQ. It is required that Fx( —°o) = 0, Fx(°o) = 1, and 
F A  a) < Fx(b) for a < b. The density function is the derivative (where it 
exists) of the distribution function. We use the notation f x(x0) for the 
density function. It is required that

and

fx(* o)
dFx(x 0>

dx o

Fx^Xo) = P  /*(*.0^*0’
J  -  oc

fx(xo)dxo = !•
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An important example is the uniform distribution on the interval (a,b). With 
the uniform distribution each value in the interval (a,b) is equally likely. 
(Though what we say may seem self-contradictory, zero probability does 
not necessarily mean that a particular value is impossible.) Figure 2.2 shows 
the density and distribution functions for the uniform distribution.

Our definitions of mean, moment, variance, etc. all apply to continuous 
distributions if we replace P(x) with f x(x0) and replace summation with 
integration. For example,

oc
E[x] = | x f x(x0)dx0,

oc

and

oc

For the uniform distribution

b—a
, a < x0 < b,

f x(x0)
0, otherwise,

0,

1, x 0>b,

xn -  a
— ------, a < x 0 < b,

2 (b - a )o.. = --------------

2

12
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and

19

CX
b — a

(b + a)v/y

If we want the probability that a < x  < b, we can obtain this from the 
density function as

rb
Prob[a < x < b] = I f x(x0)dxQ

Ja

or from the distribution function as

Prob[a < x < b] = Fx(b) — Fx(a).

Figure 2.3

Perhaps more important in our work is the (negative) exponential distri
bution with "rate" a. For the exponential distribution

E[x] = 1  (2.6)

aA
E[x2] =
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2ax
1
2a

and

1.

Figure 2.3 shows the density and distribution functions for the exponential 
distribution with a = 1.

The use of the exponential distribution is crucial to mathematical 
models of computer systems. However, as we discuss in detail in the next 
chapter it is possible to represent essentially arbitrary distributions with the 
method of exponential stages. Modelers often categorize distributions by 
their variability, relative to the exponential distributions. A class of distri
butions with greater variability than the exponential is known as 
hyperexponential. Similarly, some distributions with less variability are 
known as hypoexponential. Figure 2.4 shows density and distribution func
tions for some hyperexponential distributions with mean 1, and Figure 2.5 
shows some hypoexponential distributions with mean 1.

2.2 SCHEDULING ALGORITHMS

Besides the mean service time of a program using a resource, the most 
important characteristic of a resource is the scheduling algorithm which 
decides how the resource is to be allocated to the competing programs. 
(We will often use queueing discipline synonymously with "scheduling 
algorithm.")

The simplest, and occasionally, most appropriate scheduling algorithm 
is First-Come-First-Served (FCFS). However, as we discuss graphically in 
the next section, FCFS is often inappropriate for resources with highly 
variable service time distributions. Thus there has been much research on 
scheduling algorithms, particularly for processors [COFF68, SHER72, 
SAUE77b],

There are two principle questions in scheduling: (1) Which job should 
be currently served? and (2) If the job in service is not the one we would 
now choose (because of a change in the system state) should we allow the 
job in service to finish or should we preempt it?
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Figure 2.4

With FCFS the choice of job to be served is made according to time of 
arrival; the job with the earliest arrival time is served. The preemption 
question does not arise since a change of system state (e.g., an arrival) 
cannot change the choice.

The opposite of FCFS is Last-Come-First-Served (LCFS). With LCFS 
every arrival changes the choice, so we have to decide about preemption. A



22 GENERAL PRINCIPLES /  CHAP. 2

principal sub-question with regard to preemption is whether it is possible to 
resume the preempted job where it left off (when the choice is made to 
reservice that job) or whether the job’s service must begin anew. Proc
essors are usually designed to facilitate resumption of the preempted job (by 
providing for saving the values of the program counter and other registers). 
With an I/O device it is usually necessary to reposition the device to service 
the preempting job; the preempted jobs’s service is restarted in the future. 
Thus preemptive scheduling of I/O  devices is unusual. Last- 
Come-First-Served-Preemptive-Resume (LCFSPR), which is strictly preemp
tive, has some desirable theoretical characteristics and has been used for 
processor scheduling in interactive systems.
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Among the most common processor scheduling algorithms are 
round-robin (RR) and more complex algorithms based on RR. (RR is 
sometimes referred to as "time-slicing.") RR is defined with respect to an 
interval of time called the quantum (or "time-slice"). Jobs are served in 
first-come-first-served order as long as their service times do not exceed the 
quantum. When a job’s current service time (ignoring previous quanta) 
reaches the quantum, the job is preempted (with state information saved for 
future resumption) and the job is placed at the end of the queue (as if it 
had just arrived). Thus the job’s service time is broken up into several 
quanta, all but the last of which are of fixed length. The processor is 
effectively shared among the jobs; a job with short service time is not 
forced to wait for the completion of service times of jobs ahead of it. The 
principal sub-question with RR is the choice of quantum size. There will be 
overhead (processor time used in implementing the scheduling and preemp
tions). If the overhead is large relative to the quantum, then performance 
will suffer. This overhead is usually at least a hundred microseconds per 
preemption. A common rule of thumb is to choose a quantum roughly two 
orders of magnitude larger than the overhead for a preemption. (As the 
quantum becomes large, RR becomes the same as FCFS and the sharing 
effects are lost.)

The processor sharing (PS) discipline can not be actually implemented, 
but is valuable in modeling RR scheduling. PS is defined as the limiting 
case of the RR algorithm with zero overhead as the quantum goes to zero. 
PS is usually a reasonable representation of RR when the quantum is very 
large with respect to the overhead and small with respect to the mean 
service time.

In terms of minimizing mean response times, the optimal scheduling 
algorithm is shortest-remaining-time-first (SRTF). SRTF always chooses to 
serve the job with the smallest remaining service time. If an arriving job 
has a smaller service time than the job in service, the arriving job preempts. 
(SRTF is intuitively optimal with respect to mean response time since it 
maximizes the number of response times completed in a given interval of 
time.)

SRTF assumes service times are known in advance, and this is not 
usually the case with processors. However, in modeling we can use SRTF 
as a standard for comparison with practical algorithms. It is often possible 
to use past behavior as a predictor of future behavior and approximate 
SRTF [SHER72]. For I/O  devices we may very well be able to determine 
service times in advance (although we cannot use preemption). For drum 
(-like) devices shortest-latency-time-first (SLTF) is often optimal [FULL75]. 
For moving head disks, shortest-seek-time-first (SSTF) is often considered 
optimal but there are exceptions [TEOR72, WILH76],
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We have assumed that jobs are not given external priorities (e.g. by the 
system administration). If this is not the case, then the above algorithms 
can be applied within a priority group after jobs are classified by priorities. 
Preemption may be applied across priority groups as well as within groups. 
(We use the term "external priority" since almost all algorithms have 
implicit internal priorities, e.g., FCFS has internal priorities based on arrival 
times.)

2.3 PERFORMANCE RELATIONSHIPS BETWEEN
DISTRIBUTIONS AND SCHEDULING

In order to make our discussions more specific, in this section we will 
assume a cyclic queue model of the type used by Chiu et al discussed in the 
last chapter. The conclusions we draw apply in much more general circum
stances, including all of the closed networks discussed in this book. Similar 
conclusions apply in open networks.

In determining performance, our measure will be throughput, the mean 
number of jobs passing through a point in the cyclic network per unit of 
time. As we will see in the next section, maximum throughput in this model 
coincides with maximum resource utilization and minimum mean response 
time, assuming that workload remains unchanged.

If service times are highly variable, i.e., Cx > 1, then most of the 
service times will be much smaller than the mean, but a few will be much 
much larger. (For the exponential distribution, which has Cx = 1, about 
22% of the times will be less than one-fourth of the mean, about 39% of 
the times will be less than half the mean and about 63% of the times will 
be less than mean.) This variability causes poor performance with FCFS 
scheduling, since one job with long service time will delay many other jobs 
with short service times once it begins service. This effect is compounded 
by effects on other resources — if all of the jobs pile up at the CPU queue, 
then the I/O devices become idle and the performance benefit of multipro
gramming is lost.

With RR, the effect of high variability in service times is much less 
noticeable. A job with a long service time is preempted after reaching the 
quantum and jobs with short service times proceed with very little interfer
ence from the long job. As we will show in Chapters 4 and 5, the limiting 
case of RR, PS, is insensitive to all distribution characteristics other than 
the mean (and gives the same performance as FCFS with exponential 
service times).

Let us assume that our cyclic queue model has a single processor, five 
I/O devices and five jobs. The mean CPU service is 10 ms. and the mean



SEC. 2.3 /  PERFORM ANCE RELATIONSHIPS 25

Coefficient of variation

Figure 2.6

I/O  service is 50 ms. (Thus the effective rate of the I/O system is the 
same as the processor when all devices are active.) Regardless of distribu
tion characteristics other than the mean, with PS the throughput will be 
roughly .072 jobs/ms., the processor utilization will be 72% and each I/O 
will have 72% utilization. These values are easily obtained by the methods 
of Chapter 5. Regardless of I/O  distribution forms, with FCFS these 
measures will be higher for Cx < 1, the same for Cx = 1 and lower for 
Cx> 1. (The FCFS results can be obtained, with more effort, by the me
thods of Chapter 3.) Figure 2.6 compares the PS throughputs to FCFS 
throughputs for processor service times with .75 < Cx < 5. Figure 2.6 also 
gives similar results with the single processor replaced by two processors 
which are half as fast, i.e., the mean CPU service becomes 20 ms. (The PS 
and FCFS exponential results give a throughput of .067 and utilizations of 
67%.) Notice that the difference between scheduling algorithms is much 
smaller in the dual processor case. With two processors, a single job with 
long service time is much less disruptive in the FCFS case; other jobs can 
use the second processor. Figure 2.7 is similar to Figure 2.6 but compares 
SRTF to FCFS. We will pursue this discussion again in Chapter 9.
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Figure 2.7

2.4 RELATIONSHIPS BETWEEN PERFORMANCE MEASURES

In this section we discuss two very simple relationships between per
formance measures. More complex relationships will be evident from results 
in the remaining chapters.

2.4.1 Throughput, Utilization and Mean Service Time

Let us assume (as we almost always will) that the system has attained 
equilibrium, in particular, that the flow of jobs out of a queue (for a re
source) is equal to the flow into the queue. We call the flow the through
put. Suppose we have a single resource at the queue and the effective 
service rate of the server is independent of queue length. (This last assump
tion will not hold for most preemptive schedules with non-zero overhead.) 
Since the mean service time per job is E[x], the mean service rate is \ /E \x \ .  
Call the utilization, the fraction of time the resource is busy, U. The 
throughput must be equal to the service rate of the resource, when it is 
busy, times the fraction of time it is busy. In other words
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throughput = (2.7)
E[x]

If there are k identical units of the resource, U is the utilization of each 
unit, and the other assumptions above are valid, then

throughput = (2.8)
E[x]

Similar results can be obtained from the queue length distribution in more 
complex situations. (The methods of subsequent chapters can be used to 
obtain the queue length distribution.)

2.4.2 Throughput, Mean Queue Length and Mean Response Time

Let us define the queue length as the number of jobs waiting for or 
using a resource. Let us define queueing time (response time) as the time 
between arrival of a job at a (queue for a) resource and completion of use 
of the resource. The mean queue length can be obtained as

oc
l  = e [i] = ^  m o

1= 1

where P(l) is the probability of queue length /. The mean queueing time 
can be obtained as

Q = E[q] = | qof (qQ)dq0 
J 0

where f q(q0) is the density function for the queueing times. Though not 
immediately obvious, it is generally true that

L = \ Q  (2.9)

where A is the throughput. This result was first formally proved by J.D.C. 
Little [LITT61] and is known as "Little’s Rule."

We will intuitively justify (2.9) for a finite period of observed time and 
FCFS scheduling. Neither of these assumptions are necessary for formal 
proof; Little’s Rule holds for all models in this book and under most other 
circumstances. (Since Little’s proof, simpler proofs have been devised; see 
KOBA78, for example, for a formal proof and a statement of sufficient 
conditions for (2.9).)

Consider Figure 2.8, which shows queue length versus time. The area 
under l(t) is partitioned and numbered according to the sequence of the
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jobs’ arrivals and their queue positions (assuming FCFS). A job is in 
service when its sequence number is in a rectangle adjacent to the horizon
tal axis.

Assume we are observing for a period starting at time 0 and ending at 
time T. Let n(T) be the sequence number of the last job to complete 
service by time T. Thus

X = 4<Z2.
T

Let A(T) be the area under /(/) up to time T, i.e.,

A(T) = f Tl(t)dt.
*'0

We can easily show that

l  = 2<Z2
T

and that

n(T)

(2 . 10)

( 2 . 11)

Thus
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L = M ] l = < r 1 MT1  = XQ
T T „( D

Little’s Rule (2.9) also holds if we define L only with respect to jobs not in 
service and Q as time waiting for service. Further, we can apply (2.9) to 
sub-groups of jobs, e.g., priority groupings. Finally, we can apply (2.9) to 
subsystems, e.g., an entire computer system, if L is defined with respect to 
the number of jobs in the sub-system and Q is defined with respect to total 
time in the subsystem!

2.5 FURTHER READING

A more introductory and thorough treatment of the material of Section
2.1 can be found in DRAK67 and FELL68. Further discussion in general is 
found in KOBA78 and more discussion of individual topics is found in the 
cited references.

2.6 EXERCISES

2.1 Derive (2.2) from (2.1)
2.2 Derive (2.4) from repeated application of (2.3)
2.3 Derive (2.5)
2.4 Derive (2.6)
2.5 Justify (2.10) and (2.11)

2.7 SUMMARY OF CHAPTER NOTATION

P(x) Discrete distribution: probability of value x
E[x] Mean (expected) value of random variable x
E[xn] nlh moment of random variable x 
ax Standard deviation of random variable x
Cx Coefficient of variation of random variable x
Fx(x0) Continuous distribution: probability distribution function of 

random variable x, i.e., probability x  < x0
f x(x0) Continuous distribution: probability density function of random

variable x
U Utilization of a (unit of a) resource
L Mean queue length for a resource, including jobs in service
Q Mean queueing time for a resource, including service time



CHAPTER 3

MARKOVIAN QUEUEING M O DELS  
OF COM PUTER SYSTEM S

Markov processes are extremely powerful tools which can be used to 
provide accurate, yet mathematically tractable, models of computing systems 
performance. This chapter will provide an informal description of a subset 
of Markov processes which is sufficient to describe very general queueing 
network models of computing systems. (This subset is also sufficient for 
description of many other computing system models, but we will restrict 
attention to queueing network models.) There are three issues we will face: 
(1) definition of Markov processes, (2) mapping computer system models 
to Markov processes, and (3) solution of Markov processes.

Performance models are usually used to estimate the performance of 
computing systems over a period of time. The time period may be explicit 
for some performance measures and implicit for others. The two most 
important measures, throughput and response time, represent explicit and 
implicit time periods, respectively. Throughput is measured in the amount 
of work, e.g., the number of batch programs or interactive commands, 
handled during a time period. Though we might wish to estimate the 
response time for an individual command (or the turnaround time for an 
individual batch job), usually we will be content to estimate the mean or 
some other measure of the response time distribution. (We might estimate 
the fraction of response times that exceed 3 seconds, for example.) In this 
second case we usually have a period of time in mind, whether or not it is 
well defined. The period may be the entire day, or a portion of a morning 
when the system is lightly loaded, or late in the afternoon when everyone is 
trying to get finished and go home, etc.

3.1 DIFFICULTY OF FINDING TRACTABLE REPRESENTATIONS
OF COMPUTING SYSTEMS

Since a multiprogrammed computer exhibits very dynamic behavior, 
and since the behavior at a particular time depends strongly on contention 
for and sharing of resources, a model of a given system must attempt to 
represent the internal state of the system. However, a detailed representa
tion of internal state will usually leave us without solution methods other 
than direct simulation. For example, towards the extreme of detailed 
representation, if we paid attention in our state representation to the in-

30
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struction streams of individual programs and the data for those programs, 
then the most appropriate solution method would be to use the system 
itself!

The representation of internal state gives us memory of the current and 
past condition of the system. If this memory includes too little detail then 
we will have difficulty estimating the behavior of the system. However, if 
we allow very much memory we will find numerical solution impractical.

Let us consider some simplified representations which still preclude 
tractable solutions. (We claim, without proof, that these representations 
usually, but not always, preclude tractable solution other than simulation.) 
Since we have ruled out consideration of specific instruction and data 
streams, a less detailed representation would be one which only considered 
system and workload timings, e.g., the time until a program using a CPU 
relinquishes the CPU in order to perform I/O, the times between page 
faults for a given program and memory policy, or the times between the 
running of a system scheduler. If we look at the specific times then we will 
still be overwhelmed with information.

Another simplification is to (1) represent the timings by probability 
distributions, i.e., a distribution for CPU time used between I/O operations, 
another for the times between page faults, another for the times between 
scheduler activations, etc., and (2) assume that successive timings are 
independent with the respective distributions. However, if we allow arbi
trary probability distributions as defined in Chapter 2, we will still be 
overwhelmed with information. Suppose we wish to represent the time until 
completion for a request arriving at the CPU when the CPU is busy doing 
something else. If we wish to estimate the distribution for this period of 
time, then we will have to determine the distribution for the sum of the time 
for the request plus the time until the CPU is given the request. This latter 
time will depend on the time already spent on work ahead of the arriving 
request and that time would be included in our state representation. Thus 
our state space will in general be infinite and not countable. If we cannot 
enumerate the state space of our representation, then we can only hope for 
a solution under very restricted conditions.

We have an apparent impasse — we want to study the time dependent 
behavior of the computer system but we cannot consider time in our repre
sentation of the system. The Markov process representation allows us to 
consider time in a very controlled manner and thus overcome the apparent 
obstacle.
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3.2 MARKOV PROCESSES

3.2.1 The Exponential Distribution

The key to the Markov process representation is a very special proba
bility distribution, the (negative) exponential distribution defined in Chapter 
2. The exponential probability distribution function has the form 
F x(Xq) = 1 — e~ax°, for x 0 > 0. The parameter a is referred to as the 
"rate" of the distribution, for reasons which will soon be evident. The 
mean of the distribution is 1/a. See Figure 3.1.

The exponential distribution is unique among continuous distributions 
(those that allow values along continuous portions of the real line) because 
it has a so called "memoryless" property. The memoryless property is that 
if we know that a random variable has an exponential distribution, and we 
know that the value of the random variable is at least some other value, say 
t, then the distribution for the remaining value of the variable (e.g., the 
difference between the total value and t) has the same exponential distribu
tion as the total value. For example, if we know that a program’s CPU 
times between I/O  activities have an exponential distribution, and we know 
that a given CPU time has already lasted 10 milliseconds, then the remain
der of the current CPU time will have the same exponential distribution as 
the total CPU time.

Though timings in computer systems usually do not have exponential 
distributions, 1) we can often assume the timings do have exponential 
distributions and get accurate results in spite of the incorrect assumption, 
and 2) we can use combinations of exponential distributions, as we shall see 
later in this chapter.

Figure 3.1 - Exponential Distribution
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Figure 3.2 - Memoryless Property

We prove that the exponential distribution has the memoryless property 
as follows. We want to show that Prob[x < x0 + t given x  > /] = Prob 
[x < x0],

A probability of one event given the occurrence of another event, e.g., 
Prob[Event A given Event B], is known as a conditional probability. We
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define, for ProblEvent R]>0,

Prob[Event A given Event B] = Prob[Event A and Event B\ 
Prob[Event B]

We have informally used the term independence before. Formally, events A 
and B are independent if

Prob[Event A given Event B] = Prob[Event A],

or equivalently, if

Prob[Event A and Event B] = Prob[Event /l]Prob[Event B],

From the definition of conditional probability we know that

Prob[x < x0 + t given x > /]

Prob[x < x0 + t and x > r]
Prob[x > /]

= 1 -  e~a^ +,) -  (1 -  e~at)

1 -  (1 -  e~a')
= l -  e 0

= Prob[x < x0].

Figure 3.2 illustrates this proof.

3.2.2 The Poisson Process

Suppose the times between events in a stream of events are independ
ent and the durations of the inter-event times have the exponential distribu
tion Fr(t0) = 1 -  e~al°. For example, the events might be completion of 
service at a CPU, when the CPU is busy. Since the mean time between 
events is 1 /a, the rate of occurrence of events will be a. It can be shown 
that the events form a Poisson process.

The Poisson process is defined as follows:

1. Occurrences of events during non-overlapping intervals of time are 
independent.

2. For a sufficiently small interval of time, At, the probability of zero 
events occurring during the interval is 1—aAt, the probability of 
one event occurring during the interval is aAt, and the probability 
of more than one event during the interval is negligible.
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Note that part 1 of the definition gives the Poisson process a memoryless 
property; occurrence of events during a current interval of time is independ
ent of occurrences in previous intervals. It is equivalent to say that "events 
form a Poisson process" and that "inter-event times are independent with 
identical exponential distributions."

Now suppose we have two independent streams, each forming a Pois
son process with rates a x and a2, respectively. Let us consider the merging 
of the two streams, i.e. the stream of events consisting of all events from 
both streams. We would like to show that the merged stream is also a 
Poisson process. Since each stream satisfies part 1 of the definition and 
since the streams are independent, the merged stream also satisfies part 1 of 
the definition and since the streams are independent, the merged stream also 
satisfies part 1 of the definition. The probability of zero arrivals in the 
merged stream in interval At is

(1 — a xAt)(l -  a2At) = 1  — (ax + a2)At + a xa2At2

which is 1 — (a, + a2)At for sufficiently small At. The probability of one 
arrival in the merged stream in interval At is

2 2(1 -  a x At)a2At + a x Ar(l -  a2At) = a2At -  a xa2At -\-axAt -  a xa2At
= (ax + a 2)At — 2axa2At2

which is (ax + a2)At for sufficiently small At. The probability of two 
arrivals in the merged stream in interval At is

2a2Ata2At — a xa2At

which is negligible for sufficiently small At. Thus the merged stream forms a 
Poisson process with rate a x + a2. Further, the inter-event times will have 
the exponential distribution Ft(t0) = 1 -  e -^ iW 'o . This last observation 
is also key to the Markov processes we discuss.

If we observe an event in the merged stream, then with probability

a xAt a x
a x At + a2At a x + a2

it is from stream 1 and with probability

a 2
a x + a2

it is from stream 2.
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Also note that if we accept only certain events, with fixed probability 
P, and reject the other events, then the stream of accepted events is a 
Poisson process with rate Pa.

3.2.3 Markovian States

Let us assume that we can represent the possible conditions of a system 
by a set S {1 < / ' < « }  of mutually exclusive, collectively exhaustive 
states. Further, the future behavior of the system is dependent only on the 
current state of the system, i.e., it is independent of previous states of the 
system. Finally, the "holding times" for state S(, i.e., the times between 
corresponding entrances to and departures from state S t, are independent 
and identically exponentially distributed with rate ar Then the states for 
this system are Markovian.

We can define a Markov process to be a set of Markov states 
{Sf. 1 < i < n} and a set of transition probabilities {qlj\ 1 < i < n, 
1 < j  < n, ^  Qij = !}• See Figure 3.3.

The circles in Figure 3.3 represent states of the process and the arcs 
represent state transitions. If a system is in state S', then it will make state 
transitions at rate ar The rate of transitions from state S , to Sj  given that 
the system is in state S t, will be afl^.

With the above definitions, we note that the Markov process has a very 
limited amount of memory; the only memory is the current state. Yet time 
is included in our representation and we can represent very complex, time 
dependent systems.
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Figure 3.4

3.2.4 State Probabilities and Balance Equations

Let us assume that there exists a probability Pt(t) that the system is in 
state S, at time t. Further, a system equilibrium exists such that

lim PjO) = Pj , 1 < i < n
t —►  00

Note that this implies that there is only one possible equilibrium. Figure 3.4 
illustrates a Markov process with two equilibria.

Let us also assume that P, > 0 for 1 < i < n. Since an equilibrium exists, 
we expect that the rate of transitions out of state S, is equal to the rate of 
transitions into state S,-. The rate of transitions out of state S', will be P,a,. 
The rate of transitions into state S, will be

2  Pj aj Vji ■
j

Thus we have n equations of the form

p i a i =  2  p j  a j  Qji A  < i  < n .
j

These may be rewritten as

~ P ,  a i +  2  P j  a j  * j i  = 0 , 1  <  i  <  n.  ( 3 . 1)
j

Note that the nth equation is redundant, i.e., given any n-1  of the equations 
we can derive the remaining one. We also know that X P, = 1. We can 
solve a set of linear ("balance") equations
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-  P, ai + 2  PJ aj Qji = 0, 1 < i < n -  1
j

J

to obtain P;, 1 < i < n. From these equilibrium probabilities we can obtain 
performance measures such as mean response time, throughput, utilization, 
etc.

3.2.5 An Example

Consider the closed queueing network of Figure 3.5. In Chapter 1 we 
described this network as a model of a batch computer system. We now 
represent this network as a Markov process.

2 I/O devices

Figure 3.5 - Cyclic Queue Model

Let us assume that there is one CPU, there are two identical I/O 
devices and the (fixed) degree of multiprogramming is three. As in the 
work of Chiu et al, we assume that both queues have FCFS scheduling 
disciplines and that service times are independent and identically distributed 
with exponential distributions. Let the rate of the CPU distribution be 
and the rate of the I/O distribution be b2.

Given these assumptions, we can define a set of Markov states of this 
system as {(3,0), (2,1), (1,2), (0,3)} where the couple ( i j )  means that there 
are i jobs at the CPU queue and j  jobs at the I/O queue. (We know that j  
= 3 — but we include j  for clarity.)

It is obvious that these states are mutually exclusive and collectively 
exhaustive. We can show that the holding time for each state is exponen
tial. For example, the holding time for state (1,2) is exponential with rate 
b { + 2b2 since all three jobs are in service and have exponential service 
time distributions.



SEC. 3.2 /  MARKOV PROCESSES 39

Though we could have other Markov process representations of this 
system with more states, we must have at least four states in any Markov 
process description of this system. The first part of this claim is easy to 
demonstrate by example. On the other hand, if we have fewer than four 
states for this system we will lose the "independent of previous states" 
property.

Given a transition out of state (1,2), the probability of entering (0,3) is

b j ■+■ 2b 2

and the probability of entering (2,1) is

l b 2
b j + 2b2

Thus when the system is in state (1,2) the rate of flow into (0,3) is

(bx + 2 b 2)
2b 2

f l ( l ,2 )  <7(1,2),(0,3)
(rate) (probability)

Similarly, the rate of flow into (2,1) is 2b2. The full state transition diagram 
is given in Figure 3.6.

Using the notation P(i,j) for the equilibrium probability of state (i j) ,  
we have the following equations equating the flow in and out of each state:

state equation
(3,0) - ^ ( 3 , 0 ) + b2P( 2,1) = 0
(2,1) b xP( 3,0) ~ ( b l + b2)P( 2,1) + 2b2P( 1,2) = 0
(1,2) b xP{2,1) ~ ( b x +2b2)P(l,2)  +2Z>2P(0,3) = 0
(0,3) b xP( 1,2) -2Z>2P(0,3) = 0

Notice that any one of these may be obtained from the other three. We can 
replace any one equation by

P(3,0) + P(2,l) + P( 1,2) + P(0,3) = 1

and solve for each probability. Doing so we obtain
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where

P( 3,0) = b ^ / G (3.2)

P{2,1) = b~2bz ' / G (3.3)

P( 1,2) = U ^ b ^ / G (3.4)

/>(0,3) = - b ^ / G  4
(3.5)

i A — 2i — 1 . 1 i —1 l — 2 , 1 l — 3 
+ b \ b2 + 2 b \ bZ + J b2 ■

Figure 3.6

This solution is easily verified by substitution. Note that G explicitly forces 
the probabilities to sum to 1; it is called a "normalizing" constant. From 
these probabilities we can easily obtain performance measures of interest. 
Some interesting measures are

CPU utilization = P(3,0) + P(2,l) + P(l,2)
CPU throughput = b^PO.O) + P(2,1) + P( 1,2))
CPU mean queue length (including job in service)

= 3P(3,0) + 2P(2,\) + P( 1,2)
CPU mean queueing time (including service)

= (CPU mean queue length)/(CPU throughput)
I/O utilization (of each identical device)

= ,5P(2,1) + P( 1,2) + .P(0,3).

As we shall show in Chapter 5, this model belongs to the class of 
models with a "product form" solution. For models with product form 
solution we need not explicitly solve for state probabilities to obtain many 
interesting performance measures, including the ones above. However, 
many interesting models will not have product form solutions. For these we 
must use numerical solution, approximation (Chapter 6) or simulation
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(Chapter 7). The remainder of this chapter will consider methods for 
numerical solution.

3.3 SPARSE MATRIX SOLUTIONS

A set of equations for the previous example may be represented in 
matrix notation as

Bp = e

where p is a column vector (P(3,0), P(2,l), P( 1,2), P(0,3))T (T stands for 
transpose), e is a column vector (0,0,0,1)T and B is a matrix

b2 0 0 "
{b j + b2) 2Z>2 0

b x —  (Aj + 2 b2) 2b2
1 1 1

(We are omitting the equation equating flow in and out of state (0,3).)

For this model we may use any one of a variety of methods to obtain a 
solution for the vector p. However, more complex models may result in 
very large sets of states (possibly infinite). For the purposes of this section 
let us assume that the number of states is on the order of a few thousand.

An immediate observation is that it is impractical to store the state 
transition matrix (e.g., B) as a two dimensional array. If there are a few 
thousand states, then such an array would require several million words of 
storage. Fortunately, for queueing models of computer systems, the state 
transition matrix is usually sparse, i.e., most of the elements are zero. Thus 
we can use a data structure which only stores the non-zero elements. For 
example, we can use a table of triples (row, col, value) where row and col are 
the subscripts of a non-zero element. For the matrix B we should have

0
1

row col value
1 1
1 2 b2
2 1
2

etc.
2 ~ ( b l + b2)

(Though B is not sparse, note that if we increase the degree of multi
programming then the corresponding matrix will have roughly 3N  non-zero 
elements, where N  is the degree of multiprogramming. Thus the fraction of
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non-zero elements is roughly 3/N .)

A direct approach to solving the balance equations, such as Gaussian 
elimination, will be inappropriate because it will change the elements of the 
matrix, making many elements non-zero which previously had been zero. 
The increase in storage will often be prohibitive. There are other disadvan
tages of direct solutions which we will ignore.

The interesting alternatives to direct solution are iterative solutions and 
specialized recursive algorithms. We will defer discussion of the recursive 
algorithms until the end of the chapter. The iterative solutions are generally 
applicable provided the number of states is not too large.

Let S be a matrix such that

s .. = \ ai qi "  l * j
U l - a ,  (1 — qa ), i = j

i.e., S' is the matrix corresponding to the redundant set of equations (3.1) 
without replacing one by S Pi = 1. Then Sp= 0 where p is the column 
vector (P | , P n) and 0 is the column vector containing all zeroes. 
Then we also have that ASp = 0 where A is an arbitrary scalar. Further 
ASp + p = p so that (AS + I)p = p, where /  is the identity matrix consist
ing of ones on the diagonal and zeroes elsewhere.

The last equation suggests the iterative formula

pk+l = (AS + I )pk

where pk is the estimate for p on the k th iteration. It can be shown that, 
with appropriate choice of A, this iteration will converge to p with any 
initial estimate p®. As discussed in WALL66, a value of A which is usually 
appropriate is

.99
max | S„ |

/

Note that the iteration leaves AS + /  unchanged.

As a numerical example consider the model of Section 3.2.5 with mean 
CPU service 6.67 ms. and mean I/O service 10 ms. Thus b\ = .15 
jobs/ms. and b2 = .1 job/ms. From (3.2-3.5) we know that /T3,0) = 
.224, P(2,1) = .336, P( 1,2) = .252 and />(0,3) = .189. (Thus the CPU 
utilization is 81% and the I/O utilization is 61%.)
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Figure 3.7 shows a PASCAL program which applies this iterative 
solution method to this model. Figure 3.8 shows the output of this pro
gram. The program is written to allow an arbitrary number of jobs in the 
system and an arbitrary number of I/O devices. Note that mechanically 
generating the matrix S  is non-trivial for more complex systems. The 
iteration terminates when the error estimate (the sum of the magnitudes of 
the differences between the elements of p k and p k+*) is small. Note that 
the algorithm converges in spite of p being so poor. (p°(3,0) = 1, 
P°( 2,D = p°( 1,2) = ^ (0 ,3 ) = 0.)

PROGRAM ITERATE(OUTPUT);
(♦PROGRAM TO ITERATIVELY SOLVE BALANCE EQUATIONS
FOR A CYCLIC QUEUE MODEL OF A COMPUTER SYSTEM. ASSUMES 
FIXED DEGREE OF MULTIPROGRAMMING, EXPONENTIAL CPU TIMES 
WITH MEAN 1/B1, ONE CPU, EXPONENTIAL I/O TIMES WITH MEAN 
1/B2 AND NIO I/O DEVICES*)

CONST B1=0.15; B2=0.1; NIO=2;
(*NSTATES=DEG. OF M.P. + 1 
MATSIZE=3*NSTATES - 2*)

NSTATES=4; MATSIZE=10;
TOLERANCE=0.001;

TYPE PVECTOR=ARRAY[1..NSTATES] OF REAL;
'7' R MATRIX: ARRAY [ 1 .. MATS IZE ] OF 

RECORD
ROW, COL: 1..NSTATES;
VALUE: REAL 

END;
OLDP, NEWP: PVECTOR;
MAXDIAG, DELTA: REAL;
I, ITERATION: INTEGER;

FUNCTION MIN(V1,V2:INTEGER):INTEGER;
BEGIN

IF V1<V2 THEN MIN:=V1 
ELSE MIN:=V2

END; (*MIN*)
FUNCTION NORM(VI, V2: PVECTOR): REAL;

VAR I: INTEGER;
TEMP: REAL;

BEGIN
TEMP:= 0.0;
FOR I:=1 TO NSTATES DO

TEMP:=TEMP+ABS(V1[I]-V2[I] ) ;
NORM:=TEMP 

END; (*NORM*)
BEGIN
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(*BUILD TRANSITION MATRIX. STATE I HAS NSTATES-1 -(I-1) 
JOBS AT CPU, 1-1 JOBS AT I/O*)

WITH MATRIX[1] DO
BEGIN ROW:=1; COL:=1; VALUE:=-B1 END;

WITH MATRIX[2] DO
BEGIN ROW:=1; COL:=2; VALUE:=B2 END;

FOR I:=2 TO NSTATES-1 DO 
BEGIN

WITH MATRIX[3*1-3] DO
BEGIN ROW:=1; COL:=1-1; VALUE:=B1 END;

WITH MATRIX[3*1-2] DO
BEGIN ROW:=1; COL:=I; VALUE:=-B1-MIN(I-1,NIO)*B2

END;
WITH MATRIX[3*1-1] DO

BEGIN ROW:=I; COL:=I+1; VALUE:=MIN(I,NIO)*B2 END
END;

WITH MATRIX[MATSIZE-1] DO
BEGIN ROW:=NSTATES; COL:=NSTATES-1; VALUE:=B1 END;

WITH MATRIX[MATSIZE] DO
BEGIN ROW:=NSTATES; COL:=NSTATES; VALUE:=-MIN(NSTATES-1,

NIO)*B2 END;

(*DETERMINE DELTA*)
MAXDIAG:=0.0;
FOR I:=1 TO MATSIZE DO 

WITH MATRIX[I] DO 
IF ROW=COL THEN

IF ABS(VALUE)>MAXDIAG THEN 
MAXDIAG:=ABS(VALUE);

DELTA:=0.99/MAXDIAG;
(♦MULTIPLY TRANSITION MATRIX BY DELTA AND ADD IDENTITY 
MATRIX*)

FOR I:=1 TO MATSIZE DO 
WITH MATRIX[I] DO 

BEGIN
VALUE:=DELTA*VALUE;
IF ROW=COL THEN VALUE:=VALUE+1.0 

END;
(* INITIAL ESTIMATE OF STATE PROBABILITIES*)
NEWP[1]:=1.0;
FOR I:=2 TO NSTATES DO 

NEWP[I]:=0.0;
ITERATION:=0;
WRITE(' ':11,'P ');

FOR I:=1 TO NSTATES DO
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WRITE(I:7) ;
WRITELN;

(♦ITERATIVE REFINEMENT OF ESTIMATE*)
REPEAT

ITERATION:=ITERATION+1;
FOR I:=1 TO NSTATES DO 

BEGIN
OLDP[ I ] : =NEWP[ I ] ;
NEWP[I]:=0.0 

END;
FOR I:=1 TO MATSIZE DO 

WITH MATRIX[I] DO
NEWP[ROW];=NEWP[ROW] + VALUE*OLDP[COL]; 

WRITE('ITERATION',ITERATION:3);
FOR I:=1 TO NSTATES DO 

WRITE(NEWP[I]:7:4);
WRITELN(' ERROR',NORM(OLDP,NEWP):7:4) 

UNTIL NORM(OLDP,NEWPXTOLERANCE 
END.

Figure 3.7

P 1 2 3 4
ITERATION 1 0.5757 0.4242 oo oo ERROR 0.8485
ITERATION 2 0.4514 0.3685 0.1800 oo ERROR 0.3600
ITERATION 3 0.3641 0.4013 0.1581 0.0763 ERROR 0.2183
ITERATION 4 0.3231 0.3615 0.2150 0.1002 ERROR 0.1615
ITERATION 5 0.2883 0.3646 0.2122 0.1347 ERROR 0.0753
ITERATION 6 0.2691 0.3491 0.2330 0.1485 ERROR 0.0692
ITERATION 7 0.2537 0.3483 0.2345 0.1634 ERROR 0.0325
ITERATION 8 0.2445 0.3423 0.2425 0.1704 ERROR 0.0301
ITERATION 9 0.2376 0.3412 0.2441 0.1769 ERROR 0.0160
ITERATION 10 0.2333 0.3388 0.2473 0.1804 ERROR 0.0133
ITERATION 1 1 0.2301 0.3381 0.2483 0.1833 ERROR 0.0077
ITERATION 12 0.2281 0.3371 0.2496 0.1849 ERROR 0.0060
ITERATION 1 3 0.2267 0.3367 0.2501 0.1862 ERROR 0.0036
ITERATION 14 0.2258 0.3363 0.2507 0.1870 ERROR 0.0027
ITERATION 1 5 0.2251 0.3361 0.2510 0.1876 ERROR 0.0017
ITERATION 16 0.2247 0.3359 0.2512 0.1879 ERROR 0.0012
ITERATION 1 7 0.2244 0.3359 0.2514 0.1882 ERROR 0.0007

Figure 3.8
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3.4 EXPONENTIAL STAGES REPRESENTATIONS
OF DISTRIBUTIONS

When an exponential distribution is both unrealistic and unsatisfactory 
for representing service (or inter-arrival) time dis, lbutions then the usual 
approach is to use the "method of (exponential) stages." This method is 
both general and compatible with definition of Markov processes. It is 
general in that we can represent arbitrary distributions arbitrarily closely. It 
is compatible with Markov processes because the only m mory introduced is 
the distribution stage. To accommodate this additional memory we merely 
refine our state definition.

Let us define a service time to consist of visits to one or more of k 
subservers (stages), each visit having an exponential distribution with rate 
associated with the subserver. When a job is visiting a subserver, all other 
jobs are prevented from visiting any subservers of that server. Figure 3.9 
illustrates this general description where we place no restriction on the 
routing of the job among subservers.

Figure 3.9 - Method of Stages

Only one job is allowed inside the rectangle at a time. A job initially enters 
subserver (stage) i with probability V0n a job leaving subserver i visits 
subserver j  with probability V and a job leaving subserver i departs the 
entire server with probability VjQ. For Figure 3.9 all of these probabilities 
are zero except as follows: E0, = .2, VQ4 = .8, Vl2 = 1, V23 = .9, 
V22 = -1, V45 -  .5, V46 = .5, V30 — 1, F50 = 1 and V60 = 1. Each subser
ver has an exponential visit time with rate ar

Some well known special cases of this representation are
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1. Erlang: a, = a2 = ... = ak, V01 = 1, Vk0 = 1,
^ 1 2  =  ^ 2 3  =  ■ •■ V k - \ , k  =  1 -

2. Hypo-exponential: same as Erlang but equality of rates not
required.

3. Hyper-exponential: Vtj = 0 unless i or j but not both are zero.

The reader may find it helpful to draw diagrams analogous to Figure 3.9 for 
these cases.

There is very little generality lost if we restrict ourselves to the so 
called "branching Erlang" case of Figure 3.10. We do not require equality 
of the rates of the visit times. (It can be rigorously shown that the branch
ing Erlang is as general as our original description if we allow the artifice of 
complex values for the rates and probabilities. We will not pursue this 
artifice.)

Figure 3.10 - Branching Erlang

It is immediately apparent that the Erlang and hypo-exponential cases 
are included in the branching Erlang cases. It is not apparent, but still true, 
that many other special cases of our original description are equivalent to 
the branching Erlang with judicious choice of the probabilities. For exam
ple, consider the hyper-exponential case with k  = 2. Let us assume that 

* «2. F01 > 0 and ^02 > 0 since we would simply have the exponential 
case without these assumptions. Further, the labeling of the subservers is 
unimportant for the hyperexponential distribution, so we can assume 
a, > a2- The distribution function for the hyper-exponential case is

^<*0> = 1 -  V0 ^ X° -  V02 ^ a2X°

and the distribution function for the branching Erlang case is
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F x(x0) = ' -
v ioa \ ~

a \ ~
V \2a 2 - a , x a 
a2

^  \ 2a 1 ~ a2V\0 c-a 2̂ o 
a i — a2

for a | # a2. If we define VU) for the branching Erlang to be 
V0I + (1 -  VQ])a2/ a ,, then it is easily shown that these functions are 
identical. However, we cannot represent an arbitrary branching Erlang 
form with the hyper-exponential. The branching Erlang is most convenient 
for the solution algorithms of the next section.

Usually we will be satisfied to find a method of stages representation 
which matches the mean and variance of an observed or assumed distribu
tion. The exponential distribution allows us to match the mean but the 
variance will always be the square of the mean. Thus we will usually not be 
able to match the mean and the variance with the exponential.

For the branching Erlang form the mean is given by

£ M = i  v l2v „ y M ...yl_ i J Kj0£ i,
/=1 j = 1 J

the second moment is given by

£ [-*  ] =  ^  V l 2 V 2 3 V 34-- -V i - \ , i  J  X \  +  ( X ^ r )  T
'=1 L=1 > 1  1 J

and the variance is given by

a2 = E[x2] -  (E[x])2.

The complexity of these expressions is a direct result of the generality of the 
form. However, since we are only interested in the mean and variance, we 
can simplify things considerably by making arbitrary restrictions on the 
values of the distribution parameters, i.e., k, ai and Vr .

Our discussion will also be simplified if we consider the mean and the 
coefficient of variation. Since the coefficient of variation is defined to be 
the standard deviation divided by the mean, i.e., Cx = ax/E (x ) ,  if we match 
the mean and coefficient of variation then we have also matched the vari
ance. Note that Cx is always 1 for an exponential distribution.

An inherent limitation of the method of stages is that Cx > \ / \T k .  
Thus many stages are required for small Cx. Fortunately, when Cx is small, 
small changes in its value have very little effect on the results of queueing 
models. Thus we can arbitrarily enforce a reasonable upper bound on k.
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Returning to restricted forms of the branching Erlang let us consider 
two separate cases, 1 />Tk < Cx < 1 and Cx > 1. For the first of these a 
traditional approach is to let a j = a2 = ... = ak and allow F;0 and V0i to be 
nonzero for at most one fixed value of i ^  k. (The other traditional ap
proach is the hypoexponential form.)

For example, let us say that only VlQ and VkQ may be non-zero. (VkQ 
must be identically one for the branching Erlang form.) Let k = 
ceil(l/ C 2X), i.e., the smallest integer at least equal to 1/C^. Then F10 is 
uniquely determined by

and = a2 = ... = ak = (k — F10(A: — 1 ))/E[x], Though this special case 
has minor efficiency advantages in simulations there are no compelling 
reasons for this choice.

For the case Cx > 1 we only need for k to be at least 2. With k = 2 
we have three free parameters, F10, a j, and a2, so we may make additional 
constraints. One possible constraint is that each subserver make an equal 
contribution to the mean. The following choices accomplish this:

2(C2x + l ) ( k - l )

F[x]

a2 =
E[x]

Again we point out the choice of additional constraints is reasonable but 
arbitrary. Alternate choices might be more appropriate in a particular 
situation.
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3.5 RECURSIVE SOLUTION METHODS

In many cases a direct numerical solution of the balance equations, 
e.g., Gaussian elimination, will require excessive memory and computation. 
This may also be true of the iterative method. So called "recursive" solu
tions may usually be applied to a fixed class of models, e.g., the model of 
Figure 3.5 with an arbitrary number of jobs, an arbitrary branching Erlang 
distribution at the CPU, FCFS scheduling at both queues and an arbitrary 
number of I/O devices has a single solution method which we will describe. 
If we modify some of the characteristics of the class of models, then we 
usually have to devise a new (though usually similar) solution method. For 
example, if we changed scheduling disciplines in the above characterization, 
then we would have to change the solution method. The recursive solutions 
are usually much more efficient in use of memory and computation than 
direct or iterative solutions. The price of this efficiency is a lack of flexibil
ity.

These solution methods are termed "recursive" because of the form of 
the equations used. The actual algorithms are usually iterative rather than 
recursive.

As an example, let us consider the class of models described above 
(i.e., Figure 3.5) with the additional restriction that the service times at the 
CPU are also exponential. Assuming the CPU service times have rate b x, 
the I/O service times have rate b2, the number of I/O ’s is L, and the 
number of jobs is N, then we have the following state transition diagram 
(state i indicates i jobs at the CPU):

min ( L , N)b2 min (L, N  -  1 )b2 min (L, N  -  2)b2

© = = © = ^ - - = ^ ©
Figure 3.11

For 2 < n < N  we can write the balance equation for state n -1  as

(b | + min(L,A- (n -  1 ))b2)P(n -  1)
= bxP(n) + min( L , N - ( n  -  2))b2P(n -  2).

This may be rewritten as

P(n) = ((bx + min(L,N  -  (n -  1 ))b2)P(n -  1)
-  min(L,N -  (n -  2))b2P(n — 2 ) ) / b x.
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Thus P(n) is recursively defined in terms of P(n — 1) and P(n—2). Similarly 
we can use the balance equation for state 0 to obtain

P(l) = min (L,N)b2P ( 0 ) ) /b x.

Thus we can compute the probabilities of all states in terms of P(0). We 
can use the knowledge that the probabilities of all states sum to one to 
determine P(0).

The following algorithm uses these recursive formulas to determine 
CPU utilization, throughput, mean queue length and mean queueing time. 
It assumes P(0) = 1/G and determines G to determine these performance 
measures. Note that after P{n) is determined the storage for P(n—2) may 
be reclaimed. Thus the memory required is very small, regardless of N.

Algorithm 3.1

Pi 0) = 1
G = 1
P (l) = min(L,N)b2/ b l
Q = P( 1)
G = G + P (l)
For n = 2 to N

P(n) = ((&! + m i n ( L ,N - ( n - \ ) ) b 2P ( n - \ )
— min(L,N—(n—2))b2P(n—2 ) ) /b l 

Q = Q + nP{n)
G = G + P(n) 

utilization = 1  — 1 /  G 
throughput = bx x utilization 
mean queue length = Q/G
mean queueing time = mean queue length/throughput

Let us now assume that L = 1 and generalize to allow the branching 
Erlang distribution at the CPU. We can define the system states by the pair 
0 ,0  where n is the number of jobs at the CPU and the job in service is at 
subserver i. Figure 3.12 gives the transition diagram for N = 3 and k = 2. 
(When n = 0 i is not meaningful. We use the pair (0,1) for notational 
convenience in expressing the algorithms.) Let the CPU distribution have 
rates a x and a2 and probabilities V10 and Vl2. Let the I/O times be expo
nential with rate b2.
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We present two algorithms for this case. The first is the preferred 
algorithm because of lower memory requirement and complexity. The 
second algorithm illustrates a technique which is useful in other circum
stances, e.g., where both queues have the branching Erlang discipline. (A 
subsequent priority model also utilizes this technique.)

We can write the balance equation for (1,2) as

(a2 + b2)P( 1,2) = VX2a xP{ \ , \ )

which yields

P( 1,2) = Vn a xP ( l , \ ) / ( a 2 + b2). (3.6)

We can write the equation for (0,1) as

b2P(0,1) = Vw a xP( 1,1) + a2P( 1,2).

Substituting (3.6) yields

b2P(0,1) = Vl0a xP( 1,1) + V n a xa2P ( l , l ) / ( a 2 + b2) 

which yields

/>(1,1) = b2P ( 0 , \ ) / ( V lQa x + Vn a xa2/ ( a 2 + b2)).

Similar arguments yield recursive expressions for P(n, 1) and P(n,2), 
2 < n < N  — 1, and for P(N,\)  and P(N,2). The expressions are included 
in Algorithm 3.2 (Note that the algorithm omits calculations of the desired 
performance measures; the addition of these is straightforward.)

Algorithm 3.2 (assumes N >  2)

P(0,1) = 1
G = 1
.P(l , l )  = b2P (0 ,\ )  /  ( E jq<3j + Ej2a ia2 / ( a2 + b2))
P( 1,2) = Vn a xP ( l , l ) / ( a 2 + b2)
G = G + />(1,1) + P{ 1,2)
For n = 2 to N — 1

P(n, 1) = ((nt + b2) P ( n - 1,1) -  b2P ( n - 2 , l )
-  a2b2P(n —1,2) / (a2 + b2) ) / ( V  10a,
+ Ej2a la2 /^2  3" ^2 )̂

P(n, 2) = (E12a ,P (n - l)
+ (>2/>(«—1,2))/(a2 + >̂2)
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G = G + P(n, 1) + P(n, 2)
P(N, 1) = ((a, + b2) P ( N - 1,1) -  b2P ( N - 2,1) -  b2P { N - \ , 2 ) ) / a x 
P(N, 2) = (V12a1/>(]V,1) + b2P { N - \ , 2 ) ) / a 2 
G = G + P(N, 1) + P(N,2)
R(0,1) = 1/ G

Suppose we wish the recursion (iteration) to proceed in ascending 
(descending) values of n. By the balance equation for (A,l) we can obtain

W - 1 ,1 )  = a xP ( N , \ ) / b 2,

and from the balance equation for (N,2) we obtain

P ( N - 1,2) = (a2/ b 2)P(N,2) -  (V l2ai/ b 2)P(N, 1).

However, these equations depend on both P(./V,l) and P(N,2) and there is 
no straightforward expression of one of these in terms of the other. We can 
proceed to define P(N— 2,1) and P(N— 2,2) in terms of P(N , l) and P(N,2) 
and so forth and eventually determine values for P(N, 1) and P(N,2). Al
gorithm 3.3 does this by representing state probabilities as two element 
vectors. We use the notation p(n,i) for such a vector. We will also use two 
element vectors g and d. The elements of these vectors will be referred to 
as g v  g2, d x and d2.

Figure 3.12
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Algorithm 3.3 (assumes A > 2)

p(A,l) = (1,0)
P(N, 2) = (0,1)
q = N(j>(N, 1) + p(N, 2))
g = />(A,1) + p(N, 2)
p (N —1,1) = (a ,/b 2) p(A,l)
p(A— 1,2) = (a2/6 2) p(A,2) -  (E12ai/A2)p(A,l)
q = q + (A -l)  (p(N— 1,1) + p (A -l,2 ))
g = g + p(N — 1,1) + p ( N - 1,2)
For n = A—2 down to 1

p{n,\) = (1 + a x/ b 2) p(n+ 1,1) -  (V xoa x/ b 2)p(n + 2,1)
-  (a2/A2)^(« + 2,2)

p(n,2) = (1 + a2/ b 2) p (n + 1,2) -  ( E,2a 1/6 2)p(«+ 1,1) 
q = q + n(p(n, 1) + />(/i,2)) 
g = g + /K«,l) + /K«,2) 

p(0,l) = (1 + a x/ b 2)p( 1,1) -  (E10Oi/62)p(2,l)
-  (a2/ b 2)p(2,2)

g = g + P( 0,1)
J = p( 1,2) -  {Vl2a x/ ( a 2 + 62))p(l,l)
Solve the following equations for />(A,1) and P(N,2)

</jP(A,l) + d2P(N,2) = 0 
g,R(A,l) + g2P(N,2) = 1 

mean CPU queue length = <7|.P(A,1) + q2P(N,2)

Note that the vector d is the difference of the value of p(l,2) deter
mined from the balance equation for (2,2) and the value of p{ 1,2) as 
determined by the balance equation for (1,2). Thus d xP(N,l )  +
d2P(N, 2) = 0.

This algorithm illustrates how the recursive method may be used to 
greatly reduce the number of linear equations to be solved. Let us apply 
this method to do the following priority model: There are A, high priority 
jobs and A2 low priority jobs. CPU times for high priority jobs are expo
nential with rate b xx and CPU times for low priority jobs are exponential 
with rate b x2. High priority jobs have a dedicated I/O device with exponen
tial rate b2X. Similarly, low priority jobs have a dedicated I/O  device with 
exponential rate b22. See Figure 3.13.
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2̂] t>2\ b2\

Figure 3.14
Because of the memoryless property of the exponential distribution, the 

service time of a low priority job is independent of preemptions. Thus we 
can represent a state of the system by the pair (nl ,n2) where /?, is the 
number of high priority jobs at the CPU and n2 is the number of low 
priority jobs at the CPU. Figure 3.14 gives the state transition diagram for 
N j = 3 and N 2 = 2.

Algorithm 3.4 uses the recursive method to solve for the probabilities 
of states (Ar1,0),(A,l),...,(Ar1,A2). The notation <?, is used for the vector
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with the ilh element equal to 1 and all other elements equal to 0. All 
vectors have length A2 + 1.

Algorithm 3.4 (assumes A, > 0 , N 2 > 0)

For n2 = 0 to A2 
p(N \ ,n2) = e,h+I

p(A| — 1,0) = (((>ii + b22) /b 21 )/>(A| ,0)
For n2 = 1 to N 2 — 1

p(N  | —l,n2) = ( ( ^ m + b22) /  b2 i )p(N\,n2) — (b22/ b 2i )p(N^,n2—l)  

/> (A,-1 ,A2) =  (bu / b 2])p(Nl ,N2) -  (b22/ b 2l ) p ( N„N2- 1) 
g = (0,0,...,0)
For = N\ — 1 to A,

For n2 = 0 to A2

g = g + P(«i,«2)
For n x = A]—2 down to 0

p(«j,0) = ((6 ,l +b22) / b 2l)p(nl + l,0) -  ((>11/(>21)^(n1 + 2,0)
For n2 = 1 to A2— 1

/>(/?,,n2) = (((>11+(>22)/(>21)/>(/j1 + 1,/i2)
-  (622/(>21)^(/21 + 1,/i2-1 )
-  (b, , / b 2,)/>(«! + 2,n2

/>(«!, A2) = (bn / b 2\)p(,nx + \ ,N2)
— (b22/ b2y)p(ri\ + 1 ,A2— 1)
— (b] [ / b2\)p (n i +2 ,A 2)

For n2 = 0 to A2

g = g + «2)
For n2 = 1 to A2— 1

= p(0,n2) — (b22/ ( b \ 2 + b2\ + b22))p(0,n2—\)
— (b \ \ / ( b \2 + b2 1 + b22))p(l ,n2)
— ((>12/((>12 + b i2 + b22))p(0,n2+ 1)

<ijV = p(0,N2) — (b22/ \ b \ 2 + b2\))p(0,N2—l)
-  (6u /(6 12 + (>21))/>(1,A2)

Solve
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dx P{NX, 0) 0
d2 P (N V 1) 0

d N 2 P(N v N 2 -  1) 0
8 P(N v N2) 1

We have used the notation dt for the ith row of a matrix D with N2 
rows and N2+ 1 columns.

3.6 FURTHER READING

A more thorough introduction to Markov processes can be found in 
DRAK67 and FELL68.

A discussion of a variety of iterative solution methods is found in 
STEW78.

The complete generality of the method of stages is found in COX55. 
Additional description of our more restricted form is found in SAUE75a. 
Further discussion of matching distributions is found in BUX77, LAZ077 
and SEVC77b.

Further examples of application of the recursive solutions are found in 
HERZ75, SAUE75a and SAUE77b. An alternate recursive solution ap
proach, which avoids potential numerical problems of the approach we have 
discussed, is given in MARI80.

3.7 EXERCISES

3.1 Generalize the program of Figure 3.7 to allow the branching Erlang 
distribution at the CPU.

3.2 Generalize the program of Figure 3.7 to allow the branching Erlang 
distribution at the I/O  devices.

3.3 Generalize the program of Figure 3.7 to allow M  queues with probabil
ities Pjj that a job leaving queue i goes to queue j.

3.4 Generalize Algorithm 3.2 to allow two CPU’s.
3.5 Combine Algorithms 3.2 and 3.3 to allow the branching Erlang distri

bution at the 1/O device as well as the CPU.
3.6 Construct an algorithm for the model of Figure 3.13 without preemp

tion.
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3.7 Construct an algorithm for a model similar to that of Figure 3.13 
except that the two disjoint groups of jobs have equal priority and CPU 
scheduling is FCFS.

3.8 SUMMARY OF CHAPTER NOTATION

a Rate of an exponential distribution
Sj State of a Markov process
q:j Probability of transition from state / to state j  given a transi

tion out of state i.
Pt Equilibrium probability of state i of a Markov process
G Normalizing constant
p A column vector consisting of P 1> ^2’ PN’ where N  is the

number of states of the Markov process (Section 3.3)
p k k th estimate of p
V(j  Probability of visiting subserver (stage) j  after visiting subser

ver i in a distribution consisting of exponential stages



CHAPTER 4

ISOLATED Q UEUES AND OPEN  
NETW ORKS OF QUEUES

Though the numerical methods of the last chapter are very general, in 
the sense that they apply conceptually to very complex system models, these 
methods by themselves are of limited practical application. They are limited 
because they require solution of a set of linear equations and because that 
set may be enormous. For the queueing models we consider in this chapter, 
the set of equations is infinite. Thus we cannot hope to numerically solve 
the linear equations nor can we cope with performance measures which 
require numerical values for all of the state probabilities. We must first 
seek algebraic simplification of the problem.

Fortunately, a convenient algebraic simplification, the product form 
solution, applies to a very large group of queueing network models. We 
defer formal definition of the product form solution, but informally it is 
expressed as follows

P(S x ,S 2t“
P X{ S X)P2(S 2)...PM{SM)

G (4.1)

where P ( S X,S2,...,SM) is the probability of a network state in a network of 
M queues (for example, S m might be the queue length of queue m), Pm(Sm) 
is a factor reflecting the probability that queue m is in state S m and G is a 
normalizing constant. (G explicitly forces the probabilities of the network 
states to 1.) We have already seen this form in (3.2 - 3.5). The formal 
definitions we give will be associated with specific groups of networks.

Most software packages for numerical solution of queueing networks 
depend on product form solutions [SAUE78a]. Most of this chapter and all 
of Chapter 5 will be devoted to queueing networks with product form 
solution. When a network does not have a product form solution and has 
too many states for numerical solution for the state probabilities, then our 
alternatives are approximation, to be covered in Chapter 6, and simulation, 
to be covered in Chapter 7. Even approximation techniques are dependent 
on results for product form networks.

All of the models of this chapter will assume that there is an infinite 
source of jobs arriving at the network (or queue in Section 4.1) with expo
nential interarrival times with mean l / R .  (In other words, arriving jobs

59
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form a Poisson process with an average arrival rate of R jobs per unit time.) 
There is also a sink which jobs enter when they leave the network. The 
assumption of a potentially infinite population of jobs in the network is 
usually not reasonable in computer system models. This is because there is 
usually some resource which limits the total population of jobs in the net
work. For example, in the simple batch system model of Chiu et al, the 
number of jobs at the CPU and I/O queues is kept small by contention for 
memory. In a timesharing system model such as the ones of Brown et al 
and Bard, the number of jobs is limited by the number of terminals (or 
terminal ports). However, the infinite job population assumption is not 
unreasonable in communication system models where the number of jobs 
may be very large. Also, the infinite population assumption is very impor
tant in the history of queueing models and results in a simpler solution for 
the networks of this chapter in comparison with those of the next chapter.

4.1 ISOLATED QUEUES

Throughout this section we will be principally interested in systems as 
depicted in Figure 4.1. We will look at such systems with differing service 
time distributions and scheduling algorithms.

Source Queue Sink

r \ ____ , r \
/  ’  i v J

Mean service time
a

Figure 4.1
4.1.1 Exponential Service Times

Consider the system of Figure 4.1 with FCFS scheduling and a single 
server. In classical queueing notation, this system is the M /M /l queue, 
where the first symbol indicates the interarrival time distribution, the second 
symbol indicates the service time distribution and the third symbol indicates 
the number of servers. M, for "Markov," indicates exponential distribu
tions. We can define the Markov states of this system according to the 
number of jobs at the queue. See Figure 4.2.

R

a

R

Figure 4.2
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In state 0, no service is in progress, so the only transition corresponds 
to a job leaving the source. In all other states there is a transition for a job 
leaving the server as well as the source. The balance equation for state 0 is

RP( 0) = aP(l),

so

p ( d  = 4 * 0 ) .

For the system to be stable the arrival rate R must be less than the service 
rate a; otherwise the queue will become infinitely long. As we will show 
below the utilization U = R/a .  (This can also be immediately observed 
from (2.7) and holds for single server queues of the form of Figure 4.1 
regardless of distributions.) The equation for state n, n = 1, 2, 3, ..., is

(R + a)P(n) = RP(n -  1) + aP(n + 1).

However, this equation can be simplified to

RP(n) = aP(n + 1) (4.2)

as follows. For state 1,

(R + a ) * ! )  = RP(0) + aP( 2)

implies

7?P(1) + a 4 P(0) = R P (°) + a* 2)

implies

RP( 1) = aP( 2)

and

* 2 )  = 4 p ( i ) -

This derivation can be repeated for states 2, 3, ... to obtain (4.2). From 
(4.2),

P(n) = P{n — !) ,«  = 1, 2, 3, ...

and
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P(n) = ( I - )" P (0 ) , n = 0, 1, 2, ... (4.3)

We also know that

n = 0
1,

so

i ( 4 ) " p < ° > - 1-/? = ()

Applying (2.3) we have

---- t — W )  = 1
1 -  4

and

P(°) = i - 4 -

Since the server is idle in state 0 and busy in all other states, 

U = 1 -  P{0) = 1 -  (1 -  4 } = 4 -

(4.4)

(4.5)

Substituting (4.4) and (4.5) in (4.3)

P{n) = U ' \  1 -  £/),« = 0, 1, 2, ... (4.6)

Note that P(n) has the geometric distribution (starting at 0 instead of 1) 
with parameter 1 — U. Thus indirectly from the geometric distribution 
starting at 1 or by repeatedly applying (2.3),

L =  £  nP{n)
n =  100

=  £  nu\  1 -  U)
n= 1

= C
1 -  c (4.7)

Note that (4.7) is consistent with intuition; as U = R / a  goes to zero, the 
mean queue length goes to zero, and as U goes to one, the mean queue 
length goes to infinity. We can rewrite (4.7) as
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L = — + U (4.8)
1 -  U

where the first term is the mean number of jobs waiting for service and U is 
interpreted as the mean number of jobs in service.

Figure 4.3

Since the queue is not saturated, i.e., U < 1, the throughput must be 
R. By Little’s Rule (2.9), L = XQ = RQ, Q = L / R  and the mean queue
ing (response) time

U R_ 1
1 — U _ a _ a

R ~  1 -  U ~  1 -  U
R

_  1 
a -  R

The form corresponding to (4.8) is

Q = l -  u

(4.9)

(4.10)

(4.11)

where the first term is the mean waiting time and the second term is the 
mean service time.

Let us now consider the M /M/2, system, i.e., the same system but 
with two servers. The states are identified as before; Figure 4.3 gives the 
transitions. We now must have R < 2a for stability; by (2.8) U = R/2a.  
By arguments similar to the ones we just used,

/>(!) = Ai>(0) (4.11)

and

Pin) = ( ^ - ) ” '4 ^ (0 ) ,  n = 2, 3, .... (4.12)
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Then
n — 1

z ( £ ) -
n= 1

R
P( 0) +

P( 0)

1 -  —  
2a

= 1,

and

Pi 0) = 2a - R
2 a + R

In state 0 both servers are idle. In state 1, one server is idle, so

U = 1 -  P (0 )-1 P (1 ) =2 2 a

As before, by repeated application of (2.3)

L =

AaR
Aa2 -  R 2

By Little’s Rule (2.9)

Q = A a
A a2 -  R 2

(4.13)

(4.14)

(4.15)

We can proceed similarly for 3,4,5,... servers; the algebra is more 
tedious, but there are no real problems. Of special interest is the limiting 
case where there is an infinite supply of servers, i.e., the M/M/°o "queue." 
Of course, there is never any waiting for a server and thus scheduling is 
irrelevant. Since there is never any waiting,

Q =
1
a '

and by Little’s Rule
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This is also the mean number of busy servers. (Note that, by our definition, 
U = 0.) Note that these results apply to any service time distribution with 
mean 1 /a. With general (arbitrary) service distribution, this is known as 
the M/G/oc queue.

Now consider a single server queue with PS scheduling. The Markov 
states may again be defined by the number of jobs in the queue. With 1 job 
in the queue, that job’s rate of completion is a. With two jobs in the queue 
each job is getting one half of the effective rate of the server. Thus each 
job completes at rate a/ 2 and their combined completion rate is a. Similar
ly for the other states with non-zero queue lengths, the total completion 
rate is a. Thus the state diagram of Figure 4.2 is still valid and so the PS 
results are the same as the FCFS results. Since both FCFS and PS give the 
same results, any RR discipline with zero overhead will give these results 
also. Consideration of SRTF is beyond the scope of this book.

4.1.2 General Service Times

Let us consider a single server, FCFS scheduling and general service 
time distribution, i.e., we consider the M /G /l queue. If we represent the 
distribution by the method of stages, e.g., the branching Erlang distribution 
(Figure 3.10), then we can describe the states by the current queue length 
(counting the job in service, if any) and the current distribution stage of the 
job in service. Thus our state diagram would be essentially the same as 
Figure 3.12 but with additional states for queue lengths 4,5,6,... Solution of 
such a Markov process is quite difficult and requires methods beyond the 
scope of this book.

However, we can obtain U, L and Q rather easily. As before,

U = R£[.x]

where £[x] is the mean service time. We obtain the mean queue length and 
queueing time by first obtaining the mean waiting time (excluding the 
service time) which we call W. A randomly arriving job will have

W = (L — U)E[x] + UE[x] (4.16)

where E[x]  is the mean remaining service time of a job in service at the 
arrival. The arriving job finds a job in service with probability U; thus it 
expects to wait UE\x]  time units for a job in service to complete. The



arriving job expects to find L -  U waiting jobs and also must wait for their 
service times. By Little’s Rule we also know that

L -  U = RW. (4.17)

Substituting (4.1 7) into (4.16) and solving for W we obtain

W = ----—— E[x']. (4.18)
1 -  U

Thus we only need to obtain E[x'] to get W and thus Q and L.
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i I i 11 i __l_i____l__  i __i_l__i___ 1______ ►
0  1 2 3 4 5  6  7 8 9 1 0  T i m e

Figure 4.4

Suppose the service times have a discrete distribution P(x). Though 
P(x) is the probability a job has a service time x, an arriving job finding a 
job in service does not necessarily find the service time of the job in prog
ress to be x with probability P(x). This is because the arriving job is more 
likely to arrive during a long service time than a short one. Consider the 
distribution

x  = 1 or x  = 2, 
otherwise.

and Figure 4.4. The rectangles represent service times. Even though the 
service times are equally likely, it is twice as likely that a job arriving during 
a service time arrives during a service time of 2. In general, the probability 
a job arrives during service time x is proportional to xP(x) and thus equal to

xP(x) xP(x)
-----------  = —r ; ■ (4.19)
X  xP(x) E M

Given that a job arrives during a service time x, it is equally likely that the 
job arrives at any time during that service time and thus the expected 
remaining time is x/2. So summing over all possible service times,
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E[x']
2  f  * P M
X  Z______

£ [x ]
E[x2] 
2E[x]

A similar argument for continuous distributions gives

E[x']
f  0>dx0J0 2_________

E[x]
E[x2] 
2 E[x\

Substituting into (4.18) we get

w =  UE[x' ] =
1 -  U 2(1 — U)

Since £[jc2] = (E[x])2(1 + C2),

UE[x](l + C2x )
W  = ---------------— .

2(1 -  U)

Then

Q = W + E[x] =
UE[x\( 1 + C2) 

2(1 -  U)
+ E[x]

and by Little’s Rule
2 2

£/ 0  + C2)
2 (1 -  U)

+ £/.

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

These last four equations are all variations on what is known as the 
Pollaczek-Khintchine Formula. Our information derivation of this formula is 
based on the derivation given in WOLF70. Alternate derivations and 
derivations of other M /G /l characteristics such as the queue length distri
bution can be found in KLEI76 and KOBA78.

Note that (4.25) reduces to (4.7) for exponential service times, i.e., for 
Cx = 1. Figure 4.5 shows L versus U for Cx = 0, 1,2 and 5. Notice the 
sharp rise in L with U, regardless of Cx, and the dramatic differences 
between the curves at the larger utilizations.

Now consider a single server queue with PS scheduling and the branch
ing Erlang distribution with 2 stages (Figure 3.10). Let the branching 
Erlang parameters be a v  a2’ VlO and Vn , as before. (Recall that 
V w + V j2 = 1.) Every job in the queue is in service, so the distribution
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Figure 4.5
stage of each job must be included in the state description. Let the states 
be defined by the pair (nx,n2) where there are n x jobs in the first stage and 
n2 jobs in the second stage. See Figure 4.6.

In state (nx,n2) each job gets \ / { n x + n2) of the server. The n x jobs 
in stage 1 each have a completion rate of a x/ ( n x + n2) thus the transition 
rate to («, -  1,«2) is n xVXQa x/ { n x + n2) and the transition rate to 
(«j — \ ,n2 + 1) is n xVl2a x/ ( n x + n2). Similarly, the transition rate to 
(n x,n2 -  1) is n2a2/ ( n x + n2).

Some of the balance equations are, for states (0,0), (1,0) and (0,1),

RP(0,0) = Vxoa xP(l,0) + a2P(0,1) (4.26)

(R + a x)P{\,  0) = RP(0,0) + VXQa xP{ 2,0) + (4.27)

V\0a2 />(1,1) + a2P(0,2) (4.28)(R + a2)P( 0,1) = Vx2a xP (1,0) + 2
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Figure 4.6
There is no obvious solution to the collection of equations, but a fairly 
simple solution exists. How do we find it? Suppose that

a :P(l ,  0) = RP( 0,0) (4.29)

and

/?E(1,0) = Vxoa xP{ 2,0) + ^ P (  1,1). (4.30)

A solution of both (4.29) and (4.30) must also satisfy (4.27). (A solution 
of an equation, e.g., (4.27), need not necessarily satisfy equations obtained 
by partitioning that equation, e.g., (4.29) and (4.30).)

If (4.29) holds, then
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P(1,0) = - f  P( 0,0)a .1
(4.31)

and by (4.26)

(4.32)

In, fact (4.29) holds, as will be apparent when we give a general expression 
for P(«1,/t2). The balance equations which consider all transitions, e.g., 
(4.27), are called global balance equations. Equations (4.29) and (4.32) are 
termed local balance (or independent balance or separable balance) equations. 
A subset of local balance equations or equivalently, the global balance 
equations, are used to verify that the proposed solution is correct.

How do we obtain the local balance equations? For example, why did 
we not suggest that

from equation (4.27)? The rule is to equate flow into a state due to flow into 
a distribution stage to flow out o f  that state due to flow out o f  that distribution 
stage. For equation (4.29), RP(0,0) is the flow into (1,0) due to a job 
entering the first service stage and a 1P(l,0) is the flow out of (1,0) due to 
a job leaving the first service stage. (Note that (4.2) for the M /M /l queue 
is analogously obtainable.) Here the job "entering the distribution stage" 
begins service, but this is not always necessary, e.g., for FCFS queues with 
exponential service local balance applies, but jobs entering a distribution 
stage do not necessarily begin service until later because there is no distinc
tion between jobs in service and jobs waiting, as far as remaining service 
time is concerned. We may also apply the rule to sources if we consider 
jobs going to a sink to join the infinite population at the source. For 
(4.30), E10a 1P(2,0) + (a2/2 )P (l,l)  may be viewed as the flow into (1,0) 
because of a job entering a source distribution stage (though the interarrival 
time for the job does not begin until later) and /?/*(l,0) the flow out of
(1,0) due to a job leaving a source distribution stage. Similarly, for equa
tion (4.28) we can obtain

RP(l ,  0) = RP( 0,0)

(4.33)

and

«2m i )  = VX2a xP{ 1,0). (4.34)



Equation (4.34) provides no new information. From state (2,0) we can get
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a xP{ 2,0) = /CP(1,0)

so

p ( 2,0) =  4 ^ 0 - 0 )  =  ( 4 ) > ( 0,0).

Similarly, from state (1,1)

RP(0,1) = -^-/»(1,1)

and

P (l,l)  = 2/?_p(0,l) =v ’ '  a ] a2 P( 0,0).

Now using (4.33) we have

R V RV,
P i0,2) = - j ^ - m i )  =  ( - j ^ )  / >(0,0).

Proceeding in this manner we find that

(«i + «?)! /  /? ."V  v  " 2
^ i , « 2) = , ( -H - )  T ^(0,0).rtj!/i2! V a i 2 \  «2 '

Summing over all states such that «j + n2 = n, we find

f<">-(lr + ^ f ) mo)'
But notice that the mean service time

E[x] = -L  + Fl2

and

R V, .
+ — ^  = RE[x] = U.

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

Thus
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P(n) = Unp( 0,0).

(Of course, P(0,0) = 1 — U.)

So the PS queue with this arbitrary two stage branching Erlang distri
bution has the same queue length distribution as the PS queue with expo
nential service times and the same mean service! Since PS and FCFS give 
the same queue length distribution with exponential service times, this PS 
queue has the same queue length distribution as the M /M /l queue. This 
derivation extends directly to any distribution represented by the method of 
stages. Thus for essentially arbitrary service distributions: The PS queue 
lengths and mean queueing times depend only on the mean service time and the 
arrival rate; other characteristics o f  the service distribution are irrelevant. 
These PS performance measures are the same as those o f  a FCFS queue with 
exponential service time with the same mean service time and arrival rate. This 
result also applies to multiple server PS queues. It can be derived by other 
means for service time distributions which cannot be exactly represented by 
the method of stages [CHAN77b].

With this result in mind, refer back to Figure 4.5. The curve for 
Cx = 1 also applies to PS with any distribution. Notice the enormous 
improvement of PS over FCFS with Cx > 1. With Cx < 1, PS is worse than 
FCFS, but the difference is small. (With Cx = 0, FCFS and SRTF are 
identical, so FCFS is optimal.)

4.1.3 Job Classes

So far we have been assuming that all jobs are homogeneous, that they 
have the same behavior and characteristics. The usual way to eliminate this 
assumption is to partition the jobs into classes. Within a class all jobs are 
homogeneous, but different job classes may have different service time 
distributions, priorities, routing, etc. (Some restrictions on class distinctions 
are necessary for a product form solution to exist.) In networks with finite 
population we can have enough classes so that there is only one job per 
class; thus if we go to the effort we can consider jobs individually.

With FCFS we must consider orderings of the jobs when they have 
different characteristics. With PS we can ignore orderings and then the 
derivations are much simpler. Consider Figure 4.7. Here an arriving job 
joins class c with probability p0c , c = 1, 2, ..., C. (An alternative repre
sentation would be to have a separate source for each class. By the charac
teristics of merging and splitting Poisson event streams discussed in Section
3.2.2., the two representations are equivalent as long as we have Poisson 
sources. The representation we use is simpler notationally. Notation is,
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perhaps, the most difficult aspect of job classes in networks with product 
form solution.) We assume PS and, for the moment, exponential service 
distributions. With C = 2 we have the state diagram of Figure 4.8. Here 
state («j,n2) indicates that there are /ij class 1 jobs and n2 class 2 jobs at 
the queue.

Note that this state diagram is exactly the same as the one for PS with 
a two stage hyperexponential distribution (see Section 3.4) if we consider 
p 0l and Pq2 to be ^01 and ^02- respectively, and if we consider \ / a x and 
1 / a2 to be the means of the exponential stages 1 and 2! Thus, by the local 
balance arguments of the last section,

P(0,0) = 1 -  R ( ^ -  + ^ )
\  a \ “ 2 '

and

(n, + n2)\ /  Rpm Rpm  N”2
~ - ^ r ( - i r )  ( ^ f )  w ’0»- (4.42)

In other words, with two different system characterizations, we discover 
that the underlying Markov process is the same.

In general, with C classes, P(n1,...,/2 C) is given by

(», + ... + « ^ C . * g g l / ^ £ o £ \ ”c/>(0 o) 
n x\...nc \ V «i )  V ac ) (4.43)

where
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P(0,...,0) = 1 -  R ( ^ l  + ... + (4.44)
V a \ ac  '

Further, the overall queue length distribution is

P(n) = R n(  ^LL + ... + P(0,.,0), (4.45)v a \ ac  /

by simple summations of (4.43). Since the parenthesized expression is the 
mean service time of all jobs, this is the same as (4.41).

We can extend these results to general service time distributions as 
before; the only new problem is notation. If the mean service at class c is 
1 / a , c = 1, 2, ..., C, then (4.43 - 4.45) are valid for general service times.
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By arguments and algebra similar to before we can show that

(4.46)

(4.47)

and

(4.48)1 -  U

Where Uc , c = 1,2, ..., C, is the utilization of the server by class c jobs, Lc 
is the mean queue length of class c jobs and Qc is the mean queueing time 
for class c jobs.

There are two problems with FCFS: the ordering problem already
mentioned and the requirement that all classes have the same, exponential 
service time distribution for the product form solution to be valid. Assum
ing a j = ... = ac  and exponential distributions, then the ordering problem 
becomes principally a problem of notation. For a given number of jobs of 
each class at the queue (nx,...,nc ) each possible ordering has the same 
probability and (4.43 - 4.48) are valid.

It is of some consolation in computer system models that I/O  devices 
(which often have FCFS scheduling) often have the same service time 
distributions for all jobs and that the actual distributions are usually only 
slightly less variable than the exponential distribution. In networks with 
general FCFS queues we must use approximations (Chapter 6) or simulation 
(Chapter 7).

If we eliminate the exponential distribution requirement or the require
ment that all classes have the same distributions, then the FCFS queue will 
not have a simple solution for the queue length distribution nor can we 
incorporate such queues into product form networks. However, the 
Pollaczek-Khintchine Formula is easily extended. If E[xc\ and E[x2] are 
the mean and second moment, respectively, for class c service times, then

c
E[x] = 2  P o M xc]’

C = 1
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E[x2]
C
S ^ o c £ K 2]-

c =  1

,2 = E[x2] -  (EUD2

(£ M )2

t/c = ^Oc W

U = RE[x],

t/£[x](l + C2) 
2(1 — 17)

0C
U EM d + C2) 

2(1 — t/)
+ £[*c]

(4.49)

(4.50)

LC

t /2/>0c(l + C2)-----—--------— + u
2(1 — IT)

(4.51)

Pn

« l/a.

Figure 4.9

Figure 4.10
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4.1.4 Multiple Visits (Loops)

77

Usually a job in a computer system model will visit a queue several 
times with intervening visits to other queues. For example, in the batch
system model of Chiu et al, a job’s processing includes many alternating 
CPU-I/O cycles. Before proceeding to networks of queues, let us consider 
isolated queues with multiple visits to the queue per job. Consider Figure 
4.9. Assume FCFS and exponential service with mean \ / a x. A job depart
ing the queue (from class 1) rejoins the queue (in class 1) with probability 
P ii- ^  goes to the sink with probability p xo. Figure 4.10 gives the Markov 
state diagram. Since we can immediately drop the p xxa x transitions from 
our balance equations, we obtain

P M  = (  )  *«>• (4.52)

<< 2 

1IIo

(4.53)

U = R , 
P 10a l

(4.54)

and
2

L = U + U. 
1 -  U

(4.55)

Notice that these are precisely the same expressions as 
queue with arrival rate R / p xo. The mean queueing time is

for an M /M /l

0  = UR + 1 , 1 - U a x a \
(4.56)

which is not Q for the M /M /l queue, but the mean response time is 
Q/p  10, which is the mean queueing time for the M /M /l queue with arrival 
rate R / p x0-

It is of some interest in obtaining solutions for networks by hand or 
with a calculator that the number of visits to the queue has a geometric 
distribution with parameter p 10, i.e.,

Prob[l visit] = p 10,

Prob[2 visits] = P\ \P j0>
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Prob[3 visits] = p 2xxp x0,

Prob[« visits] = p nxx Xp XQ = (1 -  p 10)" />10.

It turns out that a critical parameter in the solution of a network is the 
expected number of visits a job makes to a class. We call this the relative 
throughput of the class. Though we can find the relative throughputs by 
solution of a (small) set of linear equations, if we are solving the model 
without a program, then we would like to avoid the extra solution step.

4.2 OPEN NETWORKS

Consider the network of Figure 4.11. There are two queues in series, 
with each queue consisting of a single class. Assume that both queues are 
FCFS with exponential service with respective means 1/a, and 1 / a2- If we 
let state (nx,n2) be the state with n x jobs at queue (class) 1 and n2 jobs at 
queue (class) 2, then we have the state transition diagram of Figure 4.12.

Queue 1 Queue 2

r \  ~~n o  7 1
L /  _ 7

R 1/a, la2

Figure 4.11

We can see that Ux = R / a x and U2 = R / a 2. Using local balance or by 
solving the global (full) balance equations we get

P{nx,n2) = UxnHI -  Ux)U2n2(1 -  U2) (4.57)

= P x(n l )P2(n2). (4.58)

where /*,(«,) is the queue length distribution for an M/ M/ l  queue with 
arrival rate R and mean service 1 / a r This is not a particularly surprising 
result since we can show that the two queues are independent of each other 
and that the arrivals at the second queue are Poisson with rate R.

Now consider Figure 4.13 which is the same as Figure 4.11 with an 
added loop. With the same assumptions as before, this produces the state 
diagram of Figure 4.14.
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Figure 4.13

Let r, be the expected number of visits a job makes to queue 1 and r2 
be the expected number of visits a job makes to queue 2. The number of 
visits has a geometric distribution with parameter p 20, so by (2.4)

l = r2 = 1
P20

r (4.59)
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Figure 4.14
Assuming that neither queue is saturated, i.e., Ux < 1 and U2 < 1, then by 
equation (2.7)

Rr 1

and

Using these values for Ux and U2, equations (4.57) and (4.58) are still 
valid!

This is a restricted form of a result known as Jackson’s Theorem be
cause Jackson was first to recognize this product form solution [JACK63]. 
Jackson’s Theorem allows us to say that in an open network of queues with
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Poisson arrivals (from outside the network), FCFS queues with exponential 
service times and no saturated queues,

1. Each individual queue may be treated as an M /M /l queue with 
arrival rate equal to the throughput to obtain its queue length 
distribution.

2. In a network of M  queues, the joint queue length distribution of 
the network is the product of the queue length distributions of 
each of the queues, i.e.,

f>(n \>n2’---’nHi) = P \ (n l

Since Jackson’s work, this result has been extended to include all of the 
queues of Section 4.1 except FCFS queues with non-exponential or class 
dependent service time distributions. If we look at (4.1) and assume 
S m , m = 1, 2, ..., M  is a state description we have used for an isolated 
queue other than the excluded FCFS queues, then (4.1) holds for G = 1. 
This result extends to other kinds of queues, e.g., queues with LCFSPR 
scheduling [CHAN72, BASK72, CHAN75a, REIS75, CHAN77b],

For an individual queue of the network, we can apply all of our isolat
ed queue results (except for those for the excluded FCFS queues) once we 
have determined the arrival rate at the queue. The most interesting network 
measures, e.g., mean network population and response time, can be deter
mined without ever dealing with probabilities of network states. The only 
remaining problem is determining the relative throughputs, i.e., the expected 
number of visits a job makes to a queue (or a class at that queue). The 
arrival rate at the queue (or class) will be Rr where r is the relative through
put. For many systems we may be able to determine the relative through
puts by inspection as in Figure 4.13. We now give a general approach.

Let us assume that there are C classes and M  queues in the network; 
each queue has at least one class. Let p 0c be the probability an arriving job 
from the source first joins class c, let pc0 be the probability a job leaving 
class c goes to the sink, and let pcd be the probability a job leaving class c 
goes to class d, 1 < c < C, 1 < d < C. Let rc be the relative throughput 
for class c. We must have

c
rc =  Poc +  'Z 'd P d c -  ( 4 -6 ° )

4=1

The first term of (4.60) is the direct contribution of the source to rc. Each 
term of the summation is the contribution of class d to rc. By letting c range 
from 1 to C, (4.60) gives us a system of C linear equations in C unknowns; 
C is usually small enough that a numerical solution is trivial.



For the example of Figure 4.13, p()1 = 1, pQ2 = 0, p H) = 0, P\\ = 0, 
p 12 = 1 and p 22 = 0- From (4.60)

/■j = 1 + r, x 0 + r2p 2i (4.61)
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and

r2 = 0 + r i x 1 + r2 x 0. 

By (4.62), r x = r2, so by (4.61)

r \ = l + r \P2\

= 1 
1-^21
1

P20

(4.62)

To summarize, to obtain solutions for individual queues of an open, 
product form network of single server queues, we

1. Obtain rc , c = 1, 2, ..., C by (4.60).
2. Obtain Uc , c = 1,2, ..., C as RrcE[xc].
3. Let # (m) be the set of classes at queue m and denote these classes 

as <̂’(OT) = {C|,c2,...,cC( } where C(m) is the number of classes in
(m). Then for queue m

U (m) =  u c, +  u c0 +  ••• +  U c

4. Obtain for class c in (m)

Lc 1 -  U,
+ u„

(«)

5. Obtain for queue m

, _  U U

(m) 1 -  U, + U,
(«)

(m)'

Obtain for class c in ^ («)

= C-  t/,(m)1
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7. Obtain for queue m

83

U(m)E lX(m)\

8. Obtain the mean network population
c

Population = ^  Lc.
C— 1

9. Obtain the mean network response time for a job

There are two cautions:

1. The results are not valid if is greater than or equal to one for 
any queue m.

2. The results are not valid if any FCFS queue has non-exponential 
or class dependent service times.

4.3 FURTHER READING

We will look at open networks as models of communication systems in 
Chapter 9. For a more thorough treatment of queues in isolation and open 
queueing networks, see KLEI75.

4.4 EXERCISES

4.1 Obtain U, L and Q for a FCFS queue with 3 servers and exponential 
service time, i.e., the M/M/3 queue.

4.2 Obtain the queue length distribution for the M/M/oo queue. Hint: for
— 00 < X < 00,

Response Time = Population
R
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4.3 Verify (4.40).
4.4 Derive (4.41) from (4.40).
4.5 Obtain the queue length distribution, U, L and Q for a PS queue with 

two servers and service times with the branching Erlang distribution 
with two stages.

4.6 Repeat 4.5 with an infinite number of servers.
4.7 Define and obtain state probabilities for a Markov process represent

ing a single server PS queue with two classes. Each class has a branch
ing Erlang distribution with two stages and class dependent probabili
ties and means.

4.8 Define and obtain state probabilities for a Markov process represent
ing a single server FCFS queue with two classes. Each class has the 
same exponential service time distribution. Obtain the queue length 
distribution.

4.9 Obtain the queue length distribution for an M /M /l queue with queue 
dependent service times, i.e., with queue length n, the remaining 
service time is exponential with mean l /a (n) .  Assume that a(n) is 
constant for n > N, i.e., a(N) = a(N + 1) = ... .

4.10 Obtain the queue length distribution for an M /M /l queue with queue 
dependent arrival rates, i.e., with queue length n, the arrival rate is 
R(n). Assume that R(n ) is constant for n > N, i.e., 
R(N) = R (N  + 1) = ... .

4.11 Repeat 4.10 for the network of Figure 4.11, where the arrival rate 
depends only on the total network population of jobs. You need not 
solve for P(0,0).

4.12 Obtain the mean network population and response time for the follow
ing model. You may assume exponential service times at all queues 
and PS at the CPU. I/O scheduling is FCFS. Use the notation we 
have used, i.e., R for the arrival rate, 1 / ac for the mean service at 
class c etc.

CPU I / O ’s



^ 
to

SEC. 4.4 /  EXERCISES 85

4.13 Generalize the algorithm for networks of single server queues at the 
end of Section 4.3 to allow product form networks with an arbitrary 
number of servers at each queue.

4.5 SUMMARY OF CHAPTER NOTATION

M  Number of queues
G Normalizing constant
R Poisson arrival rate (throughput if queue not saturated)
a Mean service rate, i.e., 1 l a  is mean service time
U Utilization
L Mean queue length

Mean queueing time 
Mean waiting time 

Cx Coefficient of variation of random variable x
Vjj Probability of visiting stage j  of branching Erlang distribution

after leaving stage i
p tj  Probability of visiting class j  after visiting class i
C Number of classes
r Relative throughput



CHAPTER 5

CLOSED PRODUCT FORM  
QUEUEING NETW ORKS

We next discuss the concept of local balance which provides the theo
retical underpinning for many of the results of queueing networks. The 
concept is simple, the mathematics is straightforward and the algebra is 
minimal. We assume no background of the reader other than the earlier 
chapters.

The reader who is primarily interested in applications may skip Sections
5.1 through 5.5 and go directly to Section 5.6. Readers who study these 
sections will find some of the concepts reviewed in Section 5.6.

5.1 THE THEORY OF LOCAL BALANCE

We shall briefly review some of the concepts of Chapter 4 which are 
necessary to the understanding of local balance. Local balance is a charac
teristic of some Markov processes. We will speak of "queueing systems 
satisfying local balance" when we mean that the underlying Markov proc
esses satisfy local balance. Typically, a queueing system will satisfy local 
balance if the queues have queueing disciplines, service time distributions 
and arrival processes compatible with local balance in the underlying Mar
kov process.

Consider a queue with C customer classes fed by a Poisson source, 
where the arrival rate of class c customers is R c, c = 1 ,...,C. (R c = Rrc
where R and rc are defined as before.) See Figure 5.1. Assume that the 
service time for class c is an independent exponential random variable, c = 
1 ,...,C. We shall next define queueing disciplines which satisfy local bal
ance. We shall illustrate the definition by considering two disciplines: 
LCFSPR and FCFS. In this section we restrict attention to single queues 
(in isolation) fed by Poisson sources as shown in Figure 5.1, and we assume 
that this system reaches equilibrium.

5.1.1 Feasible States for the Single Queue Case (Figure 5.1)

Let S be any feasible state and let there be n jobs in the queue. In the 
LCFSPR case a state is a stack (cl ,...,cn) where c( is the class of the ith job 
in the stack, and the first job is on top of the stack. The job on top of the

86
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Class 1

Figure 5.1
stack is currently being served. When it finishes, it is popped off the stack, 
and the new state becomes (c2,...,cn) and the next job on top of the stack 
(with class c2) begins service. If a job in class cQ arrives while the system is 
in state (cx,...,cn), the job at the top of the stack is preempted in favor of 
the new job and the new state becomes (c0,Cj,...,cM). A state in the FCFS 
case is a queue (cj ,c2,...,cn) where c; is the class of the job in the ith posi
tion in the queue. Only the job at the head of the queue (in position 1) is 
served. New jobs join the tail of the queue.

5.1.2 State Transitions for the Single Queue Case (Figure 5.1)

5.1.2.1 Job departure. I f  a class c job can be served in state S, let 
■S'—(c) be the state resulting from the departure of a class c job from the 
system, when the system is in the state S. S -(c ) is undefined if class c jobs 
are not served in state S. In the LCFSPR case only the job in class cx can 
be served in the state S  = (cx,...,cn). Hence we only define 
S  — (cj) = (c2,...,cn). The same definition holds for FCFS. We restrict 
attention to disciplines where, for any class c, S —(c) is either a unique state, 
or is undefined.

5.1.2.2 Job arrival. Let S+(c) be the state resulting from the arrival
of a class c job to the system when it is in state S. For LCFSPR if 
S  = (cl ,...,cn) then S + (c0) = (c0,c,,...,cn). For FCFS, S + (c0) =
(cj , . . . , cw,Cq).  We restrict attention to disciplines where, for any class c, 
S+(c) is a unique state.

5.1.3 The Local Balance Equation

Let ac(S) be the rate at which class c jobs are served in state S. If 
class c jobs are not served in state S' then ac(S) = 0. Let P(S) be the 
equilibrium probability of state S. We assume the convention that if S  is an 
infeasible state P (S ) = 0. The local balance equation is:
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P(S)ac(S) = P ( S - ( c ) ) R c (5.1)

and its dual is

P(S  + (c))a(XS + (c)) = P ( S ) R C (5.2)

The first (second) equation states that the rate of entry into state S  due to 
the arrival (departure) of a class c job is equal to the rate of departure from 
state S' due to the departure (arrival) of a class c job. We also require that 
the arrival of a class c job, when the system is in state S —(c), take the 
system to state S, and the dual of this requirement is that the departure of a 
class c job when the system is in state S+(c) take the system to S. In other 
words (S—(c)) + (c) = S  and (S+(c)) — (c) = S. Thus equation (5.1) states 
that: the rate of transaction from 5 to S —(c) equals the rate of transition 
from S—(c) to S. Equation (5.2) states the dual: the rate of transition from 
S+(c) to S  equals the rate of transition from S  to 5'+(c). The local balance 
equation is depicted in Figure 5.2. The concept of local balance is indeed 
very simple. In a nutshell, it states that between any pair of states there 
should either be no transition at all or transitions should be in both direc
tions and the rates in both directions should be equal. For LCFSPR, the 
reader should show that (S+(c)) —(c) = S’ for any S  and any c and also 
show that (S'—(c)) + (c) = S  for any S and c where S —(c) is defined. 
Hence we know that for LCFSPR, between any pair of states, there are 
either no transitions at all, or transitions are in both directions. The Mar
kov diagram (Figure 5.3) shows this fact pictorialiy. For FCFS the reader 
should show that (S+(c)) — (c) is defined and is equal to S' if and only if S 
= () or S = (cj,...,cn) where cx = ... = cn = c. Similarly (S'—(c)) + (c) is 
defined and equals S only if c x = ... = cn = c. Hence unless there is only 
one customer class, we could have the case that there is a transition from 
some state S' to a state S'  but no transition back from S'  to S'.

Rate of arrival ■. Rate of departure 
of class c jobs , r  of class c jobs

j  State S

Rate of arrival < - Rate of departure 
of class c jobs , of class c jobs

Figure 5.2 The local balance equation in pictorial form



SEC. 5.1 /  THE THEORY OF LOCAL BALANCE 89

A queue (Figure 5.1) satisfies local balance if and only if it satisfies 
local balance for every state S  and every class c. Then, for every pair of 
(feasible) states S' and S ' , we have:

transition rate from S r to S ,
, (5.3)= transition rate from S to S

A queueing system (or a corresponding Markov process) does not need 
to satisfy local balance but just the balance equations introduced in Chapter
3. The balance (or equilibrium) equation for a state S is that the rate of 
transition into S equals the transition rate out of S. This equation is called 
global balance to distinguish it from local balance. Global balance: For
every (feasible) state S,

transition rate from S' to S
(5.4)

= ^  transition rate from S to S '
S'

Local balance is a sufficient (though not necessary) condition for 
global balance because if local balance is satisfied, then summing the local 
balance equation (5.3) over all S'  gives the global balance equation, (5.4).

Let us consider whether LCFSPR satisfies local balance. Though we 
could consider a more general case as in CHAN77 let us construct the 
Markov diagram with 2 classes (Figure 5.3).

Let Uc = R c/ a c. (The fraction of time the server spends on class c 
jobs is Uc.) We shall show that

P(cl ,...,cn)
t/,

(5.5)

where G is a normalization constant, satisfies the local balance equations. 
We must show that the transition rate from S  to S 1 equals the rate from S r 
to S  for every pair of states S, S'. The rate of transition from (ct ,...,cn) to 
(c2,...,c„) is

P(cj,...,cn)aCi = -R, (5.6)

The rate of transition from (c2,...,c„) to (c,,...,cM) is
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P(c2,...,cn)RCi =
U.. ...£/„

— R, (5.7)

Figure 5.3 Markov diagram for LCFSPR.

Since the right hand sides of (5.6) and (5.7) match, all of the local balance 
equations are satisfied. Thus equation (5.5) is correct.

In the two-class FCFS case there are states S' such that (S+(c)) —(c) is 
not defined; hence FCFS does not satisfy local balance in this case. The
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reader is encouraged to compare the Markov diagrams for fhe FCFS and 
LCFSPR cases.

5.2 NETWORKS

5.2.1 Definitions

Let there be M  queues in the network. Associated with queue m is a 
set of classes, referred to as *<£(m). Let there be a total of C classes in the 
network indexed 1,...,C. We shall assume that any sources and sinks belong 
to class 0 (Figure 5.4). The probability that a job completing service in 
class i joins class j  is p t ■, i = 0,...,C, j  = 0,...,C The service times and the 
disciplines for each queue are independent of all other queues in the net
work.

If a class i job can become a class j  job, possibly after passing through 
intermediate classes, we shall say that j  is reachable from i. We define a 
chain k to be a set of classes such that for any pair of classes i and j  in 
chain k, j  is reachable from i and i is reachable from j\ furthermore, there is 
no class c in the network, where c is not in chain k, such that c is reachable 
from any class in chain k or that any class in chain k is reachable from c.

In Figure 5.4, classes 1, 2 and 4 belong to one chain; classes 0, 5 and 6 
belong to another. Class 3 does not belong to any chain. It is easy to see 
that class 3 is a transient class, i.e., there will be no jobs in that class at 
equilibrium. Since we are only considering equilibrium conditions we shall 
ignore all classes which are not in chains because they must be transient 
classes. The chain which includes class 0 is said to be the open chain. 
(Note that with our definitions of class 0 and chains, it is not possible for a 
network to have more than one open chain. If desired it is simple to use 
alternate definitions and consider multiple open chains.) A chain which is 
not open is said to be closed. The number of jobs in a closed chain is 
constant at all times: this number is called the population of the chain. Let 
there be A closed chains in the network. The population vector N  of the 
network is N  = (N^,...,NA) where Nk is the population of chain k, k = 

Of course, the population vector is not concerned with open chains. 
A network with an open chain and no closed chains is said to be an open 
network. A network with closed chains and no open chain is said to be a 
closed network. A network with both open and closed chains is said to be 
mixed.

A network in which all queues satisfy local balance in isolation is called 
a local balance network. In the following discussion we restrict attention to 
local balance networks.
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Figure 5.4 Example of a network.

Let R c be the throughput of class c jobs in the network, i.e., R c is the 
equilibrium rate at which jobs leave class c. Since the rate of flow of jobs 
into a class must equal the rate of flow of jobs out of the class, we must 
have:

2  * c P ' S  -  K "  (5.8)c

R {), the rate of flow of jobs from the source (or to the sink) is given.

If c belongs to a closed chain k , we define the relative throughput, r ., 
as any set of positive numbers such that
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Y j rcPcy  = rc' <5-9)
C

for all c in chain k. If we multiply the relative throughputs by a positive 
constant D, we see that equation (5.9) is still satisfied because both sides of 
the equation are multiplied by D. Thus if {rc \ c in closed chain k} is a set 
of relative throughputs, then so is {Drc \ c in closed chain k}. Thus we 
cannot solve equation (5.9) to get unique values for the relative through
puts. However, if we set the relative throughput of any class c in chain k to 
an arbitrary positive value, we can use equation (5.9) to solve for the 
relative throughputs of all other classes in the chain. The magnitudes of the 
relative throughputs are immaterial; what is material is that the relative 
throughputs be consistent, i.e., that they satisfy equation (5.9).

(What we have said here should be qualified somewhat in regard to 
computational algorithms. Until recently, the best available algorithms were 
sensitive to the magnitudes of the relative throughputs, particularly when 
network populations were large [REIS78b]. The Mean Value Analysis 
Algorithm of REIS78a is insensitive to the magnitudes of the relative 
throughputs. One of the other algorithms we present, though less sensitive 
to the magnitudes of the relative throughputs than the algorithms in 
REIS78b, is still somewhat sensitive. We will discuss the Mean Value 
Analysis Algorithm and numerical requirements on the choice of relative 
throughputs in Section 5.7.3.)

From equations (5.8) and (5.9), we have

R c = rcB(k) ,  c in chain k, (5.10)

where B(k)  is a positive proportionality constant for chain k.

Let L c be the mean number of class c jobs in the network. For any 
closed chain k:

2  L c = N k> 
c in k

where Nk is the population of chain k, since the number of chain k jobs 
within the system must always be Nk .

5 . 2 . 2  The Markov Process Solution of a Local Balance Network

For any queueing network representable as a Markov process, in 
obtaining its solution we could take the following steps:



L Determine the set of feasible network states. (We will use an overbar 
to indicate network states, e.g., S' is a network state but S is an indi
vidual queue state.)

2. Determine if it is possible to go from every feasible network state S to 
every feasible network state S' after one or more transitions with 
non-zero probability; if it is possible to go from S to S 1 with non-zero 
probability, then S'  is said to be reachable from S. If every state is 
reachable from every state, then we do not have to worry about the 
initial condition of the network, because we know that regardless of 
where the network starts every state will be traversed eventually. We 
assume here that this is the case.

3. Determine the global balance equations for each state.

4. Solve the global balance equations and obtain performance measures 
from the solution.

These steps may be difficult in general, but they are fairly simple for local 
balance networks.

5.2.2.1 The set of feasible network states. If we have no simple 
algorithm to construct the network state space, then network analysis is 
quite difficult! Fortunately, for local balance networks, there is a simple 
relationship between the state space of each queue in isolation, e.g., fed by a 
Poisson source as in Figure 5.1, and the network state space.

We shall consider mixed networks because they are the most general. 
The analysis for closed or open networks is straightforward. Let the net
work have K chains the first A of which are closed. Let N  = (N^,...,NA) be 
the population vector of the network. Let S m be any feasible state of queue 
m in isolation (Figure 5.1). Let POP(5'OT) be an A element vector whose k,h 
element is the number of chain k jobs in queue m in state S m.

A state 5 is a feasible network state if and only if S' = ( S , 
where S m is a feasible state of queue m in isolation, and

POP(Sj) + ... + POP (S M) = N
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Furthermore, every state in the network state space is reachable from every 
state m the space. A transition from a network state S to another network 
state S' is permitted if and only if:
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(S„ . . . ,SM)

S ’ = ( S -  (c),Si+ v ...,Sj _ v SJ + (c'),Sj+l,...,SM)

and

P ’ /  0,

for some c and c , where class c belongs to queue i and class c to queue j. 
The transition takes place because a job in class c becomes a member of 
class c . The reader should prove this is true. (The proof is not completely 
trivial; consider a network in which none of the queues have local balance 
in isolation such as Figure 5.5. Note that it is impossible for the system to 
go from state (1, 2, 3) to state (1, 3, 2) in the network shown in Figure 5.5. 
This shows that if the network is not a local balance network, investigation 
of the state space is not likely to be trivial.)

Figure 5.5 A non-local balance network

5.2.2.2 The balance equations for a local-balance network. Fortunately, 
we do not have to derive the balance equations for each network from 
scratch! We shall now write down the generic form for balance equations 
for all local balance networks. To simplify notation we shall write:

(S + (c) -  (c'))

S l , . . . ,Sj_l ,Sj + (c),Sj+],...,Si_ l ,Si -  (c ) ,S j+l,...,SM

for
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The rate of transition from (S + (c) — (</)) to S  is:

P((S + (c) -  (c'))ac(Sj + (c))pcy .  (5.11)

This transition occurs because a class c job enters class c . Note that 
(S + (c) — ( ) )  is a network state in equation (5.1 l)_but that S j  + (c) is 
an individual queue state. The net rate at which state S  is entered because 
a job enters class c is:

^  rate (S + (c) — (c')) to S. (5.12)
C

Hence the net rate at which S  is entered is:

£  2  rate (S + (c) -  (c')) to 5. (5.13)

The rate at which class c jobs are served in state S  is aci(S ^i^), where we 
define q(c') as the queue to which c belongs. Hence the rate at which the 
system departs state S' because a job leaves class c is

P(S)acl(Sq{c>)). (5.14)

The net rate at which the system departs state S is

^ P ( S ) a c(Sq(cl)). (5.15)

The global balance equation equates the rates of arrival to (5.13) and 
departure from (5.15) state S.

5.2.2.3 Equilibrium state probabilities. Fortunately, we do not have to 
solve the global balance equations numerically for each local balance net
work separately to compute equilibrium state probabilities! When we were 
describing the state space of the network we did so by relating the network 
state space to the state space of each queue in isolation. We shall use the 
same method here: we shall obtain network state probabilities from the
state probabilities of each queue in isolation. Since we can analyze a local 
balance queue in isolation very simply from the local balance equations, the 
equilibrium state probabilities for each queue in isolation are readily obtain
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able. Computing network state probabilities is then conceptually straight
forward.

We now discuss the setting of the arrival rates for each job class when 
we analyze a queue in isolation. Recall that rc is the relative throughput of 
class c, if c is a member of a closed chain, see equations (5.8-5.10). For 
each closed chain choose a set of relative throughputs. If class c belongs to 
queue m, and class c is a member of a closed chain, set the arrival rate for 
class c to queue m in isolation, to the relative throughput of class c. If class 
c is a member of the open chain, set its arrival rate to queue m in isolation 
to the actual throughput, R c of class c. The actual throughput for classes in 
the open chain are determined easily from equation (5.8) since we know R 0, 
the source rate. (R 0 is equivalent to R of Chapter 4; equation (5.8) is 
equivalent to equation (4.60).) We assume that the arrival rates for the 
closed chains are small enough so that queue m reaches equilibrium in 
isolation. (We can always choose the relative throughputs to satisfy this 
assumption.)

In the following proofs it is helpful to define:

S = S V...,SM (5.16)

(5 -  (c')) = S , , . S , -  -  (c '),Si+l,...,SM (5.17)

and

p(S) = P ( S X). . .P(SM) (5.18)

Note that P(S() is obtained from analyzing queues in isolation.

Theorem:

P ( S ) = (5.19)

if S  is feasible, where G is a normalization constant.

Proof:

We are given that all queues satisfy local balance, i.e., satisfy equations
(5.1) and (5.2), in isolation. Applying local balance equation (5.2) to 
(5.11) and assuming (5.19) we get
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rate (S + (c) -  (c '»  to S -  H ( S  ^ M rcpc c,. (5.20)

Hence from (5.12) and (5.9) the net rate at which S' is entered because a 
job enters class c is:

P « S  -  (c'))) ------------------/*. ' (5.21)

Applying local balance equation (5.1) to (5.14), the rate at which the 
system departs S because a job leaves c is also:

p a s  -  (c')))------------------/■ / (5.22)

Hence the balance equations are satisfied by P(S)  defined in (5.19). This 
completes the proof.

The normalization constant, G, can be obtained from

P(S) = 1. (5.23)
f e a s i b l e  S

Hence

G = ^ p ( S )  (5.24)
s

where the summation is taken over all S = (Sj,...,SM) where S m is feasible 
for queue m in isolation and

POP(S,) + ... + POP(SM) = N. (5.25)

We have now completed the analysis of the Markov process for local bal
ance networks.

5.3 NON-EXPONENTIAL SERVICE TIMES

Up to this point we have assumed that all service times are exponential. 
We now consider non-exponential service times which can be represented as 
a network of exponential stages. An Erlang distribution and a branching
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Erlang distribution are shown in Figure 5.6. Consider a local balance 
network in which all classes have exponential service times and in which 
some queue m has 2 classes, say c and c , and suppose a job leaving class c 
immediately enters class c (Figure 5.7). Assume that class c and class c 
have the same mean service time. Now consider another network in which 
queue m has an Erlang service time with two stages: each stage has the
same service time as each of the classes c and c . It is possible to show that 
if queue m satisfies local balance and if it has a class independent discipline 
(i.e., one in which jobs are not given priority based on their class or amount 
of service received) then the Markov process for the network with two 
exponential classes of Figure 5.7 is identical to that for the network in 
which queue m has the 2 stage Erlang service distribution. The reader 
should check this out for the LCFSPR case. Similarly, the 2 class network 
of Figure 5.8 models two stage branching Erlangs. If queue m has a class- 
independent discipline, satisfies local balance and has classes cl ,...,ck , then 
by suitably interconnecting the classes, any fc-stage service time can be 
modeled. The reader should prove this to be true for the LCFSPR case. 
We shall hereafter ignore non-exponential service times and restrict atten
tion to local balance networks in which all classes have exponential service 
times. As stated in Chapter 4, only the mean time and the number of visits 
to each queue are relevant.

Erlang Branching Erlang

Figure 5.6

Figure 5.7 A class representation of an Erlang distribution



100 CLOSED PRODUCT FORM QUEUEING NETWORKS /  CHAP. 5

Figure 5.8
A class representation of a branching Erlang distribution

5.4 SOME IMPORTANT LOCAL BALANCE SYSTEMS

The reader should prove that queues with LCFSPR, PS or Infinite 
Servers (IS) with an arbitrary number of classes satisfy local balance. For 
these disciplines show that non-exponential service times can be modeled by 
suitably connecting classes with exponential service times. Also show that 
queues with FCFS and a single exponential class satisfy local balance. The 
reader can "cook-up" other local balance systems (indeed may enjoy cook
ing one up); however, few other local balance systems are practically 
meaningful. We next discuss an important, though apparently unusual, local 
balance system with an arbitrary number of classes. We call this system the 
composite queue. The composite queue with C classes is defined by a 
C-dimensional, positive matrix H, called the rate matrix. The states of the 
queue in isolation are C-tuples, (/ij ,...,nc ) where nc is the number of class c 
jobs in the queue. The rate at which class c jobs are served in state 
S = (n j ,...,nc ) is

ac(S)
H (n x,...,nc_ x,nc -  1,/»C+I,...,wc ) 

H(S)
, for nc > 0. (5.26)

We leave it to the reader to show that

P(S) = —— — ---- £_ (5.27)

Where G is a normalization constant and P(S) is the equilibrium probability 
of the queue, in isolation, when the arrival rate of class c jobs is R , 
c = 1,...,C.
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Note: Given any set of state probabilities P{S) where S  is a C-tuple,
we can find a composite queue which has the same equilibrium state proba
bilities by setting:

H (S)  = P(S) (5.28)

This is quite remarkable! It implies that we cannot tell whether a system 
satisfies local balance by inspecting the numerical values of the equilibrium 
state probabilities.

We will find the composite queue useful when we model a complex 
system consisting of several queues by a single composite queue with the 
same equilibrium state probabilities.

A special case. A FCFS queue, with 2 or more classes, in which all 
classes have the same exponential service distribution behaves like a local 
balance queue as far as equilibrium probabilities are concerned provided all 
the states of the queue in isolation are also feasible states of the queue in 
the network, and every state is reachable from every other [BASK75]. 
Figure 5.5 gives an example of a network in which every state is not reacha
ble from every other, and which does not behave like a local balance net
work as far as equilibrium probabilities are concerned even though all 
classes have the same exponential service distribution. Even though net
works such as Figure 5.5 do not have the solution given in (5.19), the queue 
length distribution of such a network (and all performance measures deriva
ble from the queue length distribution) will be the same as for a local 
balance network, provided that for each FCFS queue all classes of the 
queue have the same exponential service time distribution. The reader can 
prove these results from the Markov balance equations as in the local 
balance case.

5.5 PROPERTIES OF CLOSED LOCAL BALANCE NETWORKS

This section is restricted to closed local balance networks. The state 
space, state probabilities, performance measures and the normalization 
constant of closed networks depend on the population vector N. We shall 
show this dependence explicitly by writing G(N), R C(N), LC(N), and 
QC(N). Note that the relative throughput rc is independent of N. Define ek 
to be a vector with a 1 in the k th position and 0 elsewhere. Then (N  — ek) 
is a population vector with one less job in chain k than N.
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5.5.1 Throughputs

Throughput Theorem:

The throughput of class c customers when the population vector is N is

G(N -  ek)
RAN )  = ----------- — rc

c G(N )
(5.29)

where class c is in chain k.

Proof:

Let class c belong to queue m. From (5.22), the rate at which jobs 
leave class c is

X ' ( S ) * , ( S . ) =  2  p((Sr l  ‘C )))V  <5 -30>

From the fact that queue m is in local balance in isolation, we know that the 
set of feasible states S m in which ac(S m) > 0 is identical to the set of 
feasible states S m — (c), for queue m in isolation. The summation in 
(5.30) is taken over all feasible states M such that

POP(S,) + ... + POP (SM) = N

and ac(Sm) > 0, i.e., S m — (c) is feasible. Hence the summation is being 
taken over all feasible states S m — (c), S m + l ,...,SM such
that

POP(Sj) + ... + POP(Sm -  (c)) + ... + POP(SM ) = N  -  ek ,

and the theorem follows from the definition of G (see equations (5.24) and 
(5.25)).

5.5.2 Probabilities of Queue States (Marginal Probabilities)

Let | N) be the probability that queue m in the network is in
state S m given that the population vector is N. Note that \ N ) is
concerned with queue m within the network, whereas P(S ) is concerned 
with queue m in isolation. (P^m^(Sm \N)  is an example of a marginal 
probability because it considers only the state of queue m and not the states 
of other queues in the network. The network state probabilities we have 
been dealing with are referred to as compound probabilities; a marginal 
probability is then the sum of compound probabilities.)
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We use lower case letters to represent unnormalized probabilities; for a 
feasible network state S' we have defined p(S  \ N ) = P(S \ N)G(N)  (see 
equations (5.18) and (5.19)). Define

/>(„)<«„ I N) -  PM (S m I (5.31)

The following theorem is crucial to algorithms for computing performance 
metrics of the models.

The Marginal Local Balance Theorem:

P ( .) (S , I V M -S J  = PI (5.32) 

where class c belongs to chain k and is in queue m.

Proof:

For notational simplicity, assume m = 1. By definition

P l ( S l | TV) = P(Sj) X  P (S2). ..P(SM) (5.33)

where the summation is taken over feasible S 2,- -,SM (in isolation), such 
that

POP(S2) + ... + POP(SM) = N -  POP(S!) (5.34)

(P(Sm), m = 1 is still the probability that queue m, in isolation, is in
state S m.) Applying local balance equation (5.1)

^ ( S j  IA O ^S j) = rcP ( S l -  (c)) X  P(S2). ..P(SM)

where the summation is taken over S2,...,SM satisfying (5.34), which is 
equivalent to

POP(S2) + ... + POP(SM) = N  — ek — POP(Sj -  (c)),

and the theorem follows from the definition of P\(S^ — (c)|7V — ek) 
(see equation (5.33)).

Lemma:

P{m) ^ m \N)ac(S m) = P{m)(Sm -  ( c ) \ N  -  ek)R c(N ) (5.35)

The proof follows from the Marginal Local Balance and Throughput 
Theorems.
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Equations (5.32) and (5.35) look exactly like the local balance equa
tion except that they deal with (unnormalized and normalized) marginal 
probabilities; hence we refer to these equations as marginal local balance 
equations.

Repeated use of the Marginal Local Balance equation yields perform
ance statistics. Briefly, the approach is (1) Assume that we know the 
unnormalized state probabilities for a population vector of N —ek . (2) Use 
the Marginal Local Balance equation to compute the unnormalized marginal 
probability of queue m being in state S m given a population N, for all states 
S m for which S m -  (c) is defined. (3) Compute the unnormalized mean 
queue length given a population N  from the unnormalized marginal proba
bilities given population N. (4) Since the sum of the mean number of jobs 
in chain k over all queues must be Nk , it follows that the sum of the unnor
malized mean number of chain k jobs over all queues must be G(N)Nk . 
Hence compute the normalizing constant G(N). (5) Normalized probabili
ties and mean queue lengths are obtained by dividing the unnormalized 
values by G(N). Throughputs are obtained from the Throughput Theorem 
and mean queueing times from Little’s Rule. (We will discuss algorithms 
using this approach in detail in Section 5.7.)

5.5.3 Marginal Probabilities of Subsystems

It is helpful to partition the set of queues 1 of the network into 
subsystems. For example, a model of a computer system may be partitioned 
into the processor subsystem and the I/O  subsystem. Assume that the 
network is partitioned into K  subsystems: SUBj.....SUB^-. Each queue (and 
its classes) belongs to exactly one subsystem. Let Z X,...,ZK be population 
vectors and let P ( Z X,...,ZK) be the equilibrium probability that the popula
tion of subsystem i is Z(, / = given that the network population is
N  = Z, + ... + Z K. Let G ^ Z J  be the normalization constant for a network 
containing only subsystem i with a population of Z(. (We may think of this 
network as being obtained by setting mean service times for all classes not 
in subsystem i to zero.) In other words G,(Z;) is the normalization constant 
for a network consisting of subsystem i alone, when the population of this 
network is Z(. Formally, if subsystem i consists of queues /(l),...,/(^), then:

W  = (l))"W ,(,)>  <5.36)

where the summation is taken over all feasible states of the
queues in isolation, and where:

POP(S/(1)) + ... + POP (S Kq)) = z,
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P ( Z V...,ZK) G i ( Z i)... G ̂ ( Z ^ )
G W (5.37)

The proof follows directly from the definition of G(N) and C,(Z,) by 
summing state probabilities over subsystems.

V a r y

Suppose we wish to repeatedly analyze a network while we vary param
eters in some subsystem SUBj as shown in Figure 5.9. The Aggregation 
Theorem helps us to carry out a parametric analysis of SUBj very easily.

The Aggregation (Decomposition) Theorem (Norton’s Theorem)

For the purpose of computing statistics about SUBj, all the queues, 
except those in SUBj, can be replaced by a single composite queue whose 
rate matrix H  is computed in the following way. Let all the queues in the 
rest of the network (i.e., not in SUBj) belong to SUB2. For any population 
vector Z2, define the matrix H  as:

H (Z 2) = G2(Z2)

where G2(Z2) is defined in equation (5.36).

Proof:

The subsystem lemma states that P(Zj,Z2) is proportional to 
G j ( Z j ) G 2( Z 2 ) ,  regardless of what SUBj is, provided the network is a local 
balance network. If we replace SUB2 by a composite queue with rate
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matrix H = G2, we get the same values for P ( Z l,Z2) because the composite 
queue satisfies local balance, and the subsystem lemma states that P(Z \ ,Z 2) 
is proportional to G {( Z i)G2(Z2)-

This theorem is also referred to as a decomposition theorem and/or as 
Norton’s Theorem. We have described the aggregation of queues into 
subsystems, but we could have equivalently described the decomposition of 
subsystems into queues. The description used is partly a matter of taste and 
partly dependent on particular situations; in Section 6.3 we will be focusing 
on decomposition. The Aggregation Theorem is analogous to Norton’s 
Theorem for electrical circuits [CHAN75a].

5.5.4 Common Local Balance Disciplines

We next study the more useful local balance disciplines in detail. We 
shall restrict attention to the probability that there are nc jobs in class c, c =
1,...,C. Let us first consider a PS discipline where the capacity of the server 
varies with the number of jobs in the queue. The total rate at which class c 
jobs are serviced when there are nc jobs of class c, c = 1,...,C is 
acCAP(n)nc/n ,  where n = n j + ... + nc is the total number of jobs in the 
queue; CAP(n) is said to be the capacity of the queue when the queue 
length is n. We assume that the rates are normalized so that CAP(l) = 1. 
Our notation is simplified if we assume CAP(O) = 0.

If there is only one processor CAP(n) = 1 for all positive n. If we 
want to model overhead in job switching, we may want CAP(n) to decrease 
with n. In the infinite server case CAP(n) = n. Define SHARE(n) 
= CAP(n)/n.  SHARE(n) is the fraction of processing power given to each 

of the n jobs when there are n jobs in the queue.

Since LCFSPR has the same queue length distribution as PS (see 
Chapter 4), we shall not continue to discuss LCFSPR separately. The 
following results for PS hold for LCFSPR and the special FCFS cases as 
well. The results hold for IS by suitably defining SHARE(n).

For the PS case, the Marginal Local Balance equation (5.32) becomes, 
after simplification

/>(,„)(* I A)
Pim)(n ~ ec \ N  — ek)uc 

nc SHARE(n)
(5.38)

where uc = rc/ a c and where n is defined as n l ,...,nc, n = w, + ... + n and 
class c belongs to chain k. Recall that p (m)( n \ N )  is the unnormalized 
probability of n jobs (regardless of class) in queue m given population
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/»(«)(" l ^ ) =  S  /»(«)(»IN ) (5-39)
feasible «

where the summation is taken over all non-negative integral values of 
nl ,...,nc such that

n l +  ... +  nc = n. (5.40)

Define lc(N) as the unnormalized mean queue length at class c given popu
lation N, i.e.,

lc(N) = LC(N)G(N). (5.41)

Then

lcw  = 2  _ ncP(m)(n 1^0 (5-42)
feasible n

where the summation is taken over all non-negative integer values of 
n x,...,nc where (5.40) holds and

nc > 1. (5.43)

From equations (5.38) to (5.43), the unnormalized mean queue length at 
class c is

lc(N) =
I AM
2

P{m)in -  1 I N -  ek) 

SHARE (n)
(5.44)

where | A | = N x + ... + Nk is the total job population over all chains, and 
from the Throughput Theorem the normalized queue length at class c is

LC(N) = UC(N)
1AM
2

P ( m )( n ~ l  I N ~ ek )  

SHARE(«)
(5.45)

where

UC(N) = R C( N ) (5.46)

Note that this U is related to, but not the same as, the U of the previous 
chapters. This U would have to be divided by the number of servers to be 
consistent with the previous usage. After this section we will return to the
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previous definition of U. In the infinite server case, SHARE(n) = 1, hence 
from equation (5.45)

LC(N) = UC(N) (5.47)

and

lc(N) = ucG(N  -  ek). (5.48)

In the single server case, SHARE(n) = 1 /n,  and simplifying equation (5.44) 

LC(N) = UC(N)( 1 + L (m)(N -  ek)) (5.49)

where — ek ) is the mean queue length of queue m, and

lc(N) = uc(G(N  -  ek) + l(m)(N -  ek)). (5.50)

There is no closed form expression for the mean number of class c jobs for 
a composite queue with an arbitrary rate matrix. If we are given the unnor
malized probabilities for a population vector N  — ek , we use the Marginal 
Local Balance equation (5.32) to compute the unnormalized probabilities 
for a population vector N, and then compute unnormalized mean queue 
lengths from the unnormalized state probabilities.

Given the unnormalized mean queue lengths we can compute the 
normalization constant from

X  L C(N) = Nk . (5.51)
c in k

It follows from this equation that

2  lc W
G(N ) = c in * ------- . (5.52)

Nk

These equations suggest an iterative approach to computing normalizing 
constants. We know that G(0) = 1. Assume we have normalizing con
stants and other statistics for all population vectors less than N. Compute 
the unnormalized mean number of class c jobs from the Marginal Local 
Balance equations and use equation (5.52) to compute G(N). We will 
describe this approach in detail in Section 5.7.

Another set of equations is useful in determining G(N) for closed 
networks with many (e.g., 50 or more) single or infinite server queues, 
especially when memory is severely constrained (e.g., when using program
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mable calculators). For notational simplicity we shall restrict attention to 
the 2 chain case. For chain k, k  = 1,2, and queue m let u(k m) = 1 uc, for c 
in chain k and queue m where uc = rc/ a c. Similarly, let l[k m) = 2 lc. For 
fixed rate single server queues from equation (5.50)

= “ (1,„)«?(*! -  1 ,N2) + /(„)(* , - \ ,N 2)) (5.53)

and

= “(2,m)(G{Nv N 2 -  1) + l{m)(N {,N2 -  l)). (5.54)

For infinite server, queues from equation (5.48),

h U m ) W  = -  1 ,N2) (5.55)

and

'(2,*)(*) = u(2,m)G(Nv N 2 -  1). (5.56)

Let us assume that single server fixed rate queues are numbered from 1 to /  
and that infinite server queues are numbered from 7+1 to J. Define 
CUM(«],«2) as follows (CUM is an abbreviation for cumulative):

CUM(1,0) = 2 > (  l.m).
m =  1

(5.57)

J

CUM(0,1) = £ u ( 2,m)>
m =  1

(5.58)

and
(n, + n2)\ I nx n2

CUM(«„«2) = 2/ for n \ + n2 > 1. (5.59)

Aggregate Queue Theorem:

For (N v N 2) *(0,0)
n v n 2

G (N l ,N2) =
G (N i - n l ,N2- n 2)CUM(nx,n2)

(«,,n2)5t (0,0) + N 2
(5.60)

Proof:

For the purpose of the proof we define a function E(m)(n1,/i2) for each
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For a fixed rate server
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F(m)(n \ ’n2'> f.
(n, +n7)\

n , \n ~U( 1 ,m)U (2,m) for /j| > 0, n2 

elsewhere

> 0

and for an infinite server

F( m M v n2)
u(\,m) if n \ = «2 = °
"(2,«) if n \ = 0’ n2= 1 
0 elsewhere.

We shall now show by induction that

n v n 2

1 -^ 2 ) =  S  G ( N \ - n l ,N2- n 2)F(m)(n v n2)
rt] ,«2#0'0

for fixed rate and infinite servers.

This equation is obviously true for ( N l ,N2) = (0,0), (0,1) and (1,0). 
Assume the equation is true for all ( K X,K2) such that either (1) K , < N x 
and K 2 < N 2 or (2) K x < N x and K 2 < N 2. We shall now prove the 
equation for ( K X,K2) = ( N X,N2).

For a fixed rate server, from equations (5.53) and (5.54) and applying 
the induction assumption,

= «(1,W)G(^V1 - 1^ 2)

N i - \ , N 2

+ S G(<N \ - X- n \ ’N 2- n2)U(\,n,)F (m)(n \ ’n2)
nj n2^0,0
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+ U(2,m)G^N VN 2 ~  !)

^lW2- l

+ X  G(N \ - n VN2 - \ - n2)u(2,m)F(m)(n Vn2)
rtj,«2^ 0,0

yv ,- i  n 2

= 2 2  G<<N \ - l - n VN 2 - n2)u(\,m)F(tn)(n \ ’f'2) n|=0 n2 = 0

N { N2- 1

+ 2  2  G(jVl - nl ’Ar2 - 1-« 2 )M(2,m)F(m)(«l>/J2)/I] =0 «2 = 0

yv, yv2

= 2  2  G ( ^ i - « i , ^ 2 - « 2 ) M(l,w)^(OT)(«l - l>«2)
h,=0 n2=0

N, N2

+  2  2  G ^ l - , J l>^r2 _ /z 2 ) u (2,m)'f ’(m )(,1l ’,J2 _ 1 )Mj=0 n2=0

Ay, yv2

=  2  2  G ^N \ - n \ ’N 2 - n 2 ^ u ( l ,m)F ( m ^ n \ - l ’n 2^
n , =  0 «2= 0

+ M(2,W)ir(m)(«l>«2- D)

n v n 2

=  — « i ,AT2 —« 2 ) ^ ( W) ( « 1 ,« 2)
n , , « 2^ 0,0

The very last step follows from the fact that for (n l ,n2) #  (0,0)

u ( 1 , m )F ( m)  ( n \ 1,w2^ +  M(2,m)i r («1) ( " l - M2 - 1) =  F (m) («1 -«2>-

When («,,/i2) = (0,0) the left hand side of the above equation is zero (0) 
while the right hand side is unity (1). The proof of the above equation for 
/(m)(Ari,Ar2) for the IS case follows trivially from equations (5.55) and 
(5.56).

The theorem follows from the fact that
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and

' Z F (m)( N {,N2) = CUM(A,,A2).
m

Convolution

Consider a closed network with K chains consisting of 2 subsystems: 1 
and 2. Assume that all queues in the network are either processor-sharing 
queues, with service rates which may vary with queue length, or composite 
queues. Let G\(N),  G2(N) and G(N) be the normalization constants for 
subsystem 1, subsystem 2 and the entire system (respectively) given a 
population vector of N. From the subsystem lemma we know that the 
probability of ni jobs in subsystem i, i = 1,2, (where ni is a vector of length 
K) given a population vector n = «, + n2 for the system is

P(nv n2 | n)
G l (n l )G2(n2)

Gi^)

Summing over all n2, we have

P(nl , n - n l | n) = 1
=0

Hence

G(n) = 2  C1(«,)G2(« -  «,) (5.61)
= o

Let G be an (N j + 1 ) x  . . . x (N K + 1) matrix of G(n), with nk varying from 
0 to Nk + 1, where Nk are arbitrary non-negative integers for all k. G\ and 
G2 are defined similarly. We shall write

G = G l *G2 (5.62)

and * is called the convolution operation.

Convolution Theorem:

Consider a network consisting of M  subsystems, and let Gm(n) be the 
normalization constant for the subsystem given a population vector n,
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m 1 Let Gm be a matrix of Gm(n) whose indices range from
(0,...,0) to (N l ,...,NK), m = 1 Let G(n) be the normalization con
stant for thê  entire network given population vector n , and let G be a 
matrix of G(n),  with indices ranging from (0,...,0) to ( N l ,...,NK).

G = G x*...*Gm . (5.63)

Proof:

This result follows by induction on the number of subsystems, since the 
arguments given earlier show that the theorem holds for a network consist
ing of two subsystems. Note that the convolution operation is both associa
tive and commutative.

Deleting a queue

We now discuss the computation of normalization constants for a 
network consisting of queues 1  from the normalization constants
for a network consisting of queues 1

Queues I , . . .  , M -  \ Queues 1, . . . , M -  1

1 3 3
3

1
1
I Queue M ! 3 0

i
1
1
1
1

ri i3  h 1O-i ri iO h
: iO I

I
1 i 1 3 1

1
1

L_ J L_
1

J

Old network New network

Figure 5.10

Consider a network with queues 1 Let COLD(«) be the normali
zation constant for this network given a population vector n. Let CNEW(n) 
be the normalization constant for the network with queue M  removed (e.g., 
shorted out). From the subsystem lemma, the unnormalized probability of 
nk jobs of chain k, all k, in queue M  (in the OLD system), given a popula
tion vector N  is

P(M)(n I **) ~  X (M)(n^GN E W ^  “  ” ) (5.64)
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where is the normalizing constant for a network consisting of
queue M by itself. From this equation, we have

I A) = Gne w(N)

and

P(M)(n | A) = X {M)(n)p{M){0 \ A) (5.65)

We shall use equation (5.64) in computing GNEW.

We now derive equations for the special case where queue M  is a fixed 
rate server. For notational simplicity we now consider a 2 chain case. The 
Marginal Local Balance equation can be written as

( P ( m ) ( n 1 ~  l ’n 2 I N l ~  ^  2 ' n \ *  °>

P(m)(n Vn2\ N VN2) = j  „ +n
P( m) ( n l ’n 2 ~  1 I N \ ’N 2 ~  ^ u (2,m) ^  2 ’ w2 ^

From this equation, for (n l ,n2) ±  (0,0) we have

P(m)(«l —L « 2  I Aj -  h N 2)u(] m)+ p (m)( nv n2 -  1| N VN 2 -  1 )«(2>w)

=  / , ( m ) ( " l ’" 2  I ^ i ^ 2 )

where we define P(m)(i,j I A:,/) to be 0 if y, &, or / is negative. Summing 
the above equation over all rt\,n2 we have

G OLD^N l ~ i N̂ 2 û (l,m) +  G OLD^N l ' N 2 ~ ^ u (2,m)

~  ^OLD^l ’N 2) - P ( m)(Q,0 I A, ,N2)

where GOLD is the normalizing matrix for the entire network, i.e., for 
queues Recall that GNEW is the matrix of normalizing constants for
a network obtained by deleting queue M. Hence
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= /J(m)(0 ,0 |iV1 ,A2)

= GOLD(A„W2)

For a fixed rate queue, we know that the normalization constant for a 
matrix consisting of queue M  by itself is

We can use equations (5.65) and (5.66) to compute the marginal probability 
for queue M  if it is a fixed rate queue.

5.6 AN INTRODUCTION TO CLOSED NETWORKS

The reader who has completed Sections 5.1 through 5.5 may skip this 
section and go directly to Section 5.7. Some of the material of those 
sections is repeated in this section before we discuss computational algo
rithms. Readers who have skipped the earlier sections will find a non- 
theoretical introduction in this section.

Jobs neither enter nor leave a closed network. There is a constant 
number of jobs in a closed network at all times. This number is called the 
job population of the network. Figure 5.11 is an example of a simple two 
queue closed network model where one queue represents a CPU and the 
other a disk. In this model, when a job finishes service at the CPU it joins 
the disk queue, and when a job finishes service at the disk it joins the CPU

C P U I / O

Figure 5.11 A simple closed network
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queue. The total number of jobs in the network (and hence the sum of the 
queue lengths of all jobs in the network) must always equal the population,
TV.

Figure 5.12 A simple model of a time-sharing system

Figure 5.13 CPU utilization as a function of population

In open networks, any queue length can range from zero to infinity and 
no restriction is placed on the total number of jobs in the network. In most 
computing systems, the total number of jobs in device queues is limited by 
the amount of memory, or the number of control points or some other 
resource. For example, in a time-sharing system with TV users, there must 
be a total of AT jobs in the system, where the system includes the terminals 
as well. (Here we assume that there is at most one job per user and that 
there are no additional system jobs. Though neither assumption is neces
sarily correct, the statement that the total number of jobs is fixed is essen
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tially true.) In practice, N  is not truly constant over all time; for example, in 
a time-sharing system there may be 1 0  users for 1 0  minutes, and then 9  

users for the next 5 minutes, and then 10 users for the next minute, and so 
on. It is preferable to model such a system as a closed network with a fixed 
population N, and study the behavior of the model for different values of N. 
For instance, we might want to determine the CPU utilization as a function 
of N. In computing such a function, we are really analyzing several 
equilibrium models: one in which N = 1, another in which N  = 2, and so 
on. Strictly speaking, we should only have a single model which incorpo
rates the transient behavior of N, i.e., the way N  changes with time; how
ever, such models are difficult to analyze and we choose to approximate the 
true model by one in which the system is assumed to switch from one 
equilibrium model (and value of N) to another. If we wished to determine 
the CPU utilization for a period of time during which N = 9 for 50% of the 
time and N = 10 for 50% of the time, we could do so (approximately) by 
averaging the CPU utilizations in equilibrium closed models in which N  = 9 
and N = 10.

The previous discussion should convince the reader that closed network 
models are more appropriate than open network models for a variety of 
systems. There is another basic difference between open and closed mod
els: the computation of queue throughput (the rate at which jobs complete 
service at the queue). As shown in Chapter 4, the throughput of a queue in 
an open network depends only on the rates at which the sources produce 
jobs and the expected number of visits that jobs make to a queue; in partic
ular, the throughputs are independent of the service times, provided, of 
course, that equilibrium conditions exist. An inspection of Figure 5.11 will 
show that the throughput of the CPU queue must decrease with increasing 
CPU and disk service times. Queue throughputs in closed networks depend 
on service times and branching probabilities (the probability of making a 
transition from queue / to queue j).  There seems to be no simple way of 
computing throughputs in closed networks. However, it is possible to 
compute the throughput of one queue relative to the throughput of another 
quite easily as will be shown in the next paragraph; for instance, the 
throughput of the CPU queue in Figure 5.11 must equal the throughput of 
the disk queue.

We now restrict attention to closed, product form networks in which a 
job of any class i can become a job of any other class j  (possibly after 
making transitions through other classes k j, /c2, k 3,...) with non-zero proba
bility; such networks are called single-chain networks. Consider the closed 
networks of Figure 5.14. There are 4 classes in each network. In Figure 
5.14a, a job in any class i can eventually become a job in any class j\ for 
example, a job of class 2  can become a job of class 1  after passing through 
classes 3, 4 and 1. In Figure 5.14b, a job in class 1 can become a job in
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Figure 5.14 Networks with one and two chains
class 2 but can never join classes 3 and 4. We will consider networks of the 
form shown in Figure 5.14b (which are called multiple-chain networks) later 
in this chapter, but we shall ignore them for the rest of this section.

The notation used in this chapter is the same as that used in Chapter 4. 
It is reviewed here. Let there be C classes. Let R c = Rrc be the through
put of class c. Let pcd be the probability that a job leaving class c immedi
ately joins class d. Then we must have

c
R c  = 7 J R dPdc^ c = l —.C. (5.67)

d= l

This equation states that the rate of flow of jobs into class c must equal 
the rate of flow out of class c. Equation (5.67) is a system of C equa
tions, but one of the equations is linearly dependent on the other C - l  
because the equation for any class c can be obtained by summing the 
equations for all other classes (and then simplifying). Hence, if we knew
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the throughput of any class, we could use (5.67) to find the throughput of 
all the other classes because we would have only C— 1 unknowns and C— 1 
independent equations.

Let the relative throughputs, r , c = 1 ,...,C be a set of numbers such
that

r
C D R^  , c — 1  ,

where D is any positive constant. Note that

(5.68)

(5.69)

i.e., the ratio of throughputs is equal to the ratio of relative throughputs. 
Substituting (5.68) in (5.67) the set of rc must satisfy

rc =  X  rdPdc - c  =  ( 5 -7 ° )
d=  1

Let nc be the number of class c jobs, c 
bles, but at all times

c

C  =  1

where N  is the population. Taking the means of both sides of (5.71)
c
X  Lc = N  (5.72)

C =  1

where Lc is the mean number of jobs in class c, i.e., Lc is the mean queue 
length at class c. Let Qc be the mean queueing time at class c. Lrom 
Little’s Rule

= 1,...,C. The nc are random varia- 

= N  (5.71)

Qc = (5.73)

Note that equations (5.67) through (5.73) hold regardless of the service 
disciplines and distributions. (These results hold for networks without 
product form solution.) We next consider results that only hold for special 
distributions or disciplines.

Consider the network of Ligure 5.11. Refer to the CPU queue as 
queue 1 and to the disk queue as queue 2. All jobs in queue c belong to
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a a a

yv, o ©a

Figure 5.15 The Markov diagram for the network of Figure 5.11

class c, c = 1,2. Let ac be the service rate of class c, c = 1,2, i.e., 1 / ac is 
the mean service time at class c. Assume that all service times are inde
pendent exponential random variables. Let nc be the number of jobs in 
class c, and let N be the total job population. The states for the Markov 
process for this network are (n l ,n2) where n { + n2 — N, as shown in Figure 
5.15. Note the similarity of this diagram to that of Figure 4.2. Solving the 
balance equations exactly as we did for the example in Figure 4.2 (the 
reader should perform the solution) we get

The utilization of class 1 is 1 — P(0,N). Note that if we interpret a2 as R 
for the isolated queue of Section 4.1 and p as U, with p < 1, the state 
probabilities P(n,N — n) for the closed network tend to the P(n) of equa
tion 4.6, as the population N gets arbitrarily large. As N  gets arbitrarily 
large, the queue length at the disk (queue 2 ) will get arbitrarily large since it 
is the slowest queue in the network, because p is assumed to be less than 1 . 
In the limit the utilization of queue 2 will tend to 1, in which case the 
inter-arrival time at queue 1 will be the service time of queue 2. Thus, in 
the limit, the arrival process to queue 1 will be Poisson at rate a2, which 
allows us to use an open network model to analyze queue 1. The same 
analysis can be applied to general networks. Let & be the set of queues 
with the maximum value of relative utilization, i.e., where

where p = a2/ a  \ and

P(0,N) = 1 (5.75)
\ +  p  +  p 2 +  . . .  +  p N

u ( m )  =  2  Uc =  2  ~
c c in

let
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^MAX -  MAX

and

0  = { m \  u(m) = UMAX}

For any population N, a queue in f f  will have a greater utilization than a 
queue not in & because the ratio of queue utilizations is equal to the ratio 
of relative queue utilizations. As the population tends to infinity, the 
utilization of queues in If will approach 1. Hence, departures from these 
queues will become Poisson with rates equal to the queue service rates. In 
this case we can analyze every queue not in f f  by analyzing an open

Figure 5.16 Creating the asymptotic open network from a closed one
network, which is obtained from the given closed network by replacing 
every queue in f f  by a source and sink pair, as shown in Figure 5.16.

Let us examine the relationship between the CPU (queue 1) utilization 
and job population more closely. Computing the utilization as discussed 
earlier, we get the graph shown in Figure 5.17. With p < 1, the CPU 
utilization tends to p as N  tends to infinity for the reasons given earlier.
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With p > 1, the CPU utilization tends to 1 as A tends to infinity. When p 
is much smaller or much larger than 1 the CPU utilization rises sharply and 
then flattens out for relatively small values of N, whereas the curve rises in 
a gentler fashion when p is approximately 1. The reason for this is seen by 
examining the mean queue length of either queue as a function of the 
population. When p = 1, the queues are symmetric and the mean queue 
length must be N/ 2  for each queue. When p is much greater than 1, each 
additional unit increase in N  will increase the mean queue length of the 
heavily utilized queue (queue 1 ) greater than the less utilized queue, until, 
in the limit L, asymptotically approaches a 45° line. When p < 1, each 
additional job added to the system spends more time in the more heavily 
utilized disk queue, till in the limit the mean CPU queue length approaches 
a constant value.

Figure 5.17 CPU utilization as a function of N

Figure 5.18 Mean queue length as a function of population
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Figure 5.19
We next consider networks in which some of the queues have PS, 

LCFSPR or IS disciplines. All classes belonging to a queue with a FCFS 
discipline are assumed to have the same exponential service distribution. 
Consider, for example, a simple extension of Figure 5.11, shown in Figure 
5.19. The notation used here is designed to fit the open network in Figure
4.7 with the disk representing the source. Let ac be the service rate of class 
c, c = 1,...,C and let R be the service rate of the disk (class 0).

Let C = 2, let nc be the number of jobs in class c and let (nx,n2) be the 
state of the network. The number of jobs at the disk is TV — («, + n2). 
The Markov diagram for this closed network is the same as that for the 
open network (see Figure 4.8) with infeasible states (those with n x + n2 > 
TV) removed. Calculation (as in equations (4.41-4.48)) shows that the 
equilibrium state probabilities are given by equation (4.42), and the proba
bility of n jobs at the disk and TV — n in the CPU is given by (4.45). The 
mean CPU service time is

P 0 1 P 0 2  

a2 '

Setting p to be the ratio of the CPU service time to the disk service time, 
we get

)■
Hence, the probability of n jobs in the CPU and TV — n jobs in the disk is 
exactly the same as for Figure 5.10. Thus the queue length distributions 
and other measures we have considered in detail are dependent only on 
mean service time and are independent of class distinctions.
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It has been shown that only the relative utilizations are relevant in 
computing the probability that there are nm jobs in queue m, m = 1 , 2  

in an arbitrary network provided that (1) at each FCFS queue all classes 
have the same exponential service time distribution, and (2) at non-FCFS 
queues the service time distributions are differentiable, and the queueing 
disciplines are processor sharing, last come first served preemptive resume, 
infinite servers or other members of a special set of disciplines defined in 
CHAN77b. (Most of these results are in Chapter 4 and Sections 5.1 
through 5.5. The exponential stages characterization of distributions we 
have considered is slightly more restrictive than the differentiable character
ization mentioned above and used in CHAN77b.) This class of networks 
satisfies product form, i.e.,

P ( S X,...,SM)
P\ (S \  )...P M(S M) 

G
(5.76)

where P(S { is the probability of a feasible network state in a 
network of M  queues, where Prn(Sm) is a factor reflecting the probability 
that queue m is in state S m and G is a normalizing constant. The queue 
states S m for queue m, and the functional form of the probabilities Pm{Sm) 
are the same as in the case where class c of queue m is fed by Poisson 
arrivals with rate equal to the relative throughput of class c in the closed 
network. (See Figure 5.1.) The derivation of this last result is found in 
Section 5.4.

5.7 COMPUTATIONAL ALGORITHMS

There are a number of criteria that must be considered in choosing a 
computational algorithm for queueing network models. These include 
generality, computational effort, storage requirements, numerical stability 
and implementation effort. There are four generic types of algorithms 
which we find interesting. In historical order, these are the Convolution 
Algorithm as first discussed in BUZE71 and most refined in REIS78b, the 
Mean Value Analysis Algorithm of REIS78a, and two algorithms we pro
posed in CHAN79, the Local Balance Algorithm for Normalizing Constants 
(LBANC) and the Algorithm to Coalesce Computation of Normalizing 
Constants (CCNC). LBANC was derived from Mean Value Analysis.

Generality. CCNC is restricted to networks with fixed rate single 
server queues and infinite server queues. (It can be augmented by the 
Convolution Algorithm to solve networks with other queues.) The Mean 
Value Analysis Algorithm and LBANC allow fixed rate single server queues, 
infinite server queues and variable service rate queues where the service rate 
depends only on the total queue length, e.g., multiple chain composite 
queues (Section 5.4 and Chapter 6 ) are not allowed. Mean Value Analysis
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has not been applied to mixed networks, i.e., networks with both open and 
closed chains; it seems likely that Mean Value Analysis can be easily ex
tended to mixed networks using the approach described for LBANC, but it 
is not clear whether the approach would work for Mean Value Analysis with 
variable rate queues. Convolution is the only algorithm which has been 
applied to the full class of product form networks.

Computational Effort. Computational effort is tied to storage require
ments since one may choose to recompute values to save storage. We may 
think of the computational effort associated with Convolution, Mean Value 
Analysis and LBANC to be essentially the same, depending on implementa
tions and which performance measures are obtained. (E.g., mean queueing 
times are necessarily obtained by Mean Value Analysis but optionally 
obtained by Convolution and LBANC.) For the single chain case, the effort 
of LBANC for networks without variable rate queues is roughly 
3MN  + N  + M  additions, multiplications and divisions, which compares 
favorably with Convolution [REIS76] and Mean Value Analysis [REIS78a], 
Computational effort is usually not a problem except when we are dealing 
with many closed chains and/or large closed chain populations or when we 
are using very slow processors, e.g., programmable calculators. Approxi
mate methods have been proposed based on Mean Value Analysis which 
have much lower computational requirements [REIS78a, BARD78]. Essen
tially the same approaches can be used with LBANC, as we will discuss in 
Chapter 6 .

Storage Requirements. It is difficult to generalize about storage re
quirements, since the requirements are dependent on both the problem 
solved and the implementation. CCNC has much lower storage require
ments than the other algorithms when the number of queues is large, assum
ing we save the intermediate result vectors of the Convolution Algorithm, 
rather than recompute them. In fact, its requirements are so low that 
multiple chain problems can be solved on a programmable calculator using 
this algorithm. However, it is of limited generality and has poorer numerical 
properties than the Mean Value Analysis Algorithm and LBANC, so it is 
only appropriate when storage is at a premium. The Mean Value Analysis 
Algorithm and LBANC have small storage requirements as long as variable 
rate queues and/or queue length distributions are not considered. (In the 
multiple chain case the obvious looping structures for these algorithms will 
require large amounts of storage, but alternate structures can be used to 
obtain reasonable storage requirements.) The Convolution Algorithm has by 
far the lowest storage requirements for general variable rate queues in 
multi-chain networks; depending on specific variations it may have smaller 
storage requirements when queue length distributions are estimated.
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Numerical Stability. The Mean Value Analysis Algorithm has remark
able numerical stability for models with only fixed rate and infinite server 
queues; it is the algorithm of choice for such models when extreme parame
ter values are considered. (Mean Value Analysis, as originally defined 
[REIS78a], does not retain its numerical stability for variable rate queues. 
Modifications have been proposed which eliminate the numerical problem 
but may be quite expensive in computation and storage, depending on the 
number of variable rate queues in the network [REIS80].) Though LBANC 
is closely related to the Mean Value Analysis Algorithm it may fail for 
extremes of parameters which can be handled by Mean Value Analysis. 
The Convolution Algorithm has poorer numerical properties for fixed rate 
and infinite server queues than those two algorithms, but has better numeri
cal properties for variable rate queues when the probability of small queue 
lengths at those queues is small. (It also has better numerical properties for 
queue length distributions.)

Implementation Effort. Mean Value Analysis, LBANC and CCNC are 
very simple to implement. The Convolution Algorithm is significantly more 
complex, particularly because of the intermediate values involved which 
have little intuitive relationship to the performance measures.

None of these algorithms is entirely satisfactory. However, LBANC 
supplemented by the Convolution Algorithm will be satisfactory under most 
circumstances. For extreme parameter values the Mean Value Analysis 
Algorithm will be the only satisfactory choice, but it may be expensive if 
variable rate queues are involved. Where storage is severely constrained 
CCNC may be useful. CCNC seems the best choice for programmable 
calculator implementations when there is a significant number of queues, 
while LBANC or Mean Value Analysis are preferred when there is a small 
number of queues and a large population(s). The best approach for general 
purpose use is a mixture of algorithms; we would suggest that LBANC be 
used for the portion of the network restricted to fixed rate single server and 
infinite server queues, and that the Convolution Algorithm be used to 
complete the computation.

In Section 5.7.1 we discuss, for single chain networks, LBANC, CCNC 
and then the Convolution Algorithm. (We defer discussion of the Mean 
Value Analysis Algorithm to Section 5.7.3 since it is so similar to LBANC.) 
In Section 5.7.2 we extend the discussion to multiple chains. In Section
5.7.3 we consider the numerical properties and requirements of all four 
algorithms.
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5.7.1 Algorithms for Single Chain Networks

127

We shall first restrict attention to PS queues where the total service 
capacity varies with the number of jobs in the queue, since LCFSPR and 
FCFS queues which satisfy local balance have the same queue length distri
bution and the same values for performance measures obtainable from the 
queue length distribution. (In the multiple chain case there are queues 
which are not equivalent to this restricted characterization.)

As motivation for queue with capacities which vary with the number of 
jobs in the queue, consider a single queue, say queue m, with two servers. 
When there is only one job in queue m, only one of the two servers can be 
active, whereas when there are 2  or more jobs in the queue, both servers are 
active. (If there are two or more jobs in queue m, the two servers 
processor-share the jobs.) Let ac be the rate at which class c jobs are served 
when there is only one class c job in queue m. Then, when there are 2 or 
more class c jobs in queue m, and if all jobs in queue m are class c jobs, we 
may expect the total service rate for class c jobs to become 2 ac, because 
both servers will be busy. However, the servers may interfere with one 
another. For example, two processors may not be able to work twice as 
fast as one because of memory interference, and it is possible that the 
service rate with 2  or more jobs may be an arbitrary positive number times 
the rate for one job.

Let SH A R E ^^aj) be the fraction of processing power given to each 
job when there are n jobs in the queue. In a single server, PS case, 
SHARE(m)(n) = \ / n  for all positive n, and in the infinite server case 
SHARE(m)(n) = 1 for all positive n. In the 2 processor case discussed 
above SHARE(mj(n) = 2/n  for n > 2. The service rate for a single, specif
ic class c job, when there are a total of n jobs in queue m is 
acSHARE(m)(n). The total service rate for all class c jobs when there are a 
total of n jobs in queue m, nc of which belong to class c, is 
acSHARE(m) (n)nc. Define CAP(w?)(«) = «SHARE(m) (n). For a single 
server PS queue CAP(m)(«) = 1 for positive n. For an IS queue 
CAP(m)(n) = n for positive n. For a two server PS queue CAP(m)(l) = 1 
and CAP(m)(«) = 2 for n > 2.

LBANC

With the exception of the Mean Value Analysis Algorithm of REIS78a, 
all efficient algorithms for performance metrics require computation of the 
normalizing constant, G. LBANC iteratively applies the Marginal Local 
Balance equation (5.32) to obtain the normalizing constant. The normaliza
tion constant, mean queue length and other statistics depend on the popula
tion. We shall show this dependence explicitly by writing G(n) and L (m){n)
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for the normalization constant and mean queue length of queue m, respec
tively, given a population of n. Let l(mA AO be the unnormalized mean 
queue length of queue m given population N, where

',„ )< «  -  Ltm(5.77)

The use of (5.32) in LBANC yields unnormalized mean queue lengths as 
intermediate results. Thus the mean queue lengths are immediately availa
ble once G is determined. From the fact that £ L, An) = n , we getm y '

2  W » >
Gin)  « -2!—  ------. (5.78)

Applying local balance we have shown (equations (5.48) and (5.50)) 
that for fixed rate queues (i.e., CAP(„;)(«) = 1 for all positive n)

= U(m)(<G(<n -  D + /(„,)(« -  D) (5.79)

and for infinite server queues

W " >  = -  »• <5-80>

The queue length distribution is necessarily obtained for queue length 
dependent queues other than IS queues by LBANC. For queues other than 
single server and infinite server (and to obtain the queue length distribution 
for fixed rate and IS queues) we use equation (5.38),

P(m)G  l «)
/>(,„)(/-! 1 n - \ ) u (m) 

CAP („,,(/)
for i > 0 , (5.81)

to compute the queue-length distribution given population n, and then 
compute from

W ” ) =  S  ,> (m )(/ l« )- (5.82)
( = 1

We next compute

P(«)(° I «) = C(«) -  5) /»(«)(*' I «)• (5.83)
/= 1

LBANC is simply the application of these equations, /(,„)(0) = 0 and 
P (m)(0 | 0) = 1. We can obtain throughputs directly from G and the relative 
throughputs by the Throughput Theorem (5.29), i.e.,
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R (m) r (m)
G(N — 1) 

G(N)

The mean queueing times can then be obtained from Little’s Rule. Utiliza
tions can be obtained from (2.7) for most cases; in general it may be 
necessary to use the queue length distribution to determine utilizations, but 
this is still conceptually trivial.

We will now give a more program-like definition of LBANC. Let us 
assume that queues 1 ,...,/ are single server fixed rate queues, that queues 
7+1,...,/ are IS queues and that queues have general CAP func
tions. We assume that we are primarily interested in metrics for population 
N  and will reuse variables along the way, i.e., we will drop the n subscripts 
from all of the above variables, except G.

G(0) = 1 
For m= 1 to M

l(m) ~  0

P(m)< 0 )  =  1
For n= 1 to N  {Iterate over populations}

G{n) = 0
For m=l to I  {Fixed rate queues}

l (m) = U(m)(G(n “  D + W  
G(jt) =  Gin) + l (m)

For m = I + 1 to J  {Infinite server queues}
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l(m) = u(m)G(" ~ ^
G(n) = G{n) + l (m)

For m=J+l  to M {Variable rate queues}
l (m) = 0

For i=n down to 1 {Iterate over queue lengths}
/»(«,)(') = ~ 1  2)W(w)/CAP(m)(/)
^(m) ~ I(m)

G(n) = G(n) + l (m)
G{n) = G{n)/n {Finished computing Gin)}
For m=J+ 1 to M  {Variable rate queues}

/>(m)(°) = Gin)
For i= 1 to n

= P{m)W-P{m)W
For m= 1 to M

q™, = '(„>/<?<«
For m= 1 to M

R (m) = r(m)G i N - \ ) / G i N )

Q(m) = L (m)/R (m)

Note that we do not have to save G(0), G(N—2). However, if we
do save these values, then we can readily recompute measures for individual 
queues for populations less than N, without recomputing measures for other 
queues. This is especially significant when using machines with very limited 
memory, e.g., programmable calculators and home computers. LBANC has 
been implemented on two popular programmable pocket calculators 
[REYN80]. This appears to be an advantage of LBANC over Mean Value 
Analysis in such memory limited situations. Note that LBANC and Mean 
Value Analysis can be used with pocket calculators with large single chain 
populations because the storage required is independent of the populations 
(assuming we do not save G(0), ..., G(N— 2) with LBANC).

We illustrate LBANC with the example of Figure 5.20. Since each 
queue has exactly one class, we will not parenthesize the queue subscripts. 
We have a, = .5, a2 = 1, a3 = .25, CAP3 (1) = 1, CAP3 (2) = CAP3 (3) = 
2, p 2X = .5, and p 2 3  = .5.

1. Compute relative throughputs.
Let r2 = 1.
Then r, = r2 x 0.5 = 0.5. Also r2 = r2 x 0.5 = 0.5.

2. Compute relative utilizations.
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u , = r ,/a , = 1 .0 , m2  = 1 -0 . u 3  = 2 .0 .
3. Computation for N  = 1 

G(0) is defined to be 1.
Single server: /j (1) = u , = 1.0
Infinite server: /2( 1) = u2  = 1.0
Variable rate: p3( 1 | 1) = u3  = 2.0

/3 ( 1 ) = 1 . 0  x p 3 ( 1  | 1 ) = 2 . 0

G(l) = /,(1) + /2 (1) + /3 (1) = 4
P3(0 I 1) = G(l) -  p3( 1 | 1) = 2.0
L ,(l) = 1/4 = .25 , L2( 1) = .25, L3 (l) = .5
/? x(l) = rjG (0)/G (l) = .125, R 2 (l) = .25, R 3 (l) = .125
0 1 (1) = .25/.125 = 2.0, (>2d )  = LO, 0 3( 1) = 4.0
G ,(l) = .125/.5 = .25, U2 (l) = .25/°c = 0, G3 (l) = .25

4. Computation for N = 2
Single server: /j(2) = Mj(G(1) + /](!)) = 1(4+1) = 5 
Infinite server: /2 (2) = m2 G( 1) = 4
Variable rate: p3(2 | 2) = p3(l | l)u 3 /CAP 3 (2)

= ( 2  x 2 ) / 2  = 2  

p3(l I 2) = p 3 (0| 1)u3 /CAP 3 (1)
= 2 x 2  = 4

/3 (2 ) = 2  x p 3 ( 2  | 2 ) + 1  x p3( 1  | 2 ) = 8

_ M 2 ) + /2 ( 2 ) + /3 (2 ) _ g 5 
2

/73(0 | 2) = G(2) -  p 3(2 | 2) -  p3(l | 2) = 2.5
Ld2) = 10/17, L2 (2) = 8/17, L3 (2) = 16/17
R,(2) = 4/17, R 2(2) = 8/17, R 3 (2) = 4/17
0,(2) = (10/17)/(4/17) = 2.5, 0 2 (2) = 1.0, 0 3 (2) = 4.0
17,(2) = (4/17)/.5 = 8/17, t/2 (2) = 0, G3 (2) = 8/17

5. Computation for N  = 3
Single server: 7,(3) = 1(8.5 + 5) = 13.5
Infinite server: /2 (3) = 8.5
Variable rate: p 3(3 | 3) = (2 x 2)/2 = 2 

p3(2 | 3) = (4 x 2) /2  = 4 
p3(l I 3) = (2.5 x 2 )/l  = 5 
/3 (3) = (3 x 2) + (2 x 4) + (1 x 5) = 19
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(jry) — 13.5 + 8.5+19 _ 41 
3 3

/»3(0 | 3) = 41/3 -  (5 + 4 + 2) = 8/3 
L,(3) » .988 , L2 (3) « .622, L3 (3) « 1.390 
7?,(3) « .311, R 2(3) ~ .622, R 3 (3) « .311 
2,(3) » 3.176, 0 2 (3) = 1.0, 0 3 (3) « 4.471 
£7,(3) « .622, £72 (3) = 0, £73 (3) « .622

The CCNC Algorithm

The name arises from the fact that all fixed rate and infinite server 
queues coalesce into a single (composite) queue. CCNC is principally 
intended for use with programmable calculators, though it certainly is not 
restricted to calculator implementations. It applies only to queues with 
fixed rate servers or infinite servers; it can be used in conjunction with the 
Convolution Algorithm for networks with queues with variable rates of 
service. It takes advantage of exponentiation and factorial operations 
usually provided as machine instructions and is trivial to implement to 
obtain normalizing constants. Other performance measures would typically 
be obtained by the unnormalized mean queue length expressions of LBANC 
(equations (5.79) and (5.80)) and other standard expressions, but on a 
queue by queue basis, since G has already been obtained.

As before, let queues 1,...,/ have fixed rate servers and let queues 
7+1,...,/ be infinite server queues. Define CUM(n) as follows (CUM is an 
abbreviation for cumulative):

CUM(l) =
m= 1

/
CUM(n) = Y j M(m) f°r n > 1.

m= l

Then from the Aggregate Queue Theorem (equation (5.60)) 

r (  G(n — l)CUM(l) + ... + G(0)CUM(«)

Since the algorithm which follows from these equations is trivial, we shall 
not present a program-like description.
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Using CCNC with the pocket calculator. The difficulty with using 
LBANC on pocket calculators is that there may not be enough registers to 
store the for all queues if there is a large number (say, over 15) of
queues. (Similar, if not more severe, problems arise in using convolution or 
Mean Value Analysis on pocket calculators.) With CCNC, after the user 
enters any single the calculator program computes the partial sums of
the CUM array. When the user enters + it can be placed in the 
register which previously held u(m). After all the |u (m)} are entered, the G 
array is computed directly from the CUM array using equation (5.60). To 
compute metrics for any queue m, the user reenters U(m), and metrics are 
computed from and the G array using the LBANC equations. The
difficulty with using CCNC with large populations is that there may not be 
enough registers to store the CUM array. In this case LBANC is prefera
ble.

The Convolution Algorithm

We assume that either LBANC or CCNC has been used to obtain the 
normalization constant for a network consisting of fixed rate and infinite 
server queues 1,...,/. Note that such queues could be directly considered in 
the following algorithm, but this would usually not be appropriate. Let the 
normalization constant for queues 1 be Gj(n) given a population of n. 
The remainder of the M  queues, i.e., queues are variable rate
queues. Lor queue m, m = define a vector X(m) of length N + 1
(N  is the population), where A^^O) is defined to be 1  and

l(m)(«) =
_______________________u ( m )

CAP(m)(n)...C A P ^(l)
n > 0 .

(m)'

A(m)(n) is the normalization constant for a network consisting only of 
queue m given a population of n.

We define a Convolution operator * as follows: if X  and Y are vectors 
of length N + 1, then Z  = X*Y  is also a vector of length N + 1 where

n
Z(n) = X  X(i)Y(n  -  i), n = 0

/ = 0

After computing Gj  (i.e., the normalization constants for queues with fixed 
rate or infinite servers), the Convolution Theorem (5.63) tells us that we 
may compute G for the entire network as

G = G j ’X u+
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Though we can still apply the Throughput Theorem, for other measures we 
must obtain the queue length distribution. This can be done most efficient
ly by applying equations (5.81) and (5.83). However, it may be numerical
ly more appropriate to use the following (see Section 5.7.3). Let GM_(m-) 
be the normalization constant vector for the network with queue m omitted. 
Then

=
3f(m)(n)CA/_(m)(Ar -  n)

for n = 0 (5.84)

Though GM_ (m  ̂ could be obtained from GM and X^m), such an approach 
has poorer numerical properties than computing GM_^mx directly. (Such 
direct computation will require significant additional storage and/or redun
dant computational effort.) Utilizations and mean queue lengths can be 
directly obtained from the queue length distribution and mean queueing 
times from Little’s Rule.

We now repeat the example of Figure 5.20 with CCNC and the Con
volution Algorithm. Again we do not parenthesize subscripts. We first 
compute normalization constants for the network consisting of the fixed rate 
and infinite server queues, i.e., queues 1  and 2 .

CUM(l) = W| + u2 = 2 (only fixed rate and IS queues)
2CUM(2) = »! = 1 (only fixed rate queues)

CUM(3) = w, = 1 (only fixed rate queues)

G2(n) is the normalization constant for a network consisting of queues 1 
and 2  given a population of n.

G2(0) = 1  (Initial condition)
G2 (l) = G2 (0)CUM(1) = 2
G2( 2) = (G2 (1)CUM(1) + G2 (0)CUM(2))/2 = 2.5
G2 (3) = (G2 (2)CUM(1) + G2 (1)CUM(2) + G2 (0)CUM(3))/3

= 8/3

For queue 3 in the example we have CAP3 (1) = 1 and CAP3 (/j) = 2 
for n > 1  because the service capacity of the queue with 2  or more jobs is 
twice that of the service with only one job. Hence

* 3 (1) = u3 /CAP3( 1) = 2

AT3(2) = u ] / ( C A P3(2) x CAP3( 1)) =  22/ 2  = 2
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* 3 (3 ) = u ] / ( CAP3 (3) x CAP3 (2) x CAP3 (1)) = 2

Thus we have
G2 = G2 (0),...,G2 (3) = (1 2 2.5 8/3)

and
X3  = * 3 (0),...,* 3 (3) = (1 2 2 2).

Then G = G2 * X 3, i.e.,

G(0) = G2(0)X3(0) = 1
G(l) = G2 (0)* 3 (1) + G2 (l)2r3 (0) = 4
G(2) = G2(0)X3(2) + G2(1)X3(1) + G2(2)X3(0)

= 8.5
G(3) = G2 (0)* 3 (3) + ... + G2 (3)* 3 (0) = 41/3

All performance measures could be computed exactly as before (in the 
LBANC version of the example). The computation of the queue length 
distribution for queue 3 by equation (5.84) would be

J»3 (0 | 1 ) 
P3d  I 1 ) 
^3(0 I 2 ) 

U ) 
P 3 ( 2  I 2 ) 
^ 3(0 | 3) 
^3(1 I 3) 
P3(2 I 3) 
P3(3 I 3)

(* 3 (0)*G2 (1))/G(1) 
(* 3 (1)*G2 (0))/G(1) 
(X3(0)*G2(2))/G(2)  
(X3(1)*G2( 1 ) ) /G(2) 
(* 3 (2)*G2 (0))/G(2) 
(X3 (0)*G2 (3))/G(3) 
(X3(1)*G2( 2 ) ) /G(3) 
(X3(2)*G2( 1 ) ) /G(3) 
(2f3 (3)*G2 (0))/G(3)

= 2/4 = .5 
= 2/4 = .5 
= 2.5/8.5 = 5/17 
= 4/8.5 = 8/17 
= 2/8.5 = 4/17 
= (8/3)/(41/3) = 8/41 
= 5/(41/3) = 15/41 
= 4/(41/3) = 12/41 
= 2/(41/3) = 6/41

Performance Metrics by Class

Let c be a class in ^ m, the set of classes of queue m, and let qc be the 
probability that a random job in queue m is in class c. Then

?c = Mc / u(m) (5'85)

The conditional probability of nc jobs of class c in the queue, given a total 
of n jobs in queue m is the multinomial
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n\

n  nc'
c in <€m

(5.86)

We can use this conditional probability to compute queue length distribu
tions by class from the queue length distribution for all jobs. Mean queue 
lengths are readily available from

Lc = gcL (m). (5.87)

Throughputs can be determined from relative throughputs, i.e.,

R C(N)
G ( N -  1) 

^  G(N)

Mean queueing times can then be determined from Little’s rule.

(5.88)

Retrieving Discarded Measures

Because of storage limitations, one may discard performance estimates 
and then discover that they are needed. For example, in programming 
LBANC one can discard the measures for smaller populations once the 
measures for the current population are obtained. We now discuss the 
computation of performance metrics for a population of N - 1 from the 
metrics obtained for a population of N. To compute queue length distribu
tions we rewrite equation (5.38) as

/>(«)<" I N -  1) =  + 1 | A0CAP(m)(« + 1 ) / u [m).

For fixed rate servers equation (5.79) can be rewritten

W « -  1 ) = ( W « ) / « ( W)) -  G(N -  1  )•

For infinite servers, we can use equation (5.80).

Changing the Relative Utilization of a Queue

Suppose we change the relative utilization of queue m from wOLD to 
u n e w - I N )  and I ^  e Q u i l i b r i u m  probability of n
jobs in queue m given a population of N, when the relative utilization is 
m o l d  a n c l  “ n e w - respectively. Then, from equation (5.64)

PnewC" I N)  = Pold( ' 1  I A ) ( ^ w  )  . (5.91)
v  m o l d  ’

Let ^NEW^^) be the normalization constant for the new model. Then

(5.89)

(5.90)
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^NEw(-W) “  5>NEw(»UV). (5.92)
n

(Now we can compute the queue length distribution for queue m and the 
normalization constant for a population N — 1 as discussed above. We can 
repeat this process for all populations from N - 1 down to 1.) This method 
can be extended to the case where the relative utilizations of several queues 
are altered.

Queues 1, . . . , M Queues 1, . . . , M
l------------------------------ 1

Figure 5.21

Adding a Queue

Suppose we wish to add a queue, M + 1, along a path of the current 
system, which we call the OLD system, to get an altered system, the NEW 
system. Let and ^NEw(n) be the values of the normalization
constant for the old and new systems. From the Convolution Theorem, 
equation (5.63)

t̂ NEW -  ^OLD^Af+l) (5.93)

Note that this applies to fixed rate and infinite server queues as long as we 
define X^M+l  ̂ appropriately.

Deleting a Queue

Suppose we delete queue m from the old (i.e., current) system to get a 
NEW system. We wish to compute statistics for the NEW system from the 
old one. Let I ^0 he the probability of n jobs in queue m given a
population of N, in the OLD system. Then (see equation (5.64))
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Queue 1, . . . , M -  1 Queues 1, . . . , M -  1

POLD^n I N)
X(m)(n)G NEW^ — n ) 

^OLD^)
(5.94)

Hence

CNEw(”)
Pql dW -  n \ N ) G OLD(N) 

-  ")
(5.95)

These methods can be used to handle the case where several queues are 
added and deleted.

5.7.2 Algorithms for Multiple Chain Networks

5.7.2.1 Multiple Closed Chain Networks

We now consider multiple chain closed networks (see Figure 5.14). 
We will follow the same development as in the single chain case.

Equation (5.67) relating the throughputs of all classes holds independ
ent of the number of chains:

c
R c = 1 R d P d c  for c = 1.....C. (5.96)

d =  1

Note that pdc = 0 if d and c belong to different chains. Hence, we can 
rewrite (5.96) as:

(5.97)
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where the summation is taken over all classes d in the same chain as class c.

Let rc, c = 1 ,...,C be a set of numbers such that for all classes c in 
chain j,

rc = Dj R c, for all chains j ,  (5.98)

where Dj is any positive constant for chain j. Note that Dj can be set 
independently of Z)( if j  ^  i thus we could have different proportionality 
factors relating the relative throughput rc to the true throughputs R c for 
different chains.

Further,

-=y- = ~r~ if c and d are in the same chain, (5 .9 9 )
R d rd

but the above equation usually will not hold if c and d are not in the same 
chain. Clearly, we cannot solve for the true throughputs from equation 
(5.96) because any set of relative throughputs will satisfy the equation (see 
equation (5.97)). However, if we arbitrarily f i x  the relative throughput of 
any class in a chain, we can compute the relative throughputs of all classes 
in that chain from (5.97).

Let nc be the number of jobs in class c, for any c. The nc are random 
variables, but at all times:

5 > c  = N k (5.100)
c in chain k

where Nk is the population of chain k jobs. Taking the means of both sides 
of (5.100)

= Nk (5101)
c in chain k

where Lc is the average number of jobs in class c. Note that equations 
(5.96) through (5.101) hold regardless of service disciplines and distribu
tions.

As before we restrict ourselves to local balance networks in which all 
queues have the PS discipline and where the service capacity may vary with 
the total number of jobs in the queue.

The exposition that follows assumes only two chains for notational 
simplicity. The theory (see Sections 5.1-5.5) is general and uses a general
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notation.

LBANC

Consider a network with two chains. Let Nk be the population of 
chain k, k = 1,2. Let G(NX,N2) be the normalizing constant given popula
tions of N l and N2 for chains 1 and 2 respectively. Let lc ( N x,N2) and 
LC( N , ,N2) be the unnormalized and true (i.e. normalized) class c mean 
queue lengths respectively, given populations of N j and N2 for chains 1 and 
2  respectively, i.e.,

L c{Nx,N2) = lc{Nx,N2) / G { N x,N2). (5.102)

Indeed, all normalized mean queue lengths and queue length probabilities 
are found from the corresponding unnormalized values by dividing by the 
normalization constant.

Let l(m) ( N x,N2) and L (m^(NX,N2) be the unnormalized and normal
ized mean queue length of queue m given populations of N, and N2  for 
chains 1  and 2  respectively.

For f ixed rate queues we have shown that (see equation (5.50)) if class 
c belongs to chain 1  and queue m

r UC( G( N{ -  1 ,N2) + l(m)( N x -  1 ,N2)) if A, > 0
ic(n v n 2) = <

 ̂0 if A, = 0 (5.103)

and if class c belongs to chain 2  and queue m

f u c( G(Nl ,N2 -  1) + l(m)( N l ,N2 -  1)) if A2>0 
l M ltN 2) =  <

 ̂0 if N2 = 0 (5.104)

For IS queues we have shown that (see equation 5.50) if class c belongs to 
chain 1

!ucG( N j -  1 ,N2) if A ,>0 

0  if A, = 0 (5.105)

and if class c belongs to chain 2
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f ucG(Nl ,N2 -  1) if N 2 > 0  

0 if N 2 = 0.

We temporarily defer the general variable rate case. Since

^ L c( N v N2) = TV,
c in chain 1

it follows (see equation 5.52) that

g (n v n 2) =  ' Z ic(n v n 2) / n v
c in chain 1

Similarly

G(TV,,TV2) =  £ /c(TV,,TV2)/TV2
c in chain 2

and

G ( N v N2)
S W , » ! )
c____________

Ai +TV2

(5.106)

(5.107)

(5.108)

(5.109)

(5.110)

We can easily extend LBANC to multiple chains using the above 
equations. However, to do so would require storing / (TV,,TV2) for all 
classes c. We can improve the speed of the algorithm and reduce the 
amount of memory required, in some cases, if we store information by 
chains rather than classes. We can then determine individual class values in 
a manner analogous to the one used with the single chain algorithms.

Let l (k m)(TV,,TV2) and L {k m)(Nl ,N2) be the unnormalized and normal
ized average number of chain k jobs in queue m, respectively, given a 
population vector ( N l ,N2). Thus

' ( t . r t f A W  -  S W W  (5.111)
c in chain k and queue m

and L(k . (TV, ,N2) is defined similarly. Let u^k m) be the relative utiliza
tion of chain k jobs in queue m, i.e.,

u(k,m)(N \ ’N 2̂  = S Mc-
c in chain k and queue m

(5.112)



Summing equation (5.103) and (5.104) over all c in chain 1 and queue m 
we get for fixed rate servers

/(l,,„ )(^ i^ 2) = -  1 ,N2) + l(m)( N l -  1 ,N2)) (5.113)
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for A, > 0 and /,, m)(A, ,A2) = 0, otherwise. Similarly,

l(2,n,)(N \ ’N 2) = " ( 2 ,„,)«?( A,, A2  “  D + km)^N VN2 ~  D) (5‘114) 

for 7V2  > 0 and / ( 2  m)(A,,A2) = 0, otherwise. Similarly, for IS queues,

/ I( 1  ,m) G(N\ -  1 ,N2) if A] > 0

0 if A, =0 (5.115)

and

(2  , m )
(A, ,A2) = )' ( 2  ,m) G(A,,A 2  -  1) if A2  > 0

0 if A2  = 0. (5.116)

For variable rate queues let P(m) («i ,n2 I At ,A2) be the unnormalized 
probability of n,,n 2  jobs at queue m given populations N l,N2- Similarly, let 
p, ) {n | A j ,A2) be the probability of n jobs at queue m given populations 
A,,A2. From equation (5.38), for (nx,n2) ^ (0,0), P(m)(nx,n2 I A,,A2)

( P ( m ) ( n 1 -  ! .« 2  I N \ ~  l ’N 2^U( 1  ,m) .

= {

n j SHARE(m)(« j +«2)

P(m)(nl’n2 - 1 I ^ 1 * ^ 2  -  D u ( 2 ,

if n,, A, > 0

(2 ,m) .
«2 SHARE(m)(«,+rt2)

if n2, A, > 0

^0 if Aj and A2  = 0. 

We can then determine

(5.117)

N1 N2
l ( l  ,m)(7Vi,A2) =  X  (5.118)

/lj = l «2 = 0

and



SEC. 5.7 /  COMPUTATIONAL ALGORITHMS 143

* 1  N2
l(2,m)(N \ ’N 2>> = 2  S  'J2 P(m)(«l’ ' J 2  I (5.119)

Alternatively, if we are only interested in c/iam independent values for the 
variable rate queues, we can simply determine l(m) ( N x,N2) from the fol
lowing equations. By appropriate summations we can show that

P ( m M \ N v N2) =
P(mM-UNx -  1 ,A2)«(1>m)

+

nSHARE(m)(«) 

/»(«)("- 1  I ^ 1 ^ 2  “  1 )M(2 ,m)
«SHARE(m)(«)

(5.120)

if n, A, and N2 > 0. If either N x or A2  is zero, then p (m)(n I A j,A2) can be 
determined from equation (5.117). Then

Nx + N2
v N 2> = S  np{m) ( n \ N XtN 2). (5.121)

n = 0

Rewriting equation (5.108) we have
M

G ( N x,N2) = 2  (5.1 22)
m =l

Similarly,
M

G{Nx,N2) =  S / ( 2 ,w) (^ 1 .^ 2 ) / ^ 2  (5-123)
m — 1

and

C(A!,A2)
M l 
1 -

m= 1
A, + A2

(5.124)

where ((m)(A 1 ,A2) is, of course, /(i,m)UVi,A2) + l(2 ,m)^N v N 2^  FinallY’ for 
the variable rate queues we can use

P(m)( 0 , 0 \ N x,N 2) = G(NX,N2) -  X  P(m)^n 1,n2 I A],A2 ) (5.125>

or
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Nt+N2
P{m)( 0 \ N l ,N2) = G(A„A2) -  £  p(m)(«| A,,A2). (5.126)

The extension of LBANC to multiple chains is simply the application of 
an appropriate subset of equations (5.111) through (5.126). We iterate on 
increasing values of Af and A2, computing the unnormalized mean queue 
lengths and then computing G(A|,A2) from the unnormalized mean queue 
lengths. We can then determine normalized mean queue lengths. From the 
Throughput Theorem (equation (5.29), we can determine

R
( 1  , o t ) ( N v N 2) = r,(Lot)

G ( N l ~ l , N2) 
G(A,,A2)

(5.127)

and

R (2,m)^N \'N2  ̂ ~ r(2,ot)
G ( N , ,N2 — 1) 

G ( N ltN 2)
(5.128)

where r(k is the sum of rc such that class c is in chain k and queue m. 
We can then obtain utilizations from equation (2.7) and mean queueing 
times from Little’s Rule.

As an example consider a three queue network in which queues 1 and 2 
are fixed rate servers and queue 3 is an infinite server queue. Let there be 
2 chains. The relative utilization of queues by chains is:

“ ( i , l )  =  1 “ ( 1 , 2 )  =  2  “ ( 1 , 3 )  =  1 

“ ( 2 , 1 )  =  1 “ ( 2 , 2 )  =  1 “ ( 2 , 3 )  =  2

Suppose we wish to compute the G matrix for a population vector (Nl,N2) 
= (2,1). We may proceed as follows.

1. Initialization:

/(£,m)(0 ’0 ) = 0  f°r aH k,m

and (7(0,0) = 1
2. A, = 1, N2 = 0:

Fixed Rate Server: Queue 1, Chain 1

' ( L n d ’O) “  “ (i,i)(G (0 ,0 ) +  /(1)(0,0)) =  1(1 +  0) =  1
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Lixed Rate Server: Queue 2, Chain 1

/d ,2) ( 1-°) =  « n ,2) ( G (0 ,0 ) +  / (2}(0 ,0 )) =  2(1 + 0 ) =  2

Infinite Server: Queue 3, Chain 1  

/ ( l . S i O . O )  =  “ (1 ,3 )G ( ( M »  =  1

/(2 ,«)(1.°) = 0  and hence /(m)( l, 0 ) = / ( 1  m)( l, 0 ) for all m.

G( 1  0 ) = /(1)(1’Q) + /(2)(-1,0  ̂+ _ 4

3. N x = 0, N2 = 1

Lixed Rate Server, Queue 1, Chain 2

/(2 ,i)(°,l) = m2 1 (G(0 ,0 ) + /(1 )(0 ,0 )) = 1 ( 1  + 0 ) = 1  

Lixed Rate Server, Queue 2, Chain 2

^(2,2)(d’l)  = u(2,2)(^(0’0) + (̂2) C0»0)) = 1(1 + 0) = 1

Infinite Server, Queue 3, Chain 2

^(2,3)(0>1) =  u(2i3)G(0,0) =  2

l (l ,™)(°-l) = 0  and hence /(m)(0 ,l) = /(2 ,m)(0 , 1 ) for all m. 

Normalizing Constant

(̂2 1 ) 1 ) + f(2 2 )(d’f ) T f(23)^d,f )G(0,1) = --------- — ------  = 4

4. N, = 2, N2  = 0
Lixed Rate Server: Queue 1, Chain 1

/ ( U ) (2 ,0 )  =  w(1 1}( G (1 ,0 )  +  / ( j} (1 ,0) )  =  1(4 +  1) =  5 

Lixed Rate Server: Queue 2, Chain 1

l(h2)( 2,0) = u(1 2 )(G(1,0) + /(2 )(1,0)) = 2(4 + 2) = 12

Infinite Server, Queue 3, Chain 1 

/ ( 1  3 )(2,0) = «(1 3 )G(1,0) = 4
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1(2 =  0 and hence / („, )(2 ,0 ) =  (̂1 for a11 w '

Normalizing Constant

/,,T2,0) + /(2)(2,0) + /(3)(2,0)
G(2,0) = — -----------—---------- —------ 24

2

5. N, = 1, N2  = 1
Fixed Rate Server, Queue 1, Chain 1

/(, ,n ( l ,l)  = h( 1 >1 )(G(0,1) + /( 1 )(0,1)) = 1(4 + 1) = 5

Fixed Rate Server, Queue 2, Chain 1

/< i,2 ) (U )  = m( 1 ,2)(G(0,1) + /(2 )(0,1)) = 2(4 + 1) = 10

Infinite Server, Queue 3, Chain 1

/(,,3 ) (U ) = M( 1 ,3 )0 (0 ,1) = 1x4 = 4

Fixed Rate Server, Queue 1, Chain 2

l (2, 1 }( U )  = m(2 i1 )(C(1,0) + /( 1 )(1,0)) = 1(4 + 1) = 5

Fixed Rate Server, Queue 2, Chain 2

/(2,2)0-1) = W(22)(C(1,0) + /(2)(1,0)) = 1(4 + 2) = 6

Infinite Server, Queue 3, Chain 2

((2 -3 )0 >l) = w (2 ,3 ) ̂  1 ) = 2x4 = 8  

Mean Queue Fengths - Jobs of Both Chains

((1)(L1) = (̂i i)( l,l)  + ((2 ,i)(lil)  = 5 + 5 = 10

= ^(1 ,2 ) ^ ’^  T /(2 ,2 )( 1 1 ) = 1 0  + 6  = 16

((3)(1>1) = ((i 3)(1>1) + ( ( 2  3)(in) = 4 + 8  = 12
i
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Normalizing Constant

<3(1,1) -  '<'><1' 1) + ;»>( U > + ,(3)(U > _ 
n , + n 2

6 . N, = 2, N2  = 1

Fixed Rate Server, Queue 1, Chain 1

^(l.i) (2> 1) = w(U )(C (l,l) + /(1 )( 1 , 1 )) = 1(19 + 1 0 ) = 29 

Fixed Rate Server, Queue 2, Chain 1

/(I 2 )(2 ,i) = w(i 2 )(C(1,1) + /(2 )C1,1>) = 2(19 + 16) = 70 

Infinite Server, Queue 3, Chain 1

= m( 1 ,3 )(G(M ) = 1x19 = 19 

Fixed Rate Server, Queue 1, Chain 2

/(2,l)(2,l) = U21(G(2,0) + /(1)( 2,0)) = 1(10.5 + 5) = 15.5 

Fixed Rate Server, Queue 2, Chain 2

/ ( 2  2)(2 ,1) = n( 2  2 )(G(2,0) + /(2 )(2,0)) = 1(10.5 + 12) = 22.5 

Infinite Server, Queue 3, Chain 2

/(2 ,3 )(2’1) = w(2 ,3 )(g (2>°) = 2x10.5 = 21 

Mean Queue Lengths - Jobs of Both Chains

/(1 )(2,1) = / u (2,l) + /(2 >1 )(2,1) = 29 + 15.5 = 44.5

/ (2) (2,1) = + l( 2 , 2 ) W  = 7 0  + 22-5 = 92.5

/(3 )(2,1) = /, 3 (2,1) + / ( 2  3 )(2,1) = 19 + 21 = 40

Normalizing Constant

/(1 )(2 , 1 ) + /(2 )(2 , 1 ) + /(3 )(2 , 1 )

147

G( 2 , 1 ) =
n , + n 2 = 59

Hence the matrix of normalization constants is:
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G(0,0) = 1 
(7(1,0) = 4 
<7(2,0) = 10.5

<7(0,1) = 4
(70,1) = 19 
(7(2,1) = 59

CCNC

We next discuss CCNC for networks of fixed rate and infinite server 
queues with multiple chains. This algorithm is based on equation (5.60). 
As before, let queues 1,...,/ be fixed rate single server queues and let queues 
I+l, . . . ,J be infinite server queues. Define CUM(/ij,n2) as follows:

J
CUM(1,0) = 2 > (  hm) (5.129)

m= 1  

J
CUM(0,1) = 2>(2,m) (5.130)

m= 1

CUM(«,,n2) = (/l; \ ~ f - -  X  “( 1 .«)“(2 ,m) for n \ + n2 > L (5-131)
1 l m— 1

Then

C ( N „ N 2 ) -  2  g < A ' 1 ~ ~ ( 5  |32)
(«1 ,«2)#( 0 ,0 ) A, + A2

for ( N v N 2) *  (0,0).

We apply CCNC to the example just solved with LBANC. 
1. CUM(/ij,/i2)

CUM( 1,0) = u 
CUM(0,1) = u

( 1 . 1 )  +  m ( 1 , 2 )  +  M( 1 , 3 )  “  4

( 2 . 1 )  +  u ( 2 , 2 )  +  w ( 2 , 3 )  =  4

CUM( 1,1) -  m i (U( 1 ,1 )W(2 , 1 ) + u(l,2 )w(2 ,2 )) -  6  

CUM(2,0) = m( 1  ,) + 2)) = 5

CUM(2,1) = 2 !i i (u(l,i)M(2 ,l) + “(l,2 )M(2 ,2 )) = 1 5

2 . G(nl ,n2)

<7(0,0)CUM( 1,0) ,(7(1,0) = ---------- ------------ = 4
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G( 2,0) 

G(0,1) 

G (l,l)

G(0,0)CUM(2,0) + G(1,0)CUM(1,0) _
2

G(0,0)CUM(0,1)----------------------  = 4
1

G(0,0)CUM(1,1) + G(1,0)CUM(0,1) + G(0,1)CUM(1,0)
1  + 1

<7(2,1)

= 19

G(0,0)CUM(2,1) + G(1,0)CUM(1,1) + G(2,0)CUM(0,1) * 1
2 + 1

G(0,1)CUM(2,0) + G(1,1)CUM(1,0) = 5 9  

2 + 1

The Convolution Algorithm

As in the single chain case, we assume that either LBANC or CCNC 
has been used to obtain the normalization constant for a network consisting 
of fixed rate and infinite server queues 1,...,/. Note that such queues could 
be directly considered in the following, but this would usually not be appro
priate. Let the normalization constant for queues 1,...,/ be GJ(n],n2) given 
a population of nI ,n2. The remainder of the M  queues, i.e., queues 

are variable rate queues. For queue m, m = define a
matrix X (m) of dimension N x + 1 by N2+ 1, where A(m)(0 ,0 ) is defined to be
1  and

X(m)(n \ ’n2̂

(nx+n2)\ n 2

CAP(m)(«j + n2 )...CAP(m)(l)
, n j ,n2 ±  (0 ,0 ).

(CAP(m)(n) = n SHARE(m){n) is the service capacity when there are n jobs 
in the queue.) As before, X(m) corresponds to the normalization constant 
for a network consisting only of queue m. However, a more general defini
tion of X(m) is possible such that X(m) is the normalizing constant matrix 
for an entire subnetwork! In this case, X(m) would have the form

X (m)(nv n2) = H{nx,n2)rn(\ m)r \ l m) (5.133)

where the matrix H  is as defined in equations (5.26-5.28).

We redefine the Convolution operator * as follows: if X  and Y are 
matrices of dimension Aj + 1 by A2 + l, then Z = X*Y  is also a matrix of 
dimension Aj + l by A2+ l where



150 CLOSED PRODUCT FORM QUEUEING NETWORKS /  CHAP. 5

" 1  " 2

Z( nl ,n2) = ^  Yj X( i \ , i 2)Y(n , -  /, ,«2 -  i2).
/ ,=()  i2= o

After computing Gj (i.e., the normalization constants for queues with fixed 
rate or infinite servers), the Convolution Theorem (5.63) tells us that we 
may compute G for the entire network as

C. — C. * Y * * V-
°  -  u j  A ( J + 1) a ( M) '

Notice that the Convolution operator is both commutative and associa
tive. Thus we can apply the Convolution to the X matrices for several 
queues and then treat the resulting matrix as the X  vector for a composite 
queue. This may be appropriate computationally in parametric analysis of 
networks. It is extremely important as a basis for aggregation approxima
tions, as discussed in Chapter 6 .

Again as before, we can apply the Throughput Theorem, but for other 
measures we must obtain the queue length distribution. Let G be the
normalization constant matrix for the network with queue m omitted. Then 
equation (5.84) becomes

P(m)( nv n2 \ N i,N2) =
X (m){nv n2)GM — (m) ( N , -  n l ,N2 -  n2)

Gm ^ x,N2)
(5.134)

Utilizations and mean queue lengths can be directly obtained from the 
queue length distribution and mean queueing times from Little’s Rule.

5.7.2.2 Mixed Networks

We have focused our attention on closed networks because they are 
most important in computer system modeling. Open networks are important 
in communication system modeling. With rare exceptions, published appli
cations of queueing network models have not used mixed networks. How
ever, mixed networks can be reasonably proposed as models of computer 
communication systems and other systems. We will indicate how the 
previous discussion of algorithms may be extended to consider mixed net
works. We will assume the mixed network has exactly one closed chain and 
exactly one open chain and consists entirely of fixed rate single server and 
infinite server queues. Extension to mixed networks with multiple closed 
chains is trivial. Extension to mixed networks with variable rate queues is 
straightforward but algebraically tedious. (The tedium is directly related to 
the complexity of the capacity function and comparable to that of dealing 
with variable rate queues in isolation.)
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Queues which are not visited by jobs of the closed chain are not 
affected by the closed chain and may be treated as queues in isolation as in 
open networks. Thus we assume that all M  queues are visited by the closed 
chain. We also assume that the network would not be saturated if the 
closed chain had zero population. (As observed in REIS75, the pioneering 
work on algorithms for mixed networks, closed chains do not affect the 
stability of mixed networks.) For the moment, let us assume that only queue 
m is visited by the open chain and that queue m is fixed rate single server. 
Let P(m)(nOP(m)’nCL(m) I ^ 0  be the distribution of open and closed chain 
jobs at queue m, given the closed chain has population N. Then it is easy to 
show from earlier results (see equations (5.18), (5.19), (5.24) and (5.84)) 
that for nQ?(m) = 0 ,...,oo, and ncL(m) = 0

where « c l (™)> ^ o p («)> and « o p (m) are> respectively, the closed chain 
relative utilization, the open chain actual utilization and the open chain 
relative utilization and GM{N) is the normalizing constant for the mixed 
network with closed chain population N. Then

P ( m ) ( n OP(m)  > " C L (m) I N ) ~ (5.135)

Gm (N)

"O P(m ) - 0  n
2

Cl \m  )

(5.136)

The derivation of (5.136) and many of the following equations is straight
forward if we use the relationship
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2  L p p V  = ------ -  for < 1  and j  «  0 , 1 , 2 .............
i= o  ' W

Equation (5.136) has an intuitive explanation. The first term is simply the 
inverse of the probability that queue m is empty if the closed chain were 
ignored. Uc’Umj as defined in (5.136) is what X(m)(nCL(m)) would be if the 
effective closed chain mean service rate were used, where by "effective" we 
mean the rate after taking away the time spent on open chain jobs. The 
open chain has a very localized impact on the network, affecting only our 
characterization of queue m and its contribution to the normalizing con
stant.

In general,

G M  ~  X ( \ ) * (5.137)

where for fixed rate single server queues

MC L(/n )
-  — f

a -tfo p (m ))
X (m^n) ~ (5.138)

and for infinite server queues

X ( m ) ( n )  -
U C L  ( m )

e” “OP(m) n\ (5.139)

(Equation (5.139) uses the probability that an infinite server queue is empty 
as obtained in Exercise 4.2. Equation (5.137) also holds for variable rate 
queues with appropriate definition of X^m^(n).)

We can rewrite (5.84) for the closed chain queue length distribution as

P C L ( m ) ( n  I ~
X (m)(n ')GM-(m)(N  ~  ”)M-(m)''

g m W
for n = 0 ( 5 . 1 4 0 )

Equations (5.138-5.140) are the ones relevant to the Convolution 
Algorithm; LBANC can be easily applied to mixed networks, also. We can 
rewrite equations (5.79) and (5.80) as

/CL(m)(^) = «CL(m)(GM(N  ~ D + 'CL(m)(N  ~  D) (5.141)
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and
153

ZCL(„) (#)  = “(m)GAf(N -  1). (5.142)

Letting

GM(0) = I (i) (0 ) ..J (A/)(0) (5.143)

and rewriting (5.78) as

~  2  l C L ( m ) ( N )

GM( " ) = - ----- j;-------  (5.144)

is all we need to complete revision of LBANC for the closed chain for our 
restricting assumptions (single closed chain, single server and infinite server 
queues). Closed chain throughput is obtained using GM, i.e.,

^CL(m )W  -  rCL(m) 73----------  (5.145)
Gm (N)

and closed chain utilization is obtainable from this throughput by equation 
(2.7).

Queue 1 Queue 2

Ligure 5.23
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For the open chain, for the single server queues,
N

(«  +  <)! , ,n

PQ ? I ~
i = 0 /ill! ^ O P f m )  “ C L ( r a ) G M - ( m ) ^  -

, (5.146)
CM(^)

and

'O P (m ) (W) =
1  - u ,O P ( m ) ( = 0

Gm (N)

U OP (m) l C L

1  -  c,
(5.147)

O P(m ) y
C L ( w ) C ( A )

For the infinite server queues the closed chain has no effect on the open 
chain and we can use the standard formulas for an infinite server queue in 
isolation.

Let us consider the network of Figure 5.23 with the following parame
ters: N  = 2, t/0p(1) = .6 , « C L ( 1 )  = 2> wO P(2 )  =  3 > an<3 WC L ( 2 )  =  3. 
Then

*(i)(°) = 7Z~6 = 2‘5’ * ( 2 )<°> = e 3  ~ 2 0 1

G (0) = —  « 50.2
2 1 —  .6

^CLd)^1) - 2
1  — . 6  1  — . 6

251

/CL(2 )(1) -  3
1  — . 6

151

G2 (l) -  /CL(1 )( 1 ) + ^CL(2 )(1) ~ 4 0 2  

^ O P ( 2 )  =  3 -
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^CL(l)(2) = ~ r ~ r (402 + 251) » 3263 I — .o

1 —  .6

/CL(2 )(2) ~ 3(402) = 1206

G2( 2 )

/CL(1 )(3) = y ^ -(2 2 3 5  + 3263) » 27490

^OP(i)(2 ) - ^ ____27490_ „  3  6g
1 - . 6  —2—2235

1 —.6

5.7.3 Numerical Properties of Computational Algorithms

So far we have essentially ignored the numerical properties of the 
computational algorithms. For most models which are used in practice, all 
of the algorithms are fairly stable. However, for some quite reasonable 
parameter values, some or all of the algorithms will experience numerical 
difficulties. Except for Reiser’s thorough treatment of the Convolution 
Algorithm [REIS76], there has been little formal analysis of numerical 
properties. We will not attempt a formal analysis of the numerical proper
ties of the algorithms. Rather, we will informally indicate some of the 
difficulties likely to be encountered and methods for coping with these 
difficulties. There are two basic difficulties that we know of: 
(1) Algorithms that rely on normalizing constant vectors may fail because 
the normalizing constant exceeds the floating point range for some popula
tions. (2) The recursive expressions for queue length distributions used by 
mean value analysis and LBANC may fail for relatively small populations; 
thus these algorithms may not be able to handle variable rate queues for 
some networks. We will focus our attention on single chain networks, but 
will consider multiple chains as appropriate.



156 CLOSED PRODUCT FORM QUEUEING NETWORKS /  CHAP. 5 

Mean Values: Fixed Rate and Infinite Server Queues

Let us first consider LBANC. Further, let us assume that all queues 
are either fixed rate single server or infinite server and that we do not 
estimate queue length distributions. The principal problem in this case is 
that the normalizing constant, G(N), may become too small or too large. 
For some models with performance measures near unity and some choices 
of the set of relative throughputs, {rc}, G(N) may exceed the limits of 
floating point representations.

For example, suppose that in Figure 5.12 we number the queues as 
follows: CPU - queue 1, Disk - queue 2, Drum - queue 3 and Terminals - 
queue 4. Let us suppose the mean CPU time is 20 ms., the mean disk time 
is 44 ms., the mean drum time is 8  ms. and the mean think (terminal) time 
is 15 sec. Thus a x = 1/.02, a2 = 1/.044, a 3  = 1/.008 and a 4  = 1/15. Let 
us further suppose that servicing of each terminal command requires an 
average of 5 CPU-I/O cycles and that 20% of the I/O accesses are to the 
disk. We can interpret this statement as p2 \ = / > 3  j = .2, p 2 4  = / ? 3  4  = .8 , 
p l 2  = .2 and p ] 3  = .8 . (All other probabilities are either 0 or 1, as indi
cated by the figure.) This completely specifies the model except for the 
population, i.e., the number of terminals. The modeled system is lightly 
loaded, and none of the queues becomes saturated until the population 
nears 200. If we let r4  = 1, then r, = 5, r2  = 1 and r3  = 4. With these 
choices we have u x = ,\, u2 — .044, u3  = .032 and u4  = 15. Then (7(1) = 
15.176 and G(N) increases with N  until G(15) ~ 401382. For N > 15 
G(N) decreases with increasing N until G(143) « 10~78. Attempting to 
compute (7(144) exceeds the floating point range of the IBM 360/370 
series of computers, and computation terminates on such machines. (We 
could illustrate the same phenomenon for machines with larger floating 
point ranges without unreasonable choice of parameters.) Suppose, alterna
tively, we let r4  = 10. Then (7(1) = 151.76 and for N< 200 G(N) is 
apparently monotonically non-decreasing with N, with an apparently limiting 
value of approximately 3.66 x 1065. (Actually, G(N) decreases slowly for 
N > 200, but it is still quite large with N  = 3000. Since the CPU queue 
saturates with N  near 200, larger values of N  are not very interesting with 
this model.) In particular (7(200) is comfortably within the floating point 
range of the 360 and 370. So with proper choice of {rc} we have no numeri
cal difficulties with this model with LBANC. Algebraically, the absolute 
values of are irrelevant, so we are free to make the choice to alleviate 
(and hopefully eliminate) numerical problems.

How do we make this choice? The following method is suggested in 
RElS78b. We can try to choose {rf} so that G(N) is always large but 
within the floating point range of our machine (e.g., less than 1 0 7 5  for the 
360/370 series.) Certainly,
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G(N) < ^ G ( n ) ,  (5.148)
n = 0

so if we can make the right hand side of (5.148) large but not out of range 
then we will not have overflow in computing G(N), for any N. This is very 
easily done if we make the following interpretation of the right hand side of 
(5.148).

Let us assume that we are using the queue numbering scheme described 
before, i.e., queues 1 to 7 are fixed rate single server and queues 7+1 to J  
are infinite server. (Since we are only considering those two queue types 
for the moment, M  = J.) Let us further assume that we have initially 
chosen {rc} so that u^  < 1, for i = 1,...,/. Then we can speak of a corre
sponding open network with a source and sink and the same values for {rc} 
and {acj as the closed network. This open network will be stable for R = 
1, where R is the arrival rate of jobs from the source. The right hand side 
of (5.148) is simply the inverse of the probability that the open network is 
empty! I.e., if P( ) is the probability the open network is empty, from 
equation (5.24)

P( )
C ( 0 )

S c ( » )
K =  0

1

' Z G( n )
n = 0

(5.149)

This suggests an intuitive explanation of the situation where overflow may 
occur in computing G(N): Overflow is a potential problem when the corre
sponding open network is saturated! So to avoid overflow, we need simply 
choose {rc} so that P( ) is not too small, e.g., for the 360/370 we might 
choose {rc} so that 7*( ) is greater than 10'75. Fortunately, P( ) is trivial to 
calculate. By Jackson’s Theorem,

P( ) = P(1)( )...P{M)( ), (5.150)

where P(m)( ), m = 1  is the probability that queue m in isolation is
empty, i.e., from equation (4.4) P ^ (  ) = 1 — «(,•), i = 1 and from 
Exercise 4.2 P(j)( ) = e~uG), j  = 7+1,...,/.

The following algorithm will scale the relative throughputs and utiliza
tions so that overflow cannot occur in computing G(N). It assumes 7 > 0. 
S is an arbitrary constant near but less than 1, e.g., .99. e is chosen so that 
l / e  is near the limit of the floating point range of the computer being used 
(e.g., e = 10' 7 5  could be used for the 360/370 series.)
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Choose an arbitrary, algebraically valid {rc.}.
Determine {uc} and

Let D = 1/ max(w(| ( ).

Repeat
D = SD

P = (  1 -  Du(\) )•••(! ~ Z)M(/))exp(-Z)(M(/+1) + ... + u(J))) 

Until P > e
For c = 1 to C: rc = Drc.

Redetermine {uc} and { u ^ } .

We leave it to the reader to verify that the algorithm terminates, to 
modify the algorithm to allow 1 = 0 and to modify the algorithm to allow 
variable rate queues. We point out that it is not usually necessary to even 
execute this algorithm as given, i.e., without executing the loop one can 
predict with sufficient accuracy the final value of D from the initial value of 
D , S and ln(-e). The prediction method is also left to the reader. (Notice 
that for the initial choice of {rc} in the example, S = .99 and e = 10'75, the 
final value of D is 9.9.) There is some freedom in extending the algorithm 
to multiple chains. The approach used in REIS78b is to require that

m ax(u(i i ) , . . . , m ( i M ) ) =  . . .  =  m z x {u (K Xy.. . ,U(K M) ),

where u(k is the sum of uc such that class c is in chain k and queue m. 
We can enforce this requirement in initially determining |r c}, and then, for 
the purposes o f scaling only, determine = W(j m) + + u(k m) before
initially determining D. The remainder of the algorithm is then the same.

Unfortunately, for extremes of parameter values in otherwise reasona
ble models, it is not possible to keep G within floating point range for all 
values of N. (This statement assumes we use a single set of relative 
throughputs for all populations. If we are willing to use different relative 
throughputs for different populations, then we can keep G within floating 
point range for all populations [LAM80].) The most common situation is 
when service times at IS queues very strongly dominate service times at all 
other queues. For example, if this is true and there is exactly one IS queue, 
then G(N) a  X^j^(N) where
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N
H n
Nl

Regardless of what we do, for some values of N  the numerator will be much 
larger than the denominator and we must be concerned about overflow, and 
for other values of N  the reverse is true and we must be concerned about 
underflow. If in the example the terminal think time were 300 sec., and the 
other parameters the same, we could not avoid both overflow and underflow 
on a 360 or 370. Using the above scaling algorithm, G(N) increases with N 
until G(171) « 6 . 6  x 107 2  but then G(N) decreases with N  until (7(618) ~
1.06 x 10-™. Yet no queue in the model is saturated until N  approaches 
3000!

Mean Value Analysis

Thus any solution method which depends on G(N) must fail for some 
potentially interesting models. The Mean Value Analysis Algorithm of 
Reiser and Lavenberg [REIS78a] does not depend on G(N) and is most 
suited to extremes of parameter values in our current context. (There is a 
numerical problem with both LBANC and Mean Value Analysis in more 
general situations; we discuss this below.) As we said before, Mean Value 
Analysis is very similar to LBANC; LBANC was inspired by the Reiser and 
Lavenberg algorithm. Let us normalize equation (5.79):

W*)
G(N)

= + L (m)(N -  l)). (5.151)

Applying Little’s Rule,

e („ ) ( « =  + i (  „ ) < J V - D ) .  (5.152)
(m)

where

a(m) ~
( m )

(Of course, for IS queues Q(m) = l / a fmj.) Further,
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----- --------■ <5.153)

2  ' u ) Q u ) W
1 = 1

This is simply Little’s Rule applied to the mean cycle time (the denomina
tor) which is the mean time for a job to make a complete cycle around the 
network. Thus we can get (?(,„) (A) and R(m) from the model parameters 
and N — 1). Assuming we know L(m)(A — 1), we can then get
L(m)(N) from Little’s Rule. Since we know that L(m)(0) = 0 for all m, we 
can iteratively determine these mean values for N from 1 up to the desired 
population. As long as these mean values have reasonable magnitude, there 
will be no numerical difficulties. In the multi-chain case, Mean Value 
Analysis will require approximately twice the storage of LBANC since both 
queueing times and queue lengths are stored.

For the example problem as stated initially, LBANC and Mean Value 
Analysis give the same results to three significant digits for U, L, R and Q 
for all interesting values of N when the computation is performed on an 
IBM 370. (By interesting N we mean at most 200; we have not made the 
comparison for larger TV.) For the modified example problem (think time 
300 sec.) run on a 370, both methods agree for N  up to 616. For N  = 617 
and 618 they disagree slightly, and for larger N  LBANC cannot be used 
because G(N) is too small.

With CCNC and the Convolution Algorithm we have an additional 
problem: even though G(N) is quite large, some of the intermediate values 
used in its computation may be quite small, small enough to cause under
flow. The intermediate values we speak of are wj'^and products of such 
values for several queues). In the (initial) example problem, with Wj = 
.3168 after scaling, computation of u3n will cause underflow on a 360 or 
370 for N  in the vicinity of 155. Fortunately, since there are no negative 
values involved, if we replace the small intermediate values by zero, we get 
satisfactory results for G(N) except for extreme parameter values. For the 
initial example problem run on a 370, LBANC, CCNC and the Convolution 
Algorithm agree to three significant digits for U, L, R and Q for N  up to 
200, and they agree to seven significant digits for G(N) for N  up to 200. 
But when we do have extreme parameter values, we may get grossly inaccu
rate results with no warning! (This assumes we proceed upon occurrence of 
underflow. LBANC fails very gracefully, without misleading results, when 
it fails.) For the modified example problem run on a 370, LBANC, CCNC 
and the Convolution Algorithm agree on the above values for N  up to 607. 
However, CCNC and the Convolution Algorithm behave very poorly for N 
between 608 and 618; at N = 618, these algorithms underestimate G(N) by 
an order o f magnitude and estimate L4(618) as 842!
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Before we make any hasty conclusions about the overall numerical 
properties of these algorithms, let us consider queue length distributions and 
variable rate queues. With only slight modification of the above examples, 
we can illustrate the less stable characteristics of LBANC and Mean Value 
Analysis. We focus on LBANC, but the discussion applies directly to Mean 
Value Analysis. With either of these algorithms it is necessary to estimate 
the queue length distribution at variable rate queues in order to handle such 
queues. In LBANC we do this with equations (5.81) and (5.83). (In Mean 
Value Analysis we can use the normalized equivalents of those two equa
tions. To perform the Mean Value Analysis we also need an equation for 
mean queueing time of variable rate queues, such as equation (2.14) of 
REIS78a, which would be used in place of equation (5.152).) This will be 
reasonably stable except when the probability o f small queue lengths at a 
queue is very small. To be more specific, as P(m)(0 12V) tends to zero 
LBANC will fail very gracelessly. Because of the recursive nature of 
(5.81), as /?(m)(0|iV — 1) tends to zero we will severely underestimate 
P(m){n I N) for n > 0. Thus we will severely overestimate P(m)(0 I N), and 
subsequently, Pim\ (« IN  + 1). Chaotic behavior ensues, with negative 
estimates of probabilities for small populations!

In the following discussion we assume double precision arithmetic on 
an IBM 370 which yields about 16 decimal digits of significance. The 
behavior would be somewhat worse with less precision, and somewhat 
better with more precision, but basically the same. Let us consider a 
hypothetical queueing network, not necessarily a computer system model, 
which is the same as the initial example network above except that the 
infinite server queue is replaced by one with 10 servers. If we were not 
forewarned of potential trouble, we would expect the same behavior ob
served before for the various algorithms for N  not much larger than 10. In 
fact, LBANC (and Mean Value Analysis) have trouble with N  = 10 if we 
do not recognize the terminals queue as an infinite server queue but treat it 
in the more general context of variable rate queues. Then we get a negative 
estimate for pA{0 | 10). (With 370 single precision, approximately 6  signifi
cant digits, we get a negative estimate for pA(0 | 5). With 370 extended 
precision, approximately 33 significant digits, we first get a negative esti
mate for p A(0 | 22).) Though at first (with increasing N) there is no notice
able effect on the mean performance measures, eventually these suffer 
severely, as well. Queue 4 becomes saturated for N  = 12, but if we contin
ue the algorithm for larger N, at N  = 50 we see a decrease in UA from 1 to 
approximately .998. Further increases in N  see t/ 4  > 1 and other impossi
ble performance estimates.
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With the Convolution Algorithm we have none of these difficulties, i.e, 
as long as G(N) and the terms which contribute to it are of reasonable 
magnitude, we have no problems. This is because variable rate queues are 
treated in the same way as fixed rate and infinite server queues by the 
Convolution Algorithm. Further, there are no additional numerical prob
lems in estimating queue length distributions if equation (5.84) is used and 
GM-(m) *s calculated directly. (This direct calculation may be quite expen
sive in processing and/or memory.)

Of course, if one was careful, one might notice the peculiar behavior of 
LBANC (or Mean Value Analysis) for a particular model with variable rate 
queues. In the above example, one does not really care to estimate per
formance measures for N > 13, but one may not realize that i f  one simply 
picks N (larger than 13) in advance. There are also obvious heuristics for 
dealing with these difficulties, such as replacing negative probabilities by 
zero and scaling P(m)(n\  N)  so that they sum to G(N). However, by the 
time a negative probability is discovered, it is likely too late to properly deal 
with the problem. The reader may object that this last example network is 
not relevant to computer system modeling, but similar behavior can be 
observed in other models with a large variation in CAP(m){n) with n, for 
example models of multiprocessor systems such as C.mmp (see Section 9.2 
and WULF72).

Reiser has proposed a modification of Mean Value Analysis which 
avoids this problem [REIS80]. The modification requires the additional 
solution of the network with the queue of interest (the one for which we 
desire the queue length distribution or which has variable service rates) 
removed. Solving that network properly with Mean Value Analysis may in 
turn require solution of networks with other queues removed because those 
queues also have variable service rates. Thus the computational effort may 
be dramatically increased. A similar modification can be proposed for 
LBANC. Instead of estimating /?(m)(0 |« ) using equation (5.83), we can 
use

p (m)( 0 \ n )  = GM_ (m)(n). (5.154)

This will be numerically appropriate provided that GM_ (m) does not exceed 
the floating point range of our computer and provided that GM_ (m) is 
computed in a numerically appropriate way (this will require solution of a 
network or networks with a queue removed, as with Reiser’s modifications 
to Mean Value Analysis).

In summary, the approach we suggest is to use LBANC for the fixed 
rate and infinite server queues to obtain G}(N), the normalizing constant for 
the network of queues 1 ,...,/, and then to finish computation with the
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convolution algorithm. (Note that if we wish to use convolution in conjunc
tion with Mean Value Analysis we must compute Gj from the throughputs 
determined by Mean Value Analysis, and thus lose all the advantages of 
Mean Value Analysis over LBANC.) If we really need queue length distri
butions, then they should be obtained by equation (5.84) as previously 
described.

5.8 EXERCISES

5.1 For LCFSPR, show that (S + (c)) — (c) = S  for any S' and any c 
and also show that (S — (c)) + (c) = S for any S and c where 
S — (c) is defined.

5.2 For FCFS show that (S + (c)) — (c) is defined and is equal to S if 
and only if S = () or S = (cj,...,cn) where c, = ... = cn = c. Simi
larly show that (S -  (c)) + (c) is defined only if Cj = ... = cn = c.

5.3 Prove the feasibility and reachability statements in Section 5.2.2.1.
5.4 Prove that if queue m has a LCFSPR discipline, satisfies local balance 

and has classes c 1,...,ck , then by suitably interconnecting the classes, 
any k stage service time can be modeled.

5.5 Prove that queues with LCFSPR, PS or IS with an arbitrary number 
of classes satisfy local balance.

5.6 Show that queues with FCFS and a single exponential class satisfy 
local balance.

5.7 Suggest a discipline which satisfies local balance other than the ones 
discussed here (it need not be a practical discipline).

5.8 Verify equation (5.27).
5.9 Show that a network such as the one of Figure 5.5 has the same 

queue length distribution as for a local balance network, provided 
that for each FCFS queue all classes of the queue have the same 
exponential service time distribution.

5.10 Verify equation (5.74).
5.11 In the multiple chain version of LBANC (and Mean Value Analysis) 

if we use the obvious sequence of chain population values (i.e., nested 
loops over the chain populations) then the storage required is roughly 
proportional to the product of the chain populations if we don’t allow 
variable rate queues. How might we use a different sequence of 
chain populations to obtain storage requirements roughly proportional 
to the sum of the chain populations?

5.12 Extend the results of Section 5.7.2.2 to mixed networks with multiple
closed chains. ^

5.13 Provide the definition of X ^  for queues with two fixed rate servers
with equal rates. ^

5.14 Provide the definition of for variable rate queues.
5.15 How may we handle mixed networks with Mean Value Analysis? 

Restate equation (5.147) in a form suitable for Mean Value Analysis.



5.16 Verify that the Scaling Algorithm of Section 5.7.3 terminates.
5.17 Modify the Scaling Algorithm of Section 5.7.3 to allow 1 = 0 and to 

allow variable rate queues.
5.18 How would you predict the final value of D without running the 

Scaling Algorithm of Section 5.7.3?
5.19 Suppose we are not going to use LBANC in conjunction with another 

algorithm. How can we then eliminate the overflow and overflow 
problem which would occur with the example model with think time 
300 seconds?

5.9 SUMMARY OF CHAPTER NOTATION
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Number of queues 
Normalizing constant
Poisson arrival rate (throughput if queue not saturated)
Mean service rate, i.e., 1 / a  is mean service time
Sections 5.1-5.5: Throughput times mean service time. Sec
tions 5.6-5.7: utilization
Mean queue length 
Unnormalized mean queue length 
Mean queueing time
Probability of visiting class j  after visiting class i 
Number of classes 
Relative throughput 
System state
Number of closed chains in a mixed network 
Set of classes 
Chain population
Vector with 1 in k th position, 0 elsewhere 
Unnormalized probability of state S'
Service capacity function 
A job’s share of service capacity function 
Normalization constant for queue by itself



CHAPTER 6

APPROXIM ATION

Though product form queueing networks are quite useful, detailed 
computer system models will often have characteristics which violate prod
uct form conditions. If a model does not have a product form solution, and 
if it has too many Markov states for a numerical solution to be feasible, 
then we must use approximations or simulation (Chapter 7). The most 
important approach to approximation is aggregation. We have already 
discussed some aspects of aggregation from the point of view of product 
form networks. In this chapter we will further discuss aggregation from that 
point of view and consider its application to approximate solution. We will 
also discuss two other approaches to approximation, diffusion and heuristic 
extensions to LBANC and the mean value analysis algorithm discussed in 
the last chapter. We will be principally concerned with closed networks, but 
much of what we say can be applied to open networks.

6.1 INTRODUCTION

In aggregation we replace a subnetwork by a single queue with queue 
length dependent service rates (or, equivalently, service times). This com
posite queue is intended to behave as the entire subnetwork in its interaction 
with the remaining queues of the network. (This is the motivation for our 
discussion of composite queues in Section 5.4. Our discussion here is 
compatible with that one, but may seem different because we will be using 
an alternate representation for a special case. The seeming difference 
should disappear with our discussion in Section 6.3.2.) What we are trying 
to do is make the composite queue flow-equivalent to the subnetwork in the 
sense that job flow through the composite queue is equivalent to job flow 
through the subnetwork. See Figure 6.1. The resulting network, i.e., the 
network with the composite queue, will usually have fewer states and may 
have few enough states to be solved numerically. If not, the aggregation 
process can be repeated until the resulting network has a tractable solution. 
This aggregation process can be performed exactly for product form net
works [CHAN75, VANT78, COUR78, SAUE79a] and limiting cases of 
some other networks [COUR75, COUR77]. As such, aggregation is useful 
in parametric analysis. For example, if we wish to study a wide range of 
CPU parameters, it will take less effort to repeatedly solve the second 
network of Figure 6.1 than the first. However, our principal interest in 
aggregation is in approximate solution methods. These approximate me
thods are strictly heuristic in the sense that we cannot defend them formally.

165
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By basing our approximations on methods which are exact for product form 
networks (and limiting cases of some other networks), we can expect little 
error to be introduced for networks which are "similar" to those networks. 
However, it is exceedingly difficult to characterize the error since character
ization of the error implies a solution for a (presumably) unsolvable net
work. In general, we can only provide empirical evidence that the error is 
small. Approximations are still very attractive because they are usually 
computationally inexpensive. (Simulation is usually computationally expen
sive.)

40 ms

i i i
-J L.\  /\ / V

CPUlK>
40 ms

Composite queue

-Tk>
40 ms

CAP (1) = 1 CAP(2) = 4/3

Figure 6.1

If the network of Figure 6.1 satisfies product form, then with two jobs 
in the network the CPU utilization will be 72.7%. However, if the CPU 
scheduling is FCFS and the service time distribution has greater variance 
than the exponential distribution, then we would expect lower CPU utiliza
tion. How much lower? If the coefficient of variation is 5, and we use the 
branching Erlang form of Section 3.4 to represent the distribution, then the 
CPU utilization of the first network is 67.1%. Thus even for this trivial 
network, if we assume product form to simplify the solution the relative 
error is over 8 %. However, if we use aggregation and find the CPU utiliza
tion of the second network, the result is 67.1%; there is no error in the first 
three digits. (In general, e.g., for TV > 2, we would expect FCFS with 
non-exponential service times to cause a greater deviation from product
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form results, and would expect aggregation to be only an approximation, 
i.e., to cause a more noticeable deviation from the exact results.)

How do we obtain the composite queue characteristics? We could give 
it a service time equal to the expected time spent in service in the subnet
work it replaces. However, this estimate may be much too high if several 
jobs may be in service simultaneously in the subnetwork. We could propose 
alternative estimates but would quickly recognize that any characterization 
of the composite queue which ignores congestion is likely to be unsatisfacto
ry. One characterization which is exact for product form networks is to let 
the composite queue have a service rate which depends on the queue length. 
The service rate for a given queue length is the throughput in a network 
with corresponding population, where the network is obtained by connecting 
the output of the subnetwork to its input. See Figure 6.2. (We state this 
without proof; the proof should be trivial for the reader who has understood 
Sections 5.1-5.5.) For our example, the throughput with one job in Figure
6.2 is 25 jobs per second and the throughput with two jobs is 33.3 jobs per 
second. Using our characterization of queue length dependent queues from 
the last chapter, i.e., characterizing a queue in terms of mean service rate a 
for queue length one and a capacity function CAP(«), we obtain the param
eters for the composite queue of Figure 6.1, a~l = 40 ms., CAP(1) = 1 and 
CAP(2) = 4/3.

Of course, for either model of Figure 6.1, with two jobs the numerical 
solution is computationally trivial. However, if we increase the number of 
I/O ’s and/or the number of jobs while retaining the non-exponential service 
times and FCFS scheduling, then the number of Markov states quickly 
exceeds the limitations of the numerical methods of Section 3.3 for the first 
model. (Recall that we said the iterative methods were only practical for a 
few thousand states or less. The recursive methods of Section 3.5 do not 
easily apply to networks where a job can visit more that two queues.) The
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I/O ’s 1 2 3 4 5 6 7 8

1 3 5 7 9 1 1 13 15 17
2 4 9 16 25 36 49 64 81
3 5 14 30 55 91 140 204 285
4 6 2 0 50 105 196 336 540 825
5 7 27 77 182 378 714 1254 2079
6 8 35 1 1 2 294 672 1386 2640 4719
7 9 44 156 450 1 1 2 2 2508 5148 9867
8 1 0 54 2 1 0 660 1782 4290 9438 19305

Table 6.1
Numbers of States for Hyperexponential Central Server Model

1  2 3 4 5 6  7 8  Jobs
3 5 7 9 11 13 15 17

Table 6.2
Numbers of States for Aggregation of Hyperexponential C.S.M.

model resulting from aggregation remains trivial, regardless of the number 
of I/O ’s, even for very large numbers of jobs. See tables 6.1 and 6.2.

As another example, consider the queueing network model of Figure 
6.3. This represents an interactive computer system. A user at a terminal 
submits a command. Processing of the command requires memory. Once 
memory is allocated, the processing requires alternate CPU and I/O  activity 
until processing is complete, memory can be released, the user reacts to the 
response and the user submits a new command. This is a simplification of a
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very common computer system model as we suggested in Chapter 1 and will 
discuss in detail in Chapter 9; for other examples see BRAN74 and 
BOYS75. The inclusion of the memory queue in this network will violate 
product form except in limiting cases (e.g., where there is only enough 
memory for one command’s processing, where there is no memory conten
tion or where the number of CPU-I/O cycles tends to infinity).

Let us consider a model as suggested by Figure 6.3 with homogeneous 
jobs, where each job requires exactly one memory partition in order to use 
the CPU or a disk. Even if we make the strongest assumptions possible, 
i.e., FCFS scheduling and exponential service time distributions at all 
queues, the number of states will be quite large if we have more than a few 
jobs, partitions and/or disks. Table 6.3 gives the numbers of states under 
these assumptions for a system with 4 disk queues. The combinatorial 
explosion of the set of states is much worse with more disk queues. Clearly, 
an exact solution for this model is not reasonable.

Jobs 2 4 6 8 1 0 12 Partitions
5 6 6 196 252 252 252 252

1 0 141 546 1302 2277 3003 3003
15 216 896 2352 4752 8008 11648

2 0 291 1246 3402 7227 13013 20748
25 366 1596 4452 9702 18018 29848
30 441 1946 5502 12177 23023 38948
35 516 2296 6552 14652 28028 48048
40 591 2646 7602 17127 33033 57148
45 6 6 6 2996 8652 19602 38038 66248
50 741 3346 9702 22077 43043 75348

Table 6.3
Numbers of States for Extended Central Server Model

The usual approach to aggregation of this model is to collect the CPU 
and I/O queues together into a composite queue. See Figure 6.4. Solution 
of the network after aggregation is then much simpler than solution of the 
original network. (Error will usually be introduced in the aggregation 
process. However, empirical studies [BOYS75, KELL76, BROW77, 
SAUE80a] and analytic studies [BRAN74] show the error to usually be 
small.) The solution of the network of Figure 6.4 will be computationally 
inexpensive except in extreme cases [SAUE80b]. In the case where all jobs 
(commands) are considered homogeneous, one can modify the composite 
queue service rates to reflect the memory contention. The resulting two 
queue network (Figure 6.5) may then satisfy product form.
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Terminals

r o i
Composite

queue
i
i
i

l o j
— -  1 O i

Figure 6.5
How do we obtain the composite queue characteristics? Consider the 

network of Figure 6 .6 , which is in a sense the complement of Figure 6.4 
with respect to Figure 6.3, i.e., it is obtained by removing from Figure 6.3 
all queues to be represented by the composite queue in Figure 6.4, i.e., the 
CPU and I/O queues. The flow-equivalent approach would solve the 
network of Figure 6 . 6  for each possible population o f jobs in the correspond
ing subnetwork o f the original network. The throughput of jobs through the 
outer loop of Figure 6 . 6  (corresponding to the loop through the terminals 
and memory queues of Figure 6.3) for a given population is used as the 
service rate of the composite queue when it has the corresponding number 
of jobs at the queue. It should be apparent that this is the same procedure 
we went through for the model of Figure 6.1. As we said before, these 
steps, plus the steps below, would provide an exact solution of the network 
of Figure 6.3 in the limiting cases, e.g., no memory contention.

A solution of the network of Figure 6.4 or Figure 6.5 will usually yield 
at least the throughput of jobs through that network and the queue length 
distributions. Using Little’s Rule we can obtain the mean queueing times as
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the mean queue lengths divided by the throughput. The mean queueing 
time for the memory queue in Figure 6.4 or the composite queue in Figure
6.5 will correspond to mean response time in the modelled system. We can 
obtain the throughputs and utilizations for the individual queues of Figure
6 . 6  from the throughput through the composite queue and the knowledge of 
relative throughputs and service times in the network of Figure 6 .6 . We can 
obtain the queue length distribution for the individual queues of Figure 6 . 6  

as weighted sums of the queue length distributions for each possible popula
tion in that network, with the weights being the queue length distribution of 
the composite queue of Figure 6.4 (or an appropriate function of the queue 
length distribution of the composite queue of Figure 6.5). We will discuss 
these steps in detail in Section 6.3.3.

Disk

Queue U R L Q
Terminals .49 1.65 4.93 3.00

Memory .90 1.65 5.07 3.08
CPU .82 16.4 1.98 . 1 2

Disk .49 8 . 2 2 .82 . 1 0

Disk .49 8 . 2 2 .82 . 1 0

Table 6.4

As a numerical example consider the network of Figure 6.3 with two
disks with the following parameters: ^ t e r m i n a l s  =  a CPU =  0 ^ ,

a DISK =  ° 6 ’ PCPU.DISK =  -5 ’ / ’DISK,TERMINALS =  -1 ’ a n d  PDISK.CPU =  -9 ' 
All times are in seconds. The disks are identical. There are 10 jobs and 4
memory partitions. Each job requires one partition to use the CPU or a 
disk. All queueing disciplines are FCFS and all service times are exponen
tial. (The parameters are such that there are only 125 Markov states for 
the model, so approximation is not necessary. However, since this model 
violates product form conditions, it is more convenient to use flow-
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equivalent approximation or simulation to obtain a solution than to obtain 
an exact numerical solution. The parameters are chosen partly so that the 
approximate solution may be performed by hand, if the reader wishes.) The 
terminals queue is an infinite server queue. The model of Figure 6 . 6  satis
fies product form conditions, and thus its solution is trivial by the methods 
of Chapter 5. From these methods we determine the throughput through 
the outer loop of Figure 6 . 6  is 0.909 with 1 job in that network. For 2 jobs 
the outer loop throughput in Figure 6 . 6  is 1.341, for 3 jobs 1.583 and for 4 
jobs 1.730. For the flow-equivalent approximation the following values are 
used for the "composite queue" of Figure 6.5: a = 0.909, and

!1 , n = 1 ,
1.475, n = 2,

1.741, n = 3,
1.903, 4 < n < 10.

(aCAP(«), 1 < n < 4, is the throughput through the outer loop of Figure
6 . 6  with n jobs in that network. Since no more than four jobs can be in 
memory at once, we heuristically consider the memory contention by letting 
CAP(n) = CAP(4) for n > 4.) Table 6.4 gives the results from the aggre
gation approximations. All values are mean values. Utilizations for the 
terminals and memory are for each terminal and partition, respectively. 
Simulation results for this model will be given in Chapter 7; we note now 
that all results agree well with simulation.

6.2 SYSTEM CHARACTERISTICS WHICH 
SUGGEST APPROXIMATE SOLUTION

In previous chapters we have outlined the class of models which can be 
solved exactly. In this chapter we attempt to motivate the reader to consid
er the use of approximations. Models which represent systems very realisti
cally often do not have exact solutions. There are at least two immediate 
questions: (1) Are the performance estimates of the more realistic model 
significantly different than those of the less realistic model? (2) If so, is 
the error introduced by approximate solution less than the error introduced 
by simplistic assumptions? These questions can only be answered empirical
ly. However, if a model ignores the existence of a resource, that model 
cannot be used to design or schedule the resource. For example, if memory 
contention is ignored in a computer system model, we cannot use the model 
to determine the effect on performance of the amount of memory available. 
If we wish to evaluate memory contention effects, then they must be con
sidered in our model.

The following are system characteristics which suggest the use of 
approximation because they are likely to significantly affect performance
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and because models with these characteristics have been solved by approxi
mations with acceptable accuracy.

6.2.1 Multiple Resource Holding

A job may hold more than one resource at a time as in our second 
example above. When a job is holding more than one resource, usually one 
resource dominates the other resources held in the sense that the job’s 
activity with the dominant resource determines how long the other resources 
are held. In the example, the CPU and I/O activity dominates possession 
of memory (though a job does not simultaneously hold the CPU and I/O 
resources in this model). In a situation such as this the dominant resources 
are referred to as active resources and the others are referred to as passive 
resources. (We will refer to active and passive queues according to the type 
of resource associated with the queue. For example, we refer to the memo
ry queue of Figure 6.3 as a passive queue and to all the other queues of that 
Figure as active queues.) Flow-equivalent approximation may be used 
hierarchically when a job holds several passive resources. A principal 
difference between active and passive resources in models is that active 
resources have service time distributions associated with them but passive 
resources do not. Channels, controllers and peripheral processors in I/O 
systems are examples of resources often treated as passive.

6.2.2 Blocking

The model above allows arbitrarily long queues for resources. How
ever in some systems there are bounds on queue lengths such that a job 
which no longer needs a resource holds it anyway because it is blocked from 
joining a queue which has reached its bound. Blocking is common in 
communication systems [KFEI76, KOBA78]. Blocking is a difficult prob
lem to deal with except in simple networks; we will not attempt to consider 
solution of networks with blocking. For an example of a blocking problem 
solved by approximation, see FAM76 and CHAN78.

6.2.3 Parallelism

Many operating systems allow a job to spawn subservient processes 
which progress in parallel with the spawning job and may require additional 
(possibly entirely different) resources. For example, a job may attempt to 
overlap CPU and I/O  activity by spawning a task to perform I/O while it 
continues computation. Flow-equivalence approximation techniques are 
relatively easily applied to such systems once one has a solution method for 
the model corresponding to Figure 6.5. Since these problems are usually 
not considered to have significant impact on general purpose computer 
systems, we refer the reader to TOWS78. In a communication system a
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message may be split into several packets which are transmitted indepen
dently, perhaps on different communication links. For discussion of this 
problem, see KLEI76.

6.2.4 Distributions and Disciplines

If service times in the model do not have an exponential probability 
distribution and the scheduling discipline is one such as FCFS which does 
not result in product form solutions with non-exponential distributions, then 
we may notice significant differences in performance measures if exponen
tial distributions and/or product form scheduling disciplines are assumed. 
This is illustrated even in the trivial example at the beginning of this chap
ter. Usually CPU service times are quite different from the exponential 
distribution and CPU scheduling is complex with time-slicing and priority 
effects. However, results for product form disciplines and other simple 
disciplines (e.g., FCFS) can often be used to bound the effects of a more 
complex scheduler. For example, consider a round robin fixed quantum 
scheduler. As the quantum gets arbitrarily large, the scheduling becomes 
FCFS. If there is no switching overhead, then the limiting case as the 
quantum tends to zero is processor sharing, a product form discipline. Thus 
FCFS and processor sharing can be used to bound the effects of a round 
robin scheduler, provided the switching overhead is negligible. We have 
seen in our first example how aggregation may be used to reduce the com
plexity of solving models with queues which violate product form (i.e., the 
CPU queue in the example).

6.2.5 Routing

Most queueing network models assume that the probability a job will 
join class j  after leaving class i is a constant p tj, independent of the state of 
the system. However, there are systems in which the route that a job takes 
through a network of queues is designed to depend on the state of the 
system. For instance, a job requiring the use of a computing system in a 
multi-computer network may be allowed to use any one of a pool of com
puters. In this case a reasonable scheduling policy is to direct the job 
toward the computer with the least expected delay; thus the job’s path 
depends upon the relative congestion at different computers. Systems with 
such dynamic routing strategies (also referred to as load balancing strategies) 
sometimes satisfy product form [TOWS75], but usually do not. Diffusion 
approximations have been successfully applied to some dynamic routing 
problems, but general approaches to the problem have yet to be devised.
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We have illustrated the application of flow-equivalents in two examples 
and have discussed the system characteristics which suggest approximation. 
The flow-equivalent technique is conceptually quite simple, i.e., we replace 
a subnetwork by a queue with queue dependent service rates as in the 
examples. The principal remaining question is "What heuristics do we use 
in particular cases?" In this section we try to answer the question by exam
ple, by further developing the application of flow-equivalence to models 
with passive queues and models with non-product form distribution and/or 
discipline assumptions.

6.3.1 Single Chain Equivalents

As usual, things are simple when there is only one closed chain, so we 
consider that case first. (The transition from single to multiple chains is 
generally more difficult in networks without product form solution.)

Figure 6.7

6.3.1.1 Passive Queues. We assume that each job has a fixed demand 
for the passive resource, e.g., each job always requires one memory parti
tion. (This assumption is usually made because of the great difficulties 
encountered without it. However, in the study of BROW77 in Section 9.4 
we will not make this assumption.) With these assumptions (single chain, 
fixed demand), the basic heuristic for passive queues is the one of the 
numerical example: I f  the passive resource limits the population o f the subnet
work represented by the composite queue to T, then let CAP(«) = CAP(7) for 
n > T. This heuristic allows us to eliminate the passive queue from the 
reduced model, e.g., we can solve the network of Figure 6.5 rather than the
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one of Figure 6.4. An alternate way to view this heuristic is suggested by 
Figure 6.7. Figure 6.7 is the complement of Figure 6.5 in the same sense 
that Figure 6 . 6  is the complement of Figure 6.4. The throughput through 
the passive queue is limited by the amount of passive resource available; 
once the resource is fully utilized, adding jobs to the network does not 
affect the throughput.

As we said, we can repeat the aggregation as necessary. Consider the 
model of a CDC 6000 series system in Figure 6 .8 . In addition to the 
memory contention of Figure 6.3, we also have contention for peripheral 
(I/O) processors (PP’s). A job must have a PP continuously while doing 
I/O. The PP’s are identical; typical operating systems reserve a pool of PP’s 
for user I/O commands. We can begin the solution of this model by solving 
the model of Figure 6.9 to obtain the throughput through the passive queue. 
For populations not greater than the number of PP’s, we can ignore the PP’s 
and the solution will be trivial if the disk queues satisfy product form. For 
populations greater than the number of PP’s, the additional jobs do not 
affect the throughput and we use the throughput for the number of jobs 
equal to the number of PP’s. Having the throughputs for the PP/Disk 
subnetwork, we can (heuristically) replace that by a (composite) queue with 
a = 7?pP/Disk(l) and CAP(n) = ^pp/Disk(n) / a> n= \,...,N . We then proceed 
to the network of Figure 6.10. The process is essentially the same as 
before. We can determine the throughputs through the memory queue 
easily if that passive queue is the only characteristic violating product form. 
Then we can characterize the composite queue of Figure 6.5 to obtain a 
solution of the aggregate model. The results of this model can then be used 
to obtain performance estimates of the CPU, PP and Disk queues, as we 
discussed briefly before and will discuss in detail in Section 6.3.3.

6 .3.1.2 Distributions. Another major use of aggregation is with 
models where one or more queues have non-exponential service time distri
butions and non-local balance queueing disciplines (e.g., FCFS). When 
such queues are to be explicitly considered in the model after aggregation, 
as in our first example, then the principal difficulty is in obtaining the 
numerical solution for the non-product form network, e.g., the second 
network of Figure 6.1. (That may not be difficult at all, as in the example.) 
However, when such queues are to coalesce into a composite queue, the 
situation is conceptually difficult. A number of heuristics have been pro
posed for this situation, but none of these have such an intuitive defense as 
the passive queue heuristic above. At least three issues must be faced:

1. How do we estimate the throughputs in the subnetwork to be 
replaced by the composite queue? This seems to be the most 
crucial issue.
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Figure 6.9

Allocate memory CPU PP/Disks Release memory

Figure 6.10
2. How do we characterize the service distributions and capacities of 

the composite queue?
3. How do we characterize the queueing discipline of the composite 

queue?

Issue 1: Since the subnetwork does not satisfy product form and may 
be large, we must consider alternatives to direct application of the numerical 
methods of Chapter 3. An obvious, crude alternative is to assume the 
subnetwork satisfies product form even though it doesn’t. The accuracy of 
this approach depends both on the characteristics of the subnetwork and of 
the network outside of the subnetwork. In the past iterative refinements 
have been proposed to overcome the inaccuracy of this approach 
[CHAN75b], However, there is no guarantee that such refinements will 
converge nor that even if the iteration does converge that it will converge to 
the correct values. Empirical results on single chain networks were promis
ing but extensions to multiple chain networks would fail unpredictably
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[CHAN75b, MACN75], A more sophisticated approach is to simply use 
aggregati°n repeatedly to make the problem tractable, as suggested in 
ZAH077. The obvious result is that we recursively face the three issues 
again, but at least the first issue is easier to face. For example, if we have a 
numerical solution program for an arbitrarily connected network of two 
composite queues, then we can partition the subnetwork into pairs of 
queues, solve each of those resulting subnetworks, replace each of them by 
composite queues, group the new composite queues in pairs and so on until 
we have a solution for the original subnetwork. If we can efficiently deal 
with more than two queues at a time, we may save both' computation and 
accuracy by doing so.

Issue 2: This issue is tied to the third issue, for it is only material if we 
choose a non-local balance discipline (e.g., FCFS) for the composite queue. 
Assuming this is the case, then we may want to characterize the composite 
queue by more than just the mean service time (cr1) and capacity 
(CAP(n)). To be most general it would be appropriate to (re)evaluate 
remaining service times for all jobs whenever jobs arrive at or depart from 
the composite queue. However, this has been considered too complex to 
attempt. Note that the memoryless property of the exponential distribution 
enormously simplifies (eliminates) the reevaluation of the remaining service 
times. An attempt at improvement over assuming exponential distributions 
has been to characterize the distribution of service times independent of 
congestion and then use a capacity function to consider congestion. Even 
this is not straightforward, so additional assumptions are made, e.g., that the 
times will be represented by exponential stages (with the rates of the stages 
determined in part by the capacity function), that only the mean and coeffi
cient of variation should be considered and that the coefficient of variation 
is determined by the coefficient of variation of the subnetwork delay when 
there is only one job in the network. A more thorough treatment of this 
issue is given in SEVC77b and CHAN78.

Issue 3: The queueing discipline of the composite queue does affect the 
network which contains it. Unfortunately, there has been very little work in 
the area of selecting queueing disciplines. Queueing disciplines have been 
selected more to reduce computational complexity than to better represent 
the subnetwork. Note that a discipline such as processor sharing will likely 
discard any efforts to characterize distribution form (issue 2); however, a 
discipline such as FCFS forces a sequencing of jobs which may not have 
been present in the subnetwork.

6.3.2 Multiple Chain Flow Equivalents

Consideration of multiple chains greatly increases complexity. This is 
not only because the size of the problem grows quickly with the additional
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detail (of distinguishing between jobs) but also because of new problems 
and limitations. The composite queue characterization is a problem; the 
applicability of the "passive queue heuristic" above is limited to cases where 
chains are treated differently by the passive queues (or visit separate passive 
queues).

6.3.2.1 Composite queue characterization. The characterization which 
we have been using for composite queues, a and CAP(n), is not sufficiently 
general for multiple chain problems. However, the rate matrix H of Section
5.4 is not directly usable for non-product form networks; i.e., it would be 
difficult to define the Markov process for a (non-product form) queueing 
network containing a composite queue with rate matrix H. What is usually 
used is a characterization of the service rates for each class given a specific 
state of the composite queue, i.e., what we really want is ac(S ) of equation 
(5.26), the rate at which class c jobs are served when the composite queue 
is in state S. It is important that we recognize that each class of jobs is 
receiving service simultaneously. This is necessary for aggregation to be 
exact in multiple chain product form networks and considerably restricts our 
freedom in choosing queueing disciplines for the composite queue, i.e., the 
scheduling of one class of jobs cannot affect the scheduling of another class. 
(This is of no consequence in product form networks; in other networks it 
may be significant. The discussion of issue 3 of the previous Section applies 
here.)

How do we represent ac(S) for approximation purposes and how do we 
obtain its values? Assume that there is exactly one class per chain at the 
composite queue, as is usually appropriate. Let ak(n) be the rate at which 
chain k jobs are served when the composite queue has population vector 
n = n v ...,nK, where K is the number of chains. Let R k(n) be the chain k 
throughput in the subnetwork to be replaced by the composite queue when 
the population vector of the subnetwork is n. Then ak(n) = R k(n). (Proof 
of this is immediate from equations (5.26-5.29).)

We can now extend the single chain characterization if we let ak be a 
scalar equal to R k(ek), where ek is the vector with a 1 in the k lh position 
and 0 elsewhere, and let CAP*(«) = R k(n ) /a k, where CAP^(n) is the 
capacity function for chain k jobs when the population vector is n.

6.3.2.2 Passive Queues. Suppose we wish to obtain an aggregation 
approximation for a network similar to Figure 6.3 but with two chains. 
Further suppose that there are effectively separate FCFS memory queues 
for each chain, e.g., that there is memory dedicated to jobs of each chain. 
Let Tk, k = 1,2, be the maximum number of jobs in memory for each chain 
and let us assume the ak and CAP*(n) representation of the last paragraph. 
Then, because of the dedication of the passive resources to each chain we
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can extend the single chain passive queue heuristic as CAP1(«,,«2) = 
CAP1 (minCn, ,T| ),n2) and CAP2(«1?/j2) = CAP2(«],min(/J2, r 2)). However, 
suppose that the passive resource is not so dedicated, that there is simply a 
limit T on the number of jobs in memory, still with FCFS scheduling. Then 
there is no obvious way to successfully extend the single chain heuristic. 
We know that CAP^(«1;n2) seems reasonable for «| + n2 < T, but when 
n \ + n 2 > T there is no obvious choice for CAPk(n i,n2)- I.e., do we
choose CAP^fCbr) or C A P^fl.T-l) or ... or CAP^fT.O) or some function 
of these? The most appropriate approach seems to be not to attempt to use 
the "passive queue heuristic" but instead to ignore the passive queue in the 
subnetwork, e.g., use the aggregation suggested by Figures 6.4 and 6.6 
rather than Figures 6.5 and 6.7. This approach can be used successfully, 
but it may be computationally expensive for an approximation [SAUE80a, 
SAUE80b],

6.3.2.3 Aggregation of Chains. Even after aggregation of queues 
ultimately resulting in a two queue network, with multiple chains the numer
ical solution of that network may still be expensive or infeasible. For 
example, if one of the queues is not a composite queue but simply a FCFS 
queue, then an exact numerical solution would require a state for each 
possible ordering of jobs at the queue. Thus the number of states might be 
enormous even with two chains with large populations and certainly would 
be so with several such chains. One reason for considering multiple chains 
is priority scheduling; with priority scheduling there are fewer possible 
orderings, but the state space may still be unwieldy with moderate numbers 
of chains (e.g., five). In such cases we may attempt aggregation of chains 
as well as aggregation of queues. In aggregation of queues one replaces 
several queues by a composite queue that is approximately flow-equivalent 
as far as the other queues are concerned. In aggregation of chains one 
replaces several chains by a composite queue that is approximately equiva
lent as far as the remaining chains are concerned.

Unfortunately, aggregation of chains is not exact even for product form 
networks except in limiting cases, so there has been no formal basis for 
aggregation of chains. The population of the "composite chain" is simply 
the sum of the populations of the component chains, but how do we choose 
service time distributions, routing probabilities and priorities? One ap
proach is to use weighted sums. In SAUE75b the weights were obtained 
from throughputs in a product form network as similar as possible to the 
given network. MacNair and Woo report better results from simply using 
the relative populations, i.e., the weight for a given chain is its population 
divided by the composite chain population [MACN75]. Some of the ap
proaches of REIS78a and REIS78c provide an alternative to aggregation of 
chains; these approaches may also be used with LBANC.
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6.3.3 Individual Queue Performance Measures

Now that we have dealt with the principal question, we look at the 
decomposition side of the problem, i.e., once we have obtained the aggregate 
solution, how do we obtain solutions for individual queues? We describe an 
approach that is exact for product form networks and extends directly to 
general networks. We assume, without loss of generality, that the aggrega
tion process has yielded the solution of a two queue network, of which one 
queue was queue m in the original network and the other is a composite 
queue representing the remaining queues of the original network. For 
example, such networks would be the second network of Figure 6.1 with 
queue m being the CPU queue or the network of Figure 6.5 with queue m 
being the terminals queue. Extension to networks such as the one of Figure
6.4 or with multiple composite queues is straightforward and left to the 
reader.

As usual, we consider single chain networks first. We assume that we 
are given the queue length distributions for queue m in the two queue 
network Ptm\{n \ N) (which is also the queue length distribution for queue 
m in the original network). Also, we have R^m^(N), the throughput through 
queue m in the two queue network and the original network and 

i # m, the mean queue length for queue i in the network with 
queue m omitted, e.g., the network of Figure 6.2, with population N.

For throughputs we know that

The extension to multiple chains is straightforward. Having throughputs, we 
can usually apply equation (2.7) to obtain utilizations.

To obtain utilizations when equation (2.7) does not apply it is neces
sary obtain queue length distributions. For this reason, and to justify our 
method for obtaining mean queue lengths, we show how to obtain the queue 
length distribution for queue i in the original network. Note that this is 
only necessary when the distribution is directly required or equation (2.7) 
does not apply. In this case we also need P ^ ~ (m>(n \ N), i ^  m, the queue «;
length distribution for queue i in the network with queue m omitted. Then 
we have the following theorem. ])

Theorem 6.1:

I.....M.
(m )

( 6 . 1)

N



Note that — j  \ N) is the probability the number of jobs in the
composite queue is j  and is thus the probability that the total number of 
jobs in queues other than m is j.

Proof:

Using equation (5.88) and letting G M-(m) (/) t>e the normalizing 
constant vector for the network with both queues m and i omitted, we have

-  j\N
j=n

_ y  ~ j ) G M_(m)(J) X (j)(n)GM-(m),(i)(J ~ w)
j=n GA GM-(m)W
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Gm (N)
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X 0)(n)GM-(i)(N  ~  ” )
^CAO

= /*(,)(« I AT).

Thus we can obtain the queue length distributions for an individual queue in 
the subnetwork represented by the composite queue as a weighted sum of 
the distributions for each possible population, where the weights are the 
composite queue length distribution.

However, the following result allows us to bypass obtaining the individ
ual queue length distributions unless we really want them.

Theorem 6.2:

h i )< « =  S ' W *  -  "I AO
n =  1

(6.3)

In words, the mean queue length in the original network is obtained as the 
weighted sum of the queue lengths in the network with queue m omitted.
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Proof:
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,1 = I

y  “  «)G' jW_ („,)(rt) " X (,)(j) G ~ •/)

= „ r ,  M T V )  ,= /  GM_ (m){n)

_  y  y  J X i , ) ^ X 0>,)(N  -  n ) G M- ( m) , U) {n ~  ^

"  ,= .,= ! M * 0

=  *  *  T * ( ,)M (,„ ) (T V  -  ^ G M- ( m) X i ) {n -
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Both of these theorems extend directly to multiple chains; most impor
tantly, equation (6.3) becomes

(TV) =
NK

2  ••• 2  '
/V,

(6.4)

(/»)'(TV. — n | — w*r I TV. ,...,TV' G (k,i) ( ”
rt j =  0 "k = 0

We leave it to the reader to state and prove the multiple chain version of 
Theorem 6.1 and to prove equation (6.4).

Having the throughputs and mean queue lengths for the individual 
queues, we use Little’s Rule to obtain the mean queueing times.

6.3.4 Limiting Case Justifications for Aggregation

The primary justification we have used for aggregation approximation 
is the exact aggregation of product form networks. This justification be
comes less credible as the network to be solved becomes "less similar" to a 
product form network. Examples include the number of queues violating 
product form conditions (e.g., distributions and disciplines) increasing, an 
individual queue tending to deviate greatly from product form conditions 
(e.g., service times at a FCFS queue having very small or very large coeffi
cients of variation), and conditions such as multiple resource holding be
coming dominant. There is another justification for aggregation, weakly



coupled subnetworks [COUR75, COUR77], which is independent of prod
uct form conditions. The product form justification holds regardless of the 
degree of coupling of subnetworks; the weakly coupled justification holds 
regardless of product form conditions.

The essence of the weakly coupled justification is that in the limiting 
case of disjoint subnetworks, aggregation must be exact because the subnet
works do not interact. So if a subnetwork is essentially independent of the 
remainder of the network, i.e., its internal events are much more frequent 
and much more dominant in its behavior than its interactions with the rest 
of the network, then we should introduce little error in replacing it by a 
composite queue. As an example, consider the network of Figure 6.3. As 
the number of CPU-I/O cycles tends to infinity, the CPU-I/O subsystem 
becomes independent of the remainder of the system. Thus if we replace 
the CPU-I/O subsystem by a composite queue, we expect little error to be 
introduced. Taking this point of view it is possible to characterize the error 
introduced by aggregation [COUR77],

6.4 APPROXIMATION EXTENSIONS TO
LOCAL BALANCE ALGORITHMS

We have emphasized aggregation approximations because they have 
been fairly widely used and empirically justified, because they are relatively 
easy to apply and because they are fairly general. Diffusion approximations 
have been used for quite some time but are principally successful in open 
networks with heavy traffic. A third, and relatively untested, approach to 
approximation has recently appeared. Along with the mean value analysis 
algorithms for product form networks, Reiser and Lavenberg proposed 
heuristic extensions for non-product form networks in REIS78a. Subse
quently, Bard proposed additional extensions for other characteristics 
violating product form [BARD78b], These extensions are often much 
simpler to program and less computationally expensive than the aggregation 
approximations we have discussed. However, we emphasize that there has 
been very little empirical justification for these methods. The extensions 
may be applied to LBANC as well as mean value analysis. Since we prefer 
LBANC, we will translate some of the extensions of REIS78a, REIS78c and 
BARD78b to that algorithm. Other mean value analysis extensions, e.g., for 
reducing computational costs for networks with many closed chains, also 
translate directly to LBANC. We will discuss another extension, for multi
ple resource holding, in Section 9.5. We note without further discussion 
that some of the aggregation approaches may be used together with this 
approach.

Let us assume that queue m has FCFS scheduling, a single fixed rate 
server, a single class and a non-exponential service time distribution with
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mean a (J (and coefficient of variation CV(m). Using the same arguments as 
in Section 4.1.2, we would expect the mean queueing time to be

+ *'(«><* -  D - U lm){N -  l))
2 (6.5)

. /», n  -1 1 + c v ("0
+ U(m)(N ~ ^ a(m) 2 '

The first term represents the expected service times for the jobs not yet 
served; the second term represents the expected service time for a job in 
service. Notice that equation (6.5) is equivalent to equation (5.103) for 
exponential service time distributions. To apply this equation to LBANC, 
we want an expression for the unnormalized mean queue length 
Applying Little’s rule, multiplying by G(N) and simplifying, we have

CV2 — 1
/„,,)(« = - v , ( c w - 1) + W w-  n + “M— - j — )- <6-«

Similar arguments for the multiple chain case with one class per chain 
yield (for K — 2)

, m )

p y 2 _ 1  /-’w  2/  LV(l,m) 1
+  w( 1 ,m) ---------- -----------  +  u

C V (2,W) - 1
*(2,w)"

(6.7)

and

\ 'N2>

=  U

+ u(2,m)(“d.m) + U )

(6.8)

Note that these reduce to our previous equations for FCFS queues where all 
classes have the same exponential distributions. We emphasize that these 
tantalizing expressions are approximations. For example, it can be shown 
that characteristics of the service time distribution other than the mean and 
the coefficient of variation have some effect on performance in closed 
networks [PRIC76], but equation (6.5) ignores such other characteristics.
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We may think of a diffusion process as a Markov process with a con
tinuous state space. Diffusion approximations use the theory of diffusion 
processes to analyze queueing problems. The apparently difficult mathe
matics discourages most analysts from using diffusion approximations. 
However, it is possible to use the diffusion approximation formulae without 
understanding their derivation in detail. It is not necessary to understand 
the derivations provided that empirical evidence justifies the use of the 
formulae. Diffusion approximations are principally successful in open 
networks with heavy traffic. For such networks numerical methods are not 
feasible and, as we shall discuss in Chapter 7, simulations may be quite 
expensive, thus the importance of diffusion. The only cases where an 
analyst really needs a thorough understanding of the mathematics of diffu
sion are when attempting to develop better approximations or to extend the 
approximations to new problems. We will first discuss diffusion processes 
from an informal point of view. Then we discuss mapping of queueing 
problems to diffusion processes.

Movement of particle d

<o g 6 (X-"
- i  - i  - i  - i

Movement of particle d*

Movement of particle c (diffusion)

Figure 6.11
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Consider a FCFS Gl/G/1 queue, i.e., a single server queue fed by a 
source where service and interarrival times are independent random varia
bles having general distributions. Even mean response time for this system 
cannot be expressed simply [KLEI75]. Let n(t) be the number of jobs in 
the queue at time t. n(t) can take on the values 0,1,2,... . We may think of 
n(l) as the position of a particle d (for discrete) that makes a jump (of +1) 
to the right when a job arrives and a jump (of —1) to the left when a job 
departs (see Figure 6.11). In general, the probability that d will make a 
jump of +1 or -  I in the next time interval depends upon the past behavior 
of d. For example, the length of time d will stay in its current place de
pends (partly) upon the time since the last arrival or departure.

Our goal is to deduce the probability of the future behavior of d given 
its past behavior. The difficulty with predicting the behavior of particle d is 
that it has memory in addition to its current position, i.e., the state of the 
system is not merely the particle’s current position. (In the GI/G/1 sys
tems we must remember remaining service time and remaining time until the 
next arrival.) In the diffusion approximation we represent the behavior of 
particle d approximately by the behavior of a particle c (for continuous) 
which has no memory.

Whereas d can only take on the values 0,1,2,..., we let c take on all 
values on the non-negative real line. Let us decide how c should move 
along the real line. Since we are used to dealing with discrete state spaces 
we shall treat the continuous state space of c as the limiting case of a 
discrete state space. The informal treatment here is based on the discussion 
in COX65.

Position of particle at time t Position of particle at time t + dt

x (t) v (t + dt)

Particle moves along this line

Figure 6.12

Assume that particle c can only move at times 0, T, 2 T, 3T, ..., where T 
is some small constant time interval, c can only take small steps of magni
tude M. Thus if we take the limit as T  and M  approach 0, we see that c 
moves continuously along the real line. In each time interval T we assume 
that the particle takes a step z where z = +M  with probability p and 
z = —M  with probability 1 — p. In time i'T, the total displacement of the 
particle will be the sum of i independent, identically distributed random 
variables, each with the same distribution as z. As i gets large, the distribu
tion of the displacement approaches that of a normal or Gaussian random 
variable. (The normal or Gaussian random variable is extremely important
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in simulation. Since some readers will likely skip diffusion approximations, 
we defer a more detailed discussion of the normal random variable until 
Section 7.2. The reader may wish to defer reading this section until having 
read Section 7.2, but this should not be necessary to get an informal under
standing of diffusion approximations.)

: A large number of 
: particles, all at point 
• y  at time t

Particles move in 
different directions 
in interval (t, t + dt)

Figure 6.13

I

Fet the position of c at time t be x(f) (see Figure 6.12). Fet the 
displacement of the particle in the interval [t,t + dt] be dx{t) where

dx(t) = x(t  + dt ) -x( t ) . (6.9)
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Assume that dx(t) is normally distributed with mean fidt and variance ydt. 
To help picture the process, imagine an arbitrarily large number of particles 
that move according to the above assumptions. Suppose that all the parti
cles are at a point y  at time t (see Figure 6.13). Then at time t + dt the 
particles would have moved, some one way and some in the opposite direc
tion. The function showing the density of particles around a given point at 
time t + dt has the familiar bell shape of the normal distribution with a 
mean at y + jidt and variance ydt. The particle is memoryless in the sense 
that its future displacement, relative to its current position, is independent 
of the past. (The particle does have memory in the sense that it doesn’t 
cross the boundary into the negative queue length region.) Let p(x0,x t) be 
the density function for the process x(t) given that x(0) = xQ. The density 
function of the particle has been studied in depth and methods exist for 
computing it [COX65].

We wish to deduce the behavior of particle d from the behavior of 
particle c. To do this we shall simulate the behavior of d by a particle d* 
that also jumps between points 0, 1,2, ... but whose movement is driven by 
the movement of c in the following way. Partition the real line into inter
vals; place d* in position i when c is in the ith interval. When c moves into 
the i — \ ,h (or i + I th) interval, move d* to position i — 1 (or i + 1). 
Statistics regarding d* are said to be diffusion approximations of the corre
sponding performance measures regarding d.

The accuracy with which d* models d depends upon:

1. How values are assigned to the parameters jS and y that character
ize the diffusion process (and hence characterize the movement of 
the particle c).

2. How the real line is partitioned into intervals.
3. How we place a boundary condition on the diffusion process. 

Typically we want c to move on the non-negative real line just as 
d does. There are different conditions we might place at the 
boundary x = 0 to ensure x(t) > 0 for all t. These boundary 
conditions affect the behavior of c and thus the behavior of d*.

We now consider these issues in turn.

Setting and y

To make the computation of and y tractable we shall make the 
(invalid) assumption that the queue is never empty. This assumption is 
more reasonable in heavy traffic (when the queue approaches saturation) 
and thus the approximation gives better results under heavy traffic condi
tions.
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Consider a time interval [/,/ + dt]. Fet n(t) be the queue length at 
time t. During this interval the expected number of jobs to arrive is Rdt 
where R is the arrival rate and the expected number of departures is adt 
where a is the service rate. Hence

E[n(t + dt) -  n(t)] = (R -  a)dt. (6.10)
We want to position x(t) of particle c to reflect the queue length n{t). Note 
from the earlier discussion that the displacement x(t + dt) — x(t) is a 
random variable with mean pdt. Hence, it is reasonable to set

P = R -  a. (6.11)
By similar (though more complex) arguments we set

y = C V 2AR + CV\a  (6.12)

where CVA and CVS are the coefficients of variation of the interarrival and 
service times, respectively.

Selecting Intervals

A reasonable heuristic is to place d* in the i,h position when c is be
tween i and i + 1 as depicted in Figure 6.11. Using this method of select
ing intervals,

* r n + l
p (nQ,n\t) = I p(xQ,x-,t)dx. (6.13)

Boundary Conditions

The reflective barrier is the boundary condition normally used 
[COX65]. This boundary condition states that the particle c must always be 
on the non-negative portion of the real line. The density function for 
particle c with this boundary condition is known and we can compute 
p (nQ,n t). We are primarily interested in the equilibrium queue length 
distribution p («) = p (n0 ,n °°). Using the methods described for setting p 
and y and for selecting intervals, with this boundary condition we get

p \ n )  = { \ - U ) l f ,  n = 0,1,2,... (6.14)

where
=  2(1 — t/)/(C V § + t/CV A) ( 6 . 15)

and U = R / a  is the utilization. Fet p(n) be the (true) equilibrium proba
bility of n jobs in the queue. We know that the fraction of the time the 
server is idle is /?(0) = 1 -  U, whereas p*(0) = 1 -  U, which is erroneous. 
A heuristic to deal with this is to let
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pi n) 1 -  U , .  A’ A A
(J( 1 -  U)U"~

n = 0,
, n > 0. (6.16)

Other boundary conditions have been proposed. For example, Gelenbe 
reports improved accuracy with a boundary condition where the particle 
reaching the boundary sticks there for an exponentially distributed time and 
then jumps back into the region x > 0 according to some distribution 
[GELE75], For example, the particle might jump from x = 0 to x = 1, 
representing an arrival of a new job. The exponentially distributed time the 
particle is stuck has the same mean as the interarrival distribution.

Networks
B r a n c h

A r r i v a l

Figure 6.15
D e p a r t u r e

S e r v i c e

a  ( D e p a r t u r e )  -  U t i l i z a t i o n 2 ■ a  ( S e r v i c e )  +  (1  -  U t i l i z a t i o n 2 ) • a  ( A r r i v a l )

Figure 6.16

B r a n c h  1

Pi  - ( B r a n c h  i f l o w ) / ( M e r g e d  f l o w )  

a  ( M e r g e )  =  2  p j a  ( B r a n c h  i )

Figure 6.17
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In an open network of G I/G /1 queues, we can use the diffusion 
approximation as follows [KOBA74], We essentially assume that the 
product form holds, i.e.,

A M
P(nv ...,nM) = [ I  Pm( n J .  (6.17)

m= 1
We treat the queues as independent except for determining the coefficient 
of variation of the interarrival time for each queue. To do that, we first 
determine the mean interarrival time for each queue from the source rate 
and the relative throughputs. Then we determine the utilization at each 
queue. Then we use the following procedure proposed in SEVC77b based 
in part on earlier work [DISN74, GELE76, KOBA74, REIS74], For sim
plicity we assume exactly one class per queue. Let CVA m̂̂ be the coeffi
cient of variation of the interarrival times at queue m, and let am = 
CVA(W) — 1- We determine am for each queue according the the equations 
in Figures 6.15, 6.16 and 6.17 and then determine CVA(m).

Similar approaches have been used for closed networks, but are less 
successful because of the difficulty in determining throughputs (which would 
then be used for interarrival distributions). Two ways to determine the 
throughputs are to either assume product form [KOBA74] or to assume one 
queue is saturated.

6.6 FURTHER READING

For further discussion of aggregation approximations, see CHAN78, 
COUR77, KOBA78, and MARI79. For further discussion of approximation 
extensions for mean value analysis see REIS78a, REIS78c and BARD78b. 
For further discussion of diffusion approximations, see COX65, KOBA74 
and FOSC77.

6.7 EXERCISES

6.1 In the discussion of Section 6.3.2.2 it is assumed that the passive 
resource scheduling is FCFS. What if the scheduling was preemptive 
priority? Non-preemptive priority? Which is more likely to be realistic 
for passive resource scheduling?

6.2 How would Theorems 6.1 and 6.2 be applied to networks such as the 
one of Figure 6.4 or with multiple composite queues?

6.3 State and prove the multiple chain version of Theorem 6.1. Prove 
equation (6.4).

6.4 Justify equations (6.7) and (6.8).
6.5 Restate equations (6.7) and (6.8) for multiple classes per chain.



CHAPTER 7

SIM ULATIO N

The most popular approach to the solution of a computer system model 
is to simulate it, i.e., to use a program which behaves like the model and 
observe the behavior of the program. The principal advantage of simulation 
is its great generality. There are three main problems with simulation: the 
expense of constructing a simulation program, the computational expense of 
running the program, and the statistical analysis of the program behavior. 
We will give little direct attention to the computational expense of simula
tion. There exist specific techniques for reducing this expense but the 
techniques are of a relatively advanced nature. (Some of these specialized 
techniques are closely related to the flow-equivalent approximations of 
Chapter 6.)

When a model does not have a product form solution (e.g., because it 
has some of the characteristics described in Chapter 6 as precluding a 
product form solution) and is of sufficient size that memory and computa
tional costs of numerical solution are excessive, then the reasonable alterna
tives are approximations and simulation. Approximations have the advan
tage of low computational costs but may introduce an unknown amount of 
error and may be difficult to apply. Simulation will usually be more expen
sive computationally, but with sufficient computational expense, the error 
can be made very small and the application will be relatively straightfor
ward. Note that simulation results are usually not exact; the error can be 
reduced by additional computational time in most situations.

Even though the Markov process formalism of Chapters 3-5 is not 
necessary for simulation, it is helpful to keep this formalism in mind. For 
one thing, the queueing network representations provide a convenient 
framework for model formulation. Having an appropriate formulation of 
the model will help eliminate programming errors, a major source of error in 
simulation. Perhaps more importantly, the Markov process representation 
allows us to take advantage of rigorous statistical methods. The most 
important of these is the regenerative method for confidence intervals, which 
we discuss later in this chapter.

Some of the characteristics violating product form solution conditions 
are of little consequence with respect to simulation. For example, simulation 
techniques will be essentially the same whether or not distributions are 
exponential. (The use of the method of exponential stages may be neces

194
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sary if we wish to apply the regenerative method.) Use of Scheduling disci
plines which violate product form introduces little additional complexity. 
Other characteristics, e.g., simultaneous resource possession, can easily be 
simulated, but product form queueing networks provide no framework for 
representing these characteristics. In these cases we find it appropriate to 
define extensions to the queueing network representation such as the 
passive queues discussed in Chapter 6. We will discuss passive queues 

from a simulation point of view toward the end of this chapter, and also 
discuss other extensions to queueing network representations. Our objec
tive is to treat extended queueing networks as a unified approach to model
ing, regardless of solution method.

7.1 CONSTRUCTION OF SIMULATION PROGRAMS

Our objectives in this section are (1) to give a thorough introduction 
to random number generation and event list mechanisms, the two program
ming techniques relatively unique to simulation, (2) to give a very brief 
introduction to estimation of performance measures, and (3) to give an 
example simulation program for the cyclic queue model which was solved 
numerically in Chapter 3.

7.1.1 Random Number Generation

One of the central aspects of the models we consider in this text, and 
most simulation models, is that of random variables characterized by proba
bility distributions. These are used to represent service times, interarrival 
times and other system characteristics. However, computer systems are 
designed to be deterministic with respect to individual programs, so we can 
hardly expect a program to have truly random behavior. We can devise 
methods for programming apparently random behavior, behavior which 
appears to be "random" as far as we can determine from statistical tests. 
Further, we can program this behavior so that the random variables appear 
to have the intended probability distributions. Since the numbers are actual
ly deterministic, but appear to be random, the term "pseudo-random" is 
often used.

We are given Fx(x0), defined to be the probability that a given value 
of the random variable x is not greater than x0, and we wish to deterministi
cally generate a sequence of values ("samples") which have this probability 
distribution defined so that every value in the interval (0,1) is equally likely. 
This is known as the uniform distribution (Chapter 2) for this interval and 
has the probability distribution function
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We are arbitrarily eliminating the endpoints of the interval to avoid taking 
the logarithm of zero, which is undefined. Given the capability to obtain 
samples from this distribution and the inverse of the distribution function
for random variable x, F ~ l( ), we can obtain a sample of the random_ 1 ■*
variable x  as Fx (u0) where u0 is a sample from the above uniform random 
variable. This is depicted in Figure 7.1 for an exponential random variable. 
We will return to this general sampling problem after showing how we may 
obtain samples from the above uniform distribution.

There are many possible approaches to obtaining the samples from the 
uniform distribution. Nearly all known approaches define some function 
which will determine a new uniform value based on the previously obtained 
values (or some chosen initial values). Experience has repeatedly demon
strated that one must be very careful in choosing such a "random number 
generator." As Knuth has said, "... random numbers should not be generat
ed with a method chosen at random." [KNUT68] The chosen function 
should have been carefully selected and then subjected to rigorous statistical 
testing to ensure that it has the desired characteristics. We will not attempt 
to discuss the extensive theoretical foundations of the selection process nor 
the many statistical tests which have been proposed and applied. We will 
describe in detail one of the most highly regarded generators, one which can 
be efficiently implemented on most known computers. In doing so we will 
try to mention a few of the significant theoretical considerations.
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For a variety of reasons, including theoretical tractability and computa
tional efficiency, most random number generators utilize integer representa
tions and arithmetic. Given a random integer in the interval [1 ,m — 1], m 
an arbitrary positive integer, such that each value in this interval is equally 
likely, then we can obtain the desired value in the interval (0,1) by dividing 
by m.

The generator we use will be based on a specific case of the following 
general approach: Given a positive integer a, a non-negative integer b and a 
positive integer initial value Z0, subsequent values are obtained from the 
expression

Z, = (<aZ/_j + b) modulo m, i = 1,2,3,...

(The modulo operation gives the remainder of integer division by m.) As we 
have tried to suggest, the choice of a , b and m is critical. Consider a = b = 
1. The sequence produced will obviously not be satisfactory. However, 
other choices may be worse, though not obviously unsatisfactory. Given 
appropriate choices of a, b and m, the choice of Z0 may be more or less 
arbitrary.

We would like for m to be very large, so a common criterion is that m 
be nearly equal to the maximum representable integer for a given computer. 
If there are p bits in the representation of an integer, not counting the sign 
bit, then usually the maximum integer will be 2P — 1 except that double 
word products and dividends may be allowed. If these double word values 
are allowed, then 2P will be a very convenient choice for m. Suppose p = 5 
and we choose m = 25 = 32. Consider a = 7, b = 0 and Z0 = 1. Then we 
will have Z x = 7, Z2 = 17, Z3 = 23, Z4 = 1, Z5 = 7, etc., an obviously 
unsatisfactory situation. We say that this sequence has a period of four. 
Clearly we would like to obtain a period relatively close to m. If we modify 
the generator to have a = 5, then we would get the sequence 1, 5, 25, 29, 
17, 21, 9, 13, 1, 5, ... , which has a period of 8, a definite improvement. In 
fact it is the best we can do with b = 0 and m = 32. In general, it can be 
shown that with p greater than 2, m = 2P and b = 0, the maximum period 
obtainable is m / 4. If we make a better choice of b, then we can obtain the 
period m, but, given our definition of random variable u on the interval 
(0,1) we will have to discard somehow the Z’s = 0. Though generators 
with m -  2P may have adequate characteristics, we reject this choice of m 
because the least significant bits of the generated integers will not be very 
random and for reasons of convenience not related to the generators’ 
statistical properties. We prefer to let m be the largest prime less than 2P. 
For p = 5 this would be m = 31. For prime m, the maximum period will be 
m -  1, with the missing value conveniently being zero, if we make the 
proper choice of a, and if b = 0. If a given value of a produces the maxi
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mum period, then a will also produce the maximum period, provided that c 
is less than m and and m is not divisible by c. For m = 31, a = 3 gives the 
full period. (3 and 33 do not, but 34 does, also.) The reader may wish to 
use this choice of a and m to see the period m — 1 is obtained, and might 
also try another value of a, say 5, to see that a smaller period is obtained.

There are many other considerations in the choice of a and m, most of 
which are related to properties under statistical tests, and we shall ignore 
these considerations. The generator we will use was very carefully chosen 
and has performed well under thorough statistical testing. It was originally 
designed for the IBM 360 family of computers, but can be efficiently 
implemented on nearly any computer. We know of no other generator 
which has been as thoroughly tested, and the great transportability of the 
algorithm allows us to get similar simulation results on quite different 
computers.

For the 360 we have p = 31. Conveniently, the largest prime less than 
231 is 231 — 1 = 2147483647. For this choice of m, an appropriate choice 
of a is 75 = 16807. Note that the computation

Z, = (16807Z,_1) modulo 2147483647, i = 1,2,3,... (7.1)

can be performed efficiently on any machine allowing 48 bit products and 
dividends. Even the CDC 6600 and its successors, which have unusual 
integer arithmetic, allow efficient implementation of this computation.

The generator of (7.1) is widely used and has been implemented in a 
variety of software packages, including non-IBM software for non-IBM 
machines. However, like any random number generator, some subtle 
deviations from desired behavior are indicated by some statistical tests. (For 
many generators we would have to omit "subtle" from this statement.) A 
technique that can be used to improve upon almost any generator is called 
"shuffling," analogous to picking a card from a shuffled deck of cards. A 
table with n entries (n approximately 100) is initialized with Z ,, Z2, ..., Z„. 
Then when the generator is called, we obtain Z n+j, use this value to select a 
table entry and return that table entry. The table entry is replaced by Z n+j. 
(A variation on this approach is to use two sub-generators, one for filling 
the table entries and one for picking the table entry.) The generator 
LLRANDOM [LEAR73] uses n = 128 and uses the least significant 7 bits 
of Z n + i to select the table entry. Figure 7.2 shows a PASCAL function for 
this generator and the statements to initialize the table. (We should point 
out that random number generators are often implemented in assembly 
language, and that it is possible to avoid relatively expensive division in
structions if this is done. It is doubtful that there is any noticeable saving in



SEC. 7.1 /  SIMULATION PROGRAMS 199

the simulations we discuss, but the savings may be noticeable in other 
applications of random number generators.

CONST M=2147483647.0; A=16807.0;
TYPE RANDINT=1..2147483646;
VAR Z: RANDINT;

TABLE: ARRAY[0..127] OF RANDINT;
I: INTEGER;

FUNCTION RANDOM(VAR Z: RANDINT): REAL;
BEGIN

(*Z:=(A*Z) MOD M*) Z:=TRUNC(A*Z - (TRUNC((A*Z)/M)*M)); 
RANDOM:=TABLE[Z MOD 128]/M;
TABLE[Z MOD 128]:=Z 

END; (*RANDOM*)

Z:=314159; (*AN ARBITRARY VALUE*)
FOR I:=0 TO 127 DO (*INITIALIZE TABLE *)

BEGIN
(*Z:=(A*Z) MOD M*) Z:=TRUNC(A*Z - (TRUNC((A*Z)/M)*M)); 
TABLE[I]:=Z 

END;

Figure 7.2

Given a generator for uniform random variables in the interval (0,1), 
we return to the generation of other random variables. Consider the uni
form random variable on the interval (a,b) where a and b are arbitrary real 
numbers such that a is less than b. The distribution function is 
Fx(x0) = (x0 — a ) / (b  — a) for in the interval (a,b), as shown in Figure 
7.3. Given a value uQ in the interval (0,1) we would like to obtain the 
appropriate value of x0. Starting with uQ = (x0 — a)/ (b  — a), we can 
directly obtain x 0 = (b — a)u0 + a.

Suppose we wish to obtain a sample from the exponential distribution 
shown in Figure 7.1. For positive x Q, Fx(x0) = 1 — e~ax°. Thus we have

1 — ax *Uq = 1  e °,

~ u0 ~

In (1 -  m0) = In e “ ° = -  ax0 In e = -  axQ,

and
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*0 =  - ( 1 / a )  In (1 -  m0).

Notice that 1 — u{) has the same distribution as u0, so a program would 
actually use x () = - (1 /a )  In w().

Figure 7.3

Suppose we have a discrete distribution with n possible values, a ,, 
a2, ..., an, with corresponding probabilities p x, p 2, •••, p n, which sum to 1. 
If we define qt to be the cumulative probability for the ilh value, i.e., =
p i + p 2 + ... + Pj, then we sample from this distribution by choosing a, 
where i is the smallest value such that m0 < qr Figure 7.4 illustrates this 
procedure for n = 3 and a x < a2 < a3. Note that this latter condition is 
required only for clarity of the figure. Usually we would choose the sub
scripts so that Pj > pj for i < j , to allow the procedure to inspect the 
fewest values in determining a given sample.

Figure 7.4

These three distributions, the uniform, the exponential and the discrete, 
along with the branching Erlang distribution discussed in Chapter 3, are the
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only ones we will need for our simulations. The above techniques can be 
used in a straightforward way to sample from the branching Erlang distribu
tion; the details are left as exercises. The inverse distribution approach we 
have used can be applied whenever we have a convenient expression or 
efficient algorithm for obtaining the inverse of the distribution function. 
However, we should point out that alternate approaches are available. For 
example, there are alternate approaches to sampling from the exponential 
distribution which are more computationally efficient but are more complex 
and may require more memory. These approaches for the exponential 
distribution are entirely reasonable; we ignore them because of their com
plexity. Further, there are interesting distributions for which there is no 
practical way to obtain the inverse distribution function. In these cases we 
must use alternative approaches. Regardless of the specific approach we 
will need a generator for the uniform distribution on the (0,1) interval.

7.1.2 Event List Mechanisms (Simulated Time)

Perhaps the principal difference between simulation programs and other 
programs is that is that the simulation program must provide the timing 
mechanism for the simulated system and take simulated time into considera
tion in its actions. The usual approach to this problem is to identify signifi
cant events in the simulated system, i.e., times when noticeable changes 
occur. It is at those points in simulated time that the simulation program 
must take action. Each event is described by the time it is to occur and by 
the action that takes place. For a queueing network model, a typical event 
is the completion of a job’s service time. The simulation program maintains 
a list of events ordered by time of occurrence. The program cycles through 
the following steps: (1) Select the event with the earliest time. (2) Set the 
simulated clock to this time. (3) Perform the action.

Suppose we wish to simulate the cyclic queue model which we have 
solved numerically. Assuming FCFS scheduling, the only events we need to 
consider are the service completions. While jobs are in service, the simula
tion program does not need to take any action. However, when a job 
finishes service the program must reassign the server to a waiting job, if 
there is one, and the program must move the job to the other queue and 
possibly initiate service for the job. The program can view simulated time 
as moving forward in discrete leaps, with leaps ending because of CPU or 
I/O completions. If we assume exponential service times in our queue 
model, then the probability of two simultaneous events (service comple
tions) is negligible. Ŵ ith nonexponential service times or other models, 
simultaneous events may occur frequently. See Figure 7.5. In these cases 
we must have a rule for determining which of two simultaneous events to 
handle first; for our purposes we will arbitrarily choose the event which was 
placed on the event list first.
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j |  j Simulated time

CPU CPU I/O CPU I/O CPU Service completions
I/O

Figure 7.5
There are a variety of ways in which we can store and manipulate the 

event list in our simulation program. Since we must keep the list ordered by 
event times, since we will make insertions (and possibly, deletions) any
where in the list, and since the list will vary in size, an array or similar table 
will be inappropriate unless the number of events on the list is always small. 
This is because of the cost of moving many elements when a change is 
made. The most common, and often the most appropriate, representation is 
a simple linked list. Each list element consists of (at least) the time of the 
event, data associated with the event (e.g., the queue for completion events 
in the cyclic queue model) and a pointer to the next event in the ordering. 
In addition to list elements, there will be a pointer to the first element in the 
list, and it is convenient to have a pointer to the last element in the list. See 
Figure 7.6.

Time Queue Pointer Element format

First

Last

Figure 7.6

TYPE ELEMPTR: tELEMENT;
ELEMENT=RECORD

TIME: REAL;
QUEUE: INTEGER; 
NEXT: ELEMPTR 

END;
VAR FIRST, LAST, AVAIL: ELEMPTR;

Figure 7.7a
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PROCEDURE INSERTEVENT(T: REAL; Q: INTEGER);
(*INSERTEVENT ADDS EVENT AT TIME T FOR QUEUE Q TO LIST*) 
VAR TEMP, L: ELEMPTR;
BEGIN

IF AVAIL=NIL THEN 
NEW(TEMP)

ELSE
BEGIN (*PREVIOUSLY USED STORAGE AVAILABLE*)

TEMP:=AVAIL;
AVAIL:=AVAILt.NEXT 

END;
TEMPt.TIME:=T;
TEMPt.QUEUE:=Q;
IF FIRST=NIL THEN

BEGIN (*LIST WAS EMPTY*)
FIRST:=TEMP;
LAST:=TEMP;
TEMPt.NEXT:=NIL 

END
ELSE IF T<FIRSTt.TIME THEN

BEGIN (*INSERT AT BEGINNING OF LIST*)
TEMP t.NEXT:=FIRST;
FIRST;=TEMP 

END
ELSE IF T>LAST t .TIME THEN

BEGIN (* INSERT AT END OF LIST*)
LAST t .NEXT:=TEMP;
LAST:=TEMP;
TEMPt.NEXT:=NIL 

END 
ELSE

BEGIN (*INSERT SOMEWHERE IN MIDDLE OF LIST*)
L :=FIRST;
WHILE T>Lt.NEXTt.TIME DO 

L:=Lt.NEXT;
TEMP t .NEXT:=Lt .NEXT;
Lt.NEXT:=TEMP 

END;
END; (*INSERTEVENT*)

Figure 7.7b
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PROCEDURE REMOVEFIRSTEVENT(VAR T :REAL; VAR Q: INTEGER);
(♦REMOVEFIRSTEVENT RETURNS TIME T AND QUEUE Q OF FIRST 
EVENT*)

VAR TEMP: ELEMPTR;
BEGIN

IF FIRST=NIL THEN 
BEGIN

WRITELN(’REMOVEFIRSTEVENT —  EMPTY LIST');
HALT

END
ELSE

BEGIN
T :=FIRST t.TIME;
Q :=FIRST t.QUEUE;
TEMP:=FIRST;
FIRST:=FIRST t .NEXT;
IF FIRST=NIL THEN 
LAST:=NIL;

TEMPt.NEXT:=AVAIL;
AVAIL:=TEMP 

END
END; (*REMOVEFIRSTEVENT*)

FIRST:=NIL;
LAST:=NIL;
AVAIL:=NIL;

Figure 7.7c
Figures 7.7a, 7.7b and 7.7c show PASCAL procedures for inserting an 

element in this linked list representation and for removing the first element. 
PASCAL provides the NEW procedure for obtaining storage for elements, 
but provides no complementary procedure for returning storage. So the 
procedures maintain an auxiliary list of previously used elements with the 
AVAIL pointer and only calls NEW when this list is empty. The represent
ation of the figures will be adequate for our simulations, but eventually we 
will want to add a backward pointer to the elements so that we can effi
ciently remove events in the middle of the list.

Many other organizations can be used for the event list but these will 
only be appropriate when the list usually has many (more than 30) ele
ments. For our cyclic queue model the maximum list length will be the 
number of servers (the CPU and the I/O devices).
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7.1.3 Basic Performance Estimates
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We have presented most of the mechanics of a simulation of the cyclic 
queue model except for the procedures for handling the completion event. 
These procedures are fairly simple and will be described in Section 7.1.4. 
The data structures and details of those procedures will depend to a certain 
extent on what performance measures we wish to obtain, so we provide a 
brief discussion of performance estimates first. We cannot overemphasize 
that we obtain only estimates for the performance measures of the model, in 
much the same sense that the approximations of Chapter 6 provide only 
estimates. In either approximation or simulation, there will usually be some 
error in the estimates. With approximations we usually cannot estimate the 
error. With simulation we can provide estimates of the variability of the 
basic estimates, and can make the error "small" if the simulation run is 
"long" enough. We will return to these topics in later sections.

For now we will be content with simple estimates for utilization, 
throughput, mean queue length and mean queueing time. As before, we will 
count jobs in service as part of the queue length and service time as part of 
the queueing time. Let us assume the simulation stops at simulated time T. 
Since utilization is defined as the fraction of time the server is busy, we can 
estimate the utilization by summing the busy times of the server during the 
simulation run and dividing by T  when the run is over. If there are k identi
cal servers, then we can accumulate the busy times for the k  servers togeth
er, and then estimate the utilization of each one by dividing this aggregate 
busy time by kT. There are two obvious ways to accumulate the busy time 
for a server. One is to simply add the service times at some appropriate 
point, e.g., when the sample is obtained, when a job begins service or when 
a job ends service. However, this may become tricky when we need to 
include or exclude partial service times at the end of the run. Further, this 
does not easily generalize to certain cases of interest, so we take a more 
direct approach. When a server becomes busy, we record the time for future 
use. Then, when the server becomes idle or the simulation terminates, we 
take the difference of the current time and this recorded time and add this 
difference to our sum of busy times. See Figure 7.8. Note that, except for 
possible numerical differences, we can break the busy periods into discrete 
subperiods and add the length of the subperiod to our accumulated busy 
time. This is more convenient with multiple identical servers and allows us 
to combine the utilization estimation process with the queue length estima
tion process described below.

For throughput, we need only count the number of jobs going through 
the queue and divide by T to get our estimate. Again, we have a problem 
with jobs in service at the end of the run. We will arbitrarily omit these 
jobs in our throughput estimates.
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Figure 7.8
There are at least two ways we can estimate the mean queue length. 

One would be to estimate the queue length distribution and then use that 
estimate to obtain the mean queue length. This approach is expensive in 
memory if the potential queue length is large and so is only appropriate if 
we want the distribution estimate as well. An alternative is closely related 
to our discussion of Little’s Rule in Chapter 2. We can look at queue 
length as a function of time (Figure 7.9) and estimate the mean queue 
length as the integral of that function divided by T. In other words we 
estimate the mean queue length by the enclosed area in Figure 7.9 divided 
by T. We can estimate this area easily, in a manner analogous to our 
preferred approach to estimating busy time. Each time the queue length 
changes, we record the time for future use. We subtract the previously 
recorded time from the current time, multiply this difference by the previous 
queue length and add that product to our summation of the area.

There are also two obvious ways to estimate the mean queueing time. 
We could simply observe the queueing times and use their average as our 
estimation of the mean. However, this effort is unnecessary if we are only 
interested in the mean. By Little’s Rule we know the mean queueing time is 
equal to the mean queue length divided by the throughput. Using our 
estimators for the queue length and throughput, we can eliminate T from 
numerator and denominator and use the integral of the queue length func
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tion (the area of Figure 7.9) divided by the number of completions as our 
estimate of mean queueing time.

7.1.4 Cyclic Queueing Network Simulator

We are now prepared to present a complete simulation program for the 
simple cyclic queueing network model described in earlier chapters. The 
only missing components are the data structures for the queues and the 
mechanics of handling the completion events. If we are only interested in 
the above performance measures, if the jobs are homogeneous, and if we 
assume FCFS scheduling, then a counter giving the length of the queue is all 
we need to represent each queue. In Section 7.3 we will consider more 
general data structures for the queue. So the mechanics of the completion 
event will be to (1) decrease the counter for the queue where the comple
tion occurs, (2) schedule another completion event for that queue if there is 
a waiting job, (3) increase the counter for the other queue, and 
(4) schedule a completion event for the other queue if there is an idle 
server. Since the following generalizations add no complexity and slightly 
simplify the code, we will allow the number of queues in series to be arbi
trary, and we allow multiple identical servers at each queue. We will actual
ly simulate the same model that we solved using the iterative numerical 
method in Chapter 3. For this model we only obtained state probabilities in 
Chapter 3. Figure 7.10 gives the numerical values for the above measures 
for this model.

Queue U R L Q
1 0.812 0.122 1.596 13.082
2 0.609 0.122 1.404 11.508

Figure 7.10

We will run the simulation three times, for 100, 1000 and 10000 
events. Figures 7.11a, 7.11b and 7.11c show the complete simulation 
program except for the bodies of procedures previously defined. The han
dling of the completion events is separated into two procedures, one for the 
queue where the completion occurs and one for the queue where the job 
arrives. This definition of procedures allows easy generalization to networks 
with other routing paths between queues. Figure 7.12 shows the output 
from the simulation program.

We arbitrarily initialized the simulated system with all jobs at the first 
queue. As we look at this model further in Section 7.2, it will be apparent 
that this choice is of little consequence. This is not to say that choice of 
initial state is irrelevant for more complex models.
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PROGRAM CYCLIC(OUTPUT);
(*PROGRAM TO SIMULATE A CYCLIC MODEL WITH NQ QUEUES AND NJ 
JOBS*)

CONST M=2147483647.0; A=16807.0;
NQ=2; NJ= 3; B1= 0. 15; B2 = 0.1 ; NIO=2;

TYPE RANDINT=1..2147483646;
ELEMPTR: tELEMENT
ELEMENT=RECORD

TIME: REAL;
QUEUE: INTEGER;
NEXT: ELEMPTR 

END;
VAR Z: RANDINT;

TABLE: ARRAY[0..127] OF RANDINT;
I: INTEGER;
FIRST, LAST, AVAIL: ELEMPTR;
CLOCK: REAL;
QUEUES: ARRAY[1..NQ] OF 

RECORD
NUMBERSERVERS: INTEGER;
MEANSERVICE: REAL;
LENGTH: INTEGER;
TIMELENGTHCHANGED: REAL;
SUMTIMELENGTH: REAL;
SUMBUSYTIME: REAL;
NUMBERCOMPLETIONS: INTEGER 

END;
RUN, NUMBEREVENTS, EVENTLIMIT: INTEGER;

FUNCTION RANDOM(VAR Z: RANDINT): REAL;

PROCEDURE INSERTEVENT(T: REAL; Q: INTEGER);

PROCEDURE REMOVEFIRSTEVENT(VAR T :REAL; VAR Q: INTEGER);

FUNCTION MIN(V1,V2:INTEGER):INTEGER;

Figure 7.11a
The three runs required roughly 33 ms., 330 ms. and 3.3 seconds, 

respectively of CPU time on a CDC 6400. These certainly are inexpensive 
runs, but then this model is trivial for nearly any solution method. Using the 
methods of Chapter 5, one can obtain these results easily by hand, with 
appropriate use of a minimal calculator. Even the brute force iterative 
solution of Chapter 3 requires a few milliseconds on a CDC 6400. For this
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PROCEDURE COMPLETE(Q: INTEGER);
(♦HANDLES COMPLETION OF A JOB AT QUEUE Q* )
BEGIN

WITH QUEUES[Q] DO 
BEGIN

(*STATISTICS*)
NUMBERCOMPLETIONS:=NUMBERCOMPLETIONS+1; 
SUMTIMELENGTH:=SUMTIMELENGTH+(CLOCK

-TIMELENGTHCHANGED)*LENGTH; 
SUMBUSYTIME;=SUMBUSYTIME+(CLOCK-TIMELENGTHCHANGED) 

*MIN(LENGTH,NUMBERSERVERS); 
TIMELENGTHCHANGED:=CLOCK;
(*MECHANICS*)
LENGTH;=LENGTH-1;
IF LENGTH>NUMBERSERVERS THEN

INSERTEVENT(CLOCK-MEANSERVICE*LN(RANDOM(Z)),Q)
END

END; (*COMPLETE*)
PROCEDURE ARRIVE(Q : INTEGER);
(*HANDLES ARRIVAL OF A JOB AT QUEUE Q*)
BEGIN

WITH QUEUES[Q] DO 
BEGIN

( *STATISTICS* )
SUMTIMELENGTH:=SUMTIMELENGTH+(CLOCK

-TIMELENGTHCHANGED)*LENGTH; 
SUMBUSYTIME:=SUMBUSYTIME+(CLOCK-TIMELENGTHCHANGED) 

*MIN(LENGTH,NUMBERSERVERS) ; 
TIMELENGTHCHANGED:=CLOCK;
(♦MECHANICS*)
LENGTH:=LENGTH+1;
IF LENGTH<NUMBERSERVERS THEN

INSERTEVENT(CLOCK-MEANSERVICE*LN(RANDOM(Z)),Q)
END

END; (*ARRIVE*)

Figure 7.11b
trivial model, even the longest simulation run does not produce results 
correct to three significant digits. These statements emphasize a principal 
liability of simulation: a relatively long simulation run may produce relatively 
inaccurate results. We are assuming that the longer the simulation run the 
more likely it is that the results will be accurate. This will usually be a 
correct assumption.
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BEGIN
(♦INITIALIZATION*)
Z:=314159; (*AN ARBITRARY VALUE*)
FOR I:=0 TO 127 DO ^INITIALIZE TABLE *)

BEGIN
(*Z: = (A*Z) MOD M*) Z:=TRUNC(A*Z - (TRUNC( (A*Z)/M)*M) ) ;
TABLE[I]:=Z 

END;
AVAIL:=NIL;
EVENTLIMIT: = 1 0 ;
FOR RUN:=1 TO 3 DO 

BEGIN
FIRST:=NIL;
LAST:=NIL;
CLOCK:=0.0;
NUMBEREVENTS:=0;
EVENTLIMIT:=10*EVENTLIMIT;
FOR I:=1 TO NQ DO 
WITH QUEUES[I] DO 

BEGIN
LENGTH:=0;
TIMELENGTHCHANGED:=0.0;
SUMTIMELENGTH:=0.0;
SUMBUSYTIME:=0.0;
NUMBERCOMPLETIONS:=0 

END;
QUEUES[1].NUMBERSERVERS:=1;
QUEUES[1].MEANSERVICE:=1.0/B1;
QUEUES[1].LENGTH:=NJ;
INSERTEVENT(CLOCK-QUEUES[1].MEANSERVICE 

*LN(RANDOM(Z)),1);
QUEUES[2].NUMBERSERVERS:=NIO;
QUEUES[2].MEANSERVICE:=1.0/B2;

(*RUN*)
WHILE (FIRSTONIL) AND (NUMBEREVENTS<EVENTLIMIT) DO 

BEGIN
NUMBEREVENTS:=NUMBEREVENTS+1;
REMOVEFIRSTEVENT(CLOCK,I);
COMPLETE(I);
ARRIVE(I MOD NQ + 1)

END;

(♦PRINT STATISTICS*) 
WRITELN;
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WRITELN('NUMBER OF EVENTS:',NUMBEREVENTS:8,
' SIMULATED TIME:',CLOCK:10:3);

WRITELN;
WRITELN(

'QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME'); 
FOR I:=1 TO NQ DO 

WITH QUEUES[I] DO
IF NUMBERCOMPLETIONS>0 THEN 
BEGIN

SUMTIMELENGTH:=SUMTIMELENGTH+
(CLOCK-TIMELENGTHCHANGED)* LENGTH; 

SUMBUSYTIME:=SUMBUSYTIME+
MIN(LENGTH,NUMBERSERVERS)* 
(CLOCK-TIMELENGTHCHANGED) ;

WRITELN(I:5,
SUMBUSYTIME/(NUMBERSERVERS * CLOCK) : 1 2:3 , 
NUMBERCOMPLETIONS/CLOCK:11:3, 
SUMTIMELENGTH/CLOCK:13:3, 
SUMTIMELENGTH/NUMBERCOMPLETIONS:14:3)

END;

(* PUT LEFTOVER EVENTS ON AVAIL LIST*)
IF FIRSTONIL THEN 
BEGIN

LAST t .NEXT:=AVAIL;
AVAIL:=FIRST 

END
END

END.

Figure 7.1lc
The reader may also notice that the programming effort to produce this 

simulation is significantly greater than the effort to produce a numerical 
program to solve this model. However, this is not an entirely fair compari
son. Some of the procedures, i.e., those for random number generation and 
event list manipulation, can be used with little or no modification in very 
general simulation programs. This program can be used essentially without 
modification to simulate networks with many queues and varying numbers 
of servers per queue. This certainly is not true of the iterative or recursive 
techniques of Chapter 3, though it is true of the numerical techniques of 
Chapter 5. Those techniques are based on a product form solution and will 
not be applicable with FCFS scheduling and non-exponential service times. 
The simulation program, on the other hand, requires relatively trivial modifi
cation to consider other distribution functions. It is difficult to numerically
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NUMBER OF EVENTS: 100 SIMULATED TIME: 397.416

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
1 0.807 0.128 1.407 10.964
2 0.700 0.123 1.593 12.920

NUMBER OF EVENTS: 1000 SIMULATED TIME: 3995.699

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
1 0.797 0.125 1.535 12.238
2 0.631 0.125 1.465 11.735

NUMBER OF EVENTS: 10000 SIMULATED TIME: 40884.621

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
1 0.805 0.122 1.567 12.814
2 0.619 0.122 1.433 11.717

Figure 7.12
obtain the queueing time distributions for this model, and it would be 
virtually impossible to do so if we were to increase the number of queues 
and allow non-exponential service times. The simulation program, on the 
other hand, requires relatively trivial modification to consider other distribu
tion functions. It is difficult to numerically obtain the queueing time distri
butions for this model, and it would be virtually impossible to do so if we 
were to increase the number of queues and allow non-exponential service 
times. With a few modifications to our data structures for the queues and 
additions to the completion and arrival procedures, the simulation program 
could be used to estimate the queueing time distributions. These extensions 
to the simulation program would cause a modest increase in the program’s 
computational requirements, and might require significantly longer runs to 
obtain sufficiently accurate results, depending on the nature of the service 
time and queueing time distributions.

The discussion so far has, hopefully, given the reader a feel for the 
problems cited in the introduction of this chapter. There is another problem 
worth mentioning. As a consequence of the generality of simulation, simula
tion models often contain excessive detail and are unwieldy for this reason. 
We have emphasized, and will continue to emphasize, some of the system 
characteristics with the most impact on performance. Our intent is to help 
the reader to avoid excessive detail in models, especially simulation models. 
The reader should be aware of our intent, and be prepared to consider other 
characteristics with respect to models of particular systems.
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We have emphasized the variability and potential for error in perform
ance estimates obtained by simulation. In this section we will take a some
what more formal view of this estimation problem. Our ultimate objective 
in this section is to show how "confidence interval" estimates may be 
obtained and interpreted with respect to model performance measures. We 
will find it most convenient to focus our discussion on estimating the mean 
queueing time. The same approaches can be applied to most other perfor
mance measures of interest, and we will do so in the program examples.

7.2.1 Sample Means and Laws of Large Numbers

A deterministic sequence x j, x 2, x 2, ... is said to converge to a limit C 
if for all a > 0 there exists a finite number n0 such that \ xn- C \  < a for 
n > «q. This is written

lim xn — C.
n -+■ oc

We can similarly define convergence of a sequence of random variables. A 
sequence y lt y 2, of random variables is said to converge in probability 
("stochastically converge") to C if for all a > 0,

lim Prob[ \ yn- C \  > a] = 0.

In general, if the value of a performance measure is well defined, we want 
to say that the simulation estimator converges in probability to this value. 
This will usually be true, but we must be careful not to read too much into 
such a statement of convergence.

Let us consider the average of the queueing times as an estimator of 
the mean queueing time. (The alternative estimator used in the program of 
Section 7.1.4 will give the same numerical values except for effects of 
queueing times in progress at the end of the run. These effects should be 
negligible if the number of queueing times in progress is small relative to the 
total number.) In traditional terminology, the collection of observed queue
ing times would be called a "sample," and their average would be called the 
"sample mean." The sample mean of n observed queueing times, n =
1,2,3,..., will be our random variable, y n, and it can be shown under fairly 
mild assumptions that if the mean queueing time is well defined, the se
quence of sample means, y v  y 2, y 3,..., converges in probability to the mean 
queueing time. This statement of convergence would be known as a "law of 
large numbers."
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This law of large numbers allows us to say that if out sample size is 
large enough (i.e., our simulation run is long enough) then the sample mean 
(i.e., the average queueing time) is probably very close to the expected 
value (i.e., the mean queueing time). This does not allow us to say that the 
sample mean cannot be far from the expected values, but only that the 
probability of this occurring is small.

Similar statements can be made about the other performance measures 
we have considered, but the statements are more awkward because the 
sample size (i.e., simulated time) is not discrete. The reader may more 
easily imagine these statements if we were to measure the sample size in 
numbers of events.

7.2.2 The Normal Distribution and Central Limit Theorems

We would like to make a probabilistic statement about the potential 
error in our simulation estimates. Nearly all approaches to this problem are 
dependent on a very special probability distribution, the normal distribution, 
or on distributions closely related to the normal distribution. (The normal 
distribution is also known as the Gaussian distribution.) The normal distri
bution has distribution function

The mean of this distribution is m and the standard deviation is o. Notice 
that the distribution is completely specified by these two parameters. Given 
a normal distribution of the form (7.2) we can use the transformation 
z0 = (x() — m) / o  to obtain a normal distribution with mean 0 and stan
dard deviation 1. This transformed distribution is known as the standard (or 
unit) normal distribution. There is no simple expression for the normal 
distribution (7.2) so we usually depend on a numerical characterization. 
There are extensive tables of the standard normal distribution, and we can 
use these tables in combination with the above transformation to obtain 
numerical values for an arbitrary normal distribution. Figure 7.13 shows 
both the density function and the distribution function for the standard 
normal distribution. Note the symmetry of the density function around the 
mean.

There are some very remarkable properties associated with the normal 
distribution. We are most interested in the following one. If x 2, ..., xn 
are independent random variables with identical distributions (not necessari
ly normal) and finite mean and variance, then the distribution of their sum 
tends toward a normal distribution as n becomes large. This is one version 
of a class of results known as central limit theorems. Such a result may be

(7.2)
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accurate for fairly small values of n, e.g., 10 to 20, depending on the specif
ic distributions involved. (Aside — The normal distribution is one of the 
ones we alluded to in Section 7.1.1 as one where an alternative approach to 
random variable generation is appropriate because of difficulty in character
izing the inverse distribution. One approach to generating normal random 
variables is to use the sum of 12 uniform random variables on the (0,1) 
interval and appropriately standardize this sum with the transform described 
above. Though this approach by itself is rather crude, it can be refined to 
produce a usable method.)

7.2.3 Confidence Intervals

Suppose z0 is a random variable with the standard normal distribution. 
Let F ~ 1(a) be the inverse of Fz(z0), i.e., Prob[z0 < F J^ a )]  = a, 
0 < a < 1. From the symmetry of the density function (Figure 7.13), it is 
clear that Prob[0 < z0 < F J J(a)] = a — .5, .5 < a < 1, and 
Prob[-Fz_1(a) < z0 < Fz_1(a)] = 2 « - l .  Thus,

Prob[—F~*((l + a ) /2) <z Q< F J X{{\ + a ) / 2)] = a , 0 < a <  1. (7.3)

Tables of F~^(a)  are readily available. For example, for a = .9, 
/ ^ ( ^ S )  = 1.645 and we say that Prob[ — 1.645 < z0 < 1.645] = .9. 
Notice that if we have a known value z0, either it is contained in the interval 
[-1.645,1.645] or it is not. The probabilistic statement only makes sense if 
z0 is unknown. However, if we obtain many values from the distribution 
Fz, we would expect 90% of them to be contained in the interval 
[-1.645,1.645].
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Now suppose we have random variables x j, x 2, x n which are inde
pendent and identically distributed, each with mean m and variance a . 
Then x x/n,  x 2/n,  ..., x j n  are also independent and identically distributed, 
each with mean m/ n  and variance (a / n ) . Let us take a sample consisting 
of one value from each random variable x x, x 2, ■■■, x n. Let us consider the 
sample mean (the average of these values) and call it y n. Then y n = (x\ /n)  
+ (x2/ n)  + ... + (xn/ n)  has mean n( m/ n)  = m. Further, since y n is the 
sum of independent random variables, its variance is the sum of the individ
ual variances, i.e., n( o / n ) 2 = a2/n.  If n is large enough, we can reasonably 
assume that y n has a normal distribution and that (yn -  m)f~n / a has the 
standard normal distribution. From (7.3) we have

P rob[-F 7 l((l + a) /2)  < (yn-m)V~n / a < F “ 1((l + a ) /2)] = a , 

and simple algebra allows us to write

Prob[yn- d  < m < y n + d] = a,

where

d = F ~1 ((1 + a) /2)o/ s /n.

Notice that m is not a random variable, but [yn — d,yn + d] is a random 
interval, i.e., its endpoints are random variables. We must be very careful in 
our interpretation of this interval with respect to m. The interpretation is 
similar to our statements with respect to the interval obtained in (7.3), but 
here the interval is random while there it was not, and here m is fixed but 
there z0 was random. Before obtaining a sample from jcj, x 2, ..., x n, we can 
plan to construct the above interval and say that the interval will contain m 
with probability a. Once we have obtained the sample, either m is con
tained in the interval or it is not; we should not make a probabilistic state
ment. However, if we repeat this process many times, we would expect that 
a x 100% of the intervals would contain m. The interval \yn — d,yn + d] 
is called a confidence interval for m\ a x 100% is called the confidence 
level. Typical confidence levels are 90%, 95% and 99%. We will always 
use 90% in our examples.

Finally, notice that the variance, o , of the individual random variables 
is known. In practice, it is unlikely that we would know the variance 
without also knowing the mean, in which case we would have no use for the 
confidence interval. Again assuming n is large, we could estimate the vari- 
ance by using the sample variance s , where
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2s 1
n -  12(=i i

n -  1
2

x , (7.4)

Since we are using an estimate of the variance in producing the interval, the 
interval is properly called a confidence interval estimate, but we will just use 
the term "confidence interval."

Having stated the basic results, we will now discuss the two most 
theoretically sound methods for producing confidence intervals in simula
tion, independent replications and the regenerative method.

7.2.4 Independent Replications

In most of our discussion so far, we have implicitly or explicitly as
sumed that (1) the modeled system appears to reach an equilibrium condi
tion and (2) that we are interested in estimating system performance, given 
that the system has reached this equilibrium. This will be true for most of 
the models we have considered, with the obvious exception being open 
networks where one or more queues has an arrival rate greater than its 
service rate. Hopefully this will also be true of the modeled system as well, 
provided that we consider appropriate time periods and are aware of our 
assumptions in interpreting performance measures.

We may also be interested in transient behavior of the system, whether 
or not the system reaches equilibrium. Lor example, we may be interested 
in knowing the mean time until all jobs are at the CPU queue, given the 
current location of jobs. Or we may be interested in the mean response time 
for an interactive command, given the current state of the system. In both 
of these examples the system may be an equilibrium condition, but this is 
irrelevant. Suppose we wish to estimate the mean number of terminals 
during the day. If we are considering a single day as our measurement 
period, then it is probably not reasonable to consider the system as being in 
equilibrium, though we might reasonably consider a different period of time 
and make equilibrium assumptions.

Lor the sorts of models we have considered, numerical solutions for 
transient behavior are much more difficult than numerical solutions for 
equilibrium behavior. We have ignored such solutions for that reason. 
However, with simulation, estimation of transient behavior is no more 
difficult, in general, than estimation of equilibrium behavior. In fact, estima
tion of transient behavior is a simpler problem.

Consider our simulation of cyclic queueing networks. If our objective is 
to estimate the mean utilization of the servers, given that we initially have
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all jobs at the first queue and observe the system for some number of 
service completions, say 100, then we have already given in Figure 7.12 the 
results of a single experiment with these specifications. One difficulty with 
using the results of that figure for equilibrium estimates is that the system 
was not initially in an equilibrium condition, or at least we have not justified 
our assumption that it was in equilibrium. If our interest is in the above 
transient measure, or something similar, then we do not have to justify an 
equilibrium assumption. However, we must still be aware that we are 
dealing with random processes and that the results of a single experiment 
may or may not be close to the desired measure. The obvious step is to 
repeat the experiment many times and use the average of the experimental 
results as our final estimate. In other words, we replicate the experiment.

We now have all we need to provide confidence intervals for our 
desired performance measure, using the method known as independent 
replications. If we make identical replications of our experiment, i.e., we 
make identical simulation runs except that we do not reinitialize the random 
number generator, then we can reasonably assume that the distributions of 
the performance measures have finite mean and finite variance, then if the 
number of replications is large enough, we can reasonably assume that the 
average over the replications has a normal distribution and we can estimate 
confidence intervals as described in the last section. (We can almost cer
tainly assume a finite mean for the measures of interest if the system has an 
equilibrium, and this may be a safe assumption otherwise. The finite vari
ance assumption may be harder to justify, but will usually be correct for the 
cases we are interested in.)

So we essentially know all we need to estimate confidence intervals for 
transient behavior. We can also use the method of independent replications 
to estimate equilibrium behavior, but we must make some additional as
sumptions, and these assumptions may be difficult to justify. Essentially we 
must assume that each replication accurately reflects the equilibrium behav
ior of the system. We may separate this assumption into the following two: 
First, the system is an equilibrium for most of each replication. Second, the 
results are not significantly affected by the choice of initial conditions. 
Notice that we would probably be making these assumptions even if we 
were attempting point estimates only, as in the simulation program of Figure 
7.11. Figures 7.14a and 7.14b show the modifications to use the method of 
independent replications with the program of Figure 7.11. Each replication 
is 500 events long, and otherwise is the same as the previous runs that we 
made. Figure 7.15 gives the results of this program for 20 replications.

We can see that all of the known values given in Figure 7.10 are 
contained in the corresponding confidence intervals. We emphasize that it is 
not meaningful at this point to say that the probability that the utilization at
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VAR Z: RANDINT;
TABLE: ARRAY[0..127] OF RANDINT;
I: INTEGER;
FIRST, LAST, AVAIL: ELEMPTR;
CLOCK: REAL;
QUEUES: ARRAY[1..NQ] OF 

RECORD
NUMBERSERVERS: INTEGER; 
MEANSERVICE: REAL;
LENGTH: INTEGER; 
TIMELENGTHCHANGED: REAL; 
SUMTIMELENGTH: REAL; 
SUMBUSYTIME: REAL; 
NUMBERCOMPLETIONS: INTEGER; 
SUMUTIL: REAL;
SUMSQUTIL: REAL;
SUMTPUT: REAL;
SUMSQTPUT: REAL;
SUMQL: REAL;
SUMSQQL: REAL;
SUMQT: REAL;
SUMSQQT: REAL 

END;
RUN, NUMBEREVENTS, EVENTLIMIT: INTEGER; 
UTIL, TPUT, QL, QT: REAL;
DUTIL, DTPUT, DQL, DQT: REAL;

Figure 7.14a
queue 1, .812, is contained in the interval (.806,.828) is .9; we know the 
number .807 is in that interval. Of course, we would not have used the 
simulation at all if we knew the utilization was .807, but knowing or not 
knowing the true value does not change the appropriate interpretation of 
the confidence interval.

If we use independent replications and find that the confidence inter
vals are larger than we had desired, then we can simulate further to try to 
obtain narrower intervals. If we are interested in transient behavior, then it 
is clear that we do not want to make the replications longer, so we simply 
run more replications. If we have retained the summary results from our 
previous replications, e.g., SUMUTIL, SUMSQUTIL, etc., then we can use 
the results from previous replications in producing our new estimates. If we 
are interested in equilibrium results, then the problem is somewhat more
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BEGIN
(* INITIALIZATION*)
Z : = 3 1 4159; (*AN ARBITRARY VALUE*)
FOR I:=0 TO 127 DO (*INITIALIZE TABLE *)

BEGIN
(*Z: = (A*Z) MOD M*) Z:=TRUNC(A*Z - (TRUNC( (A*Z)/M)*M) ) ;
TABLE[I]:=Z 

END;
FOR I:=1 TO NQ DO 

WITH QUEUES[I] DO 
BEGIN

SUMUTIL:=0;
SUMSQUTIL:=0;
SUMTPUT:=0;
SUMSQTPUT:=0;
SUMQL;=0;
SUMSQQL:=0;
SUMQT:=0;
SUMSQQT;=0 

END;
AVAIL:=NIL;
EVENTLIMIT:=500;
FOR RUN:=1 TO NREP DO 

BEGIN
... (*ONE REPLICATION OF THE SIMULATION. *)
FOR I:=1 TO NQ DO 

WITH QUEUES[I] DO
IF NUMBERCOMPLETIONS>0 THEN 
BEGIN

SUMTIMELENGTH:=SUMTIMELENGTH+
(CLOCK-TIMELENGTHCHANGED)*LENGTH; 

SUMBUSYTIME:=SUMBUSYTIME+
MIN(LENGTH,NUMBERSERVERS)* 
(CLOCK-TIMELENGTHCHANGED); 

UTIL:=SUMBUSYTIME/(NUMBERSERVERS*CLOCK); 
SUMUTIL:=SUMUTIL+UTIL;
SUMSQUTIL:=SUMSQUTIL+UTIL*UTIL;
TPUT:=NUMBERCOMPLETIONS/CLOCK;
SUMTPUT:=SUMTPUT+TPUT;
SUMSQTPUT:=SUMSQTPUT+TPUT*TPUT;
QL:=SUMTIMELENGTH/CLOCK;
SUMQL:=SUMQL+QL;
SUMSQQL:=SUMSQQL+QL*QL;
QT:=SUMTIMELENGTH/NUMBERCOMPLETIONS;
SUMQT:=SUMQT+QT;
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SUMSQQT:=SUMSQQT+QT*QT 
END;

(* PUT LEFTOVER EVENTS ON AVAIL LIST*)
IF FIRSTONIL THEN 

BEGIN
LAST t .NEXT:=AVAIL;
AVAIL:=FIRST 

END
END;
WRITELN;
WRITELN('REPLICATIONS:',NREP:4,

' EVENTS PER REPLICATION:',EVENTLIMIT:6) ;
WRITELN;
WRITELN(

'QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME'); 
FOR I:=1 TO NQ DO 

WITH QUEUES[I] DO 
BEGIN

UTIL:=SUMUTIL/NREP;
DUTIL:=1.645

*SQRT((SUMSQUTIL-SUMUTIL*UTIL)/((NREP-1)*NREP)); 
TPUT:=SUMTPUT/NREP;
DTPUT:=1.645

*SQRT((SUMSQTPUT-SUMTPUT*TPUT)/((NREP-1)*NREP)); 
QL:=SUMQL/NREP;
DQL:=1.645

*SQRT((SUMSQQL-SUMQL*QL)/((NREP-1)*NREP)); 
QT:=SUMQT/NREP;
DQT:=1.645

*SQRT((SUMSQQT-SUMQT*QT)/((NREP-1)*NREP)); 
WRITELN('UPPER',UTIL+DUTIL:12:3,TPUT+DTPUT:11:3, 

QL+DQL: 13:3,QT+DQT: 14 : 3) ;
WRITELN(I:5,UTIL:12:3,TPUT:1 1 :3,QL: 13:3,QT: 14 : 3) ; 
WRITELN('LOWER',UTIL-DUTIL:12:3,TPUT-DTPUT:11:3, 

QL-DQL:13:3,QT-DQT:14:3);
END

END.

Ligure 7.14b



222 SIMULATION /  CHAP. 7

REPLICATIONS: 20 EVENTS PER REPLICATION: 500

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0.828 0.125 1.651 13.763

1 0.817 0.123 1 . 606 13.186
LOWER 0.806 0.120 1 . 562 12.609
UPPER 0.622 0.125 1 .438 11.776

2 0.605 0.122 1 . 394 11.443
LOWER 0.588 0.119 1 . 349 11.110

Figure 7.15
complex, at least conceptually. If we are satisfied with the assumption that 
the replications are adequate examples of equilibrium behavior, then we can 
proceed as in the transient case. However, this assumption is difficult to 
justify, so it would be more appropriate to lengthen each replication rather 
than to increase the number of replications. There are two obstacles, if we 
wish to use the data from the replications already made. First, we will have 
difficulty resuming replications where they ended unless we have anticipated 
doing so and have recorded the state of the system, e.g., current queue 
lengths, pending event times, etc., and the values of the statistics accumula
tor variables, e.g., TIMELENGTHCHANGED, SUMTIMELENGTH, etc. 
Even with advance planning the programming effort and memory required 
may make this impractical since we must do this for every replication. 
Second, we will be in an awkward position with respect to our random 
number generator. We would like it to continue for each replication where 
it was left at the previous end of the replication. However, we have already 
used these values for other replications, so we must use some alternative if 
we wish the replications to be independent. Though this second obstacle can 
be overcome, we will usually find that the first one is intractable and be 
forced to choose between discarding our existing results and using longer 
replications on the one hand, or saving our previous results and making 
more replications of the original length, on the other hand.

There is a less rigorous method for estimating confidence intervals for 
equilibrium behavior which is similar to the method of independent replica
tions and is known as batch means. This method uses batches which are 
treated analogously to replications but which are obtained in a different 
manner. Rather than reinitializing the system at the beginning of each 
batch, one batch begins in the state in which the previous batch ended. 
Thus our "independent and identically distributed" assumption will be 
difficult to defend. However, for some systems this is a defensible assump
tion, i f  the batches are long enough, and this method has some advantages of 
convenience. We can reasonably use batch means for our cyclic queue
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model with the parameters as before. Ligure 7.16 shows that the results are 
similar to those of Ligure 7.15.

BATCHES: 20 EVENTS PER BATCH: 500

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0.827 0.125 1.641 13.640

1 0.816 0.122 1 .601 13.136
LOWER 0.805 0.120 1.561 12.632
UPPER 0.623 0.125 1 .439 11.738

2 0.608 0.122 1 . 399 11.444
LOWER 0.592 0.120 1 . 359 11.150

Ligure 7.16

7.2.5 The Regenerative Method

We know from our discussion in Chapter 3 that the future behavior of 
a Markov process is dependent only on the current state of the process, 
then each time the process enters that state the process will have the same 
expected future behavior. We must emphasize "expected"; the actual future 
behaviors will be different. We may say that the Markov process 
regenerates each time it enters the specified (regeneration) state and calls the 
periods between successive entrances to the state regeneration cycles. (We 
should be a little more careful. We can define Markov processes which 
never return to a specified state, and thus are not regenerative. However, all 
Markov processes of the subset defined in Chapter 3 are regenerative. 
There are also regenerative processes which are not Markovian, but we will 
ignore these.)

We can take advantage of the regenerative structure of a simulation 
model to estimate confidence intervals for equilibrium behavior, provided 
we can determine a regeneration state which is entered sufficiently frequent
ly, i.e., the regeneration cycles are sufficiently short. (We can define 
"frequently" and "short" in pragmatic terms. Though theoretical restrictions 
exist, they will usually be weaker restrictions than those imposed by practi
cal considerations.) The regenerative method for confidence intervals is 
independent of our ability or lack of ability to obtain numerical solutions for 
the model. It is principally dependent on our ability to observe enough 
regeneration cycles that we may apply the results of an appropriate central 
limit theorem. Note that this second condition is similar to our requirement 
in the method of independent replications that the number of replications be 
large. (Aside — it is possible to apply the method of independent replica
tions with a few replications using different assumptions about distributions.



This approach will be Ihe same as the one we use for sufficiently large 
numbers of replications.)

A principal advantage of the regenerative method, given the above 
conditions, is that if we initialize the simulation in a regeneration state, then 
we can reasonably assume we have initialized the simulation in an equilibri
um condition! Observing regeneration cycles will then be observing periods 
of equilibrium behavior. We can formally justify the least supportable 
assumption of the method of independent replications for equilibrium 
behavior, that each replication accurately represents equilibrium behavior of 
the system. (Aside — if we know that several regeneration cycles occur 
during each replication, then this is strong support for this equilibrium 
behavior assumption. Our knowledge of the regenerative structure of the 
cyclic queue model was part of the basis for our choice of replication and 
batch lengths in the previous section.)

Besides recognizing the entrances to the regeneration state, the regen
erative method is somewhat more complex for our estimators because the 
regeneration cycles are of random length. Consider estimators for mean 
queueing time. For each replication we estimated mean queueing time as 
SUMTIMELENGTH/NUMBERCOMPLETIONS, and our final estimate 
was simply the average of these values. This was reasonable because each 
replication had a fixed length (measured in events) and was long enough 
that we could reasonably assume that NUMBERCOMPLETIONS had 
essentially the same value for each replication. However, the number of 
completed queueing times during a regeneration cycle may be very small 
and/or highly variable. Thus if we take the average of 
SUMTIMELENGTH/NUMBERCOMPLETIONS over all of the regenera
tion cycles, we may get a quite different result from the value of 
SUMTIMELENGTH/NUMBERCOMPLETIONS taken over a single long 
run and ignoring regeneration cycles. This is unsatisfactory, of course, so we 
take a more careful approach. Rather than use the average of 
SUMTIMELENGTH/NUMBERCOMPLETIONS over the regeneration 
cycles, we use the average of SUMTIMELENGTH divided by the average 
of NUMBERCOMPLETIONS. In other words, we use the quotient of the 
averages rather than the average of the quotient. It is easy to see that this 
is algebraically equivalent to what we would do if we were ignoring regener
ation cycles, i.e., SUMTIMELENGTH/NUMBERCOMPLETIONS equals 
(SUMTIMELENGTH/n)/ (NUMBERCOMPLETIONS/n) where SUM
TIMELENGTH, NUMBERCOMPLETIONS and n are taken over the entire 
run and n is the number of regeneration cycles. In programming this esti
mate, we will not actually do the divisions by n when we are obtaining point 
estimates. Thus with respect to point estimates there is no difference me
chanically whether we consider regeneration cycles or not.
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However, the computations are more complex with respect to confi
dence intervals as compared with our previous methods. For notational 
convenience, let us call the value of SUMTIMELENGTH for the ith regen
eration cycle ur  and the value of NUMBERCOMPLETIONS for the i,h 
cycle, Vj, i = 1 ,2 , ..., n. Because of regenerative structure of our system, 
Ml> m2’ •••> un are independent and identically distributed. Similarly, Vj, v2, 
•••> vn are independent and identically distributed. Further, the pairs 
(“ i»v1)> i u2,v2^’ (w„>v„) are independent and identically distributed. If
we define wn as the average of i/j, «2> ■■■» xn as the average of v,, v2, 
..., vn and y n as wn/ x n, then we can obtain a law of large numbers to show 
that y n converges to m, where m is our mean queueing time. Further, we can 
prove a central limit theorem and eventually produce the confidence interval 
estimate [yn -  d,yn + d ] where

J F - \ ( \ + a ) / 2 ) s  d = z
x y n

>

-  23 V „ v
, 2 2 

+  y„ s v >

n
/ V 1 2 2 \
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2 1 /  v  2 2 \
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Thus our simulation program must recognize when the i,h cycle has
2 2ended and maintain sums of w; , u-v;, v(, and v; , for / = 1, 2, ..., n. For 

mean queueing time, we will maintain these sums in the variables TL, 
TLSQ, TLXNC, NC and NCSQ, respectively. Figures 7.17a, 7.17b and 
7.17c show the modifications to the program of Figure 7.11, and Figure 
7.18 shows the output of this program.

In this program we use the initial state that we have used before: all 
jobs at the first queue. As discussed in Chapter 3, the Markov states for 
the cyclic queue model are uniquely specified by the number of jobs at each 
queue, assuming that service times are exponential. Thus our initial state is 
also a regeneration state, and is used as the regeneration state for determin
ing confidence intervals. We could use other choices for our regeneration
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VAR Z: RANDINT;
TABLE: ARRAY[0..127] OF RANDINT;
I: INTEGER;
FIRST, LAST, AVAIL: ELEMPTR;
CLOCK: REAL;
QUEUES: ARRAY[1..NQ] OF 

RECORD
NUMBERSERVERS: INTEGER;
MEANSERVICE: REAL;
LENGTH: INTEGER;
TIMELENGTHCHANGED: REAL;
SUMTIMELENGTH: REAL;
SUMBUSYTIME: REAL;
NUMBERCOMPLETIONS: INTEGER;
(*SUMS OF CYCLE VALUES*)
(*BT=BUSYTIME;
SQ=SQUARED;
X=TIMES;
CL=CYCLELENTGH;
NC=NUMBERCOMPLETIONS;
TL=TIMELENGTH;*)

BT: REAL;
TL: REAL;
NC: REAL;
BTSQ: REAL;
BTXCL: REAL;
NCSQ: REAL;
NCXCL: REAL;
TLSQ: REAL;
TLXCL: REAL;
TLXNC: REAL 

END;
RUN, NUMBEREVENTS, EVENTLIMIT, EVENTMAX: INTEGER; 
NOEVENTSDURINGCYCLES, NUMBERCYCLES, NOCYCM1: INTEGER; 
TIMECYCLESTARTED, CYCLELENGTH,

SUMCL, SUMCLSQ, VARCL, DCL: REAL;
UTIL, DUTIL, VARBT, COVARBTCL, VART: REAL;
TPUT, DTPUT, VARNC, COVARNCCL: REAL;
QL, DQL, VARTL, COVARTLCL: REAL;
QT, DQT, COVARTLNC: REAL;

Figure 7.17a
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FUNCTION ENDCYCLE: BOOLEAN;
(♦DETERMINES WHETHER AT END OF REGENERATION CYCLE.
IF SO, ENDCYCLE UPDATES ACCUMULATORS.*)
VAR Q: INTEGER;
BEGIN

IF (QUEUES[1] ,LENGTH=NJ) AND (NUMBEREVENTSXD) THEN 
BEGIN

ENDCYCLE:=TRUE;
NOEVENTSDURINGCYCLES:=NUMBEREVENTS;
NUMBERCYCLES:=NUMBERCYCLES+1;
CYCLELENGTH:=CLOCK-TIMECYCLESTARTED; 
TIMECYCLESTARTED:=CLOCK;
SUMCL:=SUMCL+CYCLELENGTH;
SUMCLSQ:=SUMCLSQ+SQR(CYCLELENGTH);
FOR Q :=1 TO NQ DO 

WITH QUEUES[Q] DO 
BEGIN

SUMTIMELENGTH:=SUMTIMELENGTH
+ (CLOCK-TIMELENGTHCHANGED)*LENGTH; 

SUMBUSYTIME:=(SUMBUSYTIME
+ (CLOCK-TIMELENGTHCHANGED)

*MIN(LENGTH,NUMBERSERVERS))/NUMBERSERVERS; 
TIMELENGTHCHANGED:=CLOCK;
(*BT=BUSYTIME;
SQ=SQUARED;
X=TIMES;
CL=CYCLELENTGH;
NC=NUMBERCOMPLETIONS;
TL=TIMELENGTH;*)

BT:=BT+SUMBUSYTIME;
TL:=TL+SUMTIMELENGTH;
NC:=NC+NUMBERCOMPLETIONS;
BTSQ:=BTSQ+SQR(SUMBUSYTIME);
BTXCL:=BTXCL+SUMBUSYTIME*CYCLELENGTH; 
SUMBUSYTIME:=0.0;
NCSQ:=NCSQ+SQR(NUMBERCOMPLETIONS);
NCXCL:=NCXCL+NUMBERCOMPLETIONS*CYCLELENGTH; 
TLSQ:=TLSQ+SQR(SUMTIMELENGTH);
TLXCL:=TLXCL+SUMTIMELENGTH*CYCLELENGTH;
TLXNC:=TLXNC+SUMTIMELENGTH*NUMBERCOMPLETIONS; 
NUMBERCOMPLETIONS:=0;
SUMTIMELENGTH:=0.0 

END
END

ELSE
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ENDCYCLE:=FALSE 
END; (*ENDCYCLE*)

Figure 7.17b
state, but it can be shown that the expected width of the confidence inter
vals is independent of the choice of regeneration state, given the same 
simulated time [CRAN74], Our main criteria in choosing the regeneration 
state are that we can easily identify entrances to the state and that the 
number of regeneration cycles not be too small. Procedure ENDCYCLE is 
used to determine whether or not the system is in the regeneration state 
after such event. Notice that the completion events correspond exactly to 
state transitions of the Markov process. Thus if we find all of the jobs at 
the first queue after handling an event, we know the system has just entered 
the regeneration state.

We would like to have the simulation end at the end of a regeneration 
cycle, for both practical and theoretical reasons. For this reason, the run 
lengths are specified by both a "soft" limit (EVENTLIMIT) and a "firm" 
limit (EVENTMAX). If a cycle end does not occur between these two 
limits, then the program produces confidence interval and point estimates 
based only on the completed cycles. (If there is only one completed cycle, 
or there are no completed cycles, then only point estimates are produced. 
The user of the program should disregard the confidence interval estimates 
if the number of cycles is small.)

The three runs described in Figure 7.18 correspond to the three runs of 
Figure 7.12, with the difference (besides the confidence intervals) being 
that the first and third runs were extended so that the last cycle would be 
complete. Essentially the same computational effort went into the third runs 
of these Figures, the 20 replications of Figure 7.25 and the 20 batches of 
Figure 7.16.

Notice that the confidence intervals for mean queue length from the 
first run of Figure 7.18 do not include the expected queue lengths given in 
Figure 7.10. Recall that we would expect the confidence intervals for a 
particular value for a particular model to contain the expected value for 
90% of the runs if we made a larger number of runs, assuming a 90% 
confidence level. Notice that the confidence intervals from a given run are 
strongly dependent on each other and thus we should not attempt a similar 
statement for the set of confidence intervals from a run. (Notice that the 
queue length intervals for one queue are directly obtainable from the queue 
length intervals for the other queue, the throughput intervals are identical 
for the two queues, etc.) It happens that all the other intervals in Figure
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BEGIN

(* INITIALIZATION*)
Z:=314159; (*AN ARBITRARY VALUE*)
FOR I:=0 TO 127 DO (*INITIALIZE TABLE *)

BEGIN
(*Z : = (A*Z) MOD M*) Z:=TRUNC(A*Z - (TRUNC( (A*Z)/M)*M) ) ; 
TABLE[I]:=Z 

END;
AVAIL:=NIL;
EVENTLIMIT:=10;
FOR RUN:=1 TO 3 DO 

BEGIN
FIRST:=NIL;
LAST:=NIL;
CLOCK:=0.0;
NUMBEREVENTS:=0;
NUMBERCYCLES:=0;
TIMECYCLESTARTED:=0.0;
SUMCL:=0.0;
SUMCLSQ:=0.0;
EVENTLIMIT:=10*EVENTLIMIT;
EVENTMAX:= 2 *EVENTLIMIT;
FOR I:=1 TO NQ DO 

WITH QUEUES[I] DO 
BEGIN

LENGTH:=0;
TIMELENGTHCHANGED:=0.0;
SUMTIMELENGTH:=0.0;
SUMBUSYTIME:=0.0;
NUMBERCOMPLETIONS:=0;
BT:=0.0;
TL:=0.0;
NC:=0.0;
BTSQ:=0.0;
BTXCL:=0.0;
NCSQ:=0.0;
NCXCL:=0.0;
TLSQ:=0.0;
TLXCL:=0.0;
TLXNC:=0.0 

END;
QUEUES[1].NUMBERSERVERS:=1;
QUEUES[1].MEANSERVICE:=1.0/B1;
QUEUES[1].LENGTH:=NJ;
INSERTEVENT(CLOCK-QUEUES[1].MEANSERVICE*LN(RANDOM(Z)),
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QUEUES[2].NUMBERSERVERS:=NIO;
QUEUES|2].MEANSERVICE:=1.0/B2;

(*RUN*)
WHILE (FIRSTONIL) AND (NUMBEREVENTS<EVENTMAX)

AND ((NUMBEREVENTS<EVENTLIMIT) OR NOT ENDCYCLE) DO 
BEGIN

NUMBEREVENTS:=NUMBEREVENTS+1;
REMOVEFIRSTEVENT(CLOCK,I);
COMPLETE(I);
ARRIVE(I MOD NQ + 1)

END;
( *PRINT STATISTICS*)
WRITELN;
WRITELN( 1 NUMBER OF EVENTS: ' ,NUMBEREVENTS:8,

' SIMULATED T I M E C L O C K : 10 : 3) ;
WRITELN;
WRITELN(

'QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME'); 
IF NUMBERCYCLES>1 THEN

(*PRODUCE CONFIDENCE INTERVAL ESTIMATES*)
BEGIN

CYCLELENGTH:=SUMCL/NUMBERCYCLES;
NOCYCM1;=NUMBERCYCLES-1;
VARCL: = (SUMCLSQ-SQR(SUMCL)/NUMBERCYCLES)/NOCYCM1 ; 
FOR I:=1 TO NQ DO 

WITH QUEUES[I] DO 
IF NC>0 THEN 
BEGIN

UTIL:=BT/SUMCL ;
VARBT:=(BTSQ-SQR(BT)/NUMBERCYCLES)

/NOCYCM1;
COVARBTCL: = (BTXCL-BT* SUMCL/NUMBERCYCLES) 

/NOCYCM1;
DUTIL: = 1 .645*SQRT( (VARBT-2 * UTIL* COVARBTCL 

+SQR(UTIL)*VARCL)/NUMBERCYCLES) 
/CYCLELENGTH;

TPUT:=NC/SUMCL;
VARNC:=(NCSQ-SQR(NC)/NUMBERCYCLES)

/NOCYCM1;
COVARNCCL:=(NCXCL-NC*SUMCL/NUMBERCYCLES) 

/NOCYCM1;
DTPUT:=1.645*SQRT((VARNC-2*TPUT*COVARNCCL 

+SQR(TPUT)*VARCL)/NUMBERCYCLES)
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/CYCLELENGTH;
QL:=TL/SUMCL;
VA RTL : = ( T L S Q - S Q R (T L ) /NUMBERCYCLES)

/N0CYCM1;
COVARTLCL:=(TLXCL-TL*SUMCL/NUMBERCYCLES) 

/NOCYCM1;
D Q L :=1  . 6 4 5  * S Q R T ( (V A R T L - 2 *QL*COVARTLCL 

+ S Q R ( Q L ) * VARCL) /NUMBERCYCLES) 
/CYCLELENGTH;

QT:=TL/NC;
COVARTLNC: = (TLXNC-TL*NC/NUMBERCYCLES ) 

/NOCYCM1;
DQT : = 1 . 6 4 5 * S Q R T ( ( V A R T L - 2 * QT*COVARTLNC 

+ S Q R (Q T ) * VARNC) /NUMBERCYCLES)
/ (NC/NUMBERCYCLES);

WRITELN('UPPER',
UTIL+DUTIL: 12:3,TPUT+DTPUT: 1 1 :3 , 
QL+DQL:13:3,QT+DQT:14:3);

WRITELN(1:5,UTIL: 12:3,TPUT: 11 :3 ,
QL:1 3 : 3 , QT:1 4 : 3 ) ;

WRITELN('LOWER',
UTIL-DUTIL:12:3,TPUT-DTPUT: 1 1 : 3 , 
QL-DQL:13:3,QT-DQT:14:3)

END;
WRITELN;
WRITELN( 'NUMBER OF CYCLES:',NUMBERCYCLES:8) ;
IF NOEVENTSDURINGCYCLESONUMBEREVENTS THEN 
WRITELN('NUMBER OF DISCARDED EVENTS:',

NUMBEREVENTS-NOEVENTSDURINGCYCLES: 8) ; 
WRITELN('AVERAGE NUMBER OF EVENTS:',

NOEVENTSDURINGCYCLES/NUMBERCYCLES: 10 : 3) ; 
DCL:=1.645*SQRT(VARCL/NUMBERCYCLES);
WRITELN('AVERAGE LENGTH:',CYCLELENGTH:10:3,

' C .I.:(',CYCLELENGTH-DCL:10:3,',', 
CYCLELENGTH+DCL:10:3,')')

END
ELSE

(♦PRODUCE POINT ESTIMATES ONLY*)
FOR I:=1 TO NQ DO 

WITH QUEUES[I] DO
IF NUMBERCOMPLETIONS+TRUNC(NC)>0 THEN 

BEGIN
SUMTIMELENGTH:=SUMTIMELENGTH+TL;
SUMBUSYTIME:=SUMBUSYTIME+BT*NUMBERSERVERS; 
NUMBERCOMPLETIONS:=NUMBERCOMPLETIONS
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+TRUNC(NC);
SUMTIMELENGTH:=SUMTIMELENGTH+

(CLOCK-TIMELENGTHCHANGED)*LENGTH; 
SUMBUSYTIME:=SUMBUSYTIME+

MIN(LENGTH,NUMBERSERVERS)* 
(CLOCK-TIMELENGTHCHANGED);

WRITELN(1:5,
SUMBUSYTIME/(NUMBERSERVERS*CLOCK):12:3, 
NUMBERCOMPLETIONS/CLOCK:11:3, 
SUMTIMELENGTH/CLOCK:13:3, 
SUMTIMELENGTH/NUMBERCOMPLETIONS:14:3)

END;

(*PUT LEFTOVER EVENTS ON AVAIL LIST*) 
IF FIRSTONIL THEN 
BEGIN

LAST t.NEXT:=AVAIL;
AVAIL:=FIRST 

END
END

END.

Figure 7.17c
7.18 contain the expected values. We would tend to question the intervals 
from the first run because of the small number of cycles.

If the confidence intervals obtained are wider than we would like, then 
it is relatively easy to have the program continue the simulation for addi
tional cycles until the intervals are satisfactory.

In comparing the regenerative method and the method of independent 
replications for equilibrium behavior, we prefer the regenerative method 
because the assumptions made are relatively easy to justify. The principal 
difficulty with the regenerative method is in finding a frequently occurring 
regeneration state. This is easy for simple models, but may be quite diffi
cult for complex models. The principal problem with the method of inde
pendent replications is in justifying the assumption that the replications 
represent equilibrium behavior. As with the regenerative method, this is easy 
for simple models but may be quite difficult otherwise.

In the following sections, we will principally discuss the mechanics of 
simulating more complex systems. However, as appropriate, we will discuss 
choice of regeneration states for these more complex models.
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NUMBER OF EVENTS: 104 SIMULATED TIME: 423.1 32

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0.896 0.143 1.583 13.368

1 0.812 0.123 1 .395 11.354
LOWER 0.727 0.103 1 . 208 9.341
UPPER 0.779 0.143 1 . 792 16.073

2 0.708 0.123 1 .605 13.057
LOWER 0.638 0.103 1.417 10.042

NUMBER OF CYCLES: 
AVERAGE NUMBER OF 
AVERAGE LENGTH:

10
EVENTS: 10.400 
42.313 C.I.:( 26.193, 58.433)

NUMBER OF EVENTS: 1000 SIMULATED TIME: 3955.809

QUEUE UTILIZATION THROUGHPUT QUEUE :LENGTH QUEUEING TIME
UPPER 0.828 0.134 1.641 13.366

1 0.795 0.126 1 .523 12.046
LOWER 0.761 0.119 1.404 10.726
UPPER 0.680 0.134 1 . 596 12.656

2 0.636 0.126 1.477 1 1.689
LOWER 0.592 0.119 1 . 359 10.722

NUMBER OF CYCLES: 
AVERAGE NUMBER OF 
AVERAGE LENGTH:

120
EVENTS: 8.333 
32.965 C.I.:( 27.571 , 38.359)

NUMBER OF EVENTS: 10006 SIMULATED TIME: 40899.099

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0.817 0.124 1.604 13.241

1 0.805 0.122 1.567 12.812
LOWER 0.793 0.120 1 .530 12.384
UPPER 0.632 0.124 1 .470 12.022

2 0.619 0.122 1.433 11.713
LOWER 0.605 0.120 1 . 396 11.403

NUMBER OF CYCLES: 
AVERAGE NUMBER OF 
AVERAGE LENGTH:

1312
EVENTS: 7.627 
31.173 C.I.:( 29.724 , 32.622)

Figure 7.18
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It is the objective of this section and the accompanying exercises to 
extend the program of Figure 7.17 to allow simulation of queueing networks 
with any or all of the characteristics discussed in Chapters 3, 4 and 5, e.g., 
networks with sources and sinks, general queueing disciplines, non
exponential service times, job classes, probabilistic routing, etc. Section 7.4 
and the exercises will further extend the program to consider some of the 
characteristics cited in Chapter 6 as precluding exact solution, e.g., simulta
neous resource possession, state dependent routing, overlapped job activi
ties, etc. (Notice that some of the characteristics of this section may also 
preclude exact solution for networks with moderate size, e.g., FCFS sched
uling with non-exponential service times.)

In order that the programs of this section be understandable, we will 
proceed in two separate steps. First we will modify the earlier program to 
allow sources and sinks, an essentially trivial modification. Then we will 
ignore sources and sinks, but consider simulation of a close network with 
the FCFS, LCFSPR and PS queueing disciplines, Erlang service times, job 
classes and probabilistic routing. The combination of these two steps, as 
well as other refinements, will be left as exercises. In both steps we will 
illustrate use of the regenerative method for confidence intervals.

7.3.1 Sources and Sinks (Open Networks)

Consider a network similar to the cyclic network we have been consid
ering, but in which there is a source of jobs which arrive at the first queue 
and in which jobs leaving the last queue leave the network rather than 
returning to the first queue. See Figure 7.19. We assume that the queues 
are characterized as before, both externally and in the internal data struc
tures. The number of jobs in the network is variable and potentially infinite. 
We will keep track of the number of jobs with the variable TOTAL- 
LENGTH. Jobs arrive from the source in a Poisson manner, i.e., the 
interarrival times are exponential. We are not proposing this network as a 
computer system model. However, networks with sources and sinks often 
are appropriate models of communication systems and sometimes are appro
priate models of computer systems.

7.3 SIMULATION OF GENERAL QUEUEING NETWORKS

Source Queue 1

Figure 7.19
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Queue U R L Q
1 0.833 0.125 5.000 40.000
2 0.625 0.125 2.051 16.410

Figure 7.20

CONST M=2147483647.0; A=16807.0;
NQ=2; NJ=3; B1=0.15; B2=0.1; NIO=2; 
MEANINTERARRIVAL=8.0;

TYPE RANDINT=1..2147483646;
ELEMPTR: tELEMENT
ELEMENT=RECORD

TIME: REAL;
PARAM: INTEGER;
NEXT: ELEMPTR 

END;
VAR Z: RANDINT;

TOTALLENGTH: INTEGER;

PROCEDURE INSERTEVENT(T: REAL; Q: INTEGER);
(*INSERTEVENT ADDS EVENT AT TIME T FOR PARAM Q TO LIST*) 
VAR TEMP, N, L: ELEMPTR;
BEGIN

IF AVAIL=NIL THEN 
NEW(TEMP)

ELSE
BEGIN (*PREVIOUSLY USED STORAGE AVAILABLE*)

TEMP:=AVAIL;
AVAIL:=AVAIL t .NEXT 

END;
TEMPt.TIME:=T;
TEMP t.PARAM:=Q;

Figure 7.21a
The principal changes required in the program are with respect to 

definition and handling of events and with respect to definition of the 
regeneration state. In addition to the completion event, we also need an 
event for arrivals from the source. There will always be exactly one such 
event in the event list assuming one source, and in general there will be an 
arrival event in the list for each source if there is more than one source. 
Each time an arrival event occurs we add another job to the network (i.e.,
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PROCEDURE REMOVEFIRSTEVENT(VAR T :REAL; VAR Q: INTEGER);
(*REMOVEFIRSTEVENT RETURNS TIME T AND PARAM Q OF FIRST 
EVENT*)

VAR TEMP: ELEMPTR;
BEGIN

IF FIRST=NIL THEN 
BEGIN

WRITELN('REMOVEFIRSTEVENT —  EMPTY LIST');
HALT

END
ELSE

BEGIN
T : =FIRST t .TIME;
Q :=FIRST t .PARAM;

FUNCTION ENDCYCLE: BOOLEAN;
(♦DETERMINES WHETHER AT END OF REGENERATION CYCLE.
IF SO, ENDCYCLE UPDATES ACCUMULATORS.*)
VAR Q: INTEGER;
BEGIN

IF (TOTALLENGTH=0) AND (NUMBEREVENTS>0) THEN

Figure 7.21b
increment TOTALLENGTH), place that job at the first queue and schedule 
the next arrival event at the current time plus a sample from the interarrival 
time distribution. We need no event for sinks; each time a job leaves the 
last queue we remove it from the network (i.e., decrement TOTAL- 
LENGTH). Since the only information for the source arrival event is its 
time and type, and since the variable QUEUE with each event will never be 
zero for a completion event, we can use the value 0 to indicate a source 
arrival event. However, the old variable name is misleading, so we rename 
it PARAM and interpret an event as a source arrival event if PARAM is 
zero and otherwise interpret an event as a completion event for the queue 
identified by PARAM.

Since the number of jobs in the network is variable, we must consider 
the number of jobs in our regeneration state definition. As along as no 
queue is saturated, i.e., has an arrival rate greater than its service rate, the 
state where no jobs are in the network will be a regeneration state. Fur
ther, this state will be one of the most frequently occurring for many net
works. To be more specific, the expected time between entrances to a 
Markov state is inversely proportional to the state’s probability. Thus we
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QUEUES[1].MEANSERVICE:=1.0/B1;
QUEUES[2].NUMBERSERVERS:=NIO;
QUEUES[2].MEANSERVICE:=1.0/B2;
TOTALLENGTH:=0;
INSERTEVENT(-MEANINTERARRIVAL*LN(RANDOM(Z)),0);

(*RUN*)
WHILE (FIRSTONIL) AND (NUMBEREVENTS<EVENTMAX)

AND ((NUMBEREVENTS<EVENTLIMIT) OR NOT ENDCYCLE) DO 
BEGIN

NUMBEREVENTS:=NUMBEREVENTS+1;
REMOVEFIRSTEVENT(CLOCK,I);
IF 1=0 THEN 
BEGIN

TOTALLENGTH:=TOTALLENGTH+1;
ARRIVE(1);
INSERTEVENT(CLOCK

-MEANINTERARRIVAL*LN(RANDOM(Z)),0)
END

ELSE
BEGIN

COMPLETE(I);
IF IONQ THEN 
ARRIVE(1+1)

ELSE
TOTALLENGTH:=TOTALLENGTH-1

END
END;

(♦PRINT STATISTICS*)

Figure 7.21c
can loosely say that the expected frequency of occurrence of a Markov state 
is directly proportional to the state probability. For a queue with exponen
tial interarrival times, exponential service times and service rate independent 
of queue length, i.e., a single fixed rate server, the queue length distribution 
is given by P(N) = (1 — U)U , N  = 0, 1, 2, ..., where U is the server 
utilization. Since U is strictly less than 1, F(0) must be the most probable 
queue length. This same result holds for LCFSPR and PS queues with a 
single fixed rate server and arbitrary service time distributions. (Note that 
the empty system will be a Markov state for such a system and that the 
probability of any other Markov state for such a system can be no greater



238 SIMULATION /  CHAP. 7

NUMBER OF EVENTS: 147 SIMULATED TIME: 412.487

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0 . H78 0.132 2.488 22.435

1 0.722 0.119 1 .652 13.910
LOWER 0.567 0.106 0.817 5. 384
UPPER 0.94 5 0. 1 32 5.314 47.800

2 0.810 0.119 3 . 398 28.607
LOWER 0.674 0.106 1 .483 9.413

NUMBER OF CYCLES: 2
AVERAGE NUMBER OF EVENTS: 73.500
AVERAGE LENGTH: 206.244 C.I .:( 107.965», 304.522)

NUMBER OF EVENTS: 1362 SIMULATED TIME: 3400.368

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
1 0.973 0.134 15.838 118.622
2 0.627 0.134 1 .986 14.874

NUMBER OF EVENTS: 10200 SIMULATED TIME: 27031.674

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0.886 0.129 13.178 103.849

1 0.843 0.126 8.026 63.810
LOWER 0.801 0.122 2.874 23.770
UPPER 0.658 0.129 2.280 17.854

2 0.629 0.126 2.078 16.525
LOWER 0.600 0.122 1 .877 15.196

NUMBER OF CYCLES: 1 29
AVERAGE NUMBER OF EVENTS: 79.070
AVERAGE LENGTH: 209.548 C.I .:( 143.271 , 275.824)

NUMBER OF EVENTS: 100290 SIMULATED TIME: 266918.844

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0.847 0.126 5.670 45.107

1 0.837 0.125 5.131 40.969
LOWER 0.828 0.124 4.592 36.830
UPPER 0.633 0.126 2.142 17.042

2 0.626 0.125 2.073 16.551
LOWER 0.618 0.124 2.004 16.060

NUMBER OF CYCLES: 1 2 2 9
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AVERAGE NUMBER OF EVENTS: 81.603
AVERAGE LENGTH: 217.184 C.I.:( 199.888, 234.480)

Figure 7.22
than P(0).) This result also holds for queues with job classes. We can also 
show that the empty system is the most probable state for other types of 
queues. However, for queues with variable rate, e.g., multiserver queues, 
some other state may have higher probability. For any network satisfying 
Jackson’s Theorem, i.e., that the probability of a network state is the 
product of the probabilities of the states of the individual queues, the most 
frequent state must be the one where each queue is in its most frequent 
state, e.g., the empty state. (See Chapter 4 for Jackson’s Theorem.) The 
empty state will also be the most frequent state for some networks not 
satisfying Jackson’s Theorem.

Using the parameters for queues 1 and 2 as before and a mean interar
rival time of 8, the most probable queue length for queue 1 is 0 with a 
probability of 1/6 ~ 0.167. For queue 2, P(0) » 0.231, P(l) « 0.288, and 
all other states have smaller probabilities. Thus the most frequently occur
ring network state will be the one with 0 jobs at queue 1 and 1 job at queue 
2. But the empty network state has nearly the same expected frequency 
and is easier to test for. Thus we let ENDCYCLE determine the system is 
in the regeneration state if TOTALLENGTH = 0.

Figure 7.20 shows the expected values of the performance measures for 
this network. Even though the throughputs and utilizations are essentially 
the same as for our corresponding closed network, the queue lengths and 
queueing times are much higher. In general this system is much more varia
ble than the corresponding closed system because of the variability in the 
total number of jobs in the system. Figures 7.21a, 7.21b and 7.21c show 
the modifications to the program of Figure 7.17. Figure 7.22 shows the 
output of this program for EVENTLIMIT = 100, 1000, 10000 and 100000 
and EVENTMAX twice EVENTLIMIT. The first run consisted of only 2 
regeneration cycles and its confidence intervals should be ignored. The 
second run consisted of only a single regeneration cycle and thus no confi
dence interval estimates were produced. The third run consisted of 129 
cycles and thus its confidence interval estimates may be considered valid but 
useless because of their great width, at least for queue 1. For example, the 
queue 1 queueing time interval, (23.77,103.85), contains the expected value 
but has a width of 125% relative to the point estimate, and even greater 
width relative to the expected value. Only the final run, consisting of 1229 
cycles, has usefully narrow confidence intervals for queue 1. For example, 
the relative width of the queueing time interval is 20%, with respect to the 
point estimate. (In comparing the runs for this model with those of the



closed model, we should remember that only 2/3 of the open network 
events are completions.)

7.3.2 Disciplines, Distributions, Classes and Routing

Up until now we have been content without explicit representations of 
the jobs and the queues. An explicit representation is also necessary if we 
wish to estimate characteristics of the queueing time (and response time) 
distributions other than the means, and an explicit representation may also 
be desirable for other reasons. Our data structure will be a simple linked list 
for each queue, with the elements of the lists representing the jobs. The 
elements contain information about the job specific to the current queue, 
for example the current job class, an indicator stating whether a sample has 
been taken from the service time distribution, the remaining service time if a 
sample has been taken, a pointer to the next job in the queue and a pointer 
to a pending event for this job, if one has been scheduled. The variables for 
this information will be called CURRENTNODE, REQUESTGRANTED, 
REQUEST, NEXTJOB, and EVENT, respectively. See the definition of 
type JOBELEMENT in Figure 7.23. (JOBELEMENT also has a variable 
SUBSERVER to be described shortly and other variables to be defined in 
Section 7.4.) The elements are moved from list to list as the jobs move from 
queue to queue. Each queue has a pointer to the beginning of the list, 
FIRSTINQUEUE, and a pointer to the end of the list, LASTINQUEUE. 
Each list is maintained in an order appropriate to the queueing discipline. 
For FCFS and LCFSPR, the appropriate orders are increasing time of 
arrival, and decreasing time of arrival, respectively. We do not need to 
record the time of arrival for this purpose, though we would want to do so 
if we were estimating characteristics of the queueing time distribution other 
than the mean. For PS the appropriate order is increasing values of RE
QUEST, as we will describe shortly.

Since the elements representing jobs now contain much of the impor
tant dynamic information in the program, the information associated with an 
event (other than the time) will be a pointer to the job which the event 
affects. (A second kind of event will be defined in Section 7.4.) Since we 
want to implement preemptive queueing disciplines, we need to be able to 
efficiently cancel a pending service completion event. We add a pointer to 
the previous event to the event elements, modify INSERTEVENT accord
ingly, and replace REMOVEFIRSTEVENT with a new procedure REMO- 
VEEVENT. (See Figure 7.26.)

Thus far we have only used exponential distributions in our simulation 
examples. Incorporation of other distributions is a simple matter, providing 
we have an algorithm for obtaining samples from the distribution and 
providing we are not using the regenerative method for confidence intervals.
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CONST M=2147483647.0 ; A=16807.0;

NN=2; NQ=2; NJ = 3; B1=0.15; B2=0.1; NIO=2; 
TYPE RANDINT=1..2147483646;

EVENTTYPE=(COMPLETION, NODEDEPARTURE);
JOBPTR: tJOBELEMENT;
EVENTPTR: t EVENTELEMENT;
EVENTELEMENT=RECORD

KINDOFEVENT: EVENTTYPE;
TIME: REAL;
JOB: JOBPTR;
NEXT: EVENTPTR;
PREVIOUS: EVENTPTR

END;

J OBELEMENT=RECORD
CURRENTNODE: 1..NN;
REQUEST: REAL;
REQUESTGRANTED: BOOLEAN; 
SUBSERVER: INTEGER;
NEXTJOB: JOBPTR;
TOKENHOLDER: JOBPTR;
PARENT, CHILD: JOBPTR;
EVENT: EVENTPTR 

END;

ROUTINGELEMENT=RECORD
DESTINATION: 1..NN; 
PROBABILITY: REAL; 
NEXTROUTING: tROUTINGELEMENT 

END;
REGENELEMENT=RECORD

NODEREGEN: 1..NN;
LENGTHREGEN: INTEGER; 
NEXTREGEN: tREGENELEMENT 

END;

SEC. 7.3 /  GENERAL QUEUEING NETWORKS

Figure 7.23 - Constant and Type Declarations
We must take distributions into consideration with the regenerative method, 
and it will be most convenient if we restrict ourselves to distributions 
represented by the method of exponential stages described in Chapter 3. 
As we discussed in Chapter 3, the method of stages is very general in the 
sense that we can represent other distributions closely. But using this 
method we can still describe our system as a Markov process by incorporat
ing the distribution stage in our state definition, and we can use a state of
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VAR Z: RANDINT;
TABLE: ARRAY[0..127] OF RANDINT;
I: INTEGER;
FIRSTEVENT, LASTEVENT, AVAILEVENT: EVENTPTR;
CLOCK: REAL;
QUEUES: ARRAY[1..NQ] OF 

RECORD
DISCIPLINE: (FCFS,LCFSPR,PS);
NUMBERUNITS: INTEGER;
NUMBERSUBSERVERS: INTEGER;
MEANSUBSERVICE: REAL;
FIRSTINQUEUE: JOBPTR;
LASTINQUEUE: JOBPTR;
LENGTH: INTEGER;
TIMELENGTHCHANGED: REAL;
SUMTIMELENGTH: REAL;
SUMBUSYTIME: REAL;
NUMBERCOMPLETIONS: INTEGER;
(*SUMS OF CYCLE VALUES*)
(*BT=BUSYTIME;
SQ=SQUARED;
X=TIMES;
CL=CYCLELENTGH;
NC=NUMBERCOMPLETIONS;
TL=TIMELENGTH;*)

BT: REAL;
TL: REAL;
NC: REAL;
BTSQ: REAL;
BTXCL: REAL;
NCSQ: REAL;
NCXCL: REAL;
TLSQ: REAL;
TLXCL: REAL;
TLXNC: REAL 

END;
RUN, NUMBEREVENTS, EVENTLIMIT, EVENTMAX: INTEGER;
NOEVENTSDURINGCYCLES, NUMBERCYCLES, NOCYCM1: INTEGER;
TIMECYCLESTARTED, CYCLELENGTH,

SUMCL, SUMCLSQ, VARCL, DCL: REAL;
UTIL, DUTIL, VARBT, COVARBTCL: REAL;
TPUT, DTPUT, VARNC, COVARNCCL: REAL;
QL, DQL, VARTL, COVARTLCL: REAL;
QT, DQT, COVARTLNC: REAL;
AVAILJOB, TEMPJOB: JOBPTR;



SEC. 7.3 /  GENERAL QUEUEING NETWORKS 243
TEMPKIND: EVENTTYPE;
FIRSTREGEN, AVAILREGEN: tREGENELEMENT;
AVAILROUTING: tROUTINGELEMENT;
NODES: ARRAY[1..NN] OF 

RECORD
KINDOFNODE: (CLASS,ALLOCATE,RELEASE,

FISSION,FUSION);
QUEUE: INTEGER;
LENGTHNODE: INTEGER;
FUSIONPTR: JOBPTR;
ROUTINGPTR, CHILDROUTING: tROUTINGELEMENT 

END;

Figure 7.24 - Variable Declarations
that process as our regeneration state. (If we use other distribution forms 
we will not be able to describe our system as a Markov process. If there are 
recurring system states such that no nonexponential times are in progress, 
then we may be able to use one of these as a regeneration state.) In Chap
ter 3 we discussed the method of stages in terms of subservers, with each 
subserver visit time having an exponential distribution. Thus each service 
time is a sum of one or more visits to a set of subservers, with each subser
ver visit time having an exponential distribution. Thus each service time is 
a sum of one or more exponential values, the selection of which may itself 
have been a random process. This is a very natural characterization from a 
simulation point of view. In fact, it is the standard characterization for 
simulation purposes because of the relative difficulty of obtaining the 
inverse distribution functions for these distributions. For example, the usual 
way to obtain a value from an Erlang distribution with k stages is to obtain 
k independent exponential values and sum them. Though the usual practice 
is to obtain the exponential values together, this is not necessary. Since we 
must include the jobs’ current distribution stages in our regeneration state 
definition, we redefine our interpretation of the completion event to be the 
completion of a distribution stage, i.e., the completion of a visit to a subser
ver. The COMPLETE procedure (Figure 7.27) and the ARRIVE procedure 
(Figure 7.29) assume that service distributions at each queue are independ
ent of job class and have an Erlang distribution with NUMBERSUBSER- 
VER stages. The variable SUBSERVER in type JOBELEMENT keeps 
track of the current distribution stage of the job. The generalization to the 
branching Erlang distribution and class dependent distributions is left to the 
reader. An obvious efficiency improvement is also left as an exercise.

Since we did not provide class dependent service distributions, the job 
classes principally serve as nodes in the routing. (The allocate, release, 
fission and fusion nodes are defined in Section 7.4.) Still, we must consider
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PROCEDURE INSERTEVENT(K: EVENTTYPE; T: REAL; J; JOBPTR);
(*INSERTEVENT ADDS EVENT OF KIND K AT TIME T FOR JOB J TO 
LIST*)

VAR TEMP, L; EVENTPTR;
BEGIN

IF AVAILEVENT=NIL THEN 
NEW(TEMP)

ELSE
BEGIN (*PREVIOUSLY USED STORAGE AVAILABLE*)

TEMP:=AVAILEVENT;
AVAILEVENT:=AVAILEVENTt.NEXT 

END;
TEMPt.KINDOFEVENT:=K;
TEMPt.TIME:=T;
TEMPt.JOB:=J;
Jt.EVENT:=TEMP;
IF FIRSTEVENT=NIL THEN
BEGIN (*LIST WAS EMPTY*)

FIRSTEVENT:=TEMP;
LASTEVENT:=TEMP;
TEMPt.NEXT:=NIL;
TEMPt.PREVIOUS:=NIL 

END
ELSE IF T<FIRSTEVENTt.TIME THEN

BEGIN (* INSERT AT BEGINNING OF LIST*)
TEMP t .NEXT:=FIRSTEVENT;
TEMP t .PREVIOUS:=NIL;
FIRSTEVENT t .PREVIOUS:=TEMP;
FIRSTEVENT:=TEMP 

END
ELSE IF T>LASTEVENTt.TIME THEN 

BEGIN (* INSERT AT END OF LIST*)
LASTEVENT t .NEXT:=TEMP;
TEMP t .PREVIOUS:=LASTEVENT;
LASTEVENT:=TEMP;
TEMPt.NEXT:=NIL 

END 
ELSE

BEGIN (* INSERT SOMEWHERE IN MIDDLE OF LIST*)
L :=FIRSTEVENT;
WHILE T>Lt.NEXTt.TIME DO 

L:=Lt.NEXT;
TEMPt.NEXT:=L t .NEXT;
Lt.NEXT:=TEMP;
TEMPt.PREVIOUS:=L;
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TEMP t .NEXT t .PREVIOUS:=TEMP 

END;
END; (*INSERTEVENT*)

Figure 7.25 - INSERTEVENT
the number of jobs at each class in our regeneration state definition. Our 
new definition of ENDCYCLE makes some arbitrary restrictions on the 
choice of regeneration state; relaxation of these restrictions is left as an 
exercise. ENDCYCLE assumes that the regeneration state can be detected 
by checking the number of jobs at each class on the list of classes pointed 
to by FIRSTREGEN and by checking that each job which has begun service 
is in the first stage of the distribution, i.e., SUBSERVER = 1. Note that the 
first part of this assumption excludes regeneration states where more than 
one class has jobs at a FCFS or LCFSPR queue, since we would have to 
take the ordering of jobs as part of the regeneration state definition. The 
procedure ADDREGEN is used to add a class to the list of classes to be 
checked and to initially place jobs at those classes.

We have described the principal modification and additions to the data 
structures, with emphasis on the aspects relevant to the closed cyclic model 
we have previously simulated. We are about to discuss the aspects relevant 
to the other characteristics which motivated the revisions, but first let us 
consider the rest of the program for the previous cyclic model. There are 
two procedures for the routing to be described in detail later. NEXTNODE 
determines which node a job should go to next and ADDESTINATION is 
used to add a node to the list of jobs leaving another node. Figure 7.32 
shows the rest of the program relevant to this model. Notice that there are 
no changes with respect to performance estimates. The output of this 
program is identical to that shown in Figure 7.18 for the previous version of 
the program. We have changed the variable NUMBERSERVERS to NUM- 
BERUNITS because of an alternative meaning for passive queues in Section 
7.4. Since a job may or may not be ready to leave a queue after a subser
vice completion, COMPLETE will change its job pointer parameter to NIL 
only if the job is not ready to leave. The procedures defined in Section 7.4 
for other kinds of nodes will follow this convention indicating whether jobs 
can leave those nodes or not. (For this model and the remaining models of 
this section, we have assumed queue 1 consists only of class 1, queue 2 
consists only of class 2, etc. This will not be true of the last model in 
Section 7.4.)

The LCFSPR Queueing Discipline. (Last Come First Served Preemptive 
Resume). As we said in Chapter 2, this discipline is principally of theoretical 
interest even though it has been used for CPU scheduling. It is a good 
example for our purposes because it illustrates the handling of preemption in

SEC. 7.3 /  GENERAL QUEUEING NETWORKS
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PROCEDURE REMOVEEVENT(E: EVENTPTR; VAR K: EVENTTYPE;
VAR T: REAL; VAR J; JOBPTR); 

(♦REMOVEEVENT RETURNS KIND K, TIME T AND JOB J 
OF EVENT E*)

VAR TEMP: EVENTPTR;
BEGIN

IF FIRSTEVENT=NIL THEN 
BEGIN

WRITELN('REMOVEEVENT - EMPTY LIST');
HALT

END
ELSE IF E=FIRSTEVENT THEN 

BEGIN
K :=FIRSTEVENT t .KINDOFEVENT;
T:=FIRSTEVENTt.TIME;
J :=FIRSTEVENTt.JOB;
TEMP:=FIRSTEVENT;
FIRSTEVENT:=FIRSTEVENT t.NEXT;
IF FIRSTEVENT=NIL THEN 

LASTEVENT:=NIL
ELSE FIRSTEVENTt.PREVIOUS:=NIL;
TEMP t .NEXT:=AVAILEVENT;
AVAILEVENT:=TEMP 

END
ELSE IF E=LASTEVENT THEN 

BEGIN
K:=LASTEVENTt.KINDOFEVENT;
T :=LASTEVENTt.TIME;
J :=LASTEVENTt.JOB;
TEMP:=LASTEVENT;
LASTEVENT:=LASTEVENTt.PREVIOUS;
LASTEVENTt.NEXT:=NIL;
TEMPt.NEXT:=AVAILEVENT;
AVAILEVENT:=TEMP 

END 
ELSE 

BEGIN
TEMP:=FIRSTEVENT;
WHILE (TEMPOE) AND (TEMPONIL) DO 

TEMP:=TEMP t.NEXT;
IF TEMPOE THEN 
BEGIN

WRITELN('REMOVEEVENT - EVENT NOT FOUND'); 
HALT

END
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ELSE (*E IS BETWEEN FIRSTEVENT AND LASTEVENT*)
BEGIN

K :=TEMPt.KINDOFEVENT;
T :=TEMP t .TIME;
J:=TEMPt.JOB;
TEMP t.NEXT t.PREVIOUS:=TEMPt.PREVIOUS ;
TEMP t .PREVIOUS t.NEXT:=TEMPt .NEXT;
TEMP t .NEXT:=AVAILEVENT;
AVAILEVENT:=TEMP 

END
END

END; (*REMOVEEVENT*)

Figure 7.26 - REMOVEEVENT
an otherwise simple mechanism. In the single server case, whenever a job 
arrives at a queue and another job is in service, the job in service is 
preempted, the new job is placed at the beginning of the queue and the new 
job is assigned to the server. In procedure ARRIVE, the preemption is 
effected by a call to REMOVEEVENT. The remaining service time for the 
preempted job is the difference between the (future) time of the scheduled 
event and the current time. This time is stored in REQUEST for future use 
when the preempted job is reassigned to the server. The mechanism in 
COMPLETE is the same as for FCFS except that a new sample from the 
service time distribution is not obtained when a job is assigned to the server; 
the value stored in REQUEST by ARRIVE is used. The multiple server case 
is different only in that a job is preempted only if a server is not available 
and in that if a preemption does occur, the job in service which has been in 
the queue the longest is the one preempted.

The PS Queueing Discipline. (Processor Sharing). In Chapter 2 we 
defined PS as the limiting case of the Round Robin (RR) discipline without 
switching overhead as the quantum goes to zero. PS is used in numerically 
solved models in place of RR because of the resulting tractability. This 
substitution will usually have little effect on the performance estimates if 
the quantum actually used is large in comparison with the switching over
head and small in comparison with the mean service time. Though there are 
no difficult problems in implementing RR in a simulation, if the quantum is 
small relative to the mean service time, there will be a large number of 
preemptions resulting in significant computational expense.

A few observations lead to a fairly simple simulation implementation of 
PS. We assume a single observer and then generalize to the multiple server 
case. Since the server is shared equally among all jobs in the queue, if a job 
has a service time of X  and there are L jobs in the queue the time to serve
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PROCEDURE COMPLETE(VAR J: JOBPTR);
(♦HANDLES COMPLETION OF SUBSERVER FOR JOB J.
IF SERVICE COMPLETE, J REMAINS UNCHANGED.
OTHERWISE J BECOMES NIL.*)
VAR LENG: INTEGER; L: JOBPTR; T: REAL;
BEGIN

WITH QUEUES[NODES[Jt.CURRENTNODE].QUEUE] DO 
BEGIN

IF Jt.SUBSERVERCNUMBERSUBSERVERS THEN 
BEGIN

J t .SUBSERVER:=J t .SUBSERVER+1 ;
IF (DISCIPLINE IN [FCFS,LCFSPR]) OR (LENGTH=1) 
THEN 
BEGIN

J t .REQUEST:=-MEANSUBSERVICE*LN(RANDOM(Z)); 
INSERTEVENT(COMPLETION,CLOCK+Jt.REQUEST,J);
J :=NIL 

END
ELSE (*DISCIPLINE=PS*)

BEGIN
T :=J t .REQUEST;
Jt .REQUEST:=-MEANSUBSERVICE*LN(RANDOM(Z) ) ; 
FIRSTINQUEUE:=FIRSTINQUEUEt.NEXTJOB; 
UPDATEPSQUEUE(NODES[Jt.CURRENTNODE].QUEUE,T, 

J) ;
INSERTEVENT(COMPLETION,

CLOCK+FIRSTINQUEUEt.REQUEST* 
LENGTH/MIN(LENGTH,NUMBERUNITS), 
FIRSTINQUEUE);

J :=NIL 
END

END
ELSE

BEGIN
(♦STATISTICS*)
NUMBERCOMPLETIONS:=NUMBERCOMPLETIONS+1; 
SUMTIMELENGTH;=SUMTIMELENGTH

+ (CLOCK-TIMELENGTHCHANGED)*LENGTH ; 
SUMBUSYTIME:=SUMBUSYTIME

+ (CLOCK-TIMELENGTHCHANGED)
♦MIN(LENGTH,NUMBERUNITS); 

TIMELENGTHCHANGED:=CLOCK;
(♦MECHANICS*)
NODES[J t.CURRENTNODE] .LENGTHNODE: =

NODES[Jt.CURRENTNODE].LENGTHNODE-1;
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LENGTH:=LENGTH-1;
IF (DISCIPLINE IN [FCFS,LCFSPR]) OR (LENGTH=0) 

THEN 
BEGIN

IF J=FIRSTINQUEUE THEN 
BEGIN

FIRSTINQUEUE:=FIRSTINQUEUEt.NEXTJOB;
IF FIRSTINQUEUE=NIL THEN 

LASTINQUEUE:=NIL 
ELSE 

BEGIN
LENG:=1;
L : =FIRSTINQUEUE 

END
END

ELSE
BEGIN

L :=FIRSTINQUEUE;
LENG:=2;
WHILE JOLt .NEXTJOB DO 

BEGIN
LENG:=LENG+1;
L := Lt.NEXTJOB 

END;
IF Jt.NEXTJOB=NIL THEN 

LASTINQUEUE:=L;
L t .NEXTJOB:=Jt.NEXTJOB;
L :=Lt.NEXTJOB 

END;
IF LENGTH>NUMBERUNITS THEN 

BEGIN
WHILE LENG<NUMBERUNITS DO 

BEGIN
L:=Lt.NEXTJOB;
LENG:=LENG+1 

END;
IF NOT Lt.REQUESTGRANTED THEN 

BEGIN
Lt.REQUEST:=-MEANSUBSERVICE 

*LN(RANDOM(Z));
L t .REQUESTGRANTED:=TRUE 

END;
INSERTEVENT(COMPLETION,CLOCK+L t.REQUEST, 

L)
E N D
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END
ELSE (*DISCIPLINE=PS*)

BEGIN
T :=J t .REQUEST;
FIRSTINQUEUE:=FIRSTINQUEUEt.NEXTJOB;
L :=FIRSTINQUEUE;
WHILE LONIL DO 

BEGIN
L t .REQUEST:=L t .REQUEST-T;
L:=Lt.NEXTJOB 

END;
INSERTEVENT(COMPLETION,

CLOCK+FIRSTINQUEUEt.REQUEST* 
LENGTH/MIN(LENGTH,NUMBERUNITS) , 
FIRSTINQUEUE)

END
END

END
END; (*COMPLETE*)

Figure 7.27 - COMPLETE
that job will be LX. (This assumes the queue length does not change during 
the job’s service.) Further, the job with the smallest remaining service time 
must be the first to leave the queue. Thus we do not need to have events 
pending for each job in the queue, but rather can have an event pending for 
each job in the queue with the smallest service time and interpret this event 
as one for all of the jobs in the queue. When the event occurs, all of the 
jobs have received service equal to the request of the job with the smallest 
request. Thus that amount of time may be subtracted from the request of 
each job to obtain that job’s remaining request. The job with the smallest 
request, which has had its request satisfied, leaves the queue and, if there 
are jobs still in the queue, a new event is scheduled at the current time plus 
LX, where L is the new queue length and X  is the new smallest request. 
This implementation is the basis for our earlier statement that the list of 
jobs at the queue should be kept in order of increasing service requests.

There is one complication which arises when a job arrives at the queue 
when an event is already pending. That event was scheduled based on the 
queue length before the arrival, but now the jobs will progress at a slower 
rate. Thus we must cancel the pending event and subtract from each of the 
old jobs the service already received. This service already received is 
X — (T — C) /L ,  where X  is the smallest old service request, T is the 
sch edu led  time of the pending event, C  is the current time and L is the old
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PROCEDURE UPDATEPSQUEUE(Q: INTEGER; T: REAL; J: JOBPTR);
(*SUBTRACTS T FROM REQUEST FOR JOBS CURRENTLY IN QUEUE Q. 
THEN INSERTS J IN THE QUEUE ACCORDING TO Jt.REQUEST*)
VAR TEMP: JOBPTR;
BEGIN

WITH QUEUES[Q] DO 
BEGIN

TEMP:=FIRSTINQUEUE;
WHILE TEMPONIL DO 

BEGIN
TEMP t .REQUEST:=TEMPt .REQUEST-T;
TEMP:=TEMPt.NEXTJOB 

END;
IF Jt,REQUEST<FIRSTINQUEUEt.REQUEST THEN 

BEGIN
J t .NEXTJOB:=FIRSTINQUEUE;
FIRSTINQUEUE:=J 

END
ELSE IF Jt,REQUEST>LASTINQUEUEt.REQUEST THEN 

BEGIN
LASTINQUEUE t.NEXTJOB:=J ;
Jt.NEXTJOB:=NIL;
LASTINQUEUE:=J 

END 
ELSE 

BEGIN
TEMP:=FIRSTINQUEUE;
WHILE Jt,REQUEST>TEMPt.NEXTJOBt.REQUEST DO 

TEMP:=TEMPt.NEXTJOB;
J t.NEXTJOB:=TEMP t.NEXTJOB;
TEMPt.NEXTJOB:=J 

END
END

END; (*UPDATEPSQUEUE*)

Figure 7.28 - UPDATEPSQUEUE
order and a new event is scheduled based on what is now the smallest 
service request and the new queue length.

With the distribution sampled by stages, a similar action takes place 
upon completion of a subservice other than the last one for the job. The 
service received by the job with the completed stage is subtracted from all 
of the jobs, the service time for the next stage is obtained, and the job is 
reinserted in the queue. Then a new event is scheduled. Because of this
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PROCEDURE ARRIVE(VAR J: JOBPTR; C: INTEGER);
(♦HANDLES ARRIVAL OF A JOB J AT CLASS C. J BECOMES NIL*)
VAR DUMMYKIND: EVENTTYPE; T: REAL; DUMMYJOB, TEMP: JOBPTR;

LENG: INTEGER;
BEGIN

J t.CURRENTNODE:=C;
Jt.SUBSERVER:=1;
J t .REQUESTGRANTED:=FALSE;
WITH QUEUES[NODES[C].QUEUE] DO 

BEGIN
(♦STATISTICS*)
SUMTIMELENGTH:=SUMTIMELENGTH

+(CLOCK-TIMELENGTHCHANGED)*LENGTH; 
SUMBUSYTIME:=SUMBUSYTIME+(CLOCK-TIMELENGTHCHANGED)*

MIN(LENGTH,NUMBERUNITS);
TIMELENGTHCHANGED:=CLOCK;
(♦MECHANICS*)
IF (DISCIPLINE=FCFS) OR (FIRSTINQUEUE=NIL) THEN 

BEGIN
Jt.NEXTJOB:=NIL;
IF FIRSTINQUEUE=NIL THEN 
FIRSTINQUEUE:=J 

ELSE
LASTINQUEUE t.NEXTJOB:=J ;

LASTINQUEUE:=J;
NODES[C].LENGTHNODE:=NODES[C].LENGTHNODE+1; 
LENGTH:=LENGTH+1;
IF LENGTH<NUMBERUNITS THEN 
BEGIN

Jt.REQUEST:=-MEANSUBSERVICE*LN(RANDOM(Z));
J t .REQUESTGRANTED:=TRUE;
INSERTEVENT(COMPLETION,CLOCK+J t .REQUEST,J) 

END
END

ELSE IF DISCIPLINE=LCFSPR THEN 
BEGIN

IF LENGTH=NUMBERUNITS THEN
BEGIN (*PREEMPT LASTINQUEUE*)

REMOVEEVENT(LASTINQUEUE t .EVENT,
DUMMYKIND,T,DUMMYJOB); 

LASTINQUEUEt.REQUEST:=T-CLOCK 
END

ELSE IF LENGTH>NUMBERUNITS THEN
BEGIN (*PREEMPT LAST JOB IN SERVICE*)

LENG:=1;
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TEMP:=FIRSTINQUEUE;
WHILE LENG<NUMBERUNITS DO 

BEGIN
LENG:=LENG+1;
TEMP:=TEMPt.NEXTJOB 

END;
REMOVEEVENT(TEMP t .EVENT,

DUMMYKIND,T,DUMMYJOB);
TEMP t .REQUEST:=T-CLOCK 

END;
J t .NEXTJOB:=FIRSTINQUEUE;
FIRSTINQUEUE:=J;
NODES[C].LENGTHNODE:=NODES[C].LENGTHNODE+1; 
LENGTH:=LENGTH+1;
Jt.REQUEST:=-MEANSUBSERVICE*LN(RANDOM(Z));
J t .REQUESTGRANTED:=TRUE;
INSERTEVENT(COMPLETION,CLOCK+Jt.REQUEST,J)

END
ELSE (*DISCIPLINE=PS*)

BEGIN
REMOVEEVENT(FIRSTINQUEUE t.EVENT,

DUMMYKIND,T,DUMMYJOB);
T :=FIRSTINQUEUE t.REQUEST-(T-CLOCK)

*MIN(LENGTH,NUMBERUNITS)/LENGTH;
J t.REQUEST:=-MEANSUBSERVICE*LN(RANDOM( Z ) ) ;
J t.REQUESTGRANTED:=TRUE;
UPDATEPSQUEUE(NODES[C].QUEUE,T,J);
NODES[C].LENGTHNODE:=NODES[C].LENGTHNODE+1; 
LENGTH:=LENGTH+1;
INSERTEVENT(COMPLETION,

CLOCK+FIRSTINQUEUEt.REQUEST*LENGTH 
/MIN(LENGTH,NUMBERUNITS), 
FIRSTINQUEUE)

END
END;

J :=NIL
END; (*ARRIVE*)

Figure 7.29 - ARRIVE
similarity we define a procedure UPDATEPSQUEUE which is used by both 
ARRIVE and COMPLETE.

The multiple server case is identical to the single server case except 
that events are scheduled at the current time plus LX/min(L,K),  where K  is
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FUNCTION ENDCYCLE: BOOLEAN;
(♦DETERMINES WHETHER AT END OF REGENERATION CYCLE.
IF SO, ENDCYCLE UPDATES ACCUMULATORS.*)
VAR RESULT: BOOLEAN; TEMP: JOBPTR; L,Q: INTEGER;

RTEMP: tREGENELEMENT;
BEGIN

IF FIR.STEVENT=NIL THEN 
BEGIN

WRITELN('ENDCYCLE - EVENT LIST EMPTY');
ENDCYCLE:=FALSE 

END 
ELSE 

BEGIN
IF FIRSTEVENTt .KINDOFEVENT=COMPLETION THEN 
RESULT:=TRUE 

ELSE
RESULT:=FALSE;

RTEMP:=FIRSTREGEN;
WHILE RESULT AND (RTEMPONIL) DO 

BEGIN
IF NODES[RTEMPt.NODEREGEN].LENGTHNODE 

ORTEMPt . LENGTHREGEN THEN 
RESULT:=FALSE;

RTEMP:=RTEMPt.NEXTREGEN 
END;

IF RESULT THEN 
BEGIN 

Q: = 1 ;
WHILE RESULT AND (Q<NQ) DO 

BEGIN
WITH QUEUES[Q] DO 

IF LENGTH>0 THEN
IF NUMBERSUBSERVERS>1 THEN 
BEGIN

IF DISCIPLINE=FCFS THEN 
BEGIN

TEMP:=FIRSTINQUEUE;
L: = 1 ;
WHILE RESULT AND

(L<MIN(LENGTH,NUMBERUNITS) ) 
DO
BEGIN

IF TEMPI . SUBSERVERO 1 THEN 
RESULT:=FALSE;

L:=L+1;
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TEMP:=TEMPt.NEXTJOB 
END

END
ELSE

BEGIN
TEMP:=FIRSTINQUEUE;
L: = 1 ;
WHILE RESULT AND (LSLENGTH) DO 

BEGIN
IF TEMP t . SUBSERVER01 THEN 

RESULT:=FALSE;
L :=L+1;
TEMP:=TEMPt.NEXTJOB 

END
END

END;
Q:=Q+1

END
END;

IF NUMBEREVENTS=0 THEN 
IF NOT RESULT AND

(FIRSTEVENT♦.KINDOFEVENT=COMPLETION) THEN 
BEGIN

WRITELN(
'ENDCYCLE - NOT INITIALLY IN REGENERATION STATE'); 

HALT 
END 

ELSE
ENDCYCLE:=FALSE 

ELSE IF RESULT THEN 
BEGIN

ENDCYCLE:=TRUE;

Figure 7.30 - ENDCYCLE
the number of servers. Similarly, when a pending event must be rescheduled, 
the amount of received service is X  — (T  — C)min(L,K)/L.

Let us consider the cyclic queue model with LCFSPR at queue 1 and 
PS at queue 2. Further, let the mean service times be as before but the 
distributions be two stage Erlang. From our discussion in Chapter 5, we 
know that for the performance measures we are estimating the FCFS 
exponential results and the results from this revised model have the same 
expected values, those given in Figure 7.10. This is because the LCFSPR



256 SIMULATION /  CHAP. 7

PROCEDURE ADDREGEN(N,L: INTEGER);
(♦INITIALIZES L JOBS AT NODE L. SETS REGENERATION 
STATE DESCRIPTION TO HAVE L JOBS AT NODE L*)
VAR TEMP: tREGENELEMENT; J: JOBPTR; I: INTEGER;
BEGIN

FOR I:=1 TO L DO 
BEGIN

IF AVAILJOB=NIL THEN 
NEW(J)

ELSE
BEGIN

J :=AVAILJOB;
AVAILJOB:=AVAILJOBt.NEXTJOB 

END;
J t.TOKENHOLDER:=NIL;
Jt.PARENT:=NIL;
J!.CHILD:=NIL;
ARRIVE(J ,N)

END;
IF AVAILREGEN=NIL THEN 
NEW(TEMP)

ELSE
BEGIN

TEMP:=AVAILREGEN;
AVAILREGEN:=AVAILREGENt.NEXTREGEN 

END;
TEMP t .NODEREGEN:=N;
TEMP t .LENGTHREGEN:=L;
TEMP t .NEXTREGEN:=FIRSTREGEN;
FIRSTREGEN:=TEMP 

END; (*ADDREGEN*)

Figure 7.31 - ADDREGEN
and PS results are dependent only on the mean service time and not on 
other distribution characteristics. We are using this network to empirically 
verify this result; we are not proposing it as a computer system model. 
Figure 7.33 shows the model specific parameters for this network. Since 
there are two events for each service completion, we doubled the event 
limits for the runs of this model. The results of these runs are shown in 
Figure 7.34. We ignore the confidence intervals for the first run because of 
the small number of regeneration cycles. The confidence intervals from the 
second and third runs contain the expected values in Figure 7.10, so these 
empirical results support the discussion of Chapter 5.
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BEGIN
(*INITIALIZATION*)
Z:=314159; (*AN ARBITRARY VALUE*)
FOR I:=0 TO 127 DO (*INITIALIZE TABLE *)

BEGIN
(*Z : = (A*Z) MOD M*) Z:=TRUNC(A*Z - (TRUNC( (A*Z)/M)*M) ) ; 
TABLE[I]:=Z 

END;
AVAILEVENT:=NIL;
AVAILJOB:=NIL ;
AVAILROUTING:=NIL;
AVAILREGEN:=NIL;
EVENTLIMIT:= 1 0 ;
FOR RUN:=1 TO 3 DO 

BEGIN
FIRSTEVENT:=NIL;
LASTEVENT:=NIL;
CLOCK:=0.0;
NUMBEREVENTS:=0;
FIRSTREGEN:=NIL;
NUMBERCYCLES:=0;
TIMECYCLESTARTED:=0.0;
SUMCL:=0.0;
SUMCLSQ:=0.0;
EVENTLIMIT:=10*EVENTLIMIT;
EVENTMAX:=2*EVENTLIMIT;
FOR I:=1 TO NQ DO 

WITH QUEUES[I] DO 
BEGIN

DISCIPLINE:=FCFS;
NUMBERSUBSERVERS:=1;
NUMBERUNITS: =1 ;
FIRSTINQUEUE:=NIL;
LASTINQUEUE:=NIL;
LENGTH:=0;
TIMELENGTHCHANGED:=0.0;
SUMTIMELENGTH:=0.0;
SUMBUSYTIME:=0.0;
NUMBERCOMPLETIONS:=0;
BT:=0.0;
TL:=0.0;
NC:=0.0;
BTSQ:=0.0;
BTXCL:=0.0;
NCSQ:=0.0;
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NCXCL:=0.0;
TLSQ:=0.0;
TLXCL:=0.0;
TLXNC:=0.0 

END;
FOR I:=1 TO NN DO 

WITH NODES[I] DO 
BEGIN

KINDOFNODE:=CLASS;
QUEUE:=1;
LENGTHNODE:=0;
ROUTINGPTR:=NIL;
FUSIONPTR:=NIL;
CHILDROUTING:=NIL 

END;
(*PARAMETERS SPECIFIC TO THIS MODEL*)
ADDDESTINATION(1,2,1.0,FALSE);
QUEUES[1].MEANSUBSERVICE:=1.0/B1;
ADDDESTINATION(2,1,1.0,FALSE);
QUEUES[2].NUMBERUNITS:=NIO;
QUEUES[2].MEANSUBSERVICE:=1.0/B2;
ADDREGEN(1,NJ);

(*RUN*)
WHILE (FIRSTEVENTONIL) AND (NUMBEREVENTS<EVENTMAX) 

AND ((NUMBEREVENTS<EVENTLIMIT) OR NOT ENDCYCLE) DO 
BEGIN

REMOVEEVENT(FIRSTEVENT,TEMPKIND,CLOCK,TEMPJOB); 
IF TEMPKIND=COMPLETION THEN 
BEGIN

NUMBEREVENTS:=NUMBEREVENTS+1;
COMPLETE(TEMPJOB)

END;
WHILE TEMPJOBONIL DO 

BEGIN
I:=NEXTNODE(TEMPJOB);
CASE NODES[I].KINDOFNODE OF 

CLASS: ARRIVE(TEMPJOB,I);
ALLOCATE: ALLOC(TEMPJOB,I);
RELEASE: RELEAS(TEMPJOB,I);
FISSION: FISS(TEMPJOB,I);
FUSION: FUS(TEMPJOB,I)

END
END

END;
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(♦PRINT STATISTICS*)

(*PUT LEFTOVERS ON AVAIL LISTS*) 
IF FIRSTEVENTONIL THEN 

BEGIN
LASTEVENTt.NEXT:=AVAILEVENT; 
AVAILEVENT:=FIRSTEVENT 

END;
FREEJOBS;
FREEROUTING;
FREEREGEN

END
END.

Figure 7.32 - Program Body

(*PARAMETERS SPECIFIC TO THIS MODEL*) 
ADDDESTINATION(1,2,1.0,FALSE);
QUEUES[1].DISCIPLINE:=LCFSPR;
QUEUES[1].NUMBERSUBSERVERS:=2;
QUEUES[1].MEANSUBSERVICE;=0.5/B1; 
ADDDESTINATION(2,1,0.5,FALSE);
QUEUES[2].DISCIPLINE:=PS;
QUEUES[2].NUMBERUNITS:=NIO;
QUEUES[2] .NUMBERSUBSERVERS:=2 ;
QUEUES[2].MEANSUBSERVICE:=0.5/B2; 
ADDREGEN(1,NJ);

Figure 7.33
Routing. We would like to simulate networks where a job leaving class i 

is routed to class j  with probability p tj. Conceptually this is the problem of 
sampling from a discrete distribution discussed in Section 7 . 1.1 and depicted 
in Figure 7.4. There we said that the selection would be the smallest value j  
such that n0 < q- ,  where uQ is a sample from the uniform distribution on 
the (0,1) interval and q-  is the cumulative probability, i.e., 
pn + p i2 + ... + Pij. The method used in function NEXTNODE (see Figure 
7.35) is algebraically equivalent, somewhat more convenient, and somewhat 
less efficient. It is used with the assumption that the number of possible 
destinations is small enough that the efficiency loss is negligible. Rather 
than obtain the cumulative probability in preparation for calls to NEX
TNODE, we subtract the individual probabilities from uQ until we find j 
such that w0 < p tj. (Notice that the PARENT variable for a job will always 
be NIL for jobs created by ADDREGEN. This variable will have other 
values only for jobs created at fission nodes, as defined in Section 7.4.)
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NUMBER OF EVENTS: 240 SIMULATED TIME: 517.452

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0.904 0.133 2.015 17.611

1 0.814 0.115 1 . 702 14.683
LOWER 0.724 0.098 1 . 390 11.756
UPPER 0.672 0.133 1.609 14.784

2 0.555 0.115 1 . 297 11.188
LOWER 0.439 0.098 0.984 7.593

NUMBER OF CYCLES: 8
AVERAGE NUMBER OF EVENTS: 30.000
AVERAGE LENGTH: 64.681 C.I.:( 32.898 , 96.464)

NUMBER OF EVENTS: 2096 SIMULATED TIME: 4234.877

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0 . 8 3 1 0 .127 1 . 6 0 8 1 3 . 0 9 5

1 0 . 8 1 0 0 .1 23 1 . 550 1 2 .5 3 1
LOWER 0 . 7 8 9 0 .120 1 . 4 9 2 1 1 . 9 6 7
UPPER 0 . 6 5 0 0 .1 27 1 . 507 1 2 . 2 8 7

2 0 . 6 2 9 0 .123 1 . 4 4 9 1 1 . 7 1 4
LOWER 0 . 6 0 9 0 .120 1 .3 9 1 1 1 . 1 4 0

NUMBER OF CYCLES: 28
AVERAGE NUMBER OF EVENTS: 7 4 . 8 5 7
AVERAGE LENGTH: 1 5 1 . 2 4 5 C. I.:( 9 9 . 6 3 5 , 2 0 2 .8 5 5 )

NUMBER OF EVENTS: 20124 SIMULATED TIME: 4 1 2 9 2 . 0 9 6

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0 . 8 2 1 0 .123 1 . 6 1 9 1 3 . 3 8 5

1 0 . 8 1 4 0 .121 1 . 5 9 7 1 3 . 1 1 3
LOWER 0 . 8 0 7 0 .1 20 1 . 575 1 2 . 8 4 2
UPPER 0 . 6 1 6 0 .1 23 1 . 4 2 4 1 1 . 7 2 3

2 0 . 6 0 8 0 .121 1 . 4 0 2 1 1 . 5 0 8
LOWER 0 . 5 9 9 0 .120 1 . 380 1 1 . 2 9 4

NUMBER OF CYCLES: 350
AVERAGE NUMBER OF EVENTS: 5 7 . 4 9 7
AVERAGE LENGTH: 1 1 7 . 9 7 7 C. I.:( 1 0 6 . 0 1 6 , 1 2 9 .9 3 7 )

Figure 7.34



261SEC. 7.3 /  GENERAL QUEUEING NETWORKS

Procedure ADDDESTINATION of Figure 7.36 is used to build the list of 
possible destinations for each class. (The parameter C is only true for 
possible destinations of jobs created at fission nodes.)

FUNCTION NEXTNODE(J : JOBPTR): INTEGER;
(♦FINDS THE NEXT NODE FOR JOB J TO GO TO*)
VAR PROB: REAL; TEMP: tROUTINGELEMENT;
BEGIN

IF (NODES[Jt.CURRENTNODE].KINDOFNODE=FISSION) AND 
(J t . PARENTONIL) THEN
TEMP:=NODES[J t .CURRENTNODE] .CHILDROUTING

ELSE
TEMP:=NODES[Jt.CURRENTNODE].ROUTINGPTR;

IF TEMP=NIL THEN 
BEGIN

WRITELN('NEXTNODE - UNDEFINED ROUTING FROM NODE',
J t .CURRENTNODE) ;

HALT
END;

IF TEMPt.PROBABILITY<1 .0 THEN 
BEGIN

PROB:=RANDOM(Z);
WHILE (PROB>TEMPt.PROBABILITY) AND 

(TEMPt .NEXTROUTINGONIL) DO 
BEGIN

PROB:=PROB-TEMP t.PROBABILITY;
TEMP:=TEMP t .NEXTROUTING 

END
END;

NEXTNODE:=TEMPt.DESTINATION 
END; (*NEXTNODE*)

Figure 7.35 - NEXTNODE

We have considered several models with such probabilistic routing in 
earlier chapters. Figure 7.37 shows a model similar in structure to the 
model Brown et al used as a model of an interactive computer system. The 
figure is simpler than their model in several aspects, most notably in that 
memory contention is ignored. Let us suppose this is a model of a small 
system used for rather simple purposes, e.g., text editing. There are ten 
users at terminals. Each user thinks for a moment, keys in a command and 
waits for a response. Upon receiving a response, the user repeats this cycle. 
The mean time for thinking and keying has an exponential distribution with 
mean 3 seconds. Each command requires an average of ten cycles of alter
nating CPU-I/O activity. CPU scheduling is PS and the CPU service times
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PROCEDURE ADDDESTINATION(I,J : INTEGER; P :REAL; C: BOOLEAN);
(*ADDS DESTINATION NODE J TO ROUTING LIST
FOR NODE I WITH PROBABILITY P.
IF C THEN ROUTING IS FOR CHILD, OTHERWISE PARENT*)
VAR TEMP: tROUTINGELEMENT;
BEGIN

IF AVAILROUTING=NIL THEN 
NEW(TEMP)

ELSE
BEGIN

TEMP:=AVAILROUTING;
AVAILROUTING:=AVAILROUTINGt.NEXTROUTING 

END;
TEMPt.PROBABILITY:=P;
TEMPt.DESTINATION:=J ;
IF C THEN 
BEGIN

TEMP t.NEXTROUTING:=NODES[I] .CHILDROUTING;
NODES[I].CHILDROUTING:=TEMP 

END
ELSE

BEGIN
TEMP t.NEXTROUTING:=NODES[I] .ROUTINGPTR;
NODES[I].ROUTINGPTR:=TEMP 

END
END; (*ADDDESTINATION*)

Figure 7.36 - ADDDESTINATION

are exponential with mean 50 ms. Each disk is chosen with probability 0.5, 
disk scheduling is FCFS and the mean disk service is 60 ms. Figure 7.38 
shows the expected values for the individual queue measures. The expected 
length of a think-key-response cycle can be obtained by use of Little’s Rule, 
i.e., 10/1.72 = 5.81 seconds. Figure 7.39 gives the model specific state
ments for this network (with NN = NQ = 4) and Figure 7.40 shows the 
program output with EVENTLIMIT = 40000. (Note that scheduling is 
irrelevant at queue 1 because there is always a server for each job. We use 
PS there to keep the event list small.)
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10 jobs

Queue U R L Q
1 0.517 1.72 5.17 3.00
2 0.861 17.2 2.91 0.17
3 0.517 8.61 0.96 0.11
4 0.517 8.61 0.96 0.11

Figure 7.38 - Expected Values

(*PARAMETERS SPECIFIC TO THIS MODEL*) 
ADDDESTINATION(1,2,1.0,FALSE);
QUEUES[1].DISCIPLINE:=PS;
QUEUES[1].NUMBERUNITS:=10;
QUEUES[1].MEANSUBSERVICE:=3.0; 
ADDDESTINATION(2,3,0.5,FALSE) ; 
ADDDESTINATION(2,4,0.5,FALSE);
QUEUES[2].DISCIPLINE:=PS;
QUEUES[2] .MEANSUBSERVICE:=0.050 ; 
ADDDESTINATION(3,1,0.1,FALSE); 
ADDDESTINATION(3,2,0.9,FALSE) ;
QUEUES[3].MEANSUBSERVICE:=0.060; 
ADDDESTINATION(4,1,0.1,FALSE); 
ADDDESTINATION(4,2,0.9,FALSE);
QUEUES[4].MEANSUBSERVICE:=0.060; 
ADDREGEN(1,10);

Figure 7.39
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NUMBER OF EVENTS: 41076 SIMULATED TIME: 1117.410

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0.523 1 . 778 5.236 3.030

1 0.504 1.721 5.046 2.930
LOWER 0.485 1 . 665 4.855 2.831
UPPER 0.872 17.790 3.108 0.176

2 0.859 17.519 2.958 0.168
LOWER 0.846 17.247 2.808 0.160
UPPER 0.535 8.952 1 .040 0.117

3 0.521 8.755 0.985 0.112
LOWER 0.507 8.557 0.931 0.107
UPPER 0.538 8.940 1 . 046 0.118

4 0.528 8.764 1 .009 0.115
LOWER 0.517 8.587 0.972 0.112

NUMBER OF CYCLES: 42
AVERAGE NUMBER OF EVENTS: 978.000
AVERAGE LENGTH: 26.605 C.I.:( 18.321 , 34.888)

Figure 7.40
7.4 DEFINITION AND SIMULATION OF

EXTENDED QUEUEING NETWORKS

The principal advantage of simulation is its generality; with enough 
investment of human and machine resources we can produce very realistic 
models of systems. This generality leads to one of simulation’s greatest 
liabilities, the difficulty of deciding which system characteristics to try to 
represent and which to ignore. With computer system models, the queueing 
networks we have discussed provide a reasonable, relatively abstract ap
proach to this model formulation problem. In Chapter 6 we discussed some 
of the limitations of the usual characteristics of queueing networks with 
respect to computer system models. This section will discuss extensions to 
queueing networks which overcome some of these limitations. The exercises 
will deal with other extensions which can be used to overcome the other 
limitations we cited. We are proposing extended queueing networks as a 
unified approach to computer systems. We choose to discuss two extensions 
which we consider both useful and relatively tricky to implement: passive 
queues and fusion nodes.

7.4.1 Passive Resources

In Chapter 6 we termed some resources (and their associated queues) 
as "passive" because the holding of these resources is determined by activi
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ties at other ( active ) resources. An active resource and one or more 
passive resources may be held simultaneously by a job. The job needs the 
passive resources to use the active resources; time of holding the passive 
resources to use the active resources, routing, etc. A natural example of a 
passive resource in a computer system is primary memory. A job needs 
memory to use a CPU or I/O  device; the job’s time in memory is largely 
determined by CPU and I/O  times.

Figure 7.41
Central Server Model with Terminals and Memory

We define a passive queue as a set of tokens analogous to the servers of 
an active queue, a set of allocate nodes and a set of release nodes. A job 
wanting a token goes to an allocate node. If a token is available, the job 
receives the token and proceeds without delay. Tokens are allocated in 
FCFS order. When a job is through with a token, it proceeds to a release 
node where it returns the token and proceeds without delay. (This is a very 
restricted definition. A general definition is given in [SAUE77c].) Figure
7.41 shows our interactive computer system model with a passive queue 
added to represent memory contention. It is assumed that memory is 
divided into a fixed number of partitions and that a token represents a 
partition. Node 2 is an allocate node and node 6 is a release node. Figure
7.42 gives performance estimates for this model obtained by a flow- 
equivalence approximation discussed in Chapter 6. (Queue 2 is the passive 
queue.) The queueing time for a passive queue is defined as the time of 
request for tokens to the time of release of tokens. Thus the queueing time
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for the passive queue in this model is also our estimate of mean response 
time, and this estimate is noticeably higher than our 2.81 estimate without 
memory contention.

Queue U R L Q
1 0.493 1.64 4.93 3.00
2 0.904 1.64 5.04 3.08
3 0.822 16.4 1.98 0.12
4 0.493 8.22 0.82 0.10
5 0.493 8.22 0.82 0.10

Figure 7.42 - Approximation Values

Element format T O K E N H O L D E R N E X T J O B

1 2 3
FIRSTINQUEUE

Figure 7.43 - Tokenholders

The principal problem with implementation of passive queues is that a 
job must be in several queues at the same time, i.e., in our data structure 
the job must appear in several lists. To accomplish this, we have several 
instances of type JOBELEMENT which collectively represent the job. 
There is exactly one entry in a queue list for each resource (active or 
passive) that the job has requested or possesses. These list elements collec
tively representing the job are also linked to each other with the TOKEN- 
HOLDER variable. We refer to the elements at the passive queues where 
the job holds tokens as "tokenholders" for the job. When a job is to be 
allocated a token, a new job element is obtained, this new element is placed 
in the queue where the job was, the new element is put in the job’s list of
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PROCEDURE ALLOC(VAR J: JOBPTR; A: INTEGER);
(♦HANDLES ARRIVAL OF JOB J AT ALLOCATE NODE A*)
VAR TH: JOBPTR;
BEGIN

J t .CURRENTNODE:=A;
WITH QUEUES[NODES[A].QUEUE] DQ 

BEGIN
(♦STATISTICS*)
SUMTIMELENGTH:=SUMTIMELENGTH

+ (CLOCK-TIMELENGTHCHANGED)*LENGTH; 
SUMBUSYTIME:=SUMBUSYTIME+(CLOCK-TIMELENGTHCHANGED)*

MIN(LENGTH,NUMBERUNITS);
TIMELENGTHCHANGED:=CLOCK;
(♦MECHANICS*)
NODES[A].LENGTHNODE:=NODES[A].LENGTHNODE+1;
LENGTH:=LENGTH+1;
IF LENGTH<NUMBERUNITS THEN 

BEGIN
IF AVAILJOB=NIL THEN 
NEW(TH)

ELSE
BEGIN

TH:=AVAILJOB;
AVAILJOB:=AVAILJOBt.NEXTJOB 

END;
TH t .CURRENTNODE:=A;
TH t.REQUESTGRANTED:=TRUE;
TH t .TOKENHOLDER:=J t.TOKENHOLDER;
J t.TOKENHOLDER:=TH;
IF FIRSTINQUEUE=NIL THEN 

FIRSTINQUEUE:=TH 
ELSE

LASTINQUEUE t.NEXTJOB:=TH ;
LASTINQUEUE:=TH;
TH t .NEXTJOB:=NIL 

END 
ELSE 

BEGIN
IF FIRSTINQUEUE=NIL THEN 

FIRSTINQUEUE:=J 
ELSE

LASTINQUEUE t.NEXTJOB:=J;
LASTINQUEUE:=J;
Jt.NEXTJOB:=NIL;
J t .REQUESTGRANTED:=FALSE;



268 SIMULATION /  CHAP. 7

J :=NIL 
END

END
END; (*ALLOC*)

Figure 7.44 - ALLOC
tokenholders, and the job proceeds. Figure 7.43 shows the queue and 
tokenholder lists for a hypothetical state of a hypothetical system. The job 
at queue 3 holds tokens at both queues 1 and 2. The second job at queue 2 
is waiting for a token there but holds a token at queue 1. The third job at 
queue 1 holds no tokens. Figure 7.44 shows the ALLOC procedure for 
allocate nodes. ALLOC sets its parameter J to NIL if a token is not allocat
ed. (Refer back to Figure 7.42.) Figure 7.45 shows the RELEAS procedure 
for release nodes. If the job possesses no tokens from the release node’s 
queue, there is no effect on the job. RELEAS searches the tokenholder list 
to find a tokenholder for its queue. If a tokenholder is found, the token is 
returned to the queue. RELEAS checks to see if a job is waiting for a 
token, and if so, reuses the tokenholder for that job. Otherwise the token- 
holder is put on the AVAILJOB list.

The implementation of the release node encounters another problem: 
we may have more than one job moving around the network at the same 
simulated time, i.e., both the releasing job and the job just allocated a 
token. (If the releasing job then releases a token at another queue, or if we 
have a more general definition of passive queues, there may be more than 
two jobs simultaneously moving.) There are a variety of ways we could deal 
with this, e.g., by keeping a list of jobs in motion or by recursive procedure 
calls, but the most convenient way is to define a new kind of event, 
"nodedeparture" and to schedule such an event for each job set in motion 
because of the activities of another job. Though this may increase the size 
of our event list, this approach is easily generalized, is likely to be more 
efficient than recursive procedure calls, and can be applied to other situa
tions such as the fission nodes about to be defined. We would like to 
maintain the property that our events correspond directly to state transitions 
of our implicit Markov process, so we will not think of nodedeparture 
events as "real" events and will not count them in NUMBEREVENTS.

Figure 7.46 show this model specific statements for the model of 
Figure 7.41, and Figure 7.47 shows the program output with EVENTLIMIT 
= 40000, as before. We are using state with all jobs at the terminals as the 
regeneration state, as we did before. Even though this is certainly not the 
most frequently occurring state, we do observe a reasonable number of 
regeneration cycles. Though the results for this model in Figure 7.42 are
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PROCEDURE RELEAS(VAR J: JOBPTR; R: INTEGER);
(♦HANDLES ARRIVAL OF JOB J AT RELEASE NODE R* )
VAR FOUND: BOOLEAN; TH, TEMP, TEMPNEXT: JOBPTR;
BEGIN

J t .CURRENTNODE:=R;
FOUND:=FALSE;
TEMP:=J ;
WHILE NOT FOUND AND (TEMP t . TOKENHOLDERONIL) DO 

IF NODES[TEMPt.TOKENHOLDERt.CURRENTNODE].QUEUE=
NODES[R].QUEUE THEN 
FOUND:=TRUE 

ELSE
TEMP:=TEMPt.TOKENHOLDER;

IF FOUND THEN 
BEGIN

TH:=TEMPt.TOKENHOLDER;
TEMP t.TOKENHOLDER:=THt.TOKENHOLDER;
WITH QUEUES[NODES[R].QUEUE] DO 

BEGIN
(♦STATISTICS*)
NUMBERCOMPLETIONS:=NUMBERCOMPLETIONS +1 ; 
SUMTIMELENGTH:=SUMTIMELENGTH

+ (CLOCK-TIMELENGTHCHANGED)*LENGTH; 
SUMBUSYTIME:=SUMBUSYTIME

+ (CLOCK-TIMELENGTHCHANGED)
♦MIN(LENGTH,NUMBERUNITS); 

TIMELENGTHCHANGED:=CLOCK;
(♦MECHANICS*)
NODES[ TH t .CURRENTNODE] .LENGTHNODE: =

NODES[THt.CURRENTNODE].LENGTHNODE-1; 
LENGTH:=LENGTH-1;
IF TH=FIRSTINQUEUE THEN 

BEGIN
FIRSTINQUEUE:=FIRSTINQUEUE t.NEXTJOB;
IF FIRSTINQUEUE=NIL THEN 

LASTINQUEUE:=NIL
END

ELSE
BEGIN

TEMP:=FIRSTINQUEUE;
WHILE THOTEMPt .NEXTJOB DO 

TEMP:=TEMP t.NEXTJOB;
TEMP t.NEXTJOB:=THt.NEXTJOB;
IF TEMPt.NEXTJOB=NIL THEN 
LASTINQUEUE:=TEMP

SEC. 7.4 /  EXTENDED QUEUEING NETWORKS
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END;
IF LENGTH>NUMBERUNITS THEN

IF NOT FIRSTINQUEUEt.REQUESTGRANTED THEN 
BEGIN

{*MAKE TH A TOKENHOLDER FOR FIRSTINQUEUE*) 
TH t .NEXTJOB:=FIRSTINQUEUEt .NEXTJOB;
IF THt.NEXTJOB=NIL THEN 
LASTINQUEUE:=TH;

THt.TOKENHOLDER:=
FIRSTINQUEUEt.TOKENHOLDER;

TH t .REQUESTGRANTED:=TRUE;
TEMP:=FIRSTINQUEUE;
FIRSTINQUEUE:=TH;
TEMP t .TOKENHOLDER:=TH;
INSERTEVENT(NODEDEPARTURE,CLOCK,TEMP)

END
ELSE

BEGIN (*MAKE TH A TOKENHOLDER FOR TEMPNEXT*) 
TEMP:=FIRSTINQUEUE;
WHILE TEMPt.NEXTJOBt.REQUESTGRANTED DO 

TEMP:=TEMPt.NEXTJOB;
TEMPNEXT:=TEMPt.NEXTJOB;
TEMP t .NEXTJOB:=TH;
TH t.NEXTJOB:=TEMPNEXTt.NEXTJOB;
IF THt,NEXTJOB=NIL THEN 
LASTINQUEUE:=TH;

TH t .TOKENHOLDER:=TEMPNEXTt.TOKENHOLDER;
TH t .REQUESTGRANTED;=TRUE;
TEMPNEXT t.TOKENHOLDER:=TH;
INSERTEVENT(NODEDEPARTURE,CLOCK,TEMPNEXT) 

END
ELSE

BEGIN
THt.NEXTJOB:=AVAILJOB;
AVAILJOB:=TH 

END
END

END
END; (*RELEAS *)

Figure 7.45 - RELEAS
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(*PARAMETERS SPECIFIC TO THIS MODEL*) 
ADDDESTINATION(1,2,1.0,FALSE);
QUEUES[1],DISCIPLINE:=PS;
QUEUES[1].NUMBERUNITS:=10;
QUEUES[1].MEANSUBSERVICE:=3.0;
NODES[2].KINDOFNODE:=ALLOCATE; 
ADDDESTINATION(2,3,1.0,FALSE);
QUEUES[2].NUMBERUNITS:=4; 
ADDDESTINATION(3,4,0.5,FALSE); 
ADDDESTINATION(3,5,0.5,FALSE);
QUEUES[3].DISCIPLINE:=PS;
QUEUES[3].MEANSUBSERVICE:=0.050; 
ADDDESTINATION(4,3,0.9,FALSE); 
ADDDESTINATION(4,6,0.1,FALSE);
QUEUES [4] .MEANSUBSERVICE:=0.060; 
ADDDESTINATION(5,3,0.9,FALSE); 
ADDDESTINATION(5,6,0.1,FALSE);
QUEUES[5] .MEANSUBSERVICE:=0.060 ;
NODES[6].KINDOFNODE:=RELEASE;
NODES[6].QUEUE:=2;
ADDDESTINATION(6,1,1.0,FALSE); 
ADDREGEN(1,10);

Figure 7.46
approximate, the two sets of results are in close agreement. We can reason
ably conclude that memory contention may be significant in this system.

7.4.2 Fission and Fusion Nodes

In some computer systems a job may consist of several concurrent 
processes which are simultaneously active with different resources, e.g., 
simultaneously performing computations and I/O transfers, simultaneously 
performing several I/O  transfers, etc. In communication systems a message 
may be divided into several "packets" which are transmitted simultaneously, 
often on different communication lines. We extend our definition of queue
ing networks so that a job may go through a fission node to produce a 
second job associated with the first. We refer to the first job as the 
"parent" and the second job as a "child." It would be difficult to make the 
child identical to the parent because the parent may already possess tokens. 
So the asymmetry is intentional and not easily avoided. The passage of the 
parent through the fission node is instantaneous and the child departs 
immediately. We again take advantage of the node departure event in our 
implementation of procedure FISS (see Figure 7.48).
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NUMBER OF EVENTS: 43582 SIMULATED TIME: 1256.610

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0.503 1 . 678 5.0 54 3.052

1 0.484 1.631 4.842 2.968
LOWER 0.463 1 . 583 4.631 2.884
UPPER 0.926 1 .678 5 . 368 3 . 370

2 0.910 1.631 5.157 3.161
LOWER 0.893 1 . 583 4.945 2.952
UPPER 0.836 16.773 2.051 0.123

3 0.825 16.525 2.002 0.121
LOWER 0.814 16.276 1 .953 0.119
UPPER 0.494 8.271 0.820 0.100

4 0.484 8.140 0.792 0.097
LOWER 0.475 8.009 0.765 0.093
UPPER 0.516 8.538 0.876 0.103

5 0.504 8.384 0.845 0.100
LOWER 0.492 8.230 0.815 0.098

NUMBER OF CYCLES: 31
AVERAGE NUMBER OF EVENTS: 1405.870
AVERAGE LENGTH: 40.535 C.I. : ( 25.164, 55.907)

Figure 7.47
Our definitions of fission and fusion nodes allow a parent at most one 

child in existence at the same time and do not allow a child to have child
ren. More general definitions are found in [SAUE76, SAUE77c], but the 
former is rather awkward and the latter is not as general as it could be.

A fusion node complements a fission node (or nodes) by providing a 
place for parents to wait for their children and vice versa. As soon as both a 
parent and its child are at a fusion node together, the child is destroyed and 
the parent leaves the node immediately. The variable FUSIONPTR is used 
to keep a list of waiting jobs. See Figure 7.49.

Our definition of fission nodes provides a separate list of possible 
destinations for the children. The last parameter of ADDDESTINATION is 
used to indicate whether the destination is to be added to the parent’s list or 
the child’s list.

To illustrate the use of fission and fusion nodes to represent CPU-I/O 
overlap, let us suppose that in our interactive computer system model that 
before 50% of the CPU services a job is able to produce another job which 
can do I/O while the creating job is still at the CPU. After either of these
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PROCEDURE FISS(J : JOBPTR; F: INTEGER);
(*HANDLES ARRIVAL OF JOB J AT FISSION NODE F*)
VAR TEMP: JOBPTR;
BEGIN

J t.CURRENTNODE:=F;
IF (J t . CHILDONIL) OR (J t . PARENTONIL) THEN 

BEGIN
WRITELN('FISS - MULTIPLE GENERATIONS ATTEMPTED'); 
HALT 

END 
ELSE 

BEGIN
IF AVAILJOB=NIL THEN 

NEW(TEMP)
ELSE

BEGIN
TEMP:=AVAILJOB;
AVAILJOB:=AVAILJOB t.NEXTJOB 

END;
TEMPt.CHILD:=NIL;
Jt.CHILD:=TEMP;
TEMP t .PARENT:=J ;
TEMP t .CURRENTNODE:=F;
TEMPt.TOKENHOLDER:=NIL;
INSERTEVENT(NODEDEPARTURE,CLOCK,TEMP)

END
END; ( *FISS*)

Figure 7.48 - FISS
(hopefully) overlapped activities is finished, the process which is finished is 
forced to wait for the other to finish. Then another CPU-I/O cycle 
(possibly again with overlapped activities) begins for the job if the com
mand is not finished. Figure 7.50 shows the addition of fission node 7, 
fusion node 11 and classes 8, 9 and 10 which belong to queues 3, 4 and 5, 
respectively.

Figure 7.51 shows the model specific statements for this network. 
Again the regeneration state has all of the jobs at the terminals. Figure 7.52 
shows the output of the program with EVENTLIMIT=40000.

Notice that the CPU-I/O overlap has an apparently dramatic effect on 
response times in this system. We chose the parameters that this might 
happen, but it is not unlikely that a widely used program such as a text 
editor would be designed to achieve such overlap. We would not expect
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PROCEDURE FUS(VAR J: JOBPTR; F: INTEGER);
(♦HANDLES ARRIVAL OF JOB J AT FUSION NODE F*)
VAR L, TEMP: JOBPTR; FOUND: BOOLEAN;
BEGIN

J t .CURRENTNODE:=F;
IF (Jt . PARENTONIL) OR (J t . CHI LDONIL) THEN 

IF (Jt .PARENTONIL) AND
( (Jt .CHILDONIL) OR (J t . TOKENHOLDERONIL) ) THEN 
BEGIN

WRITELN(
'FUS - MULTIPLE GENERATIONS OR CHILD HOLDS TOKENS');
HALT

END
ELSE
WITH NODES[F] DO 

BEGIN
FOUND:=FALSE;
IF FUSIONPTR=NIL THEN 
BEGIN

Jt.NEXTJOB:=NIL;
FUSIONPTR:=J;
LENGTHNODE:=1;
J :=NIL 

END
ELSE (*THERE ARE WAITING JOBS*)

BEGIN
IF J t .PARENT=NIL THEN

IF Jt.CHILD=FUSIONPTR THEN 
BEGIN

FOUND:=TRUE;
TEMP:=J t.CHILD;
FUSIONPTR:=FUSIONPTRt.NEXTJOB 

END
ELSE (*Jt .CHILDOFUSIONPTR*)

BEGIN
L :=FUSIONPTR;
WHILE NOT FOUND AND (Lt . NEXTJOBONIL) 

DO
IF Lt,NEXTJOB=Jt.CHILD THEN 
FOUND:=TRUE 

ELSE
L:=Lt.NEXTJOB;

IF FOUND THEN 
BEGIN

TEMP:=J t .CHILD;
L t .NEXTJOB:=L t .NEXTJOB t .NEXTJOB 

END
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END
ELSE ( * J t . PARENTONIL* )

IF J t .PARENT=FUSIONPTR THEN 
BEGIN

FOUND:=TRUE;
FUSIONPTR:=FUSIONPTRt.NEXTJOB;
TEMP:=J ;
J :=Jt.PARENT 

END
ELSE ( * J t . PARENTOFUSIONPTR* )

BEGIN
L :=FUSIONPTR;
WHILE NOT FOUND AND (Lt . NEXTJOBONIL) 

DO
IF Lt,NEXTJOB=Jt.PARENT THEN 
FOUND:=TRUE 

ELSE
L:=Lt.NEXTJOB;

IF FOUND THEN 
BEGIN

L t .NEXTJOB:=L t.NEXTJOB t .NEXTJOB; 
TEMP;=J ;
J :=J t .PARENT 

END
END;

IF FOUND THEN 
BEGIN

LENGTHNODE:=LENGTHNODE- 1 ;
Jt.CHILD:=NIL;
TEMP t.PARENT:=NIL ;
TEMP t.NEXTJOB:=AVAILJOB;
AVAILJOB:=TEMP 

END
ELSE (*NOT FOUND*)

BEGIN
LENGTHNODE:=LENGTHNODE+1 ;
Jt.NEXTJOB:=FUSIONPTR;
FUSIONPTR:=J;
J :=NIL 

END
END

END
END; (*FUS*)

Figure 7.49 - FUS
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such design effort would be put into most programs, and measurements of 
general purpose computer systems usually show a small degree of CPU-I/O 
overlap.

Also notice that the mean response time (queue 2 queueing time) 
estimate is near to the response time estimate of Section 7.3, 2.81, which 
was based on a much simpler model. The increase in mean response time 
due to memory contention and the decrease in mean response time due to 
CPU-I/O overlap roughly negate each other to make the estimates of the 
relatively unrealistic model fairly accurate. This is one explanation of the 
success of some queueing network models which appear to be unacceptably 
simplistic: the models capture the contention for the principal resources 
while the effects of secondary resources and other characteristics are small 
when considered together. If we have the time and money to investigate the 
effects of secondary resources and characteristics, and if we need a high 
degree of accuracy in our estimates, then we should pursue these effects. On 
the other hand, if we are limited in human and machine resources and can 
tolerate a fair amount of error, then we may well get by on our intuition 
and simplistic models.
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(*PARAMETERS SPECIFIC TO THIS MODEL*) 
ADDDESTINATION(1,2,1.0,FALSE);
QUEUES[1].DISCIPLINE:=PS;
QUEUES[1].NUMBERUNITS:=10;
QUEUES[1] .MEANSUBSERVICE:=3.0;
NODES[2] .KINDOFNODE:=ALLOCATE ; 
ADDDESTINATION(2,3,0.5,FALSE); 
ADDDESTINATION(2,7,0.5,FALSE) ;
QUEUES[2].NUMBERUNITS:= 4; 
ADDDESTINATION(3,4,0.5,FALSE) ; 
ADDDESTINATION(3,5,0.5,FALSE) ;
QUEUES[3].DISCIPLINE:=PS;
QUEUES[3] .MEANSUBSERVICE:=0.050 ; 
ADDDESTINATION(4,3,0.45,FALSE); 
ADDDESTINATION(4,6,0.1,FALSE) ; 
ADDDESTINATION(4,7,0.45,FALSE) ; 
QUEUES[4].MEANSUBSERVICE:=0.060; 
ADDDESTINATION(5,3,0.45,FALSE) ; 
ADDDESTINATION(5,6,0.1,FALSE); 
ADDDESTINATION(5,7,0.45,FALSE) ; 
QUEUES[5].MEANSUBSERVICE:=0.060; 
NODES[6].KINDOFNODE:=RELEASE;
NODES[6].QUEUE:=2;
ADDDESTINATION(6,1,1.0,FALSE);
NODES[7].KINDOFNODE:=FISSION; 
ADDDESTINATION(7,8,1.0,FALSE); 
ADDDESTINATION(7,9,0.5,TRUE) ; 
ADDDESTINATION(7,10,0.5,TRUE);
NODES[8].QUEUE:=3;
ADDDESTINATION(8,11,1.0,FALSE);
NODES[9].QUEUE:=4;
ADDDESTINATION(9,11,1.0,FALSE);
NODES[10].QUEUE:=5;
ADDDESTINATION(10,11,1.0,FALSE); 
NODES[11].KINDOFNODE:=FUSION; 
ADDDESTINATION(11,3,0.45,FALSE); 
ADDDESTINATIION(11,6,0.1,FALSE); 
ADDDESTINATION(11,7,0.45,FALSE); 
ADDREGEN(1,10);

Figure 7.51
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NUMBER ()F EVENTS: 41073 SIMULATED TIME: 1133.542

QUEUE UTILIZATION THROUGHPUT QUEUE LENGTH QUEUEING TIME
UPPER 0.533 1.739 5 . 328 3.148

1 0.515 1 . 684 5.147 3.056
LOWER 0.497 1 .629 4.965 2.964
UPPER 0.904 1.739 5.035 3.063

2 0.885 1 . 684 4.853 2.882
LOWER 0.866 1 .629 4.672 2.701
UPPER 0.881 17.524 2 . 369 0.137

3 0.870 17.275 2 . 303 0.133
LOWER 0.859 17.026 2.237 0.130
UPPER 0.522 8.790 0.892 0.102

4 0.509 8.630 0.855 0.099
LOWER 0.496 8.471 0.819 0.096
UPPER 0.517 8.828 0.873 0.100

5 0.505 8.645 0.840 0.097
LOWER 0.493 8.461 0.807 0.095

NUMBER OF CYCLES: 50
AVERAGE NUMBER OF EVENTS: 821.460
AVERAGE LENGTH: 22.671 C.I. : ( 15.707 , 29.635)

Figure 7.52
7.5 RESPONSE TIME DISTRIBUTIONS

One apparently intractable problem with almost all interesting queueing 
network models is to numerically obtain response time distributions. Exact 
solutions have been found for some simple central server models 
[CHOW78] and restricted open networks [TAKA63, WONG78a] and 
approximate solutions have been proposed for other networks [YU77].

Yet we are often very interested in response time distributions. Users 
of a computer system are likely to prefer a distribution with a larger mean if 
they are compensated by less variability in the response times, i.e., if they 
are better able to predict the response they will get. Vendors are often 
asked to make statements about system response times such as "95% of the 
response times will be less than 5 seconds".

A common heuristic used with respect to this last situation is to assume 
the response time distribution has a convenient form, e.g., exponential or 
Erlang, and make a statement based on the mean [MART67], For example, 
if the mean is 3 seconds and we assume an exponential distribution then we 
can say that a x 100% of the response times will be less than
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— 31n(l — a), e.g., 95% of the response times will be less than 8.99 sec
onds. The exponential assumption is correct for a FCFS single server queue 
with exponential interarrival times and exponential service times, i.e., the 
M /M /l queue. The Erlang assumption is thus correct for some open 
networks. One of Chow’s results was that certain limiting cases of central 
server model cycle times have an Erlang distribution [CHOW78],

With simulation, response time distribution estimation is no more 
difficult, in principle, than estimation of the measures we have been consid
ering. We have seen in the last two simulations that the queueing times for 
the passive queue were also the computer system response times. This is no 
coincidence, but a natural consequence of the meaning of the resource and 
our definition of queueing time for passive queues. We can use passive 
queues to measure response times in arbitrary subnetworks, whether or not 
there is a corresponding actual (physical or logical) resource. For example, 
suppose our interactive computer system of the previous simulations has an 
abundance of memory and no memory contention. We can still use the 
passive queue for the response time purpose by providing an "infinite" 
number of tokens. (For that system 10 tokens would be sufficient.)

Thus estimating response times is reduced to estimating queueing times. 
To estimate queueing times other than the mean we must record them in 
some way. We record the arrival time when a job arrives at a queue so that 
we can determine the time the job spent in the queue when it leaves. Then 
if we want to estimate the variance or higher moments we can apply stand
ard formulas based on these individual queueing times. (For the variance 
this would simply be (7.4).) If we want to estimate the fraction of queueing 
times less than 5 seconds, we need only count the number of times less than 
5 seconds and divide by the total number. We can do this for several values 
of interest, or if we want an estimate of the entire distribution, we can do 
this for selected values throughout the range of possible queueing times. (If 
we want the actual distribution of the individual queueing times, then we 
should maintain a sorted list of the observed times and calculate the cumula
tive frequency. This will be computationally expensive, but conceptually 
simple.)

Estimating confidence intervals with respect to the queueing time 
distribution may or may not be more difficult depending on the measure of 
interest and the confidence interval method. The entire cumulative frequen
cy will cause difficulty regardless of confidence interval method, as will 
measures based on it. For most other measures we can apply independent 
replications in a straightforward manner. (Some measures will be much 
more variable than the mean values we have estimated — thus much more 
computational effort will be needed for narrow intervals to be obtained.)

SEC. 7.5 /  RESPONSE TIME DISTRIBUTIONS
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With the regenerative method some measures, in particular the vari
ance, require more complex estimators, but other measures, for example the 
fraction of times less than a specified value, use exactly the same methods 
we applied to the measures in the previous sections. However, there is one 
very important consideration in regards to choice of regeneration state. That 
consideration is that we cannot assume the queueing time processes during 
different regeneration cycles are independent and identically distributed if 
there are queueing times of interest in progress in that state. (There is no 
problem with respect to the mean queueing time since we use a "Little’s 
Rule" approach to its estimation.) The Markov state which is a regeneration 
state for the population process, i.e., the queue lengths, is not necessarily a 
regeneration state for the queueing time process. However, if the queue is 
empty in the regeneration state, then no queueing times can be in progress 
and we have a regeneration state for the queueing time process. This is part 
of the basis for our choice of the state with all jobs at the terminals in our 
interactive system model; that state is a regeneration state for the response 
time process for the computer system. This consideration is another argu
ment in favor of the empty system state in simulation of open networks.

7.6 FURTHER READING

A more thorough and general treatment of simulation can be found in 
[FISH73,FISH78]. A general discussion of random number generation, 
including testing of uniform generators and methods for obtaining non- 
uniform random variables, is given by [KNUT68]. A comparison of several 
popular generators is provided by [LEAR73],

Discussion of more efficient event list mechanisms can be found in 
[FRAN77] and [MEAR79],

An excellent introduction to the regenerative method is given in 
[CRAN77]. Some more advanced material is presented in [IGLE78a] and 
[FISH78]. Some solutions to the "queueing times in progress" problem are 
proposed by [IGLE78b] and [FISH79]. A heuristic approach for systems 
with infrequent regeneration states is studied empirically in [SAUE77a].

We have entirely ignored programming languages specifically designed 
for simulation. Such languages provide random number generators, event 
list mechanisms, and other features such as specialized list processing 
facilities and statistics gathering. An introduction to such languages is found 
in the Fishman texts. Discussion of specialized queueing languages is found 
in [SAUE78a],



SEC. 7.7 /  EXERCISES 281

More examples of extended queueing network models of computer and
communication systems, including use of the regenerative method, are given 
in [SAUE77c,SAUE78b],

7.7 EXERCISES

7.1 Modify the data structures, ARRIVE and COMPLETE to allow the 
branching Erlang distribution for service times. Provide a procedure 
that allows specification of the standardized forms in Chapter 3 by 
giving the mean and coefficient of variation.

7.2 We have omitted the procedures FREEJOBS, FREEROUTING and 
FREEREGEN which are used in Figure 7.32. Provide definitions of 
each of these.

7.3 With our definitions of INSERTEVENT and REMOVEEVENT we 
would expect that we would have to search half of the list to insert an 
event or to remove an event other than the first or the last. Provide a 
third pointer, in addition to FIRSTEVENT and LASTEVENT, so that 
we would only expect to search one fourth of the list. Can you gener
alize this for further efficiency? (At what point do the additional 
pointers become a burden?)

7.4 Revise the data structures, ARRIVE and COMPLETE to allow class 
dependent service times.

7.5 Revise the data structures, ARRIVE and COMPLETE to avoid the 
inefficiency of scheduling completion events for each stage for jobs at 
classes which are empty in the regeneration state.

7.6 The simulation program as presented allows us to specify run length in 
terms of numbers of events. If the confidence intervals are "too 
wide," we must run the simulation again with a larger number of 
events. Provide the following rule as an alternative: We wish to stop 
the simulation every k cycles and determine whether, for a specified 
queue’s mean queueing time, and relative width of the confidence 
interval, i.e., 2d /y n , is less than g. If so we terminate the run, other
wise we continue for another k cycles. We always use the data from 
all simulated cycles in our estimates. (Formal and empirical justifica
tion for this rule is given in [LAVE77].)

7.7 Implement a non-preemptive priority scheduling algorithm for active 
queues, as described in Chapter 3. Each class is to be assigned a 
priority for scheduling purposes.

7.8 Repeat 7.7 with preemptive priority.
7.9 Implement a Round Robin scheduling algorithm for active queues.
7.10 Implement the Shortest Remaining Time First scheduling algorithm for 

active queues.
7.11 Implement composite queues (Chapter 6) assuming each class belongs 

to a different chain.



2X2 SIMULATION /  CHAP. 7

7.12 Revise the data structures, ALLOC and RELEAS so that the number 
of tokens a job requests may random with a finite discrete distribution, 
i.e., with probability p i a job requests r, tokens, with probability p2 a 
job requests t2 tokens, etc.

7.13 Provide new nodes for passive queues: A destroy node which throws 
away a job’s tokens rather than returning them to the queue, and a 
create node which adds to the total number of tokens at a queue. The 
number of tokens added has a finite discrete distribution. The create 
node affects only the queue; it has no direct effect on the job going 
through it.

7.14 Allow regeneration states which have jobs at allocate nodes. Be sure 
that you do not allow states which are not a regeneration state to be 
counted as such. (You may want to separate initialization of jobs 
from the other functions of ADDREGEN.)

7.15 Provide performance estimates for individual nodes as well as for 
queues.

7.16 Provide estimates of the number of queueing times less than or equal 
to specified values. Be careful about queueing times in progress with 
respect to confidence intervals.)

7.17 Provide sources and sinks with the new data structures. Provide for 
efficient determination of regeneration state by partitioning nodes into 
chains.

7.18 Implement split nodes which are similar to fission nodes except that 
there is no future association between the created job and the creating 
job.

7.19 In addition to routing based on probabilities, provide routing based on 
predicates, e.g., a job may select a node to go to based on queue 
lengths, number of tokens available, etc.

7.20 Allow jobs to carry data with them from node to node to be used (if 
desired) in routing decisions and service time calculations. Provide 
nodes to define and alter this data.



CHAPTER 8

M EASUREM ENT AND  
PARAMETER EVALUATION

In the preceding chapters we have focused our attention on solution of 
models and on system characteristics we consider most likely to significantly 
impact performance. In doing so, we have assumed that numerical parame
ters are given to use or are readily available. Now we turn our attention to 
measuring and estimating model parameters.

Obtaining model parameters usually requires a combination of ap
proaches, with the particular approaches and combinations strongly depend
ent on the particular system and its current evolution stage. We will consid
er the most important approaches and combination strongly dependent on 
the particular system and its current evolution stage. We will consider the 
most important approaches and try to discuss them in as general a context 
as possible; as a result, we will omit some details relevant (and required) in 
particular situations. These details will usually require system specific 
knowledge and/or specific knowledge of measurement tools used.

We assume that we are formulating a model of modifications to an 
existing system in order to conveniently cover the entire range of possibili
ties suggested in Chapter 1. In the limiting case of an entirely new system, 
the "modifications" are actually the entire system, while in the limiting case 
of modeling an existing system, there are no modifications. Thus we need 
to characterize the parameters of the existing system and we need to char
acterize the parameters of the modifications or new system. We will consid
er the existing system parameters first.

8.1 MEASUREMENT AND RELATED METHODS
FOR EXISTING SYSTEM PARAMETERS

There are three main sources of measured data: existing accounting 
software, hardware monitors attached to the system, and software monitors, 
i.e., software added to the system specifically for measurement. Measure
ments are usually obtained principally by a hardware or software monitor 
supplemented by accounting software and hardware specifications. Depend
ing on particular situations and parameters, we may be able to get the 
parameter values directly or we may have to obtain the parameter values 
from intermediate values which we can obtain directly. This latter case is
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very similar to methods used in simulation to obtain performance measures, 
for example, the "Little’s Rule" approach to mean queueing times (Section 
7.1.3).

8.1.1 Accounting Software and Hardware Specifications

Most computing systems of significant size include software to deter
mine users’ resource usage so that they may be billed for their activities (or 
at least discouraged from wasting resources in an environment without 
charges for system use). Though nearly every different site will have differ
ent accounting policies, and correspondingly different accounting software, 
there is information such as CPU time per user which will almost always be 
gathered. Other readily available information may include the number of 
I/O accesses (perhaps by device), memory required, number of page faults, 
connect time for interactive users, turnaround time for batch jobs and active 
time for batch jobs. (More information is likely to be available than is 
actually used for accounting purposes.) In addition to such user specific 
data, general information such as the average degree of multiprogramming 
may be obtainable from the accounting data.

A principal problem with using accounting data for model parameters is 
that accounting data often excludes resource usage by the operating system 
not directly invoked by user programs. (Since such resource usage cannot 
be attributed to individual users, it is usually not directly charged to users.)

If the operating system resource usage not included in the accounting 
data is negligible, then accounting data and intuitive use of system and 
hardware specifications may be sufficient to determine parameters for 
simple models (for existing system portions). For example, if we assume 
negligible overlap of CPU and I/O activity by individual programs, then 
mean CPU service time can be estimated by total CPU time divided by the 
number of I/O accesses. (This can be done for an individual user, a group
ing of users, operating system components, users and operating system 
components together, etc.) If we are willing to make assumptions about 
cylinder access patterns for the disks, then we can easily estimate seek times 
from the hardware specifications. (See WILH76 for detailed discussion of 
such calculations and the effects of various assumptions.) We can reason
ably assume that the latency will be uniformly distributed between zero and 
one revolution. If we know the buffer size and assume that most transfers 
consist of a full buffer, then the mean transfer time can be estimated by the 
buffer size divided by the transfer rate. We may estimate the mean disk 
service time then as the sum of the mean seek, latency and transfer times. 
(With position sensing devices and several devices per channel and/or 
controller, we may need to consider these disk service time components 
individually. We will pursue this further in Section 9.3.) Similar approaches
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may be used for drums, tapes and other I/O  devices. Thus we have the 
essential parameters (mean degree of multiprogramming, mean CPU service 
time and mean I/O  time) for the cyclic queue model used in CHIU75 and 
SAUE77b. If we need to consider several I/O queues then we can obtain 
the branching probabilities from the relative frequency of access to the 
devices of each queue.

8.1.2 Hardware Monitors

Since accounting data and hardware specifications are usually not 
sufficient for supplying model parameters, it is usually necessary to use a 
hardware or software monitor to supplement these other sources. A hard
ware monitor is simply a collection of digital circuitry which is attached to 
the hardware of the computer system. Existing hardware monitors range 
from devices consisting of a few circuits to complete computer systems 
including disks and other peripherals. Hardware monitors are widely used to 
estimate system performance directly (without modeling); there are com
mercially available hardware monitors for most significant computer sys
tems. Though hardware monitors may be quite complex, they are fairly 
simple from our point of view.

We are primarily interested in the probes and accumulators which may 
be associated with the probes and the probe points in the system where we 
attach the probes. The probe points are places where we can measure 
voltage levels corresponding to system states such as CPU busy (or idle), 
channel busy, (a particular) memory location being referenced, etc. By 
attaching the probes to these points we can observe system behavior and 
use the counters to record the number of changes in system state during an 
observation period and the accumulators to record the amount of time spent 
in interesting system states. This measurement process will usually be 
transparent to the observed system, i.e., there will be no difference in system 
performance with or without the monitor attached. This is one of the 
principal advantages of hardware monitors over software monitors.

A principal difficulty in using hardware monitors is knowing where to 
place the probes, e.g., knowing where is the probe point which corresponds 
to the CPU being busy. Fortunately, the system manufacturers and the 
monitor manufacturers have developed libraries of probe points for many 
common architectures.

Hardware monitors are principally limited by the available probe points 
and our ability to interpret the available data in terms of the interesting 
system parameters. For example, suppose we wish to estimate CPU service 
times. Further, there is a probe point which is "on" whenever the CPU is 
switched to another process. Thus we can determine the number of times
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this probe point changes state, and we can obtain the CPU busy time by 
accumulating the time this point is on. The CPU busy time will be the sum 
of the service times (regardless of scheduling algorithm, if we ignore switch
ing overhead) and we can obtain the mean service time by dividing CPU 
busy time by the number of CPU services. However, if the CPU scheduling 
is preemptive, e.g., Round Robin, then the count from this probe point will 
include preemptions as well as the number of services. In general, it is 
unlikely that there will be a probe point which can give us a count of the 
number of services and we must obtain the number of services from some 
other source. Such a source would be the accounting data, as described in 
the previous section. In estimating mean CPU times, hardware monitors 
and accounting data complement each other well; the hardware monitor can 
give us the sum of the CPU times including operating system activities and 
the accounting data can give us the number of CPU services, excluding the 
preemptions.

Hardware monitors can provide very accurate estimates for other 
parameters of importance, such as mean seek times (without making as
sumptions about cylinder access patterns). However, hardware monitors are 
inherently limited to measuring information we can interpret at the hard
ware level without knowledge of operating system activities. This means 
that we cannot easily obtain CPU service times by process, for example, and 
implies that we cannot obtain distribution estimates other than the mean for 
parameters such as CPU service times. For these reasons, hardware moni
tors by themselves will usually not be sufficient for our purposes, but 
hardware monitors supplemented by accounting data, hardware specifica
tions and educated guesses (e.g., "The CPU service time distribution form 
doesn’t matter since scheduling is similar to Processor Sharing.") may well 
be sufficient.

8.1.3 Software Monitors

A software monitor is a collection of pieces of code embedded in the 
operating system to gather performance data. (Depending on the architec
ture and operating system, some of the code may be run at user level 
processes.) There are two major approaches to the design of such a monitor, 
the event approach and the sampling approach. Any software monitor will 
perturb system performance somewhat, since it requires system resources to 
execute. The event approach has the advantages of maximum flexibility and 
generality, but it is likely to perturb performance more than a sampling 
monitor. In addition to providing more control over the overhead introduced 
by the monitor, in the sampling approach it may be more convenient to add 
a monitor to an existing operating system.
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In the event approach, the designer or user of the monitor must define 
significant events, e.g., CPU is switched from one process to another, I/O 
request issued, etc. The operating system modules which effect such events 
must be modified so that when the events occur, the module records (e.g., 
writes to a tape file) the type of event, the time it occurred, and any other 
important data associated with the event. The event records are processed 
after the measurement period to obtain the desired parameters. (Though 
data reduction might be done during the measurement period, this usually is 
avoided because of the additional perturbation of system performance.) This 
approach allows us to obtain very detailed information. For example, from 
the event trace we can observe the duration of each individual CPU service 
time (including preemptions and resumptions) and accumulate estimates of 
the distribution form as well as the mean. The principal limitation on detail 
is that of being able to observe and record the appropriate events.

With the sampling approach, monitor code is enabled periodically to 
determine whether the CPU is busy, what a particular device is doing, etc. 
From this information we can directly estimate performance metrics such as 
CPU utilization, and thus indirectly estimate total CPU service time. The 
sampling approach is much less general and flexible than the event ap
proach, e.g., there are parameters such as variances of service times which 
cannot be feasibly estimated with the sampling approach. The advantages 
of the sampling approach are potentially simpler implementation and the 
ability to directly reduce system perturbation by reducing sampling frequen
cy. However, if we reduce sampling frequency we must compensate for the 
loss of data by lengthening the measurement period. We prefer the event 
approach because of its generality and flexibility.

Depending on the particular system and monitor, a software monitor 
may consume 20% or more of the system resources (particularly CPU and 
channel time) and thus produce very questionable results. By appropriate 
definition of events and implementation, this overhead may be kept to 
roughly 5%, and the software monitor results should be sufficiently accu
rate for our purposes.

Besides the inherent perturbation of system performance, there are two 
other significant problems with software monitors. First, the amount of 
data produced by the event trace may be overwhelming, particularly in 
terms of reducing the trace data after the measurement period. (It is not 
unusual for the measurement period to be limited to a fairly short 

period of time, say twenty minutes, by the capacity of a reel of tape 
[SHER72b].) Second, unlike hardware monitors, software monitors must be 
specifically designed for particular architectures and operating systems. Thus 
there are no commercially available software monitors for many significant 
computer systems. Further, implementing a software monitor for an operat
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ing system that already exists may require a significant amount of effort and 
expertise.

Before leaving measurement we should point out that any of the above 
sources of parameters may also be very valuable in providing data for 
validation of our models. For example, we can estimate the CPU utilization 
by the sum of CPU times divided by the length of the measurement period. 
If our model estimate of CPU utilization agrees well with our measurement 
estimate for the system without modifications, then we can place more faith 
in the model estimates for the modified system.

8.2 PARAMETERS FOR SYSTEM MODIFICATIONS

As we said in Chapter 1, we cannot measure a system unless it is 
operational. In particular, if we are adding a new subsystem to an existing 
system or building a new system entirely, then we cannot measure it during 
the design and development stages of its implementation. To obtain numer
ical parameters for our models we must use our knowledge of the existing 
system and the planned modifications to produce estimates of the numerical 
parameters. Early in the evolution process it will be difficult to produce 
accurate estimates, but since we are only interested in rejecting poor designs 
at that time, we can make our estimates intentionally pessimistic. As long as 
this is done in a reasonable manner, we should not incorrectly reject good 
designs but we may unnecessarily reject a marginal design. This should not 
be of concern as long as we have better designs left.

For example, let us consider the resource demands of module X. We 
discuss X with its designer and are told that a call to X will "probably" 
result in the execution of 400,000 instructions but the designer is confident 
that no more than 1,000,000 instructions will be executed. The designer’s 
estimate of the working set of X is 5 pages, the estimated number of page 
faults (including initial loading) is 7, and the estimated number of I/O  
operations is 3. We also know that the CPU executes instructions at a rate 
of 1.5 MIPS (million instructions per second), so we can estimate the total 
CPU time of module X as .667 seconds. Similarly, from our discussion with 
the designer we come up with estimates of which files will be accessed and 
the amount of data transferred. From this information we can determine 
which devices will be involved and estimate I/O  times for module X. If X 
makes calls on the operating system which will cause significant resource 
demands, then these demands should also be included as part of the de
mands of X. We proceed in this manner for all of the modules of the sys
tem. If the number of modules is small, then we may be able to include this 
information directly in our model, using a separate class for each module 
and reflecting the module execution order by the class transitions. If the 
number of modules is large then we must first aggregate modules and then
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represent the aggregate modules as classes. (Though we could aggregate all 
of the modules and avoid class distinctions, class dependent performance 
estimates can be used to determine which modules are likely to be bottle
necks, and thus are candidates for redesign.)

As the system evolves, we will be able to get more accurate, less 
pessimistic estimates of resource demands and thus get more accurate 
performance predictions. When the system is operational, we can use meas
urements in place of some of our resource demand estimates, and we can 
use measurements of performance metrics to validate our model or suggest 
improvements.

8.3 FURTHER READING

We have given a very superficial treatment of measurement and param
eter estimation, partly because there are so many books devoted to these 
topics, particularly measurement. See DRUM73 and FERR78, for example.

A survey of measurement tools and practices for many popular comput
ing systems is given in ROSE78. That article discusses these topics from a 
queueing network point of view.

For a more detailed discussion of parameter estimation during the 
design process and a specific example, see SMIT79.



CHAPTER 9

CASE STUDIES

We now discuss in detail the six modeling examples of Chapter 1.

9.1 A SIMPLE BATCH SYSTEM MODEL

9.1.1 The Modeled System

The hardware studied by Chiu et al consists of an IBM 360/75 with 
512 kilobytes of high speed core memory, two megabytes of slower core 
memory, two selector channels, each with 8 2314 disk drives, and a multi
plexor channel controlling printers, tape drives and other peripherals. During 
the modeling project, the slower core memory was changed from one with 
an eight microsecond cycle time to one with a 1.8 microsecond cycle time 
(each with the same two megabyte capacity).

The operating system is the standard IBM OS/MVT with HASP, 
modified to support a locally implemented time sharing system. The time 
sharing uses a small amount of the CPU capacity (approximately 8% with 
the 1.8 microsecond slow core) and very little of the remaining resources. 
Thus the focus of the modeling effort is the batch workload, but the effect 
of the time sharing system is taken into consideration.

9.1.2 The Model

The principal model used is the cyclic queue model we have discussed 
frequently. In addition, a similar central server model [BUZE71], is used for 
comparative purposes. See Figure 9.1. The difference between the between 
the structures of the cycle queue model and the central server model is that 
the central server model has more than one queue for the I/O  devices.

In using this model, it is assumed that there is a sufficient backlog of 
jobs and there is sufficient memory contention that the degree of multipro
gramming is essentially constant. This is not strictly true, and so the aver
age degree of multiprogramming is usually not an integer. In using the 
model, one interpolates between the two integer degrees of multiprogram
ming containing the average. Chiu et al obtained the average degree of 
multiprogramming from accounting software, the standard IBM SMF 
(System Management Facility) package.

290
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I/O 2
Figure 9.1

The CPU service time distribution was measured (using unstated 
methods, presumably a special purpose software monitor) and observed to 
have a coefficient of variation greater than one. Figure 9.2 shows the 
measured service time distribution and a hyperexponential distribution 
which could have been used to fit that distribution. However, an exponen
tial distribution is used in the model. This is principally justified by the 
effects of the heuristic CPU scheduling algorithm which attempts to approx
imate SRTF. Figure 9.3 shows the effective CPU service time distribution in 
the sense that the CPU times between I/O  requests have this distribution 
(This effective distribution has lowercoefficient of variation because long 
CPU bursts are broken into smaller ones by the scheduler. One time 
between I/O  requests may be attributed to several jobs service.) Figure 9.3 
also shows this effective distribution fitted by an exponential distribution. 
(Note that the distributions in these figures are scaled to have mean one.) 
The authors concluded from this and other evidence that they could treat 
the CPU as if it had FCFS scheduling and an exponential distribution. This 
consistent with our previous observations that some scheduling disciplines, 
such as PS and LCFSPR, give the same performance measures with essen
tially arbitrary distributions as FCFS does with exponential distributions.

In modeling the I/O  system, several observations are used to simplify 
the model. First, all I/O  to or from the slow speed peripherals is negligible. 
Second, there is minimal use of the tape drives. So the tape drives and slow 
peripherals are ignored in the model. Finally, though it is feasible for more 
than one disk drive on a channel to be active, this is rare, so in the model 
each channel and its disk drives are treated as a single I/O device, i.e., a 
single high capacity disk.
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Figure 9.2

Figure 9.3
With the 2314 disk it is possible to perform the seek operation without 

the channel attached, once the seek has been initiated by the channel, but 
the channel must be attached for rotational positioning and transfer opera
tions. (If more than one disk per channel were simultaneously active, then 
the model would have to consider possible overlap of seek with other 
operations. We will discuss this problem in Section 9.3.) The authors meas
ured the channel busy time distribution (where channel busy time consists 
of rotational positioning and transfer) but were unable to measure the 
distributions of seek time or total service time. The busy time distribution 
has a coefficient of variation of one, like the exponential distribution, but 
does not closely fit the exponential distribution function. It is quite reason
able to assume the seek time has a uniform distribution [TEOR72], Based
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on results for sums of random variables, one can easily conclude that the 
coefficient of variation of the total 1/O service time is significantly less than 
one. The authors assumed an exponential distribution for I/O times. This 
is not unreasonable since the effect of distribution form is relatively small 
when the coefficient of variation is less than one. (Refer back to Figure 
4.5.) Also, the parameters used in this work were such that there was little 
queueing for I/O; we know from Chapters 4 and 5 that distribution form 
does not have an effect when there is no queueing. The authors assumed 
FCFS scheduling at the I/O  queue (queues in the central server model).

The mean CPU service time is obtained as the CPU busy time 
(obtained from a hardware monitor) divided by the number of disk trans
fers. The mean I/O  service time is obtained as the sum of the selector 
channel busy times and the total seek time (obtained by a hardware moni
tor) divided by the number of disk transfers.

9.1.3 Experiments with the System and Model

The authors conducted a number of experiments comparing model 
results with measurements, using a controlled workload for some experi
ments and eight "live" measurement sessions. We discuss the controlled 
workload experiments first.

The controlled workload consisted of fifty jobs selected as representa
tive of the daily submissions. Since one of the objectives of these experi
ments was a reproducible environment, the time sharing system was disa
bled. The experiments were used to verify the ability of the model to predict 
performance while varying the slow core used (8 microsecond vs. 1.8 
microsecond) and the number of initiators. (In the MVT operating system 
an "initiator" was required for each active job. Thus the number of initia
tors enforces an upper bound on the degree of multiprogramming.)

In the first experiment, with the 8 microsecond slow core and five 
initiators, the estimated degree of multiprogramming from SMF was 2.2. 
(The low degree of multiprogramming was due to memory contention.) 
From the hardware monitor, the CPU busy time was 1746 seconds (out of 
an elapsed time of 2580 seconds), one selector channel was busy 691 
seconds, the selector channel was busy 928 seconds, the total seek time was 
1246 seconds and the number of transfers was 60802. Thus the mean CPU 
time was 28.7 ms. and the mean I/O  time was 46.8 ms. Using N = 2, the 
state probabilities are then .353, .412 and .336 for 2, 1 and 0 jobs at the 
CPU, respectively. Thus the CPU utilization is 66.5% and the I/O  utiliza
tion is 54.2%. With N  = 3, the state probabilities are .198, .323, .264 and 
.215 for 3, 2, 1 and 0 jobs at the CPU, respectively, the CPU utilization is 
78.5% and the I/O utilization is 64.1%. Interpolating for N = 2.2, we get
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the CPU utilization as 68.9% and the I/O utilization as 56.2%. From the 
measurements above, the actual CPU utilization was 67.7% and the actual 
I/O  utilization was 55.1%. The model estimate of CPU throughput is 
.689/28.7 = .024 jobs per ms. and of system CPU throughput is .689/28.7 
= .024 jobs per ms. and of system throughput is 24/(60802/50) = .0197 
jobs per second. The actual system throughput was 50/2580 = .0194 jobs 
per second. Thus the model estimates for both utilization and throughput 
are very close to the measured values.

Repeating the experiment with the 1.8 microsecond core, the estimated 
degree of multiprogramming was again 2.2. The CPU busy time was 1225 
seconds out of 2160 elapsed seconds, the channel one busy time was 834 
seconds, the channel two busy time 760 seconds, and the seek time and 
number of transfers were the same as before. Thus the mean CPU time was
20.1 ms. and the mean I/O time was 46.7 ms. With N = 2 the model 
estimated CPU utilization is 55.2% and the model I/O utilization is 64.1%. 
With N = 3 the corresponding values are 65.8% and 76.4%. Interpolation 
gives CPU utilization 57.3% and I/O utilization 66.6%. The throughput 
estimate is .0234 jobs per second. The corresponding values from measure
ments were 56.7%, 65.7% and .0231 jobs per second; the agreement is 
even better.

Initiators N Measurement CQM CSM
1 1.00 60% 56% 56%
2 1.93 78% 80% 74%
3 2.82 85% 90% 84%
4 3.14 91% 91% 86%
5 3.99 92% 95% 89%

Figure 9.4

The remaining controlled workload experiments we consider were 
intended to study the effect of varying the degree of multiprogramming, 
principally by varying the number of initiators from one to five. Two others 
system changes were made: the jobs were executed in the larger, slower 
core (1.8 microsecond) to reduce the effect of memory contention, and 
memory scheduling was FCFS rather than the HASP algorithm. The esti
mated degrees of multiprogramming were 1, 1.93, 2.82, 3.14 and 3.99 for 1,
2...... 5 initiators, respectively. The elapsed times were 3445, 2662, 2435,
2278 and 2258, respectively, the I/O times (total) were 1611, 1890, 1978, 
2123 and 2243, respectively, and the numbers of transfers were 45050, 
47440, 47528, 47749 and 47665, respectively. Figure 9.4 shows the CPU 
utilizations from measurements, from the cyclic queue model (CQM) and 
from the central server model (CSM). (For the central service model the
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branching probabilities to the first I/O queue are .556, .526, .544, .528 and 
.521, respectively.) Except for the one initiator case, the cyclic model seems 
to slightly overestimate the utilization and the central server model slightly 
underestimates the utilization.

The authors made measurements during 8 periods of the system run
ning in its normal production environment, 2 with the 8 microsecond slow 
core and 6 with the 1.8 microsecond core. The authors were unable to 
measure the total seek time because of too few probes in the hardware 
monitor (the controlled experiments were run through the system twice to 
overcome this) and used the mean seek time from the first controlled 
experiment, 20.5 ms., for the model. Apparently for sake of convenience, 
the authors also used 2.2 as the degree of multiprogramming. For the 
session with the highest CPU utilization, 80%, the mean CPU time 
(including the time sharing load as overhead) was 49.7 ms. and the mean 
I/O time was 49.9 ms. The cyclic model estimate of CPU utilization is then 
82.1%.

Note that all of the above models can be represented by Markov 
processes with at most fifteen states. Further, the models have product 
form solutions, so the results can be trivially obtained with a hand calculator, 
if necessary.

9.2 AN EVALUATION OF MULTIPROCESSOR SYSTEMS

Multiple CPU systems have been available for some time, but have 
only recently achieved popularity. Bell and Newell [BELL71] suggested 
that the range of performance spanned by the IBM 360 family of single 
CPU systems could also be spanned by a smaller product line and the use of 
multiple CPU systems may be cost-effective in comparison with single CPU 
systems; for a detailed discussion see Bell and Newell [BELL71] and Fuller 
[FULL76],

The economics of large scale integrated circuits has made multi
miniprocessing units an alternative to systems with single large central 
processing units. The decreasing costs of hardware relative to software and 
the growing importance of security and reliability may tend to result in 
simpler software and relatively underutilized or redundant hardware. This 
trend could result in multi-miniprocessing systems with simplified system 
scheduling strategies. In SAUE77b we compared performance metrics for 
different architectures for a variety of scheduling strategies and work loads. 
An important objective was to study the impact of CPU service service 
distributions and disciplines on the behavior of multiprocessing systems. The 
primary goal of that work was to use modeling techniques to make quantita
tive analyses of possible trends in architecture and their impact on operating
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systems. The multiple processor systems considered were essentially restrict
ed to those with tightly coupled homogeneous CPU’s, for example C.mmp 
[WULF72], where the CPU’s share main memory and most other resources.

A multiple CPU system may have multiprogramming and/or multitask
ing. In multiprogramming, two or more independent programs reside in main 
memory and are processed in parallel. In multitasking, a program is decom
posed into a partially ordered set of tasks where each task may be processed 
in parallel subject to precedence constraints. The interdependence between 
tasks causes the time required to process a program by N CPU’s, (N  at least 
2) to be significantly greater than l / N  times the time required to process 
the same program by one processor. (Multitasking is desirable in multipro
cessor systems to avoid idle processing capacity when only one job needs a 
CPU.)

Both multiprogramming and multitasking create contention for CPU’s. 
With multiple processors we are likely to have memory interference 
(memory interference also occurs between channels and processors in single 
processor systems, but the amount of interference is usually small). Memo
ry interference has been analyzed by Baskett and Smith [BASK76], Burnett 
and Coffman [BURN75] and Bhandarkar and Fuller [BHAN73], among 
others. Fuller [FUFF76] says that memory interference studies consistently 
predict degradation factors of less than 10% for actual and proposed 
C.mmp configurations. Our paper did not study multitasking or memory 
interference in detail; however, results from these areas were used to sug
gest parameter values for our models.

9.2.1 First Come First Served CPU Scheduling

We shall compare, for different service distributions, a single CPU 
system with a dual CPU system where each CPU of the dual processor 
system has half the rate of the CPU of the single processor system. Degra
dation due to memory interference will be considered by reducing the rate 
of each CPU in a multiple CPU system. Multiple CPU systems allow for 
graceful degradation in service. However, the metric of interest in this 
subsection is system throughput, when the system is functioning normally.

9.2.1.1. Impact of CPU service distributions. It is reasonable to expect 
the single processor system to perform better than the multiprocessor 
system, since some of the CPU’s in a multiprocessor system will be idle 
when there is only one program ready for CPU service. However, there is a 
compensating factor in favor of the multiprocessing system when the CPU 
service time has a high coefficient of variation. A single program requiring 
very long CPU service can bottleneck the CPU of a single processor system, 
while other programs queue up for CPU service, whereas it will monopolize
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Figure 9.5
only one of the processors in a multiprocessor system allowing other jobs to 
go through remaining processors. Note that for small coefficients of varia
tion (one or less) of CPU service times, the compensating factor in favor of 
multiprocessor systems does not generally apply. This is because with very 
large coefficients of variation it is more likely that there will be many short 
service times, and a few very long ones which bottleneck the single CPU. 
We should expect multiprocessor systems to perform better than single 
processor systems when CPU service time coefficients of variation are large.

9.2.1.2. Impact of multiprogramming level. When the level of multipro
gramming is very small, the probability is also very small that there are 
enough jobs requiring CPU service to keep all CPU’s busy in a multipro
cessing system. Thus we should expect multiprocessing systems to have 
smaller throughputs than single processor systems for low degrees of multi
programming. As the level of multiprogramming increases, the average 
number of busy CPU’s in a multiprocessing system goes up, thus exploiting 
parallelism in the system. We should therefore expect the throughput of 
multiprocessing systems to improve more than that of single processor 
systems with increased levels of multiprogramming. This intuitive notion is
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Single processor throughput/Dual processor throughput 
Equal CPU and I/O processing rates; Number ot' I/O’s = 5 
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Figure 9.6
supported by results from the models for all CPU service distributions 
studied.

9.2.1.3. Models. Two sets of models were used to analyze these 
systems. A cyclic queue model was used and recursive techniques (see 
Chapter 3) were used to analyze the model. I/O  service times were assumed 
to be exponential, and it was assumed that all L I/O  devices shared a 
common queue. Three different CPU distributions were compared: 
(a) exponential (coefficient of variation (C) one), (b) hyperexponential 
with coefficient of variation 4, and (c) hyperexponential with coefficient of 
variation 8. Central server models with several I/O  queues were analyzed 
using flow equivalence approximations and regenerative simulation techni
ques; this analysis yielded results similar to the cyclic queue model. We 
consider models with and without memory interference.

9.2.1.4. Results for the interference free case. The results obtained 
from the cyclic queue model are graphed in Figures 9.5 and 9.6; Similar 
results (not shown) were obtained for the central server model. The service 
rate of each CPU in the dual processor case was set to half that of the
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Single processor availability
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Figure 9.7

single processor CPU. When the system is CPU-bound, (i.e. when the 
mean CPU queue length is much greater than the I/O queue length) the 
single processor system does not perform much better than the dual proc
essor system since there are usually a sufficient number of programs desiring 
CPU service to keep all processors utilized in the multiprocessor system. 
When the system is I/O  bound, changes in CPU processing rates do not 
significantly affect system throughput. Significant differences in system 
throughput between single and dual processor systems occur only when the 
system is well-balanced. The ratio of single to dual processor throughputs 
decreases with increase in the coefficient of variation of CPU service time 
(Figure 9.5) and with the degree of multiprogramming (Figure 9.6), as 
expected. Since CPU service time coefficients of variation are generally 
larger than 1, and often 8 or greater, we may conclude that no substantial 
reduction in throughput (more than 5 ) occurs by replacing single CPU 
systems by dual CPU systems with moderate or high levels of multiprogram
ming (i.e. greater than 3). Note that dual processor systems may be better 
than single processor systems in some cases!
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9.2.1.5. Results for the with-interference case. Fuller’s analysis 

[FULL76] shows that an estimate of 10% degradation in CPU service rates 
due to memory interference is pessimistic for most C.mmp configurations. 
The degree of memory interference at any given time depends on the 
number of active CPU’s at that time. A realistic model of multiprocessor 
systems with memory interference is to make the effective CPU service rate 
for each CPU decrease with the number of active CPU’s; thus the effective 
service rate reflects the expected amount of memory interference. Our goal 
here is to obtain a clearly pessimistic estimate; the behavior of models with 
a realistic degree of memory interference will lie between the optimistic 
estimate of no interference and the pessimistic estimate. A clearly pessimis
tic estimate is to use Fuller’s worst-case estimate and set the service rate for 
each processor in an n-processor system to 0.9/times the service rate of the 
CPU in a single processor system, independent of the number of busy

As expected, CPU interference degrades the performance of multipro
cessor systems with reference to single processor systems, especially when 
the system is CPU-bound, as shown in Figure 9.5. When the CPU service 
has an exponential distribution (C = 1) the ratio of single processor to 
multiprocessor throughput is larger for balanced systems than for CPU 
bound systems for the same reason that this effect is observed in the

CPU’s.
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PS single processor throughput/FCFS dual processor throughput 
Equal CPU and I/O processing rates; Number of I/O’s = 5 

Degree of multiprogramming = 5

Figure 9.9
interference-free case: When the system is CPU bound both processors in 
the dual processor system are busy all the time resulting in a combined 
throughput of 0.9 times that of the single processor system, resulting in a 
throughput ratio of 1/0.9. As the system gets more balanced the fraction 
of time that there are sufficient jobs to keep all CPU’s in the dual processor 
system busy decreases, thus increasing the throughput ratio. However, for 
coefficients of variation of 4 and 8, the throughput ratio decreases as the 
system gets balanced because single processor systems are more likely to get 
bottlenecked by jobs with very long CPU bursts. For balanced systems, with 
typical CPU coefficients of variation the difference between single and dual 
processor throughputs is not substantial, even for pessimistic estimates of 
the degree of memory interference.

The ratio of single to dual processor throughputs decreases with in
creasing levels of multiprogramming as in the interference-free case.

9.2.1.6. Impact of CPU availability. It is instructive to study the impact 
of CPU availability on system performance. Assume that the fast CPU (in 
the single CPU system) and the slow CPU’s (in the multiple CPU system)
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Figure 9.10
have the same up-time and repair time distributions, and assume further that 
these times are independent random variables. If only one of the CPU’s in 
the multiprocessor system is down, the system continues to function in 
degraded mode. We make the conservative assumption that if both ma
chines are down, only one of them is repaired at a time. As Figure 9.7 
shows, for certain ranges of single CPU system availability the multiproces
sor system has a significantly better overall throughput. Additional discus
sion is found in [SAUE76b],

9.2.1.7. Several processor configurations. Configurations with a large 
number of CPU’s may become more common as the cost of hardware 
decreases. Consider systems in which there are as many processors as there 
are jobs (degree of multiprogramming); in the cyclic model there are N 
processors, each with 1 / Nlfl the processing rate of the uniprocessor, where 
N  is the degree of multiprogramming. Each job in this system is assigned a 
dedicated processor. Figure 9.8 shows that the reduction in (CPU) resource 
sharing generally results in poor performance; however the throughputs of 
multiprocessing systems improve in comparison with uniprocessor systems
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Figure 9.11
with increasing CPU service time coefficient of variation and with increas
ing levels of multiprogramming. (The latter part of this statement assumes 
the processors do not become more numerous and slower with increasing 
levels of multiprogramming, unlike Figure 9.8.) For certain cases 
[SAUE76b] multiprocessor systems may have greater throughput than 
uniprocessor systems.

In summary, high CPU service time coefficients of variation and levels 
of multiprogramming improve the performance of multiprocessor systems in 
comparison to single processor systems; in some case multiprocessor systems 
have throughputs competitive with single processor systems.

We may take the idea of reducing resource sharing to an extreme, as 
suggested by Martin and Frankel [MART75] and study a multiprocessing 
system in which each job is assigned a dedicated CPU and a dedicated 
scratch disk; jobs only share the permanent file system. As expected 
[SAUE76b] reduced resource sharing may result in substantial (up to 67%) 
reduction in throughput.
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Single processor throughput/Multiprocessor throughput; Slow high priority jobs 
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Figure 9.12
9.2.2. Other Disciplines

CPU service disciplines have been studied intensively with respect to 
single processor systems. We shall attempt to extend the study to multipro
cessor systems. If the CPU discipline is changed from first come first served 
to round robin fixed quantum, the performance of single processor systems 
improves more than that of multiprocessor systems for typical hyperexpo
nential CPU service distributions. Figure 9.9 compares the throughput 
ratios of a single processor system with a processor sharing discipline to a 
dual processor system with a first come first served discipline as a function 
of the coefficient of variation of CPU service time. Note that the dual 
processor system is never better than the single processor system in this 
case, and the single/dual throughput ratio may exceed 1.1. Generally 
speaking, multiprocessor systems are less sensitive to scheduling disciplines 
than uniprocessing systems as illustrated by Figure 2.6. Figure 2.6 shows 
the ratio of the throughput of a system with processor sharing CPU disci
pline to that of a system with a first come first served discipline for the 
single processor and dual processor systems as a function of CPU coeffi-
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cient of variation. FCFS is the simplest scheduling discipline to incorporate 
into the operating system, and it has less overhead than Round Robin. The 
curves suggest that first come first served is satisfactory for dual processor 
systems for typical CPU coefficients of variation and degrees of multipro
gramming; the same is not true for single processor systems.

CPU scheduling has been an important part of system performance 
tuning and a great deal of work has been done in this area; see [SHER72a] 
for instance. The literature contains discussions of various schemes to 
predict future job behavior on the basis of past behavior using statistical 
estimators such as moving point averages and exponential smoothing, and to 
schedule CPU’s on the basis of predicted job behavior. Let us make the 
optimistic assumption that all future service times can be predicted with 
total accuracy and that the Shortest-Remaining-Time-First (SRTF) discipline 
is used to schedule CPU’s. Figure 2.7 shows the ratio of throughputs in the 
SRTF and FCFS cases. The percentage improvement in going to the SRTF 
discipline from the FCFS discipline is small for dual CPU systems. An even 
smaller gain in throughput would accrue from using statistical predictors of 
job behavior such as exponential smoothing. We conclude that CPU sched
uling has much less impact on multiple CPU systems than on single CPU 
systems. Equivalently, multiple CPU systems favor simplicity in scheduling 
strategies.

9.2.3. Multitasking

A great deal of work has been carried out on scheduling two or more 
processors to concurrently process a single program. We next address the 
question: How effective is multitasking in improving system throughput, and 
in particular, what impact do CPU service distributions have on multitask
ing? We compare two multiprocessing systems, one which allows multitask
ing and the other which does not. We shall use very optimistic models of 
multitasking with a view towards getting an upper bound on the improve
ment in throughput due to multitasking; more realistic models are consid
ered later. We assume that in the multitasking system two or more CPU’s 
cooperate on a single program if, at any given time, there are fewer pro
grams requiring CPU service than there are CPU’s. However, if there are at 
least as many programs requiring CPU service as there are CPU’s, then each 
CPU works on an independent program. Thus CPU bound systems do not 
offer much opportunity for multitasking. Multitasking of I/O ’s is not per
mitted in this model. If the system is I/O bound, multitasking the CPU 
does not impact performance. Thus we would expect the greatest percentage 
increase in system throughput with a well balanced system.

Consider the cyclic queue model. Assume that when two processors 
cooperate on a single program, the time required to complete CPU service
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for that program is 1 / K  times the time required to complete CPU service on 
a single CPU, where K is between 1 and 2. As shown in Figure 9.10, the 
maximum benefit from multitasking is obtained when the system is well 
balanced and the CPU coefficient of variation is high. Similar results are 
obtained for central-server models with multiple I/O queues. Note that the 
results of Figure 9.10 are very optimistic, since we assume perfect coopera
tion between processors (A! = 2). The benefit of multitasking increases 
with the variance of CPU service time because the ratio of the probability 
of exactly one job in the CPU queue increases with CPU variance. In other 
words, increasing CPU variance results in greater opportunity for multitask
ing.

The actual benefits of multitasking will be significantly less than indi
cated in the figures due to the overhead involved in the multitasking process 
and due to the interference between processors. Ramamoorthy and Gonza
lez [RAMA69] suggest that K is generally less than 1.5 and that values of
1.1 are not atypical. For K  = 1.1 and the other parameters as in Figure 
9.10, the improvement obtained by multitasking is less than 1%. We may 
conclude that multitasking does not have substantial impact at reasonable 
degrees of multiprogramming. Once again our analysis suggests that multi
processor systems favor simplicity in scheduling strategies if the objective is 
to maximize throughput.

The concept of multitasking is closely related to that of CPU-I/O 
overlap, where a program splits itself into two subtasks, with one subtask 
requiring CPU service and the other requiring I/O service. Price [PRIC75] 
and Towsley [TOWS75] have shown that the benefit of CPU-I/O overlap 
also decreases with increasing levels of multiprogramming.

9.2.4. Priority Disciplines

It can be argued that though fast single CPU systems are not a greater 
deal better than systems with several slow processors when the metric of 
interest is overall throughput, there is an important metric for which fast 
single CPU systems are clearly better. There are some environments where 
it is crucial that a small number of special jobs have very short turn-around 
times while the bulk of jobs are not time-critical. Intuitively, one expects 
fast single processor systems to yield shorter turn-around times of high 
priority jobs because the entire CPU resource can be devoted to a single 
high priority job. The models show that though this assumption is generally 
true, it does not always hold!

Once again let us compare a single CPU system with an N  CPU system 
where each CPU is l / N  times as fast. We may consider memory interfer
ence by reducing the rates of each CPU in the multiprocessor system by an
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appropriate amount. Let the degree of multiprogramming be TV, and assume 
that one of the TV jobs is a high priority job while the remaining TV -  1 jobs 
are low priority. Consider the case where the single CPU has a priority 
scheduling policy, either preemptive resume or nonpremptive. Figures 9.11 
and 9.12 show the ratios of the throughputs of uniprocessing and multipro
cessing systems for the high priority (and low priority) jobs. The figures 
differ in the relative processing requirement of the high and low priority 
jobs. We assume exponential CPU service times, but we expect performance 
trends to be the same with realistic CPU service distributions. The single 
processor system behaves considerably better if the metric of interest is the 
throughput (or response time) of the high priority program and the I/O 
subsystem is not heavily loaded. As shown in Figure 9.11, the multiproces
sor system may actually perform better for high priority jobs when the I/O 
subsystem is heavily loaded and the degree of multiprogramming is high! 
This is because the uniprocessor system has much higher throughput for low 
priority jobs and these jobs cause high priority jobs to spend more time 
queueing for 1/O. (Of course this effect could be decreased or eliminated if 
a priority discipline is used for I/O.) When the I/O  subsystem is not satu
rated, or when the CPU requirements of the high priority jobs are high 
relative to the I/O  requirements, these effects do not occur, as shown in 
Figure 9.12. If the CPU discipline is non-preemptive priority, the advan
tage of the single CPU system is not as great.

In summary, the interaction between CPU priorities and multiprocess
ing is complex; care must be used in exercising intuition in such cases.

9.3 A DATA MANAGEMENT SYSTEM MODEL

The Advanced Logistics System (ALS) modeled by Browne et al is 
considerably more complex than the systems of the previous two sections. 
Yet, the final model used in the ALS study is not all that different from the 
simpler queueing network models of these systems. There are several expla
nations for this situation: First, the modeling project was hierarchical in 
both models and personnel. The "final model" was the top level of a two 
level hierarchy of models. Second, the purpose of the model was to estimate 
system capacity (throughput) and device utilizations, not response times. 
Third, the queueing network model and companion simulation model were 
to be constructed in a very short period of time.

Because the Cyber 73 and 74 mainframes share the Extended Core 
Storage (ECS) of one million words and use it in many ways analogous to 
primary memory (with the private memories of the 73 and 74 analogous to 
cache memory) and because the 100 Data Management System (DMS) disk 
drives are shared between the two machines, it is reasonable to use a varia
tion on the central server model as the top level model of the system.
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(Figure 9.13, a copy of Figure 1.2, shows the top level model.) Though not 
physically tightly coupled, it is reasonable to consider the CPU’s to be 
logically tightly coupled. Figure 9.13 gives the model parameters except for 
the degree of multiprogramming, the CPU service times and the branching 
probabilities PI, P2, P3 and P4. As is common in models of this sort, model 
results are obtained for all possible degrees of multiprogramming, from 1  to 
17 in this case. The CPU service times are determined to be 8.3 ms. for the
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Cyber 84 and 13.3 for the Cyber 73, as described below. (All service times 
are treated as if exponential.) The remaining branching probabilities depend 
on details of the I/O  system.

9.3.1 CPU, Central Memory and ECS Submodel

In the basic mode of operation, a transaction is serviced by a collection 
of modules in central memory of one of the Cybers. Usually a portion of 
only one transaction’s modules will be resident in one of the central memo
ries. A module executes until it issues a monitor call to either call upon 
some other module or to carry out an I/O  activity. In the first case, the 
module may either already be in memory or need to be swapped in from 
disk or need to be swapped in from ECS. In the second case the I/O access 
may be either to the DMS or to the system disk or tape. In the second case, 
the module is swapped out to ECS, that transaction’s I/O is handled, a 
module for another transaction is swapped in and that transaction’s execu
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tion begins (or continues after the completion of I/O). Note that the CPU 
carries out swapping functions. Figure 9.14 shows the phases of CPU 
activity and the transitions between phases. The variables A through E 
identify mean CPU times for each phase and the variables P through S 
identify probabilities of results of monitor calls. From Figure 9.14 we can 
derive the probability of an access to the DMS given a swap out as

p DMS = e /(G  + s ) .  (9.D

Similarly, the probability of an access to the system disk or tape given a 
swap out is

PSYS = S / ( Q  + S ). (9.2)

The mean time between swap outs (mean CPU service time) is obtained as 

^ CP U
(9.3)

= A + B + C + (R(A + B) + P{A + B + C) + QD + S E )/{Q  + S )

by treating Figure 9.14 as a Markov state diagram. Figure 9.15 gives these 
values for each CPU, with times in microseconds.

CPU A B C D E p  Q R  S  P DMS P S Y S ^ C P U

74 113 152 7652350 600 .05 .025 .9 .025 .5 .5 8305
73 2 0 0 293 8502850 727 .05 .025 .9.025 .5 .5 13349

Figure 9.15

The discussion so far has assumed that the two CPU’s do not interfere 
with each other. Actually, the ECS is divided into two independent seg
ments. As long as both CPU’s do not try to access the same segment simul
taneously, there is no interference. However, if both attempt simultaneous 
access to the same segment, one must wait. Browne et al used a five state 
Markov model to estimate the amount of interference. In the worst case it 
was estimated that the CPU service times would be increased by 8.3% and 
10.6% for the 73 and 74, respectively, because of this interference in the 
worst case.

9.3.2 Tape and System/Scratch Disk Submodels

The tape system needs little consideration because of the small fraction 
of I/O accesses (about 3 ) to it. For our purposes Figure 9.13 is enough.
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The system/scratch disks are separated into two banks of four, with 
one bank dedicated to each CPU and a single controller for each bank. 
Because of the software characteristics, there is no concurrency within a 
bank. Thus each bank may be treated as a single server queue with service 
time equal to the sum of the mean seek, latency and transfer times. The 
model treats the banks as if they were accessible by either Cyber for sim
plicity. This gives the effect of slightly more capacity than actually available. 
As we said in Chapter 1, the model shows the system/scratch disk system to 
be the most severe bottleneck, even with this optimistic assumption.

9.3.3 DMS Submodel

The Data Management System consists of roughly 100 disks, separated 
into two banks. Each bank has a channel and a controller attached to each 
Cyber 70 mainframe. The disks have position sensing capabilities and only 
need be connected to the channel and controller during transfer operations. 
A disk access consists of the following stages, once the disk is acquired: 
Initiation — The controller is acquired and used to initiate positioning; the 
controller is then free to service some other disk. This stage is very sort, 
i.e. less than 1 ms. long. Positioning — The arm is moved to the necessary 
cylinder and the disk rotates to the necessary sector for transfer. This stage 
has a mean length of 30 ms. Transfer — The controller is reacquired and 
information is transferred to or from the disk. This stage has a mean length 
of 10 ms. Figure 9.16 illustrates these stages.

Figure 9.16
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This figure is based on figures and discussion in BROW75 but did not 
appear there. The figure and discussion above ignore potential performance 
effects of the actual system, for example, if the controller cannot be quickly 
reacquired after the positioning stage, then a repositioning stage (another 
rotation to get back to the sector) may be necessary. Still, a model as 
detailed as Figure 9.16 as part of the top level model would preclude exact 
numerical solution of the top level model (Figure 9.13). (With large popula
tions, exact numerical solution of the submodel of Figure 9.16 would also 
be impractical. Regenerative simulation of such a model is feasible 
[SAUE77c].) The authors decided that the most important aspect of the 
DMS disks was the possible simultaneous positioning and transfer stages of 
two (or more) disks in the same bank. This led to the representation in 
Figure 9.13, with separate queues for positioning and transfer. Note that 
Figure 9.13 allows some impossible situations in the actual system, e.g., 
simultaneous transfer and positioning on the same disk. After studying six 
such inaccuracies of the representation of Figure 9.13, using submodels, the 
authors concluded that the inaccuracies had little effect on the model 
results. In the figure there are four queues (per bank) labelled "Disk Bank." 
These represent the positioning stage. The initiation stage is ignored. The 
number four was chosen because it was highly unlikely that more than four 
positioning stages would occur concurrently, based on system data. The two 
server queue labelled "Controllers" represents the transfer stage.

9.3.4 Simulation Model, Validation and Predictions

The model as described was intended to be used to study the effects of 
a large number of system parameters, so that model results could be used to 
guide development and configuration of the system. However, since the 
system was not yet operational, there was no way to directly assess the 
accuracy of the model. A more detailed simulation model was constructed, 
both to convince the analysts that their model was sufficiently accurate, and 
to convince the designers and others that the model was valid. The simula
tion model was also constructed in a hierarchical manner, with four analysts 
constructing relatively independent components and a fifth constructing the 
control and interface portions of the simulation program. This division of 
labor allowed the entire program to be completed in approximately one and 
a half months. (As we said in Chapter 1, the entire modeling effort took 
about 2 months for the six analysts to complete.) The published utilization 
estimates as produced by the two models were within 5% agreement.

As we said in Chapter 1, the (numerically solved) model was used to 
make two major predictions: First, that the system/scratch disk subsystem 
would be a major bottleneck. Second, that if that subsystem were rede
signed to increase scratch disk capacity, then performance of the system
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would be unacceptable because of insufficient CPU capacity. Both of these 
predictions were confirmed by subsequent operating experience.

We have necessarily omitted many details of the modeling effort, 
particularly in details of the submodels. The reader is referred to the 
original paper [BROW75] for a more thorough discussion.

9 . 4  A MODEL OF AN INTERACTIVE SYSTEM

In the cyclic queue model, the central server model and the modified 
central server model of BROW75, memory contention is indirectly consid
ered by restricting the population of jobs in the model. This is usually 
sufficient to get estimates of utilizations and throughputs, but there is no 
attempt to estimate times spent waiting for memory and thus there is no 
attempt to estimate response times. (Though our attention is now on 
interactive systems, the same statements apply to turnaround times in batch 
systems.) The approach used in BROW77 is an excellent example of a 
general approach used to consider memory contention and estimate response 
time. Though the model is of a nonpaged system, the approach is also 
suitable for paged systems, as we will see in Section 9.5.

The modeled system consists of a CDC 6600 and a CDC 6400 at the 
University of Texas at Austin. The operating system (UT-2D) is locally 
implemented with its roots in early CDC operating systems. The usual 
mode of operation has the interactive service on the 6400 and the batch 
service on the 6600. 500,000 words of Extended Core Storage (ECS) are 
used as a swapping device to the 64,000 words of central memory of the 
6400. There are also 4 CDC 808 disks and 8  CDC 841 disks.

Figure 9.17 describes the activity phases of an interactive job in the 
system. After completion of terminal input (block 1) the job is ready to run. 
It waits for the memory scheduler to be run (block 2), which does not occur 
until there is a change in status of a job already in memory. When the 
scheduler runs (block 3) the job may or may not be allocated memory. 
After the scheduler allocates memory to the job it must wait for resources 
needed to swap the job into memory (block 4). The resources required are a 
contiguous block of memory (compaction may be necessary to make availa
ble memory contiguous) and a peripheral processor to initiate the swap-in. 
After the swap-in (block 5), the job can perform its computation while 
resident in memory (block 6 ). The job will leave memory either because it 
completes its computation or because its memory is being preempted. (In 
the UT-2D system, unfinished interactive jobs are preempted from memory 
after one second of memory residence. Memory scheduling is partially 
based on a round robin strategy with this one second quantum.) After 
completion of computation, the job again waits for a scheduler run (block

SEC. 9.3 /  A DATA M ANAGEMENT SYSTEM MODEL
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Figure 9.17
7) until the scheduler recognizes the job’s status has changed. The job then 
waits for a peripheral processor to initiate the swap-out (block 8 ). After 
the swap-out (block 9) the job returns to wait for the scheduler, if it has 
been preempted, or to wait for completion of terminal input, otherwise.

Figure 9.18 is the queueing network model corresponding to Figure 
9.17. (Figures 9.18, 9.19 and 9.20 are copies of Figures 1.3, 1.4 and 1.5, 
respectively.) In Figure 9.18 the times spent waiting for scheduler runs 
(blocks 2 and 7 of Figure 9.17) are included as part of other times which 
are explicitly shown. The "swap delay" queue corresponds to block 4. The
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Figure 9.18

Figure 9.19
contention for peripheral processors is not directly considered in the model, 
but the mean time to wait for a peripheral processor for a swap-in is includ
ed in the swap delay queue service time. The mean time to wait for com
paction is also included in that service time. A central server model is 
embedded within the model to represent CPU and I/O  activity.

Numerical parameters for the model are obtained from the software 
monitor built-in to UT-2D. The measurements indicate that it is reasonable 
to consider all service times except the CPU times to be exponential. CPU
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Job field lengths (K  = 1024HI)

Figure 9.21
scheduling is round robin with a 16 ms. quantum and about 0.5 ms. switch
ing overhead. The mean interactive CPU time is slightly less than the 
quantum, contrary to our criteria for representing round robin as processor 
sharing in Chapter 2, but it is not unreasonable to represent the CPU 
scheduling as processor sharing since the criteria are nearly satisfied. Thus 
the model of Figure 9.18 would satisfy product form conditions if it were 
not for the memory queue.

From our discussion in Chapter 6 , a flow-equivalence approximation is 
appropriate for this model. By eliminating the terminals and memory from 
Figure 9.18, we get the network of Figure 9.19, which does satisfy product 
form and is easily solved. The throughputs from Figure 9.19 for the possible 
populations, along with the characterization of the memory requirements, 
can be used to produce a composite queue characterization in Figure 9.20.
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That figure’s model also will have a product form solution and can be easily 
solved. The one difficult aspect of this approximation which we have not 
considered before is the more detailed memory contention representation in 
BROW77.

Before, we have assumed that each job required the same amount of 
memory (in Chapters 6  and 7). However, even though jobs may have fairly 
homogeneous behavior, the amount of memory they require fluctuates from 
time to time. It is more reasonable to assume that there is a probability 
distribution characterizing a job’s memory requirements. Figure 9.21 shows 
a probability density function observed by Brown on the CDC 6400. The 
UT-2D system limits interactive jobs to 32K of memory. Note the three 
high density spikes in the distribution. These correspond to frequently used 
utilities and systems (editors, Basic, etc.).

Let us assume that there are A jobs in the system. We desire a value a 
and a function CAP(n) such that aCAP(n) is the service rate of the com
posite queue with length n, n = 1 , 2 We have obtained, by solution of 
the model of Figure 9.19, R(n), the throughput in that model with a popula
tion of n jobs, n — 1,2,...,A. Let us assume we can find a function h(i \ n) 
which is defined as the probability there are / jobs in memory given n ready 
jobs, i = 1 , 2 n = 1,2,...,A. Then

flCAP(n) = X  R(i)h(i \ n ) ,n  = 1,2,...,A. (9.4)
i = l

So our problem is to find h(i\n ).  This can be fairly easily done under two 
assumptions made in BROW77, for certain scheduling algorithms. Except 
for the cases considered in BROW77, this problem has received little atten
tion and remains unsolved (except for simulation).

It is assumed that (1) with each scheduler run, the memory require
ment of each job is determined from the distribution (e.g. Figure 9.21) 
without regard to the job’s previous memory requirement, and (2 ) with 
each scheduler run a fresh decision is made with regard to each job, regard
less of whether it is currently allocated memory or not. (Thus a job holding 
memory may have that memory preempted regardless of other scheduling 
policies, e.g., the one second round robin policy of UT-2D.) The scheduler 
most like the UT-2D scheduler is First Fit (FF) which allocates memory to 
jobs in FCFS order as far as possible. However, if a job cannot fit in the 
available memory, and another job with a later arrival time can fit in the 
available memory, then that job is allocated memory, in violation of FCFS 
order.
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Let there be C units of memory, let p(c) be the probability that a job 
requires c units of memory, c = 1,2,...,C, and let P(c) be the cumulative 
function of p(c), i.e., P(c) = p (l) + p{2) + ... + p(c). Consider the 
scheduler as it decides on the jobs of the queue, in order. Let g(c,n \ l) be 
the probability that the scheduler has allocated c units of memory to n jobs 
given that it has considered / jobs, c = 0,1,2,...,C, n = 0,1,2,...,A, 
/ = 0,1,2,...,A. From the definition,

)1 , for c = n = l = 0 ,
0, for c > 0, n = l = 0, (9.5)

0 , for n > /, for all c.
In general,

g(c,n | / + 1 )

= g(c,n I /)(1 -  P(C -  c ) ) + ^ g ( i , n  -  1 | l)p{c -  /'),
1 =  0

(9.6)

for n = 1,2,...,A, / = 1,2,...,A — 1. The first term of (9.6) corresponds to 
the /+ \ 'h job requiring more memory than is available, (c units have been 
allocated to the n jobs after consideration of / jobs. P(C — c) is the 
probability the /+ \ ,h job requires at most C — c units, so the probability 
the /+ l lh job requires more than C — c units is 1 — P(C — c).) The 
remaining terms correspond to i units having been allocated to n — 1  jobs 
after consideration of / jobs. In each of these cases the nth job allocated 
memory must require c — i units. Using (9.5) and (9.6) we can obtain 
g(c,n | /) for all required values.

Having g(c,n \ l) we can determine
C

h(i I n) = ^  g(c,i | n ). (9.7)
c = 0

Equations (9.4), (9.5) and (9.7) apply to all scheduling algorithms consid
ered by Brown et al. Schedulers other than FF will result in different 
equations (possibly more than one per scheduler) corresponding to equation 
(9.6).

One of the objectives of the modeling effort was to demonstrate that a 
systems designer could effectively use such a model. In such usage, some 
parameters will vary but the designer will be unable to predict the variation. 
Thus the designer is forced to use fairly fixed estimates. In comparing the 
model with measured results, some parameters were held fixed even though 
more accurate values for the parameters were known. In particular: (1) The
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amount of memory available to user programs (C) was assumed to be 33K. 
The remainder of memory is used for the operating system and for terminal 
buffers. The actual amount of available memory fluctuated from about 32K 
to 34K depending on the number of logged on users. (2) The mean user 
think time was assumed to be 18.7 seconds. (3) In the system, user activity 
accounts for only a small fraction of CPU activity. The model CPU times 
are obtained by dividing the measured CPU times by this fraction. This 
fraction was assumed to be .165. The actual values for three measurement 
periods ranged from .15 to .18. (4) The mean disk service times were
assumed to be 100 ms. (5) The swap delay, swap in and swap out queue 
mean service times were assumed to be 60, 2 0  and 30 ms., respectively.

The input parameters to the model were (1) the number of users, 
(2 ) the probability that a job releasing memory has been preempted (the 
probability of going from block 6  to block 8  in Figure 9.17, or, equivalently, 
the probability of going from the release node to the allocate node in Figure 
9.18), (3) the job memory requirement distribution, p(c), (4) the probabili
ty a job is swapped out after finishing the CPU queue, and (5) the mean 
user CPU time.

CPU Util. Mean Resp. Deg. of M.P.
Period Users Meas. Mod. Meas. Mod. Meas. Mod.

1 52 0.93 0.80 1.32 1.27 3.67 3.47
2 30 0.93 0 . 8 6 1.24 1.60 3.30 3.99
3 49 0.83 0.71 0.97 0.74 2.35 3.13

Figure 9.22

Figure 9.22 shows some of the performance metrics as measured and 
predicted for three measurement periods. Though the agreement is not as 
close as we might hope, such accuracy should be sufficient in the design and 
development stages of a system. Note that this is a very simple model of a 
fairly complex system, and recall that several model parameters are intention
ally fixed beforehand rather than based on the measured data. In particular, 
the authors report much better agreement between measured and predicted 
values when the measured fraction of CPU time attributed to users is used 
rather than the fixed value (.165).

9.5 THE VM /370 PERFORMANCE PREDICTOR

Vendors of computer systems need methods for predicting performance 
of the computer systems they provide. Otherwise, they may either 
( 1 ) underestimate the resources required and provide a system with unac
ceptable performance, or (2 ) overestimate the resources required and lose 
the customer to a competitor with a lower bid. The VM/370 Performance
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Predictor [BARD77b,BARD78a] is used by IBM personnel to estimate 
performance of System 370 computer systems using the VM/370 operating 
system. It is principally intended for estimating performance of existing 
VM/370 installations which are being reconfigured and of new VM/370 
installations.

CPU

10—fI/O system

Figure 9.23

Chain

Non
trivial
jobs

Figure 9.24

We are principally interested here in the model portion of the Pre
dictor, but we should point out that it includes facilities for determining the 
model parameters. The VM/370 operating system includes its own software 
monitor which can be selectively enabled. The Predictor includes a Fortran 
program for producing the model inputs from the software monitor output. 
(When estimating performance of a new installation, the model input must 
be provided from other sources.)
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Figure 9.25

A principal difference between the model in the Predictor and almost 
all of the other models considered in this chapter is that it considers jobs in 
the system to be heterogeneous. Both the VM/370 schedulers and the 
model classify jobs as "trivial" or "non-trivial" according to their demon
strated resource requirements. In addition, the model allows arbitrary 
partitioning of jobs into separate chains. Our discussion will assume that 
only two chains, trivial and non-trivial, are being considered.

The input to the model is partitioned into categories, the system de
scription and the workload description. The system description gives the 
CPU model, the main storage size, the number and types of channels and 
secondary storage devices and the assignment of paging and file data sets to 
the secondary storage devices. The workload description is given by chains; 
the number of users, the mean think time and the mean resource demands 
are given for each chain. The predictor transforms the workload description 
appropriately when it is based on a different system than the one specified, 
e.g., if different CPU’s are involved, the CPU time is multiplied by the ratio 
of CPU speeds. Details of the workload description and transformation are 
found in BARD77a.
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The model consists of a three level hierarchy: the I/O  subsystem 
model, the active (i.e., multiprogrammed) set model and the transaction 
flow model (i.e., the entire system). The I/O subsystem model is an open 
queueing network model which represents details of the channel-disk archi
tecture such as those discussed in Section 9.3.3 in regard to the ALS model. 
We will not discuss this model but refer the interested reader to WILH77 
for discussion of this type of model. In addition to the system and work
load description described above, the I/O subsystem model requires esti
mates of the arrival rate of requests for each data set. The output of the 
I/O subsystem model consists of the mean response times by data set. The 
active set model is depicted in Figure 9.23. It is a cyclic queue model with 
an infinite server queue for the I/O system; the response times from the 
I/O subsystem model are used as the service times at the infinite server 
queue. (The dynamic behavior of the system might be captured more 
accurately if the I/O subsystem model and its interface with the active set 
model considered state dependent behavior instead of mean values. Howev
er, the approach used is more convenient and seems to be sufficiently accu
rate in practice.) The active set model satisfies product form and can be 
easily solved by the methods of Chapter 5. The degree of multiprogram
ming (by chain) is required as input to this model; the model output is the 
mean memory residence time (by chain). The transaction flow model 
(Figure 9.24) uses the mean memory residence times from the active model 
as service times in an infinite server queue. Rather than go to the effort of 
attempting an exact solution of the transaction flow model, a solution is 
obtained by the mean value arguments given below. The final solution of 
the hierarchy of models is interpreted as a solution of the overall model 
shown in Figure 9.25.

Hopefully, the reader is wondering "Which came first, the chicken or 
the egg?" in regard to the model inputs and outputs for the three models of 
the hierarchy. The I/O system model requires arrival rates at the data sets 
which should be obtained from the transaction flow model, the active set 
model requires the response times from the I/O  system model and the 
transaction flow model requires residence times from the active set model. 
The answer is that we start with a guess for the residence times. Then we 
can solve the transaction flow model, the I/O system model and the active 
set model, in that order. The residence times from the solution of the active 
set model will usually be different from our initial guess. We can use the 
new value and repeat the cycle. We continue to repeat the cycle until there 
is little change in the residence times. There is no guarantee that such 
convergence will be achieved, and there is no guarantee that the results will 
be a correct solution for the model(s), but in practice convergence usually is 
achieved within five to ten cycles and the model results agree well with 
measurement values [BARD78].



SEC. 9.5 /  THE V M /370  PERFORMANCE PREDICTOR 323

Trivial Resp. Non-trivial Resp.
CPU Logged CPU Util. (seconds) (seconds)

Model Users Meas. Pred. Meas. Pred. Meas. Pred.
135 4 17.1 17.2 0.70 1 . 0 0 19.0 24.1
145 8 84.0 84.8 0.25 0.24 3.9 3.1
145 15 96.6 97.4 0.51 0.44 26.6 19.7

155-11 2 0 2 2 . 2 2 2 . 2 0.05 0.06 1 . 1 1 . 1
155-11 23 36.9 35.7 0.08 0 . 1 1 2 . 8 3.6

158 37 59.2 55.4 0 . 2 1 0.26 2 1 . 8 18.4
158 46 70.3 69.0 0.14 0 . 1 2 2.5 1 . 6
158 24 6 8 . 8 71.3 0.07 0.09 6 . 1 5.3
168 72 36.0 35.2 0.13 0 . 1 1 7.8 6.7
168 117 96.3 99.7 *0.46 0.41 8 . 0 9.7

*0.48 0.53 13.9 10.7
*0.55 0.58 19.2 19.2
*0.83 0.73 28.3 26.0

‘These response times refer to four separate user classes. Classifica
tion was based on ratio of trivial to nontrivial transaction counts.

Figure 9.26
Let us now consider the solution of the transaction flow model (Figure 

9.24). A user is assumed to make transitions between states in a cyclic 
fashion: THINK - MEMORY WAIT - ACTIVE - THINK - ..., or equiva
lently, 1, 2, 3, 1, ... . Let us designate the trivial jobs as chain 1 jobs and 
the non-trivial jobs as chain 2 jobs. A trivial job is assumed to be immedi
ately admitted to service, i.e., it is assumed to spend no time in the memory- 
wait state. Thus its state transitions are THINK - ACTIVE - THINK, ... or 
1,2,1, ... . A non-trivial job may have to spend time in the memory-wait 
state.

We are given the numbers of jobs N t in chain i, the mean think times 
Ti j (i.e., time in state 1 for chain i jobs), the mean active times (residence 
times) 7 ^ 3 , the mean main memory requirements (resident set sizes) and 
the total main memory available S. We are required to compute the 
throughputs of each chain (so that we can determine the arrival rates at the 
data sets for the I/O  subsystem model) and the mean number of jobs of 
each chain in the active state (which is used as the degree of multiprogram
ming in the active set model. We will determine N jk and Tjk , the mean 
number of jobs of each chain in each state and the mean time spent by jobs 
of each chain in each state, respectively, for chain / = 1 , 2  and state k = 1 , 
2, 3. N j 3  will be the input to the active set model. The input to the I/O 
subsystem model can be determined from 3  and T{ 3  using Little’s rule. 
We can also obtain desired performance measures, e.g., utilizations and 
response times, by appropriate use of these values and the model inputs.
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The probability of p jk that a random chain i job (/ = 1, 2 for trivial, 
non-trivial) is in state k (k = 1, 2, 3 for think, memory-wait, and active) is 
proportional to the time spent by that job in that state, i.e.,

Pi,k =
i,k

T i, 1 +  T i,2  +  T i,3
for all i,k. (9.8)

Hence the mean number of chain i jobs in state k is

*i.k = NiP,k = * f
1 i,k

T i , \  +  T i,2  +  T i, 3
(9.9)

Note that we are given Ni,Tl , and Ti 3  Further, we have assumed that 
T { 2  = 0. Thus we only need to obtain T2 2-

The mean amount of main storage used by chain i jobs S t, is simply 
given by

S t = A,. 3  Wr (9.10)

Thus we can immediately obtain S'] from equations (9.9) and (9.10). If S'] 
is less than S then there is enough main storage to accommodate trivial jobs, 
on the average, and our assumption that T, 2  = 0  is reasonable; if S, is 
greater than S the system is saturated by trivial jobs and our solution 
terminates unsuccessfully. These equations and arguments are not necessari
ly correct because they are based on mean values rather than distributions. 
(Recall that the mean value analysis of Chapter 5 rests on formal deriva
tions and the underlying Markov processes.) Strictly speaking, a trivial job 
will experience memory wait if all of main storage is filled with other trivial 
jobs; the only case where trivial jobs never experience memory wait is when 
S  is at least N XW x. However, our goal here is not formal analysis but 
effective performance prediction. The methods may be heuristic, but they 
are reasonable and are supported by extensive empirical results.

To obtain T2 2, let us first assume it is zero. Then we can obtain S 2 
from equations (9.9) and (9.10). If S 2 is less than S'-S’,, then we conclude 
that T2 2  = 0. Otherwise, we assume that storage is saturated, i.e., 
S 2 - S — S {, and we have
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S - S

(9.11)

or equivalently

(9.12)

Having determined T 2  2> we are through with the solution of the transaction 
flow model. We can proceed to the I/O  subsystem model and then the 
active set model. Then, if necessary, we repeat the cycle through the 
models.

The Predictor is widely used within IBM (it is not expected to become 
available outside of IBM) and has been validated with measurements from a 
range of systems and workloads. See Figure 9.26 for some sample results 
with live workloads. The Predictor is a satisfying example of a fairly simple 
queueing network model being used effectively to estimate the performance 
of complex computer systems.

9.6 COMPUTER COMMUNICATION MODELS

When several geographically separate computers are connected in a 
network, or when terminals are not located near their computer system, a 
substantial portion of response times and a substantial portion of system 
cost will be due to communication between these entities. Queueing network 
models have played an important role in estimating the performance of 
computer and communication networks. We provide here a brief summary 
of some of the results in one of the early papers about the ARPANET 
[KLEI70].

For the purposes of that paper, the ARPANET consists of nineteen 
"host" computers located at universities and research centers through the 
United States. (This description was out of date even at the time that paper 
was written, as acknowledged by the author.) Associated with each host is 
an Interface Message Processor (IMP), a minicomputer which handles all 
network dealings for the host. The IMP’S are connected by leased telephone 
lines with bandwidths of 50K bits per second. (A few lines are of different 
bandwidths.) However, there is not a direct connection between every pair
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of IMP’s. This would be rather expensive and unnecessary. A message sent 
from one host to another will typically pass through several intermediate 
IMP’s. So that the communication lines will not be monopolized by large 
messages and for other reasons messages are divided into packets with a 
maximum length of 1000 bits. Different packets of a message may take 
different paths to the same destination, thus the term "packet switching 
network." The network is also referred to as "store-and-forward" because 
the IMP’s store copies of the packets they forward until they receive 
acknowledgement messages saying that the packets have been successfully 
received by the subsequent IMP’s of the packets’ paths.

The response time for a packet will be the sum of several delays in 
transmission from IMP to IMP. The delays in transmission will typically 
consist of (1) an IMP processing time of roughly 1 ms., (2) a waiting time 
until the communication line is available, (3) a propagation delay for the 
first bit to travel from the sender to receiver, and (4) a service time de
pending on the packet length and line capacity.



An open queueing network is a reasonable model of the network 
because the number of packets in the network may be quite large. It is 
fairly reasonable to assume that messages arrive from the hosts in a Poisson 
manner. However, there are several problems if we wish to use a product 
form network as our model. The packet lengths (and thus service times) 
have a more regular distribution than the exponential, while scheduling is 
typically first come first served. The length of a packet remains constant as 
it goes from IMP to IMP, and thus a packet’s successive service times are 
not at all independent. Choice of routing paths for a packet may depend on 
congestion of the possible paths. None of these problems seem to be trou
blesome in this case. Kleinrock assumes exponential packet lengths, that 
routing may be specified probabilistically and that an independence 
assumption holds, i.e., successive service times for a packet are independent. 
With these assumptions our model is simply a network of FCFS queues with 
exponential service times and the results of Chapter 4  apply directly.

The average packet length is 560 bits. For each packet there is 
(hopefully) an acknowledgement with average length 140 bits. So the mean 
service time is
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560+140
2—-__^ — — .007 seconds = 7 ms.50000

We can determine R and r(m), m = by measuring the traffic flow in
the network, including acknowledgements. Then U(m) = 7Rr(m) (assuming 
R is expressed in traffic per ms.) and

Q ( m )

1U,On)
l - U

+ 7 ms.
On)

Then the mean response time is
M
2  r ( m ) Q ( m ) '  

m= 1

(9.13)

This analysis, unfortunately, is insufficient in that it severely underestimates 
the response time as estimated by a detailed simulation. Figure 9.27 shows 
response time estimates for various fractions of R up to 100%. The curve 
labelled "theory without acknowledgement adjustment" is obtained from 
equation (9.13).

There are several things we can do to improve the estimate, though 
they will violate product form conditions so our analysis is not rigorously 
defensible, particularly in regard to assumed independence of the queues.
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First, though the mean service time for all traffic is 7 ms., the mean service 
time for packets is 1 1.2 ms., so we should increase by 4.2 ms. Second,
we have ignored the propagation delay and should add this to Q(my The 
propagation delay will depend on the distance traveled. Third, we need to 
add the IMP processing time for every time the packet is transmitted, plus 
one more for the destination. With all of these changes our estimate of 
mean response time for a packet is 

M
1 ' .....< e („ ,  + -> .2 +  D(m)+1) + 1, (9.14)

m =  I

where ZTm) is the propagation delay on line m. This estimate agrees very 
well with the simulation; it is labelled "theory with correct acknowledge 
adjustment and propagation delays" in Figure 9.27. (The remaining curve is 
for an analysis which considers the priority given to acknowledgements.)

This model allows much room for variation to consider special charac
teristics of particular networks. In addition, if we wish to vary the capacities 
of the lines to improve the cost effectiveness of the model, it is possible to 
determine optimal capacity assignments given cost and/or performance 
constraints [KLEI70, CHAN77a], Many other queueing network models 
have been proposed for computer communication systems. For further 
discussions see KFEI76, SAUE77c, SAUE78b, SCHW77, and WONG78b.

9.7 EXERCISES

9.1 Derive the values in Figure 9.4.
9.2 Using algorithm 3.2, the algorithm of exercise 3.4 and the results of 

Chapter 5, duplicate Figures 9.5 and 9.6.
9.3 Using algorithm 3.4, the algorithm of exercise 3.6 and the results of 

Chapter 5, duplicate Figures 9.11 and 9.12.
9.4 Justify equations 9.1, 9.2, and 9.3.
9.5 Determine the equation corresponding to equation 9.6 for First Fit 

scheduling with a bound on the number of jobs in memory.
9.6 Determine the equations corresponding to equation 9.6 for First Come 

First Served scheduling.
(Exercises 9.5 and 9.6 assume that the previously stated assumptions of 
BROW77 apply.)

9.7 Show that expression (9.13) gives the same response time result as the 
algorithm at the end of section 4.2.



CHAPTER 10

M ANAGEM ENT OF 
M O DELING  PROJECTS

This chapter is based upon our experience working and consulting with 
industry and government on performance problems. We address typical 
questions that arise in the practice of performance modeling such as
(1) How does one manage a performance prediction project? (2) What 
methods should be used for performance predictions? Our viewpoint is 
pragmatic. We begin with the fundamental premise that unless the money 
earned from a performance group exceeds the money spent on it, there is no 
point in having the group. The acid test of an investment in a performance 
group is the same as in any other investment: is the cost/benefit ratio 
satisfactory?

10.1 THE MANAGER’S VIEWPOINT

Performance groups are used in the phases of system evolution referred 
to in chapter 1: design and development, configuration and tuning. In 
system design and development we are concerned with new systems (as 
opposed to configuring existing systems to meet specific needs). Configura
tion is concerned with selection of hardware and software components from 
the sets of available components. Tuning usually consists of making rela
tively minor modifications (e.g., changing scheduling policies) to an existing 
system to improve performance, perhaps to dramatically improve perform
ance. The objectives to be set for a performance group depend on whether 
its primary function is to participate in design, development, configuration 
or tuning.

10.1.1 Consequences of Decisions

A wrong recommendation made by a performance group participating 
in a system design may have disastrous consequences, affecting a large 
group of potential users as well as the suppliers of system components. An 
incorrect decision in system configuration may be severe, but is not likely to 
be as catastrophic as a wrong decision in design because fewer users will be 
affected. System tuning decisions can be altered quite easily and hence the 
cost associated with wrong tuning decisions is relatively small. The impor
tance of a decision (measured in money lost in making a wrong one) plays a 
key role in determining the modeling technology to be used.

329
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10.1.2 Frequency of Use of Technique

There are many more cases of system configuration than there are of 
systems design and development because there are normally several installa
tions of each system design. A given configuration may be tuned several 
times in its lifetime. Vendors and companies specializing in performance 
find it profitable to develop configuration and tuning tools because there are 
a large number of potential users/customers for these tools. Individual 
customers usually find it more cost-effective to purchase configuration and 
tuning tools than to develop their own.

An organization which does not develop computing systems will typi
cally obtain configuration and tuning tools from external sources. Perform
ance groups in such organizations must understand the tools they obtain and 
be able to validate predictions made by using these tools against measure
ments made in their own installations. The management of such perform
ance groups is very different from the management of performance groups 
in organizations which do develop computing systems. (These latter per
formance groups will likely develop their own performance tools.)

10.1.3 Number of Alternatives

The space of design alternatives is vast. Performance models used in 
systems design must be flexible since very different aspects of the system 
may have to be modeled in the design and development stages. The number 
of alternatives that needs to be considered in system configuration is consid
erably smaller. The alternatives in system tuning are even more well- 
defined and limited. The modeling techniques to be used depend heavily on 
the size of the parameter space.

10.1.4 Validation

The credibility of a tuning model is usually demonstrated by showing 
that it has successfully predicted the effects of previous modifications. A 
user’s faith in a good tuning model is bound to increase if it successfully 
predicts the behavior of his or her modifications. Similarly, the validity of a 
configuration model may be demonstrated by comparison with measure
ments obtained from previous installations.

However, it is difficult to have faith in a model during design and 
development because it may be some time after the modeling effort before 
the system is operational. It is difficult to gain credibility for a design or 
development model by showing that the same technique has been applied on 
earlier systems, because it is not self-evident that the same technique will 
work satisfactorily for a radically different system. Even if a
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designer/developer has faith in a modeling technique, he or she may not 
have faith in a particular model because some aspects of the system are 
ignored. For these reasons it is critical that the designers/developers have 
faith in the modeling team. Further, the modeling team must demonstrate 
that all important aspects of the system are considered in the model.

10.1.5 Workload Definition

The workload definition provides the input to the model and thus 
determines its output. The workload is relatively well defined in tuning 
models and relatively poorly defined in designing and developing models. It 
is difficult, but necessary, for designers and modelers to agree on a set of 
workload scenarios. A clear definition of workload is necessary for a 
successful modeling project.

10.1.6 Summary of Performance Group Objectives

10.1.6.1 Design and development groups.

(1) Demonstrate the credibility of the performance group by success
fully predicting the performance of designs.

(2) Work closely with designers/developers to understand the intrica
cies of each design. Understanding and explaining the interactions 
between different aspects of a system is the most important con
tribution a performance group can make.

(3) Make the best possible predictions, given the limited data on hand, 
and justify the predictions. A prediction that is to have impact on 
a design must be made early in the design/development cycle. 
Such predictions are necessarily made with incomplete data. It is 
tempting for a performance group to protect itself by refusing to 
make predictions until measurements can be made. Indeed, per
formance teams can (and often do) play totally safe by restricting 
their activities to measurement. Predictions may be wrong. How
ever, in the long run, good performance groups can save their 
organizations a great deal of money by recognizing poor design 
decisions early in the design/development cycle.

(4) Set up performance goals for each system. Each system, however 
novel, must meet certain performance goals to be useful. It is the 
duty of the performance group to work closely with marketing 
groups (or corresponding groups in non-profit organizations) in 
determining suitable ranges for key performance measures. Far 
too often, systems are implemented without stated performance 
goals. It is safer to abdicate the responsibility of stating perform
ance goals until the system is operational. However, avoiding the 
statement of performance requirements is costly because poor



332 MANAGEMENT OF MODELING PROJECTS /  CHAP. 10

designs can be allowed to develop into poor systems, precisely 
because goals are nebulous.

(5) Make measurements on prototypes and early systems. Validate 
models as much as possible. If necessary, explain to the 
designers/developers why the system does not behave in the 
manner that they expected it to behave.

(6) Use the experience from the design/development models in help
ing to build configuration models.

10.1.6.2 Configuration: Vendor’s Performance Group.

(1) Determine the range of configuration alternatives that customers 
want considered.

(2) Validate the model by comparison with measurements for all (or 
several) points in the range of alternatives.

(3) Suggest guidelines for choosing the best configuration for a given 
customer.

10.1.6.3 Configuration: Customer’s Performance Groups.

(1) Understand the modeling techniques used by the vendor and 
capacity planning consultants. Far too often, a customer treats a 
capacity planning program offered by a consulting firm as a black 
box encapsulating magic or incomprehensible mathematics. Model
ing techniques are generally very simple. Certainly, every reader 
of this book should be able to understand the technology underly
ing capacity planning models. It is necessary to understand the 
programs one is buying because one must (a) choose between 
competing capacity planning programs and (b) know the fallibility 
of the programs one is purchasing.

(2) Understand measurement tools, and the data they report.
(3) Quantify anticipated workloads by extrapolating from current 

measurements.
(4) Use configuration tools to predict the performance of proposed 

configurations with anticipated workloads.

10.1.6.4 Tuning. The goals for groups working on tuning are similar to 
the goals of groups on configuration, except that (1) tuning efforts place 
greater emphasis on measurement and (2) tuning "models" are likely to be 
guidelines or decision rules. The analyst should have an intuitive under
standing of these rules.



10.2 EVALUATION OF MODELING TECHNOLOGY

10.2.1 Measurement

Measurement is conceptually simple. To determine performance, 
measure the behavior of a system running a representative workload. To 
determine how changes to the system will impact performance, implement 
the changes and measure the changed system running the representative 
workload. Measurement is a necessary aspect of modeling techniques. 
However, reliance on measurement exclusively is short-sighted because 
(1) it may not be possible to implement a proposed system and (2) it may 
be prohibitively expensive to develop a detailed synthetic workload to 
represent an anticipated workload. Measurement is attractive because it 
deals with real, tangible things. The drawbacks to measurement are that 
(1) predictions based on this approach alone may come too late to be of 
any use and (2) the approach may be prohibitively expensive.

10.2.2 Simulation

Simulation is a flexible and powerful approach. A simulation model 
can be arbitrarily detailed, representing all system characteristics. Abstract 
models are made of the anticipated workload and of the proposed system, 
and measurements are taken from the simulation program. Simulation has 
advantages of security in the applicability of the technique, of comprehensi
bility, of comprehensiveness (particularly with respect to time dependent 
behavior) and of application to software development. Simulation has 
disadvantages of potentially containing programming errors, of time and 
cost for simulation program development, of unavailable input data and of 
computational expense.

Security. A performance group can embark on a major project know
ing that the simulation approach will work provided there is sufficient time 
to write and run the simulation. The performance team can be secure in 
their choice of method since the limitations are known, at least qualitatively, 
in advance. The same cannot be said about mathematically solved queueing 
models.

Comprehensibility. Most computer professionals have some understand
ing of simulation; the concepts are simple. Most computer professionals do 
not understand queueing-theoretic models and as a consequence may feel 
threatened by proponents of such models. (This is partly a result of the 
jargon and notation often associated with queueing theory.) Readers of this 
book understand queueing theory, but many computer professionals are 
suspicious of performance methods other than measurement and simulation. 
To convince a manager or designer that the results of a model should be
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taken seriously one must first convince him or her that the modeling techni
que is reasonable.

Comprehensiveness and time dependent behavior. Besides the obvious 
generality of simulation, there is the ability to accurately capture transient 
behavior. Decisions are made in the design of some systems (e.g., transac
tion oriented data base systems) to allow certain kinds of deadlocks to 
occur in the expectation that these kinds of deadlocks will not occur fre
quently (and the knowledge that recovery is not prohibitively expensive). 
Simulation can be used to determine the frequency of deadlocks, and may 
uncover unanticipated deadlocks. Queueing theoretic models are very 
limited in applicability to transient behavior.

Application to software development. Algorithms and programs used in 
a simulation model may be used, in some cases, in the actual system with 
only minor modification. Such transfer from model to system is facilitated 
by use of a common language.

Correctness. Simulation models, like any complex program, are likely 
to contain errors. Even if a model is conceptually correct (i.e., specified 
correctly) it’s simulation implementation may have errors which cause very 
poor performance estimates. This is a severe problem.

Development time and expense. Simulation models take a significant 
amount of time to develop, especially when constructed in general purpose 
(non-simulation) programming languages. Detailed simulation development 
consumes a critical resource in system development: programmer time.

Availability of input data. A detailed simulator requires detailed input 
data, and such detailed data may not be available. A grievous mistake made 
by some purchasers of simulation models is to insist on an excruciating level 
of detail, in the hope that the more detailed the model the better its predic
tions. The purchaser may find too late that he or she only has guesses for 
the required input data. There is no point in detail if there is not a corre
sponding level of credible detail in the input data.

Computational expense. Credible simulation results may depend on 
fairly long simulation runs. For this reason, simulation may be infeasible 
for studying the sensitivity of a system to a number of parameters.

10.2.3 An Engineering Approach to Queueing Theory

This approach is based on the tenet that all significant aspects of a 
system must be represented, regardless of mathematical tractability. Some 
submodels may be solved by numerical methods, others by simulation and



others by heuristic approximations, with the overall result being a heuristic 
approximation to the solution of a detailed model. The approach attempts 
to develop prediction methods which are "reasonable" and appeal to the 
intuition of its users.

Advantages. This approach is flexible in that almost any system charac
teristic can be represented (by use of simulation for a submodel, if necessar- 
y). The computational time necessary may be dramatically less than that 
for a simulation or an exact solution. The memory required may be dramat
ically smaller, as well.

Disadvantages. This approach may produce poor predictions either 
because the conceptual model is inaccurate or because the intuitively plausi
ble solution fails. It is very difficult to estimate the error or to defend the 
approach from attacks on its credibility. The time to develop approximate 
solutions and to empirically validate them (e.g., by comparison with simula
tion) may be prohibitive. One is more likely to be able to find staff for a 
simulation model, i.e., programmers, than for a heuristically solved model.

10.2.4 The Formal Queueing Theory Approach

Formal, numerically solved models may not suffer the credibility 
problems of heuristic approaches if system characteristics are adequately 
represented. However, a numerical solution is likely to be intractable if the 
model does not satisfy product form.

Advantages. The algorithms for product form models are very simple 
and have been implemented for pocket calculators as well as larger ma
chines. Many of the programs for product form models have been used 
extensively, and experience has established the credibility of the programs. 
Thus the credibility of the model can only be attacked by faulting the 
fidelity of the model itself. The computational requirements for solution of 
product form networks are negligible unless there are many closed chains. 
Thus one can interactively evaluate a parameter space of models.

Disadvantages. The principal disadvantage is that one may have to 
ignore important system characteristics to obtain a mathematically tractable 
model. If the model does not have a product form solution, even though its 
solution may be computationally tractable the implementation cost of 
programming the solution may be significant. Finally, there is a problem of 
skepticism of those unfamiliar with queueing models. The only practical 
way to establish the credibility of a queueing model before a skeptical 
computer professional is empirical validation.
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10.2.5 The Method of Choice

The best method to use depends upon the stage of evolution of the 
system being analyzed (i.e., design/development, configuration/tuning) and 
the affiliation of the performance group. We consider the important classi
fications.

Design/development. A design analyst should be capable of carrying 
out "back of the envelope" calculations to determine whether a design in its 
early stages is reasonable and worthy of further consideration. Since there 
are interactive performance modeling packages on the market, it is prefera
ble to do "front of the terminal" calculations instead of "back of the enve
lope" calculations, both for sake of analyst efficiency and modeling accura
cy. If an analyst does not have access to a performance analysis package, 
he or she can implement the algorithms we have given (on a machine as 
small as a programmable calculator for some of the algorithms). The design 
analyst should understand the queueing network models and the approxima
tion techniques described in this book so that these techniques may be used 
to cull potentially good design ideas from the definitely bad ones. The 
design analyst does not need much mathematics but must understand the 
models, i.e., what is represented in detail, what is being simply represented 
and what is being ignored.

Some designers say that they would rather rely on intuition and trivial 
"paper and pencil" calculations than on modeling. These people do not 
realize that even trivial paper and pencil calculations deal with models, 
albeit simplistic ones. Since queueing network model technology has prog
ressed to the point of providing packages which allow users to (1) define 
sophisticated models interactively, (2) solve the models in real time and 
(3) obtain reports of model estimates, there is no longer any excuse for 
designers to avoid queueing network models.

Design analysts must also develop (relatively detailed) simulation 
models to help detect performance problems. Though the cost of develop
ing simulations may be significant, the cost of redesign will likely be even 
higher. In our experience, designers are more likely to be convinced by 
estimates from simulations than from queueing theoretic results. Further, 
issues of vital interest to designers (such as frequency of deadlock) may not 
be feasibly considered without simulation.

Configuration/tuning - vendor/consultant. The performance team for a 
vendor or performance consulting firm should be capable of developing 
relatively detailed models to be configured or tuned. Such detail will usually 
force the use of approximate solutions or simulation or both in a hybrid 
solution. The team should be capable of carrying out intensive measure-
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merits on the system being marketed and the models must be validated with 
measurements. Validation is the most important aspect of configuration and 
tuning models.

Configuration and tuning models should (ideally) run while the analyst 
is sitting at a terminal. The requirement for short execution times will 
usually preclude complex models and detailed simulations. The designer of 
a configuration model does not (normally) need to know more mathematics 
than there is in this book. However, designers of such models should have 
a strong grasp of how approximate models may be constructed from simple 
submodels.

The natural questions asked by a buyer of a configuration/tuning 
model are "What am I paying for? If the mathematics is simple and the 
models are not complex then the cost of the modeling package should be 
small. Why shouldn’t I develop my own model for less money than the 
vendor or consultant demands?" The answers are "Validation! Validation!" 
A vendor or performance consultant has much better opportunity for 
obtaining measurements from a large number of systems and carrying out 
intensive validation. Gathering and reducing the data to drive the model 
and human engineering of the modeling software is also a sizable cost.

Configuration/tuning - customer. The performance group of a computer 
system user has less stringent requirements than groups developing models, 
unless there are no satisfactory models for the user’s system. The primary 
responsibility of a computer system user’s group is to understand the system 
itself and the performance tools marketed by the system vendor and per
formance consultants. There are many different performance tools on the 
market. Most of these tools are concerned with measurement though some 
are modeling tools. It is important to have some understanding of how the 
tools work so that the analyst will place the correct amount of credibility 
(too much or too little can be dangerous) on the reports generated by the 
tools. These reports predict performance measures but are not directive; 
the reports do not suggest changes to the system. Hence the analyst must 
understand the system and the reports thoroughly so that correct changes 
can be made.

10.3 ORGANIZATIONAL STRUCTURE

What effect does the organizational relationship of the performance 
group with other groups have on the quality of performance evaluation? 
We address this question, first considering design and development and then 
configuration and tuning.
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10.3.1 Design and Development

Peformance analysts are used in the design of computing systems in 
two modes:

1. Performance analysts are members of the design team. The ana
lysts report to the same managers as other members of the design 
team. The analysts are responsible for helping designers in evalu
ating design strategies.

2. A single performance group services the entire organization or an 
entire division. Analysts do not report to the same managers as 
designers. There are separate chains of command for analysts and 
designers which meet at relatively high levels of management.

There are advantages with each mode of organization. We consider the 
advantages and disadvantages of the first mode (analysts are part of the 
design team) in comparison with the second mode (distinct performance 
group).

10.3.1.1 Advantages. Designers have to choose between alternate 
designs. They will do so one way or another, usually by using intuition, 
past experience or models. The designer must make choices quickly even 
though this results in wrong choices. In many cases the designer will be 
able to make choices without the aid of an analyst; however, when the 
designer needs an analyst he or she usually needs a quick analysis and a 
(subjectively) convincing argument that the analysis is correct. The design
er does not require the analyst to use the most sophisticated modeling 
techniques available.

An analyst who is part of a design team is more likely to be responsive 
to a designer’s needs than an analyst who belongs to a totally different 
group. Being responsive to the needs of a design group implies coming up 
with quick analyses even though the analyses may not always be correct. It 
is tempting for an analyst to be "absolutely sure" that his or her analysis is 
correct before reporting it. Many analysts are unwilling to use their best 
judgement; they would rather not give any analysis at all. Certainty can 
only be achieved by extensive measurement and designers can not afford to 
wait for measurement.

The business of making predictions is inherently risky. The analyst is 
hired to make better predictions in a manner which is timely and responsive 
to the needs of the designers. If an analyst has a different reporting chain 
than the design team, he or she is more likely to avoid risks by avoiding 
timely predictions because (1) Performance groups have a time honored 
excuse: "There isn’t enough data to carry out this analysis." Note that
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design groups are not permitted to make this same excuse! 
(2) Performance groups are (unfortunately) evaluated by the accuracy of 
their predictions rather than by the successes of the entire design effort. 
Hence, they may have less commitment than they ought to in helping make 
design choices.

An analyst s most important role is to gather all the facts relevant to a 
design and to relate different aspects of a design (in a quantitative manner 
where possible). The model serves as a framework and a discipline for 
gathering facts. The mathematics o f the model is much less important than the 
discpline engendered by the modeling process. It is less important whether a 
model is based on numerical or simulation solution than that modeling be 
carried out. Once the facts are gathered together, the consequences of the 
facts are often intuitively obvious, i.e., the facts speak for themselves. The 
discipline of modeling helps one arrange facts.

An analyst is likely to (1) find it easier to gather the relevant facts and 
(2) have greater success in explaing the results of the modeling effort if he 
or she is a member of the design team. When analysts and designers belong 
to different groups it is likely that an adversary relationship will develop 
between the two groups. The design team will very likely consider an 
analyst to be a person who evaluates and passes judgement on their design. 
Designers are less likely to spend time interacting with the analyst because 
they see no direct benefit to themselves. As one design group manager told 
us: "As far as the design groups are concerned the modeling project is all
‘give’; we get nothing in return." It is equally dangerous for the analyst to 
think of himself or herself as a person who "certifies" a design. Ideally, 
such a counter-productive adversary relationship can be avoided if the 
analyst belongs to the design group.

10.3.1.2 Disadvantages. Given the time pressures on design teams it is 
not surprising that capable analysts on design teams are often subborned 
into becoming full time designers and giving up their role of analytic service 
to other designers. Recall that the primary role of an analyst is to gather 
and piece together facts from different designers. Thus an analyst should 
have a more comprehensive view of the overall design than most designers. 
It is tempting for the group to use the analysts knowledge in a design 
capacity.

It is helpful to centralize the experience gained from analyzing several 
designs into a single performance analysis group. It is easier for a single 
performance group to develop and keep abreast of the most advanced 
techniques than for several analysts dispersed among several groups. In- 
house training of analysts is also easier when there is a centralized perform
ance analysis group.
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10.3.2 Configuration and Tuning

Performance groups dealing with configuration and tuning may not be 
organizationally tied to systems engineering and sales groups. However, 
even though the performance tools are developed in other organizations it is 
necessary that there be significant expertise in the use of these tools within 
systems engineering and sales groups. In practice, performance analysts 
usually report to the same management as other information systems profes
sionals except in very large organizations where performance groups may be 
centralized. The tradeoffs between organizational structures are much the 
same as in the design case.

10.4 IN-HOUSE TRAINING

At present, performance analysts are in short supply. Thus organiza
tions will often have to train analysts in order to obtain them. It is not 
difficult to train analysts. A sophisticated mathematical background is 
usually not necessary. The critical prerequisite for performance analysis is 
an understanding of systems. Thus systems programming is an ideal back
ground; an experienced systems programmer can be converted into a per
formance analyst relatively easily. Unfortunately, systems programmers are 
also in short supply!

The first thing to teach a budding analyst is the detailed organization 
of system hardware and software. The second thing an analyst ought to be 
taught is measurement. Third, the analyst should learn simulation; a pro
grammer can easily learn to write simulation programs. Currently, training 
for most analysts stops at this stage. An analyst can do an excellent job on 
configuration and tuning problems with a thorough knowledge of systems 
and measurement tools and a reasonable knowledge of simulation. For 
design and development problems and for maximum efficiency in configura
tion and tuning problems, an understanding of the fundamentals of queueing 
models (as provided in this book) is necessary. Only a small minority of 
analysts will need more sophisticated modeling techniques.

The best training in modeling is experience. After an intensive 
(perhaps two week) course based on this book, supplemented with addition
al material on measurement, an analyst should be given on-the-job training. 
Analysts learn best when faced with real problems and real deadlines.
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FCFS

Hierarchical model 7, 166, 175, 194, 307, 
313, 322

Independent Replications 217, 279 
Infinite Servers, see Scheduling, IS 
IS, see Scheduling, IS

Jackson’s Theorem 80

Last-Come-First-Served-Preemptive-
Resume, see Scheduling, LCFSPR 

Laws of large numbers 213 
LBANC 124, 127, 140, 152, 156, 160, 161, 

185
LCFSPR, see Scheduling, LCFSPR 
Little’s Rule 27, 206, 280 
Local balance 70, 86, see also Markov proc

esses
Local Balance Algorithm for Normalizing 

Constants, see LBANC

M /G / l  queue 65 
M / G / oo queue 65 
M /M /l  queue 60, 78 
M /M /2  queue 63 
M / M / o o  queue 64, 83 
Markov processes 30, 194, 223, 236 

numerical solution 41,51 
balance equations 37 

global 69 
local 70, 86

Mean Value Analysis 124, 159, 161, 185 
Measurement 2, 283, 290, 333 
Memory contention 9, 168, 173, 175, 180, 

265, 313
Mixed networks 125, 150

Norton’s Theorem, see Aggregation 
Numerical properties 155
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Passive resource (queue) 173, 175, 1X0, 
264, 279

Poisson process 34, 234 
Probability distribution, see Distribution 
Product form solution 59, 80, X6, 97, 104 
Processor Sharing, see Scheduling, PS 
PS, see Scheduling, PS

Queue length 27, 68, 122, 161, 206 
Queueing discipline, see Scheduling 
Queueing time 27, 206, 278

Random number generation 195 
Regenerative method 194, 223, 236, 241, 

280
Response time, see Queueing time 
Routing 77 259

Scaling algorithm 157 
Scheduling 20, 240, 291, 296, 304, 317 

FCFS 20, 24, 60, 86, 123, 166, 174, 
185

IS 64, 83, 123, 262 
LCFS 21
LCFSPR 22, 86, 123, 245
PS 23, 24, 65, 67, 123, 247
RR 23, 24
SLTF 23
SRTF 23, 25
SSTF 23

Throughput 25, 27, 205 

Utilization 26, 68, 1 16, 122, 205
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