
Advanced Interactive 
Executive (AIX) operating 
system overview 

by L. K. Loucks 
C. H. Sauer 

The Advanced Interactive Executive (AIX) is the operat
ing system used in the RT Personal Computer, it is a 
portable operating system architecture that is suitahie 
for a wide range oí computer architectures and cus-
tomer requirements. Discussed in this paper are the 
structure and services of AIX. 

This paper discusses the operating system for the 
RT Personal Computer™ that is known as the 

Advanced Interactive Executive (AIX)™. The R T Per
sonal Computer system is a family of workstations 
based on the IBM 32-bit ( R I S C ) microprocessor— 
named R O M P— a n d its corresponding high-function 
memory management unit.1 ( R T Personal Computer , 
Advanced Interactive Executive, and AIX are trade-
marks of the International Business Machines Cor
poration.) With this level of performance and func-
tionality, IBM workstations reached the point at 
which it was practical and imperative to provide 
workstation users with an operating system that was 
as sophisticated as those used in mainframe com-
puters. There were many considerations that com-
pelled us to build an operating system for the R T 
Personal Computer that incorporated many of the 
currently most advanced system concepts. 

The R T Personal Computer system includes sophis
ticated hardware features, such as high-function vir
tual storage, advanced all-points-addressable ( A P A ) 
displays, real-time capability, and others, which can 
be fully exploited only by equally sophisticated soft
ware. Because most workstations opérate in an in-
creasingly interconnected environment , the operat
ing system must be able to deal with communica t ion 

functions—especially those that are taking place at 
the request of other users—without mtervention by 
the workstation's user. In many cases, the distribu-
tion of resources is not uniform. Users need to be 
able to use programs, data, and peripheral devices 
that are not local to their own workstations. Perhaps 
most impor tant is the fact that workstations require 
an operating system that provides an application 
execution environment that combines application 
program portability from IBM and industry environ-
ments with efficient use of the hardware. 

We decided to base the core of the R T Personal 
Computer operating system on the A T & T UNIX® Sys
tem V. ( U N I X is developed and licensed by A T & T , 
and is a registered t rademark of A T & T in the U.S.A. 
and other countries.) In addition to System V, we 
included many enhancements generally available in 
the industry, most notably some features of System 
V.2, and many from B S D (Berkeley Software Distri-
bution) 4.2 and 4.3. ( B S D 4.2 and 4.3 are variants of the 
U N I X system developed and distributed by the Uni-
versity of California at Berkeley.) We chose the U N I X 
operating system because it provides significant 
power to a workstation user, provides multiuser ca-
pabilities when needed, and is portable and open-
ended. Also important is the fact that the U N I X 
system has a large user and application base. In 
choosing the U N I X system. we accepted the need to 

0 Copyright 1987 by International Business Machines Corporation. 
Copying in printed form for prívate use is permitted without 
payment of royalty provided that (1) each reproduction is done 
without alteration and (2) the Journal reference and IBM copyright 
notice are included on the first page. The title and abstract, but no 
other portions, of this paper may be copied or distributed royalty 
free without further permission by computer-based and other 
information-service systems. Permission to republish any other 
portion of this paper must be obtained from the Editor. 

LOUCKS AND SAUER IBM SYSTEMS JOURNAL. VOL 26. NO 4, 1987 



make significant upwardly compatible enhance-
ments over what was available in the industry to 
meet our requirements. As is traditional for U N I X -
based operating systems, an acronym ending in ix 
was chosen: thus we have AIX. 

UNIX concepts 

The U N I X operating system was originally created in 
the 1970s to provide a test bed for computer science 
experimentation.2 This operating system differs from 
conventional operating systems in several key ways. 
Essentially, all of the operating system code is written 
in c to ensure easy portability from one processor 
architecture to another. Most of the control struc-
tures of the operating system, such as configuration 
tables, are bound as late as possible. Configuration 
information is kept in editable files to allow easy 
modification for experimental purposes. The file sys
tem, often called the heart of the U N I X system, is a 
tree-structured hierarchy consisting of directories 
and files. Files are represented as linear byte spaces 
rather than records and fields. Directories are struc-
tured files describing files and other directories. In 
keeping with the objective of portability, most i/o is 
performed through generic devices. The generic de¬
vices are mapped to real i/o devices by user-replace-
able routines called device drivers. Any part of the 
nucleus of the system (called the kernel) can be 
modified by an appropriately authorized user. A 
command-processing component (called a shell) per-
forms parameter substitution and calis appropriate 
command programs. No real distinction is made 
between c o m m a n d processors supplied with the op
erating system and those written by the user that 
accept the same invocation parameter conventions, 
and several shells can coexist in a given system. 

Figure 1 shows the overall structure of a typical U N I X 
system. The most significant difference from ordi-
nary operating systems is the accessibility of all ele-
ments of the software to user modification. A U N I X 
system is thus an operating system that provides 
tools for its own reden nition. It is precisely this 
characteristic that has made it the most popular 
operating system in academic computer science. 
Many of the commands and facilities that were 
originally developed in the course of computer sci
ence experiments have found their way into produc-
tion U N I X systems. This has greatly enriched the U N I X 
functional power, while contributing a certain 
amoun t of inconsistency, especially in the syntax of 
the command language. 

AIX structure 

The generality and portability of the U N I X system 
are achieved at some cost in op t imum use of the 
underlying hardware. We had decided to start with 
the U N I X system as a base. In view of our require
ments, however, we were faced with the question of 
how best to provide the required enhancements . Two 
strategies could be followed. One was to rewrite the 
entire kernel. Although theoretically possible, be-
cause of the amoun t of U N I X knowledge available in 
IBM at the t ime, it was unlikely that such an approach 
would achieve upward compatibility with the stan
dard U N I X system. The other was to provide a set of 
software services for the kernel and modify the kernel 
and other functions to exploit the facilities provided 
by that layer. We chose the second approach, which 
led to the system structure shown in Figure 2. 

The Virtual Resource Manager (VRM) controls the 
real hardware and provides a stable, high-level ma
chine interface to the advanced hardware features 
and devices. (See Figure 3.) The kernel received 
corresponding enhancements to use the services of 
the V R M and to provide essential additional facilities. 
Although the V R M and the AIX kernel proper have 
been tuned to each other, we have not precluded the 
abüity to build other operating systems to exploit 
the VRM services. Similarly, the techniques we used 
to virtualize existing types of devices would work for 
new device types as well. Both the V R M and the 
kernel have been deliberately made open-ended to 
allow the straightforward addition of new functions 
and device support. 

We were dealing with a new hardware architecture 
and with large quantities of new and modified soft
ware in the system. Because of that, we felt that 
special efforts were required to ensure excellent per
formance. We adopted a policy of cont inuous per
formance assessment of the operating system, start-
ing with the earliest availability of hardware and 
software. The performance group had to develop 
new tools and procedures to assess the performance 
of the system, while it was still immature . The results 
of that effort are visible in the performance of the 
completed product. 

To achieve one of our primary goals of providing 
users the widest possible choice of applications and 
computing environments , we provided ways of mov-
ing applications and data to the RT Personal Com
puter from other systems, such as the IBM Personal 
Computer , other U N I X systems, and IBM mainframes, 

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987 

LOUCKS AND SAUER 327 





Figure 3 Interface levéis of AIX 

APPLICATION PROGRAM(S) 

COMMUNICATIONS USABILITY SERVICES 

DATA MANAGEMENT SQL RT DATABASE 

ENHANCED TERMINAL SUPPORT COMMAND PROCESSING 

(KERNEL INTERFACE) 

ENHANCED: 
VIRTUAL STORAGE 
FILE SYSTEM 
CONFIGURATION 
« 
• 
• 

LOCAL TERMINAL 
SUPPORT 

GENERIC 
DEVICE 
DRIVERS 

COMMUNICATIONS 

(VIRTUAL MACHINE INTERFACE) 

STORAGE 
MANAGEMENT 

l/O 
SUBSYSTEM 

COMMUNICATIONS COPROCESSOH 
SERVICES 

as well as many ways to interconnect them. The 
application development extensions above the kernel 
were integrated into the existing operating system 
structure. In some cases, the extensions were pack-
aged and priced separately, but they were designed 
to opérate as integral parts of the operating system 
after installation. 

Creating a virtual environment for the AIX kernel 

The existing structure and functions of the U N I X 
kernel were not sufficient for exploiting the advanced 
features of the R T Personal Computer hardware. The 
major deficiencies fell into the following áreas: 

• Lack of virtual-memory support had been a per-
ceived deficiency in earlier systems. However, 
there were UNix -based systems, such as B S D 4.2, 
that had provided virtual memory, but none of 
these had the capabilities that were possible with 
the R T Personal Computer . 

• There was limited program management with 
code sharing only at the program level and static 
binding of modules. 

• Real-time facilities, such as absolute priorities, 
kernel-level p r e-emption, and multiple -p roces s 
1/0, were lacking. These facilities were thought 
useful not only for traditional real-time applica
tions, but also for complex Communications ser
vices. 

• There were limited facilities for dealing with dy-
namic 1/0 configurations. Most 1/0 changes re
quired the rebinding o f the kernel. 

Instead o f making major changes to the architecture 
o f the kernel, we used the V R M to provide facilities 
to overeóme these shortcomings. The V R M provides 
the services to implement a multitasking operating 
system while insulating the kernel from most o f the 
details of the hardware implementat ion. The kernel 
has to be aware of only the problem-state instruc-
tions. All the other services, such as 1/0 device sup-

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987 LOUCKS AND SAUER 



Figure 4 Virtual Resource Manager (VRM) structure 

NUCLEUS 
SVC HANDLER 

INITIALIZATION 
l/O SUBSYSTEM 

STORAGE 
MANAGEMENT 

NUCLEUS 
SERVICES 

DEVICE 
MANAGER 

VIRTUAL 
TERMINAL 
SUBSYSTEM 
(VTSS) 

VIRTUAL 
MEMORY 
MANAGER 
(VMM) 

MINIDISK 
MANAGER 
(MDM) 

DISPATCHER 

DEVICE 
HANDLER 

SERVICE ABILITY 

port, storage management of disk and memory, and 
hardware initialization, are provided. The V R M ser
vices are implemented in a comprehensive real-time 
execution environment .3 Figure 4 shows the overall 
structure of the V R M . 
V R M nucleus. The nucleus contains the basic ser
vices for the control of the R O M P processor, Memory 
Management Uni t ( M M U ) , and i/o Channel Control
ler (iocc). These services include múltiple pre-empt-
able processes, process creation and priority control, 

330 LOUCKS AND SAUER 

dynamic run-t ime binding of code, direct control of 
virtual memory. millisecond-level t imer control, 
múltiple pre-emptable interrupt levéis, and an effi-
cient interprocess communica t ion mechanism for 
main and interrupt-level processes. 
There is a virtual machine interface ( V M I ) that oper-
ates as follows. The kernel accesses the facilities of 
the VRM via a set of supervisor calis (svc), virtual 
interrupts, and shared memory control blocks. Ser
vices may be executed synchronously as a call /return 

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987 



or asynchronously via a queue to a device driver or 
process. These services provide the kernel with the 
capability of enabling and disabling virtual inter-
rupts, returning from a virtual interrupt, processing 
machine Communications interrupts such as a stor-
age exception, and dispatching an operating system 
process. These are the basic facilities provided to 
implement a multitasking operating system kernel. 
Storage management. A minidisk manager ( M D M ) 
provides the services to partition disk storage into 
logical áreas that are independently managed. A 
minidisk is a contiguous área o f disk storage that can 
be accessed by a logical block number , the size of 
which is specified by the kernel. This service also 
provides error recovery and bad block relocation. 
The V R M resides on a minidisk of its own in a 
standard AIX file system. Installation and space man
agement on that minidisk are performed with stan
dard AIX Utilities. 

Virtual memory manager (VMM). The R O M P / M M U 
virtual memory architecture, in combinat ion with 

the V R M , gives the R T Personal Computer a demand-
paged virtual memory of 1 terabyte, consisting of 
4096 256-megabyte segments. Segments have a máx
i m u m of 256 megabytes, but typically they are much 
smaller. The R O M P contains 16-segment registers, 
permitting the addressing of 14 segments [plus i/o 
and Direct Memory Access ( D M A ) operations] at any 
time. (See Figure 5.) The VRM performs page-fault 
handling and manages the allocation of real memory, 
paging space, and virtual storage segments.4 The V R M 
also provides the AIX kernel with interfaces to control 
these functions and to respond to a page fault by 
dispatching another process. These services provide 
a view of virtual memory as a collection of segments 
and pages that can be managed via svcs. The segment 
services include créate, destroy, change length, and 
protection, with a load-and-clear segment register(s) 
to provide addressability. A copy service that delays 
copying pages until they are referenced provides the 
necessary support for the U N I X fork primitive. The 
page services that pin, unpin, change protection, and 
purge provide other basic mechanisms for the kernel 

Figure 5 Virtual memory addressing 

• 
• 

2 BITS PROTECTION 12 BITS SEGMENT ID 

32-BIT ADDRESS FROM CPU 

16-SEGMENT REGISTERS 

40-BIT VIRTUAL ADDRESS 

(i.e., 2 1 2 = 4096 SEGMENTS; 

2 2 8 = 256 MB MAXIMUM SEGMENT SIZE) 

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987 

LOUCKS AND SAUER 331 



Figure 6 Device handler structure 

CONTROL 
COMMANDS 

EXCEPTIONS 

COMMAND 
ENQUEUE 

DATA 
COMMANDS 

l/O 
INTERRUPTS 

DEVICE HANDLER 

DEFINE 
DEVICE 

INITIALIZE 
DEVICE 

TERMINATE 
DEVICE 

EXCEPTION 
HANDLER 

CHECK 
PARAMETERS 

1/0 
INITIATE 

INTERRUPT 
HANDLER 

OFF LEVEL 
INTERRUPT 
HANDLER 

to use in controlling the virtual memory environ
ment . 
The V R M also provides a m a p page service that maps 
memory pages within a given segment onto discon-
t inuous disk file blocks, thus providing the primitive 
support for creating a single-level store that makes 
disk and memory access equivalent operations. 

I/O subsystem. The V R M provides the operating 
system with an extensive queued interface to the i/o 
devices, thereby insulating the kernel from the details 
of specific devices and the management of shared 

devices. The devices that the kernel typically sees are 
those that are generic, such as generalized fixed-disk 
drives (Le., minidisks) or serial ports. In those cases 
in which the generic devices are not appropriate or 
in which the real-time capabilities of the V R M envi
ronment are needed by the application, the user or 
a third-party programmer can write c or assembler-
language code to implement the necessary function 
and dynamically add that code to the V R M . 

Configuration. The configuration services provide 
facilities to add device support to the V R M . The 
Define Code svc binds an executable module, called 
a device handler, into the V R M and Define Device 
provides the device-specific parameters to the han
dler. The correct device handler is typically selected 
on the basis of the currently installed hardware or 
via operating system configuration files and is dy
namically bound into the V R M at start-up. However, 
these svcs may be issued to the VRM at any t ime. A 
Query svc provides the ability to determine the 
current configuration. 
Device handler. A device handler is a very structured 
module designed to provide a queued interface to a 
device. There is a well-defined set of entry points 
that implement the functions of the driver; the exe-
cution environment for those entry points is strictly 
controlled by the V R M . (See Figure 6.) A device 
handler is not a process. Therefore, it runs as a part 
of the calling process, i.e., the kernel or another V R M 
internal process, or on a hardware interrupt level. 

Device manager. A device manager is a structured 
V R M process designed to provide additional manage
ment services that cannot be provided by a device 
handler. (See Figure 7.) The execution environment 
is a V R M process and therefore has all the standard 
process attributes and capabilities, such as the ability 
to exploit virtual memory as well as various inter-
process communica t ion (IPC) mechanisms. 

Virtual terminal subsystem (VTSS). At the t ime AIX 
was being implemented, no standard U N I X interface 
for advanced-function A P A displays existed. There
fore, we provided a method to allow múltiple appli
cations to access the local consolé hardware. The key 
to this ability of AIX to support múltiple simultane-
ous interactive applications is the virtual terminal.5 
A virtual terminal is a virtual counterpart of the real 
R T Personal Computer display(s), keyboard, locator 
(mouse or tablet), dials (valuator), and lighted pro
gram function keys ( L P F K ) . The virtual termináis 
time-share the use of the real displays and input 

332 LOUCKS AND SAUER 

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987 



devices. A virtual terminal can function either as a 
simulated ASCII terminal or as a high-function ter
minal (HFT) equivalent in power to the real hardware. 

ASCII terminal simulation. The simulated ASCO ter
minal resembles a typical "glass teletype" (TTY) , en-
hanced with functions to control sound, múltiple 
fonts, and color. The functions are made available 
at the VMI through a set of standard i/o svcs and 
through escapes in the data stream, as allowed in 
ANSI 3.64. 

Monitored mode. ASCII terminal support is obviously 
not sufficient to support graphics and image on the 
local consolé displays. Therefore, an additional mode 
of an H F T (high-function terminal) virtual terminal 
was provided. This facility, called monitored mode, 
provides the support to allow an application in prob-
lem state to obtain controlled access to all hardware 
functions of the display. Also in this mode, data 
from the input devices are placed directly in the 
process address space by the H F T support in the V R M . 
The necessary services to control this access are also 
provided. These functions can be accessed directly 
by advanced applications through H F T facilities pro
vided by the kernel, or more appropriately via the 
advanced graphics and windowing services provided 
by AIX. 

HFT implementation. The H F T support is one ex-
ample of the type of high-function i/o that can be 
implemented using the services provided by the V R M . 
It currently consists of many device handlers, two 
device-manager processes, and more lines of code 
than any other single V R M function. 

Serviceability. Problem determination in system- or 
user-added code is supported by V R M serviceability 
facilities that include trace capabilities, d u m p capa
bilities, and an absolute debugger. 

Personal Computer AT coprocessor. The V R M sup-
ports the Personal Computer A T coprocessor option 
as though it were another, albeit rather specialized, 
virtual machine.6 The coprocessor runs concurrently 
with the execution of programs in the R O M P , but it 
has access to the keyboard, locator, and display only 
when the coprocessor virtual terminal is the active 
virtual terminal—that is, when it has control of the 
display. The inputs from the keyboard and locator 
are presented to the coprocessor as though they had 
been produced by the corresponding Personal Com
puter A T devices. If no display has been dedicated to 
the coprocessor, the display interface emulates a P C 
display on the system display. The V R M manages the 

Figure 7 Device manager structure 

C O M M A N D S 

EXCEPTIONS 

COMMAND 
ENQUEUE 

DEVICE MANAGER 

EXCEPTION 
HANDLER 

CHECK 
PARAMETERS 

shared system resources to ensure that the R O M P and 
coprocessor opérate cooperatively. 

Building an enhanced kernel 

The structure of the U N I X kernel was modified to 
allow it to opérate in a V R M execution environment.7 
The kernel, and all of its processes, opérate within a 
single virtual machine, as shown in Figure 8, and it 
uses the execution control facilities of the V R M to 
multitask within that machine. The kernel has been 
enhanced to use the V R M virtual memory services, 
and it now provides a demand-paged virtual memory 
system that fully supports the 1-terabyte address 
space. The kernel uses V R M page fault information 
to control process dispatching, as well as allowing 
the kernel itself to be paged. 

The kernel occupies one (256-megabyte) segment. 
The code, computat ional data, and stacks are all 
contained within that segment. Each process is allo-
cated three segments: one for program text (code), 
one for computat ional data, and one for the stack, 
as shown in Figure 9. This allocation of virtual 
memory allows very large programs with a very large 
data space to execute on the R T Personal Computer . 
This approach also simplifies many program and 
storage management functions. Funct ions such as 

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987 

LOUCKS AND SAUER 333 



Figure 8 Operating system structure 

VIRTUAL MACHINE 

J 
PROCESS 

| 

MACHINE CONTROL AREA 

program sharing, computat ional storage allocation, 
and automatic stack growth are easier because all of 
the program sections are consistent among processes 
and are obviously large enough to allow simple tech-
niques to be used. Additional segments can be ob-
tained for use with prívate or shared data, shared 
code, or for mapped files. 

Mapped files. A major extensión of the file system 
was the exploitation of the V R M m a p page service to 
créate a single-level store environment for program 
text (code) and data. This facility is called mapped 
files. A mapped file is one that is accessed through 
the virtual memory mechanism simply by loading 
data from the appropriate address. A segment can 
contain only one file. Figure 10 shows how files are 
mapped into the program's address space. Executa-
ble files (programs) and static initialized data are 
automatically mapped by the kernel at program 
invocation. A user data file can be mapped after it is 
opened via a simple extensión to an existing system 
cali. After a data file is mapped into a segment it 
may be accessed using any of the traditional kernel 
file i/o facilities, such as read. write, . . . , or it may 
be treated as memory and accessed directly. 

Figure 9 AIX virtual memory segment allocation 

SYSTEM 

VRM 

SHARED MEMORY, 
MEMORY-MAPPED 
DISK FILES 

15 l/O BUS 

14 

CURRENT 
PROCESS 

DIRECT MEMORY ACCESS 
(DMA) ADDRESSING 

4-13 256 MB 

STACK 
256 MB 

DATA 
256 MB 

PROGRAM 
256 MB 

Single-level store. Single-level store (SLS) technology 
provides a number of significant performance and 
space improvements over traditional methods. For 
programs, the load-and-execute method of execution 
requires that the operating system load the entire 
program into its address space before execution may 
begin. In addition, if the real memory is required for 
other purposes, the program must be paged out to 
backing storage. Contrast that procedure with the 
SLS approach. First, the program is simply mapped 
into the address space and given control at its entry 
point. Only the portions of the program that are 
needed for this invocation are ever actually read into 
real memory. Furthermore, if the real memory is 
required for other purposes, the program does not 
need to be paged out; it is simply paged in when 
required again for execution. This procedure has the 
benefits of quicker program start-up, reduced disk 
space because only a single copy of the program 
exists on disk. and elimination of paging out of 
program code. For data files, the advantages come 
from allowing the virtual memory manager to con
trol all of the data of a process, both file data and 
computat ional storage. Therefore, it can allocate real 
memory in a more efficient manner . For example, 
consider a datábase application that is accessing a 
set of tables 10 megabytes in size, with that applica
tion executing on a machine that has 16 megabytes 

334 LOUCKS AND SAUER 

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987 



Figure 10 Virtual memory of an application using mapped files 

S E G M E N T REGISTERS 

J 

of real memory. After a few accesses, the essential 
portions of the datábase tables are in real memory, 
and the accesses that in traditional architectures were 
disk accesses are now memory accesses. The char-
acteristic of program execution t ime changes from 
being i /o l imi ted to processor-limited, and, since 
processor speeds are increasing at a more rapid rate 
than disk access times, this change in the character-
istic of the program is very beneficial. This is similar 
to the benefits of memory disks on personal com-
puters, except that the allocation of resources is done 
dynamically rather than statically and the process is 
totally transparent to the user as well as to the 
program. 

Datábase enhancements. Historically, UNix-based 
datábase programs have used only the low-level disk 
i /o services of the kernel because the standard U N I X 

file system lacked several key features necessary to 
support them. This resulted in datábase programs 
that were not integrated with the system, unique sets 
of utility commands to be learned, and a general 
increase in the complexity of the system. We wanted 
to provide an integrated environment . Therefore, 
the kernel file system services were extended to pro
vide the necessary facilities to allow us to add data 
management and relational datábase support that is 
built on top of the file system.8 The enhancements 
included the ability to perform space management 
within a file, buffer cache synchronization on a file 
basis, and file- and record-level locking. 

Performance and structure. We have added many 
performance improvements to the file system. The 
most notable are directory caching to speed up path-
name lookup and the use of 2048-byte blocks. We 

IBM SYSTEMS JOURNAL. VOL 26, NO 4, 1987 

LOUCKS AND SAUER 335 



Figuren File system structure 

KERNEL APPLICATION PROGRAMMING INTERFACE (API) 

VNODE LAYER 

/ / / : / / / 
AIX 
LOCAL 

AIX POTENTIAL 
AIX 
LOCAL REMOTE EXPANSION 

FILE SYSTEM 

/ 

FILE SYSTEM 

/ / 

have restructured the file system using the Sun Mi
crosystems™ vnode definition to support múltiple 
file system types in the kernel.9 Figure 11 illustrates 
this approach. (Sun Microsystems is a t rademark of 
Sun Microsystems, Inc.) 
Interprocess Communications (IPC). To assist in the 
writing of multiprocess applications, several en
hancements were added to the standard system V 
I P C packages. 
Signal enhancements. The traditional signal (asyn-
chronous event notification) package has been aug-
mented by a new package, compatible with the 
B S D 4.2 package, that provides more signal manage
ment services and cures a number of race conditions 
that were inherent in the original services. The stan
dard signal package remains available for compati-
bility with existing application programs. 
Message queues/semaphores/shared memory. Mes-
sage queues were enhanced to provide an extended 
message structure that contains information useful 
for implementing security controls in servers. An 
additional option of semaphores reduces the process 
dispatches required in typical multiple-process ap
plications, and new system calis were added that 
provide additional control over shared memory al
location and reclamation. 
I/O management. The i/o management área of the 
kernel was restructured to make effective use of the 
i/o facilities of the V R M . Instead of a specialized 
device driver for each distinct device, we created a 
family of generic device drivers that are capable of 
supporting a number of unique devices of a given 
class. Unique device characteristics are supported by 

the VRM device handlers, which can be added or 
replaced dynamically. To implement this, the device-
driver interfaces have been extended to allow dy-
namic binding of a kernel driver to a VRM device 
handler. 
Configuration. In configuring a U N I X system, the 
administrator has historically needed an understand-
ing of the internal structure and logic of the U N I X 
system, to be able to edit the configuration files 
correctly. We believed that it was unrealistic to im
pose such a requirement on our prospective users. 
Therefore, we set out to simplify the installation and 
configuration processes.10 For those devices that can 
be identified internally, such as displays, the system 
performs an automatic configuration process. For 
devices that require explicit description, such as 
printers, we built a set o f menu -d r iven Utilities that 
obtain the necessary information f r o m the user and 
make the required coordinated changes to all of the 
affected V R M and kernel system files. The interfaces 
to these Utilities have been documented so that users 
or third-party programmers can add devices to be 
selected and described vía the menus. These menus 
use the facilities shown in Figure 12, which were 
provided to allow users to add device and real-time 
application support. 
The i/o is typically configured at system start-up. 
The vrmconfig program. along with the helpers for 
each unique device type, reads the configuration files 
and adds the current device support to the running 
system. Additional support may be added any t ime 
by simply running vrmconfig. 
Terminal support. The standard terminal support 
facilities of the U N I X operating system were extended 
to exploit the capabilities of the V R M local consolé 
support. In addition, several enhancements were 
made to the general character support that is appli-
cable to all Ascn-class or teletype termináis (com-
monly known as TTYS). Figure 13 describes the over-
all AIX terminal structure. 

Activity manager. We developed an activity manager 
to provide the support to manage virtual termináis. 
It has facilities for programs and users, such as to 
créate or to terminate a virtual terminal or to start a 
program. 
Character support. The TTY generic support was ex
tended to provide support for screen paging. This 
facility is useful in controlling the output of stream-
oriented applications, as well as providing a mecha-

336 LOUCKS AND SAUER 

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987 



Figure 12 l/O configuration 

CONFIGURATION 
UTILITIES 

DEVICES 
MINIDISKS 
DEVICES 
MINIDISKS 

CONFIGURATION 
FILES 

HARDWARE 

HELPERS 

DEVICE DRIVER INIT() 

-

VIRTUAL RESOURCES MANAGER (VRM) 

DEVICE MANAGERS 

VRMCONFIG 
PROGRAM 

CONFIGURATION 
DEVICE DRIVER 

DEFINE CODE 

DEFINE DEVICE 

AUTOMATIC 
CONFIGURATION 

nism to prevent unseen output from going to inactive 
virtual termináis. In addition, an input-editing 
model patterned after the one provided in P C D O S 
was provided. 

To allow existing applications to run unchanged and 
new character-oriented applications to use the R T 
Personal Computer facilities fully, we extended the 
ASCII character-oriented terminal model via prívate 

escape codes in the data stream and a new set of i/o 
controls to access features such as fonts, character 
sets, color, sound, and mouse input. These facilities 
are accessed through the kernel high-function ter
minal (HFT) device driver. 

A package known as C U R S E S , which is a character-
oriented window management package designed for 
TTY ASCII termináis, has received performance en-

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987 
LOUCKS AND SAUER 337 



Figure 13 AIX terminal support structure 

USER LEVEL GRAPHICS 
SUPPORT 
LIBRARY (GSL) 

(EXTENDED) CURSES 
MONITORED 

ACTIVITY 
MANAGER 

VIRTUAL 
TERMINAL (VT) 
CONTROL 

TELETYPE (TTY) GENERIC SUPPORT 

/ER RIVER | < GH-FUNCTION TERMINAL (HFT . 

VIRTUAL RESOURCE MANAGER (VRM) 

ASYNCHRONOUS 
DEVICE HANDLERS 

hancements and has been compatibly extended to 
provide access to the extended font and other func
tions of the R T Personal Computer native displays. 
We also added functions such as screen división and 
layering logic to give applications a high-level, de-
vice-independent interface. 
APA support The monitored mode support provided 
by the V R M is managed by the kernel H F T device 
driver via a set of i/o controls and signáis. These 
facilities ensure proper behavior by applications us-
ing this feature. If an application refuses to relinquish 
control of a virtual terminal, the H F T driver, after 
waiting for a specified t ime period, terminales the 
application. The application selects the mode in 
which to use the virtual terminal. 

The Graphics Support Library (GSL) provides a set 
of high-performance graphic, text, and ráster output 
primitives and a set of input functions for the local 

HIGH-FUNCTION T E R M I N A L (HFT) 

consolé. These functions are designed to provide an 
application programming interface to applications 
desiring this level of interface, as well as the A P A 
device-driver function to higher-level graphics and 
window services. 

Usability extensions 

Single user. Because we expected R T Personal Com-
puters to be used both as single-user workstations 
and as traditional U N I X t ime-shared systems, we 
believed that some changes were required to support 
the workstation user. We have made some altera-
tions to reduce the number of situations in which a 
user has to exercise "superuser" authority. We added 
the ability to define more than one group to which 
a user belongs at any given t ime. This feature, de-
rived from B S D 4.2, allowed us to define users as 

338 LOUCKS AND SAUEB 

IBM SYSTEMS JOURNAL, VOL 26. NO 4, 1987 



members of the system group. System group mem-
bers can perform a number of operations that pre-
viously could be performed only by a superuser; only 
the most hazardous commands are still restricted to 
superuser authority. This technique gives the user of 
a prívate workstation a simpler environment to work 
in, while preserving the existing AIX authority struc
ture for multiuser environments. For users who wish 
to opérate their systems in a manner similar to P C 
systems, a configuration option was added to allow 
automatic log-on at system start-up t ime. 

Menú shell. The U N I X system has a dual-purpose 
c o m m a n d language. The commands have been de
signed from the beginning to be primitives of a 
c o m m a n d procedure programming language, some-
times at the expense of ease of use when individual 
commands are submitted from the terminal. This 
makes the management of files and the performance 
of c o m m o n operations unnecessarily complex. 
Many U N I X installations solve this problem by build-
ing sets of procedures that effectively constitute a 
command meta-language. We chose to combine the 
solution to this problem with the construction of a 
full-screen interface to A I X . " The usability package 
provides Files, which is a full-screen file management 
utility similar to F I L E L I S T on V M / C M S , and Tools. 
which is the ability to request the most c o m m o n AIX 
commands via a menú interface. The dialog manager 
that is used to implement these Utilities is general 
enough to serve application programs as well as AIX 
commands.1 2 

The Files and Tools applications of the usability 
package can be extended to cover new types of files: 
new actions that can be performed against those files 
can be defined: and new tools—including complete 
full-screen applications—can be added. The dialog 
manager in the usability package can also be used to 
provide new full-screen applications with an inter
face that is consistent with the interface presented by 
Files and Tools. 

PC D O S compatibility. AIX also includes a new shell 
that processes P C D O S commands , conversión pro
grams that transform data from P C to RT Personal 
Computer format, and subroutines that allow appli
cations to read Dos-formatted diskettes and mini-
disks.13 

National-language support. The U N I X system has 
historically been an English-only operating system. 
We have added significant national-language support 
in the following form: 

• An extensive character set including mathematics 
symbols and multinational characters has been 
added. For example, characters such as á, é, -k can 
be included in an R T Personal Computer data 
stream. 

• The formatting of data such as currency, date, and 
time in accordance with the requirements of a 
particular country has been included. For exam
ple. in some countries dates are traditionally writ
ten with the year first; in other countries, dates are 
written with the mon th first. 

• Data processing has been included that is consist
ent with the characteristics of a particular national 
language. For example, the operating system can 
son in alphabetic order, according to the particular 
conventions of each supported country. 

The RT Personal Computer international-character 
support benefits more than just non-U.S. English 
users. For example, an extensive character set of over 
500 characters allows users to créate text that in
cludes non-alphanumeric symbols (such as many 
mathematical symbols). 

Diagnosis and debug. To simplify the diagnosis of 
problems in AIX, we added several debugging tools 
that include a trace mechanism, a mechanism for 
logging of errors and system messages, and a mem-
ory-dump capability. The standard facilities were 
extended where necessary to deal with the unique 
features of AIX and the R T Personal Computer hard
ware. 

Expanding the application development 
environment 

To be able to support the full range of modern 
applications. AIX incorporated several functional ex
tensions. The most significant enhancements have 
been the following: 

• A broad spectrum of technical and commercial 
programming languages 

• An SQL datábase manager and an indexed access 
method 

• Industry standard graphics subsystems 
• Connectivity enhancements to allow R T Personal 

Computers to communica te with both IBM and 
n o n-iBM systems, in Local-Area Networks ( L A N S ) 
and over Wide-Area Network ( W A N ) te lecommu-
nications links 

• Window support services 
• Distributed services for interconnected R T Per

sonal Computers to be used cooperatively and to 

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987 LOUCKS AND SAUER 



allow múltiple applications to work effectively on 
the R T Personal Computer 

Languages. The higher-level language compilers for 
the R T Personal Computer were chosen on the basis 
of the number and types of programs that have been 
written in those languages. We selected dialects that 
would facilítate propagation of programs from the 
IBM Personal Computer , other IBM mainframes, and 
other U N I X systems, with language extensions where 
necessary to support the AIX environment . In some 
cases, the compilers have two modes—one for pro
grams from the P C , and one for programs from 
minicomputer or mainframe environments. We de
veloped a new subroutine linkage convention that 
supports mul t imodule programs written in several 
languages.14 

Data management. One of the most critical require-
ments was for a datábase program supporting IBM 
S Q L to provide both users and application program-
mers with relational datábase facilities. We also 
added a b-tree-based data management program that 
permits either record-level or field-level access. Al
though these subsystems are packaged separately 
from the operating system, they become an integral 
part of the file system when they are installed. 
Graphics interfaces. AIX provides a family of differ-
ent interfaces to the consolé display. Versions of a 
standard Virtual Device Interface (VDI) and a Graph
ics Kernel System (G K S ) are available from third-
party vendors. We provide graPHlGS™, an imple-
mentat ion of the emerging Programmer 's Hierarchi-
cal Interactive Graphics Standard (PHIGS). (graPHlGS 
is a t rademark of the International Business Ma
chines Corporation.) This implementat ion provides 
application portability from IBM mainframes and 
supports all of the graphics device a t tachments of 
the R T Personal Computer , including the IBM 5085. 
Communications. Because the R T Personal Computer 
is intended to be able to communica te with both IBM 
and non-iBM systems, AIX must include support for 
a wide variety of Communications protocols. AIX 
supports Asynchronous, Bisynchronous (BSC) , S D L C , 
C U T , D F T , Ethernet™, and Token-Ring connections. 
We have included both the industry-standard 
T C P / I P and the IBM S N A protocols (LU I, 2,3, and 6.2). 
The R T Personal Compute r can be a bridge among 
múltiple different LANS, able to support up to two 
Ethernet and two Token-Ring LANS from a single R T 
Personal Computer . Figure 14 summarizes the range 
of connectivity available. (Ethernet is a t rademark 
of Xerox, Inc.) 

Figure 14 Summary of RT Personal Computer connectivity 

NON-IBM -S'\C 

z . 

PC / 

= = 

=».' VIA SNA 

OR TCP'IP 

11111 n t i n i i i i Í I I I 11 i n i 

Zo = -

340 LOUCKS AND SAUER 

IBM SYSTEMS JOURNAL VOL 26, NO 4, 1987 



IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987 
LOUCKS AND SAUER 341 



F iguré is X-Windows exampie 

SESSION WITH VM OR MVS 

LOCAL RT PC 
APPLICATION 

OUTPUT OF 
REMOTE RT PC 
APPLICATION 

Window management. Another subsystem that is 
available is the X-Window System. X is a space-
shared, multiprocess window service that was devel
oped under the auspices of Project Athena at the 
Massachusetts Institute of Technology.17 One of the 
key capabilities included in X is the TCP/iP-based 
network support that allows windows to contain data 
from X applications running on other computers 
that are connected via Ethernet or Token Ring. See 
Figure 15. 

Distributed Services 

RT Personal Computer Distributed Services ( R T / D S ) 
provides distributed operating system capabilities for 
the AIX operating system. These include distributed 
files with local/remote transparency. a form of sin-
gle-system image and distnbuted interprocess com-
munication. The distributed file design supports tra
ditional AIX and U N I X file system semantics. This 
allows applications, including data management / 

342 LOUCKS AND SAUER 

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987 



datábase applications, such as S Q L / R T , to be used in 
the distributed environment without modification to 
existing object code. The design incorporates IBM 
architectures such as SNA and some of the architec-
tures of Sun Microsystems N F S . 1 5 1 6 

Design goals. The primary goals in our design of 
distributed services were the following: 

• Local/remote transparency in the services distrib
uted. From both the user's perspective and the 
application programmer 's perspective, local and 
remote access appear the same. 

• Adherence to AIX semantics and UNIX operating 
system semantics. This is corollary to local/remote 
transparency. The distribution of services cannot 
change the semantics of the services. Existing ob
ject code should run without modification, includ
ing datábase management and other code that is 
sensitive to file-system semantics. 

• Remote performance and local performance. This 
is also corollary to transparency. If remote access 
is noticeably more expensive, transparency is lost. 

Figure 16 Example shared file system 

Note that caching effects can make some distrib
uted operations faster than a comparable single-
machine operation. 

• Network media transparency. The system should 
be able to run on different local- and wide-area 
networks. 

• Support of mixed administrative environments. 
VN e believe networks are evolving toward hetero-
geneous collections of prívate machines, i.e., sin-
gle-system-image clusters of machines, and ' ma
chines that act as servers for múltiple mach ine / 
system images. This necessarily implies múltiple 
administrators with complex interrelationships. 

• Security and authorization. Comparable to these 
are those for a single multiuser machine. 

Hle system. Distributed Services uses remote 
mounts to achieve local-remote transparency. A re
mote mount is much like a conventional mount in 
the UNIX operating system, but the mounted file 
system i s o n a different machine than that mounted 
on directory. Once the remote moun t is established, 
local and remote files appear in the same directory 

BIN 

DEV 

E T C FILE-GRANULARITY SHARING - PASSWD. GROUP • • . FROM ' ETC SEi 

LIB 

TMP 

U (USERS' "HOME" DIRECTORES) - SHARED FROM DATA SERVER 

LOUCKS 

SAUER 

USR 

ADM 

B I N SHARED FROM "APPLICATION SERVER" MACHINE 

INCLUDE 

LIB SHARED FROM "APPLICATION SERVER 

LPP SHARED FROM "APPLICATION SERVER 

SPOOL 

SVS 

TMP 

MOUNT POINTS 

IBM SYSTEMS JOURNAL, VOL 26. NO 4, 1987 

LOUCKS AND SAUER 343 



Figure 17 Architectural structure of Distributed Services file system 

SYSTEM CALLS 

VNODES 

POTENTIAL 
EXPANSION 

CLIENT SIDE 

AIX 
LOCAL 

AIX 
REMOTE 

VIRTUAL 
CIRCUIT 
INTERFACE 

LU 6.2 

SERVER SIDE 

SYSTEM CALLS j 

I 
VNODES AIX 

REMOTE 

POTENTIAL 
EXPANSION 

AIX 
LOCAL 

AIX 
REMOTE 

POTENTIAL 
EXPANSION 

AIX 
LOCAL 

VIRTUAL 
CIRCUIT 
INTERFACE 

ETHERNET-
SDLC 

hierarchy, and—with minor exceptions—file system 
calis have the same effect regardless of whether files 
(directories) are local or remote. Mounts , both con-
ventional and remote, are typically made as part of 
system start-up, and thus are established before users 
log on. Additional remote mounts can be established 
during normal system operation. 

Figure 16 gives an example view of a shared file 
system seen by one machine in a single system image 
cluster. Figure 17 illustrates the structure of the RT 
Personal Computer Distributed Services files system 
( R T / D S ) . 

Concluding remarks 

AIX is a portable operating system. Writ ten mostly 
in the c language, it is intended to be migratable to 
new hardware platforms as they emerge. We believe 
that in AIX we have combined a portable and versatile 
industry-standard application programming envi
ronment with contemporary hardware and operating 
system architecture. The resulting operating system 
is suitable for use with a wide range of computer 
architectures and customer requirements. 

Cited references 

1. R. O. Simpson and P. D. Hester. "The IBM RT PC ROMP 
processor and memory management unit architecture." IBM 
Systems Journal 26, Ño. 4. 346-360 (1987. this íssue). 

2. D. M . Ritchie and K. Thompson. "The UNIX time-shanng 
system," Communications of the ACM 17, No. 7, 365-375 
(Juty 1974). 

3. T. G. Lang, M. S. Greenberg. and C H. Sauer, "The virtual 
resource manager." RT Personal Computer Technology (pp. 
119-125), SA23-1057. IBM Corporation; available through 
IBM branch offices. 

4 J C O'Quin. J. T. O'Qum. M. D. Rogers, and T. A. Smith. 
"Design of the IBM RT PC Virtual Memory Manager." RT 
Personal Computer Technology (pp. 126-133). SA23-1057, 
IBM Corporation: available through IBM branch offices. 

5 D C. Baker. G. A. Flurry. and K. D. Nguyen. "Implementa-
tion of a virtual terminal subsystem," RT Personal Computer 
Technology (pp. 134-136), SA23-1057. IBM Corporation; 
available through IBM branch offices. 

6. R. Krishnamurty and T. Mothersole. "Coprocessor software 
support," RT Personal Computer Technology (pp. 
142-148), SA23-1057, IBM Corporation: available through 
IBM branch offices. 

7. L. K. Loucks, "IBM RT PC AIX kernel—modifications and 
extensions," ^ 7 " Personal Computer Technology (pp. 
96-109), SA23-1057, IBM Corporation: available through 
IBM branch offices. 

8 J M Bissell, "Extended file management for AIX," RT Per
sonal Computer Technology (pp. 114-125). SA23-1057. IBM 
Corporation; available through IBM branch offices. 

344 LOUCKS AND SAUER 

IBM SYSTEMS JOURNAL. VOL 26. NO 4, 1987 



9. S. R. Kleinman, "Vnodes: An architecture for múltiple file 
system types in Sun UNIX," USENIX Conference Proceed-
ings. Atlanta, June 1986, pp. 238-247. 

10. S. Lerom, L. Terrell. and H. Advani, "Configuration methods 
for a personal computer system," RT Personal Computer 
Technology (pp. 91-95), SA23-1057. IBM Corporation; avail
able through IBM branch offices. 

11. P. J. Kilpatrick and C. Greene, "Restructuring the AIX user 
interface," RT Personal Computer Technology (pp. 88¬
90). SA23-1057, IBM Corporation; available through IBM 
branch offices. 

12. T. Murphy and D. Verburg, "Extendable high-level AIX user 
interface," RT Personal Computer Technology (pp. 110-113). 
SA23-1057, IBM Corporation; available through IBM branch 
offices. 

13. L. F. Brissette, R. A. Clauson, and J. E. Olson, "PC DOS 
emulation in a UNIX environment," RT Personal Computer 
Technology (pp. 147-148), SA23-1057, IBM Corporation; 
available through IBM branch offices. 

14. J. C. O'Quin, "The IBM RT PC subroutine linkage conven-
tion," RT Personal Computer Technology (pp. 131-1331. 
SA23-1057, IBM Corporation; available through IBM branch 
offices. 

15. C. H. Sauer, D. W. Johnson, L. Loucks, A. A. Shaheen-
Gouda, and T. A. Smith, "RT PC Distributed Services: File 
system," ACM Operating Systems Review (July 1987). 

16. C. H. Sauer, D. W. Johnson, L. Loucks, A. A. Shaheen-
Gouda. and T. A. Smith, "RT PC Distributed Services: Over¬
view," ACM Operating Systems Review, 18-29 (July 1987). 

17. R. W. Scheiflerand J. Gettys, "The X window system," ACM 
Transactions on Graphics 5, No. 2, 79-109 (April 1986). 

anee Modeling. also co-authored with E. A. MacNair. He has 
received IBM Outstanding Innovation Awards for the creation 
and basic design of the Research Queueing Package (RESQ) and 
for the RT Personal Computer Virtual Resource Manager. 

Reprint Order No. G321-5300. 

Larry Loucks IBM Advanced Engineering Systems IBU. 11400 
Burnel Road. Austin, Texas 78759. Mr. Loucks. the lead architect 
of the RT system, is a member of the IBM Sénior Technical Staff. 
He received a B.A. in mathematics in 1967 from Minot State 
University, Minot, North Dakota. Mr. Loucks joined IBM in 1967 
in the Fargo, North Dakota, b r a n c h office. In 1970, he transferred 
to Raleigh. North Carolina, where he worked on SNA and other 
C o m m u n i c a t i o n s produets. In 1977, he transferred to Austin. 
Texas, where he worked on the IBM 5520 Admmistrative Svstem 
and the RT system. He has received three IBM Inventíon Achieve-
ment Awards and has been honored with IBM Outstanding In
novation Awards for his work on SNA, on the 5520, and on the 
RT system. 

Charles H. Sauer IBM Advanced Engineering Svstems IBU, 
11400 Burnet Road. Austin. Texas 78759. Dr. Sauer received his 
B.A. in mathematics and Ph.D. in computer sciences from the 
University of Texas at Austin in 1970 and 1975, respectively. He 
joined IBM at the Thomas J. Watson Research Center in 1975. 
From 1977 to 1979, Dr. Sauer was an Assistant Professor of 
computer sciences at the University of Texas at Austin. In 1979. 
he returned to IBM Research, and in 1982 transferred to the IBM 
Communication Products División Laboratory in Austin, Texas. 
Currently. Dr. Sauer is a Sénior Technical Staff Member and lead 
architect for AIX. Dr. Sauer has published three textbooks. Com
puter System Performance Modeling, co-authored with K. M. 
Chandy, Simulation of Computer Communication Systems, co-
authored with E. A. MacNair, and Elements of Practical Perform-

BM SYSTEMS JOURNAL, VOL 26, NO 4, 1987 

LOUCKS AND SAUER 345 


