
Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

THE RESEARCH QUEUEING PACKAGE M O D E L I N G ENVIRONMENT (RESQME)

Kow C. Chang
Robert F . Gordon
Paul G. Loewner

Edward A. MacNair

I B M Thomas J . Watson Research Center
Yorktown Heights, New York 10598, U.S.A.

ABSTRACT

The Research Queueing Package Modeling Envi­
ronment (RESQME) provides a graphical environ­
ment for constructing, solving, and analyzing the
results of extended queueing network models of re­
source contention systems. It has been used to im­
prove the performance of existing and planned
systems in such application areas as computer sys­
tems, communications networks, manufacturing
processes, transportation systems, customer service
facilities.

R E S Q M E provides the capability to specify a
queueing model by drawing a network diagram and
attaching attribute information to each object in the
diagram. It then evaluates the model using its
general-purpose, discrete event simulation software
and produces graphical and tabular performance re­
sults, along with animation on the original model
diagram. Confidence interval methods are incorpo­
rated to insure that the results of a simulation meet
the desired level of accuracy.

1 INTRODUCTION

Manufacturing lines, communication networks,
computer systems, and transportation systems are
examples of systems which are sufficiently complex
and expensive that carefully developed models are
needed in order to understand and improve system
performance. In these systems, contention for the use
of system resources is the primary factor affecting
performance. Thus, queueing network models are
typically employed for modeling system behavior.
These models can be broadly divided into "tradi­
tional" queueing network models (solved analyt­
ically) and "extended" queueing network models
(solved through simulation) (Lavenberg 1983). In
both cases, the performance model contains queues

and "nodes" (which represent the system resources),
and jobs (which represent the objects in the system
which contend for the use of these resources). The
purpose of the model, then, is to analyze the effect
of contention on the flow of jobs through the sys­
tem.

R E S Q M E (Kurose et al. 1986; R.F. Gordon et
al. 1986, 1988, 1991; K . J . Gordon et al. 1991) pro­
vides the capability to specify and modify a queueing
model by drawing a network diagram and attaching
attribute information. It then evaluates the model
using its general-purpose, discrete event simulation
software and produces graphical and tabular results,
along with animation on the original diagram.
Confidence interval methods are incorporated to in­
sure that the results of a simulation meet the desired
level of accuracy.

R E S Q M E runs under OS/2 on the PS/2 and un­
der A I X on the RS/6000, as well as cooperatively
between the PS/2 and a host V M system. The latter
option provides the flexibility to evaluate models ei­
ther in standalone mode on the workstation or
cooperatively on the host. R E S Q M E can also be
accessed on a L A N .

The modeler controls the modeling process with
R E S Q M E by selecting menu items and directly ma­
nipulating icons on the display. Information about
the model is provided at two levels. At the most
visible level is the graphical view—the network dia­
gram, its elements and submodels, animated job
flow, and output charts. At a second level, there is
attribute information for each graphical object. For
example, a queue icon object has attributes consist­
ing of its name, type of queue, queueing discipline,
service time, etc. Similarly, an output chart object
has attribute information defining its chart type (line,
bar, histogram), colors, numerical values. The net­
work diagram has attribute information, such as the
model name, solution method, parameter names, run

294

The RESearch Queuing Package Modeling Environment (RESQME) 295

control limits. The attribute information is pre­
sented to the user in a pop-up window whenever the
modeler chooses to look at or modify it.

Interaction with R E S Q M E divides broadly into
three tasks which comprise the modeling process:
Create/Edit, Evaluate, and Output Analysis includ­
ing Animation. Within any of these tasks, the
modeler can adjust the viewing plane by panning,
zooming, layering to view the hierarchy of submod­
els, or locating objects by name on the model dia­
gram.

During the Create/Edit task, a model is con­
structed by selecting icons representing the RESQ
(R . F . Gordon et al. 1991) modeling primitives from
a palette and placing them on the modeling
"canvas". Textual attributes associated with an icon
are then specified in a context-sensitive, pop-up
window. Job flow among the elements within a
model is specified simply by connecting the desired
icons by pointing with a mouse and filling in the
conditional and/or probabilistic routing specifica­
tions in the attribute window.

In addition to the elementary icons in RESQME,
the modeler can draw his or her own icons and as­
sociate them with a subnetwork. Models can then
be built hierarchically by linking existing submodels
together to create a new model. R E S Q M E thus
supports the reuse of code through submodel li­
braries and the composition of icons into reusable
higher-level icons.

The second task in the modeling process is to
Evaluate the model. R E S Q M E allows the modeler
to set up multiple runs by varying parameter values
and then to execute the series of simulation runs.
The modeler has the option to evaluate smaller
models and pilot runs standalone on the workstation
and larger models on the host.

The third task is the Output Analysis task.
R E S Q M E provides a plotting package to graph the
collected performance results. Performance results
related to a specific icon or routing chain are selected
simply by pointing to that icon or chain and then
selecting the performance measure(s) of interest from
the pop-up window of available measures. The
modeler can analyze performance measures from one
model run or across runs, for one node or for many
nodes, and view the results in a number of different
plotting options. Animation of the job movements
through the network diagram is provided after the
simulation run, showing job transitions between the
nodes of the diagram along with queue lengths. The
modeler can follow the movement of individual jobs
through the submodels.

Finally, we note that R E S Q M E was specifically
designed to be used by both novice and experienced
modeler. The novice modeler can play through tu­
torial scripts which demonstrate (via animated ex­
amples) various aspects of the system. We have built
a large number of tutorials using the record and
playback facility in R E S Q M E . The tutorials provide
a mechanism for teaching new users about simu­
lation methodology, the use of R E S Q M E , and the
structures of RESQ. They also provide the expert
with a mechanism to design customized, animated
tutorials in order to, for example, document or ex­
plain a model that has been developed. For the ex­
pert, R E S Q M E contains features which help
expedite the modeling process. For example, there
are "modes" of operation which permit easy repe­
tition of the same task, library capabilities to share
submodels, journaling functions, and confidence in­
terval run control. For both novice and expert, there
are libraries of submodels that can be used to con­
struct models, default values for appropriate items,
and scrollable predefined responses for many
prompts.

2 T H E C R E A T E / E D I T TASK

2.1 Specifying a Model
In R E S Q M E , the performance modeler constructs a
model by (1) selecting icons to represent the system
resources and placing them on the modeling canvas
in meaningful relative positions, (2) specifying attri­
butes for each icon so that it represents the behavior
of the corresponding system resource, and (3) inter­
connecting the icons on the canvas with paths which
represent the possible flows of jobs and control in
the system. Different modelers may wish to perform
these actions in different sequences or may mix these
sequences, building up resources and routing in the
model diagram section by section. R E S Q M E ac­
commodates all such strategies, as well as the inevi­
table breaks in strategy which arise from false starts,
editing, and debugging.

The modeler enters an icon into the model by
picking it from the icon palette and placing it in the
modeling area of the screen. For ease in later at­
tachment of routing connections, the icon can be
placed on the modeling canvas in any of the four
cardinal orientations. When the icon is placed,
R E S Q M E displays a context-sensitive form (de­
scribed below) for specifying the icon's attributes.
The modeler may fill in attributes at this point, or
may escape and leave them to be filled in later.
Figure 1 shows a snapshot of R E S Q M E during the

296 Chang et al.

1 0 ft

-HA*
ft

4>

ft

Figure 1: Model construction in R E S Q M E

model creation process. The queue icons used to
represent the CPU, memory, terminals, and I/O de­
vices in the central server model are shown on the
modeling canvas.

Once an icon has been placed on the modeling
canvas, the modeler can Move, Delete, Replace or
Copy the icon, or Modify its attributes. Copying an
icon from the modeling canvas differs from Adding
a new icon from the palette in that all the attributes
of the copied icon except for its name are replicated
in the new icon. If the modeler Moves an icon
which has routing connections associated with it, the
connections stretch or contract to link the icon in its
new position and orientation. Commands such as
Copy, Move, Delete, and Modify are modal in na­
ture in that, once chosen, the command remains
highlighted on the menu, and the modeler can per­
form the same operation on several icons in se­
quence without re-selecting the command. The use
of modes has proven extremely useful in reducing the
number of keystrokes needed in editing a model.

The icon attributes (such as its name, associated
distribution (if any), priority information, etc.) are

specified textually in R E S Q M E using context-
sensitive forms, which help reduce the need for the
modeler to know the syntax of the underlying RESQ
language. Figure 2 shows such a form. Attributes
are entered in fields following each colon. The vari­
ous commands available for manipulating the form
are indicated at the bottom of the figure. The forms
are context-sensitive in the sense that the specifica­
tion of certain attributes may cause the remainder
of the form to change dynamically. For example, if
a priority queueing discipline is chosen in Figure 2.
(by scrolling through a list of available queueing
disciplines until the appropriate priority discipline is
shown following T Y P E :) , additional lines for enter­
ing priority information will immediately appear.

As the modeler enters an attribute specification,
the entry is parsed. If the parsing reveals any errors,
the icon is colored red and the erroneous reply is also
shown in red with an error message; if not, the icon
is colored green. This incremental parsing provides
early feedback and reveals not only erroneous input
but also inconsistent or missing information.

The RESearch Queuing Package Modeling Environment (RESQME) 297

Q U E U E : cpuq
T Y P E : A C T I V E
S E R V E R S : 1
DSPL: PS
CLASS L I S T : cpu

W O R K D E M A N D S : .004
S E R V E R S -

R A T E S : .2
A C C E P T S : all

Enter work demand for this class

lHelp 2Return 3Select 4Dupl 5Del 6Insert 7Up 8Dn 9Top OBot

Figure 2: Attribute specification form (for an active queue)

2.2 Specifying Job Routing

The movement of jobs among the resources in the
model is described by chains of routing connections.
If there are several classes of jobs in the system, jobs
from each class may be allowed different routes.
Routing specification can be extremely time-
consuming, particularly when large models are being
constructed. For this reason, R E S Q M E provides
extensive routing capabilities, rather than simply the
minimally-required capability of connecting one icon
to another.

The modeler specifies each routing connection by
pointing first to the F R O M icon and then to the TO
icon. In most situations, the modeler will want to
enter a sequence of links in a given chain. Therefore,
by default, the TO icon automatically becomes the
F R O M icon for the next link. It is, however, quite
easy to override this choice and select a different
F R O M node for the next connection. Depending
on the geometrical arrangement of the icons, a
straight line may not be the ideal representation for
the routing path. R E S Q M E permits the modeler to
tack down the path at several intermediate points
before picking the TO icon. (The model in Figure
1 contains tackpoints in several of its routes.) Al ­
though these tackpoints have no semantic value in
the model, they can be moved or deleted just like
icons. It is also possible to insert a tackpoint into
an existing line segment.

Most models contain one or more branch
points—an icon from which a job may go to one of
several other icons, based either on a probabilistic
decision or on some simulation-dependent condi­
tion. To aid in the specification of such "1—N"
routing, R E S Q M E allows the modeler to build up a

list of TO nodes by double-clicking on the first icon
in the list, single-clicking on the second through
N-lst, and double-clicking on the last one. The
same procedure can be used to build up a list of
F R O M nodes for convergent N—1 or parallel N—N
routing. Upon completion of a 1—N or N—N link,
all N of the TO nodes become F R O M nodes, and
the modeler may continue with N—N or N—1 rout­
ing. Figure 1 shows an example of 1—N and N—1
routing. R E S Q M E also permits tackpoints in 1—N,
N—1, and N—N routes. When the modeler puts
down tackpoints between the lists of F R O M and
TO nodes, the routes converge to the first tackpoint,
a single path runs from tackpoint to tackpoint (a
single line thus representing N different actual paths
in compressed form), and the routes diverge from the
last tackpoint. The N—1, 1—N, and N—N routing,
tackpoints, and compressed routing have proved
particularly valuable in specifying the job routing in
large models.

As the modeler graphically specifies the routing,
R E S Q M E also presents a textual confirmation of the
routing, complete with default probabilities for the
routing control. When the modeler finishes the
graphical part of the routing for a particular chain,
there is an opportunity to edit these probabilities or
change them to Boolean predicates. It is also possi­
ble to reenter any chain to insert additional routes,
to M O D I F Y the routing predicates, or to M O D I F Y
the line style or color of the chain links. The
modeler can also D E L E T E individual links or an
entire chain.

2.3 Hierarchical Modeling Using Submodels

298 Chang et al.

Systems in the real world can be large and complex.
This complexity can arise from a large number of
components in the system as well as from detailed
structure within individual components. In either
case, the modeler will find it conceptually useful to
visualize the system at different levels of detail.
R E S Q M E supports this multilevel modeling concept
with hierarchical model definitions. The conceptual
unit in the hierarchy is a submodel definition—a
collection of R E S Q M E primitives and/or other sub­
models and the routing connecting them to one an­
other and to the input and output connections to the
outside of the submodel.

Graphically, each submodel is defined on its own
modeling canvas. This single definition may be
parameterized, and can be invoked as many times as
the modeler wishes. Since the model can be con­
structed in a multi-layered hierarchy by the nesting
of submodels, a model's submodels are thus related
to one another as the nodes of a tree. The Lyr Dn
and Lyr Up menu commands in R E S Q M E provide
the functionality for traversing the tree and for the
creation of new nodes at the desired places in the
tree.

R E S Q M E also permits the modeler to extract and
save submodel definitions. The saved submodels
comprise a "library" of definitions, from which the
modeler can recall a desired submodel and insert it
into the appropriate place in a new model. This
feature also makes it possible to create submodels
which describe the same component or subsystem to
different levels of accuracy or detail or, perhaps,
which model differently designed components per­
forming the same function in different versions of the
system under study. These library definitions can
serve the modeler as interchangeable building blocks
in the construction of the model.

2.4 User-defined Modeling Elements
The purpose of user-defined modeling elements is to
make it possible for the modeler to work directly
with modeling constructs which closely represent
objects in the problem domain. The provision of
such domain-specific icons reduces even further the
effort required from the modeler to translate his
real-world problems into and out of the descriptive
form mandated by modeling software. For example,
a higher-level object might be created to represent a
robot or a conveyer system in a materials handling
system, a controller or a specific minicomputer in a
communications network, or a work cell in a manu­
facturing system. Like any submodel, the higher-
level object can be parameterized, so that each

instance of it can invoke the submodel with different
argument values.

In R E S Q M E , the capability to extend the basic
RESQ elements is built upon the hierarchical sub-
modeling capability described in the previous sec­
tion. R E S Q M E provides capabilities to create
user-defined icons and to associate them with sub­
models, thereby creating higher-level objects. The
modeler can then use these higher-level objects as
well as the basic RESQ elements in constructing a
performance model. The submodel underlying a
higher-level object can be created by the modeler
using both basic RESQ icons and higher-level ob­
jects, or it can be selected from application libraries
created by others.

The modeler creates a new object by (1) creating
a submodel (or selecting an existing submodel), and
(2) drawing the new icon and linking it to the sub­
model. The two steps can be done in either order.
We provide an icon-drawing package which allows
the modeler to draw icons (thus creating the internal
icon structure used by R E S Q M E) by using line, cir­
cle, and polyline elements, and to edit these elements
with move, copy, and delete commands. Existing
icons can be selected as a base for new icons and
modified, or the modeler can start with a blank
drawing box. The icon drawing package allows the
modeler to group the resulting icons into user-
created icon palettes for a given model or application
area. The modeler links a specific icon to a sub­
model by providing it the name of the submodel.

Within R E S Q M E , user-created icons are selected
and manipulated in the same way as the basic icons.
If the modeler selects a model with user-created
icons, those icons will be displayed in icon palettes
in addition to the two built-in palettes which contain
the basic RESQ icons. When the modeler selects a
user-created icon and places it on the modeling can­
vas, R E S Q M E checks whether the submodel is al­
ready in the tree structure of the model. If it is not,
R E S Q M E will search for the submodel description,
and if it exists, will attach it to the model structure.
If it does not exist, the modeler can layer to a new
modeling canvas and create it. The underlying text
attributes for the user-created icon are displayed
based on the submodel to which it is linked. The
attributes include the submodel type and any pa­
rameter variables. The modeler provides the pa­
rameter values for each instance of the higher-level
object.

The modeler can view the underlying submodel
network at any time by selecting the Lyr Dn item
from the screen manager menu and pointing to the
desired user-created icon. R E S Q M E will then dis-

The RESearch Queuing Package Modeling Environment (RESQME) 299

play the submodel network. The modeler can also
view any of the submodels in the model structure
and move back to the root by using the screen
manager menu item Lyr Up.

2.5 Support for Large Models

It must be clear at this point that R E S Q M E models
contain both graphical and textual information, that
large models will contain large amounts of both
kinds of information, and that (in order to be useful)
R E S Q M E needs to make it easy for the modeler to
switch back and forth between graphics and text
management while keeping the context of the model
in the modeler's view.

The graphics management contains two classes of
functions: icon-oriented and screen-oriented. The
icon-oriented functions include adding, deleting,
moving, replacing, and copying individual icons and
the individual line segments which comprise the
routing paths. The screen-oriented functions include
zooming in and out, panning, and locating a named
icon. If we think of the model diagram existing in its
own coordinate frame, independent of the monitor
screen, then the icon-oriented functions alter the
model diagram while the screen-oriented functions
merely alter the window through which the modeler
views the diagram.

The behavior of the icon-oriented functions has
been described in previous sections. The screen-
oriented functions, which are accessed through the
screen manager menu along the right edge of the
graphics screen (see Figure 1), are particularly useful
for working with large models.

The functions Zm In and Zm Out, respectively,
magnify and reduce the picture of the model on the
modeling canvas by a preset factor, while keeping the
view centered over the same point in the model. The
modeler can modify the value of the factor by editing
the user-profile file, which is read in when R E S Q M E
starts up, or by changing it on the system-options
attribute template, which is accessible through a
menu item on the second page of the main menu.
Zooming out gives an overview of an entire model.

With each invocation of the Pan function, the
modeler can move the model around the canvas in
an arbitrary direction by any distance up to the di­
ameter of the screen. This involves selecting the
function from the menu, choosing an arbitrary point
on the screen (which does not have to be associated
with any icon in the model), and choosing the new
position for that point. The model is redisplayed in
the new position at the same scale as before the
move.

The Locate function centers the viewing window
over a named icon. The modeler selects the func­
tion, then types the desired name into a small win­
dow which appears in the lower right corner of the
modeling area. The icon to be located may be any­
where in the current layer of the model. In effect, this
permits the modeler to pan the model through an
arbitrarily large distance.

As previously mentioned, the Lyr Dn and Lyr Up
functions display the network at other nodes of the
model tree structure. The display of each layer of the
tree is independent of the others' screen management
(panning and zooming).

3 T H E EVALUATE TASK
The second task in the experimental process is to
evaluate the model. R E S Q M E allows the modeler
to provide sets of parameter values for each desired
run of the model and then to execute the series of
runs locally or on the host computer.

Selecting the Evaluate main menu item causes the
Evaluate task menu to be displayed. This menu
provides the modeler with the commands to enter
parameter values and execute the model. A model
can be executed with different parameter values in a
series of experiments.

If using the host system to execute the model, se­
lecting the Execute item then uploads the model files
to the host and issues the host command to run the
model. In this case, it is the command to run RESQ
with the model files. The host execution gives us the
computing power to run large, realistic models.

The host execution is done in the background, so
that the modeler can continue to work at the work­
station on this or other models while the host is
processing the model. This cooperative processing
takes advantage of the host for the computation-
intensive execution of the model and the workstation
for the interactive graphics.

The modeler can check on the progress of the run
at any time. When the model results are ready, the
workstation will sound a beep to notify the modeler.

Alternatively, the evaluation of the simulation can
be done directly on the workstation, spawning a job
to run the simulation.

4 T H E OUTPUT ANALYSIS TASK
R E S Q M E supports the output analysis task by pro­
viding a general-purpose plotting package to graph
the results. This task is integrated with the other
tasks of R E S Q M E again using the same model di­
agram as the interface. The plotting package is gen-

300 Chang et al.

eral in that it can plot the output from any modeling
program as long as the output is put in the form:
performance measure identification followed by a
vector of x and y values. When the modeler selects
the Output Analysis menu item from the Main
Menu, a Task Menu appears with the commands to
specify the content and the form of the plot, and plot
the resulting chart. Figure 3 shows the R E S Q M E
display with this task menu and an example plot of
performance measures.

The modeler can analyze performance measures
from one model run or across runs, for one node or
for many nodes. He or she can plot many results
on one chart or on different charts. Whenever con­
fidence intervals are produced by a simulation, they
are automatically displayed on the charts for those
performance measures. The specific numerical data
for each performance measure are also available as
the underlying textual attributes associated with the
chart contents.

Several functions are made available to the
modeler to help analyze the data. For example, the
modeler can produce a short run using one of the
confidence interval methods of RESQ. The modeler
can then select performance measures from this pilot
run and ask for a confidence interval projection. A
plot is then displayed that estimates the required run
lengths to meet a range of desired confidence interval
widths at a desired percent. In addition, the modeler
can apply smoothing functions to the data or, if de­
sired, plot one variable against another. For exam­
ple, the modeler may wish to plot the mean queueing
time for several runs of the model against the corre­
sponding interarrival time parameter values for those
runs.

In RESQME, the form of the chart (type of chart,
axis intervals, color, position, etc.) is controlled by
the modeler independently of the contents of the
chart (values of performance measures). Thus, the
modeler can view the same contents in different
forms and/or use the same form of chart for many
different plots. This separation of form from content
gives the modeler flexibility in analyzing the results,
and the modeler can easily tailor the form to the type
of information to be plotted.

We feel that, just as the graphics on input has re­
duced the translation necessary between the
modeler's view of the system and the lower-level
specification requirements of the underlying model
solution package, so too the output graphics has re­
duced the translation burden in the opposite direc­
tion, more clearly assisting the modeler in
interpreting the results. This is especially true for
large models. Graphics provides the best means to

manage large amounts of data by visually presenting
the data for easy comparisons, quick determination
of statistical significance, and clear spotting of trends.

The modeler specifies the performance measures
to display in a given chart by pointing to a desired
node in the model diagram. A list of performance
measures for the associated node pops up for the
modeler to choose. The modeler can choose any
number of these performance measures and point to
any number of other nodes for selection in the same
chart. The modeler can choose nodes from the main
model or any submodel. Additionally, the modeler
can point to the model name to choose performance
measures associated with the whole model or to a
routing link to select performance measures associ­
ated with a route. To handle the volume of per­
formance measure data for large models, the output
data are stored on disk in an indexed file. Only when
the modeler selects a given performance measure is
it brought into the PC memory.

Our windowing system allows the charts to share
the modeling surface with the model diagram.
Charts can overlap the model diagram and other
charts. The charts can be positioned, moved, shuf­
fled, and removed by direct manipulation. Each
submodel layer has its associated charts which are
independent of the charts on other layers of the
model.

The model diagram, then, is the basis for the se­
lection of output as well as the interface for model
creation, and the modeler can view the output and
the model diagram simultaneously. The modeler can
explore changes based on his analysis of the output
by directly modifying the model diagram, re­
evaluating the model, and then viewing the next
version of the performance measures.

The animation subtask (Aggarwal et al. 1989) is
started from the Output Analysis task. The ani­
mation shows the movement of jobs and tokens and
the change in queue lengths of the nodes in the
model and in the submodel invocations. RESQME
can display the animation for any selected invocation
or, at the modeler's option, it can trace a given job
as it moves up and down through the invocations
of the model. In the latter case, the animation will
automatically layer to each invocation that the job
visits. During this tracing of a given job, the status
at queues and the movement of other jobs and to­
kens for each displayed invocation are also shown.

5 SUMMARY
In this paper, we have described our efforts in de­
signing and developing the Research Queueing

The RESearch Queuing Package Modeling Environment (RESQME) 301

— — 0 0pm Cortat 0
OpvjfyVtaw

-

E"3

y
Figure 3: Example plot of performance measures

Package Modeling Environment (RESQME) , a
graphical environment for constructing, solving, and
analyzing the results of extended queueing network
models of resource contention systems.

R E S Q M E is unique in that it provides a rich and
extensible underlying "language" and a uniform
graphical interface for constructing extended queue­
ing network performance models of large and com­
plex real-world systems. A single graphical interface
is maintained throughout all aspects of the perform­
ance evaluation process. A model is constructed and
modified by creating and editing the model diagrams
and by entering textual information into context-
sensitive forms. When a model is solved, the
modeler specifies values for the model parameters for
one or more solutions, and the model is sent to the
host for evaluation. Under this cooperative proc­
essing protocol, the workstation is then free to be
used for other purposes. When the solution is com­
plete, the modeler can point to any desired node in
the model diagram to specify performance measures
which are then displayed in graphical and tabular
forms. R E S Q M E allows the modeler, through a

consistent interface on the PC, iteratively to create
the model, view the results of the analysis or simu­
lation, revise the model based on the output, and
compare results for families of models.

ACKNOWLEDGMENTS

We are grateful to the many colleagues and
R E S Q M E users who have helped improve
R E S Q M E over the years.

R E F E R E N C E S

Aggarwal, A., K . J . Gordon, J .F . Kurose, R . F .
Gordon and E .A. MacNair. 1989. Animating
simulations in R E S Q M E . In Proceedings of the
1989 Winter Simulation Conference, ed. E .A.
MacNair, K . J . Musselman and P. Heidelberger,
612-620. Institute of Electrical and Electronics
Engineers, Washington, District of Columbia.

Gordon, K . J . , J . F . Kurose, R . F . Gordon and E.A.
MacNair. 1991. An extensible visual environment
for construction and analysis of hierarchically-

302 Chang et al

structured models of resource contention systems.
Management Science 37:714-732.

Gordon, R .F . , P.G. Loewner and E .A. MacNair.
1991. The Research Queueing Package Version
3: Language Reference Manual. I B M Research
Report RA-210, Yorktown Heights, New York.

Gordon, R .F . , E .A. MacNair, P.D. Welch, K . J .
Gordon, and J .F . Kurose. 1986. Examples of us­
ing the RESearch Queueing Package Modeling
Environment (R E S Q M E) . In: Proceedings of the
1986 Winter Simulation Conference, ed. J .R.
Wilson, J.O. Henriksen, and S.D. Roberts,
504-510. Institute of Electrical and Electronics
Engineers, Washington, District of Columbia.

Gordon, R .F . , E .A. MacNair, K J . Gordon and J . F .
Kurose. 1988. Higher Level Modeling in
R E S Q M E . In Proceedings of the European Sim­
ulation Multiconference 1988, 52-57. Nice, France.

Kurose, J .F . , K . J . Gordon, R . F . Gordon, E .A.
MacNair, and P.D. Welch. 1986. A graphics-
oriented modeler's workstation environment for
the RESearch Queueing Package (RESQ). In:
1986 Proceedings Fall Joint Computer
Conference, 719-728. Dallas, Texas.

Lavenberg, S.S., ed.. 1983. Computer Performance
Modeling Handbook. New York: Academic Press.

AUTHOR BIOGRAPHIES

KOW C. CHANG is an advisory programmer in the
Computer Science Department at the I B M Thomas

J . Watson Research Center. His research interests
include design and performance analysis of computer
communications networks, applied probability,
queueing theory and discrete-event simulation. He
is a member of I E E E and an associate member of
ORSA.

ROBERT F. GORDON is manager of modeling and
analysis software systems at the I B M T . J . Watson
Research Center. His research interests are in the
areas of decision support systems and graphical en­
vironments. He is an adjunct professor in the Busi­
ness Computer Information Systems and
Quantitative Methods Department of Hofstra Uni­
versity.

PAUL G. LOEWNER was an advisory programmer
in the Computer Science Department at the IBM
Thomas J . Watson Research Center. His interests
are in graphical systems, compilers, and mathemat­
ical analysis. He is a member of A C M , SIAM,
AMS, MAA, I E E E CS.

EDWARD A. MACNAIR is a Research Staff
Member in the Computer Science Department at the
I B M Thomas J . Watson Research Center. His re­
search interests are performance modeling tools and
simulation output analysis. He is a member of
ORSA and T I M S , and was Proceedings Editor for
the 1989 Winter Simulation Conference.

