
Proceedings of the 1987 Winter Simulation Conference
A. Thesen, H . Grant, W . David Kelton (eds.)

A V I S U A L PROGRAMMING A P P R O A C H T O MANUFACTURING
M O D E L I N G

Robert F . Gordon and Edward A . MacNair
I B M Thomas J . Watson Research Center

Yorktown Heights, New York 10598

Kurtiss J . Gordon and James F . Kurose
Department of Computer and Information Science

University of Massachusetts
Amherst, Mass. 01003

A B S T R A C T

The RESearch Queueing Package Modeling Environment
(RESQME) is an interactive, graphics-oriented workstation
environment for iteratively constructing, running and analyz
ing models of resource contention systems. It is built on top
of the RESearch Queueing Package (RESQ) which provides
the functionality to evaluate extended queueing networks. In
this paper, we describe how to create a "pull" system, a man
ufacturing line with finite buffers, using the graphical interface
and hierarchical modeling capability. This serves as an exam
ple of the kind of manufacturing submodels that can be cre
ated in this system and then used for higher-level modeling.

1. INTRODUCTION

A key element in the efficient design and manufacture of
superior products is the ability to model existing and proposed
manufacturing systems and to easily and accurately estimate
the effects of alternative manufacturing procedures. Simu
lation is the method often used to analyze the performance
of manufacturing systems, allowing the analyst to take into
account contention for machine time, complex routing deci
sions, and specialized equipment.

The modeling and evaluation process is iterative and
graphical in nature (Browne et al. 1985, Healy 1985,
Melamed and Morris 1985, Pegden, Miles and Diaz 1985,
Sinclair, Doshi and Madala 1985, Standridge, Vaughan and
Sale 1985a and 1985b). The engineer/planner often first
abstracts the important elements of the manufacturing system
by constructing a diagram of the manufacturing system, then
converts this view of the system into the input form for the
simulation package, runs the package, and then relates the
output of the package back to the real system, often convert
ing it to graphics for easier interpretation. The planner then
modifies the system model and compares its resulting per
formance measures. He cycles through this experimental
procedure until satisfied with the results. It is important
therefore to provide the engineer/planner with one graphical
environment that supports the iterative and visual nature of
modeling and evaluation. The graphical environment allows
the technical people closest to the process and with the best
technical understanding of the problems to be the ones that
construct and analyze the models without being forced to
translate their view of the system into the syntax of a pro
gramming language.

The RESearch Queueing Package Modeling Environment
(R E S Q M E) (Kurose et al. 1986 and Gordon et al. 1986) is
an interactive, graphics-oriented workstation environment for
iteratively constructing, running and analyzing models of re
source contention systems. It is built on top of the RESearch
Queueing Package (RESQ) (Chow, MacNair and Sauer 1985,
MacNair 1985, MacNair and Sauer 1985, Sauer and MacNair
1982 and 1983, Sauer, MacNair and Kurose 1982a, 1982b,
1982c, and 1984) which provides the functionality to evaluate
extended queueing networks. R E S Q M E runs on a work
station consisting of a P C with a graphics and a character
screen display. The P C is connected to a host computer so
that the computation-intensive evaluation is done on the host
while the graphic specification and display is done on the PC.

We describe the fundamental modeling elements of RESQ
and their graphical use in R E S Q M E by building a simple
model of a manufacturing line in section 2. In section 3 we
extend this example to create a manufacturing line with finite
buffers, first to model a simplified "pull" system and then a
true pull system, a continuous flow manufacturing system. In
a continuous flow manufacturing system, a job can only pro
ceed to the next machine when there is room at that machine
to receive it. Each machine therefore has a finite input buffer
that blocks entry when full. In section 4 we describe the use
of submodels to represent this process as an example of the
higher-level modeling facility of R E S Q M E . We discuss the
design of this higher-level modeling facility in section 5.

2. RESQ M O D E L I N G E L E M E N T S

We describe in this section the fundamental modeling ele
ments in the RESQ language used in this paper. We will
demonstrate their use in R E S Q M E by constructing a simple
manufacturing line with three machines.

The fundamental RESQ elements are the jobs that travel
through the system, service centers that provide service to the
jobs, passive resources that provide storage areas for jobs, and
chains that provide the routing paths for the jobs. Jobs can
enter the network according to an arrival pattern from a
"source node" or be initialized in the network. Jobs travel
through the system by moving from one node to the next in
the network according to the route specified. Each job has a
set of variables associated with it that defines its attributes.
Attributes might be the type of job, its service time, the nodes
it visited. These attributes can be used to determine routing
for a specific job or work demand at a server, etc.

465

R.F.Gordon et al.

L > —lO-
machinel

Select Model Header

mactune2 machine3

<2
SINK

z
o
u
T

Z
M
I
N

P
A
N

O Create/Edit Move -HO -IF
Evaluate Modify <3

Output Anal.

Options

Delete

Copy
- o

~1A*

Figure 1: R E S Q M E Graphics Screen

A service center contains one or more servers, one or more
waiting lines and a scheduling algorithm to select jobs for
service. A job is routed to the appropriate waiting line for
service, and the waiting line is thus a node in the network. A
machine can be represented by the service center icon by
specifying the number of servers, the service distribution, the
number of waiting lines and the scheduling algorithm. Names
are given to the waiting lines and to every other node in the
network to identify the routing path through the network.

A node called the "sink" is used to remove jobs from the
network.

With this overview of the building blocks of RESQ, we will
now show how to construct a simple manufacturing line with
three machines using R E S Q M E . The manufacturing line we
will construct here is a "push" system, i.e., as a job is com
pleted on one machine it is sent to the next in the line, and it
is assumed that each machine has an infinite buffer to accept
jobs. This policy causes a higher work in process level than
the pull systems we will model in section 3.

Figure 1 shows the R E S Q M E graphics screen display with
the view into the modeling area on the top 3/4 of the screen,
command menus and the icon palette on the bottom 1/4 of
the screen, and a vertical screen management menu on the
right border of the screen. We will be using four of the icons
to build the manufacturing line. The icons corresponding to
the source and sink nodes are shown in Figure 1 in the first

row, first column and the second row, first column, respec
tively, of the icon palette. The icon for the service center is in
the first row, second column. The icon used for routing jobs
is in the second row, fifth column.

The modeling process is organized in three phases in
R E S Q M E , represented by the menu items Create/Edit,
Evaluate, and Output Analysis. The Create/Edit phase al
lows the modeler to specify the model by building or modify
ing a diagram of the network and its underlying attributes.
The Evaluate phase allows the modeler to provide values for
the parameters and run the model on the host. The Output
Analysis phase allows the modeler to view the resulting per
formance measures. The modeler can iteratively go through
these phases until satisfied with the results. Menu selections
and drawing take place on the graphics screen by using a
pointing device such as a mouse or joystick. Filling in tem
plates to identify the attributes associated with the graphics
objects takes place on the character screen using the key
board.

When we select the Create/Edit phase menu item, say with
a mouse, the submenu that provides the commands to build
and modify the model is displayed along with the icon palette
as shown in Figure 1. We specify in the model header tem
plate on the character screen that the desired solution tech
nique should be simulation (the modeler can also select the
analytical solution technique), and we give names to the pa
rameters to be used in the model. We name four parameters
for this example: tba for time between arrivals, s t l , st2 and st3

466

A Visual Programming Approach to Manufacturing Modeling

•ED •

b u f f e r q i

—DO

•UD •
bufferq2

-DO 1A-
source a l machinel a2 r e l l machine2 a3 r e l 2

• - C D •
bufferq3

l O
- v - — a

machines r e l 3 SINK

Figure 2: Diagram of Simplified Pull System

for mean service time at machines 1 to 3, respectively. We
then begin drawing the manufacturing line by pointing to the
source node and placing it on the modeling screen. We are
prompted to provide the arrival distribution on the character
screen template. We enter "tba". We will provide a value for
tba during the Evaluate phase; the default is that that value
will be used as the mean of an exponential distribution. We
could specify any distribution and parameters. We select the
icon representing a service center and place it on the modeling
screen. I n the corresponding template for this icon, we use the
defaults to specify that there is one server, one waiting line
and first-come-first-served service algorithm. We enter the
parameter name st l for the mean service time for this machine
1. We place the remaining two machines on the modeling
surface in the same way (or by copying the existing one) and
supply the appropriate parameter for mean service time. We
then point to the sink icon and place it on the modeling screen.

To route the manufacturing jobs, we select the routing
icon, and point to the nodes on the modeling screen in the se
quence to be visited: source, machinel, machine2, machine3
and sink.

This essentially completes the model of a push system.
From the workstation environment we can specify run control
information, provide parameter values and execute the model
on the host, and view the results graphically on the P C . In
section 3, we describe how to modify this model to represent
a a pull system.

3. M O D E L W I T H F I N I T E B U F F E R S

Starting with the model of the manufacturing line that we
developed in section 2, we will create a simplified pull system
corresponding to the system described in Chow, MacNair and
Sauer (1985) and then model the type of pull system we de
fined as a continuous flow manufacturing system.

We introduce one new building block, the passive queue,
that we will use in this example to represent the total number
of jobs that can be kept at a machine: the finite input buffer
plus 1 for the job in service at that machine. We use the pa
rameter names buffer n, with n the machine number 1, 2,
or 3, to specify the buffer size for each machine. There are
two nodes that are used in conjunction with the passive queue:
the allocate node and the release node. When a job reaches
an allocate node, it tries to get space from the passive queue.
We call each space unit a token. I f there are tokens available,
the job will get the required tokens (in this case 1) and move
to the next node in its route; otherwise it will wait until the
needed tokens are available. When a job reaches a release
node it gives back its tokens to the passive queue. The icon
for the passive queue is in the first row, fourth column of the
icon palette in figure 1; the icon for the allocate node is in the
second row, third column; the icon for the release node is in
the third row, third column. Token flow from the passive
queue to its allocate node and from a release node back to the
passive queue is represented by a dotted line which is drawn
with the icon in the third row, fifth column of the icon palette.

Figure 2 shows the resulting diagram of the simplified pull
system model. Note that there is a passive queue for each
machine that prevents a job from entering that machine until
there is room for it. The passive queues overlap, because of
the fact that a job cannot release its spot at its current machine
until it is allocated a spot on the next machine down the line.

This model does not strictly represent a continuous flow
manufacturing system. A job that completes processing at a
machine will free the machine in this model and effectively'
switch places with a job in the buffer until it can proceed to
the next machine. Thus the buffer serves as both an input and
an output buffer, and additional jobs can be processed while
an earlier job waits to enter the next machine. By incorpo
rating another passive queue at each machine, we can prevent

SINK

Figure 3: Continuous Flow Manufacturing System

467

R.F.Gordon et al.

bufferq

albuf s e t t a a almach

P
IQ

machanepq

machine

-o V*—V—o®
waitforbuf relmach pelbuf s e t t a r

Figure 4: Diagram of Submodel for Finite Buffers
this and truly model a continuous flow manufacturing system.
This second passive queue will have one token representing
the job in service. That job will only release its token (and
thereby allow the next job to be serviced) when it can get
space at the next machine's buffer. Figure 3 shows the re
sulting network diagram for the continuous flow manufactur
ing system.

4. A S U B M O D E L F O R F I N I T E B U F F E R S

Instead of having to create the above overlapping passive
queues and service centers to represent each machine in a pull
system, we would like to create a submodel that can be easily
incorporated in a user's model and invoked whenever a ma
chine with a finite buffer is required. A difficulty in using
submodels with the previous approach is that the boundary
of such a submodel necessarily overlaps the boundaries of
other nodes in the network, since the job must first be able to
access the next machine before releasing its current machine.
I n this section, we construct a general submodel to represent
machines with finite capacities and blocking which avoids the
overlapping of nodes of passive queues and can be easily in
corporated into a RESQ model.

To construct a submodel, we select the screen management
item called layer. It allows us to move up and down in a tree
of hierarchical submodels. Selecting layer gives us a new
modeling screen to construct a submodel below the main
model. The submodel to represent a machine with a finite
buffer has to perform three types of processing: (1) allocate
the buffer for the current machine, (2) allocate the current
machine, perform the processing on the current machine and
wait until the buffer for the next machine is available, and (3)
release the current machine and its buffer when able to move
to the next machine.

To accomplish this, we introduce three additional RESQ
modeling elements: the set node, the wait node and the infi
nite server. The set node is used to assign values to variables
when a job reaches that node. We use two set nodes in this

submodel to set a global variable equal to the buffer size
available for a given machine. This is performed when a ma
chine's buffer is allocated and when it is released. This infor
mation will be used at a wait node to test for the availability

of the buffer at the next machine. The wait node enables us
to avoid overlapping the boundaries of different invocations
of the submodel. The infinite server is a service center with a
sufficient number of servers to ensure that no job will have to
wait for service. We use this type of node to represent the
machines in this submodel, since a job can only enter that
node when a machine is free. In the icon palette shown in
Figure 1, the set node is the icon in the third row, first column,
the wait node is the icon in the first row, fifth column, and the
infinite server is represented by the icon in the second row,
second column.

Figure 4 is a diagram of the submodel. This submodel is
invoked for each machine in the manufacturing line example
with appropriate values for the service time and buffer size
parameters. When a job reaches the submodel's input, its
route consists of allocating the buffer for the current machine,
setting the global variable equal to the number of buffers
available, allocating a machine, performing the processing on

• the machine, possibly waiting for a buffer to be available at
the next machine, releasing the machine and the buffer for the
current machine and setting the global variable equal to the
number of buffers available. The job then leaves the sub
model to advance to the next machine.

Figure 5 is a diagram of the main model. This same sub
model can be used when routing to parallel machines, as well
as to serial machines as illustrated above.

5. H I G H - L E V E L M O D E L I N G C O N S T R U C T S

The submodel discussed in the previous section is just one
example of a higher-level modeling construct that would be
useful in modeling manufacturing systems. To allow the
engineer/planner to more easily build manufacturing models,
we propose the development of higher-level building blocks

O O O
machinel machine2 machine3

- a

SINK

Figure 5: Diagram of Higher-Level Modeling

468

1

A Visual Programming Approach to Manufacturing Modeling

which can be linked together to form a complex manufactur
ing model. At the same time, the engineer/planner has access
to all the low-level constructs of RESQ. The higher-level
building blocks will be RESQ submodels that are represented
by user-defined icons. Some of the manufacturing building
blocks that we are considering to implement include:

Material handling system components
Robots
Automated guided vehicles
Automated storage and retrieval systems
Manual-guided equipment
Conveyor systems

Merging and unmerging of jobs
Batch arrivals and service
Equipment down time
Operator availability

The following describes the high-level building component
design for R E S Q M E . The modeler creates a submodel as in
Section 4. He then requests the icon-drawing package and is
presented with a grid in which he draws an icon to represent
that submodel. He links the icon to the submodel and stores
the resulting construct. The user-created icon is then added
to the icon palette and can be selected along with other user-
created icons as weE as lower-level icons to construct a man
ufacturing system.

When a user-created icon is selected and placed on the
modeling surface, the corresponding submodel template ap
pears on the character screen, allowing the user to enter any
submodel parameter values needed. The user-created icon has
an input and output port to connect to other icons. Figure 5
shows the manufacturing line for the pull system with the
user-created icon for the submodel described in Section 4.

By selecting modify and picking that user-created icon in
the icon palette, the user can view/modify the details of the
submodel which consists of its diagram of nodes and routing
and its underlying attributes.

Because the high-level building blocks are RESQ submod
els and because the RESQ elements themselves are also
available, this design has unique flexibility and power.

6. SUMMARY AND F U T U R E D I R E C T I O N S

We have described the construction of a model of a pull
system using the graphical interface and hierarchical modeling
capabilities of R E S Q M E . We used this as a basis to discuss
one example of a higher-level modeling construct that can be
used to represent some complex manufacturing processes.
This design makes the visual programming capabilities of
R E S Q M E extensible by allowing users to create and combine
their own constructs. We have also indicated some other
high-level building blocks which we intend to implement for
use by manufacturing engineers and planners.

In addition to the above work, we intend to enhance
R E S Q M E with an animation capability, a work unit manage
ment component to allow the user to access and maintain all
the files related to a family of models, a parametric analysis
facility to efficiently investigate model solutions over a large

parameter space, and dynamic tutorials to teach users about
the system, simulation methodology and the RESQ con
structs.

A C K N O W L E D G E M E N T S

We would like to express our continuing thanks to Peter
Welch for his support and encouragement of this work, to
Richard Gilbert and to Mark Giampapa for their technical
advice, and to A l Blum, Paul Loewner and David Stein for
their many suggestions which are helping to improve the
package. We would also like to express our appreciation to
We-Min Chow, Darcy Hulseman and Howard Jachter for
their contributions to functions of the high-level modeling
system. In conversations with them they have contributed
many ideas for future directions of RESQ. We would also like
to acknowledge the continuing interest of Charles Sauer in
RESQ. His contributions to RESQ continue to be of tremen
dous benefit. We are grateful to the many other colleagues
and RESQ users who have helped improve RESQ over the
years.

R E F E R E N C E S

Browne, J . C , Neuse, D., Dutton, J . and Y u , K . - C . (1985).
Graphical Programming for Simulation of Computer Sys
tems. Proceeding of the 18th Annual Simulation
Symposium, Tampa, F L , 109-126.

Chow, W.-M., MacNair, E . A . and Sauer, C . H . (1985).
Analysis of Manufacturing Systems by the Research
Queueing Package. IBM Journal of Research and Develop
ment 29, 330-342.

Healy, K . J . (1985). Cinema Tutorial. Proceedings of the
1985 Winter Simulation Conference, San Francisco, 94-100.

Gordon, R . F . , MacNair, E . A. , Welch, P. D., Gordon, K . J .
and Kurose, J . F . (1986). "Examples of Using the
RESearch Queueing Package Modeling Environment
(R E S Q M E) , " Proceedings of the 1986 Winter Simulation
Conference, Washington, D.C. , 494-503.

Kurose, J . F . , Gordon, K . J . , Gordon, R . F . , MacNair, E . A .
and Welch, P. D . (1986). A Graphics-Oriented Modeler's
Workstation Environment for the RESearch Queueing
Package (R E S Q) . 1986 Proceedings Fall Joint Computer
Conference, Dallas, 719-728.

MacNair, E . A . (1985). A n Introduction to the Research
Queueing Package. Proceedings of the 1985 Winter Simu
lation Conference, San Francisco, 257-262.

MacNair, E . A . and Sauer, C . H . (1985) Elements of Practical
Performance Modeling, Prentice-Hall, Englewood Cliffs,
N . J .

Melamed, B . and Morris, R . J . T . (1985). Visual Simulation:
The Performance Analysis Workstation. IEEE Computer
18, 87-94.

469

R.F.Gordon et al.

Pegden, L . A . , Miles, T . I . and Diaz, G . A . (1985). Graphical
Interpretation of Output Illustrated by a SIMAN Manufac
turing System Simulation. Proceedings of the 1985 Winter
Simulation Conference, San Francisco, 244-251.

Sauer, C . H . and MacNair, E . A . (1982). The Research
Queueing Package Version 2: Availability Notice. I B M
Research Report RA-144, Yorktown Heights, New York.

Sauer, C . H . , MacNair, E . A . and Kurose, J . F . (1982a). The
Research Queueing Package Version 2: Introduction and
Examples. I B M Research Report RA-138, Yorktown
Heights, New York.

Sauer, C . H . , MacNair, E . A . and Kurose, J . F . (1982b). The
Research Queueing Package Version 2: CMS Users Guide.
I B M Research Report RA-139, Yorktown Heights, New
York.

Sauer, C . H . , MacNair, E . A . and Kurose, J . F . (1982c). The
Research Queueing Package Version 2: TSO Users Guide.
I B M Research Report RA-140, Yorktown Heights, New
York.

Sinclair, J . B . , Doshi, K . A . and Madala, S. (1985). Computer
Performance Evaluation with GIST: A Tool for Specifying
Extended Queueing Network Models. Proceedings of the
1985 Winter Simulation Conference, San Francisco,
290-300.

Standridge, C . R. , Vaughan, D . K . and Sale, M . L . (1985a).
A Tutorial on TESS: The Extended Simulation System.
Proceedings of the 1985 Winter Simulation Conference, San
Francisco, 73-79.

Standridge, C. R. , Vaughan, D. K . and Sale, M. L . (1985b).
Presenting Simulation Results with T E S S Graphics. Pro
ceedings of the 1985 Winter Simulation Conference, San
Francisco, 237-243.

A U T H O R S ' B I O G R A P H I E S

R O B E R T F . G O R D O N is a research staff member in the
modeling and analysis software systems group at the I B M
Thomas J . Watson Research Center. He received a B.S . in
mathematics and physics from the City College of New York
in 1964, an M.S. in mathematics from Carnegie Institute of
Technology in 1965 and Ph.D. in mathematics from
Carnegie-Mellon University in 1969. From 1968 to 1974, he
was Manager of Mathematics and Programming for
Hoffmann-La Roche, Inc., where he developed mathematical
models for marketing, production planning and distribution.
From 1974 to 1983, Dr. Gordon was Director of Information
Management Services at Avis, where he headed the operations
research, timesharing systems, and systems and programming
groups. Dr. Gordon is an adjunct professor at Hofstra Uni
versity. He is a member of Phi Beta Kappa, Sigma X i and
ORSA.

Robert F . Gordon
I B M Thomas J . Watson Research Center
P.O. Box 704
Yorktown Heights, N Y 10598
(914) 789-7170

E D W A R D A. M A C N A I R joined I B M in 1965. He has
been on the research staff in the Computer Science Depart
ment at the I B M Thomas J . Watson Research Center since
1973. He is currently on the modeling and analysis software
systems group developing modeling programs to solve ex
tended queueing networks. In addition, he has been an ad
junct staff member at the I B M Systems Research Institute,
where he taught courses related to performance modeling.
He is one of the developers of the Research Queueing Package
(R E S Q) , a tool for the solution of generalized queueing net
works. He is a coauthor with Charles H . Sauer of Simulation
of Computer Communication Systems, Prentice-Hall, 1983 and
Elements of Practical Performance Modeling, Prentice-Hall,
1985. He received a B . A . in mathematics from Hofstra Uni
versity in 1965, and an M.S. in Operations Research from
New York University in 1972. He is a member of A C M and
ORSA.

Edward A . MacNair
I B M Thomas J . Watson Research Center
P.O. Box 704
Yorktown Heights, N Y 10598
(914) 789-7561

470

A Visual Prograniming Approach to Manufacturing Modeling

K U R T I S S J . G O R D O N received his B.S . in Physics from
Antioch College in 1964, his M.A. and Ph.D. in Astronomy
from the University of Michigan in 1966 and 1969, and his
M.S .E .C.E . in Computer Systems from the University of
Massachusetts in 1985. Until 1984, he taught in the Five-
College Astronomy Department. Currently, he is a Senior
Postdoctoral Research Associate in the Department of Com
puter and Information Science at the University of
Massachusetts in Amherst. Dr. Gordon's interests include the
display and interpretation of large bodies of data, modeling
and performance evaluation, and graphical user interfaces.
He is a member of the American Astronomical Society, Sigma
X i , A C M , and I E E E .

Kurtiss J . Gordon
Department of Computer and Information Science
University of Massachusetts
Amherst, MA 01003
(413) 545-4207

J A M E S F . K U R O S E received a B A degree in Physics from
Wesleyan University in Middletown, Conn, in 1978 and an
MS and PhD degree in Computer Science from Columbia
University in 1980 and 1984, respectively. Since 1984, he has
been an Assistant Professor in the Department of Computer
and Information Science at the University of Massachusetts,
Amherst, MA., where he currently leads several research ef
forts in the areas of computer communication networks, dis
tributed systems, and modeling and performance evaluation.
He has also been associated with the performance modeling
methodology group at the I B M T . J . Watson Research Center
as a consultant since 1980 and has served as a consultant for
various other companies as well. Professor Kurose is a mem
ber of Phi Beta Kappa, Sigma X i , I E E E , and A C M and the
E E E E Technical Committees on Computer Communications,
Distributed Systems, and Computer-Aided Modeling of
Communication Systems.

James F . Kurose
Department of Computer and Information Science
University of Massachusetts
Amherst, M A 01003
(413) 545-1585

471

