
THE RESEARCH QUEUEING PACKAGE

Past, Present and Future

Charles H. Sauer, Edward A. MacNair, James F. Kurose

IBM Thomas J. Watson Research Center

Yorktown Heights, New York 10598

(914) 945-1542

Abstract: Queueing networks are important as performance models of

systems where performance is principally affected by contention for

resources. Such systems include computer systems, communication

networks, office systems and manufacturing lines. In order to effectively

use queueing networks as performance models, appropriate software is

necessary for definition of the networks to be solved, for solution of the

networks (by numerical, approximate and/or simulation methods) and for

examination of the performance measures obtained. One of the most widely

known and influential pieces of queueing network software is the Research

Queueing Package (RESQ). This paper discusses the evolution of RESQ and

plans for further RESQ development. (Note - RESQ is not available outside

of IBM except under a few special agreements.)

Key Words and Phrases: 	performance 	modeling, 	queueing networks,
simulation, modeling software

Sauer, MacNair, Kurose 2

INTRODUCTION

Many physical systems, including computing systems, communication

networks, office systems and manufacturing lines, are heavily dependent

on sharing of resources. Sharing of resources necessarily leads to

contention, i.e., queueing, for resources. Contention and queueing for

resources are typically quite difficult to quantify when estimating

system performance.

Queueing models have been used for decades in studying the performance

of manufacturing lines, communication networks and similar systems. In

the last two decades queueing models have become important as performance

models of computing systems. Since office systems have become heavily

dependent on computing and communication, queueing models are appropriate

in office system performance evaluation. These models are often networks

of queues because of the interactions of system resources. For a general

discussion of queueing network models, see Sauer and Chandy' and recent

special issues of Computing Surveys (September 1978) and Computer (April

1980).

For queueing network models to be used effectively, appropriate

software is necessary to construct models and to obtain solutions for

models. One of the most widely known and influential pieces of queueing

2-5
network software is the Research Queueing Package (RESQ) .. (RESQ is

restricted to IBM internal use except for special agreements with a few

universities.) Other pieces of software influenced by RESQ include the

Sauer, MacNair, Kurose 3

Queueing Network Analysis Package (QNAP) 6 and the Performance Analyst's

Workbench System (PAWS) 7 .

RESQ is important and influential because of (1) the "extended"

queueing networks associated with RESQ, (2) the diagram language used to

informally represent queueing networks to be handled by RESQ, (3) the user

language and machine interfaces used to formally represent queueing

networks and their solutions and (4) the multiple solution methods of

RESQ, including the research effort that has gone into their design and

implementation. This paper discusses these points from a historical

viewpoint and discusses the expected future evolution of RESQ.

QUEUEING NETWORK MODELS

The following discussion will primarily use computing system

terminology and assume the reader can provide the analogous terminology

for other systems. A typical queueing network model consists of a set of

queues (corresponding to resources in a computer system) and a set of jobs

(which correspond to processes in a computersystem, users at terminals,

messages sent from computer to computer, etc., depending on the system).

The individual queues are usually described in terms of types of

resources, numbers of units of resources, queueing (scheduling)

disciplines and probability distributions for the service times of jobs at

the queues. The jobs are described by their individual characteristics,

by their routing from queue to queue (corresponding to the sequence of

resource requirements in the system) and by their arrival processes (and

Sauer, MacNair, Kurose 4

departure procedures)

Much of the research on queueing network models has focused on methods

for obtaining solutions, i.e., performance estimates, for the models.

Efficient numerical algorithms have been developed for networks with a

product form solution 1 ' 812 . 	However, there are many system

characteristics which preclude a product form solution, e.g., priority

scheduling or simultaneous resource possession. For models with these

characteristics and more than a few queues and/or jobs the only solution

methods available are approximate numerical methods 1 ' 13 ' 14 and

simulation. Specialized simulation techniques have been developed which

apply to simulation of queueing networks 1 ' 15 .

RESQ incorporates both numerical and simulation solution methods.

Though RESQ includes simulation components, we do not consider RESQ to be

a simulation language. Rather, we consider RESQ to be a modeling language.

We make the distinction primarily because of the higher level of

abstraction of RESQ elements, as compared to popular simulation

languages, and also because of the numerical (non-simulation) solution

methods provided in RESQ.

EXTENDED QUEUEING NETWORKS

In order to facilitate more accurate representation of systems, the

queueing networks of RESQ have been designed to include and naturally

build upon the category of networks with product form solution. Some of

Sauer, NacNair, Kurose 5

the elements are obvious generalizations of product form elements, for

example queues with general (e.g., priority) scheduling disciplines.

Other generalizations of product form networks include (1) capabilities

for marking jobs with information (such as message length for a job

representing a message in a communication network) and (2) routing rules

dependent on the current network state (e.g. queue lengths) as well as the

usual probabilistic routing rules.

In addition to allowing the above described characteristics which

usually violate product form solution conditions, we provide in RESQ new

network elements and refer to the resulting category of networks as

it extendedtt queueing networks' 6 . We restrict attention to the most

important of these elements, the "passive queue". We refer to traditional

queues as "active queues." One of the limitations of a network consisting

only of active queues is that a job can only hold one resource at a time.

This can be a severe restriction in studying systems in which a job

requires several resources simultaneously. For example, a program

requires memory as well as a CPU before it can be run, but most

traditional queueing models will ignore either memory contention or CPU

contention. In extended queueing networks a job can hold resources at

several passive queues and one active queue simultaneously.

Sauer, MacNair, Kurose 	6

Pool of tokens

Job flow 	
Token

Icc- m
Allocate / Release Release

/
Subnetwork

Create

Destroy

Figure 1. 	A passive queue.

A passive queue consists of a set of "allocate nodes", a set of

"release nodes", a set of "create nodes", a set of "destroy nodes", and a

pool of identical "tokens" of a resource. A job joins a passive queue

when it arrives at an allocate node Upon arrival the job requests one or

more tokens. If sufficient tokens are available, the requested number of

tokens is allocated to the job, which then moves on to another queue of

the network without delay. However, the job belongs to the queue from

which it received the tokens as long as it holds the tokens. If

insufficient tokens are available, the job waits until enough become

available and then immediately moves on through the network after

receiving them When several jobs wait for tokens of a passive queue, they

are allocated tokens according to a specified scheduling discipline A job

gives up tokens, and thus leaves the corresponding passive queue, when it

is routed through a release node of the queue The. job passes through the

release node instantaneously. Create nodes have no effect on the job,

jobs passing through a create node simply add new tokens to the pool

Sauer, MacNair, Kurose 7

Destroy nodes are similar to release nodes but do not return the tokens to

the pool Jobs pass instantaneously through create and destroy nodes

See Figure 1

The terms "active queue" and "passive queue" are intended to indicate

the nature of the queue's effect ona job's use of a server or token,

respectively, and of the relative dominance of the modeled resources With

an active queue the length of time a job holds a server is entirely

determined by the characteristics of that queue and the jobs at that

queue. With a passive queue the length of time a job holds a token is

determined entirely by events at other queues.

MEMQJ 	I
Terminals 	r 	 I

Figure 2 Computer System Model

Figure 2 shows a simplistic representation of a widely used model of

interactive computer systems The resources represented by active queues

are the terminals, CPU and I/O device(s) A passive queue is used to

represent memory contention After a think time at the terminal, a user

keys in a command A job representing the process executing the command

Sauer, MacNair, Kurose 8

requests memory. After receiving memory the job alternates between CPU and

I/O activities until the command is finished. The job then releases its

memory and returns to the terminals queue for another thinking and keying

time. For other examples of passive queues and extended queueing

networks, see 16,17

RESQ HISTORY

The original solution components of RESQ, QNET4 (numerical solution)

and APLOMB (simulation), were separately developed in 1974 by M. Reiser at

the IBM Thomas J. Watson Research Center and C.H. Sauer at the University

of Texas, respectively.

QNET4 was initially implemented in APL and subsequently reimplemented

in FL/I. Though QNET4 is essentially unchanged, it represents the state

of the art of the "convolution" algorithm it uses. (The Research Queueing

Package Version 2 (RESQ2) provides an alternate computational algorithm,

Mean Value Analysis 10 , for the same class of networks handled by QNET4.)

APLOMB was initially implemented in Fortran. Two special features of

APLOMB are (1) the use of extended queueing networks (including passive

queues) used to represent models and (2) the provision of statistical

output analysis techniques (including confidence interval estimation and

stopping rules). APLOMB has been (and is being) continually revised and

improved over the years. In late 1976 APLOMB was translated from Fortran

to FL/I.

Sauer, MacNair, Kurose 9

In the spring of 1976, QNET4 and APLOMB were provided with a common

user interface implemented by E.A. MacNair. The three programs became

collectively known as RESQ. This prototype version of RESQ used the APL

QNET4 with the interface implemented in APL 2 ' 3 . In the spring of 1977, a

new version of RESQ, RESQl,tt was developed. RESQ1 was implemented

entirely in FL/I, though some components were duplicated in APL for users

who preferred that environment to CMS or TSO.

In the summer of 1978, an entirely new user interface was designed to

overcome a number of fundamental limitations of the original interface.

This new version is known as "RESQ2." It became operational in July 1980.

TECHNICAL CONTRIBUTIONS OF RESQ1

Two of the primary technical contributions of RESQ1 are the extended

queueing networks and the diagram language for describing extended

queueing networks. The extensions, especially passive queues, make

queueing networks a powerful framework for abstracting the essential

characteristics of systems' performance. The diagram language provides a

concise means of describing systems, even when actually constructing a

model with RESQ is not contemplated. The extended queueing networks and

diagram language have had a strong influence outside of IBM, e.g., have

influenced software packages such as QNAP 6 and PAWS 7 . Though RESQ2 is a

much more powerful tool than RESQ1, there have been only relatively minor

additions needed in the extended queueing networks of RESQ1 in the

Sauer, MacNair, Kurose 10

development of RESQ2.

Besides the extended queueing networks and diagram language, the focus

of RESQ1 development was the simulation portion, APLOMB. The numerical

solution portion, QNET4, remained essentially unchanged from its state

before RESQ1 (and remains essentially unchanged today). However, since

APLOMB provides the simulation capability needed to solve extended

queueing networks, APLOMB continued to evolve as the queueing network

extensions were developed. APLOMB and the extended queueing networks were

also important in that they provided an impressive demonstration that the

regenerative method for confidence intervals
15

, new in the literature at

that time, had practical application far beyond the "toy" applications in

the literature. APLOMB also included a sequential stopping rule for

determining simulation run length 18

The greatest failing of RESQ1 was the rigid language used to formally

define and describe the queueing models. Little attention was given to

this language, though much effort went into the interactive

implementation of the language. An implicit assumption in the language

design was that models constructed with RESQ1 would be small in terms of

numbers of elements and the language could thus be designed for

implementation convenience and efficiency, rather than user convenience

and efficiency. Because of this rigidity, the interactive interface (and

its subsequent "dialogue file" mode) were inconvenient, at best, for the

large system models made attractive by the extended queueing networks and

APLOMB.

Sauer, MacNair, Kurose 11

RESQ2 DESIGN AND DEVELOPMENT

RESQ2 language design

The objective in the language design was to provide a language similar

in appearance to the RESQ1 dialogues
16
 but providing the features and

flexibility of a modern programming language. (Block structured

programming languages, in particular Pascal, were especially influential,

though this influence is not obvious in the actual syntax.)

Some of the changes from the RESQ1 language to the RESQ2 language are

simple, yet important, improvements which corrected some of the

deficiencies of the RESQ1 language. For example, the RESQ1 dialogues

require that queues (and other network elements) be numbered sequentially

and referenced by these numbers. The RESQ2 language allows symbolic

naming of elements. The RESQ1 dialogues generally allow only numeric

constants where numeric values are required. The RESQ2 language allows

arbitrary numerical expressions in such places. These expressions may

include symbols previously defined to have constant values, symbols

representing parameters to be defined by the user before solution begins,

and symbols representing values which may vary during a simulation. The

RESQ1 dialogues require that the number of queues (and numbers of other

elements) be specified at the beginning, forcing the user to make a count

and stick to it. The RESQ2 language avoids all such requirements.

In addition to these changes, the RESQ2 language provides two kinds of

Sauer, MacNair, Kurose 12

"templates" (macro-like constructs) which greatly enhance its power. The

use of templates makes it possible to describe networks in a much more

"structured t' manner (in the sense of structured programming) and to

sharply reduce the effort required to construct models. One kind of

template, the "queue type," provides the ability to create parameterized

definitions of queues. Once a queue type has been defined, it can be

repeatedly used (invoked) to define specific instances of queues. Queues

defined using queue types have default characteristics specified in the

queue type definition; other queue characteristics are specified by

parameter values given with the queue type invocation.

The other kind of template, the "submodel," allows definition of a

parameterized template of an entire subnetwork, which may be used

repeatedly in defining a network. Previous work on programming languages

provided little guidance on how such subnetworks should be specified and

interfaced with the remainder of a network. Following are a submodel

definition for part of the network of Figure 2:

SUBMODEL:cssm /*Computer System SubModel*/
NUMERIC PARAMETERS : pageframes
DISTRIBUTION PARANETERS:disktime cputime
CHAIN PARAMETERS:chn
NUMERIC IDENTIFIERS: cpiocycles

CPIOCYCLES :8
QUEUE:diskq

TYPE:fcfs
CLASS LIST:disk

SERVICE TIMES :disktime
QUEUE : cpuq

TYPE:ps /*Processor Sharing'/
CLASS LIST:cpu

SERVICE TIMES : cputime
QUEUE : memory

Sauer, MacNair, Kurose 13

• TYPE:passive
TOKENS : page frames
DSPL: fcfs
ALLOCATE NODE LIST:getmemory

NUMBERS OF TOKENS TO ALLOCATE :discrete(16, .25;32, .5;48, .25)
RELEASE NODE LIST:freememory

CHAIN: chn
TYPE : external
INPUT: getmemory
OUTPUT: freememory
getmemory->cpu->disk
:disk->freememory Cpu; l/cpiocycles 1-1/cpiocycles

END OF SUBMODEL CSSM

and a complete model definition which assumes the submodel has been stored

in a library:

MODEL:csm /*Computer System Model*/
METHOD: aplomb
NUMERIC PARAMETERS:thinktimeusers pageframes
NUMERIC IDENTIFIERS:cpiocycles

CPIOCYCLES:8
DISTRIBUTION IDENTIFIERS: disktime cputime

DISKTIME:.019 /*mean of exponential*/
CPUTIME:standard(.05,5) /-mean and coefficient of variation*/

QUEUE: terminalsq
TYPE: is
CLASS LIST:terminals

SERVICE TIMES:thinktime
INCLUDE:cssm /*submodel definition from library ,./
INVOCATION: host

TYPE: cssm
PAGEFRAMES :pageframes
DISKTIME : disktime
CPUTIME : cputime
CHN: interactiv

CHAIN: interactiv
TYPE: closed
POPULATION:users
terminals ->hOst. input
host. output->terminals

QUEUES FOR QUEUEING TIME DIST:host.memory
VALUES:l 2 3 4 5 6 7 8

CONFIDENCE INTERVAL METHOD: regenerative
REGENERATION STATE DEFINITION-
CHAIN: interactiv

Sauer, MacNair, Kurose 14

NODE LIST: terminals
REGEN POP:users
INIT POP:users

CONFIDENCE LEVEL: 90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:host.memory
MEASURES:qt
ALLOWED WIDTHS:10

SAMPLING PERIOD GUIDELINES-
QUEUES FOR DEPARTURE COUNTS:host.memory

DEPARTURES : 1000
LIMIT - CF SECONDS:100
TRACE:no

END

The above are examples of dialogue files, i.e., files similar to the

interactive dialogue. Upper case corresponds to prompts in the

I nteractive version, and lower case corresponds to replies in the

interactive version. In the true interactive mode, there would be

additional prompts of the same form as shown above. These additional

prompts would receive no reply from the user, thus indicating the end of a

subsection of dialogue. For example, in interactive mode, the actual

dialogue correpsonding to the above file might be

MODEL:csm /*Computer System Model*/
METHOD:aplomb
NUMERIC PARAMETERS:thinktime users pageframes
NUMERIC PARAMETERS: /*Null response*/
NUMERIC IDENTIFIERS:cpiocycles

Sauer, MacNair, Kurose 15

RESQ2 translator

Because the RESQ1 "dialogue files" had become the more important mode

of usage of RESQ1, and because the severe limitations of the language and

translator for the dialogue files were the major motivation for RESQ2, the

focus of the language and translator design was the dialogue file. It was

clear that a compiler-like program was necessary to support the new

language features.

A key design decision was that the compiler-like translator use

recursive descent parsing. Recursive descent has two important

advantages for our translator over more recent techniques based on parser

generators. (1) Recursive descent is much more flexible in terms of error

recovery. (2) More importantly, due of the flexibility of recursive

descent, it has been possible for the same translator to operate

effectively as an interactive prompter. Having the same translator

capable of both "batch" and interactive modes has been remarkably useful

in model construction because (1) in interactive mode, it is possible to

immediately make revisions or corrections to prior dialogue by escaping to

an editor to revise a transcript of the dialogue so far (a dialogue file)

and to then continue in prompting mode after the (incomplete, edited)

dialogue file has been reparsed and (2) revision of an existing model is

possible in mixed mode by deleting portions of the existing dialogue file

and using interactive mode for specification of revisions or additions.

This mixed mode capability provides the "user friendliness" of

interactive mode without losing the flexibility and efficiency of "batch"

Sauer, MacNair, Kurose 16

mode for development of significant models.

RESQ2 expansion processor

The output of the translator is a highly symbolic form, far removed

from the interface expected by the solution components. This is

necessarily the case because of the provision of parameters which are left

undefined until the model is to be solved. These run-time parameters

allow a model to be solved parametrically without retranslation. A

hierarchical network definition, with invocations of submodels, cannot be

translated into a monolithic network definition until these parameters

are specified. Thus a major portion of the RESQ2 implementation has been

the "expansion processor," which produces a network definition at the

solution component interface from the symbolic translator output. (The

term "expansion" is consistent with the analogy between submodels and

macros.)

RESQ2 solution methods

An implementation of Mean Value Analysis is becoming the dominant

numerical solution component of RESQ2. (Mean Value Analysis and the

Convolution algorithm of QNET4 both handle the full class of product form

networks 12 . Each has advantages over the other.) A major aspect of the

evolution of APLOMB has been a gradual redesign of the data structures and

rewriting of the code to get away from APLOMB's Fortran heritage. These

efforts were critically necessary to obtain the efficiency (both storage

Sauer, MacNair, Kurose 17

and run time) and flexibility needed for RESQ2. Additional extensions to

APLOMB were needed to support RESQ2 language features. These extensions

include simulation time expression/symbol evaluation and submodel

support. Though submodels are nominally hidden from the solution

components, submodels must be considered in simulation error messages,

trace output and evaluation of expressions which involve submodels.

Other extensions to APLOMB are relatively independent of the RESQ2

language. A major area of improvement in APLOMB is in its output analysis

capabilities. Confidence intervals obtained by the classical method of

independent replications have been added as an alternative to the

regenerative method for models where the regenerative method is not

practical or appropriate. The regenerative method implementation has

been made more rigorous in its determination of regeneration states. The

sequential stopping rule has been refined and made more flexible.

A major new feature of APLOMB is an interactive simulation capability.

It is now convenient to continue a simulation run after examining results,

either because one wants to see results at intermediate points in the run

or because one is not satisfied with results at the planned run length or

stopping condition.

RESQ2 PLANS

A number of RESQ2 features remain to be implemented. Some of these are

parts of the original design, while others have been added to our plans

Sauer, MacNair, Kurose 18

more recently. The most important of these features is the "substitution"

(hierarchical/hybrid solution) form of invocation of submodels.

Substitutions have the potential of greatly reducing the computational

expense of model solution, especially where simulation is involved. A

hierarchical solution facility such as this is the best hope for making

practical the simulation of very large systems. Since there has been very

19,20,21 little work in this area outside of a few feasibility studies 	, the

substitution design will continue to evolve after we gain experience with

it.

Another new feature will be the addition of the spectral method for

confidence intervals 22 . The spectral method provides another practical

alternative to the regenerative method for situations where the classical

method of independent replications is inappropriate.

Finally, some of our most ambitious plans are in terms of graphics

capabilities for RESQ. For some time we have had the ability to produce

high quality diagrams of extended queueing networks on graphics devices.

We have recently added the ability to produce diagrams using the output of

the RESQ2 translator as input to the graphics programs. This is of great

benefit in documenting and debugging models. We have also begun work on

constructing models directly by drawing a diagram with a light pen and

graphics display. Eventually, this may be sufficient to dramatically

reduce the need for typed input. In order to achieve maximum usability,

all of the graphics facilities are intended to be usable on low resolution

devices, even though a higher resolution device is needed to obtain

Sauer, MacNair, Kurose 19

aesthetically pleasing results.

ACKNOWLEDGEMENT

We are grateful to E. Jaffe, P. Rosenfeld, M. Reiser, S. Saiza and

S. Tucci for their contributions to RESQ.

REFERENCES

1. C.H. Sauer and K.M. Chandy, Computer Systems Performance

Modeling, Prentice-Hall, Englewood Cliffs, NJ (1981).

2. C.H. Sauer, N. Reiser and E.A. MacNair, "RESQ - A Package for

Solution of Generalized Queueing Networks," Proceedings 1977

National Computer Conference.

3. M. Reiser and C.H. Sauer, "Queueing Network Models: Methods of

Solution and their Program Implementation," in K.M. Chandy and

R.T. Yeh, editors, Current Trends in Programming Methodology,

Volume III: Software Modeling and Its Impact on Performance,

Prentice-Hall (1978) pp. 115-167.

4. C.H. Sauer and E.A. MacNair, "Queueing Network Software for

Systems Modeling," Software-Practice and Experience 9, 5 (May

1979).

5. C.H. Sauer, E.A. MacNair and S. Saiza, "A Language for Extended

Queueing Networks," IBM J. of Research and Development 24, 6

(November 1980).

6. D. Merle, D. Potier and M. Veran, "A Tool for Computer System

Sauer, MacNair, Kurose 20

Performance Analysis," Performance of Computer Installations,

Ferrari, D. (editor), North-Holland (1978).

7. K.M. Chandy, J. Misra, R. Berry and D. Neuse, "Simulation Tools in

Performance Evaluation," CPEUG 81 , (Computer Performance

Evaluation Users Group), San Antonio, Texas (November 1981).

8. J.R. Jackson, "Jobshop4ike Queueing Systems," Management Science

10,pp. 131-142 (1963).

9. J.P. Buzen, Queueing Network Models of Multiprogramming, Ph.D.

Thesis, Harvard University, Cambridge, Mass. (1971). Garland

Publishing, New York (1980).

10. H. Reiser and S.S. Lavenberg, "Mean Value Analysis of Closed

Multichain Queueing Networks," IBM Research Report RC-7023,

Yorktown Heights, NY (March 1978). JACM 27, 2 (April 1980) pp.

313-322.

11. K.M. Chandy and C.H. Sauer, "Computational Algorithms for Product

Form Queueing Networks," RC-7950, IBM Research, Yorktown Heights,

N.Y. (November 1979). CACM 23, 10 (October 1980).

12. C.H. Sauer, "Computational Algorithms for State-Dependent

Queueing Networks," IBM Research Report RC-8698 (February 1981).

13. K.M. Chandy and C.H. Sauer, "Approximate Methods for Analysis of

Queueing Network Models of Computer Systems," Computing Surveys

10, 3 pp. 263-280 (September 1978).

14. C.H. Sauer and K.M. Chandy, "Approximate Solution of Queueing

Models of Computer Systems," RC-7785, IBM Research, Yorktown

Heights, N.Y. (July 1979). Computer 13, 4 (April 1980) pp. 25-32.

15. D.L. Iglehart, "The Regenerative Method for Simulation Analysis,"

Sauer, MacNair, Kurose 21

in K.M. Chandy and R.T. Yeh, editors, Current Trends in

Programming Methodology, Volume III: Software Modeling and Its

Impact-.6n Performance. Prentice-Hall (1978).

16. C.H. Sauer and E.A. MacNair, "Computer/ Communication System

Modeling with Extended Queueing Networks," RC-6654, IBM Research,

Yorktown Heights, N.Y. (July 1977).

17. C.H. Sauer, "Passive Queue Models of Computer Networks," Computer

Networking Symp., Gaithersburg, Maryland (December 1978).

18. S.S. Lavenberg and C.H. Sauer, "Sequential Stopping Rules for the

Regenerative Method of Simulation," IBM J. of Research and

Development 21, (Nov. 1977) pp. 545-558.

19. C.H. Saner, L.S. Woo and W. Chang, "Hybrid Analysis/Simulation:

Distributed Networks," RC-6341, IBM Research, Yorktown Heights,

N.Y. (June 1976).

20. H.D. Schwetman, "Hybrid Simulation Models of Computer Systems,"

CACM 21, 9 (Sept. 1978) pp. 718-723.

21. W.W. Chiu and W-M. Chow, "A Performance Model of MVS," IBM Systems

Journal 17, 4 (1978) pp. 444-462.

22. P. Heidelberger and P.D. Welch, "A Spectral Method for Confidence

Interval Generation and Run Length Control in Simulation," IBM

Research Report RC-8264, Yorktown Heights, New York (1980). Also,

CACM 24, 4 (April 1981).

