ey

'i).\‘

RA 139 (#41127) 4/12/82

‘Computer Science 184 pages

THE RESEARCH QUEUEING PACKAGE VERSION 2

s .CMS USERS GUIDE

Charles H. Sailer, Edward A. MacNair and J ames F. Kurose

IBM Thomas J. Watson Research Center

Yorktown Heights, NerYork 10598

‘, Abstract Queuerng networks are 1mportant as performance models of systems where
performance .is principally affected by contention for resources. Such systems include

computer systems, communication networks, “office systems and manufacturlng lines. In-
order to effectively use queueing networks as performance models, appropriate software

is ‘necessary for definition of the networks to be solved, for solution of the networks (by L
“ - simulation and/or numerrcal methods) and for examination of the performance measures
‘ obtalned ~

The -Research Queueing Package, Version 2 v(RES'Q) is a system for constructing and_

o ‘Solvrng extended queueing network models. We refer to the class of RESQ networks-as

"extended" because of characteristics which allow effective representation of system

‘detail. RESQ incorporates a high level language to concisely describe the structure -of
_the model and to specify constraints on-the solution. - A main feature of the language is
the capability to describe models in a hierarchical fashion, allowrng an analyst to define

submodels to be used analogously to use of macros in programming languages: RESQ

" also provides a variety of methods for estimating accuracy of simulation results and
--»determlnlng s1mu1atlon run lengths :

k Acknowledgement: We ,are‘ grateful to P. Heidélberger, E. Jaffe, 'P.- Rosenfeld,

M. Reiser;-S. Salza, S. Tucci and_P.rD. Welch for their contributions to RESQ.

This document is the primary documentation for RESQ usage under CMS. -
A corresponding document exists for TSO usage. Corrections, comments,
" criticisms and suggestions for improvement of these documents and/or

e RESQ will be- welcomed.

E3

&

i

e -VPREFVACE‘

Queueing networks are ‘useful as performance models of systems where performance is

pr1nc1pally affected by contention for resources. . Such . systems include ‘computer systems,

communication networks, office systems and. manufacturing lines. - The Research Queuerng’f :
Package Version 2 (hereafter referred to as RESQ) is a system for construct1ng queueing

‘network models and solving queueing network models Simulation methods,. including state of .

‘the art statistical analysis, are proyided for the full class of queueing networks allowed in the

"RESQ ‘Tanguage. Numerical methods are provided for a subset ‘of the- queuemg networks

allowed by the RESQ language

Thrs document descrrbes usage of RESQ Wlth the CMS component of VM/370 and:“ '
VM/ SP. - A similar document describes usage of RESQ with the TSO component’ of OS/VS2

~ 'MVS. Though this document is intended ‘to be self contarned as far as RESQ usage is
_concerned, for full effectiveness the user should be fam111ar with - G

' IBM Vzrtual Machzne/System Product Introductzon, GC19 6200

IBM Vzrtual Machzne/System Product CP Command Reference for General Users,
SC19- 6211

IBM Vtrtual Machzne/System Product CMS Command and Macro Reference, SCl9- ;:‘
? 6209 ' ,

Lo IBM Vzrtual Machzne/System Product System Product Edztor Command and Macro o
Reference, SC24 5221. s .

or correspondrng publrcatrons Gener'aldiscussion of .performance modeling is‘given ’in o

: C H Sauer and K. M Chandy, Computer ‘Systems Performance Modelzng, Prentrce- G
Hall Englewood Chffs NJ (1981) :

. More mtroductory mater1al on RESQ examples of networks constructed and solved us1ng7 T

RESQ and d1scussron of other related publications are given in

C. H Sauer E.A. MacNalr and J.F. Kurose, "The Research Queueing 'Package ‘ :
‘Vérsion 2: Introduction and Examples, " IBM. Research Report RA 138; Yorktown e
Helghts ‘New York (Aprrl 1982). L ‘ v

This document has the followmg sectrons:

"Sectron 1: Introductron 1ntroduces many of the features and capabrlrtres of RESQ and" i

: grves an example of RESQ usage.

: "Sectron 2: The SETUP Command d1scusses ‘the command whrch 1nvokes the RESQ g

:prompter/translatOr The RESQ prompter/translator can be. used in erther mteractrve or S
'batch ("dralogue file") mode or mixed 1nteract1ve/batch mode. S

o Sectrons 3 through 10 discuss RESQ queuelng network elements and correspondlngv
portrons of the d1alogue language of the RESQ prompter/ translator :

"Sectron 3 Patameters, Ident1f1ers Variables and Arrays d1scusses the dralogue language‘ ‘
for declarat1ons of these ‘elements. . '

April 3, 1982

e LT | "PREFACE:‘”

"Sec’tionf 4-fActive Queues" d1scusses queue1ng for resources with timed usage

"Sectlon 5: Pass1ve Queues dlscusses queuelng for resources w1th usage governed by e
explicit-mechanisms for acquiring and freeing units of a resource. Passive queues are some of - -

5 the most flexible and useful e1ements in the RESQ language
"Sectlon 6: Queue Types discusses a macro facility for queue def1n1tlon

"Section 7: Set Nodes" d1scusses the RESQ elements used to perform ass1gnment
statements in the programmlng language sense. / : R

_ "Sectlon 8: Spht Flssmn, Fus1on and Dummy Nodes" descrlbes nodes. used by. jobs for
- generat1ng other jobs, for synchronlzlng activities with these]obs and for assoc1ated routmg
definition. .

"Section: 9: Routing Chains'. discusses the definition of routing between network
- elements, 1nc1ud1ng sources and s1nks for jobs and routing decision mechanlsms

"Section 10: .Submodels" d1scusses facilities for macro definition of subnetworks and the
1nvocatlon of these subnetworks..

"Section 11: Numerical Solution" discusses the restrictions for numerical solution.

"Section 12: Simulation D1alogues discusses additional - language conventions for
'gather1ng of distributions, for confidence interval estimation, for run length: control and’ for
2 s1mu1atlon trace. :

"Section 13: The EVAL and EVALT Commands" discusses the two CMS commands
avallable for network solution. :

"Sectlon 14: PL/I Embeddlng” discusses access to RESQ from PL/I procedures as'an
alternatlve to use of the EVAL and EVALT commands. :

"Appendlx 1_: Addltlonal‘Examples illustrates other aspects of RESQ usage.

"Appendix 2: Names and Keywords" describes the requlrements for names of RESQ -
elements and discusses reserved keywords and names with special meanings. , :

" Appendix 3: Expressions" describes the rules for expressions used to represent numbers
and d1str1butlons 1nc1ud1ng use of user-defined PL/I functions. ’

"Appendlx 4: BNF Grammar" gives a formal definition of the syntax of the d1alogue .
language :

"Appendlx 5: SETUP Error Messages discusses the error messages produced by the - .
: prompter/translator ' I L :

"Appendix 6: EVAL Error Messages discusses the error messages produced during
network solutlon : ‘ ' BRI .

"Appendix 7: Event Handling" discusses simulation event handling wit;hvemphasis‘ on
handling of s1multaneous events. ' : : ‘

"Append1x 8: Installation" discusses 1nstallatlon of RESQ files.

* April 3, 1982

- CONTENTS

Tie DINTFRIOIDETCTEION ' st e v or a0 i s ou ol it s Sarinbe e = anm e PIATLAL A LA IR, B0 s 6 30 1
Lil, RESO THADTAME .-« 5.6 55 s 5 5905 s o o0 i 50 Somarins 5 8 ' 50 G150 0 00 8 Rt Bios o ks o Bt e 1
12 IRESOEICHENTE o 5 0% o 0 e e sl o e rarbi e Tbn S, IO S0 Lt 8 Cn AN et i3S 4
1. RESO USer INtEREACES:: « oo« sl avatare @ sobvmsstnbs ol b e ybal ol 3 I s i P 4
2. THESETIPCOMMANDE: i« 2l crpts wio afmimre' s dharaste e o e s o bheblsm 8 L X Sk st e 21
2.1, SETUP Command WithiCMS.. e 's = s et e e sea abam e s o s o5 5 55 A e e Bt & 21
2.2; SETUP Command Promplifis MOAE. « v wsis w s+ ¢ wsmas s wwe o0soraiii e o ol h i bt 7 22
2.3. SETUP Commiand Dialogue File MO@e. <« wv s s ssimmn s s 0 0o 6 5 o abaims ars o s e oo 24
2. SETUP ComMandrBiles . & o a it s sietnlo mre s ol s e s smes 5 6 o e s s e Sl SE s 25
3, PARAMETERS, IDENTIFIERS, VARIABLES AND ARRAYS 21
31 PAraineEe R o il s it s e s dio 5t 1WA ol el i temaas et el (5 et b s s o el T o TR B 27
B TACTEITIOhE " 2 5 o b st lass, et v 5 ot bt h o g oot v ey e 1t il e R0, e AN 28
3.3 ‘Glohal Vatiables o o« s s v 0w sl somst w60 6 o 5 6l st 5 el S uthr ot i eess 420 S 29
3:4. Chain and Node ATTAYS « + o o cie s 30 5w s s ans e e o e SRk miars 8w w4 e o Slae wos 30
35, Extentsuof Job and Chain VETIADIEE f 5t < v v o e s 5w 5o ot 52 & e 0055k mret 18 0o ool o0 v 30
4. ACTIVE QUEUES. s e et b e e R B e e el e e e e L e L 32
4l TH'BCES QUOHE TYDE s v s m 5 55 5 0 #0675 18 b ot o 0ot i 2msmssy o e s e 28 (arten 1 st Yo Sk b 32
G:2; TRE'ES 'QUEUE TEYPC v oin b v v meis oo oo 6 watal o o 18] w0057 &1 08 et l 6 1 1 e i 61 o) Ot e & o 33
423, TRe'PS QUEHE TYPE v 5 5 5 v v v ol & 8 0t st shisbo ahosiel @ st 5 551 08 9 475 o5 (00 whlnd bl tefe' 1o 33
4.4, THe'ILCES GUetie YD « o x s o ol w w ol ot vl w5 s 00 55 5 50w sst) Sia) AP ert, s 34
4.5 THe'PRIT'Y: QUGS TYHDE 4w vowms o coms of .68 asowesd st 6o o505 ol w5 Al bl et o 34
4.6, The' PRIFYPR IQUCHE TYDE: &« wm ol 6 v sl & 50 sh i o o vsi s 91 6 e o a6 ot g Sol el g et o S 35
4.7, Thet ACTIVE QUEHEI TUDE o v o w @ alalaf i i b vtal 5 30 3 oo s 55058 s 50 ot 5 Fo i Tt b i) s Bk 36
5. PASSIVE QUENTESL 5 o 3 o e ohv a0 1w o o180 500 6 st 50 3 o) dl i w0 Syt Wb % o kol o 39
Sl ANOCATE NOABEE 6003 = 5 075 0 2 %25 1 8 505 0 239 8 5 o) f et sdboalt sy e for o fic s e B i B s 40
S AN Allocate NOUES! = o x « o w6 @ 4 5 5086 @i o 5 o wrs s GRS St o o 5o e of s & 41
53 ORATGEAte NOUBS: 4+ ' i o 405 o6 5 b ar 5 5 ie o 5 31 3 570 0o 5 [157 o Dutat s orm i s e i 42
5., TEANSIETNOUCS o o + w25 & @ 5 5 1608 2ot 30 0 60 0o o 559 omeaosh 5 i o sy 3 s 9 0) bl (e e 42
5.5 ReEleasE NOGES : & v v ¢ 2o 58 wb 9 6w i w0 o i 5 i 6 %) 0 Sl B 2 e A TR B et 43
5.6: Destroy NOAEE: « v s 55 w0 5 45 5 Bay 45855 5w o 85 e b 2l B0 ot rpist S o et g B o0 43
Sl TR0 NOUBS: & & v 8 55 675 o 3 € i D3 0 5 80 90 a0 B o 05 08 o0 7 o PR a0 0 05 e s SN T S 44
6 QEEUE, TYPES S & ot 5500 o o n o8t 5 e nlies et i 8160 G0 o o s el LR L o B8 L S, 45
6.1 Definition of QUeUe TIPS 5 smw os oo om 3 5 ms s e v m e 5 ok o ahiere s pes & e 45
6.2 Thvoeation of QUENe TYPESR « s cam v s ¢ wam g 5 b om0 um Sl i sl se s il ol @ s 46
T SEHNODES] 20200 3 0 oo oo die s o o o g s e w i @ 0 5 st el s 0 e o e L i ey B 48
8. SPLIT, FISSION, FUSION AND DUMMY NODES . . : . om0 csomssassnsaseds 49
Bl SPlit WOAES ¢s55 o5 590/ pa s dmses s mol s ?sdods s sane s o5 o dso e s o e 49
8.2 Fission and Fusion NOHESs . 7 : cawa s s @i ¢ 6 disuame ¥ 5 @ s o o 5 5 e e e oo s 50
83 DUmMmYy NOdes s v 2 siam a6 2 55 mw s 8 5150w 50 5 5o & 5 o o oeimt et 3 ot ke o8 o e 8 8 als 52
9. ROVEING CHATNS S 8 v cmm s 5 b ee b som o e -5 a b ot 3w e e oI e) 53
9.1 dividual Chaln DEfiHIIONS ¢ 2 40 ¢ o s &l b v b & ds 5 6 & 5 0 5 o Gl b w5 ar s o e Dor e miar o 53
.14 Closed Ehain DERTEGNE & & aws o5 3 Do st 5 B s s 5 ks 1505, wst WIS e I e ey, 5 54
9.1.2. Open Chain Definitions O T PRt JeC A e P S 54
9.1.3. Exteinal Chaitl DefINItIONS - « s o v v adim e v oomsowsl 5o o ok 8 s b s e s Mg s o o e 55
9. 1.4 ROTEHOEISIIIIONN « o ¢ v oo s o o wdan & kb R 2 o 5w 0w 5)0 w0 el s o 55
9.2 Chait Array IDEHMITIGRE . 5 ¢ 275w n 5 s 2wl 5 3 e a0 e ks 5 50 eom S o dbAN s & 4 58
10, SEUBMOBDELS. 26 s« 5 < ne 1 o wm b 5 608 s dub s 8 0w oot Rl il dhimen bl 60
10,1, Submodel Declatations . o s «mwv 5 ©omw s s b msm s 5w m e & 5 5w e o 5o a5 ke 60
10,2, ‘Subtode] TNINOCALIONS v o « ¢ % sim o 8 & 5w s s % a6 moe 5 3 o6l w o 3 8w s 55 g Rlbie & s e b 62
10:3. Node PAFAMICIEIS ¢ cosm v v 5 somm s s 5 5w @ w o & m ol & 5§ o m sim & 5 8 & s 5875 & o 4% e 375 63

April 3, 1982

:10.4. Submodel Nesting Structures. . -o iivn s e e i o065

11.. NUMERICAL SOLUTION e e e STE S A 68
12. SIMULATION DIALOGUES.oviui . e iiad i, 69
~'12.1. Distribution Gathering e N e e e e . 69
12.2. Confidence Intervals and Run Length e i B 71
12.2.1. Simulation without Confidence Intervals Pt U 12
©12.2:2. Independent Replicationso .v v i e e o e e e T4
12.2.3.. The Regenerative Method. e e e e e i o150
12.2.4. The Spectral Method i, PR Ve e 79
12.3. ‘Random Number Generation. e e v 820
124, SIMUlation TTACE . .\ v v v vt e e st e et e e e e e e L83
13. THE. EVAL AND EVALT COMMANDS AT it P 93
131 EVAL Command v e i e e e 93
13.1.1; SOMLION SWMMATIES .+ o v v v v ettt e et e e e e 94
13.1.2. Performance Measures v v i e e e 97
13.1.3.:Run Continuation and Multiple Solutions. e e PP 100
13.2. EVALT Command e e e e e 101
13.3. EVAL Command Files R R D, e e 101
14. PL/1 EMBEDDING i e e e e e e 104
14.1. Basic Procedures and CMS Commands. e e e L1040
14.1.1. The PL/I Program. e e T L1 T
14.1.2. PL/I Compilation00, e e e Lo 1060
14.1.3. CMS Commands for Execution.o0i ol . Ll e 1060
14.2. Plotting Procedures., ... e B T P o 1070
Al. ADDITIONAL EXAMPLES S B PR 11
Al.1. Numerically Solved Model e e UL
A1.2. I/0 Subsystem Modelt ui i e feai. 113
A1.3. Communication Protocol Model e v 1190
A2, NAMES AND KEYWORDS .. .o\t it e i i [P 12900
A3, EXPRESSIONS B, I T SR e 132000
A3.1. Distribution Functions AP B P S e 132
A3.1.1. BE (Branching Erlang) Distribution oo 0. 132
A3.1.2, UNIFORM Distribution. it i e et et e v o 134
A3.1.3. STANDARD Distributionc.uuteiineiireinnan.. Ll ean 135
A3.1.4: DISCRETE Distribution AT e L 135
A3.1.5. Indirect Definition of Distributions. e L e e Lol 1360
A3.2. The USER Function. v.vvivruuns e PR v 137
A3.3. Status Functions S P R T SN) v 138
A3.4.:The PRINT Function oot i e s i e o i 139+ =
A3.5. Expression Evaluation i, . ey vt i n vt i e e e e e w1397
A3.6. Predicates (Boolean EXPressions). iv i v in s e i SRSTT P N -2-140
A4, BNF Grammar. oivuu e v, S S o142
A5. SETUP ERROR MESSAGES & e e e e 150
A6. EVAL ERRORMESSAGES. i o e e e S 0167
A6.1. Expansion Processor Messages N e e e 16T
A6.2.- Numerical Solution Messages S WD 169
A6.3. Simulation Messagesttt e e e e, PR, e 1700
A7, EVENTHANDLING...........:........ e e e e s oo 0176
- AT7.1, Simultaneous Job Movement. i i e e A e o176
A7.2. Simulation Bvents e e e e e s 171
A8, INSTALLATION. v e e T A S 178

IndeX « oo v it i s e e e e e e e e ceeew o 181

~ April 3, 1982

LIST OF FIGURES

- Fxgure 1.1 - Queuemg Network Model e e Ce I |
Figure 1.2 - Active QUeUes.\ u..vveuen .. e e s 2
Figure 1.3 - Passive QUEUE. .. .o\ v vt e ie i oot i s s e S i)
Figure 1.4 - Symbols for Other Nodes. GO e SN S .2
Figure 1.5 - Terminals and Submodel0... L RPN L2
Figure 1.6 - Computer System Submodel. S A e 2
Figure 2.1 - Files used with SETUP L i ey .26 B
Figure 4.1 - Active Queues. ivn e e e e e s el 320
Figure 5.1 ~Passive Queue.cvuvniin.. PR, i e e aous 390
Figure 8.1 - Split, Fission, Fusion and Dummy Nodes. e e e e e e 49
Figure 8.2 - Nesting of Fission and Fusion Nodes B ST e 51
Figure 9.1 - Source and Sinkot .. e e PR X |
Figure 10.1 - Node Parameter Example. e e b i e e B3
Figure 13.1 - Filesused with BVALttt et Do 103
Figure 14.1 - Example.Graph of Model Results oo oo .. . 107
Figure Al.1 - Open Chain Cyclic Quete Model. PR SINEERPRE § § R

. Figure A1.2 - 1/0 Subsystem Model. e e e 14
" Figure Al1.3 - Communication Protocol Model. W e W e Laveee 2119
Figure A3:1 - BE (Branching Erlang) Distribution. Loy 133
. Figure A3.2 - UNIFORM Density Function.:. S L e 1340
- Figure A7.1 - Passive Queue "Race" Resolution AR AN o116

' April 3, 1982

A

1. INTRODUCTION"

In many systems, e.g., computing systems, communication networks, automated offices =~
and ‘manufacturing lines, contention for resources. (queueing) is-a dominant factor:in"system =
performance. The interaction between resources and other system elements is ‘often $0
complex that intuition is insufficient for estimating system performance. - Models are used to

* estimate the performance of systems when measurement of system performance is 1rnposs1ble. v

(e.g., because the system is not yet operational) or impractical (e.g., because of the human and_ L
other resources required). Models based on queueing networks are espec1a11y useful because '
such models focus attentlon on contentlon for resources. i

The bas1c problems 1n us1ng queuemg network rnodels are to (1) determlne the resources -

and their characteristics which will most affect performance (2) formulate a model represent—

_ing these resources and characteristics and (3) determine (by simulation or numerical me- " ;

" thods) values for performance measures (e.g, mean response time) in the model. The first two.
‘of these problems are highly system specific. Thus we will not address these problems
~directly. The Research Queueing Package (RESQ) is a software tool for building queueing
‘network models. We emphasize "tool" because RESQ is not a model itself but rather'a
facility for constructing and developing a model. Asa tool, it can be of great value 1n dea11ng
w1th the second and th1rd basic problems cited above. :

In the followmg sections (1. 1 - 13) we present a br1ef overview of RESQ, and as an -
' example use RESQ to develop a queueing network model of an interactive computing system. -
“This example is intended to ‘illustrate many -of the facilities -of RESQ. - Three additional =
examples ate given in Appendix 1: (1) a very.simple model solved numerically, (2) a- model - .
which further develops the example in Section 1.3, and (3) 'a model of a simple comrnumca-
tion network used for access to an interactive computer system :

1. 1 RESQ Dnagrams

Effectlve use of RESQ is based on constructlng diagrams representrng queueing network ‘
'models _Figure 1.1-illustrates a simple queueing network model of an interactive computer -
system. (ThlS network is srrnllar to networks used as conlputer system. models smce the rmd 1
sixties.) - ,

MEMORY

TERMINALS T
oY SETCMDTYPE o

: DECRCYCI__E FREEMEMORY

. ____) i
GETMEMORY |

Figure 1.1 - Queueing Network Model

" April 3, 1982

R _ ‘ o ~ INTRODUCTION / SEC. 1

The symbols in Figure 1.1 represent specific elements in the RESQ diagram language.
Figures 1.2 - 1.4 show the symbols for all such elements. Descriptions of the RESQ symbols
will be given in later sections which discuss the correSponding RESQ ¢lements. The model
considerscont‘ention for-three kinds -of :system: resources, main memory, a CPU.and.disk
“memory, and. represents the terminals as well. - Users of the system are represented hy jobs-in
“the queueing network. “Part of a user’s time is spent thinking at the terminal and keying in

commands; this part of the user’s time is represented by service times of a]ob (representing;" :

the user) at the terminals queue. The model assumes there are as many ‘terminals as users, 'so
- there 'is’ no walting for ‘a “terminal; we will still réfer to the model representation of the
' ,terminals as an "infinite server queue." After thinking and keying in a command the user"
spends the remammg part of his or her time (for this 1nteractlon) wa1t1ng for a response The
job representmg “the user waits to. receive main memory. Once it receives main memory, this
job alternates between computation and I/O activities. until the command processing is. ..
1n1shed main memory is released. and the user receives the response The user then.: beglns '
“another thinking/ keymg time '

In using RESQ 'to model systems, the most difficult steps are.-usually those of describing
' system resources and activities as we ‘have just-done and developing a corresponding diagram, -
e.g., Figure 1.1. Also, one must obtain data for amounts of resources required, times Spent
holding resources, frequency of resource requests, etc. Having the description diagram and
‘data construction and solution of the ‘model using RESQ: is an efficient and straightforward.
process :

CLASSES

o 7 ll

'SINGLE MULTIPLE INFINITE
SERVER ~ ~ SERVER ' SERVER

Figure 1.2 -’Active Queues
Single, Multiple, Infinite Server

“As in programming, in system modeling it is helpful to develop hierarchical representa-

tions of models in order to clarify models, permit the refinement of models and ease the

maintenance of models. RESQ provides a macro-like facility for developing 'submodels," i.e.,

* parameterized templates of subnetworks. In the example of Figure 1.1 it would be natural to o

‘have a submodel consisting of the queues of the computer system (excluding the terminals) Tt
would also be natural to represent the disk subsystems as submodels in case a more detailed '
representation of the disk subsystems is to be developed later. -Figure 1.5 dep1cts the top level.
of such a hierarchy and Figure 1.6 dep1cts the middle and bottom levels.

April 3, 1982

" SEC. 1.1 / RESQ Diagrams

POOL OF TOKENS

-
-
-
: - -
PP -
-

-
-
- -
,,,,,,
—————
- -

- -
,,,,,,,
- -
- -
.....
‘‘‘‘‘‘
S e
-

-

ALLOCATE ~ AND OR
~ ALLOCATE ALLOGATE

)
7

TRANSFER CREATE JOB FLOW DESTROY
G e TOKEN FLOW : ‘

" Figure 1.3 - Passive Queue

SINK j[>—> FUSION

> seT o<]S seuT

Figtlre 1.4 ‘-'Sym’bols fbr_ Other Nodes
- TERMINALS
Ol - e i Y
of

Figure 1.5 - Terminals and Submodel

April3,1982

4 e | o - INTRODUCTION / SEC. 1

MEMORY

~ SETCMDTYPE

o 'DECRCYCLE | FREEMEMORY
> | &ﬁﬁ’ | %
(INPUT) GETMEMORY ’

~(outPuT)

Figure 1.6 - Computer System Submodel ,

1.2 RESQ Elements

 In this section we briefly describe some of the elements of RESQ queueing networks that
.apply to the above example. We refer to the networks of RESQ as "extended' because of
characteristics absent from classical queueing models. Classical queues are "active" “queues in
RESQ terminology.” A job’s activity is typically focused on the resources of active queues A
job typlcally has no interaction with other model elements while at an active queue: : o

Perhaps the most. important of the extensions introdueed in extended networks is the
"passive’ queue, which allows convenient representation of s1multaneous resource possessron

~ A job typically acquires units of a passive queue resource and holds on to them whlle v1srt1ng
other queues (including other passive queunes) and model elements. The job exphcrtly releases
the units of resource when it no longer needs them. In our computer system example, a job
must hold memory while using the processor or I/O devices; a passive queue may be used to
" represent this holding of memory. ~Additional passive queues could be added to the model to .
- represent contention for channels, device controllers, etc.

As well as representmg simultaneous resource possessron passive queues often allowf
’ simple representations of complex mechanisms. For example, in a system where a channel is
shared"among position sensing I/0O devices and the channel is"not held during posmonlng,
contention for the channel may cause jobs to wait for extra revolutions after positioning
before the channel is acquired and data transfer takes place. This situation can be modeled by
" use of a passive queue representing the channel and a status function testing availva'bility of the
channel, as illustrated in Appendix 1. Communication network protocols and similar mecha-

nisms are often conveniently modeled by passive queues, as also illustrated in ‘Appendix 1. ‘

A third use of passive queues is-in measuring r'espo.nse times in subnetworks. The -
"queueing time" (response time) for a passive queue is defined as the time between a job’s
request for units of the passive 'queue resource and that job’s fre’eing‘of the units of resource. :
‘Thus in our example the queueing time for the passive queue corresponds to the response txme,
seen by the terminal users.

April 3, 1982

SEC. 1.3 / "R’ESQ User Interfaces R . s
1.3. RESQ User Interfaces .

The: RESQ" user 1nterfaces have been deslgned for effectlve use: by both novice and

advanced users. The user interfaces are based on interactive dialogues which serve to educate - -

hew users workmg with small models. The interactive dialogues provide - optlonal tutorials to
clarify prompts. Transcripts of interactive dialogue can be easily used 10 revise. and: develop
models. There are two basic sets of dialogue, a model definition d1alogue and a model
solution d1alogue '

~The SETUP. command invokes the RESQ prompter/translator for definition:or revisiOn'of . :
-~a model. The prompter automatically provides for immediate correction of syntactic errors.” If -
~ aRESQ user realizes a semantic error was made in some previous portion of the dialogue, he = .
or she may temporarily suspend the dialogue, correct the error and then resume the d1alogue at
“the point of suspension. A transcript (a "dialogue file") of a model definition dialogue is kept
“for the user. The user may edit ‘this transcript and. then have it translated again, with or ‘
without additional interactive d1alogue The EVAL command is used to solve (e g
s1mulate) a model : »

‘ ‘We will now give an example of a possible SETUP dialogue for the model represented by .

Figures 1.5 and 1.6.- As we present the dialogue we will make arbitrary assumptions about

system characteristics previously left unspecified. ' The example is presented as if a.typewriter- -

" type terminal is used, to simplify formatting of this document. However, RESQ is insensitive:
to the type of terminal used and is typically used with a display terminal. . ‘

In our examples upper case characters will correspond to prompts from RESQ compo- P

nents and lower case will generally be used for replies from:the user. Prompts are alwaysr R

terminated by a colon (":"). RESQ generates some additional heading lines for sections of

d1alogue these heading hnes do not require replies from the user. . RESQ is insensitive to"
upper/lower case, but preserves case in listing and transcript files.’ S ST

The following example will be interspersed with discussion-explaining the portiorrs“,of §
dialogue. A contiguous transcript follows the example dialogue. Assuming we are in the CMS -
environment with access to the mini~disk containing the RESQ files and with sufficient virtual”

‘storage, we issue the SETUP command, are prompted for a model name and, after asking fora. =

tutorial with the special reply "how", give the name "csm' for "computer system model."

. .setup
" MODEL:how :
 MODEL NAME MUST START WITH A LETTER,

. CONSIST. OF ONLY LETTERS. AND DIGITS

'AND 'HAVE AT MOST EIGHT CHARACTERS
_MODEL:csm : : . : . o S N
RESQ2. Translator v2.04 (01/19/82) - Time: 13:56:12 Date: 01/29/82
MODEL IS CSM. :

- Except for model names, which are constrained to fewer. characters for compatibility with .-
CMS and TSO, names of RESQ elements may be up to ten characters long: Next we 1ndlcate. :
the solution method, either s1mulat10n o numencal ‘

~METHOD:simulation

The flI'St major sectlon of dialogue is used to declare parameters Whlch will be defmed when,

the solution is performed, to declare identifiers representing expressions and to declare the - v

extent of JV, the vector of variables associated with each job. - Solution may be performed

~April 3, 1982

6 P ‘ INTRODUCTION / SEC. 1

: repeatedly for different parameter values without reissuing the SETUP or EVAL commands.
We may list as many parameters as we wish -- SETUP will continue to prompt for parameters
until we give a null reply. If more than one name.is listed on the same line, then the names
are separated by either blanks or commas (","). 'Our examples will usually use blanks rather
than commas. RESQ treats multlple blanks as equivalent to a smgle blank ’

NUMERIC PARAMETERS}thinktime users
NUMERIC PARAMETERS:

Identifiers are provided to-allow naming of expressions (typically, but not necessarily, numeric
constants) for sake of clarity and to allow changes to be made without searching for all-
instances of ‘an expression. SETUP expects a list of identifier names. For each.name, SETUP -
~will prompt for an expression for the value associated with the identifier name. SETUP will

prompt for addmonal lists of names until glven a null reply. PR

»NUMERIC.IDENTIFIERS:userframes,
" USERFRAMES:50
NUMERIC IDENTIFIERS:

In our example .we assume that there are three types of commands which may be issued by
terminal users.. JV(0) will be used to store the command type, and JV(1) will be used. to
count the number of CPU-I/0 cycles for a particular command. We include a comment to.
indicate this usage. Comments may be included in replies using the PL/I convention, i.e., a
comment is a string beginning with "/*", ending with "*/"™ and not otherwise containing
"k/" A comment must end on the same line it begins on. (As discussed in Section 2.2,
multiple physical lines may be.concatenated to give the effect of a single logical line.) ‘

MAX "IV :how : :
CENTER ‘AN ‘ARITHMETIC -EXPRESSION FOR THE EXTENT OF THE JV VECTOR
. MAX Jv:1 /%0: command type, 1: cycle count*/

- The second major section' of dlalogue is for definition of queues. First we may define a

"queue type", a macro definition of a queue dialogue. We indicate here that we choose not to
define a queue type by giving a null reply. We will illustrate defmltlon and mvocatlon of a
user defined queue type later in the d1alogue SR :

QUEUE TYPE:

~ Next we define individual queues. The only queue outs1de of the submodel in the network of -
Figure 1.5 is the terminals queue. "This queue is assumed to have at least as many servers as:
jobs in the network, i.e., it is an "Infinite Server" (IS) queue. We use the predefined IS type,
which indicates an active queue with default characteristics; rather than the general ACTIVE

type. First we are prompted for the queue name, then the queue type. :

QUEUE: terminalsq
TYPE : how : _
VALID- QUEUE TYPES ARE: ACTIVE, FCFS IS, LCFs, PRTY, PRTYPR, PS,
PASSIVE OR A USER DEFINED TYPE

TYPE:is

In addition to its servers, an active queue has one or more waiting lines called "classes."
Routing definitions will use the class names, not the queuve name. The active queues in our .
example each have only oneclass. After prompting for a list of classes, SETUP will prompt
" for the service time distributions associated with the classes. " In the following we give the

April 3, 1982

oy

SEC. 1.3 / RESQ User Interfaces: =~ IR ST

‘name of a numeric parameter which will be mterpreted as the. mean of an exponentlal :

distribution. SETUP will prompt for more classes until a null reply is given. SETUP will then- ‘
prompt for more queue definitions until a null reply is given. .

' CLASS‘LIST’terminals
SERVICE TIMES:thinktime
. CLASS "LIST:
“QUEUE:

The third major 'section of dialogue is for definition of additional nodes not belonging‘to

‘queues. "Nodes" in RESQ are functional elements in the routing, including classes, the

elements shown in Figure 1.3 except for the pool of tokens and all elements shown in Figure ,
1.4. None of these nodes appear outside of the submodel of Figure 1.5, so we give null replies
‘to the prompts for names of these nodes. L

SET NODES:
FISSION NODES
FUSION NODES

Thevfourth major section of dialogue is for definition of submodels. The submodel def_initio'n‘ -
dialogue closely parallels the dialogue for model definition, including subsections correspond-
ing to those sections we have already seen and a routing subsection corresponding to the

‘model . routing section which follows submodel definition and invocation. First we are

prompted for -a name -of the submodel definition. Then we. are’ prompted for parameter and
1dent1f1er definitions. :

SUBMODEL&Césm /*Computer System Submodel*/
NUMERIC PARAMETERS:pageframes
NUMERIC PARAMETERS ;-

Node - parameters provide for reference to nodes outside the - submodel from w1thm the
submodel. We do not need node parameters with this example. :

"NODEfPARAMETERS:'

Routing "chains'" are used to define the routing among nodes of a network. A submodel must
have at ‘least one chain parameter in order to connect the nodes inside of .the subnetwork W1th* L
nodes outside of the subnetwork. :

CHAIN PARAMETERS: interactiv
: CHAIN PARAMETERS:
NUMERIC IDENTIFIERS:cmdtype cyclecount . :
" CMDTYPE:0 /*JV(0) to be used to. indicate command type*/
'CYCLECOUNT:1-/*JV(1) to be used to count CPU—I/O'cycleS*/“,

Numeric parameters and identifiers may be defined as one or two-dimensional arrays. Unlike
the special case of JV, which allows zero as an index, the indices of these arrays begin at one.
In our example we have three command types with different numbers of CPU- I/O cycles
assocxated withi each type and w1th d1fferent requ1rements for page frames for each type

NUMERIC IDENTIFIERS cplocycles(B) pageneed(3)
. CPIOCYCLES: 8 15 50 ARREEEI :
PAGENEED *20 2430 -

NUMERIC IDENTIFIERS:cputime

April 3, 1982

8 : | B a ~ INTRODUCTION / SEC. 1

CPUTIME:.025 /#*mean time in seconds#*/
.. NUMERIC IDENTIFIERS:
QUEUE TYPE:

A passive queue consists of a pool of tokens to be allocated to jobs and a set of nodes which
operate on that pool and the jobs holding tokens. The passive queue in our example has one
-token for each page frame.. After prompts for the queue name and queue type, we are
prompted for the number .of tokens initially in the pool and the scheduling discipline.. We
choose "first come first served" (fcfs) scheduhng

QUEUE memory]
' TYPE pa551ve
TOKENS pageframe°
DSPL: fcfs

‘Next we are prompted for lists of names of allocate nodes. Jobs wait at allocate nodes until
they are given the number of tokens they request and then move without delay to the next
‘node in the routing chain for the allocate node. (In the interactive mode, SETUP gives
prompts only for "plain" allocate nodes. Section 6 will discuss the other kinds of allocate
_nodes shown in Figure 1.3.) : ' ' o

ALLOCATE NODE LIST getmemory
NUMBERS. OF TOKENS TO ALLOCATE : pageneed(jv(cmdtype))
. ALLOCATE NODE-LIST: :
RELEASE NODE LIST: freememory

~ A job vxsmng a release node returns all tokens it received from a passwe queue. ThlS takes no
simulated time. :

RELEASE NODE LIST:
 DESTROY NODE LIST:
CREATE NODE LIST:

‘We assume the CPU has a single server with the "processor sharing" (PS) scheduling disci-
pline. PS is the limiting case of a round robin (''time slicing") discipline when the quantum
("time slice") tends to zero, provided there is negligible overhead in switching from job to job:
The service. times are assumed to have an exponentlal distribution with mean glven by the
1dent1f1er 'cputime."

QUEUE:cpuq
TYPE:ps
CLASS LIST:cpu
SERVICE TIMES:cputime
'CLASS- LIST:
QUEUE:

In our example, when a job leaves the terminals we wish to determine its command type by -
random selection and also store the number of CPU-I/O cycles for that type-in JV(1). - We
assume that the command is type 1 with probability 0.8, type 2 with probability 0.15. and type
3 - with - probability 0.05. A reference to - the RESQ - "discrete" - distribution,
- "discrete(1,.8;2,.15;3,.05)", will be used to make this random selection. The semicolons (";")
are used to separate the major pairs of values given to the discrete distributien. Semicolons
are used to separate important expressions or lists of expressions in RESQ. - The commas -
separating the pairs of values may be replaced by blanks, as we discussed previously.

April 3, 1982 -

SEC. 1.3/ VRE'SQ User Interfaces R R S »' 9

Set nodes are used to perform assrgnment statements ‘in the sense of programmrng o

languages The assignments may be made to job variables or to two other kinds of variables
we will introduce in Section 8 of this document. The."SET NODES:" prompt requests a list
‘of names of set nodes. If the list contains more than one name, then the nodes in the list may
perform only one assignment. Otherwise, if the list contains only one name, then several
asmgnments may be performed by that one node. In the followrng we will wish to list the two
assignments on a single logical line, but will not have room to do so on a single physical line.

SETUP allows use of "'++" at the end of a physical line to indicate the next physical line is to -
be concatenated with the current logical line of input to form a s1ng1e loglcal line. SETUP w1ll :
prompt with a colon " ") for additional physical 11ne(s) s

'SET NODES : setcmdtype o - _
“ ASSIGNMENT LIST: jv (cmdtype) = dlscrete(1 .15;3,;05), ++
:jv(cyclecount) =cpiocycles (jv(cmdtype)) . ‘

The ass1gnments are performed in the order listed. In the above - definition, the value of

JV(CMDTYPE) used in the second assignment will be the value glven by: the first ass1ghment

When a job completes a CPU I/0 cycle, we. will decrement JV(l) and test to see 1f the
job has: completed its count by test1ng for JV(1)= 0. - :

SET NODES:decrcycles ‘

ASSIGNMENT LIST:jv{cyclecount)=jv(cyclecount) =1
SET NODES: —
FISSION NODES:

FUSION NODES:

The follow1ng submodel definition is very sparse, but could be embelhshed cons1derab1y
without changing its subsequent invocations in the submodel cssm.’ : ‘ ,

SUBMODEL: iosys
' NUMERIC PARAMETERS:
NODE PARAMETERS :
CHAIN PARAMETERS:interactiv
CHAIN PARAMETERS:
NUMERIC IDENTIFIERS:

~In this example we reuse the name "interactiv' for the chain parameter. ~As in nested
procedure definitions in block structured programming languages. (e.g., PL/I or Pascal), names
used ouiside of a submodel definition may be reused within submodel definitions. When
names are reused in this manner, the new definition persists within the submodel definition

and the old definition is restored after the submodel definition is completed. On the other -
hand, we could have used an entirely different name for the chain parameter in .this. example.' :

In our example we assume each disk is represented by a single server queue with a single

service time representing positioning and transfer and with fcfs scheduling. The RESQ "fcfs" 4
predefined queue type would naturally be used in this instance. However, we will illustrate 4 ‘3' .

user defined queue type with these same assumptions with the added assumptions that serv1cef
times have an exponential distribution with mean 0.06. First we are prompted for the name of
the queue type and names of any numerlc parameters. :

QUEUE TYPE:diskdef
NUMERIC PARAMETERS:

April 3, 1982

0 B - INTRODUCTION / SEC. 1

Every node e. g every. class, to be assocrated with a queue defmed by a user defined queune
- type must be declared as a node parameter of the queue type. In this case we will have only
one class ’

NODE PARAMETERS serv1cecls‘
- NODE PARAMETERS :

o After declaring the parameters, the rest of a queue type deflmtlon is very 51m11ar to a queue C

definition. The reply to "TYPE:" may be any predefined queue type. Because the general -
active type allows defining individual servers, the prompt for "'SERVICE TIMES:" Whlch we'
have seen previously is replaced by "WORK DEMANDS:". The work demanded of a server
is divided by the service rate to get service times. All of our previous dialogues have assumed
a unit rate server, so work demands and service times are equivalent in these dialogues. In the -
following we will avoid defining a server, so we will get a unit rate server by default. ‘

TYPE:active
SERVERS: 1
DSPL: fcfs
CLASS LIST:servicecls
WORK DEMANDS: .06
CLASS LIST:
SERVER-
RATES :
END OF QUEUE TYPE DISKDEF
QUEUE TYPE:

_A. définition of a queue defined by a user defined queue type, i.e., an-invocation of a queue
type definition, will consist of prompts for parameter values after the queue type 1s spemfred
In lhls case there is only one parameter, the class. : ~ R

QUFEUE:diskq
TYPE:diskdef
SERVICECLS:disk

QUEUE:

SET NODES:

FISSION NODES:

FUSTON NODES:

The ‘following prompts give us the opportunity to define submodels within' this submodel
: (1osys) definition and to invoke submodel definitions within the definition of iosys. ‘Since we
have not finished defmmg iosys, we are not ready to invoke 1osys S

SUBMODEL:
INVOCATION:

We have not seen any routing chain definitions: yet. The following’ def1n1t10n is atyplcal‘
because within the submodel there is only one node, "disk'; and so no routing within the

submodel will be defmed ~ After giving the name of the chain, we indicate that this chain i is to

be completed in the external model, i.e., in the model invoking the submodel ”1osys . We
then indicate that "disk" is both the standard entry point and the standard exit point of the

chain. In thé invoking model we will refer to "disk" by the synonyms "input" and 'output’.

The colon prompt (":") is for a routing transition, as we will see below. B '

April 3, 1982

Ry

SEC.]'.3/RESQ.Userinterfaces ' o T 1t

CHAIN:interactiv

TYPE:external
INPUT:disk
OUTPUT:disk

" CHAIN:
END- OF SUBMODEL IOSYS
SUBMODEL: ’

An invocation of a submodel is an instance of the subnetwork defined by the submodel

‘definition and the parameters specified with the invocation. After a prompt for the invocation
‘name, there is a prompt for the name of the submodel definition to be used in this invocation.

Assummg only the name of the submodel definition is given, there will be addltlonal prompts
for the parameter values, in this case the name of the chain parameter

INVOCATION: iosys
TYPE:iosys ‘
INTERACTIV: interactiv

The prompt "INTERACTIV:" requests the value for the parameter name defined within the
submodel IOSYS definition. The reply "interactiv" supplies a value, the chain parameter

_declared within the submodel CSSM definition. These names happen to be. the same in our

example but there is no requirement that they be the same.

“For brevity, the prompts for parameter values can be avoided by supply»ing‘theiparameter ;
values (in the order the parameters were declared) after the name of the submodel definition, -

€.g.
INVOCATION: iosys2
TYPE:1losys: interactiv

INVOCATION:

This. 1nvocat10n creates a second subnetwork with the charactenstlcs of submodel IOSYS (In ¥

‘thls case the subnetwork consists only of a single queue.)

, The follow1ng chain def1n1t10n is more typlcal than the prev10us one. After declanng the:
standard entry point to be the set node setcmdtype and the standard exit’ point to be the -

lrelease node freememory, we define the routing among the nodes of the subnetwork

CHAIN:interactiv
TYPE:external .-
INPUT:setcmdtype .
OUTPUT : freememory

The folloWing line indicates that jobs leaving setcmdtype always go to the allocate node -
getmemory, that jobs leaving getmemory always go to the class cpu and that]obs leaving cpu

"go to the standard entry of invocation iosysl (dlsk) Wlth probablhty 0.5 and to the standard
entry of invocation losys2 also with probability 0.5.

:setcmdtypé—>getmemory4>cpur>iosys1.input iosysZ.input;.S .5h

The followmg line 1nd1cates that jobs leavmg the standard exit of either iosys1 or 1osy52 go to

‘set node decrcycles

April 3, 1982

12 o : | ~ INTRODUCTION / SEC. 1

:iOsys1.output iosysZ.output~>decrcycles

The following line indicates that]ObS leaving decrcycles return to cpu if JV(1) is pos1t1ve and
go to the release node otherwise. The "t" in "1f(t) represents ''true'

:decrcycles—>cpu freememory;if (jv(cyclecount)>0) if(t)

CHAIN
END OF SUBMODEL CSSM
- SUBMODEL:

Followmg is the invocation of the submodel representmg the entire computer system with -
values for the numeric and chain parameters . :

'INVOCATION:cssm1
TYPE:Ccssm :
PAGEFRAMES:userframes
INTERACTIV: interactiv

INVOCATION:

A cham in the ‘model proper will be either open, if there are to be prov1s10ns for external
' arr1va1s and departures or closed, if jobs are fixed within the chain (as in our example). “With
a closed chain we must indicate the populatlon i.e., the number of jObS flxed w1th1n the chain.

) CHAIN interactiv

TYPE:closed
POPULATION users
:terminals->cssmt.input
:cssml.output->terminals

;

CHAIN:

.‘This completes definition of the model proper. The remammg dialogue sectlon pertams to the :
specifics of simulation solution.

‘Many performance measures are gathered by the simulation by default. Hdwever
gathering of distributions of these measures for all appropriate ‘network “elements can be
expensive in both time and memory, so distributions are only gathered when requested. In our
example model the most interesting: distribution is likely to be the distribution of response
times seen by the terminal users. The queueing time for the passive queue, defined as the time
of arrival at the allocate node to departure from the release node, will be this desired response
time. The following requests that the cumulative queueing time distribution bé gathered for
queueing times from 1 to 8 at unit intervals. The name of the memory passive queue must be
qualified by the invocation name, "cssml," when it is referred to outside of the submodel
deflmtlon : '

QUEUEG FOR QUEUEING TIME DIST:cssmt. memory
VALUES:1 2 3 4 56 7 8
QUEUES FOR. QUEUEING . TIME DIST:

We also request that the queue length distribution for the passive queue be gathered for all

__.possible lengths. Just as queueing t1me mcludes time holding tokens, queue length 1ncludes
jobs holdmg tokens.

~April 3, 1982

‘SEC.'1.3 / RESQ User'lnterfaces - R R

QUEUES. FOR QUEUE LENGTH DIST cssml.memory
© MAX VALUE:users

QUEUES . FOR. QUEUE LENGTH DIST

'NODES FOR QUEUEING TIME DIST:

NODES 'FOR' QUEUE LENGTH DIST:

RESQ provides three methods for estimating confidence intervals for performance. measures,
and two of these three methods also provide for run length control based on the confidence

e intervals; In this example we will not illustrate confldence mterval estlmatlon or assomated
run length control

" . . CONFIDENCE INTERVAL METHOD: how S
: <CONFIDENCE INTERVAL METHODS ARE: REGENERATIVE, REPLICATIONS SPECTRAL
" OR NONE -
CONFIDENCE INTERVAL METHOD:none

‘For closed routmg chains (and open cha1ns wh1ch are not Imtlally empty) we must specxfy
where the jobs of the cham are to be placed initially.

INITIAL STATE‘DEEINITION—
CHAIN:interactiv
~ NODE LIST:terminals
INIT POP:users
CHAIN:

The simulation fun will end when the first of the following limits are reached. Siml_il‘ated ;
events in this model will correspond exactly to the completions of service at the active queues.
Departures from the passive queue will correspond exactly to the visits to the release node.

RUN . LIMITS-

SIMULATED TIME:3600

EVENTS : 50000

'QUEUES FOR DEPARTURE COUNTS:CsSm1.memory
DEPARTURES: 500

QUEUES FOR DEPARTURE COUNTS:

NODES FOR DEPARTURE COUNTS: .

 LIMIT -~ CP SECONDS:5

Specificatien t'hat there will be no Siniulatien trace ends d_efinition of this ‘model. o

TRACE: how
“ ENTER EITHER 'YES' OR 'NO'
' ~TRACE:no
END-. : . ‘
- NO FATAL ERRORS DETECTED DURING COMPILATION.

VS

Once we have completed the SETUP dialogue, a transcrlpt of the. d1alogue (a "d1alogue ;
file") is available in a file on mini-disk A with file name the same as the model name and file
type RQ2INP. - This transcript can be edlted and used as input to the SETUP command, thus
avoiding repeating the dialogue to make minor changes. Use of the d1aloguef11e ‘mode “of
SETUP provides capabilities for language elements not available in ‘the-interactive -mode.
Most importantly, it is possible to include dlalogue fragments e.g., submodel deflmtlons from
11brar1es of d1alogue For our example model, file CSM RQ2INP Al is - :

April 3, 1982

oo o - INTRODUCTION / SEC. 1

MODEL': CSM
' "METHOD: 51mulatlon‘ . :
NUMERIC PARAMETERS: thinktime users
NUMERIC IDENTIFIERS userframes
 "USERFRAMES: 50 : ' ,
MAX JV:1 /%0: command type, 1: cycle count*/
. 'QUEUE: terminalsq '
‘TYPE:is
"CLASS . LIST: termlnals
 SERVICE TIMES:thinktime
. SUBMODEL:cssm /*Computer System Submodel*/
 NUMERIC' PARAMETERS:pageframes
CHAIN PARAMETERS:interactiv
NUMERIC IDENTIFIERS: cmdtype: cyclecount
. CMDTYPE:0 /#JV(0) to be used to 1nd1cate command type*/
‘ CYCLECOUNT: 1 /#JV (1) to be 'used to count CPU= 1/0 cycles*/
NUMERIC IDENTIFIERS: cpiocycles (3) pageneed(3
 CPIOCYCLES: 8 15 50
PAGENEED: 20 24 30
.~ NUMERIC IDENTIFIERS:Cputime
"CPUTIME: 025 /*mean time .in seconds#*/
QUEUE memory
TYPE:passive _
TOKENS : pageframes
DSPL: fcfs
ALLOCATE ‘NODE LIST getmemory) : ‘
NUMBERS ‘OF TOKENS TO ALLOCATE: pageneed(jv(cmdtype))
R RELEASE NODE LIST: freememory
QUEUE: cpudg.
TYPE:ps
CLASS LIST:cpu
‘ SERVICE TIMES: cputlme
SET NODES: setemdtype ‘ .
ASSIGNMENT LIST:jv(cmdtype)=discrete(1,.8;2,.15;3,.05), ++
v(cyclecoﬁnt)—cpiocycles(jv(cmdtype)) W
SET NODES:decrcycles
ASSIGNMENT LIST: jv(cyclecount) jv(cyclecount) =1
SUBMODEL iosys
CHAIN PARAMETERS: interactiv
"QUEUE TYPE:diskdef
NODE. PARAMETERS : serv1cecls
TYPE:active
SERVERS :1
DSPL:fcfs
CLASS LIST:servicecls
WORK: DEMANDS:.06
"SERVER -
.~END OF QUEUE TYPE':DISKDEF
OUEUE: diskq
TYPE:diskdef
'SERVICEGLS:disk
CHAIN:interactiv
. TYPE:external
INPUT:disk

April 3, 1982

€

SEC‘."VI.SE/ RESO.User i‘nterfaces » » : ST L “'1'5 -

OUTPUT:disk
END OF SUBMODEL IOSYS
INVOCATION: iosys?
TYPE: iosys
INTERACTIV: interactiv
" INVOCATION: iosys2
TYPE:iosys: interactiv
CHAIN:interactiv
TYPE:external
INPUT: setcmdtype
OUTPUT: freememory . :
setcmdtype >getmemory->cpu- >1osys1 1nput 1osys2 1nput .5 L5
:losys?.output iosys2.output- >decrcycles) o S
_ fdecrcyolesf>cpu freememory;if(jv(cYclecount)>O)_if(t)
. END OF SUBMODEL CSSM
INVOCATION: cssm]l
TYPE cssm
" PAGEFRAMES : userframes
INTERACTIV:interactiv
CHAIN:interactiv
TYPE:closed
POPULATION:users
”terminals ->cssml. input
scssmil. output >terminals
QUEUES FOR QUEUEING TIME DIST cssm1 memory
~ 'VALUES:1 2 3'4°56 7 8 :
'QUEUES FOR QUEUE ‘LENGTH DIST cssm1 memory
'MAX VALUE;users "
CONFIDENCE INTERVAL METHOD:none
INITIAL STATE DEFINITION. -
. CHAIN:interactiv
NODE LIST:terminals
TNIT‘POP;usors '
"RUN LIMITS -
" SIMULATED TIME:3600
EVENTS : 30000
QUEUES FOR DEPARTURE COUNTS:c¢cssml. memory
DEPARTURES 500
LIMIT - CP SECONDS:5
TRACE: no

-END

The dialogue file does not inclade SETUP prompts which received null replies. - Note that the
indentation provided by SETUP clarifies the structure of the model, partxcularly the nestmg of
submodels. (In user creation or modification of dialogue - flles the user .is free to: use: other -
indentation conventlons including no indentation.) ‘ R -

The EVAL command invokes dialdgue for model solution (e.g., simulation). . This
dialogue prompts the user for parameter values, performs the solution and then provides the
user with performance measures requested by the user. When this dialogue is complete for a
patticular set of parameter values, it may be repeated for a different set of parameter values

~ without reissuing the EVAL command.

April 3, 1982

16 o NN ~ INTRODUCTION / SEC. 1

For our example model, we mlght have the followmg dialogue with the EVAL command,
First we are prompted for the model name and values for parameters.:

eval
'RESQ2 EXPANSION -AND SOLUTION PROGRAM.

MODEL : how o

NAME OF MODEL ALREADY DEFINED WITH SETUP

MODEL ; csm : : : ‘
RESQ2 VERSION DATE: JANUARY 29, 1982 ~ TIME: 17:00:35 DATE: 01/29/82
THINKTIME: 16 S
USERS: 25

Once the parameter values are specified, the model definition is complete and macro- -
expansion of the submodel definitions is performed. Then solution commences. When
simulation ends, we get one or more messages indicating why simulation stopped, an error
message or a: message 1nd1cat1ng no errors were detected, and a summary of the slmulatlon,
run. : ;

RUN END: CPU. LIMIT
“NO "ERRORS DETECTED. DURING SIMULATION.

' SIMULATED TIME: 245.77480
v CPU TIME: 5.25
NUMBER OF EVENTS: : 7461

~ Then we. are prompted "WHAT:" meaning "What performance measures do you want to
see?’. A reply of "all" results in a display of all measures normally provided. Instead of
"all", we give the code "'nd" for number of departures and specify we are only. 1nterested in

the. passive queue. (A reply of "how" would provide a tutorial l1st1ng all such codes.)

"WHAT:nd(cssm1.memory) . ‘ o
INVOCATION INVOCATION ELEMENT NUMBER OF DEPARTURES

- CssM1 MEMORY 324
We then give the code "'qt" for mean queueing time and specify we are only ihterested in' the

passive queue.’ (This queuelng time is the response time seen by termlnal users in the modeled‘
system) Co :

WHAT:qt(cssm1;memory) - o e .
INVOCATION - INVOCATION ELEMENT MEAN QUEUEING TIME
‘ cssMmt MEMORY 2.81971‘

A null réply to "WHAT:" terminates the examination of performance measures.
WHAT

We are'then given the opportunity to extend the s1mulat10n run We may lncrease any. of the
run limits we specified before and let the simulation run until one of the new limits is reached.
In the following we increase the limit on' CPU tlme (ThlS example was run on a model 3033
processor) :

,CONTINUE RUN: L yes :
“LIMIT - SIMULATED TIME: how

LARGER VALUE THAN 3.600E+03 OR NULL TO' KEEP THAT VALUE
‘TRY AGAIN-

April 3, 1982

r)

SEC. 1.3 / RESQ User Interfaces = L : R AT &

LIMIT - SIMULATED TIME:

LIMIT - EVENTS: :

LIMIT. = CSSM1.MEMORY DEPARTURES:
CLIMIT -

CP SECONDS: 10

When the simulation reaches one of the new limits, we see the old termination message
followed by ‘a new one and a new summary of the simulation run. We then receive the
"WHAT:" prompt agarn : :

RUN END: CPU LIMIT Co :
RUN END: CSSM1.MEMORY ‘DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME: 366.25098-
CPYU TIME: . 8.10

NUMBER OF EVENTS: - : 11528

» WHA’I‘:ﬁd_(CssmLmemory) '

INVOCATION INVOCATION ELEMENT - . NUMBER OF DEPARTURES

cssM1 ' MEMORY 500 .
WHAT: gt
INVOCATION INVOCATION ‘ ELEMENT‘:” ’ MEAN’ QUEUEING TIME
: .. TERMINALSQ 14.82022
CSSM1 . MEMORY ' 2.95095
IR CssM1 ’ CPUQ 0.03118
. CssM1 I10SYS1 - DISKQ . 0.07692
CSSM1 ' I0SYS2 DISKQ ¢ 0.07245

‘The utilization measure is the fraction of time a server or token is in use.

WHAT:ut
INVOCATION INVOCATION ELEMENT & - UTILIZATION
' ' B “TERMINALSQ " 0.00000
_CssM1 MEMORY » 0.72492

‘ . CssMT CPUQ © 0.37966
CcssM1 - TOSYS1 . DISKQ 0.45804
CSEM1 ‘ I0SYS2 DISKQ 0.42182
WHATr

We choose to extend the run again, this time 1ntend1ng to reach 1000 departures from the
memory queue. R v

CONTINUE RUN:yes

LIMIT = SIMULATED TIME
LIMIT - EVENTS:

LIMIT - CSSM1.MEMORY DEPARTURES
1000

LIMIT - CP SECONDS:20

RUN END: CPU LIMIT
RUN END: CSSMI. MEMORY DEPARTURE LIMIT

April 3, 1982 PR IR - ,

18

"~ RUN END: CSSM1.MEMORY DEPARTURE LIMIT
. 'NO "ERRORS" DETECTED DURING SIMULATION.

SIMULATED TIME:

CPU TIME:
NUMBER OF EVENTS:

WHAT:Qt(cssm1.memory)

INVOCATION

INVOCATION
CSSM1

ELEMENT

MEMORY

INTRODUCTION / SEC. 1

753.42139
16.29
23054

MEAN QUEUEING TIME
2.78478 ‘

Now we examine all of the normally provided performanée measures. -

- WHAT:all

INVOCATION

© CSsM]
CSSM1

* INVOCATION

CSSMT
CSSM1

INVOCATION

cssMl
CssM1

INVOCATION

CcSsM1
CSSM1

INVOCATION

CSSM1
CSSMT

INVOCATION

CSSM1

cssM1
10SYS1
10SYS2

INVOCATION

CSSM1
CSSM1
10SYS1
I0SYS2 .
CSSM1
CSsM1
CSSM1

INVOCATION
CSSM1
CSSM1
I0SYS1
10SYS2

INVOCATION

“CSSM1

CSSM1
10SYS1
10SYS2

INVOCATION

- CSSM1

CssM1
L0sYs1

TOSYS2

ELEMENT
TERMINALSQ
MEMORY

- CPUQ
DISKQ

DISKQ

ELEMENT
TERMINALSQ
MEMORY :
CPUQ

DISKQ

- DISKQ

FREEMEMORY
SETCMDTYPE
DECRCYCLES

ELEMENT
TERMINALSQ
MEMORY
CPUQ

DISKQ
DISKQ

ELEMENT
TERMINALSQ
MEMORY
CPUQ

DISKQ
DISKQ

ELEMENT

TERMINALSQ
MEMORY
CPUQ

. DISKQ
 DISKQ

15.66380

UTILIZATION
0.00000
0.71155
0.37169
0.44270
0.42385

THROUGHPUT
1.32861 -
1.32728
14,63590
7.32127

. 7.31330

1.32728

1.32861

14.63457 -

. MEAN QUEUE LENGTH

21.30333
3.69666
0.45815
0.56729
0.53651

STD. DEV. OF QUEUE LENGTH
2.75469 ‘ '
2.75471

0.64897

0.70332

0.68847

MEAN QUEUEING TIME
2.78478
0.03130
0.07749
0.07336

April 3, 1982

<L

&

SEC. 1.3 /RESQ User Interfaces

INVOCATION

C85M1
CcssM1

INVOCATION
INVOCATION

INVOCATION‘

INVOCATION

INVOCATION

CssMmi

CcssM1

INVOCATION.

CSsM1

CssM1

April 3, 1982

INVOCATION

_CSSMT.

CssM

105YST.

I0SYs2.

" INVOCATION
CssM

INVOCATION
CSsMI

' INVOCATION
L CSSM1Y

INVOCATION
. CSsM1

INVOCATION

cssM1
cseMl
T0sYs1

- I08YS2

INVOCATION-

CssM

- CSSMT

I0sYSt
I0SYS2

ELEMENT ~
TERMINALSQ

. MEMORY

cPUQ
DISKQ
DISKQ .

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT

- ‘MEMORY

ELEMENT
MEMORY

ELEMENT
TERMINALSQ

- MEMORY
. CPUO

DISKQ

“DISKQ

ELEMENT
TERMINALSQ

‘MEMORY

CPUQ
DISKQ
DISKQ

® N oUW

STD. DEV. OF QUEUE

15.53620
2.21000
0.03351
0.07348
0.07022

MEAN - TOKENS

. 35.57744

MEAN TOTAL TOKENS IN'POOL

50.00000

0:0.08132

:0.15823
:0.10955
:0.08885
:0.06319
:0.04998
:0.05112

9:0.03035
10:0.02341

[0 B B o N

11:0.01390

12:3.2575E
13:4.2857E

IN USE

:0.15607"
:0.17033

-03
-04

19

ING TIME

QUEUE LENGTH DISTRIBUTION .

QUEUEING TIME DISTRIBUTION

.00E+00:
.00E+00:
.00E+00:
.00E+00:
.00E+00:
.00E+00:
.00E+00:
.OOE{OO;

O O O O O O oo

25
13
2
2

2

MAXTMUM QUEUEING TIME

132.74031

. 13.42583

0.38601 "
0.66154
0.70030

.21800
.50200
64700
. 75400
.83500
.91700
.95000
.96800

MAXIMUM QUEUE LENGTH

oy | S S INTRODUCTION / SEC. 1

WHAT: .
CONTINUE~RUN:nQ

Havmg terminated both . the performance measure dlalogue and the 51mulat10n we are how
given the opportumty to defme a new set of parameters and start a new run.

THINKTIME:
: EXPANSION FINISHED.

A transcrlpt of. the dlalogue w1th the EVAL command is available on mml—dlsk A w1th f11e
. name the same as the model name and file type RQ2PRNT For example we mlght now w1sh
to prmt CSM RQ2PRNT Al ona line prmter r :

Iti is also po'ss1ble to em‘bed‘ model expan_smn and solution in a PL/I program. -Users may
define PL/I functions to provide numerical values to RESQ during the simulation run. - For
example, such a function might be used to read: service times from a data file in order to
implement a trace-driven simulation.

; April 3, 1982

21
2. THE SETUP COMMAND
This ,section covers basic usage of the SETUP command within the GMS'e_nViron:men’t,-ithe
prompting mode of the SETUP command, the file mode of the SETUP command, the mixing
of prompting and file. modes of the SETUP command and the files used and produced by'the
SETUP command. - Appendix 5 covers the error messages produced by the SETUP command.
2.1. SETUP Command with CMS
‘Before issuing the SETUP command, the user should be sure that his or her virtual
‘machine has sufficient storage, that the virtual machine has access to the mini-disks containing
the RESQ system files and the PL/I run time library, and that sufficient loader table space is
provided. These steps typically will need to be taken only the first time RESQ is used _
prov1ded approprrate modifications are made to the CP directory and/or PROFILE EXEC
To determlne v1rtual storage currently avallable issue the command
‘Cpbquery’virtual storage
which will produce a message of the form
STORAGE = 01024K
Usually 1024K (K = 1024 bytes) is sufficient for using the SETUP command.. More than‘ '
1024K is often required for using the EVAL command (Section 13). To increase storage,

enter the CP environment (e.g., by hitting the PA1 key on a 327X seties termlnal) and issue. -

cp define’ storage 1024k

The response to the DEFINE STORAGE command should be as w1th the QUERY STORAGE
command, e.g.,

STORAGE ='01024K

I—Iowever if the CP directory maximum virtual storage entry does not allow the 1ncrease the B
response w111 be :

STORAGE EXCEEDS AELOWED MAXIMUM

In thrs case ‘it is necessary to have your CP directory maximum virtual storage entry changed

(by the computer operations staff) in order to be able to successfully define the desired " :

'storage (You may wish te have your CP dlrectory default virtual storage entry changed to
give you 1024K without issuing the DEFINE STORAGE command.) It is not strictly neces-
sary to enter CP before issuing the DEFINE STORAGE command, but issuing the DEFINE
STORAGE ‘command from the CMS environment will produce an- additional error message
and leaVe the virtual machlne in the CP environment. After def1n1ng suff1c1ent storage 1ssue

ipl cms

‘followed by a blank line. This will restore the CMS environment and execute PROFILE
EXEC e '

| To be sure the mini-disk containing the RESQ system files is available, issue “

April 3, 1982

2 ‘ THE SETUP COMMAND / SEC. 2
state setup exec *

. If the RESQ flles are avallable then th1s will only produce the normal CMS ready message It
‘the files are. not avallable, the message

;FILE 'SETUP EXEC' NOT FOUND

- will be produced by the STATE command. To get access to the flles first determme the
userid and virtual address of the mini-disk containing the RESQ files. Then issue - the .CP
LINK and CMS ACCESS commands for this mini-disk. For’ example, if the RESQ files are on
mini- d1sk 195 of userid Sauer, with password "abede', then you mlght issue

' cp llnk to Sauer 195 as 195 rr pass= abcde
access 195 b o

(You may wish to insert lines such as these in your: PROFILE EXEC.) The SETUP EXEC
assumes that the PL/I optlmlzmg compiler run time library is present on an accessed mini-disk -
and that the library has file name PLILIB and file type TXTLIB. The CMS STATE command
may be used to verify that this is the case. If the library is not present, ‘access to it must: be
obtained before using SETUP. » g

To determine whether sufficient pages are available for the CMS loader tables‘, issue
query;ldrtbls | |
The response will be of the form
LDRTBLS . 005
If the number of pages is less than 5, issue
Set'ldrﬁbis 5

to ensure sufficient pages are available. (You may wish to insert the SET LDRTBLS com-
mand in your PROFILE EXEC.) . : S

The SETUP command may be issued without an argument, as in the example in Section 1.
When issued without an argument, SETUP will prompt for a model name. Alternatively,
SETUP may be issued with a single argument, which will be interpreted as the model name.
Once the model name is established, the SETUP command is the same whether or not it was

-issiied with an argument. ,

2.2. SETUP Command Prompting Mode

. When the SETUP comimand is issued, it will look for a file with file iame the same as the
model name, file type RQ2INP and file mode A. If it finds such a file, it will treat this file as
a d1alogue file, using the dialogue file 'mode discussed in Section 2:3. If SETUP does not fmdk
such a dialogue file, it enters promptmg mode, as in our example in Section 1. ‘

SETUP examines only the first 72 characters of a line.” Usually it is not necessary to have
. lines longer than this because of the repetition of prompts (e.g., the user can enter more than
one class list per queue.) However, in some circumstances it may be necessary to create
longer logical lines. If RESQ finds the string "++" at the end of a physical line, it assumes

April 3, 1982

&

SEC. 2.2 / SETUP Command Prompting Mode _ _ ‘ R 23

that the next physical line is part of the current logical line, and the two lines are concatenated .
with the "+ +" removed. This concatenation of physical lines into a single logical line may be
continued as long as the logical line does not exceed the internal buffer (see variable LINSIZ
in file SETUPD RQ2DAT, Section 2.4). In producing dialogue files, it is sometimes necessary
for SETUP to use the "'++'' concatenation because the length of the prompt plus the length
of the reply exceeds 72 characters

, In prompting mode the special replies "how," "edit," "reV1ew," "save" and "quit' may
be given in response to any SETUP prompt; their meanings are described below These -
rephes should not be included in dialogue frles (SETUP will not put these replres or any
resultmg dialogue in dralogue files.)

"How'" is grven by the user when a clarification of a prompt is desxred SETUP glves
short tutor1a1 and then relssues the prompt.

"Edit" places the user in an editor looking at a dialogue file. This ,dialogue file is a

transcript of the dialogue so far, excluding prompts receiving null replies and prompts recéiv- - -

ing the five special replies. The user may make minor changes in this dialogue file, e.g.,”
changing numeric values, or may make major changes, e.g., adding or deleting ‘sections of

dialogue. When the user leaves the editor (e. g., by filing) SETUP reprocesses the dialogue frle L

left by the editor, as discussed in Section 2.3. (The user does not need to indicate to SETUP
which file to process. SETUP will look for the RQ2INP file it gave to the user in the edrtor)
If the dialogue file is incomplete, as will usually be the case, then SETUP switches to prompt— '
ing mode when it reaches the end of the file. (If the file is complete SETUP exits without
further prompting.)

o The default editor used is the CMS EDIT'c‘ommand. However, if the user has a file
"NORMAL EDITOR" on the A disk, then the first word in that file is assumed. to be the
name of an editor and that editor is used. . For example, to use the VM/System Product Edltor v

(XEDIT) with SETUP the NORMAL EDITOR file should have contents
"XEDIT

This assumes that the System Product Editor is available on the spec1f1c CMS system bemg

used. . If the editor to be used is invoked by an EXEC, then "EXEC" should follow the' EXEC,
name on the NORMAL EDITOR record. (Usually edltors are invoked. by CMS MODULE

. files.) For example, if you have an editor which you invoke using MYEDITOR EXEC then

the NORMAL EDITOR file should have contents
MYEDITOR EXEC

"Review" displays the dialogue file on the termmal so that the user may review what he
or she has done. The dialogue file is a transcript of the dialogue so far, excludrng prompts

receiving null replies and prompts receiving the five spec1a1 replies.. The dlalogue contmues i
-after the display with the prompt which received the ' 'review" reply.

"Save' causes the dialogue to terminate, with the dialogue so far, both from’ file and
interactive mode, saved in the dialogue file (wrth the same file name as’ the model name and
file type RQ2INP). '

"Quit" causes the dialogue file to terminate, with the last dialogue file retained on fﬂe_ -

type RQ2INP ThlS last file is as it existed after the last SETUP edit command, if there was
one. Otherwise it is as it existed when SETUP was issued (poss1bly empty) What would

April 3, 1982

24 : _ ~ THE SETUP COMMAND / SEC. 2

have become the new dialogue file if "save" had been 1ssued is avarlable with file type
,RQZREC

2.3. SETUP Command Dialogue File Mode

~In dialogue file mode, the functlon of SETUP is analogous to that of a comprler for a
programming language. - After being given the model name, (in response to the MODEL:
prompt, as an argument or implicitly after editing during prompting mode), SETUP will look
for a file with the model name as file name, file type RQ2INP and file mode A. The file may
have either fixed or variable length records up to 80 characters long. HoWever SETUP w1ll
only examine the first 72 characters of each record. Multiple physical records may be
* ‘concatenated into a s1ngle logical line, as discussed in Section 2.2. If SETUP finds this file,
"then it will translate the file, issuing error messages as necessary, until it reaches the end of
‘the file. If the file is syntactically complete, then SETUP will terminate without prompting the
user. . If the file is incomplete, then SETUP will sw1tch to promptrng mode to complete the
-d1alogue 4

' A number of RESQ features are ava1lable in dialogue file ‘mode which are not available in
promptlng mode. For example, parameters and identifiers with distribution values instead of
numetic values may be defined, "global variables" for use during simulation may be defined,
and certain simulation spec1f1c dialogues may be used. . These particular features will' be
discussed in Sections 3 and 12, respectively. Perhaps, the most 1mportant RESQ featare
avarlable only in dialogue file mode is the "INCLUDE" statement. '

: The INCLUDE‘ statement in RESQ is analogous to the preprocessor’ %INCLUDE
statements of PL/I or PASCAL. The form of the INCLUDE statement is "INCLUDE:"
followed by a file name. When SETUP encounters an INCLUDE statement, it searches for a
file with the given file name; this file may either be a separate CMS mini-disk file or be a
member of a MACLIB. If the file is located, then the entire text of the file is logically
substituted in place of the INCLUDE statement and the text of the included file is processed
by SETUP as if it had been part of the original model definition. The file specified in the
INCLUDE statement must either have a file type of RQ2INP or be a member of a library with
- file type MACLIB SETUP will look for the file on all currently accessed mini-disks, not just
mini-disk A. SETUP will first look for a separate CMS file with the specified file name and
file type RQZINP If SETUP does not find such a file on any accessed mini-disk, then it will
look in each MACLIB in the list (if any) of MACLIB’s declared as global by 1ssu1ng ‘the. CMS
GLOBAL MACLIB command prior to issuing the SETUP command. (The MACLIB’s are
searched in the order listed in the GLOBAL command.) In either case, the file should have
fixed length records with length 80. SETUP will only examine the first 72 characters of each
record. If the file 1s not found, SETUP will i issue an error message :

"The INCLUDE statement is typically used to 1nclude submodel or queue type definitiofis.
HOWever arbitrary portions of dialogue may be included with the INCLUDE statement; the
INCLUDE facility is a general text substitution mechanism. An INCLUDE statement ¢an
occur almost anywhere in a dialogue file. Specifically, an INCLUDE statement can occur on
any line in which a RESQ2 keyword prompt and reply can. occur. An INCLUDE statement
may not occur where SETUP would expect an identifier prompt for initializing an identifier or
global variable or a keyword line where no reply occurs (e.g., "SERVER ”)

A dialogue file can contain an arbitrary number of INCLUDE statements. It is possible

- to use INCLUDE statements in a nested manner; that is, a file to be included in a model can
_1tself contain INCLUDE statements. Nesting of INCLUDE statements is allowed to-a

April 3, 1982

SEC. 2.3 / SETUP Command DiaIOgue File Mode ' - 25

maxrmum depth of 10 The dralogue parsed as.a result of INCLUDE statements does not'
appear in the RQ2INP f11e produced by SETUP, :

In addltron to the d1alogue file (RQZINP), SETUP produces a hstmg flle w1th file name
the same as the model name, file type RQ2LIST and file mode A. This file is very srmllar to
the dialogue file, but it includes error messages at points where errors were detected (if any
- were -detected), line numbers for each line, nesting levels of submodels and any dialogue

parsed as. a result of INCLUDE: statements. Followmg are some fragments of . the RQZLIST S

file for the example in Section 1.3.
‘ RESQQ‘Translator V2:04: (01/19/82) Time: 16:55:48 _Date: 01/29/82

1% 0% . MODEL:CSM

% ¥.oK K X KoK K X X K %K

2% .0% . METHOD:simulation
"3k 0% NUMERIC PARAMETERS:thinktime users
UYE T O* NUMERIC IDENTIFIERS:userframes
5% 0% . USERFRAMES:SQ)
6% 0% MAX JV:1 /#0: command type, 1: cycle count*/
7% 0% - .- QUEUE:terminalsqg : :
8k 0% TYPE:is
Q% Q% . "CLASS LIST: termlnals]
~10% 0% : . SERVICE TIMES:thinktime
T1%. 0% .SUBMODEL:¢ssm /*Computer System Submodel*/
2% 1k NUMERIC PARAMETERS:pageframes
13% 1%. ' CHAIN PARAMETERS:interactiv
* 35% 1% SET NODES: decrcycles :
* 36% 1% ‘ ASSIGNMENT LIST: jv(cyclecount) jv(cyclecount)—1
*137% 1% 'SUBMODEL: iosys , '
* 38% D% : CHAIN PARAMETERS: interactiv .
* 39% 2% ' QUEUE TYPE:diskdef
*40% 2% 4 NODE PARAMETERS:servicecls
* 55% 2% END - OF SUBMODEL IOSYS
* 56% 1% _ INVOCATION: iosys]
*. 57« 1% ‘ TYPE:iosys
* 68% 1% END OF SUBMODEL CSSM
*¥ 69% 0% . INVOCATION:cssm
* 70% 0% ; TYPE: cssm
% 92% 0% . LIMIT - CP SECONDS:5
*°93% 0% SEED: 1
*. Q4% 0% TRACE: no
*.95% Q% END

NO FATAL ERRORS DETECTED DURING COMPILATION.

2.4. SETUP ‘Command Files :
We have already discussed or mentioned most of the files used or produced by the :

SETUP command. The normal input to the: SETUP command is from three files: (1) SYSIN -
the SETUP EXEC issues a CMS FILEDEF command defining SYSIN to be. the terminal.

April 3, 1982

6. S | ~ THE SETUP COMMAND / SEC. 2

(2) The dialogue file (RQ2INP) if one exists and (3): SETUPD RQ2DAT, which is used to
define the sizes of certain internal tables. SETUP cannot determine in advance the approprl-
ate: sizes for its symbol, expression and routing tables. It cannot detérmine in advance the
appropriate size for its buffers for storing a logical line. File SETUPD RQ2DAT on the
mini-disk containing SETUP EXEC contalns sizes for these tables and buffers The default
content of the f1le is - » . ' P

SY‘MSIZ=1005 ;o BEXPSIZ=2005 , ELVSIZ=2505:, RTBSIZ=1005 , LINSIZ=1729; :
/*DIMENSTONS OF SYMTAB, EXP. TAB, ELEMENT VECTOR, ROUTING: TAR,. BUFFERS* /

where SYMSIZ ‘is the maximum number ‘'of symbols: (identifiers), EXPSIZ ‘is the maximum
number .of expressions, ELVSIZ is the maximum number of expression components (¢.g.,
3.1*(i—3) has 5 components: 3.1, *, i, — and 3), RTBSIZ is the maximum number. of routing
transitions and LINSIZ is one more than the maximum length (in characters) of a logical line.

The user may have a copy of SETUPD RQ2DAT on a mini-disk in the search ordet beéfore the
mini-disk containing the SETUP EXEC, to be used instead of the default copy. The user may
increase (or decrease within reason) these table and buffer sizes in this copy of SETUPD.
‘RQZDAT

While eXecuting, the SETUP command produces four files: (1) SYSPRINT - the SETUP
EXEC issues ‘a. CMS FILEDEF command defining the terminal to be SYSPRINT.
(2). RQ2REC - this is the file which normally will become RQ2INP at the end of the SETUP
command (unless the "quit" special reply is used). (3) RQ2LIST and (4) RQ2COMP - this
is the file, with file name the same as. theé model name and file type RQ2COMP, which will
provide the input to the EVAL command. If SETUP is used in dialogue file» mode‘and
discovers errors, it will erase the RQ2COMP file it has generated. Unless the "quit" special
reply is used, SETUP will erase the RQ2INP file it was given and rename the RQZREC f11e it
~ generated to be the new RQ2INP.

Figure 2.1 shows these files and their relationships with the commands.

EVAL

Figure 2.1 - Files used with SETUP

April 3, 1982

3. PARAMETERS, IDENTIFIERS VARIABLES AND ARRAYS

" This section’ covers the syntax and semantlcs of the declarat1ons of parameters, 1dent1f1ers
variables, chain arrays and node arrays at. the beginning of either a mode! or submodel. - ‘The
syntax and semantics are the same in either case, except where otherwise noted. (Some
sitnilar declarations are used with queue type definitions, but the differences are s1gmflcant
' enough that we discuss those declarations separately in Sectlon 6.) This section also covers the :
syntax and semantics of the declaration of the extents of the vectors of job and chain var1a-
bles. - Some of the declarations are not possible in interactive mode because no prompts are
issued to give the opportunity to make the declarations: All of these declaratrons are optlonal ‘
in dialogue files (assuming the declared elements are not needed). We drscuss these declara-
tions in the order they may appear in a d1alogue file. - »

“3.L - Parameters

There are four types of parameters allowed in RESQ, numeric parameters, vdistrib‘i.ltbioh
parameters, node parameters and chain parameters. Node parameters and c_hain ‘parameters
Aare allowed only in submodels. :

Numerlc parameters defined at the beginning of a model are given . constant numerlcal
values (internally represented in floating point) when the EVAL or EVALT commands
(Section 13) are issued or when the appropriate procedure is called from a PL/T program
calhng RESQ (Section 14). Numeric parameters defined at the beginning -of a submodel are
given numerical values when the submodel is invoked (Section 10). Names of numerlc

_ parameters may be used in place of numerical constants anywhere in the SETUP dialogue that
. numerlcal constants are appropriate. Numeric parameters may be scalars, vectors or matrices.

As illustrated in Section 1.3, the syntax consists of "NUMERIC PARAMETERS " followed -
by a list of one 'or more names to be. used for the parameters. A vector parameter is declared
’ by following the name by a parenthesized express10n for the number of elements in the vector. -
‘The elements are indexed starting at one (1). The expression may be any expression. which
(1)-can be evaluated at this point in the dialogue, e.g., any parameters in the expression have
been previously declared, and (2) is independent of simulation (see Appendix 3 for clarifica-
tion of this distinction). A matrix parameter is declared by following the name by a left
parenthesis ("("), an expression for the number of rows, a semi-colon ("';""), an expression for
the number of columns and a right parenthesis ("')"). The rows and columns are indexed

starting at one-(1). The same constraints are placed on the expressions as for the expression: '

giving the ‘number of elements in a vector. The line declaring numeric parameters may be
repeated as many times as necessary to declare the desired parameters. However, in: declaring.
parameters, the user should keep in mind the effort required to define values for parameters,
“e.g., when the EVAL command is issued, and consider using identifiers instead. - Followmg is
an example of numeric parameter declaration: : : :

NUMERIC PARAMETERS:a b(a)
NUMERIC PARBAMETERS:c(2;a+1) 4

" Distribution parameters may be defined only within dralogue files. D1str1but10n parame-
ters defined at the beginning of a model are given values representing probability distributions
when the EVAL or EVALT commands are issued or when the appropriate procedure is called
from a PL/I program calling RESQ (Section 14). Distribution parameters defined at the
~beginning of a submodel are given values representing probability distributions when the
submodel is invoked (Sectlon 10). Names of distribution parameters may be used in place of
probability distributions anywhere in the SETUP dialogue that probability distributions are
appropriate. The values given for distribution parameters may be either numerical values or

April 3, 1982

28 PARAMETERS, IDENTIFIERS, VARIABLES, ARRAYS / SEC. 3

’probabrhty drstrrbutrons RESQ?2 probability distributions are discussed in Appendix 3. A
- mumerical value given for a distribution parameter will be interpreted as either (1) the mean
of an exponentral distribution, where a continuous distribution is expected, e.g., for service
times, or (2) a constant distribution, where a drscrete distribution is expected, e.g., for
~ numbers of tokens to be allocated or in set node a551gnment statements. Distribution parame-

ters may be scalars, vectors or matrices. The syntax consists of "DISTRIBUTION PARAME-
 TERS:" followed by a list of one or more names to be used for the parameters. Vector and
‘matrix parameters are declared as with numeric parameters. The line declaring distrlbution
parameters may be repeated as many times as necessary to declare the desired parameters.
’Followmg is an example of distribution parameter declaratlon :

" DISTRIBUTION PARAMETERS :b
DISTRIBUTION. PARAMETERS:c(2;a+1) d

Node parameters- may be defined only within submodels. Node parameters are ‘used. to

allow a submodel to refer to nodes outside of the submodel. For further discussion of the use

of node parameters, see Section 10 and Appendix 1. Names of node parameters may only be
‘used in routing definitions and as arguments to status functions. Node parameters may be
scalars or vectors, ' The syntax consists of "NODE PARAMETERS:" followed by a list of one
ot more names to be used for the parameters. Vector parameters are declared as with numeric
parameters. The line declaring node parameters may be repeated as many times as necessary
to declare the desired parameters. Following is an example of node parameter declaration:

NODE PARAMETERS :b
NODEEPARAMETERS:C(Z*a) d

‘Chain parameters may be defined only within submodels. Chain parameters are used to

allow routing chains to cross submodel boundaries, i.e., to connect nodes inside and outside of -

* submodels. ‘For further discussion of the use of chain parameters, see Section 10 and Appen-
dix 1. Names of chain parameters are only used in routing definitions in response to the
"CHAIN:" prompt. Chain parameters are always given type "external" within a submodel

Chain parameters may be scalars or vectors. The syntax consists of "CHAIN PARAME-

 TERS:" followed by a list of one or more names to be used for the parameters. Vector
parameters are declared as with numeric parameters. The line declaring chain parameters may
‘be repeated as many times as necessary to declare the desired parameters. »Followrng is an
, example ot chain parameter declaration: ' '

CHAIN PARAMETERS: b
CHAIN PARAMETERS:c(2%a) d
3.2, ldentiﬂers

There are two types of identifiers allowed in RESQ, numeric identifiers and dlstrlbutlon
1dent1f1ers

Numeric identifiers are given numeric expressions defining their values (internally

represented in floating pornt) immediately following their declarations. Names of numeric,

identifiers may be used in place of numerical constants anywhere in the SETUP d1alogue that
numerical expressions are appropriate. However, simulation dependent values (see Appendix
~'3) may not be used in these expressions. Numeric identifiers may be scalars,. vectors' or
matrices. * As illustrated in Section 1.3, the syntax consists of "NUMERIC IDENTIFIERS:"

followed by a list of one or more names to be used for the identifiers. Names of vectors and -

matrices are declared as with numeric parameters. Immediately following the line declaring

April 3, ‘1982

SEC. 3.2 / Identifiers o o 9

‘the names. of the identifiers will be one or more lines (one per name) giving the ‘idehtifier.
name, a colon ("":'") and the defining expression(s) for that name. In the case of a vector,
defining expressions for all elements are given on the same line. If there are fewer expressrons ‘
than the number of elements in the vector, the last expression is also used for.the remaining

. élements. Matrices are stored internally as vectors, by rows, i.e., if a matrix has m rows and n
c¢olumns, the matrix is stored as a vector with mxn elements, with the first n elements: of ithe -
internal vector containing the first row of the matrix; the second n elements of the internal
vector containing the second row of the matrix, and so on. Defining expressions for all
elements of a matrix are given on the same logical line (using concatenation of physical linés,
if necessary) to specify the elements of the internal vector representation. If there are fewer

“expressions than the number of elements in the matrix, the last expression is also used for the

. remaining elements, The line. declaring numeric identifiers may be repeated as many times as

necessary to. declare the desired identifiers. Followmg is. an example of numerlc 1dent1f1erf

- declaration:

NUMERIC IDENTIFIERS:a b(3) c(3;2)
A:3.1*min(d,1)
B:0
cii4.1 7 13

- In this example, alk three elements of b are zero, c(1; 1) is 14 1; c(1 2) is 7 and the remammg
elements are.13.

: sttrrbutlon identifiers may be defined only within dialogue files. Dlstrlbutlon 1dent1f1ers -
‘correspond to numeric identifiers as distribution parameters correspond to numeric parameters;
the syntax is the same except for the keyword difference ("DISTRIBUTION" instead. of
. "'NUMERIC"). . The defining expressions given for distribution identifiers may include, buit

- need not include; references to probability distributions. Names of distribution 1dent1f1ers may

be used in place of probability distributions anywhere in the SETUP dlalogue that probablhty
~distributions are appropriate. (RESQ2 probability distributions are discussed .in Appendlx 35
-Distribution identifiers may be scalars, vectors or matrices. Where a distribution identifier is
used in the dialogue, the effect is as if the defining expression for that d1str1butxon 1dent1f1er
(or identifier element, in case of a vector or matrix identifier) were used in that place, except '
for possible differences due to the scope of names with respect to submodels, i.e., .the names
“in effect where the defining expression is given. are the names. referenced in the expressron v
evaluation. Following is an example of distribution identifier declaratlon ‘

DISTRIBUTION IDENTIFIERS:a b(2;3} ¢
A:discrete(1,.8;2,.15;3,.05)
B:discrete(x,.8;y,.2) z+bE(1,0;1,1) 3.
.Cipropagate+standard(leng,Q)/capacity

3. 3 Global Vanables

‘ Global vanables may be declared only in d1alogue files. Global varlables in RESQ
correspond to varxables in programmmg languages and can be used for essentially the same
purposes. The term "global" is used to distinguish these variables from job variables (V). and
“chain variables (CV). However, global variables may be local to submodels in the sense of
the scope of the names of the variables. Global variables are internally represented in double -
precision floating point. The declarations and initial values of global variables are given using
the same syntax as used to declare and define values for numeric identifiers, except the
keywords "GLOBAL VARIABLES" are used. instead of "NUMERIC IDENTIFIERS".
Simulation dependent values (see Appendix 3) may be used in the deflnmg expressmns for

April 3, 1982

| 30. ' PARAMETERS, IDENTIFIERS, VARIABLES,; ARRAYS / SEC. 3

initial values for global variables. Global variables may be scalars, vectors or matrices. The
same conventxons for internal storage of vector and matrix elements that are used with
numetic identifiers are used with global variables. After global variables ‘are- declared, the
values ‘may be changed by assignments associated with set nodes. .Examples of the use of
global vanables are glven in Appendlx 1. ‘Following is an example of global variable declara-
tlon , ‘ . :

?'GLOBAL VARIABLES:a b(3) c(3;2)
A:3. T*min(d,1)
' B:a discrete(1,.3;2,.7) 0
©Cr14.1 713 ‘

The expressions are evaluated before simulation begins, so simulation dependent expressions
involving status functions (Appendix 3) are not particularly useful in these expressions.
Distributions may be useful and the USER function (Appendix 3) may be useful. The second
.element of b in the example will either be 1 or 2, depending on the random number generated
in evaluating the discrete distribution.

3.4. Chain and Node Arrays

Arrays of routing chains are useful where the several chains have substantially the same
characteristics and the differences between the chains can be simply characterized. ~Chain
arrays will always be vectors. The routing for an array of chains may be specified for the
_entire array in a single chain definition section. The use of chain arrays implies the use of
- node arrays with the same numbers of elements in the chain and node arrays. The- dlfferencesi
between chains are specified by use of numeric vectors or matrices in definitions of routing
probablhtles and predicates, in definitions of the node characteristics, etc. Names are declared

..as names of chain arrays in the declarations section of a model or submodel.” The definition of

‘the routing chains having this array name is given in the routing section as with scalar chains
~(Section 9). The declaration syntax consists of ""CHAIN ARRAYS:" followed by-a list of ‘one
ot more names. Each name is followed immediately by a parenthesized expression for the
number of elements in the array. The constraints on this expression are the same as for
‘expressions for the number of elements in a numeric parameter vector. The line :declaring
chain arrays may be repeated as many times as necessary to declare the desu‘ed arrays
Following is an example chain array declaratlon

CHAIN ARRAYS:interactiv(no_groups) batch(no_types)

Arrays of nodes are necessary with chain arrays and are useful in other situations. Node
“arrays will always be vectors. All elements of a node array will have the same node type, €.g.,
if one element of a particular array is a class, then all elements of that array will be classes.
Further, if one -element of a particular node array belongs to'a particular queue, then all
elements of the array belong to that queue. Names are declared as names of node arrays in
the declarations section of a model or submodel. The definition of the nodes having this array
name is given in the same way as with scalar nodes (Sections 4-8). The declaration syntax
‘consists of "NODE ARRAYS:" followed by a list of one or more names. Each name is -
‘followed immediately by a parenthesized expression for the number of elements in the array.
~The constraints on this expression are the same as for expressions for the number of elements
_in a numeric parameter vector. The line declaring node arrays may be repeated as many times
as necessary to declare the desired arrays. Following is an example node array declaration;

" NODE ARRAYS:termlnals‘(no_groups) batch_s(no types)
NODE ARRAYS:cpu(no_groups+no_types)

April 3, 1982

SEC. 3.5 / Extents of Job and Chain Variables B : R :3_1 :

3.5. Extents of Job and Chain Variables

Each]ob in RESQ has a vector of job variables av)y stored with that JOb The vector
begins with index 0 and has extent as declared by the MAX JV statement, as illustrated in
Section. 1.3. (The disparity of starting with index O for job variables and chain variables and
With ‘index 1 for all- other RESQ vectors. is due to.preservation of compat1b1hty w1th eariy
" versions of RESQ.) The syntax-is "MAX JV:" followed by an expression for the extent where

" the expression has the same constramts as those for the number. of elements in 2 numeric ‘
parameter vector.. If the MAX JV statement is. omitted, the value 1 is used for the extent ie.,

‘reference may only be made to JV(0) and JV(1). Except for jobs produced by split. and _

fission nodes (Section 8), all job variables are initialized to have value 0 (zero) See Section‘
13 for a d1scuss1on of the storage requirements of jobs and job vanables '

o Each chain in RESQ has a vector of chain variables (CV) stored with that chaln The,'
vector begins with index 0 and has extent as declared by the MAX CV statement. Chain

variables may be used to: affect-the arrival times for jobs in open chains (Section 9).. Other- =~

.wise, it is usually advisable to use global variables instead of chain variables. The syntax is
~"MAAX CV:" followed by an expression for the extent, where the expression has the same
~constraints as those for the number of elements in a numeric parameter vector. If the MAX
CV statement is omitted, the value 0 is used for the extent,-i.e., reference may only be made
to CV(0). All chain variables are initialized to have value 1 (one) o

April 3, 1982

32

4. ACTIVE QUEUES

This sectlon covers the syntax and semantics of the defmmons of .active queues using
_predefmed queue types. Section 6 covers definition of queues with user "defined queue types.
A jOb’S activity is typ1cally focused on the resources -of active queues. A jOb typically has no
nteractlon with other model elements while at an active queue An’ active queue consists: of
“one or more servers and one or more waiting lines called "classes". A class belonging to one
active queue may not belong to another active queue. The classes categorize the characteris-
tics of jobs currently at the queue in terms of work demand (service requirement) distribu-
tions, priorities and routing. (A class is a particular kind of node in the sense of RESQ
‘routing from node to node.) Examples of work demand could be number of instructions,

number of bytes, etc.” In general, work demanded is divided by service rate to obtain service

time. The service rate is the amount of work the server can ‘perform in one unit of time. In
the common special case of fixed rate servers, the server may be assumed to have unit rate of
" service and.the work demand may be expressed as service time. Jobs within-a class may be
further distinguished, e.g., by the values of job variables. - A job arriving at a class makes a
request for service and waits until it is assigned a server. Once the job is assigned a server, it
receives service from that server until the service request is satisfied. ‘The service may-be
" preempted by other jobs arriving at the queue or the server may be shared with other jobs,
depending on the queuelng discipline. ‘ ‘

;‘ HOE IOE
; C) » ‘C> :
SINGLE MULTIPLE INFINITE

SERVER SERVER SERVER

Figure 4.1 - Active Queues
Single, Multiple, Infinite Server

Figure 4.1 (a duplicate of Figure 1.2) shows the diagram symbols used for active queues. -

We first discuss the simple predefined queue types and then' discuss the general case. The
discussion presumes that simulation is used for model solution. See Sectlon 11 for restrictions
for numerically solved models. .

4.1. The FClFS Queue Type

The FCFS queue type is used to define a single server queue with first come first served

scheduling. The server has a fixed rate of service of one unit of work per unit of simulated

time. Jobs are served in order of arrival at the queue, i.e., class distinctions are ignored for
‘scheduling purposes. After the queue type specification, the FCFS type definition consists of
one.or more pairs of lines, the first element of the pair being a list of classes followed by a list

of‘servwe time distributions. The following example illustrates the FCFS type: '

QUEUE: g

TYPE: fcfs
CLASS LIST: a . b c

SERVICE TIMES:.5 user (0);3) discrete(10,.5;20,.5)
CLASS LIST: a e (*) /*"(*)" is optional*/

SERVICE TIMES: 6+standard(vi(3),0)

April 3, 1982

SEC. 4.1 / The FCFS Queue Type o .33

CLASS LIST: S g(*) /*"f" is a reserved keyword for "false"*/
SERVICE TIMES: h(*)

The line pairs of class. lists and service times may be repeated as many times as necessary to
define the required classes. An element in the list of service time distributions may be any
niimerical expression, possibly including simulation dependent values such as status functions
and job variables and possibly 1nclud1ng distribution parameters and identifiers. A single
expression may be given instead of one express1on per element in the class llst the ‘single
expression is then used for all classes in the list. .

An element in the class list may be the name of a node array, 1nd1cat1ng all elements of
the array. The node array name may be followed by "(*)" to explicitly indicate all elements
are listed, but individual elements of a node array may not be listed. An element in the
service time distribution list corresponding to a node array in the class list must be a vector o
(e.g., a numeric parameter or a distribution identifier) of the same length, unless the service .
time distribution list consists of a single expression to be used for all elements in the class list.

If a’ service. time expression, after resolution of parameters and identifiers, _contains no
references to RESQ . probability distribution keywords, then the value of the express10n is
interpreted ‘as the mean of a (negative) exponential probability distribution. (The RESQ
. probability distribution keywords are BE, DISCRETE, STANDARD and UNIFORM. See
Appendix 3 for further discussion of distributions.) If the expression does contain at least one
distribution keyword, then the expression is used directly. In either case, when a job arrives ‘at
a class, a sample is obtained from the service time d1str1but10n and stored with the job-to be
used when the job is assigned a server. s

4.2, The IS Queue Typ_e

The IS queue type is ; used to define an infinite server ""queue." (Since there is no waiting -
for service, scheduling is not an issue.) Each server serves at a fixed rate of one unit of work
per unit of simulated time. -After the queue type specification, the IS type deflmtlon consists
of one or more pairs of lines, the first element of the pair being a list of classes followed by a
list of service time. distributions. The rules for the class lists and service -time lists are the
same as with the FCFS queue type. The following example illustrates.the IS type:

QUEUE:q
TYPE: is , .
CLASS LIST: a b : ge , ,
SERVICE TIMES:.5 .user(3jv(0);3) discrete(10,.5;20,.5)
CLASS LIST: . d e(*) /x"(*)" is optional*/ |
SERVICE TIMES:.6+standard(jv(3),0)
CLASS LIST: g.(*)

SERVICE TIMES: h(*)

4.3. The PS Queue. Type

The PS queue type is used to. deflne a smgle server queue with the processor sharmg
queueing discipline. Processor sharing is the limiting case of a round robin ("time slicing')
discipline when the quantum ('"time slice") tends to zero, provided there is negligible overhead

in switching from job to job. The server serves at a fixed rate of one unit of work per unit of « ‘

~simulated time. . After the queue type specification, the PS type definition consists of one. or
‘more pairs of lines, the first element of the pair being a list of classes followed by ‘a list of

April 3, 1982

34 o R " ACTIVE QUEUES / SEC. 4

service time distributions. The rules for the class lists and service time lists are the same as
with the FCFS queue type. The following example illustrates the PS‘ type:

,QUEﬂE:q

TYPE:ps)
 CLASS LIST: a b - c
SERVICE TIMES:.5 user(jv{(0);3) discrete(10,.5;20,.5)
CLASS LIST: d e(*) /*"(¥)" is optional*/ -
SERVICE TIMES:.6+standard(jv(3),0)
CLASS LIST: g(*)

:SERVICE TIMES: h(*)

' 4.4. The LCFS Queue Type

The LCFS queue type is used to define a single server queue ‘with the last’ come first
served preemptive resume queueing discipline. An arriving job always preempts a job in
service, if there is one. Jobs are served in reverse order of arrival. When a job is preempted
‘and later restarted, its remaining service request is the original request less any service already
,recelved The server serves at a fixed rate of one unit of work per unit of s1mulated time.
After the ‘queue type specification, the LCFS type definition consists of one or more palrs ‘of
llnes, the first element of the pair being a list of classes. followed by a list of service time
distributions. The rules for the class lists and service time lists are-the same as with the FCFS
, fqueue type The following example illustrates the LCFS type: ‘

QUEUE:q
TYPE:1lcfs
CLASS LIST: a b c o
SERVICE TIMES:.5 user (3v(0);3) discrete(10,.5;20,.5)
CLASS LIST: a e(x) /%" (%)" is optional*/
Y SERVICE TIMES:.6+standard(jv(3),0) '
CLASS LIST: Cog ()

SERVICE TIMES: h'(*)

4.5. The PRTY Queue Type

The PRTY queue type is used to define a single server queue with a nonpreemptive
priority queueing discipline. An arriving job is assigned a positive integer priority. (This
" priority is then fixed until the job leaves the queue.) A priority value closer to zero is consid-
ered a higher priority than a priority value farther from zero. When the server becomes
* available and there are waiting jobs, a job with the smallest priority value is selected for
service. Scheduling is first come first served among jobs with the same priority value. ~ The
server serves at a fixed rate of one unit of work per unit of simulated time. After the queue
type specification, the PRTY type definition consists of one or more triples of lines, the first
element of a triple being a list of classes, the second a list of service time distributions and the
third a list of priority expressions. The rules for the class lists and service time lists are the
same as with .the FCFS queue type. The syntax of the priority expression lists is the same as
with service time lists. If a priority expression does not evaluate to an integer, the value is.
truncated to an integer value (the fraction is discarded).. The: followmg example illustrates the

PRTY type:

QUEUE:q
TXPE:prty

April 3, 1982

SEC. 4.5/ The PRTY Queue Type » . ' Lo .35

CLASS LIST: a b ‘ e : 5
SERVICE TIMES:.5 user (§v (0);3) - discrete(10,.5;20,.5)..
PRIORITIES: .5 * 1~ . C o v(i_prty) e

CLASS LIST: d e (%) /*"(¥)" 'is optional*/

'SERVICE TIMES:.6+standard(jv(3),0)
 PRIORITIES: 3
CLASS LIST: g(*)
SERVICE TIMES: h{*)

PRIORITIES: p(*)

4.6. The PRTYPR Queue Type

The PRTYPR queue type is used to define a single server queue with a preemptive
priority queueing discipline. Preemption decisions are based on the differences between: the
‘priority of the job being served and the priorities of the other jobs in the queue and on the -
preemption distance- specified in the queue ‘definition. By appropriate choice -of. priority
expressions and preemption distance, very general scheduling mechanisms can be represented
with the PRTYPR queueing discipline. An arriving job is assigned a positive integer priority.
(This priority is then fixed until the job leaves the queue.) A priority value closer to zero is
~ considered a higher priority than a priority value farther from zero. If the afriving job is of
- higher priority than the job in service (if there'is a job in service), then if the difference
" between the priority values is at least the preemption distance, then preemption occurs. When
“'a job is preempted and later restarted, its remaining serv1ce request is the original request less
any service already received. ‘A preemption distance of 1 (one) results in a strictly preemptive
_discipline, i.e., preemption always occurs when a higher priority job arrives, and a sufficiently
large preempt1on distance, e.g., 2147483647 (231—1), results in a strictly nonpreemptlve
discipline as with PRTY. When the server becomes-available and there are waiting jobs, a job

with the smallest priority value is selected for service. Scheduling is first come first served .

. among jObS with the same priority value. The server serves at a fixed rate of one unit of work
per unit of simulated time. After the queue type specification, there is a line with ”PREEMPT
DIST:" followed by an expression for the preemption distance. This express1on must be
simulation mdependent (see Appendix 3). After that line the PRTYPR type definition consists
of one or more triples of lines, the first element of a triple being a list of classes, the second a
~list of service time distributions and the third a list of priority expressions. The rules for the

class lists and service time lists are the same as with the FCFS queue type. The syntax of the

pnorlty expression lists is the same as with service time lists. If a priority expression does not

evaluate to' an integer, the value is truncated to an integer value (the fractlon is dlscarded)
, The following example illustrates the PRTYPR type:

QUEUE :q _
TYPE:prtypr
PREEMPT DIST:3
b fo!

CLASS ‘'LIST: a SR S
' SERVICE TIMES:.5 'user(jv(0);3) discrete(10,.5;20,.5)
PRIORITIES: 5 1 o v (3_prty)
" CLASS LIST: a e(*) /#"(*)" is optional*/
SERVICE TIMES:.6+standard(jv(3) '
PRIORITIES: 3
. CLASS LIST: g(*)
SERVICE TIMES: h(*)
PRIORITIES: p*)

~ April 3, 1982

36 : ACTIVE QUEUES / SEC. 4

For discussion purposes assume that jobs arriving at class C have IV(J_PRTY) with value 13

‘and that all elements of P(*) are 10. Jobs arriving at class B would preempt jobs at classes A,
C and G(*) but not jobs. at classes D and E(*). Jobs arriving at classes D or E(*) would
preempt jobs at classes C and G(*) but not class A. Jobs arriving at class A would preempt
.jobs at class C or classes G(*). Jobs arriving at classes G(*) would preempt jobs at class C.

4,7, The ACTIVE Queue Type

The ACTIVE queue type is used to define active queues not definable with the above
queue types. This general case allows declaration of multiple server queues other than IS
queues, queueing disciplines not allowed by the other predefined queue types, and queues with
servers that have queue length dependent service rates and/or with servers that will accept

. jobs from only a subset of the classes of the queue. Several of the lines in the ACTIVE

dialogue are optional in dialogue files or apply only to certain queueing disciplines. After the
‘queue type specification, there is a line for definition of the number of servers, which consists
of "SERVERS:" followed by an expression for the number of servers. The expression must
‘be simulation independent. If the number of servers line is omitted, the queue will have a
“single server by default. o

Next is a required line for definition of queueing discipline which consists of "DSPL:"
followed by a keyword representing a queueing discipline. The allowed keywords are FCFS,
PS, LCFS, PRTY, PRTYPR, SRTF and LRTF. (In addition to the generality of scheduhng '
mechanisms possible with the PRTYPR discipline as mentioned in Section 4.6, it should be
- recognized that set nodes, routing predicates, passive queues and other RESQ elements may be-
-used to build complex scheduling mechanisms, as illustrated in Appendix 1.). Only FCFS, PS
and PRTY are allowed with multiple server queues. With SRTF (shortest remaining time
first), the job. chosen for service is always the one with the shortest remaining service time. If
an arriving job has service time less than the remaining service .time of the]ob in’ serv1ce if
any, then the job in service is preempted (with its remaining time saved so that it can resume
where it left off) and the arriving job gets the server. SRTF is the optimum discipline for a
queue in isolation.in the sense that it minimizes the mean queueing tlme by max1m121ng the
number of completed queueing times. - With LRTF (longest remaining time first), the job
chosen for service is always the one with the longest remaining service time. A job is not
-preempted by jobs alreadyin the queue even though its remaining service time has become
shorter than one of those jobs because of the progress it has made. (Thus LRTF is not the
‘worst possible discipline in the sense that SRTF is the optimal discipline.) If an arriving job
" has service time more than the remaining service time of the job in service, if any, then the job
in service is preempted (with its remaining time saved so that it can resume where it left off)
and the arriving job gets the server. With the regenerative method for confidence intervals
~(Section 12), the regeneration state should not have any jobs at queues with the SRTF and

LRTF disciplines. If the queueing discipline is PRTYPR, then after the queueing discipline
line there is a required line giving the preemption distance, as with the line following PRTYPR
with the PRTYPR predefined queue type.

Next comes one or more pairs or triples of lines containing class lists and class character-
istics, depending on the queueing discipline.. There will be pairs of lines for FCFS, PS, LCFS,
SRTF and LRTF and triples of lines for PRTY and PRTYPR. The first element of a pair will
be a class list, as with the FCFS predefined type. The second element of a pair will be a list
* of work demand expressions analogous to the service time expressions of the FCFS predefined

type. "WORK DEMANDS:" is used instead of "SERVICE TIMES:" because the service time
will be determined by both the work demand and the service rate, i.e., the amount of work
requested by the job will be divided by the service rate of the.server to determine service time.
" Except for the change in keywords, the characteristics are the same for the work demand line

April 3, 1982

~ SEC. 4.7/ The ACTIVE Queue Type : ‘ . ‘ ‘ 3T

-in’ the ACTIVE type and the service time line in the FCFS type. In the case of PRTY and
PRTYPR queueing disciplines, the class list -and work demand lines are followed by a list of
priority express1ons as w1th the PRTY and PRTYPR predefmed types.

After the class definition section comes the optional server definition section. - If 1o
server - definitions are given, then all servers are assumed to be fixed unit rate servers which
accept jobs of all classes: of the queue. Server definitions are primarily useful where servers
are to have service rate dependent on queue length, i.e., the total number of jobs at the queue -
and/ or where servers only accept jobs from a subset of the classes of the queue.

‘Service ratés dependent on queue length can be used to get the effect of multiple servers
(though it is usually more efficient to actually define multiple servers), to represent increased
or decreased server efflclency with. varying queue lengths and/or to represent a subnetwork by‘- -
" a single "composite" queue in an approximate solution. Where service rates depend on queue:

length, rates are redetermined whenever the queue length changes. This is true for ‘both
simulation and numerical solution. If in a simulation it is desired that service times depend on
‘queue length on arrival of a job, but ate not affected by later changes in queue length
(including -arrivals during service) this can be accomplished by use of the QL or TQ status
functions (see Appendix 3) in expressions for service times (or work demands). Queues with
‘several classes may be defined with several servers such that each server will accept jobs from
only a subset of the classes. Such a queue may be useful in representing multi-processor
systems where the processors have different characterlsucs e.g.; some processors .cannot
initiate I/0O. . U

A ,server definition consists of a line ""SERVER -'" followed by optional definitions of '
‘service rates and classes accepted. Service rates are defined by one or more lines of the form

"RATES:" followed by a list of expressions giving service rates for different queue lengths.
The expressions must be simulation independent (Appendix 3). The first rate given is used for
" queue length 1, the second rate (if given) is used for queue length 2, the third rate for queue
‘length 3 and so on. The last rate given is used for all larger queue lengths as well as for that .

: partlcular queue length. If no rates are given then the server will have a unit rate for all queue
lengths. = Classes accepted are declared by one or more lines of the form "ACCEPTS !

followed by a list of classes accepted by the server. The keyword ALL or an empty list may o ,‘

‘be used instead of a list of all classes of the queue: Similarly, if the classes accepted declara- -
tion is omitted, then all classes are accepted by the server. The number of server definitions
may be smaller or larger than the number of servers specified at the beginning of the queue

" definition. If the number of def1mt1ons is smaller than the last definition, then the last - -
definition is repeated to make up for the missing definition. Excess definitions are ignored.
The numerical components of RESQ require that a queue with queue length dependent service.

rates has the same rate list for each of its servers. Class restricted servers are not allowed
~'with the numerical solution components of RESQ. : : o s

- Following is an example ACTIVE queue definition:

"QUEUE:q
TYPE:active
- SERVERS: 2
DSPL: fcfs
“CLASS LIST:ct c2
WORK DEMANDS :stime
SERVER -
. RATES:1 /*1 job at the queue#*/
RATES:.9 /*2 or more jobs at the queue*/
SERVER -

 April 3, 1982

38

RATES: 1 2

'‘ACCEPTS:c2

ACTIVE QUEUES / SEC. 4

April 3, 1982

39
8. ,PASSlV;E‘ QUEUES

Th1s section covers the syntax and semantics of the defmltlons of ‘passive queues using

‘ predefmed queue types.” Section 6 covers definition of queues with user defined queue types.
Passive queues are not allowed with numerical solution (Sectlon 11). Passive: queues alloW
convenient representatlon of simultaneéous resource possession. A job typically’ acqires
tokens ‘of a ‘passive queue and holds oh to them while visiting other queues (active and/or
~ passive queues) and model elements.” The job explicitly releases or destroys.its tokens when it .
no longer needs them. A secand use of passivé queues is to model: mechamsms such as -

' communication protocols and protocols for channel-device -interaction. = (Such usage may

"invalve other RESQ elements. See Appendix 1 examples.) A thlrd use of passive queues is'in ‘
"measyring’ response ‘times in subnetworks. The "queueing time' (response time) for a:passive
queue is defined as the time between a job’s request for tokens of the passive’ queue and that -
job’s free1ng or destroymg of the tokens.

"POOL OF TOKENS .

- -
—————
- -

-
Pras

-
-
-

-
L
Pl
Py

-

-
Prae
-
-
-
-
-
-
-

'ALLOCATE AND , ;
‘ ALLOCATE ~ ALLOCATE/

TRANSFER CREATE

JOB FLOW ~ ~ DESTROY -
Commmmest TOKEN FLOW

Figure 5.1 - Passive:Queue

A passive queue consists:of a pool of tokens to be allocated to jobs and a set of nodes which

operate on that pool and the jobs holding tokens. In addition to the allocate and release nodes .

. used in the example of Section 1, passive queues may have "AND allocate nodes for simul:t'ane{
ous allocation from several different queues, OR allocate nodes. for allocation from any one.of
“several: passive queues, transfer nodes for passing tokens back and forth between: related jobs

. (Section 8), destroy nodes for destroying tokens held instead of releasing tokens and.create

.nodes for adding new tokens to the pool. Except for AND and OR allocate nodes, a node -
‘belonging to one passive queue may hot belong to another passive queue. AND and OR
allocate ‘nodes are. usually associated with several passive queues. Fusion nodes (Sectlon 8)

and sinks ' (Section ‘9) may have the effect of reléasing tokens.. Figure 5.1 (a duphcate off ' :

F1gure 1.3) shows the dlagram symbols used to represent passive queues.

: The passwe queue. definition dialogue begms with the line for the queue: name, as in an
‘active ‘queue definition. Next is the line "TYPE:passive'. There are no predefined types for -
passive queues other than the ‘general case. Next is a required line giving the nu_mbei: of
~ tokens initially in the pool. This line consists of "TOKENS:" followed by an expression. This

April 3, 1982»

40 | | PASSIVE QUEUES / SEC. 5

‘expression must be simulation independent and non-negative. . Next is.a required line giVing
the queueing discipline. This consists of "DSPL:" followed by a keyword representmg the
d1sc1p1me e1ther FCFS, FF or PRTY.

For the moment. our d1scuss1on of queueing dlsc1p11nes W1th pass1ve queues assumes no
AND allocate nodes. The effects of those nodes will be discussed in Section 5.2. FCFS and
PRTY are essentially the same with passive queues as with active queues. With FCFS
available tokens are allocated.to jobs in order of arrival of the jobs at the queue, the earliest
arrivals getting tokens first. With PRTY, priority expressions are associated with allocate
nodes. Token assignment is in priority order, with first come first served used among]obs of
the same prlorlty FF (first fit) is like FCFS but with one difference. If a]ob near the front
of the quete in first come first served order requires more tokens than are available while: a
.]ob further back (a later arrival) requires no more tokens than are available,’ with FCFS the
',second job will wait while with FF the second job will be given the tokens it requires.

.The following example illustrates the beginning of a pass1ve queue deflnition:

QUEUE:q
TYPE:passive
TOKENS ;2
DSPL:prty

The remainder of the passive queue definition consists of one or more sections defining
particular types of nodes. Each section is optional in dialogue file mode, but a passive queue
must have at least one allocate node(possibly an AND or an OR allocate node). In interac-
tive mode, only the sections for "plain" allocate nodes, release nodes, destroy nodes and
créate nodes are presented. The followmg sections discuss these dialogue sections 1n the order
. expected by SETUP

51 Allocate Nodes

A job arriving at an allocate node (a 'plain" allocate node) requests a number of tokens
and waits until those tokens are allocated. When the tokens are allocated, the job proceeds to
another node according to the routing specification for the allocate node. Though the job is
moving among other nodes, it is considered to remain at the queue and be among the jobs at
the particular allocate node until it frees or destroys the tokens it holds. A job already holding
tokens at a passive queue may not visit an allocate node of that queue until it releases or

destroys those tokens. Jobs holding tokens are considered part of queue length pe'rformance
"~ measures for the passive queue and allocate node, and the time spent holding tokens is "
included in the queueing time measures for the passive. queue and allocate node. - Where
passive queues are used for measuring response times, response times may be placed in
~categories at the beginning of the response time by choice of allocate node. (See Sectlon 5 6
for dlscusmon of categorization of mean response times at the end of a response time.) Al]ob
~copy' ‘remains in the data structure for the passive queue and allocate node; the]Ob rece1v1ng
~tokens has a pointer to thlS job: copy. .

The declaration-of allocate nodes consists of one or more pairs or triples of lines contain-
“ing allocate node lists ‘and allocate node characteristics, depending on the queueing dlscxplme
There will ‘be pairs of lines for FCFS and FF and triples of lines for PRTY. - The first.clement
of a pair will be "ALLOCATE NODE LIST:" followed by a list of allocate nodes, analogous
to the class list lines of active queues. The second element of a pair will be a list of expres-
sions indicating the numbers-of tokens requested by jobs at allocate nodes in the allocate node
list: This line consists of "NUMBERS OF TOKENS TO ALLOCATE:" followed by a list of

April 3, 1982

SEC. 5.1 /Alloc‘ate Nodes - L S,

express1ons and is 31m11ar to the service times and work demands l1nes of active queues The,
differences are the change in keywords and ‘that the expressions are always used "as.is" and
never mterpreted as the mean of an exponentlal dlstrlbutlon If the result of the expression is
riot an-integer, the result is rounded to the nearest integer. In the case of the PRTY queueing
dlSc1pllne the allocate node list and numbers of tokens to allocate lines are followed by a list
of prlorlty expressions, as w1th active queues with the PRTY d1sc1p11ne ‘

‘ The followmg example illustrates definition of allocate nodes:

ALLOCATE NODE LIST: ’ a b ' :

‘ NUMBERS OF TOKENS TO ALLOCATE: discrete(10,,5;20,.5)
PRIORITIES: . ' 5 Jv(j_prty) :
ALLOCATE:NODE LIST: © o de(*) /*"(*)" is optional*/
‘NUMBERS OF' TOKENS TO ALLOCATE:user (jv (leng)+3;4.4) '

, PRIORITIES: L 3 ' SRR
 ALLOCATE NODE LIST: O (¥)
“NUMBERS OF TOKENS TO ALLOCATE:g(*) -

“PRIORITIES: C ' ~hi(*)

‘5.2‘. ' AND‘V Allocate Nodes

An AND' allocate node is similar to a plain allocate node but may be- assomated w1th,
‘more than one passive queue. A job arriving at an AND allocate niode requests a (possibly -
different) number of tokens from each of the queues associated with the node and waits until
all of those tokens can be allocated simultaneously. None of the requested allocations are
-~ made until all can be made. After the allocations are made, it is as if the job sequentlally
visited "plain'" allocate nodes of ‘each of the queues except that the allocation was performed
‘at a single node and that the allocations occurred simultaneously. Release or destruction of
the tokens occurs as if the tokens had been acquired at "plain" allocate nodes. - Separate
- performarice measures are mamtamed for the node for each of the queues w1th wh1ch lt is
associated. : :

Different queueing disciplines may be specified for the several passive queues a5so_ciatedv |
~ with an AND allocate node. . The simultaneous allocation requirement: imposes an. additional -

constraint on scheduling. FCFS and PRTY do not allow allocation out ‘of order when -

“allocation 'in order is not currently possible. FF does allow scheduling out of'»;order when
‘simultaneous allocation requirements prevent allocation in order. For example, let us suppose

that an-AND allocate node is associated with queues A and B. With FCFS or PRTY schedul- .
ing at both queues, if the next job in line at queue A is at'an AND allocate node and there are
'suff1c1ent tokens to satisfy that job’s request at queue A but the job is not next in line at
" queue B or there are insufficient tokens to satisfy: its request at queue B, then the job must
wait, and any jobs behind it in line at queue A must also wait, even if they are not at AND
allocate nodes. With-FCFS or PRTY scheduling at queue A and FF at queue B, if the next

job 'in line at queue A is at an AND allocate node and there are suff1c1ent tokens to, sat1sfy Sl v

that job’s requests at both queues, then even if the job is not next in line at queue B it will

receive the requested tokens at both queues (assummg the jobs ahead of it in line at queue B

can. not recelve their requested tokens).

AND allocate nodes may ,be declared only in dialogue files. The de'claration of 'AND :

allocate nodes follows the same rules as for "plain" allocate nodes except that the node kist

line consists of "AND ALLOCATE NODE LIST:" followed by a list of AND allocate nodes

These nodes will be declared with each queue ‘with which they are to be assoc1ated and’ may’ o

have d1fferent token requlrements and priorities in these different declarations.

~April 3, 1982

42 , PASSIVE QUEUES / SEC. 5

“The following example illustrates definition of AND allocate nodes:

AND ALLOCATE NODE LIST: , a b

NUMBERS OF TOKENS‘TO ALLOCATE: 1 discrete(10,.5;20,.5)
 PRIORITIES: 5 'jv(j_prty) ’ .
{AND" ALLOCATE NODE LIST: . c doe(*) /*"(*)" is optlonal*/
NUMBERS OF TOKENS TO ALLOCATE: user(jv(leng)+3 P44
PRIORITIES: 3
AND ALLOCATE NODE LIST: £ (*)
NUMBERS OF TOKENS TO ALLOCATE: g(*)

. PRIORITIES: - ‘ h(*)

5.3.: OR Allocate Nodes -

: An OR allocate node is similar to a plain allocate node, but may be associated with more
than one passive queue. A job arriving at an OR allocate node requests a (possibly different)
number of tokens from each of the queues associated: with the node and waits until one of
those requests can be satisfied. None of the other requestéd allocations are made. If sevéral
of the requests can be satisfied, then the first queue in the dialogue which can satisfy a request
for the OR allocate node is the queue chosen to satisfy the request. After the allocation is
made, it is as if the job visited only a "plain" allocate node of the queue which satisfied its
request except that the waiting times for the unsatisfied requests are treated as queueing times
‘-~ at the.corresponding queues. . Release or destruction of the tokens occurs-as if the tokens had
~been acquired at "plain" allocate nodes. Separate performance measures. are mamtamed for
‘the node for each of the queues with which it is associated.

- Different queueing vdisciplines may be specified‘for the several passive queues ‘associated
~with an OR allocate node. ‘OR allocate nodes may be declared only in dialogue files. The
declaration of OR allocate nodes follows the same rules as for "plain" allocate nodes except
“that the node list line consists of "OR ALLOCATE NODE LIST:" followed by a list of OR
- allocate nodes. - These nodes will ‘be declared with each queue with which they are to be
associated, and may have different token requnements and prrormes in these drfferent
declarations.

The following example’ illustrates definition of OR allocate nodes:

OR ALLOCATE NODE LIST: a b
NUMBERS OF TOKENS TO" ALLOCATE: 1 discrete (10, .53;20,.5)"
PRTORITIES: ‘ ‘5 jv(j_prty)
OR ALLOCATE NODE LIST: c d e(*) /" (k)" is Optlonal*/
" NUMBERS OF TOKENS TO ALLOCATE: user(jv(leng)+3 4 4) ‘
~ PRIORITIES: _ 3
'OR'ALLOCATE NODE LIST: £ (%)
NUMBERS OF TOKENS TO ALLOCATE g(*)
_PRIORITIES: h(*)

5.4, Transfer Nodes

Transfers nodes are related to allocate nodes, but perform a very specrahzed functlon
transfer of tokens: between related jobs. . The discussion of fission nodes in Section 8 is
prerequis1te to this section. Transfer nodes are only for use by children. A child arrrvmg ‘at a

April 3, 1982

'SEC. 5.4 / Transfer Nodes \ T R Y

transfer node requests that either any tokens of the queue that its parent holds be transferred- ‘
to the child or that any tokens of the queue that it holds be transferred to the parent. This
transfer must be possible. The simulation will terminate if the transfer is not possible. - A visit -
to a transfer node is instantaneous as far as simulated time is concerned. Transfer nodes are
intended - for situations where a ‘passive queue is used for measunng response -times.’ A
‘response time measurement 'begun'by a parent (child) may be terminated by a child: (parent).
After the token transfer occurs, it is as if the job receiving the tokens had originally made the .

request and been allocated the tokens, in particular, the queueing time that began when the - s

“tokens were requested continues, un1nterrupted by the transfer. In the internal’ representatlon, :
_the job copy pointer in the data structure representing the job grvmg up the tokens is’ m0ved
to the data structure representing the job’ rece1v1ng the tokens

v Transfer nodes may be declared only in dialogue files. The declaratlon of transfer nodes v
follows the same rules as allocate nodes except (1) the node list line conslsts of- "TRANSFER ‘
" NODE LIST:" followed by a list of transfer nodes, (2) the numbers of tokens line consists of
"NUMBERS OF TOKENS TO TRANSFER:" followed by a list of expressions and (3) there
“is no priorities line. ‘The value of the number of tokens to transfer expressions w1ll typlcally‘
be eithet 1 or —1. If the expression is positive, then the transfer is from parent to child. T
the expression is negative, then the transfer is from child to parent. Note that RESQ requires
that expressions with a unary minus be parenthesized. If the magnitude of the expression is
not identical to the number of tokens held by the job- holdrng the tokens, a fatal simulation
error will occur when the transfer is attempted. : : '

The following example illustrates definition of transfer nodes: -

TRANSFER. NODE LIST: ‘a b : .) L
/NUMBERS OF TOKENS TO TRANSFER:1 . .. jv(tokns_held) ~ "',
TRANSFER NODE- LIST: - ced e(*) /%" (*)" ig optional*/’

NUMBERS OF TOKENS TO TRANSFER: (=1)

5.5, Release Nodes

Release nodes are used by a job holding tokens to return all of those tokens to the’. .
f.passrve queue. If a job visits a release node without holding tokens of that queue, there is no-
“effect on the job or the queue and the job proceeds according to the routing specified for the

release node. A visit to a release node is instantaneous ‘as far as simulated time is concerned.
- The same mechanism of token release will be performed, if necessary, by a fusion node-
(Section 8) or a sink (Section 9). The release of tokens ends the job’s association with the
queue (unless and until it makes a new token request at an allocate node). In particular, the
queueing time that began when the tokens were requested ends when the tokens are released.

In the internal representation; the]ob copy in the data structure representrng the queue 1s
returned to free storage. -

‘ The declaration of release nodes consists of one or more lines listing the names of release
--nodes. These lines consist of "RELEASE NODE LIST:" followed by a list of release nodes
The. follow1ng example illustrates definition of release nodes

RELEASE NODE LISTta b
. RELEASE NODE LIST:c d e(*) /*"(*)" is optional#*/

April 3, 1982

a4 o | PASSIVE QUEUES / SEC. 5
5, 6 Destroy Nodes

Destroy nodes are used by a]ob holding tokens to destroy all of those tokens rather than
‘return them to the passive ‘queue. If a job visits-a destroy node without holding tokens of that
queue; there is no effect. on the job or the queue, and the job proceeds according to the
vroutlng specfied for the destroy node. A visit to a destroy node is instantaneous- as. far as
simulated time is concerned. The destruction of tokens ends the job’s association with the
queue (unless and until it makes a new token request at an allocate node). In particular, the
-queueing time that began when the tokens were requested ends when the tokens are destroyed.
For. a passive queue with both release and destruction of tokens, mean queueing time values
categorlzed by release or destroy ‘are available (Section 13). Thus, where passive queues.are
used for measuring response times, mean response times may be placed in either category,
when the response time is to end, by choice of release or destroy. (If necessary, a create node
. may be used to add tokens to the queue to make up for the tokens destroyed.) In the internal
'representatlon the job copy in the data structure representrng the queue is returned to free
storage -

The declaration of destroy nodes consists of one or more lines listing the names of
. destroy nodes. These lines consist of "DESTROY NODE LIST:" followed by a list of destroy ,
- nodes The followmg example illustrates: definition of destroy nodes: -

,:DESTROY NODE LIST:a b : . :
- DESTROY NODE LIST:c d e(*) . /#"(*)" is optional*/ .

5.7. Create N_'odes

Create nodes are used by a job to add new tokens to a passive queue, usually to comple-
ment the effects of a destroy node. A job visiting a create node may or may not hold tokens -
of that queue, the effect is the same in either case. A visit to a create node is instantaneous as
far as simulated time is concerned. In representing communication protocols and similar
mechanisms; it is often the case that a job will destroy tokens and later either create tokens
itself or have another job create tokens. This is effectively -a release of tokens, but can be
used. to represent delays in not1f1catlon of token availability (e.g., the transmlssron delay for an

cknowledgement) :

- The declaration of create nodes consists of one or more pairs of lines. - The first line of
~ the pair, listing the names of create nodes, consists of "CREATE NODE LIST:" followed by
a list of create nodes.” The second line of the pair consists of "NUMBERS OF TOKENS TO
" 'BE CREATED:" followed by a list of expressions for the numbers of tokens created: " The
followmg example 1llustrates definition of create nodes: :

CREATE NODE LIST: a0 b

NUMBERS OF TOKENS TO CREATE: 1 discrete(10,.5;20,.5) _
CREATE. NODE LIST: =~ - : ¢ d e(*) /%" (*)" is optional*/.
- .NUMBERS OF TOKENS TO CREATE:user (jv(leng)+3:4.4)
CREATE NODE LIST: : £ (%) ”

NUMBERS OF TOKENS TO CREATE:g(*)

April 3, 1982

s
6. QUEUE TYPES

This section covers the syntax and semantics of the declaration and usage of user defined
queue. types.. A user defined queue type is a macro definition of a queue declaration. Queue
types are usually used to create several queue definitions where the differences betweeti thie
defrnrtrons can be specified by parameters to the queue type. For example, if FCFS were not
a predefmed queue type; the user could define a queue type with the same characterrstrcs (but
somewhat different syntax)

There are two distinet operations involved in the use of queue types: the definition of a
queue type and the invocation of a queue type. The queue type definition consists of the

. specification of a parameterized queue template in which some of the queue type characteris-

tics are given explicit values and other queue type characteristics are left as parameters to be"
defined when the queue type is invoked. The explicit values become the default characterrstrcs
of the queue type. Once a queue type has been defined, it can later be invoked to create a
specific declaration of a queue. A set of parameter values is given as part of the invocation.
A queue declared by an invocation of a queue type assumes the default characterrstrcs of the :
queue type and the parametric characterrstrcs given by the set of parameter values in the
invocation. :

6.1. Definition of Queue Types

- Queue type definitions are given just prior to queue definitions, in either -models or -
-submodels, as illustrated in the example of Section 1.3. A queue type definition begins with a
“ line' naming the definition, "QUEUE TYPE:" followed by the name. After the name is. given

there are sections, in order, for declaration of numeric parameters, distribution parameters and
node parameters. The ‘declaration of numeric parameters and distribution parameters is the
same -as declarations of these types of parameters at the begrnnrng of a model or submodel
except.in regard to vectors and matrices. Matrix parameters are not allowed within queue type

"-definitions. Vectors are allowed, but the declaration of a vector does not give the number of

elements in parentheses as. in models and submodels. Rather, a name is declared as a vector .-
. by following the name by "(*)", with the number of elements to be determined by the value .
g supplred for the parameter when the queue type definition is invoked. Both of these declara-
tions are optional. Drstrrbutlon parameters may. only be declared in dralogue files. ‘Node

parameters have the same syntax as in submodel definitions, except that declaration of Vector -

node parameters.. uses the "(*)" notation given above rather than the notation used for
submodel vector parameters, but node parameters.have a substantlally different meanrng in
queue type definitions. Node parameters in queue type definitions are used to list all nodes,
(classes, allocate nodes, release nodes, etc.) which are to be .declared within the. queue type

Thus node parameter declarations are necessary in queue type definitions. In analogy to block -

structured programming languages such as PL/I, the names used for parameters may be names

prevrously used for elements outside of the queue type definition. The names declared w1th1n
the queue type. definition are local to the queue type definition. Node parameter names :
cannot be reused in other queue type definitions. o

After the parameter definitions, the next line gives a predefined queue type that is to be
the basis of the user defined type. This line consists of "TYPE:" followed by. one of the
predefined general types described in Sections 4 and 5, FCFS, IS, PS, LCFS, PRTY,
PRTYPR, ACTIVE or PASSIVE. After the predefined type is given, the queue type defini-
tion follows exactly the tules for that type given in Section 4 or'5, with the freedom to use
numeric and distribution parameters in the expressions and the added requ1rement that all
'nodes lrsted have been prevrously declared as node parameters. The queue type def1n1tlon 1s

April 3, 1982

46 : , : QUEUE TYPES / SEC. 6

terminated by a line of the form "END OF QUEUE TYPE" followed by the name of the
- queue type. : :

) Fol_ldwing_are an: example queve type definition for an active queve,

: QUEUE TYPE q_llnk
. NODE PARAMETER class_name
TYPE: active
 DSPL:fcfs
CLASS LIST: class _name
i WORK DEMANDS : Standard(jv(O
END OF QUEUE TYPE Q_LINK

and an"example defin'ition for a passive queue,

o QUEUE TYPE .pfcefs v /% passive fcfs queue ‘template #/
NUMERIC PARAMETERS ntokens /* number of tokens in pool */
NODE PARAMETERS:alloc(*) releas ’

TYPE:passive
' TOKENS:ntokens
DSPL:fcfs
ALLOCATE NODE LIST:alloc
. NUMBERS OF TOKENS TO ALLOCATE:1
* RELEASE NODE LIST:releas
END OF QUEUE TYPE PFCFS

* 6.2. Invocation of Queue Types

A queue type invocation begins as with the queue definitions discussed in Sections 4 and
5, but instead of the name of a predefined type being given on the type definition line, the
: name of a user defined type is given. The remainder of the queue definition supphes values
‘ (arguments) for the parameters declared in the queue type definition. ‘There are two ways to
do_this, a positional short format and a format which explicitly matches parameter names and
“values given. "The positional format-is ‘analogous to procedure calls and similar statements in
programmmg languages. On the type definition line, followmg the name of the user defined
type is a colon ("':") and then a list of values, with the values separated by semicolons (";").
For example the queue type "q__link" defined above might be used in the posrtlonal format
. as follows '

QUEUE:q
TYPE:g_ link:c

and the queue type "pfcfs" defined above might be used in the positional _format as follows,

‘QUEUE : memory o _ v
‘TYPE;pfcfs: pageframes; getmemory(*); freemémory‘

. In the matchmg format in mteractlve mode there will be a prompt for every parameter, ‘where

. the prompt consists of the name of the parameter followed by a colon (":") and the reply is to
’ be the value., The prompts will be in the order the parameters were declared In dialogue

mode there must be a line for every parameter, consrstmg of the parameter name followed by
“'a colon followed by the value. In dialogiue mode these lines may be in any order. They need

April 3, 1982

_SEC. 6.2 / Invocation of Queue Types T ' [D 47

“not be in the otder the parameters were declared. For example, the queue type q___l1nk"
‘ defmed above mlght be used in the matchmg format as follows, ‘

QUEUEsq
TYPE:qg . link
CLASS_NAME:C

k and the ’queuej type pfcfs defined above ‘might be used in the matchmg format as follows

“ QUEUE : memory
tL o TYPEspfcfs
NTOKENS : pageframes
ALLOC:getmemory (*)
RELEAS-freememory

In either format a parameter value must be either a smgle expression or a single name Where -~ -
v parameters are declared as vectors, parameter values must also be vectors : :

User defined queue types are -used only for: deflmtron of queues. There should be mno.-

attempted reference elsewhere in the model definition ‘to queue, types or parameters: defined

within queue types. Invocation of user defined queue types is transparent to RESQ solutron
‘components, i.e., the queue definitions look the same to the solution components as they_
would if they had been defined using only predefmed queue types

April 3,1982.

48

7. SET NODES

Thls section covers the syntax and semantics of set nodes. Set nodes are used to perform -
assignment statements in the sense of programming languages. Set nodes are used to assign
values to job variables, global variables and chain variables. Section 3 discusses declaration of
these variables. Set nodes are represented in RESQ diagrams by rectangles showing the
asmgnment statements performed.

~The declaration of set nodes, if any are to be: declared, follows immediately after the
queue definitions section in either a model or submodel. Set node declarations consist of pairs
“of lines, the first line giving a list of set nodes and the second line giving a list. of assignment
statements. The set node list line consists of "SET NODES:" followed by one or more names
of set nodes. The names may be names of node arrays. An entire node array is indicated
" either by just the name or by the name followed by "(*)".

A set node assignment consists of the variable to be assigned, followed by an equals sign
("="), followed by the expression to be evaluated and assigned to the variable. The variable
" ‘to be assigned must be a single variable, i.e., a smgle assxgnment may not be used to assign

values to more than one element of a vector or matrix. If the variable to be assigned is an
element of a vector or matrix, the subscript expressions may be simulation dependent.: The
subscript expressions, if any, are evaluated before the expression to be assigned is evaluated.
‘ The expressxon to be assigned may ‘be simulation dependent.

The assxgnment list line consnsts of "ASSIGNMENT LIST " followed by one oOr - More
assignments. If the node list line lists exactly one name (perhaps the name of a node array,
indicating the entire array), then the assignment list line lists one or more assignments to be
performed at that set node. (The list applies to each element of a node array if a.node array
name is given.) These assignments are performed in the order listed when a job visits the set
node.. If the node list line lists more than one name, then only one assignment may be
performed at each set node in that list. The ass1gnment list line must list the same number of
assignments as the node list line lists names.

The following example illustrates the declaration of set nodes:

SET NODES:a

ASSIGNMENT LIST:jv(msg_origin)=1 . S
orig_count(1)=orig count (1)+1 ++
jv{msg_dest)=discrete(2,1/3;3,1/3;4,1/3) ++
jv(msg_lng)=uniform (40,1000, 1)

SET. NODES:b ¢ (*) , ,

, ASSIGNMENT LIST:alpha=beta+discrete(1.3,.5;10,.5) Jv(0)=3uv(0)+1

SET ‘NODES:set d_cw :

ASSIGNMENT LIST:delay_cw(jv(msg_origin);jv(msg_dest))= ++
alpha* (clock-jv(msg_atime)) ++

+ (1= alpha)*delay cw (jv (msg_ orlgln) jv(msg. dest))

April 3, 1982

49
8. SPLIT FISSION, FUSION AND DUMMY NODES

Th1s section covers the syntax and semantics of the declaratron and usage of spllt flssmn,
fusron and dummy nodes: Figure 8.1 shows the dragram RESQ diagram symbols for these
iotles. Full understanding of this section presumes knowledge of Section 9 (Routing Charns),
but this section is intended to be readable prior to reading Section 9: : -

—9%3 SPLIT —>®—> DUMMY
. —><IZ FISSION j>—> FUSION
thure 8.1- Split, Fission, Fusron and Dumrny."Nodes

8.1. Split Nodes

Split nodes allow a job to produce add1t10na1 1ndependent jobs. Split nodes are useful in

representlng bulk arrival mechanisms and in representing control messages (e.g., acknowledge— e

ments) in communlcatlon system protocols The third example in Appendix 1 illustrates this
latter application, - ‘A split node has one entrance, an exit for the job that entered and an
additional exit for each new job to be produced. The newly produced jobs are given the same
job variable values as the existing]ob The newly produced ‘jobs do not possess tokens,
Ny whether or not the existing job possessed tokens A vrsrt to a split node is 1nstantaneous, as
far as simulated time is concerned. :

The routing syntax implicitly declares names of split nodes. It is not necessary to give the
‘name of a split node before the routing definition.. However, names ‘of split ‘nodes may be
'explrcltly declared prior to the routing definition. Such declarations may help- clar1fy a-model
definition and prevent errors. Explicit declarations of split nodes may “be grven only in:
dialogue files. Declarations of split nodes, if any are to be made, are next in sequence ‘
following_definition of set nodes. ~Split node declarations consist of one or more lines
-consrstrng of "SPLIT NODES " followed by a list of spht nodes, e.g., L

SPLIT NODES:a,b e d(*)
7 SPLIT NODES:e

v "~ The routing to a spht node is defined as wrth other nodes e. g it "y" is the name of a
split node, we mlght have o

:x~>y-z-.9 o

- If -a name of a spht node -is not declared prior to the 1mp11c1t declaratlon in . the routlng,
'Warnlng message will occur at the point of implicit declaratlon e.g, : :

| RERROR * WNG: THE NODE "Y . " HAS BEEN IMPLICITLY DECLARED

April 3, 1982

so’ ‘ SPLIT, FISSION, FUSION, DUMMY NODES / SEC. 8

At this point in the example, assummg no previous declaration, it is only known that "'y" is the
name of a previously undeclared node. Y might be the name of a.fission or dummy node
instead of a split node. The routing from a split node consists of the name of the split node,
followed by an arrow ("->"), followed by a list of at least two names of nodes (not necessari-
1y dlstlnct names) followed by ";split"'. For example, we might have

:y—>alpha alpha beta;split

If the name .of the split node has not previously been declared as a split node, it is a routing
line of this form that indicates the name is the name of a split node. The number of jobs to
be produced is one less than the number of nodes in the list of nodes. The first node in the
list ‘of nodes is the destination for the existing job (the one that enters the split node). The
" remaining nodes in the list of nodes are the destinations for the newly produced jobs. In the
above example there would be two newly produced jobs. The existing job and one of the new
]obs would go to node alpha and the other new job would go to node beta. '

[y

8.2. Fission and Fusion Nodes

Fission nodes allow a job to produce additional jobs dependent on.the existing job.
Fusion nodes allow for the destruction of the newly produced jobs in a coordinated manner.
Fission and fusion nodes are usually used together in pairs. Fission and fusion nodes are
useful for representing synchronized processes (tasks) occurring in operating systems. Similar-
ly, fission and fusion nodes are useful for representing parallel physical activities representing
a . single logical activity, for example transmission of a message across a communication
network as a collection of packets. '

. A fission node has one entrance, an exit for the existing job (referred to as the "parent"),
, 'and an additional exit for each new job to be produced. The produced jobs are referred to as
"children." Children may themselves enter fission nodes, thus Pproducing hierarchies of jobs,
_Children are given the same job variable values as the parent. The chlldren do not’ possess
" tokens, whether or not the parent does. A visit to a fission node is instantaneous, as far as
simulated time is concerned. Jobs are not allowed to leave the network (i.e., by going to sznks) as
long as they have relatives (parents or children). - If this rule is violated, the 51mulat10n termi-
nates. ‘ :

In RESQ diagrams a fission node is represented by a triangle with the entrance at one
vertex and the exits on the opposite side. This corresponds to the split node representation
* except that the triangle is not divided into separate sub-triangles for the parent and child exits.
~ In the dialogue syntax, fission nodes are treated exactly the same as split nodes, except that
(1) the keyword "FISSION" is used instead of the keyword "SPLIT," (2) there is an
interactive prompt to optionally declare the names of fission nodes, and (3) in.dialogue files,
if .the names of fission nodes are declared before the routing definition they are declared after
declarations for split nodes, if any split node declarations are present.

.. A fusion node provides a place for jobs to wait for related jobs (parents or children). A
" fusion'node has no effect on jobs without relatives. Such jobs pass through a fusion node
without delay or other effect. No more than one job of a "family" can stay at a fusion node.
If a job arrives at a fusion node and it has relatives, but none of its relatives .are at thig
particular fusion node, it waits at the fusion nodes. When a job arrives at fusion node and it
has a relative at this particular fusion node, two things can happen, depending on the relation-
ship between the jobs. If one is the parent and the other is a child, then the offspring is
destroyed. If both are children, the one that was produced last is destroyed. Before a child is
destroyed, any tokens it holds are released. After destruction of one job, if the other job has

April 3, 1982

SEC. 8.2 / Fission and Fusion Nodes ‘ | : o o 51

_‘no remarnlng relatives; it proceeds from the exit of the fusion node. If the other Job stlll has‘
other relatives; it wa1ts at the fusron node for another relative to arrive.

, 'In RESQ diagrams fusion nodes are represented, by a triangle with the exit(s) at one
.vertex and the entrance(s) on the opposite side.. Names of fusion nodes must be declared as
such. The declarations follow the declarations of fission nodes, if any fission nodes are .
declared. -A fusion node declaration line cons1sts of "FUSION NODES:" followed by a 11st of
names of fus1on nodes e.g., :

FUSION NODES:a
FUSTON NODES:b ¢ d(*) e

As mentioned above a Chlld may go to a fission node to produce its own chlldren There'
are two rules which must be kept in mind: :

1. Whenever a job visits a fission node, it producesits immediate descendents
" ie., a job-can never directly produce grandchildren.
~2.. Related jobs more than one generation apart, e.g., grandparents and
’ grandchlldren may not be present at the same. fus1on node. If this rule is
_Vlolated the slmulatlon wrll terniinate. '

An 1mmed1ate consequence of these rules is that it is usually necessary to- have (at least one).»
separate pa1r of fission and qulOIl nodes for every generation of]obs that is to be produced

- | A

__"

G1FISS 8 G2FISSA D G2FUSA F e
TO—<=10—= i
| G2FISSB E G2FUSB

C
110z <:]O_:

Figure 8.2 - Nesting of Fission and Fusion Nodes

Figure 8.2 illustrates an abstract set of fission and fusion nodes which might be tailored
to-a variety of purposes.” For example, suppose a communication network is such that’
‘messages must be broken into packets for transmission and must be broken into sub- packets
for transmission across certain links. Further, a message consists of exactly two packets and.a
packet consists of exactly two sub-packets. Node glfiss (generation 1. fission) in the figure
could represent breaking the message into packets. Since a job that ‘enters. glfiss: cannot -

- directly generate grandchildren, it generates two children, ‘representing the packets. Queue a
would be eliminated in this case and the jobs that enter glfiss-would go directly to glfuse
The chxldren leaving glfiss would be ‘transmitted across - the portlon of the network allowmg

April 3, 1982

52 | SPLIT, FISSION, FUSION, DUMMY NODES / SEC. 8

full packets, e.g., queues b and c¢ in the figure. Then they reach g2fissa and g2fissb, where
they produce children to represent breaking the packets into sub-packets. A child represents .
~ one sub-packet and a grandchild represents the other. After transmission across the portion of
the network requiring sub-packets, e.g., queues d and e in the figure, a child and grandchild
can reunite at the generation 2 fusion nodes to represent assembling the sub-packets into
packets ‘The child (packet) then proceeds further across the network, e. g., through queue f in
the figure to the generation 1 fusion node. When both children have reached the fusion node,
thelr parent (representing the reassembled message) leaves the fusion node.

Many other situations can be represented by tailoring of ‘the figure. In some situations it
would be appropriate to eliminate the second child and its grandchild (the ones associated with
queue ¢, g2fissb, queue e and g2fuseb). Note that it would not be correct to have another
fission/fusion pair along the parents path. In that case, the parent would stay indefinitely at
the added fusion node after arriving at that fusion node, while the children produced at glifiss
' Would stay indefinitely at glfuse after arriving at glfuse :

8.3. Dumlﬁy Neodes

Dummy nodes are used in routing definitions to allow specification of routing not
otherwise possible and/or to clarify specification of routing. Dummy nodes have no other
effect on the jobs or the network. With split and fission nodes, the syntax of the routing does
not allow decision mechanisms (probabilities and/or predicates) for jobs leaving the exits.
~ The exits may be names of dummy nodes, and then the normal decision mechanisms may be
used with regard to routing from the dummy nodes. With submodels; only one primary entry
point (the input synonym) and one primary exit point (the output synonym) may be defined
per external routing chain. A dummy node may be used as the primary entry (exit) point
when ‘more than one entry (exit) point is desired. However, the use of node parameters
should be considered as an alternative in this situation. The second example in Appendlx 1
1llustrates both approaches. :

Names of dummy nodes may be implicitly declared as with names of split and fission
nodes. In the case of dummy nodes, there will be nothing in the routing explicitly identifying
the node as a dummy node. The same warning message discussed with split nodes will occur
with implicit declaration of dummy node names. Dummy node names-may be declared
~explicitly as with split and fission nodes. Dummy node declarations may be given only in
dialogue files. Dummy node declarations follow fusion node declarations. Each line consists
of "DUMMY NODES:" followed by a list of dummy nodes, e.g., : '

DUMMY NODES:a
DUMMY NODES:b c d(*) e

o | ' April 3, 1982

53
9. ROUTING CHAINS

~This sectlon covers ‘the syntax and semantrcs of the declarauon of ‘routing chams '
Routlng chains define the routing among nodes of the network Ai.e., they chain the nodes
together. Routing chains are usually referred to simply as '"chains." Each node of the network
belongs to exactly one chain, with the exception of the predefmed node ' smk" which may be
used in several chains. : : '-

There are two basic types of ‘chains, closed and open. Closed chains have a fixed.number
of jobs (the "population') which remain among the nodes of the chain throughout the
simulation. Open chains have a (usually) fluctuating number of]obs Jobs leave the: cham .
(and the network, simultaneously) by going to the predefined node "sink", which may be used
in all open chain definitions. An open chain usually also has one or more sources for external
“arrival of jobs, but sources are not strictly necessary in an open chain since jObS 1n1t1ally
placed in the chain may. produce additional jobs by visiting split nodes. Initial placement of
‘jobs at the beginning of simulation, for both closed and open chains, is discussed in Section
12.. Sources are declared within open chain declarations. Figure 9.1 shows. the dlagram
symbols for sources and sinks. (The symbols are the same except for direction of. the arrows.)

SOURCE ~ SINK.

~ Figure 9.1 - Source and Sink - “

R In addmon to basrc chain . types closed and open, submodels have chains declared ‘as
"external." External chains are those declared as chain parameters at the begrnnlng of a
submodel definition (Section 3).. An external chain in a submodel is really only part of ‘a’
chain, with the remaining part to be defined in the model (or submodel) that invokes .the

- submodel. An external chain is determined to be either closed or open by the type of chain -

that it is connected to. Submodels may also have chains which are strictly 1nternal ‘to the "
submodel these charns are declared as closed or open in the submodel. ‘

The definitions of chains in the model proper and of internal chains in submodels follow -
the same rules. The definition of external chains is sufficiently similar that we. discuss -
definition of routing chains in general and indicate the differences betWeen these two. situa-
tions as approprrate

The deflnmon of routrng charns within a model or submodel follows the defrmtlon of

, queues other nodes (set nodes, spllt nodes, fission nodes, fusion nodes, dummy nodes), ’
‘submodels and submodel invocations so that all nodes to appear in the routing have been
declated.. Submodels and submodel invocations are discussed in. Section. 10. (Sources are.
necessarlly assocrated with a particular chain and are declared within the chain definition,

Split, fission: and dummy nodes may ‘be implicitly declared in the routing as d1scussed in
Section 8.). Chains which are not elements of chain arrays are declared 1nd1v1dually Cha1nr

- arrays are declared collectrvely We first consider chains which are not elements of cham‘ ‘

arrays, ‘then we. consrder chain arrays.
9.1, Ivndiv'idual'Chain Definitions

"A chain def1n1tron begrns with a 11ne w1th "CHAIN " followed by the name of the chaln
This will be the first occurrence of the name of the chain unless (1 thls is an external chain

April 3, 1982

54 S ROUTING CHAINS / SEC. 9

definition within a submodel, in which case the name will have previously been declared as a
chain parameter or (2) this chain name has been supplied as the value for a chain parameter
in-an: invocation of a submodel.. Following the cham name line is the chain type line, which
consists .of "TYPE:" followed by "closed", "open'" or "external'. ‘The next few lines,
preceding the actual definition of routing within the chain, are dependent on the chain type..

9.1.1. Closed Chain Definitions

With a closed chain, the only line preceding the routing definition lines is a line giving the
chain population. This line consists of "POPULATION:" followed by an expression for the
number of jobs in the chain. This expression must be simulation 1ndependent (as defmed in
Appendlx 3). For example ‘we might have : ‘ : :

" CHATN:c
TYPE:closed .
POPULATION: users

for the beginning of the declaration of a closed chain.
9.1.2. Open Chaih Definitions

With . an open chain there will usually be a pair of lines preceding the actual routmg
definitions, for declaration of sources. Declaration of sources is optional, because of -the
possible use of split nodes suggested above and the possible definition of sources with external
chain definitions as discussed below, but if no sources are declared in an open chain, a
warning message will. be produced. There is only provision for one pair of source declaration
lines because a single source is usually sufficient, and if many sources are necessary, concaten-
ation may be used to make each line of the pair arbitrarily long. The first of ‘the pair lists the
~ names of the sources and consists of "SOURCE LIST:" followed by the names. The second
‘line defines the interarrival time distributions for these sources. It consists of "ARRIVAL
TIMES:" followed by a list of expressions, one per source. For example, we might have -

CHAIN:C
TYPE: open
' SOURCE LIST:s
'ARRIVAL TIMES:1/msg_rate

for the beginning of the declaration of an open chain.

If an arrival time expression, after resolution of parameters and identifiers, cbntams no
"references to RESQ probablhty distribution keywords, then the value of the’ expressxon is
interpreted as the mean of a (negative) exponential probability distribution. “(Exponential
interdrrival times produce a Poisson arrival process.) (The RESQ probablhty distribution
- keywords. are BE, DISCRETE, STANDARD and UNIFORM. See Appendix 3 for further
; dlscussmn of distributions.) If the expressxon does contain at least one dlstrlbuuon keyword,

_then the expression is used directly. In either case, when a source arrival is to be scheduled, a
sample is obtained from the arrival time distribution. If CV(0) is 1 for this chain (as it is
initially), then the next arrival is scheduled at the current time plus the arrival time sample.
However, if CV(0) for the chain varies from one, the timing: mechanism is more complex,
Changing CV(0) (using a set node) gives arrival times dependent on the current state of the
simulation. This can be used to give arrival times dependent on simulated time (for example,
" to represent arrival processes dependent on time of day), on numbers of jobs at various queues

(to represent arrivals dependent on congestion), etc. CV(0) is used as an arrival rate factor,
- Assuming CV(0). is positive, all samples from arrival time distributions’ are divided by CV(0)

April 3, 1982

SEC. 9:1.2 / Open Chain Definitions T o s

to give the time until the next arnval If CV(0) changes between the time the arnval is
scheduled and the ‘scheduled time of the arrival, then the remalnmg time until the atrival is
multiplied by the old value of CV(0) and (assuming CV(0) is still positive) divided by the new
value of CV(0). The arrival is rescheduled at the current time plus this modified remaining
time.. If CV(0) ever becomes zero (or negative) then the source is shut off and will prodhce
no more arrrvals during the simulation, regardless of future changes to CV(0).

9.1.3. External Chain Definitions

With an external chain, prior to. the actual routing definition there is a pair of lines to
" define the input and output synonyms. The first line of the pair consists of "INPUT:"
followed by the name of a single node in the submodel which may be referred to as "input" in
the invoking model (or submodel). The second line of the pair comsists of "OUTPUT:"
followed by the name of a single node in the submodel which may be referred to as ''output"
~ in the invoking model (or submodel). In dialogue files only, a second pair of lines may be
given to define sources to be part of the chain. The rules for this pair is the same as for the
source declaration pair of lines in open chains. Source declarations here force the value given
to the chain parameter being defined as an external cham to be an’ open chaln Followmg is -
an example of a possible definition -

CHAIN:c

TYPE:external

INPUT :getmemory

OUTPUT: freememory
~for the beginning of the declaration of an external chain.
9.1.4. Routing Definitions

Following» the chain type specific declarations discussed: in Sections 9.1".1‘v-.9‘._1.‘3_,' ‘the

remainder of the chain definition is a series of lines defining the routing among the nodes of
the chain. These lines are optional in an external chain, as illustrated in the chain definition in
submodel iosys" in the example in Section 1.3. Fach of these lines begms with a colon (" ")
and describes the routing between two or more nodes.

" The srmplest routing line declares an unconditional directed path between two" nodes It
~"consists of 'a ¢olon (":") followed by a node name, followed by an arrow (''- >") followed by,
~another node name. For example, :

ra->b

" declares that jobs leaving node A always go to node B. L1nes of this form descrlbmg a
sequence of nodes may be concatenated, e.g., the lines '

:a=>b-
1b->c

may be replaced equivalently by
: ae>b—>c
The node names in lines of these forms, and all of the other forms we discuss in this section,

may be individual elements of node arrays, e.g.,

April 3, 1982

56 o R ~ ROUTING CHAINS / SEC.9 .

:d(3)—>é(primarysys+1)
Expressmns mdlcatmg 1nd1v1dual elements must be s1mulat10n 1ndependent (see Appendlx 3).
The node names-in lines of these forms, and all of the other forms we discuss in this sectlon
may be submodel input/output synonyms, qualified by the submodel invocation name, e.8.

:invocj.output—>invoc2pinput
rinvoc2.output->invocl. input

~ Several separate unconditional paths may be grouped together, e.g.,
:a->b ‘ :
:nodel->node2
:node3—>node4
_may be expressed on a single line as

':a‘node1 node3->b node2 nodel

“In cases like these where the nodes on the right 51de are the same, the node name need not be
repeated and additional paths may be added on the right. For example, the lines :

.:dlsk1—>cpu
:disk2->cpu.
:disk3->cpu
rcpu->drum.
may be expressed on a single line as
:disk1 disk2 disk3->cpu->drum
Paths must not be specified more than once, e.g., the following would be incorrect:
::disk1—>cpu—>drum
:disk2~>cpu~>drum -
:disk3=>cpu->drum
(This example would produce an error message from the EVAL command that the probabili-
ties from node "cpu" do not sum to 1.) A set of unconditional paths between node. or
invocation arrays may also be expressed on a single line, provided both arrays involved have
the . same number of elements. For example, if A and B are invocation -arrays, ¢ach with N

_elements, then the set of lines

a(1)§output—>b(1).input
:a(2).output->b(2) .input

:;;ﬁ).output—>b(N).input
may be expressed on a single line as
:a(*).output—Sb(*).input /*"(*)" is optionai*/
Conditional routmg may be based either on probabilities or on pred1cates A predlcate

- is an expression with a true or false value.” The simplest conditional routing line begins as with

April 3, 1982

SEC. 9.1.4 /'Routing Definitions = RENER | s
a s1mple unconditional path, i.e., a colon ("':") followed by a node name, followed by an arrow

("->"), followed by another node name. A semicolon ('';") and. either a probability expres-
sion or.a predicate expression follows the second node name. For example, we mlght have '

:a->b;pb
ra=->c;pc - .
ra->d; 1- (pb+pc)

or

x=>y;1f (Jv (count)>0)
x=->z;1f(t)

Probability expressions must have values in the [0,1] interval. (An unconditional 'path'is'
represented internally as a conditional path with probability 1.) Probablllty expressions may be
simulation dependent (Appendix 3). Predicate expressions are normally simulation dependent
otherwise the routing may be expressed unconditionally. Predicate expressions. begin with .
"if(" and end with ")". Conditional expressions are evaluated in the order listed, e.g., in the
above example the predxcate for the path from X to Y will be evaluated first. il represents o
the constant "true" value, e.g., in the above pair of lines, jobs leaving node X will always go’
to node Z if they do not go to node Y. Predicates are deflned in detail in Appendix 3.

Predicates and probabilities may be mixed in descnblng condmonal routlng For example
if we want to go in a clockwise direction if recent delays have been shortest in that direction
and in a counterclockwise direction if delays have been shortest in that direction but, if recent
delays have been the same in each direction, choose randomly between the two dlrectlons we
might have :

:sourcel->cw_path;if (delay_cw<delay_ccw)
isourcel->cew_path;if (delay ccw<delay cw)
:sourcel->cw_path;.5
:sourcel->ccw _path; .5

The possible destlna‘uons are considered in order. Predlcates are evaluated. 1ndependent1y of .
probabilities. - Probabilities: are evaluated as if predicates were not involved. The followmg'
algorlthm defines the mechanlsm more formally:

next. node_. chosen=false
_random value=uniform random number on (0, 1) 1nterva1
do whlle(-.next node__chosen) :
1f list__of destinations is empty then
mgnal error(no destination found’)
get next possible destination
if probability for this destination then
-if random___value< probability then
~ next_ node_ chosen =true '
else
random__ value=random__value— probablllty
else /*predlcate*/ '
next__node _chosen=predicate
end '

When the algorithm terminates normally, fhe last destination examined is the one used.

~ April 3, 1982

s8 | | ~ ROUTING CHAINS / SEC. 9

Several conditional paths may be grouped together on the same line when the node left is
~the sarie.. For- example the last three examples could be expressed on the same hne as

:a->b‘c,d;pb pc 1—(pb+pc)

:x=>y z;if (§v(count)>0) if(t)

:sourcel->cw_path ccw path cw_path cow path; ++
if(delay_cw<delay ccw) if(delay ccw<delay cw) .5 .5

Conditional paths mey be added on the right side of lines with unconditional paths, e.g.,
PU=D>V->w->x->y z;if (Jv.(count)>0) if(t)

Where a line expresses all conditional paths those paths have equal probabilities and . the
probabilities ‘are the inverse. of the number of nodes explicitly named, the semlcolon and
probablhtles may be omitted, e.g.,

1a->b c_d;1/3 1/371/3
may be expressed as
Sia->b ¢’ d
However, if E is a node array with 2 elements,
“ra=>b c d e(*)
W‘ould be eqﬁivalent to
:a~>b ¢ d e(1) e(2);1/4 . 1/4 1/4 1/4 1/4

an incorrect specification because the probabilities do not sum to one, The EVAL ‘comvmand
or its equivalent would detect this, but the SETUP. command would not, since the expressions
might depend on numeric parameters.

9.2. Chain Array Definitions

All elements of a chain array are defined collectively and may not be defined individually.
All references to nodes, except in status functions in predicates, must be to node arrays with
the same numbers of elements as the chain array. Numeric values may be given by scalar
‘expressions, which will be interpreted as vectors with.homogeneous ¢lements, by numeric
vectors with the same numbers of elements as the chain array, or, in situations involving
invocation arrays, by numeric matrices where the numbers of rows are the same as the
numbers of elements in the chain array and the numbers of columns are the same as the
numbers of elements in the invocation arrays. Distribution values are given either by scalar
expressions, which are interpreted as vectors with homogeneous elements, or by distribution
vectors. Predicates may be given only as scalar expressions, which are interpreted as vectors
with homogeneous elements. Names of vectors are optionally followed by "(*)" and names of ‘
matrices are optionally followed by "(*;¥)".

The form: of chain array definitions is essentially the same as that of individual chain
definitions. The definition begins with the "CHAIN:" line. The name of the (previously
declared) chain array is given. The chain types allowed are the same as with individual chains.
With closed chains, the population line gives a numeric array with the respective populations

April 3, 1982

SEC. 9.2 / Chain Array Definitions L

or a numeric expression giving the population to be used for all of the elements of the chain
_array. With open chains, the names given for the source list must be (previously declared)
names of node arrays. The elements in the arrival time list will either be names of arrays
(numeric or distribution) or scalar expressions to be interpreted as homogeneous vectors.

With external chains, the input/output synonyms will be (previously declared) node’ artays;
The source definitions, if given, will follow the same.rules as with open chains. The routing
definitions follow essentially the same rules as with individual chains, with node arrays takmg
the place of individual nodes. ‘ :

- The foﬂowing example illustrates definition of a chain array.

CHAIN:interactiv (*)
TYPE:external .
INPUT: setcmdtype (*)
~QUTPUT: freemenmory (¥) L S - o
setcmdtype(*)—>getmemory(*)—>cpu(*)—>iosys(*).input(*);prob(*;#)
:iosys (*) .output(*)->decrcycles (*) TR
decrcycles(*) >cpu(*) freememory(*) 1f(jv(cyclecount)>0)‘if(t) 1r

‘The main: point to be noticed is the mapping of the rows and columns of the matrix "prob."
- Prob(*;1) contains the probabilities of the conditional paths from cpu(*) to iosys(1).input(*),
prob(*;2) contains the probabilities of the conditional paths from cpu(*) to iosys(2).input(*),
and: so on. - This definition would have ‘the same interpretation if just the array names were -
given, without the "(*)" and "'(*;*)". : : e

April 3, 1982

60

10. SUBMODELS

ThlS section covers:the syntax and semantics of the declaration and invocation of
submodels Previous sections have covered most of the components of submodel declaration,
since these components are ‘essentially the same as the components of model definitions. This
section will give a global look at submodel declaration and a detailed look at invocation of
submodels. ‘The examples in Appendix 1 illustrate some of the issues discussed here.

10.1. Submodel Declarations

Submodel declarations follow the declarations of all queues and nodes in the enclosing
model or submodel, e.g., after declaration of dummy nodes. A submodel declaration begins
with a line declaring the name of the submodel, "SUBMODEL:" followed by the name of the
submodel. The sections of a submodel declaration parallel the sections of model definitions.
In order, they are ‘

o . Declaration of parameters, identifiers, variables and arrays (Section 3). At least one
chain parameter must be declared. Otherwise this section is optional.- ‘ '

. Dec_lafation of queue types (Section 6). This section is optional.

o "Declaration of queues (Sections 4 and 5). - At least one queue or node must be
- declared ‘within a submodel. Otherwise this section is opuonal

« - Declaration of set nodes (Section 7). At least one queue or node must be declared
within a submodel. Otherwise this section is optional.

. Declaration of split, fission, fusion and dummy nodes (Section 8). At least one
queue or node must be declared within a submodel. Otherwise this section is
‘optional. ‘ '

“s:. Declaration of submodels. Submodel declarations may be nested within submodels,
as illustrated in the example of Section 1.3. This section is optional.

« Invocations of submodels (Section 10.2). Submodel invocations may be nested
within. submodels, as illustrated in the example of Section 1.3. This section is
optional. »

« . Declaration of routing chains (Section 9). At least one external chain must be
declared within a submodel. Otherwise this section is optional. .

The. end of a submodel declaration is indicated by a line of the form "END OF SUBMODEL
name ' where ''name" is the submodel name.

As in nested procedure definitions in block structured programming languages (e.g., PL/I
or Pascal), names used outside of a submodel definition may be reused within submodel
definitions. When names are reused in this manner, the new definition persists within the
submodel definition and the old definition is restored after the qubmodel definition is complet-
ed.

Following is the submodel definition used in the example of Section 1.3.

April 3, 1982

SEC. 10.1 / Submodel Declarations E S ' ; 61 »

SUBMODEL : Cssm /*Computer System- Submodel*/
NUMERIC PARAMETERS :pageframes
CHAIN PARAMETERS: interactiv
" NUMERIC IDENTIFIERS:cmdtype cyclecount
- CMDTYPE:0Q /*JV(0) to be used to indicate command type*/
CYCLECOUNT: T /*JV(1) to be used to count CPU-I/0 cycles*/
NUMERIC IDENTIFIERS:cpiocycles(3) pageneed(3)
CPIOCYCLES: .8 15 50
PAGENEED: 20 24 30
NUMERIC IDENTIFIERS:cputime
CPUTIME: .025 /*mean time: in seconds*/
QUEUE memory
_ TYPE:passive
TOKENS : pageframes
DSPL:fcfs
ALLOCATE NODE LIST:getmemory. :
NUMBERS OF TOKENS TO ALLOCATE: pageneed(jv(cmdtype))
RELEASE NODE LIST: freememory ; :
QUEUE: cpug
TYPE: ps
CLASS LIST:cpu’
SERVICE TIMES: cputlme
.SET NODES:setcmdtype : . g ;
ASSIGNMENT LIST: jv(cmdtype) =discrete(1,.8;2,.15;3,.05), ++
o jv(cyclecount) cplocycles(jv(cmdtype)) o
SET ‘NODES: decrcycles
© ASSIGNMENT LIST: jv(cyclecount) jv(cyclecount)—1
SUBMODEL: iosys : ' :
CHAIN PARAMETERS:interactiv
QUEUE TYPE:diskdef
NODE PARAMETERS: serv1cecls
TYPE:active
SERVERS: 1 .
DSPL: fcfs:
CLASS LIST:servicecls
WORK -DEMANDS: .06
SERVER" -
END OF QUEUE TYPE DISKDEF
QUEUE:diskqg
TYPE:diskdef
SERVICECLS:disk
CHAIN:interactiv
TYPE: external
INPUT:disk
OUTPUT:disk
- END OF SUBMODEL:. I0OSYS
INVOCATION: iosys 1
- TYPE:10syS
INTERACTIV:interactiv
INVOCATION: iosys2
CUTYDPE: iosys: 1nteract1v
CHATN:interactiv
‘TYPE:external
INPUT: setcmdtype

April 3, 1982

62 B s ~ SUBMODELS / SEC. 10

OUTPUT: freememory ‘
:setcmdtype->getmemory~->cpu- >1osys1 input iosys2. 1nput 5.5
:1losys?.output iosys2.output->decrcycles :
:decrcycles->cpu freememory,1f(jv(cy¢lecount)>0) if(t) .

END OF . SUBMODEL CSSM : '

10.2. Submodel Invocations

Invocation of a submodel creates an actual subnetwork with the characteristics of the
submodel declaration. The remaining characteristics of the subnetwork created by the
invocation are specified by the parameters given with the invocation. The queues, nodes and
- global variables defined in the submodel declaration do not actually exist until the submodel is -

invoked. The queues nodes and global variables are properly part of the invocation and not
“the submodel :

A submodel invocation begins with the line naming the invocation, "INVOCATION:"
followed by the name of the invocation. The remainder of the invocation is syntactically the
sanie as the invocation of queue types discussed in Section 6. The second line begins with
"TYPE:" followed by the name of the submodel to be invoked. The remainder of the
invocation supplies values (arguments) for the parameters declared in the submodel definition.
There are two ways to do this, a positional short format and a format which explicitly matches
parameter names and values given. - The positional format is analogous to procedure calls and
similar statements in programming languages. On the type definition line, following the name
of the user defined type is a colon ("':") and then a list of values, with the values separated by
semicolons (";"). For example, the second 1nvocat10n of "iosys" in the above example uses
the positional format: : ' '

INVOCATION: iosys?2
TYPE:iosys: interactiwv

In the matching format, in interactive mode there will be a prompt for every parameter, where
the prompt consists of the name of the parameter followed by a colon ("':'"') and the reply is to
be the value. The prompts will be in the order the parameters- were declared. In dialogue
mode there must be a line for every parameter, consisting of the parameter name followed by
a colon followed by the value. In dialogue mode these lines may be in any order. They need
not be in the order the parameters were declared. For example the 1nvocat10n of "cssm" in
the example of Section 1.3 uses the matching format:

INVOCATION: cssml
TYPE:Ccssm)
PAGEFRAMES :userframes

" CINTERACTIV:interdctiv

In elther format, a parameter value must be either a single expression or a single name. Where
parameters are declared as vectors, parameter values must also be vectors.

Invocation arrays are declared on the line naming the invocation by following the name
with a parenthesized expression for the number of invocations in the array. This expression
must be simulation independent (Appendix 3).. The elements of invocation arrays must have
the same parameter values. ~The two invocations of '"iosys" in the example of Section 1.3
could be replaced by an invocation array with two elements, e.g.,

April 3, 1982

.

SEC. 10.2 / Submodel Invocations g ’ : R -

END .OF SUBMODEL I0SYS
. INVOCATION: iosys1(2)
TYPE:i0sysSs :
INTERACTIV:interactiv
CHAIN: interactiv
TYPE:external
INPUT:setcmdtype
OUTPUT: freememory . :
:setemdtype- >getmemory >cpu- >;osys1() .input;.5
:iosyst (*). output- >decrcycles
rdecrcycles->cpu freememory; 1f(jv(cyclecount)>0) if(t)’
END OF SUBMODEL ' CSSM ‘

10.3. Node Parameters

In some cases a submodel may not naturally have only one entry point or one exit point
for a given chain. In some cases it will be possible to add a dummy node (or nodes) to the
submodel to transform it to one with a single entry point and a single exit pomt In general it
may not be. possible or desirable to restrict a chain to having a single entry’ point: and/or a -
single exit. point. Node parameters may be used to provide multlple entry/ex1t points for a

chain i in a submodel.

“A node parameter allows the submodel definition to refer to a node in the invoking
(sub)model. The nodes passed as parameters exist only in the invoking (sub)model.- Within the
(sub)model, node parameters may be used only in the routing definition and in status functions.
Thus node parameters may not be used in prompts for node lists and may not be glven the
mput or output synonyms.

The routing definition within a submodel may specify routing directly from node parame-
ter to node parameter. However, certain restrictions hold on the expressions -allowed: for
routmg predicates and probabilities in such a situation. We will discuss these restrlctlons after'
the followmg example. :

Section 3 has already discussed the syntax of node parameter declarations. We now.

consider an abstract example to illustrate the node parameter mechanisms. -The second and' :
third examples in Appendix 1 1llustrate concrete applications of node parameters :

| 02(91)' . c3(P2)
-0

Figure 10.1 - Node Parameter Example

Suppose we wish to have a tandem network of four qileoes as depicted. in Figure]1:0.1.. :
Further, we wish to have classes cl and c4 belong to the same submodel but have clagses c2

April 3, 1982

64 | | | SUBMODELS / SEC. 10

and c3 belong to the invoking submodel. Thus we necessarilty have two inputs and two
~outputs for the submodel. We might use the following submodel definition.

SUBMODEL:One__ four :
.NODE. PARAMETERS:p1 p2
CHAIN PARAMETERS:cC
QUEUE:q1

TYPE:fcfs
CLASS LIST:c}
SERVICE TIMES: .25
QUEUE: g4
TYPE: fcfs
CLASS LIST:c4
SERVICE TIMES:.25
. CHAIN:c v
TYPE:extexrnal .
INPUT:c1
OUTPUT: c4
:cl->pi
sp2->cd
END OF SUBMODEL ONE_FOUR

'Here we have let classes cl and ¢4 have the input and output synonyms, respectively, and we
“have let classes c¢2 and ¢3 be passed to the submodel as parameters pl and p2. (Classes c2
and c¢3 are assumed to be defmed in queues of the 1nvok1ng model.) We could use the
followmg mvocat10n v ~

- INVOCATION: inv
TYPE:one_four
Pl:c2
P2:c3

: C:c

- CHAIN:cC
TYPE: open
SOURCE., LIST:s.
ARRIVAL TIMES:.5
:s->inv.input
:c2->c3
:inv.output->sink

The definition of the routing from c2 to c3 can be expressed either in the invoking model; as
we have done, or in the submodel by using a routing transition from p1l to p2. If we have a
direct path specified between node parameters in a submodel definition, then the probability
or-predicate expression may not include references to global variables local to the submodel,
may not include references to any queues (in status functions) except queues in the outermost
model ‘and may not include references to any nodes (in status functions) except nodes in the
putermost model. For example, in submodel one _ four a line of the form

1p1->p2 c4;1f(ql(c2)<5) if(t)

would be acceptable, but S o N

April 3, 1982

SEC. 10.3 / Node Parameters | | e 65
ip1->p2 cl; 1f(ql(c1)<5) if(t)

would not be acceptable Note that dummy nodes may be added to a submodel to cucumvent
this restriction, e. g, .

ipl1->d=>p2 c4;if (gl(c1)<5) if(t)

where d is a dummy'nbde, _(decl'ared within the submodel) would be accepteble.

10.4. Sumedel Nesting Structures
~ We have already discussed and 111ustrated common submodel nesting structures Typmal— o
ly, when invocations are included within a submodel, the definition of the invoked submodel is
also included in the submodel containing the invocation. However, thls is not strictly neces-
sary.. Consider the following dialogue sketch. ’
MODEL:a
SUBMODEL:b
SUBMODEL: ¢
‘END OF SUBMODEL C
INVOCATION:c1

TYPE:cC

END OF SUBMODEL B
SUBMODEL: d

SUBMODEL: ¢
END OF SUBMODEL C
INVOCATION:c2
TYPE:C
END OF SUBMODEL D-
END
If the definition of submodel C is the same in both instances, then it would be more conven-
ient for the user to have a single copy of the definition, so that any changes could be made
once instead of twice. (It would also take less time for SETUP to process the dlalogue Y Thus. .
we mlght use . : o S
MODEL: a
'SUBMODEL: ¢

END OF SUBMODEL C
SUBMODEL:b .

INVOCATION:c1
‘TYPE:C

April 3, 1982

66 | SUBMODELS / SEC. 10

e .

END OF SUBMODEL B
SUBMODEL:d

INVOCATION: c2
. TYPE:cC

END OF SUBMODEL D

END

Submodel definitions and invocations must be such that a submodel definition is in either
(1) the same submodel which contains the invocation or (2) the model (i.e., it is not nested
within another submodel definition). Note that these rules do not preclude having submodel
definitions and invocations in submodel C. It is difficult for the simulation component of
'RESQ to verify that these rules have been followed; if they are violated, the violation may not
be detected. ' ' ‘

In situations such as this one must be careful about different elements with the same
name. As in most programming languages, the "static chain of reference" is followed. The
static chain of reference considers the static structure of declaration, as opposed to the
"dynamic chain of reference," which considers the structure imposed by the invocations.

For examplé, if both the model A and the submodel B of the eﬁ;ample have a queue

named "q", and there is a reference to ''q" in a status function, e.g.,

MODEL: a
éGﬁUE:q
SUBMODEL: ¢
| .:alpha—>beta;if(ta(q)>0)

END OF SUBMODEL C
SUBMODEL: b

QUEUE: g

INVOCATION:c1
TYPE:C

END OF SUBMODEL B
SUBMODEL : d

INVOCATION:c2
TYPE:cC

END OF SUBMODEL D

 END

“April 3,.1982

SEC. 10.4 / Submodel Nesting Structures. 6T
then the two different nesting structures will give different results. In t_his‘examble,' the " ".'_ |
teferred to in the TA status function will be the one defined in the model, not the '"q" defined
in submodelB.. L TR ’ o S T i

~ April 3, 1982

68

11. NUMERICAL SOLUTION

The discussion in the other sections of this document generally assumes that simulation
will be used to obtain model solutions. However, numerical solution is feasible and, usually,
dramatically less expensive than simulation for a subset of the models allowed by simulation.
‘Computational expense may be large with numerical solution with models with closed chains and
substantial closed chain populations and/or with models with closed chains and several queues with
queue length dependent service rates.. The first example in Appendix 1 illustrates the use of
- numerical solution. The numerical solution component of RESQ uses the "mean value
- analysis" (MVA) algorithm discussed in

S.S. Lavenberg and C.H. Sauer, "Analytical Results for Queueing Models," S.S.
Lavenberg (Editor), Computer Performance Modeling Handbook, to appear, Academic
Press (1982).

E.A. MacNair and S. Tucci, "Implementatlon of Mean Value Analysis for Open,
Closed and Mixed Queueing Networks," to appear as an IBM Research Report.

The following réstrictions apply to a model to be solved numerically:

1. . In open chains, arrivals from sources must form a Poisson process. Arrival
rates are constant, i.e., CV(0) must remain 1. Therefore, only an exponen-:
tial interarrival time distribution can be given for each source.

2. The routing must be completely specified using only probabilities. No
predicates can be used for any routing decisions.

3. ~The only nodes allowed are classes, sources and sinks. (Passive queues are
not allowed.)

4. Only four queueing disciplines are allowed: FCFS, PS, LCFS and IS. W1th .
FCFS, there is a further restriction that all classes at a quene must have the
same exponential service time distribution. No priority disciplines are

.. permitted.

5. At queues with multiple servers all servers must have the same characterls-
tics.

6. The performance measures produced are utilization, throughput, mean
queue length and mean queueing time. WNo distribution estimates are
available. o '

A model definition for numerical solution will consist of -the (allowed) sections described
so far, followed by a line containing an "END" after the last chain deﬁmtlon

April 3, 1982

9

12. SIMULATION DIALOGUES

After the definition of routing chains, the definition of the model proper, i.e., the
extended queueing network, is complete. However, where simulation is to be used, additional -
information is required (1) to indicate distributions gathered, if any, (2) to define the
confidence interval estimation method, if one is to be used, (3) to dictate the initial state of
the simulated system, (4) to define how the simulation run length will be determined, and
(5) to define simulation tracing, if desired. The follow1ng sections discuss the syntax and
semantics of the d1alogue for these simulation dependent characteristics.

12.1. Distribution Gathering

- By default the simulation program will gather mean performance measures. and certain .
other measures for all queues, classes and allocate nodes (including AND and OR allocate
nodes). Throughputs and departure counts are gathered by default for other nodes. . Distribu-
tions of performance measures, e.g., distributions of queueing time and queue length, are only -
gathered upon specific user request. Gathering of distribations is less easily defined by default
and may be computationally expensive unless well defined. - The user may spec1fy that
distributions of ‘queueing time and queue length be gathered for queues, classes and "plain"
allocate nodes (but not AND and OR allocate nodes). In interactive ‘mode there wrll be
prompts for these specrfrcatlons as. illustrated in Section 1.3. These speclflcatlons ‘are
optlonal The aser may also specify that dlstrlbutlons of the number of tokens in use and the
total number of tokens for a passive queue be gathered These specifications may be given
only in dialogue flles We now describe these specifications in the order they would occur in
 dialogue flles ‘ ‘ ' ERRE

© Cumulative queueing time distributions are gathered for queues listed on lines of the form
"QUEUES FOR QUEUEING TIME ~DISTRIBUTION:"' followed by a list of names of queues

(qualified by invocation names if these queues were declared in submodels). For each queue:
~ listed there will normally be a corrésponding line giving the distribution valiues of interest.
" This line consists of "VALUES:" followed by a list of expressions. These expressions must be

simulation independent. The simulation program will estimate the probability. that the -
~queueing time is less than or equal to each of these values. If fewer values lines are given

than the number of queues listed, the last values line will be used for the remaining queues in

the list. This section for queue queueing time distributions may be repeated as necessary F\dr-‘
: example we mlght have the following spec1f1cat10n ‘ o

QUEUES FOR QUEUEING TIME DIS’I‘ cssmt.memory

‘ VALUES:1 2 3 456 7 8

QUEUES FOR QUEUEING TIME DIST: cssm1 1osys1 diskqg cssm1 1osy52 dlskq
VALUES: .03 [06 .12 .24

Queue length distributions will be gathered for queues listed on lines -of the form
"QUEUES FOR QUEUE LENGTH DISTRIBUTION:" followed by a list of names of queues
 (qualified by invocation names if these queues were declared in submodels) For each queue
listed there will normally be a corresponding line giving the maximum queue length of interest:
This line consists of "MAX VALUE:" followed by a single expression. This expression must
- be simulation independent. The simulation program will estimate the probability of each
queue length from zero up to this maximum. If fewer of these lines are given than the number
of queues listed, the last line will be used for the remaining queues in the list. This section for -
queue queue length distributions may be repeated as necessary. For example, we might have,
the following specification: ‘

April 3, 1982

70 : SIMULATION DIALOGUES / SEC. 12.

"QUEUES FOR QUEUE LENGTH DIST:cssmt,memory

MAX VALUE:users o
QUEUES FOR QUEUE LENGTH DIST cssml.iosys1. dlskq cgsml.iosys2.diskqg

© MAX VALUE: cell(userframes/zo

Token use drstrrbutron specrflcatlons are only possible in dialogue files (and ‘only for
passive queues). Token use distributions will be gathered for queues listed on lines of the
form "QUEUES FOR TOKEN USE DISTRIBUTION:" followed by a list of names of queues
(qualified by invocation names if these queues were declared in submodels). For each queue
listed there will normally be a corresponding line giving the maximum number of tokens of
interest.. This line consists of "MAX VALUE:" followed by a single expression. This
expression must be simulation independent., The simulation program will estimate the
probability of each number of tokens in use from zero up to this maximum. If fewer of these
lines are given than the number of queues listed, the last line will be used for the remaining
queues in the list. ‘This section for queue token use distributions may be repeated as neces-
sary For example we mrght have the following speclflcatlon

QUEUES FOR TOKEN USE DIST:cssml.memory
MAX VALUE:userframes ‘ '

Total token distribution specifications are only possible in dialogue files (and only for
passwe queues). Total token distributions will be gathered for queues listed on lines of the
form "QUEUES FOR TOTAL TOKEN DISTRIBUTION:" followed by a list of names of
queues (qualified by invocation names if these queues were declared in submodels). For each -
queue listed there will normally be a corresponding line giving the maximum number of tokens
of interest. This line consists of "MAX VALUE:" followed by a single expression. This
expression must be simulation independent. The simulation program will estimate the
probability of each number of tokens in the passive queue, including tokens in use, from zero.
up to this maximum. If fewer of these lines are given than the number of queues listed, the
last line will. be used for the remaining queues in the list. This section for queue total token .

distributions may be repeated as necessary. For example, we might have the following
‘ specification: -

. QUEUES FOR TOTAL TOKEN DIST:windowqg
MAX VALUE:2*window-1

Cumulative queueing time distributions are gathered for nodes listed on lines of the form
- "NODES FOR QUEUEING TIME DISTRIBUTION:" followed by a list of names of nodes
(qualified by invocation names if these nodes were declared in submodels). These nodes must
be either classes or "plain" allocate nodes (not AND or OR allocate nodes). For each node
listed there will normally be a corresponding line giving the distribution values of interest.
This line consists of "VALUES:" followed by a list of expressions. These expressions must be
simulation independent. The simulation program will estimate the probability that the
“queueing time is less than or equal to each of these values. - If fewer values lines ‘are given
than the number of nodes listed, the last values line will be used for the remaining nodes in
the list. - This section for node queueing time distributions may be repeated as necessary For
‘ example we mlght have the following specification:

NODES FOR QUEUEING TIME DIST:cssml.getmemory
VALUES:1 23 4 56.7 8

NODES "FOR QUEUEING TIME DIST:cssml.iosys1.disk cssml.iosys2. dlSk
VALUES: .03 .06 .12 .24

April 3, 1982

SEC. 12.1 / Distribution Gathering | R S m
Queue length distributions will be gathered for nodes listed on lines. of the 'form*'NODES

FOR QUEUE LENGTH DISTRIBUTION:" followed by a list of names of nodes (quahfled by |
‘mVOcatron names if these nodes were declared in submodels) These nodes must be either

- classes or "plain" allocate nodes (not AND or OR allocate nodes). For each node listed there -~

will. normally be a corresponding line giving the maximum queue length of interest. This lirie
consists of "MAX VALUE:" followed by a single expression. This expression must be
simulation 1ndependent The simulation program will estimate the probability of each queue.
length from zero up to this maximum. If fewer of these lines are given than the number’ of
nodes listed, the last line will be used for the remaining nodes in the list. This section for
node queue length distributions may be repeated as necessary For example, we mlght have
" the follow1ng specification: :

NODES FOR QUEUE LENGTH DIST:cssml.getmemory
MAX VALUE:users ‘ :
NODES. FOR QUEUE LENGTH DIST:cssml. 1osys1 disk cssm1 iosys2. dlsk
MAX VALUE: cell(userframes/20)

12.2. Confidence Intervals and Run Length

Much: of the remaining dialogue depends on whether confidence interval estimation is
desired, and, if so, which of three methods is chosen. An inherent problem in simulation is the

. statistical variability of simulation estimates of performance measures.. The usual method of

estimating variability of simulation results is to produce "confidence interval" estimates: given
some point estimate p (e.g., for mean queueing time) and other information we estimate a"
confidence interval (p — 8, p + 8). The "true" value (for the extended queueing network) -
is contained within the interval with some chosen probability, say .9. (The confidence 1ntervalv '
does not indicate how accurately the extended queuelng network represents the system belng.
modeled) This probability, expressed in percent, e.g., 90%, is known as the "confidence
level." The quantity 8 depends on the confidence level; the higher the confidence level is; the
larger 8 is. Note that the true value may lie 'outside of the confidence interval, but ‘this
happens only with a small. probability (e. g, 1 — . .1). If a simulation is not run long
enough, or if the performance measure cons1dered is hrghly variable, then § may be greater
“than p.and p — & may be negative even though the performance measure must be non-
negative. - Similarly, for performance measures known to be no greater than 1 e.g, utlllza—
tlons, P and & may be such that p+6> 1 ‘

‘ RESQ provides three methods for confidence interval estimation. ~The methods ‘are
implemented to be as transparent to the user as is practical, i.¢., to minimize user dec1S1on.
making and to minimize required user understanding of the statistical bases’ of the: methods
No one method is best for all app11cat10ns : :

e The method of mdependent replications is the preferred method for estimation of
transient characteristics. - Independent replications may be app11ed to estimation of
equilibrium characteristics, but one of the following two methods will usually be
preferable for estimating equilibrium characteristics, :

. The regeneratrve method is the preferred method for estrmatlon of equrhbrlum’*" k
behavior in models with regenerative characteristics. Many models constructed wrth o
RESQ w111 have regenerative characterrstlcs, but many other models will not '

o The spectral method is the preferred method for estimation of equlllbrlum behav1or

in models without regenerative characteristics. - The spectral method may also be
applied to models with regenerative characterrstlcs The - regenerative met},hodr

April 3, 1982

2 | SIMULATION DIALOGUES / SEC. 12

requires more user sophistication than the spectral method in that the user must be
able to define "regeneration states." Definition of a model to use the spectral

' method is no more difficult than definition of a model to be srmulated w1thout
confldence intervals.

The regenerative method and the spectral method allow automated run length control based on
achieving confidence intervals of a prespecified width.. All three methods, independent
replications, the regenerative method and the spectral method, are discussed from a staustlcal
poxnt of view in

P.D. Welch, "The Statistical Analysis of Simulation Results," S.S. Lavenberg
- (Editor), Computer Performance Modeling Handbook, to appear, Academrc Press
(1982)

We discuss four cases, simulation without confidence 1ntervals and the three confldence
interval methods.

S 12.2.1. Simulation without Confidence Intervdls

After the distribution specification section, the next line is for specification of the
confidence interval method. This line consists of 'CONFIDENCE INTERVAL METHOD:"
followed by "none', '"replications', regenerative" or "spectral". This section assumes that
confidence 1ntervals are not desired, 1e "none" is given on the confidence interval method .
line. . : - (.

The next major section is for specifying the initial state of the network when simulation
begins, i.e., how many jobs are to be placed at which nodes. It begins w1th the line "INITIAL
STATE DEFINITION-". Following this line there will be a triple of lines for each chain
which is not empty in the initial state. Open chains with sources may be left empty in the
initial state. If a model consists only of open chains with sources, then no triples need be
given. A triple must be given for each closed chain or chain array. Initial states of open
chains which are to be non-empty initially are specified as with closed chains. The first line of
.each triple identifies the chain (or chain array) and consists of "CHAIN:" followed by the
name. Chain array names may optionaily be followed by "(*)". The second line of each
triple lists the nodes where jobs are to be placed initially. ~This line consists of '"NODE
LIST:" followed by a list of names of nodes Where the initial state of a single chain is being
defined, these must be individual nodes, i.e., elements of node arrays must be listed separately
(and subscript expressions must be 81mulat10n independent). Where the initial states of chain
arrays are being defined, the names of nodes in the list must be names of entire node arrays
(optionally followed by "(*)'"). These node arrays must all have the same numbers of
elements as the chain array. The third line of the triple gives the numbers of jobs to be placed
at each node in the previous list. This line consists of "INIT POP:" followed by a list of
expressions and/or names of numeric vectors. For definition of initial state of a single chiaid;
the list must cotisist only of simulation 1ndependent expressions, ore per node listed in the
node list line. For a closed chain, the sum of the values of these expressions must equal the
chain. population. For definition of the initial states of chain ‘arrays, this list must have the
same number of elements as the list of node names. Expressions are interpreted as values for
each element in the corresponding node array. Numerrc vectors must have the same numbers
of elements as the chain array. » '

1t is not possible to specify job copies in initial state definitions, e.g, it is not possible to
specify that some jobs are at a class while holding tokens at an allocate node. If we want to
specify jobs at a class which hold tokens, then it is necessary to place them at an allocate node
in such a manner that they will 1mmed1ately proceed to the desired class. For example, if in

April 3, 1982

SEC. 12:2.1 / Simulation without Confidence Intervals S o | 73

the example of Section 1.3 we wish to have 2 jobs 1n1t1ally at queue "cssm1l.cpuq' holding :
tokens of '"cssml.memory" then we should 1n1t1a11y place those jobs at the set node
"essm1.setcmdtype': : s

INITIAL STATE DEFINITION-

CHAIN: interactiv
NODE LIST:terminals cssml. setcmdtype
VINIT POP: users-2 2.

_ When the simulation begins, the jobs will get tokens and go lmmedlately to’ cssml cpuq". I

we wanted to have tokens initially at a disk queue in this example, then we could add an .

allocate’ node for this purpose such that the jobs leaving the new allocate node would go
directly to the disk queue and such that jobs néver go to this new allocate node from other
nodes. Then we could place jobs initially at this allocate node and they would go lmmedlately
to the dlSk queue, holding tokens, assummg sufficient tokens were available.

The next major sectlon is. for specification of s1mu1atlon run length This allows for a
varlety of limits to be specified. A limit on CPU time used by the simulation may also be
specified after the other limits. The CPU limit is treated as a special case in some regards,
especially when confidence intervals are estimated. The simulation run stops when the first of
these limits is reached. (As illustrated in Section 1. 3, when the run stops these limits may be
increased and the run continued.) : :

. The run hmlts section begxns with a line "RUN LIMITS "." After that line there will lines
for limits and pairs of lines for limits. These lines are all optional in dialogue files. ‘In
interactive mode, null replies to these prompts will result in "infinite" values for the corre-
sponding limits. : All of the expressions given in these lines must be simulation independent
(Appendix 3). The first of these lines is for simulated time, "SIMULATED TIME:" followed
by a single expresston The second of these lines is for simulated events, "EVENTS "
followed by a single expression. .Simulation events are discussed in Appendix 7. Next in orde1 .
are pairs of lines for limits on numbers of departures from specified queues. Several such‘ :
pairs may be given, as appropriate. The first line of the -pair .consists of "QUEUES FOR
DEPARTURE COUNTS:" followed by a list of queue names. The second line of the pair -
consists of "DEPARTURES:" followed by a list of expressions, one per queue listed on the
previous line. Note that jobs are not counted as departures from passive queues until they
release or destroy tokens, except for jobs waiting for tokens at an OR allocate node which
receive tokens from some other queue of the OR allocate node. ‘Last in order in the run limits
section' are pairs of lines for limits. on numbers of departures from specified. nodes. Several

such paits may be given, as appropriate. The first line of the pair consists of "NODES FOR =~
DEPARTURE COUNTS:" followed by a list of node names. Node arrays must be listed by =

elements; not the entire array. The nodes listed may not be AND or OR allocate nodes. The
second line of the pair consists of "DEPARTURES:" followed by a list of expres51ons one per
node hsted on the previous line . :

In dialogue files only, prior to the specification of the run limits we may specify that an '
initial portion of the runis to be discarded, i.e., that only performance measures gathered after

* “this initial portion will be discarded. The length of this portion is specified as a fraction, in .

percent, of the run limits (other than the CPU limit). The initial portion ends: when the first
‘of these fractions of the run length limits is reached. The run thén ends when the first: of the
full limits is reached ‘The initial portion discarded is specified by a line of the form "INITIAL
PORTION DISCARDED:" followed by a 'simulation mdependent express1on ThlS express1on
should have a value in the interval [0,100). : :

April 3, 1982

74 | | ~ SIMULATION DIALOGUES / SEC. 12

The CPU limit is specified by'a line of the form "LIMIT - CP SECONDS:" followed by a

svimulation independent expression. (Note that the keyword is "CP" so that "cpu" is available.

as a name.) This is only a rough limit because the simulation measures CPU time consumed
after every 1000 events and pseudo-events (Appendix 7) and at other points considered
significant. Thus more CPU time may be consumed than specified in this limit if the limit is
reached between- measurements :

The simulation dialogue following the initial state section for the example of Sectlon 1.3
. mlght be

» INITIAL PORTION DISCARDED 10 /*percent*/
} RUN LIMITS-
o SIMULATED “TIME: 3600
EVENTS : 50000
‘”QUEUES FOR DEPARTURE COUNTS:cssml.memory

DEPARTURES : ' 400
QUEUES FOR DEPARTURE COUNTS:cssml.iosys1.diskg cssml. Iosys? dlskq
~ DEPARTURES: 2000 2000
NODES FOR DEPARTURE COUNTS:cssml.decrcycles

:DEPARTURES; 3000

LIMIT ~ CP SECONDS:5
12.2.2. Independent Replications

. © This section assumes that 'replications' is specified on the confidence interval method
line. With independent replications the simulation run is repeated several times (usually five
to ten times) with each replication beginning in the same initial state. The only difference
between the repllcatxons is that the random number streams are not reset at the beginning of
the second and subsequent replications, so the replications are different due to statistical
variability. (Section 12.3 discusses the random number streams of the RESQ simulation
program,) The random number streams for the second replication begin where the streams for

the first replication ended, the streams for the third replication begm where the streams for the'

second rephcauon ended etc.

__After the confidence interval method line, the initial state of the network is specified,
usmg the same syntax and semantlcs as a sxmulatmn thhout confidence intervals (Section
12.2.1). ’ : »

After the initial state definition section, there are lines to specify the confidence level and
‘the number of replications. The confidence level line consists of " CONFIDENCE LEVEL:"
followed by a simulation independent expression for the confidence level in percent.: A null
reply is allowed for the confidence level prompt in interactive mode. The confidence level line
is optional in dialogue files. If the confidence level is not specified, the default value of 90
" (percent) is used. The number of replications line consists of "NUMBER OF REPLICA-
"TIONS:" followed by a s1mulat10n independent expression. The number of replications must
be exp11c1t1y given.

» The remainder: of the simulation dialogue is essentially the same for replications as it is
for simulation without confidence intervals. The "RUN LIMITS-" line is replaced by a
“PREPLIC LIMITS-" line. Otherwise the syntax is the same. The simulated time, event and
~ departure. limits are limits for each replication. A replication stops when the. first of these
- limits is reached. The initial portion of each replication may be. discarded, as with simulation
without confidence intervals. . The CPU limit is the limit for the total time spent .on all
replications. When the simulation stops, it may only be resumed if the CPU limit was reached

© April 3, 1982

[5)

SEC. 12.2.2 / fndependent Replications s

- before the spec1f1ed repllcatlons were completed After ‘the sxmulatlon stops, the replxcatlon -
limits may not be mcreased nor may the number of replications be increased.

The qlmulatxon dialogue. following the distribution specification for the example of Sectlon
1.3, for the independent replications confidence interval method, might be

CONFIDENCE INTERVAL METHOD:replications
INITIAL STATE DEFINITION-
CHAIN:interactiv
NODE LIST: termlnals cssmi. setcmdtype
INIT POP:. users-2 2
CONFIDENCE LEVEL:95 /*percent*/
NUMBER OF REPLICATIONS:7
INITIAL PORTION DISCARDED: 10 /*percent*/
. REPLIC LIMITS-
. SIMULATED TIME:3600
EVENTS: 50000 ‘
QUEUES FOR DEPARTURE COUNTS cssml.memoxry

. DEPARTURES: ‘ 400 » - I
QUEUES FOR DEPARTURE COUNTS:cssml;iosys?.diskq cssm1;iosys2.di5kq'/

' DEPARTURES: 2000 2000 S
NODES FOR DEPARTURE COUNTS : cssml. decrcycles ‘

 DEPARTURES: - 3000
LIMIT - CP SECONDS:100 ‘

12.2.3. The Regenerative Method

. This section assumes that "regenerative' is spec1f1ed on the confidence interval- method
line. - The regenerative method applies only to networks which regenerate, i.e.; which return -
"frequently'" (say, at least 10 times in a simulation run) to a state (usually the initial state)
such that future behavior is independent of past behavior. With the example of Section 1.3,
the initial state with all jobs at the terminals is a state with these characteristics. for the
parameters specified in Section 1.3. With other parameters, e.g., with very small "thinktime,"
that initial state might not occur sufficiently frequently. With a network consisting of only
operi chains, the state where the network is empty of jobs will often be a suitable choice of
state. The state we have been discussing is called the "regenération" state. It is usually the -
same as the initial state but may be a different state, as we discuss below. SR

With the regenerative method the simulation run is essentially the same as in simulation ‘
without confidence intervals, but the simulation program recognizes returns to the regeneratlon,
state. When the simulated system returns to the regeneration state, the program gathers

. information that will be used to estimate confidence intervals at the end of the simulation.

After the confidence interval method line, the regeneration and initial states of the
network are specified, using syntax and semantics similar to’simulation without confidence -
intervals (Section 12.2.1). The "INITIAL STATE DEFINITION-" line is replaced" by
"REGENERATION STATE DEFINITION-". Between the "NODE LIST:" and "INIT
POP:" lines is inserted a "REGEN POP:" line. Except for the difference in keywords, this
“line has the same characteristics as the "INIT POP:'" line. -Since most node types consume
- zero simulated time and do not cause jobs to wait, non-zero numbers of job. copies in the
"REGEN POP:" line are only reasonable for classes, allocate nodes and fusion nodes. - The -
simulation program only allows non-zero numbers of jobs in the "REGEN POP: " line for

classes and ''plain” allocate nodes. The values given by this line count both]obs and job

‘copies, so for a closed chain the sum of the values in this line may be more than the chain

April 3, 1982

76 | SIMULATION DIALOGUES ./ SEC. 12

population. For example; for the model of Section 1.3 using the same initial state def1n1tlon as’
in Sectlon 12.2.1, the regenerauon state section should be

REGENERATION STATE DEFINITION-
’CHAIN interactiv
NODE LIST: terminals cssml setcmdtype cssml.getmemory cssm1 cpu
REGEN POP:users-2 O 2 2
- INIT POP: users-2 2 o 0

Here the initial state and the regeneration state are different, but the simulated system enters
the regeneration state at simulated time zero (because the set node and allocate node take
zero simulated time).

~ In general, the numbers of jobs and job copies at each node are not sufficient to rigorous-
ly define a regeneration state. Additional characteristics are defined by default in order to
more rigo'rously define a regeneration state. Warning messages are issued when the . state
defined appears to the program to not be a rigorously deflned regeneration state Warnings
are issued when :

« A class has service time or work demand specified by an expression dependent on

 'simulation variables or status functions or by a distribution not represented by

exponential stages. (Exponential distributions, the BE distribution and the STAND-

ARD distribution with coefficient of variation at least .5 are the only RESQ distribu-

- tions represented by exponential stages. See Appendix 3.) Further, the regeneratlon
state has a non-zero number of jobs at this class.

. ‘A source has arrival time specified by an expression dependent on simulation -
variables or status functions or by a distribution not represented by exponentlal
. stages. '

. '-Global variables are used.

s The regeneratlon state has a non-zero number of jobs at an allocate node.- Th1s
warning only applies to queuemg time distribution values other than mean queuemg
time. - Regeneration states must be more rigorously defined for queueing time
distributions. .

When _thése messages are issued, the prograin ;rroceéds with the simulation as if a regeneratidn
.state had been rigorously defined. The additional default characteristics of the regeneration
state are - L :
. Where service times and/or arr1val txmes are represented by exponentral stages, any

' tlmes in progress are in the first stage in the regeneration state '

o AL act1ve queues where d1fferent orderings of the]obs in the queue are important.
' (e.g., FCFS queueing discipline) the ordering of jobs of different classes is the same
as at the first occurrence of the required numbers of]obs at all nodes. :
+ At passive queues the ordering of jobs of different allocate nodes and different
- numbers of tokens requested is the same as at the first occurrence of the requlred =
_ numbers of jobs at each node: ° ‘

° ’CV(O) has the value one (l) for all open chains (see Sectron 9 1 2)

April 3, 1982

SEC. 12.2.3 / The Regenerative Method oo ' m

' These warmngs and default conditions are incomplete in the sense that there are states Wthh v
will be accepted as rigorously defined regeneration states when in fact further condmons must' :
be placed on the state definition to obtain a rigorously deflned regeneratlon state

»After» the regeneration state definiti_on section,-there is a line to specify the' confidé‘héé
level, as with independent replications. The confidence level line consists of "CONFIDENCE
LEVEL:" followed by a simulation independent expression for the confidence level in percent.
A null reply is allowed for the confidence level prompt in interactive mode. The confidence
level line is optional in d1alogue files. If the confidence level is not specified, the default value
of 90 (percent) is used. :

After the confidence level line is a required line to indicate whether the- Sequential :
stoppmg rule is to be used. The sequential stopping rule determines run length based on the ’
confidence intervals determined at intermediate points in the run. The' line consists of
"SEQUENTIAL STOPPING RULE:" followed by "yes" or "no". We first consider the case '
without the sequential stopping rule, then the case with the sequential stopping rule.

If the '""'no" reply is given on the sequential stopping rule line, the remainder- of the
simulation dialogue is closely similar to the dialogue for simulation without confidence

intervals. ~ The "RUN LIMITS-" line is replaced by a "RUN GUIDELINES-" line. The o

periods between returns to the regeneration state are called "cycles." The values in the run
‘guidelines are not firm limits because once one of these guidelines is reached, the simulation
run will continue until either (1) the simulated system returns to the regeneration state, thus
- completing a regeneration cycle, or (2) the CPU limit is reached. The simulated time, event
and departure lines are the same as with the run limits section for simulation without confi-
dence intervals. After the "SIMULATED TIME:" line there may be a line specifying a limit

for number of regeneration cycles for the run. This is truly a limit in that the simulated .

system will be returning to the regeneration state when the value is reached. The cycles line
‘consists: of "CYCLES:" followed by an expréession for the number of cycles. - The initial
portion discarded line is not -allowed with the regenerative method. The CPU limit line is the -
same as with simulation without confidence intervals. If the CPU limit is reached in the midst -
of a regeneration cycle, only the data from completed cycles will be used in the performance
measure reports. When the simulation stops, it may be resumed as with simulation without

c¢onfidence intervals. If this is done, and the simulation stopped because of the CPU 11m1t the

«s1mu1at10n resumes in the midst of the incomplete regeneration cycle.

" The simulation dlalogue following the regeneration state deflmtxon for the example of '
Section 1 3 mlght be ‘ ..

CONFIDENCE LEVEL:95 /*percent*/
SEQUENTIAL STOPPING RULE no
RUN GUIDELINES-
SIMULATED TIME: 3600
CYCLES:50 '
EVENTS : 50000
QUEUES ' FOR .DEPARTURE COUNTS:cssmi.memory

DEPARTURES 400 R
QUEUES FOR DEPARTURE COUNTS cssmi. 1osys1 diskg cssm1 1osy52 dlskq
_ DEPARTURES: 2000 2000 ‘ ‘
NODES FOR DEPARTURE .COUNTS:cssm} . decrcycles

DEPARTURES] 3000

LIMIT - CP SECONDS: 100

April 3, 1982 -

78 : ‘ SIMULATION DIALOGUES / SEC. 12

. If the sequential stopping rule is enabled, i.e., if the "yes" reply is given on the sequentlal
stoppmg rule line, the simulation run will consist of one or more subruns, called ' 'sampling
periods." The user specifies the length of these sampling periods in a section- corresponding to
the run guidelines section. At the end of each sampling period, confidence intervals will be
computed and evaluated with criteria specified by the user. If the criteria are satisfied, the
simulation run stops. If the criteria are not satisfied, the simulation continues for at least one
more sampling period. The criteria are basically prespecified widths for confidence intervals
for certain queues and certain performance measures. In addition, the .user may requ1re that
these width criteria be satisfied for several successive sampling perlods ~

- After the sequential stopping rule line, there will be one or more triples of lines.. The f1rst~
line -of a triple will be "QUEUES TO BE CHECKED:" followed by a list of names of queues.
A gqiieue name may be repeated in the list if width requirements are to be specified for -more
than -one performance measure for that quewe. ~ The second line of -a triple will be
"MEASURES:" followed by a list of code, one code per queue name in the previous list. The
allowed codes are ‘ : -

ut Utilization.
tp | Throughput. -
-l Mean-queue length.
“gld Queue length distribution.

qt 'Mean queueing time.

qtd ‘Queuelng time dlstrlbutxon

tu . Mean number of tokens in use (passwe queues only)

tud - Token use distribution (passwe queues only).

“oougt Y Mean total number of tokens (passwe queues only).
tud Total token distribution (passive queues only).
The distribution codes only apply if gathering of that distribution has previously been speci-
fied. Each gathered point of a listed distribution is checked and must satisfy: the width
criteria. The third line of the triple consists of "ALLOWED WIDTHS:" followed by a list of
simulation. independent expressions, one for each name on the first line of the triple. For the
measures which can only have values in the [0,1] interval, utilization and -the dls.trlbutlon

measures, the width specified is absolute width in percent, i.e., the criterion is that 200x 8 be
less than the specified width, where the confidence interval is (p — 8, p + 8). For the other

" measures the width is relative width in percent, i.e., the criterion is that 200x 8/ p be less than

the spec1f1ed width. (Where p is zero, the criteria is not satisfied.)

After one or more triples have given the confidence interval width criteria, an additional
requirement may be made that the width criteria be satisfied for several successive sampling
periods. This requirement is specified by a line of the form "EXTRA SAMPLING PERI-
ODS:" followed by a simulation independent expression. Specification of this requirement is
optional; the default value is zero. The simulation will continue (assuming the CPU limit is
not reached) until this number plus one successive sampling periods satisfy the width criteria.

April 3, 1982

SEC. 12.2.3/The Regenerative Method DR B

The remamder of the dialogue is the same as with the regeneratlve method without the'
sequential stopping rule, except that the line "RUN GUIDELINES-" is replaced by
"SAMPLING PERIOD GUIDELINES-". The sequential stopping rule should be used in a
conservative manner, i.e., the sampling period guidelines should be specified with the. intent -
that there be only a few, relatlvely long sampling periods, not many short samplmg perlods A
samipling period will continue until the first return to the regeneration state after one of these
guidelines is reached, unless the CPU limit is reached first. If the the simulation stops becuiuse
.of the CPU limit, only data from completed regeneration cycles is used. ' When the simulation
stops; it may be resumed, but only to increase the CPU limit or-to increase the e‘xtra’sampling

period requirement. If this is done, and the simulation. stopped because of the’ CPU limit, the -

simulation resumes in the midst of the incomplete: regeneratlon cycle

The simulation dialogue following the regeneration state def1mt1on for the example of
Section 1.3 with sequential stoppmg might be. :

-CONFIDENCE LEVEL:95 /*percent*/
-SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:cssm1.memory . cssml.memory
MEASURES : at - L gtd
ALLOWED WIDTHS: 5 /*% - relative*/ 10 /%% - absolute¥/
QUEUES TO BE CHECKED cssm1.cpug - cssm1.io$ys1.diskq
MEASURES: - : ut ut g
ALLOWED WIDTHS:. 10 /*% - absolute*/ 10 /*% - absolute*/

EXTRA - SAMPLING PERIODS:1
SAMPLING PERIOD GUIDELINES-
SIMULATED TIME:3600
CYCLES: 50
EVENTS : 50000 ‘
QUEUES FOR DEPARTURE COUNTS:cssmi.memory

DEPARTURES - 400
QUEUES FOR DEPARTURE COUNTS:cssmi. 1osys1 diskqg cssml. 1osy52 dlskq
" DEPARTURES: 2000 : 2000
NODES FOR DEPARTURE ‘COUNTS:cssm1. decrcycles

DEPARTURES : .3000

LIMIT - CP SECONDS: 100
12.2.4. The Spectral Method

This section assumes that ' 'spectral” is specified on the confidence mterval method lme. :
Most -methods in classmal statistics for estimating confidence 1ntervals depend on havmg items-
of data that are "independent and identically distributed." The method of. independent
replications achieves this "i.i.d." property by the protocol which repeats the simulation. The
regenerative method depends on being able to observe the i.i.d. -property during the simula- .
tion run. The spectral method does not depend on the i.i.d. property. - Rather, it explicitly
takes .into consideration the correlation between data items in the simulation, e.g., the"
dependencies between successive queueing times for a-given queue. This is done without user
- awareness, other than the availability of confidence intervals, so the dialogue for simulation
using the the spectral method is essentially the same as simulation w1thout confldence inter- .
vals. A sequential stopping rule is available with the spectral method, a shghtly d1fferent rule‘
than the one used with the regeneratlve method. - o

The spectral method requires substantlal additional v1rtual storage per performance‘

measure, per gieue or node, for its confidence interval calculations, so confidence intervals are -
only -available for mean queueing times and queuemg time dlstrlbutlons and then only for

April 3, 1982

80 | | - SIMULATION DIALOGUES / SEC. 12

‘queues and nodes spe01f1ed by the user prior to the simulation. (The storage requirement for a
given queue ‘or node is on the order of 1600 bytes for mean queueing tlme plus 1600 bytes
for each pomt of the queuemg t1me d1str1but10n) , : ‘

After the confidence mterval method line, the initial state of the network is specified,
usmg the same syntax and semantics as s1mu1at10n without confidence intervals (Section
12.2. 1) After the initial state definition section, there is an optional confidence level line,
"CONFIDENCE LEVEL:" followed by a simulation independent expression giving confidence
level in percent "As with the other confidence interval methods, the default is 90%. Then
there is a line indicating whether or not the sequential stopping rule is to be used. As with the
regeneratlve method this line' consists of "SEQUENTIAL STOPPING RULE:" followed by

"yes" or "no." We first consider the case without the sequential stopping rule, then the case
w1th the sequent1al stopping rule.-

If the "no" reply is given on the sequential stopping rule line; the next part of the
simulation dialogue consists of (optional) pairs of lines for listing queues which are to have
confidence intervals computed. The first line of a pair consists of "CONFIDENCE INTER-
VAL QUEUES:" followed by a list of names of queues. Names may be repeated if both mean
queueing time and queueing time distribution confidence intervals are to be computed for the
same queue. The second line of a pair consists of "MEASURES:" followed by a list of codes,
either "qt" for mean queueing time or "qtd" for queueing time distribution, one code per
name in the previous line. The qtd code only applies if gathering of that distribution was
previously specified. After the pairs of lines for queues follow (optional) pairs of lines for
nodes. The first line of a pair consists of "CONFIDENCE INTERVALQUEUES:" followed
by a'list of names of nodes. Only names of classes and "plain" allocate nodes may be listed.
"The second line of a pair is as with the queue pairs. The remainder of the dialogue is as‘with
simulation without confidence intervals, beginning with the optlonal initial portion discarded
line.

‘The simulation dialogue following the initial state definition, for the example of Section
1.3, might be

CONFIDENCE' LEVEL:95 /*percent#*/
SEQUENTIAL STOPPING RULE:no
CONFIDENCE INTERVAL QUEUES:cssml.memory cssml, memory
MEASURES : gt gtd
CONFIDENCE INTERVAL NODES:cssmi.cpu
‘MEASURES : gt
.INITIAL PORTION DISCARDED:10 /*percent*/
RUN LIMITS=
"SIMULATED TIME:3600
" EVENTS:50000 ‘
“QUEUES FOR DEPARTURE COUNTS: cssml.memory

DEPARTURES: 400
QUEUES FOR DEPARTURE COUNTS:cssml.iosyst.diskg cssml.iosys2. dlskq
' DEPARTURES: 2000 - 2000 :
NODES FOR DEPARTURE COUNTS:cssml.decrcycles
‘DEPARTURES : 3000

' LIMIT - CP SECONDS:100

If the sequential stopping rule is enabled, i.e., if the "yes" reply is given on the sequential
stopping rule line, the simulation run will consist of one or more subruns, called "sampling .
~periods." Unlike the regenerative method, where these periods are of approximately equal
length ‘with the spectral method these perlods are such that the total run length increases by

April 3, 1982

"SEC.'12.2.4 / The Speetral'Method L N L : ' S 81

'roughl'y' 50% with each’ sampling period. As: with ‘the regerieratlve method after‘,‘ each
sampling perrod user specified criteria are used to determine whether to stop. the run. If the

criteria are not satisfied, the simulation continues for at léast one more sampling period. .The

criteria are baslcally prespecified widths for confidence. intervals for ' certain - -performance -
théasures and certain queues and nodes. -In addition, the user may require that these width
ctitéria be satisfied for several successive samphng periods.

v After the sequential stopping rule line, there ' will be -two groups of -triples of lines
‘corresponding tothe two groups of pairs of lines for the queues/ nodes for confidence mtervals -
Castin the spectral methad w1thout the sequentlal stopping rule. The f1rst two lines of each
trlple are the same as the pairs of lines. The third hne of the triple consists of "AgLLOWEP
WIDTHS:" followed by a list of simulation independent expressions, one for each name on the
first line of the triple. For the queueing time distribution, the width specified is absolute width: .
~.in percent, i.e., the criterion is that 200x8 be less than the specified width, where" the:
“confidence interval is (p — 8, p + 8). For mean queueing time the width is relative w1dth in_
percent i.e.; the criterion is’ that 200x8/p be less than the spec1f1ed w1dth (Where p is zero
the crlterla 1s not satlsfled)y , :

After these trlples have ‘given the confldence 1nterval ‘width criteria, an: addltlonal
brequlrement ‘may be made that the width criteria be satisfied for several successive samplmg :
_periods. This requirement is specified by a line of the form "EXTRA SAMPLING PERI-
~ODS:" followed by a simulation independent expression. Spemflcatlon of this requlrement is

v optlonal the ‘default value is zera. The simulation will continue (assuming: the CPU 11m1t 1s &

'not reached) until th1s number plus one successrve samphng perlods satlsfy the. w1dth crlterla

The remainder of the dlalogue is - the same as with the spectral method w1thout the ,
vsequentlal stopping rule, except that the line "RUN LIMITS-" is replaced by "INITIAL
PERIOD LIMITS-". The limits specified are for the initial sampling period. -These limits- are
“increased by 50% at the beginning of each sampling period and are then used as limits for the :

' total length of the run, not the length of the sampling perlod The sequential stopping rule

should be used in a conservative manner, i.e., the initial period limits should be specified: w1th :
the intent that there ‘be only a few, relatively long samphng periods, not many short sampling B
“periods. If it is spe01f1ed that an initial’ portlon of the run is to be discarded, only this portion’

of the- initial sampllng period is discarded. When the. simulation stops, it -may be resumed but

only to increase the CPU limit or to increase the extra sampling perlod requlrement

‘ The simulation dialogue followmg the initial state def1n1t10n for the example of Sectlon
1. 3 w1th sequent1al stopplng mlght be : S

V'CONFIDENCE LEVEL:95 /*percent*/
"SEQUENTIAL STOPPING RULE:yés’

. .CONFIDENCE INTERVAL QUEUES cssm1 .memoxry ‘ csSmT;memory.
' " MEASURES": . = qt SR : Soogtd. :
"‘ ALLOWED WIDTHS: /*% - relatlve*/ 10 /*% = absolute*/
CONFIDENCE INTERVAL NODES:cssml. cpu : ST
- MEASURES: - ° gt
ALLOWED WIDTHS : 10 % - absolute*/

EXTRA SAMPLING PERIODS: 1 ‘
INITIAL PORTION DISCARDED 10 /*percent of 1n1t1al sampllng perlod*/
"__INITIAL PERTOD. LIMITS-
1 SIMULATED: TIME:3600
~EVENTS: 50000 -
-QUEUES FOR"DEPARTURE COUNTS cssm1 memory
DEPARTURES: =~ = o 400

‘April 3, 1982

82 O ‘ ,'SIMULATIONDIALOGUEs/sEc. 12

QUEUES FOR DEPARTURE COUNTS cssm1 iosysl.diskqg cssm1 1osy52 dlskq v'

DEPARTURES . S 2000 L o 2000 o
‘NODES FOR DEPARTURE‘CQUNTS:cssm1.decrcycles. ‘
DEPARTURES: -~ . "~ .i 3000

CULRIMITY < CP SECONDS: 100 ;

_ ,i”253~ 'Ra‘xi'd’om Number Generation

This hne appears only in
Before discussing th1s hne we: dlscuss the

The toprcs of th1s section affect only 4 smgle 11ne of dlalogue
dlalogue files and is optional in. dralogue files.

generatlon of (pseudo) random numbers in the simulation program.

~Set Sources ACthG ‘Routing Passive - Set- Nodes
T 377003613* 1267310126 - 1976418161 . - 150006407 288727775 . -
2 648473574 1741371275 35067978 1633650593 1499601820.
- 3 1396717869 886499692 . 400884188 751601611 2136214308
4002027350275 1014119573 - 1895732964 1410990605 1197972807
S5 01356162430 ¢ 933913228 1904749580 1262214427 1888007825
61752629996 - -2082204497 - 1301700180 . 645360044 686553263 .
-7 645806097 920168983 - . 63685808 1504645702 = 747119178 -
'8 201331468 - 1079618777 = 936615625 1063375004 154337000 .
9 1393552473 1888797415 . 110322717 1941885586 136758808
10 1966641861 - 1002901030 = 1029730003 1753135176 9182540
.11 711072531 1582733583 - 251900732 253642018 . 303111010
12, 769795447 254293472 - 725094089 - 1701685042 154232008
13~ 1074543187 1095895189 828842333 1448665492 . 921093990 .
141933483444 . 219529399 . 1471230052 1034856864 1684263351
15 625102656 - 1706847402 1703522097 = - 428280431 - 1166344707
16 1116874679 - 11951007719 - 1356420548 259758456 1167753617
170 1442211901 - 1169002398 1670372925 600732272 1374693082
S 18+ 989455196 - 1482199345 - 437765009 704726097 - 1812641667
19+ 1996695068 . 1976077334 . 39279049 . 398944698 502455872 '
20 1850124212 - 775245191 . 2123613511 857532898 -

114386769

Table .12.1 - Seeds for Random Number Stre,ams

, There ‘are. five random number streams-in the s1mulat10n Separate streams are used for
sources, for active queues, for routing decisions, for passive queues and for set nodes.. ‘There:
are twenty sets of five seeds for initializing these streams. In a dialogue file, a line may be
inserted after the CPU-limit line to indicate which set of five seeds is to be used. Other than |
- choosing a set of seeds, the user has no control over random number streams. The- line
consists of "SEED:" followed by a simulation independent expression. ThlS expression should
" be an integer between 1-and 20. 'If the line is omitted or the expression has an inappropriate
- value, set 1 is used. Table 12.1 gives the 20 sets of five seeds.
‘simulation are generated by afunction of the form -

X, =175 X,_{ modulo 23'—1
where X, is the desired random integer and X, _, is the previous' random integer»of the stream
or the seed of the stream if no previous random numbers have been obtained from the stream.

(75 = 16807 and 23! =1 = 2147483647.) The values in-Table 12.1 were obtained from this
.generator by taking every hundred thousandth random integer start_mg at 377003613, Reading

April 3, 1982

Random integers in the °

et

, SEC.. 123 / Random Numher Generat’ionv S : | ;83 |

~ horizontally, the table entries are two million values "apart' Uniform random humbers on the:

interval (0,1) are obtained by dividing the random integer obtained from the generator by -

2311, " Exponential random numbers are obtained by taking the natural logarlthm of a

uniform random number on the interval (0,1). The logarithm is negated and then muitiplied
by the desired mean of the exponential distribution. All random numbers in the 51mulatlon are
obtamed from simple functions of uniform and exponentlal random numbers. ‘

12.4. | Simulation Trace
Simulation trace lets the user know- what happens during (a porﬁo'n of) a run This is

useful to the user in developing (debugging) a model. If the user suspects. an error in the‘
simulation program itself, trace can be used to either conf1rm or.deny th1s suspicion.-

Trace spec1f1catlon is the last section of the model def1n1tlon The f1rst line of trace
: »speclflcatlon consists- of "TRACE " followed by "yes' or "no". If no trace is 1nd1cated (by :
"no"), the model definition is completed by a line contammg only "END"."

If mteractlve mode is used and trace is indicated (by " yes"), two addltlonal prompts w1ll :

- be given. The two additional prompts are "JOB MOVEMENT:" and "QUEUES:". ‘The: reply.' 5
'to JOB MOVEMENT: must be either "yes" or '"no." The reply to QUEUES: may be "yes!"" or
- no or a list of queue names. If the reply is "yes" then all queues will have'" queue trace
.iIn 1nteract1ve mode the model definition is complete after the "QUEUES " hne o

In dialogue files other forms of trace may be" specified and trace may ‘be ‘selectively

enabled and disabled for portions of a run. After the "TRACE:yes'" line comes a line to =
: 1nd1cate whether trace is initially on or off. This line consists of "INITIALLY ON:" followed"
by "yes" "no'. Then there are two optional sections for- specifying when trace will be
“turned on durlng the run and when trace will be turned off during the run. -If-ifidependent

replications are used for confidence intervals, these sections apply to each replication. - The
syntax and capabilities for turning trace on and off parallel the dialogue sections for specifying -

“limits or guidelines described in Section 12.2. The section for turning trace on begins with a°

line "TURN TRACE ON-". Following that are (optional) lines for simulated time, regenera— ‘
tion' cycles (if the régenerative method is used for confidence intervals), simulated events,

queue departure counts and node departure counts. The section for turning trace off is the . =
same syntactically except that the first line is "TURN TRACE OFF-". After these sections -
‘are two lines for job movement trace and queue trace, corresponding to the. mteractlve’

prompts descr1bed above Then there are three additional lines: "EVENT HANDLING:"

followed by " yes or no" "EVENT LIST:" followed by "yes" or "'no" and "SNAPSHOTS "
followed by "yes" or "no".. An "END" line completes the model’ def1n1txon

For example, we might have the following:

TRACE:yes- :
- INITIALLY ON:yes
' TURN. TRACE ON -
STMULATED . TIME:3.5

% CYCLES:
EVENTS:
.HQUEUES FOR DEPARTURE COUNTS cssmil. memory cssm1 cpugq

DEPARTURES . 500, - 1300
“QUEUES FOR DEPARTURE COUNTS i
: NODES FOR DEPARTURE COUNTS:
TURN TRACE OFF -

 April 3, 1982

84 AR ST - SIMULATION DIALOGUES / SEC. 12

SIMULATED TIME 4, 5

' CYCLES:
EVENTS: : . »
: QUEUES FOR DEPARTURE COUNTS: cssmi . memory cssmt.cpug

DEPARTURES ﬁ - ~510 P w1305
QUEUES - FOR DEPARTURE COUNTS: -
NODES FOR DEPARTURE COUNTS :
1 JOB MOVEMENT:yes
QUEUES memoryq cpug
. EVENT HANDLING:yes
 EVENT LIST:no
SNAPSHOTS :no
'END /*of model*/

When the szmulated time option is used, it will only have an effect if an event occurs at exactly the

speczfted time. When several options are- used to turn the trace on, they will each be enforced

if ‘possible, i.e., the trace will be turned on (if it is not already on) at the occurrence of each ‘

spe01f1ed condition. Srmllarly, several options to turn trace off will each be enforced if

»poss1ble Only one departure count to turn trace on may be specified for a given queue or ’
node, and only one departure count may be spec1f1ed to turn trace off for a glven queue or

vnode

The speczal global variables dxscussed in Appendix 2 may also be used to control trace.. In

‘addltlon to the trace.capabilities described in this section, “Appendix 3 describes the PRINT

functron which may be used for observing values of numeric expressions.

“We now give examples of the job movement trace, the queue trace and the eVeht'trdoe
Event list and snapshot trace produce large amounts of output. Tt is usually 1nappropr1ate to. use
these forms of trace. We will briefly dlscuss these ‘two forms of trace at the end of th1s,
se’c'tion.‘ - : ‘

The job movement trace, whlch shows the movement of jobs through the network ds

usually the most important. We illustrate some of the job movement trace for arbltrary'
portlons of models:which illustrate by example most of the trace output for job movement.
The trace output we show is that from the RQ2PRNT file, but the same output is also

dlsplayed at the terminal during s1mulatlon We will 1ntersperse explanatlons before pleces of

‘trace output

Sections of trace output are labeled at the beginning by the name of ‘the procedure that

produced the output.’ The procedure-that handles the simulation events and timing "is called

- "SMULAT."

RESQ2 VERSION DATE{‘JANUARY 29,.1982 - TIME: 17:45:03 DATE: 01/29/82"
MODEL : LOOP ‘ : ‘ L

SMULAT ~- SIMULATION BEGINS...

The procedure that handles routing is called "'ARRIVE." Jobs in the network are numbered in
the order of their creation. The following says that job 1 is the first departure from a sapree
named "S It then gives the current time and number of ‘events.. Then it gives the current
_ network population, both in terms of true jobs and copies of]obs holding tokens at allocate
nodes. Then the destinations are considered in order until one is selected accordmg to 1ts
routing probabllrty or predicate. In this case the first destination is selected. ‘

- April 3, 1982

<)

: SEC124 / Siinulatlon Ttace .") : -' e 85 '

‘ARRIVE -~ JOB 1 DEPARTURE 1 FROM S (SOURCE)

CURRENT TIME: 5.6301821E-02 NUMBER OF EVENTS: 1
POPULATION: 1 JOBS, 0 JOB COPIES I

DESTINATION, CONDITION:
BEGINRT(ALLOCATE) 0.178339 < .1.000000.

Jobs are not considered to be ' departures from allocate nodes’ untll they release or destroy
their tokens (except for AND and OR allocate nodes) so even though job .1 leaves "beginrt,"
it is not counted as a departure. The trace shows no departure counts for AND and OR -
allocate nodes. Since job 1 now holds tokens, a list of nodes where tokens are held is now.
provided by ARRIVE. ' '

ARRIVE -= JOB 1 DEPARTURE 0 FROM BEGINRT (ALLOCATE) -

" 'CURRENT TIME: 5.6301821E~02 NUMBER OF EVENTS: - . e
' POPULATION: . 1 JOBS, 1 JOB COPIES
- TOKENS HELD: : 1 AT BEGINRT

DESTINATION, CONDITION:
SET_MSG_L(SET), 0.343924 < 1.000000

Set nodes must evaluate expressions which are dependent on values not known until simulation -
time, e.g., global variables and results of status functions. Expressions are stored internally in
prefix (“'reverse Polish") notation. Procedure EXPRT serves only to print the prefix form of - -
the expression. The assignment jv(pkt__ lng) standard(totlength 1) is-to be evaluated

EXPRT —-- = SUBl Jv PKT_LENG' STANDARD ; , TOTLENGTH- 1

If-a chain variable or global variable is assigned a value at a set node, procedure SETNOD'will'
print this value. However, ARRIVE' prints the values of all non-zero job variables; so
SETNOD does not print values of job variables it changes. All of the routing so far has not .
involved decisions, i.e., there was only one possible destination. In. general routlng may
1nvolve probablhtles mixed w1th predicates, as discussed in Section 9.1.4. .

ARRIVE ‘- JOB : 1 DEPARTURE '1'FROM”SET_MSG~L(SET)

CURRENT TIME: 5.6301821E-02 NUMBER OF : EVENTS: T
~ POPULATION: - 1 JOBS, 1 JOB COPIES

Jvtg==0:.." 1: 2.670E+02 .

TOKENS HELD: 1 AT BEGINRT

DESTINATION, CONDITION:
DEST1 (SET), 0.334520 < 0.250000
DEST2 (SET), O. 084520 < 0.250000

The followmg is for Jv(msg dest) d1screte(1 1/3; 3 1/3; 4 ,1/3).. The 1nternal conventlons“ '
for commas and semi-colons . are. not the same as the external conventions. Internally, _
semicolon is always represented by a "; ," pair which precedes a list element; e. g "1, 1 / 3" :
The symbol "EOX" is used to indicate the end of a list separated by semlcolons L A

EXPRT ~- .= SUB1 JV MSG_DEST DISCRETE s, 1/ 1 3,3/ 1.3
. 4/ 1V 3 EOX o R

EXPRT is also used, when predicates are evaluated eg, to evaluate the predlcate .
lf(jV(pkt leng)< 240) ~ : >

ARRIVE —- JOoB 1 DEPARTURE 1-FROM DEST2 (SET)
CURRENT TIME: 5.6301821E-02 NUMBER OF EVENTS: 1

April 3, 1982

86 | ., ~ SIMULATION DIALOGUES / SEC. 12

POPULATION: | 1.J0BS, - - 1 JOB COPIES

JV'S-=0: . 0: 4.000E+00 1: 2. 67OE+02
'TOKENS HELD: 1 AT BEGINRT

DESTINATION, CONDITION:
© 0 C2(CLASS), (PREDICATE) ‘
EXPRT .-~ <= SUB1 JV PKT_ LENG 240
SEPARATE2 (FISSION), 0.278551 < 1.000000

Roﬁti‘ne'FISSN handles fission nodes. It gives the identities of children it crea,te_s‘." o

FISSN -- PARENT IS 1, CHILD IS 2

When a]Ob ‘has relatives, ARRIVE will list immediate relatives (but not’ grandparents

grandchlldren etc.).

ARRIVE -= JOB : 1 DEPARTURE. . 1 FROM SEPARATEZ(FISSION)

CURRENT TIME: 5.6301821E-02 NUMBER OF EVENTS: = - 1
POPULATION: 2 JOBS, - 1:JOB COPIES"

JV'S-=0: 0: "4.000E+00 1: 2.670E+02

+ TOKENS HELD: = .. © .1 AT BEGINRT

RELATIVES: ~CHILD - ' . 2 AT SEDARATE2

"DESTINATION, CONDITION:
'DEC_MSG. L2 (SET), (PREDICATE)

EXPRT -~ = SUB1 JV PKT LENG = - SUB1 JV PKT LENG 240
" ARRIVE ~-- JOB 1 DEPARTURE 1 FROM DEC _MSG_L2 (SET)
R “CURRENT TIME: ' 5.6301821E-02 NUMBER OF EVENTS: - 1
" "POPULATION:. 2 JOBS,: -1 JOB COPIES. . :
JV'S==0: O: 4;000E+00 - "1: . 2.698E+01
TOKENS HELD: - 1 AT BEGINRT

RELATIVES: = CHILD 2 AT SEPARATE2
DESTINATION, CONDITION: '
- C2(CLASS), (PREDICATE)
EXPRT -— <= SUB1 JV PKT_LENG - 240

_The service tlme expression at "'C2" is prlnted by EXPRT because it 1nvolves values whxch .

cannot be determined before simulation.

EXPRT. -~ STANDARD ; , / suB1 Jv PKT_LENG ~ CAPACITY 0

Note that job 1 keeps moving until it reaches a class, as specified in the rules in ‘Appendix 7,
and that job 2 moves at the same clock time after job 1 stops. Also: children.are not consid-

ered as departures from fission nodes; children get the same job Varia’bles as theirparents.‘ v

ARRIVE -- JOB : ' 2 DEPARTURE T FROM SEPARATEZ(FISSION)

CURRENT TIME: 5. 6301821E 02 NUMBER OF: EVENTS: . 1
POPULATION: 2 JOBS, 1 JOB COPIES '
- JV'S—=0: 0: 4.000E+00 1: 2.670E+02

.- RELATIVES: . PARENT 1 AT C2
DESTINATION, CONDITION: '

. SET_PKT L2(SET), (PREDICATE)

. EXPRT -~ = SUB1 JV PKT_LENG 240

April 3, 1982

0

SEC;‘12‘.4/SimulationTrace"~' R N L o ,'.". : 8,7'>‘

Whe‘n a job‘ arriVes at a fusion node and finds no relatives, there is no special indication. =

ARRIVE -- JOB : 1 DEPARTURE 1 FROM C3(CLASs}f

- CURRENT TIME: ' 6. 7541439E ~02 ‘NUMBER : OF - EVENTS : ©3
POPULATION: 2. JOBS, 1 JOB COPIES)
JV'8==0: O: 4.000E+00 - 1: 2.698E+01
kTOKENS HELD o 1 AT BEGINRT

RELATIVES: CHILD .~ 2 AT C2°
“DESTINATION CONDITION: E
. ASSEMBLE (FUSION), (PREDICATE)
'EXPRTv-— = sUBt‘Jv MSG_DEST 4

But when' a job arrives at a fusion :node where a relatlve is waltmg, one w1ll be destroyed
Routlne FUSN uses routme SNKFUS to destroy the]ob , e

ARRIVE -~ JOB- . © 2 DEPARTURE - 2 FROM C3(CLASS)

CURRENT TIME: 1.6192162E-01 NUMBER OF EVENTS: 6
'~ POPULATION: 5 JOBS, 2 JOB COPLES ' -
SJV'S==0: 0: 4.000E+00 1: 2,400E+02

RELATIVES: - PARENT . 1 AT ASSEMBLE
DESTINATION, CONDITION: :

it ASSEMBLE (FUSION) , - (PREDICATE)

EXPRT -- = SUB1 JV MSG_DEST = 4

FUSN - LOOKING FOR RELATIVES -OF JOB 2 o SR
FOUND PARENT OF .JOB 2 PARENT= T
SNKFUS. -~ JOB 2 AT NODE ‘ASSEMBLE ’ '

Rontine .S.NKFUS' also handles sinks.

ARRIVE -~ goB 1 DEPARTURE “ 1 FROM ASSEMBLE(FUSION)

_CURRENT TIME: 1.6192162E-01 NUMBER OF EVENTS: = - 6
POPULATION: . 4 JOBS, ~ 2 JOB COPIES . ‘ ‘
JV'S—=0: 0: 4.000E+00 1: '2.698E+01

TOKENS HELD:. 1°AT BEGINRT

”DESTINATION CONDITION:
SINK (SINK), 0.638042 < 1.000000
SNKFUS - JOB ~~ 1 AT NODE . SINK

.«

The following is the form for 1n1t1a1 placement of]ObS at the begxnmng of a run or B -

replication. A job is initially placed at node "C2POLL." Since there is more than one cham :
‘ARRIVE gives the number of jobs.in each chain. : - ‘

ARRIVE -= JOB A ‘ « o
CURRENT TIME 0.0000000E+00 NUMBER OF EVENTS: . . 0
POPULATION 1"'JOBS, 0 \JOB COPIES(. 0"JOBS IN CHMSG . -1 J

_OBS IN CHPOLL)
DESTINATION, CONDITION: _
C2POLL (CLASS), 0.178339 < 1.000000.
ARRIVE -- JOB 1 DEPARTURE 1 FROM C2POLL (CLASS) |
| CURRENT TIME: 3.9999998E-01 NUMBER OF EVENTS: S

April 3, 1982

88 o ERRI SIMULATION DIALOGUES / SEC. 12

POPULATION: 1 JOBS, - 0 JOB COPIES(0 JOBS IN CHMSG = 1 g
OBS IN' CHPOLL) Lo o S = G
DESTINATION, CONDITION:

POLL? (CREATE) , 0.343924 < 1.000000

‘The following 1llustrates output for queue trace only. If job movement trace were also_
enabled the two would be 1nterleaved Procedure ALLCTE handles allocate nodes :

ALLCTE -- JOB 1 AT NODE BEGINRT QUEUE RTQ TQKEN REQUEST A

When ALLCTE is ‘through; it calls PQTRAC to list the entire queue, in order. The value ~1
is widely used in RESQ2 to represent "undefined." Since "RTQ" is nota priority queue, each
job has undefined priority. The column "TOKNS" lists the number of tokens requested. The
column "HELD?" indicates whether or not the job holds these tokens by 1 or 0, respect1vely
(With priotity passive queues, allocation of tokens is handled by SMULAT, ‘which. w111 call
PQTRAC after it tries to allocate tokens to a queue. 'See Appendix 7.)

PQTRAC - JOB NODEk _ " PRTY TOKNS HELD? Q PTR
R ‘ 1. BEGINRT =1 1 N ” :
© PQTRAC —~ RTQ TOKENS:2147479808 TOKENS AVAILABLE: 2147479807

Procedure SERARR handles arrivals at active queues. The "service request” Will usually be
the service time, unless (1) the service time is sampled by stages for the regenerative. method
(Appendrx 7) or (2) variable rate or heterogeneous servers are mvolved 1n which cases_f'
. servers are treated explicitly in the trace output

SERARR -~ JoB 1 AT CLASS C2 QUEUE Q2 SERVICE REQUEST 5_.6_’2’0‘:E—035 v
‘When SERARR is through,,it calls AQTRAC to list the whole queue. The tirne given by .
AQTRAC is the remaining service time. "DSTG" is only meaningful when the distribution’ is
sampled by stages for . the regeneratrve method, in which case it is the current distribution

~stage.

AQTRAC ~- . ~TIME JOB NODE ' . PRTY DSTG Q_PTR

5.620E-03 S22 : ' Co= 0
AQTRAC -- Q2 SERVERS: 1 SERVERS AVAILABLE: " 0 Sl
SERARR -- JOB 2 AT.CLASS C2 QUEUE .Q2 SERVICE REQUEST 5.000E-02
AQTRAC —- TIME . 'JOB ' NODE PRTY DSTG Q_PTR
. 5.620E-03 1 e T IENR o RO SR SR
¢ 5. 000E-02 2 ¢c2 =100 o
AQTRAC. == Q2 SERVERS: - 1 SERVERS AVATLABLE} o o; v Lk

Routine COMPLT handles completion of service times. It also calls AQTRAC when it is
done. "

COMPLT =~ JOB 1 AT CLASS C2 QUEUE Q2

AQTRAC -~~ TIME JOB NODE " PRTY DSTG Q_PTR
. 5.000E-02 : 2 c2 S =1 0
AQTRAC ~- Q2. SERVERS: .1 SERVERS AVAILABLE: 0

April 3, 1982

SEC. 124 / Simulation Trace =~ - . e e

‘When SNKFUS acting for a sink or fusion node, must release tokens 1t prints a message o
 When it is done with a particular queue (it may have to release tokens at several queues), it
calls PQTRAC. - RELEAS (release nodes), DSTROY (destroy nodes) and CREATE (create:
nodes) behave similarly.

e

SNKFUS -- COPY -1 AT NODE BEGINRT QUEUE RTQ e
PQTRAC -~ JOB~ NODE ~ PRTY. TOKNS HELD? - Q_PTR
3 BEGINRT . -1 1 1

‘PQTRAC -~ RTQ TOKENS:2147479808 TOKENS AVAILABLE 2147479807

[S
By

‘The event handling trace is oriented toward the internal mechanics of the simulation ruh.
The following examples show interleaved job movement and event trace. If other kinds.of
trace were enabled, they would be interleaved with this tface. One feature of ‘event. handlmg”
trace is that routines SMULAT and ARRIVE w1ll print current CPU time when they check 1t

SMULAT - ACCUMULATED CP SECONDS‘= 0.000E+OO"

The routine CHECK is used to determine whether the system is in the regeneratlon state; ‘
(assuming the regenerative method is used). CHECK has three major sectrons, whrch'
determine; in order, whether the open chains have the proper populatlons whether any sources
with the BE distribution are in their first stage and whether the nodes have the proper
‘numbers - of jobs. (Additional conditions are also checked but not explicitly- reported.)
CHECK reports its successful findings and its overall determination, 1 or 0 dependlng on
whether or not, respectlvely, he system is in the regeneratlon state. |

CHECK' =~ CYCLE END? cHAIN POPS ACCEPTED. SOURCE STAGES ACCEPTED.
NODE POPS ACCEPTED. RESULT=1

Procedure EOSRST (End Of SubRun STate) is used in a var1ety of situations Wthh delmeate
major portions of a simulation. -With the regenerative method, EOSRST is called every time -

the system is in the regeneration state. EOSRST takes note of the begmmng and ends of -
sampling periods for the sequential stopping rule. (When the stoppmg rule is not enabled '
EOSRST cons1ders the whole run to be a sampling period.) :

EOSRST —-- CYCLES e 0 LIMIT 2147483647 BEGINNING SAMPLING PERIOD

SMULAT reports each event it handles Event handlmg is d1scussed in Appendrx 7 F1rst we"
have a source arrival. L : . :

SMULAT -- NO. EVENTS 1 TIME 5.6301821E-02(SOURCE) SOURCE S
" ARRIVE -- JOB ’ 1 DEPARTURE .1 FROM S (SOURCE)
- CURRENT TIME: 5. 6301821E-02 NUMBER OF BVENTS: 1
POPULATION: 1 JOBS, 0 JOB COPIES

DESTINATION, CONDITION‘
BEGINRT (ALLOCATE) , 0.178339 < 1.000000'

JARRIVE ~- JOB 1 DEPARTURE 0 FROM BEGINRT(ALLOCATE)»I

CURRENT TIME: 5.6301821E-02 NUMBER OF EVENTS: - 1
POPULATION: 1'JOBS, © 1 JOB COPIES L

'TOKENS HELD: “. . - '1 AT BEGINRT
DESTINATION, CONDITION: -

April 3, 1982

9¢ S o SIMULATION DIALOGUES. / SEC. 12

U SET MSG L(SET), 0.343924 < 1.000000

EXPRT -~ . = SUB1 .JV. PKT_LENG STANDARD ; , TOTLENGTH = 1
“ARRIVE -- JOB' .1 DEPARTURE -1 FROM-SET_MSG_L(SET) . :
’ CURRENT TIME: 5.6301821E-02 NUMBER OF EVENTS: 1 ‘
POPULATION: 1 JOBS,. 1 JOB COPIES E
JV'S—=0: " 1: - 2.670E+02
TOKENS HELD: 1 AT BEGINRT

DESTINATION, CONDITION v
DEST1(SET), 0.334520 < 0.250000
; s DEST2 (SET), 0.084520 < 0.250000 -
EXPRT -- = SUB1 JV MSG_DEST DISCRETE ; , 1/ 1 3 ; , 3/ 1 373
G4/ 103 EOX ‘

ARRIVE ==-JOB . -~ . 1 DEPARTURE = 1 FROM DEST2(SET)

CURRENT TIME: 5.6301821E-02 NUMBER OF EVENTS: R
" POPULATION; 1. 'JOBS, 1 JOB. COPTES : '
JV'S-=0: . . 0: 4.000E+00 1: 2.670E+02
_ TOKENS HELD: 1 AT BEGINRT

- . DESTINATION, CONDITION:
R . .C2(CLASS), (PREDICATE)
EXPRT -- <= SUB1 JV PKT LENG 240

.- . SEPARATE2(FISSION), 0.278551 < 1.000000

FISSN -~ PARENT IS 1, CHILD IS . L2

’ARRIVE -~ JOB 1 DEPARTURE | FROM SEPARATE2(FISSION)

' CURRENT TIME: 5.6301821E-02 NUMBER OF EVENTS: = = 1

POPULATION: 2 JOBS, 1 JOB COPIES
TV §-=0: 0: 4.000E+00 1: 2.670E+02
TOKENS HELD: 1 AT BEGINRT
RELATIVES: = CHILD .. 2 AT SEPARATE2

DESTINATION, - CONDITION: = . |
- .. DEC MSG: L2 (SET), (PREDICATE)
EXPRT .~= = SUB1 JV PKT_LENG - SUBT JV PKT_LENG_' 240

ARRIVE == JOB =~ 1 DEPARTURE 1 FROM DEC_MSG L2 (SET)

. ' CURRENT TIME: 5.6301821E-02 NUMBER OF EVENTS: .- . 1T
POPULATION:' 2 JOBS, 1 JOB COPIES L
~JV'S—=0: 0: - 4.000E+00. 1: 2.698E+07

TOKENS HELD: -1 AT BEGINRT '

RELATIVES: ~ CHILD 2 AT SEPARATE2
DESTINATION, CONDITION: :
. C2(CLASS), (PREDICATE)
EXPRT =~ <= SUB1 JV PKT_LENG 240
EXPRT ~. STANDARD i , / SUB1 JV PKT_LENG | CAPACITY 0

After the job that arrived from the source stops movmg, a chrld it created at a fission hode
starts moving with a pseudo-arrival event. ‘

SMULAT -- NO. EVENTS 1" TIME - 5.6301821E~02 (PSEUDO). JOB Sl
~ARRIVE -- JOB 2:-DEPARTURE 1 FROM‘SEPARATEszISSION)
CURRENT TIME: 5.6301827E-02 NUMBER OF EVENTS: R

POPULATION: | 2 JOBS, 1. JOB "COPIES

~ April 3, 1982

SEC. 12.4 / Simulation Trace R L R e

. Jv's~=0: . 0: Y 000E+00 - 1: 2.670E+02
" RELATIVES: 'PARENT - 1 AT C2 '
'DESTINATION, CONDITION:: S
SET.PKT _L2.(SET) , (PREDICATE)

BXPRT -- .= SUB1 JV PKT_LENG 240‘
ARRIVE == JOB: ‘Rf 2 DEPARTURE - 1 FROM SET_PKT L2(SET) ‘
© - CURRENT TIME: 5.6301821E-02 NUMBER OF EVENTS: S
* POPULATION: 2 JOBS, 1 JOB COPIES ' ‘
JV'S~=0: . O: 4,000B400 1: 2.400E+02

RELATIVES: PARENT 1 AT C2

DESTINATION, CONDITION: ‘ :

, . C2(CLASS), 0.280669 < 1.000000 :
EXPRT --. STANDARD ; , / SUB1 JV PKT_LENG CAPACITYv or

‘ CHECK is called before real events are handled But not before pseudo arrlvals or pass1ve
queue alIocatlon attempts S ‘ 4

CHECK ——‘CYCLE‘END?‘RESULT=O

“The 'next event is a servioe completion.

SMULAT == NO. EVENTS 2 TIME 6.1921630E~02(SERVER) JOB 1
"QUEUE 02 : : : ‘ L
"ARRIVE -~ JOB 1 DEPARTURE -1 FROM C2(CLASS) ‘
© CURRENT TIME: 6.7921630E-02 NUMBER OF EVENTS: o2
POPULATION: 2 JOBS, = 1 JOB COPIES ;
JV'S~=0: ~ 0: 4.000E+00 ~1: 2.698E+01
" TOKENS HELD: - ‘1" AT BEGINRT
RELATIVES: CHILD . 2 AT C2

 DESTINATION, CONDITION:
ASSEMBLE (FUSION), - (PREDICATE)

EXPRT -~ = SUB1 JV MSG_DEST 3
© .7 c3(cLAss), 0.197507 < 1.000000 L -
-EXPRT ~— STANDARD ; , / SUB1 JV PKT_LENG . . CAPACITY 0o

The foliowing' shows the forrrr for the passive queue ellooation e\rerit.

‘SMULAfJ—e No;‘EVENTs : 1 TIME '3.9999998E—61(PﬁTfPé)'QbEUE‘fOLL1QL
With repllioationsv', vtbe routine APLbMB intlioates the begihnrng 'of each replioeti.on.
ArLoMB 4—;BEGiN.REPLiCATIoN ‘ ‘ 1 .

EOSRST w1ll 1ndlcate the end of the initial portion of a run or rephcatlon if that portlon has o
been specrfled to be dlscarded ' «

EoSRsT'——’END DISCARDED PORTION

’ EFOS‘RST“will-' indicate the end of a replication, including the limit(s) which caueed‘ it to end.

April 3,1982

e e SIMULATION DIALOGUES / SEC. 12

EOSRST -- END REPLICATION = T Sl
EOSRST - REPLICATION 1: RTQ DEPARTURE LI‘M'I.T-

If event 11st ‘trace is enabled then the entire event llst 1s shown by procedures ADEVNT

or REMVEV every time an event is added or removed by a procedure other ‘than SMULAT !

g '(SMULAT only removes events from the list to handie them Other procedures must remove :
-events to handle preemption, to handle changes in queue length wrth PS, to handle changes in

".,serv1ce rate and to handle: changes in source rates.) 1t snapshot trace is ‘enabled, then before‘

any kind of event (including pseudo atrival ‘and passive quete, events) is handled the rout1ne
5 SNPSHT llsts the numbers of]obs at each node and queue :

April 3, 1982

93
13 'THE EVAL AND EVALT COMMANDS

" This section covers bas1c usage of the EVAL command for model solution, - and EVALT
a substitute for the EVAL command for use with the USER numeric function (Appendrx 3).
PL/I embeddmg (Section 14) may be used for model solution instead of either of thgss
¢ommands. Appendlx 6 covers the error messages produced by the EVAL and EVALT
commands . _ .

13 l EVAL Command

Before issuing the EVAL command the 1 user ‘should be sure. that h1s or her Virtual
' machine ‘has sufficient storage, that the virtual machine has access to the mini-disks containing
the RESQ system files and the PL/I run time library, and that sufficient loader table space is
prov1ded ‘These steps typically will be the same as with the SETUP ‘command (see Section
2.1), except.that the ' EVAL command usually requlres more virtual storage, and need to- be
taken only the first time RESQ is used, provided appropriate mod1f1catlons are made to the CP
d1rectory and/ or PROFILE EXEC. ‘

‘ Dependmg on the partlcular modél and the sizes speclfred (perhaps by default) for
internal dynamic storage areas, the EVAL command will typically require roughly - 1300K .of
-virtual storage. “With some models and sizes for storage areas, 1100K: or less may be suffi-
cient; while for other situations 1300K ‘will be msufﬁcrent Addltronal 1nformatlon in thrs »
'fregard is g1ven in"Section 13.3. Ll

. The EVAL command may .be. 1ssued w1thout an argument as in the. example 1n Sectlon 1.
“When issued without -an argument EVAL will prompt for a model naime. Alternatlvely,
EVAL may be. issued with one or more arguments, the first of which is mterpreted as ‘the
“'model name. Once the model name is established, the EVAL command is the same whether_'
the model name was obtamed from a prompt or an argument

The EVAL command is oriented toward an mteractlve promptlng mode. Th1s is often the o
most effective mode because of the capab111t1es for selective examination of performance. ‘
‘measures, for run continuation and for repeated execution with’ dlfferent parameters values
- ‘However, it.is possible to prov1de replies prior to anticipated prompts, - either from a flle or as

arguments to-the EVAL command. Thus the EVAL command may . be executed in a batch ‘
i machlne or 1n some other d1sconnected virtual machrne :

‘When the- EVAL command is 1ssued it w111 look for a file with file name thesame' as the
-model name: and file type RQ2COMP. If it finds such a file on any accessed minidisk, it will

-assume that the first such file in the search order was generated by the SETUP command and e

; _-solve the model defined by that f11e If EVAL does not flnd such a file, it wrll termmate w1th
&an error message . ‘ _ S

The EVAL command will next look for a file w1th f11e name the same as the model name
. and file ‘type RQ2RPLY If it finds such a file on any accessed minidisk, it will assume that'
: the first such file in the search order is a list of rephes to be used for prompts to be glven by
'the EVAL command ‘The lines of the file are placed on the. CMS stack. ' ‘

The EVAL command may be given -additional arguments after the model name.. These
' additional arguments are also placed on the CMS stack, one per line. The. arguments are -
stacked ‘after any lines stacked from the RQ2RPLY file.. If any argument is the word null"
. an empty (blank) line is stacked. for that argument. Because of the tokenlzrng of arguments
with CMS the arguments may not contain punctuation, i.e., the arguments should be restrlcted‘

April 3, 1982'

94 | ~ THE EVAL AND EVALT COMMANDS / SEC: 13

to numerrc values, the codes for the "WHAT:" prompt, "yes" and '"no'’. Note that' these
.'restrlctrons do not apply to the RQ2RPLY f11e B R A T R T

EVAL exam1nes only the first 120 characters of a phys1cal line. . 'EVAL recognries’the

: concatenatron symbol "+4+" as does the SETUP command (Section 2). However, the

. concatenation is only allowed for replles to prompts for parameter values and to the
 "WHAT:" prompt. Other prompts given by EVAL in regard to run continuation requn-e only-
~afew characters in reply, so concatenatron is not cons1dered for these prompts ‘ o

EVAL allows comments, enclosed by "/*" and "*/ " in all replres except those grven as
' arguments in the EVAL command. (This restriction is because of CMS tokenlzrng of argu-
ments) Comments are prrmarlly useful in RQ2RPLY f11es Lo

" After the EVAL command is. 1ssued it 1mmed1ately types the 11ne "RESQ2 EXPANSION‘
AND SOLUTION PROGRAM." If the model name has not been given on the command line;

- then the prompt "MODEL:" will be grven with the name expected ‘as the reply. There are |

‘two basic phases of the EVAL command, macro expansion of- submodel invocations and model
_ solution (e.g., simulation). ~After the initial ‘typed -line, and the "MODEL:" . prompt, if -
; necessary, there is a noticeable delay while the module which performs the expansion is loaded

“into memory. After the module is loaded, it types a line giving the date of creation of - the.

- module and the current tlme and date. If the model has numeric- and/or d1str1but10n parame- -

' ’ters then thete w111 be prompts for parameter values. - Each prompt consists of the parameter

E name followed by a colon (" "}, "The prompts are given in the order that the parameters are

‘declared in the model definition. The ‘expressions given as replies to the prompts follow: the
rules in Append1x 3 but are constrained to use only numeric constants, basic arithmetic
‘ operatrons and numeric function calls. In the case of distribution parameters, RESQ d1str1bu- v
;tron functions may also be used. In the case of array parameters, all values are’ given on a
.'slngle logrcal line. " If fewer values are grven than the number of array elements the last value
is used for the rema1n1ng elements. If more Values are grven than the number of array
'elements the extra values are 1gnored ' :

v‘]13 1.1, Solution Summaries

Wrth numer1ca1 solutlon _the same module handles submodel expanslon and model

_;solutron Wrth srmulatlon after definition of parameter values, if any, the expansion: module

-writes a. temporary file to be read by the solution module, the solution module is’ loaded ‘the
temporary file is read and the solution is performed Utiless simulation trace has been
- specified and/or the print. function (Appendlx 3) has been used, there will be no more typed - }
~output until the end of the solution. If numerical solution is used, the only typed output
_before the "WHAT:" prompts will be either an error message or the "NO ERRORS DE-
- -TECTED DURING NUMERICAL SOLUTION" message. * If simulation is used; the form of
" the lines prior to the "WHAT " ‘prompts depends on whether a confidence interval method has

. 'been used, and if so, which method. If the regenerative method or the spectral method is

used, the form of these lines will also depend on whether or not sequential stopping was used.
- Several of these cases are illustrated in the examples of Section 1 and Appendix 1, as well. as
" the examples we give here. After the solution summary has-been given initially, the. user. may
_’,have it repeated by replying "'sim" (for "simulation summary") to'a "WHAT:"" prompt “The
“solution” summary is placed on the RQ2PRNT file, the EVAL command transcript file, as well
‘as the terminal. (This file: has file name the same . as ‘the model name and file type o
RQ2PRNT)

Slmulation without confidence intervals “1f ‘ho confidence interval method has been’used

"‘then the next typed line” will be "RUN END:" followed by the limit or limits which ‘were
x‘reached and caused the run to end. Then there will either be an error message or the ‘line

~ April 3, 1982

* SEC. 13.1.1 / Solution Summaries . s

"NO ERRORS DETECTED DURING SIMULATION." If an initial portion of the run was \
discarded, this line will also indicate the number of discarded events. The next three lines will
‘glve the simulated time (excluding any discarded portion ‘of the run), the CPU time consumed -

by the run (in seconds) and the number of simulated events (excludlng any dlscarded portlon »
of the run). For example, we might have ~

RUN'END: MEMORY DEPARTURE -LIMIT : »
NO‘ERRORS DETECTED DURING SIMULATION. 3418 DISCARDED EVENTS

SIMULATED TIME: 812.77954
CPU TIME: 19.78
NUMBER OF EVENTS: . 30857

- Independent replications. If independent replications are used, then there will be a typed.
line for each replication indicating the limit or limits which were reached and caused the
replication to end. Then there will either be an error message or the line "NO ERRORS'
DETECTED DURING SIMULATION." If initial portions of the replications were dlscarded
this line will also indicate the number of discarded events. (If the run ends in the midst of a
replication other than the first because of the CPU limit, the number of events for the partially
completed repllcatlon will be included in the discarded event count. However; if the run-is
continued, this replication w1ll resume. where it stopped and the events recovered will be
removed from the discarded event count.) The next four lines will give the mean simulated
time per repllcatlon (excludlng discarded portions), the total CPU time consumed by the run
(in seCOnds), the mean number of simulated events per replication’ (excludlng dlscarded
portlons) and the number of rephcatlons For example, we might have .

REPLICATION SET;TOTAL‘DEPARTURE LIMIT

1
REPLICATION = 2: SET_TOTAL DEPARTURE LIMIT
'REPLICATION - 3: SET TOTAL DEPARTURE LIMIT
REPLICATION = 4: SET_TOTAL DEPARTURE LIMIT

REPLICATION' 54 SET_TOTAL DEPARTURE LIMIT
- NO ERRORS DETECTED DURING SIMULATION 19779 DISCARDED EVENTS

SIMULATED 'TIME PER REPLICATION: - 207.36981

CPU TIME: : 260.54
NUMBER OF EVENTS PER REPLICATION: 35791

*"NUMBER OF REPLICATIONS: ' 5

If independent replications are used but not even the first replication is completed, e.g:, the -
CPU limit is reached. before the first replication ends normally, then the output will be
essentially the same as simulation without confidence intervals except: that the number of
replications will be given as zero (0).. Assuming the first replication did not complete because

of the CPU limit and not because of an error, the run continuation dialogue may be used to e

increase the CPU limit and continue the run where it stopped. -

Regenerative method without sequentnal stopping. If the regenerative method is used
without the sequential -stopping rule, then the next typed line will be "RUN END:" followed
‘ by the guldehnes and/or limit (CPU) which were reached. Then there will either be an. error
message or the line "NO ERRORS DETECTED DURING SIMULATION." If part of the run
was discarded because the simulation did not begin in the regeneration state and/or the
‘simulation d1d not-end in the regeneration state (because of an error or the CPU llmlt), thlq‘
‘line will indicate the number of discarded events. (If the run ends in the midst of a regenera-
_“tion cycle. other than the first because of the CPU limit, the number of events for the partlally
completed cycle will be included in the discarded event count. However, if the’ run 1s contln— .

-April 3, 1982 -

% . THEEVAL AND»EVAL"I“COMMANDSI/SEC. 13

- ued th1s cycle w1ll resume where it. stopped and the events recovered w111 be removed from the S

: dlscarded event count.) The .next four- lines . will give the srmulated time (excludmg any

" discarded portion of the run), the CPU time consumed by the run (in séconds), the number of

~ 's1mulated events (excluding any discarded portlon of the run) and the number of regeneratlon
cycles For example, we might have : : -

RUN END: EVENT. GUIDELINE MEMORY DEPARTURE GUIDELINE CPU LIMIT
NO' ERRORS :DETECTED DURING SIMULATION. 3418 DISCARDED EVENTS

SIMULATED TIME: — 812.77954

_ CPU TIME:. 19.78
NUMBER OF EVENTS: 30857

.~ . NUMBER OF. CYCLES: 27

‘ If fewer than ‘two regeneratron cycles were completed confrdence mtervals w1ll not be -
o avallable and run contmuatlon w1ll not be allowed. (AR

Y Regeneratlve method ‘with sequentlal stoppmg - If the regeneratlve method is used w1th the
sequentlal stopping rule, then for each normally completed sampling period there ‘will be a line
"SAMPLING PERIOD END:" followed by the guidelines which caused the sampllng period to

. _end: If the last samplmg perlod does not end because of its guidelines but ‘because of the - :

~'CPU limit or an-error, then the next typed line will be "RUN END:" followed by the gurde—
lines and/or limit (CPU) which were reached Then there will gither be an_error, message or
the line "NO ERRORS DETECTED DURING SIMULATION." If part of the run was
discarded because the simulation did not begm in the regeneration state and/or the simulation
did not end in the regeneration state (because of an error or the CPU limit), this- line will
indicate the number of discarded events. (If the run ends in the m1dst of a regeneration cycle .
other than the first because of the CPU limit, the number of events for the partially. completed
cycle will be included in the discarded event count. However, if the run is continued,: this
cycle will resume- where it stopped and the events recovered will be removed from the
discarded event count.) The next four lines will give the simulated time (excluding any -
discarded portion of the run), the CPU time. consumed by the run (in seconds), the number of
s1mulated events (excluding any discarded portron of the run) and the number of regeneratlon‘
cycles For example, we might have : s

SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE
‘RUN END: CPU LIMIT :
CNO ERRORS DETECTED DURING SIMULATION 3418 DISCARDED)EVENTS

 SIMULATED TIME: 812.77954

, CPU TIME: 19.78
NUMBER- OF EVENTS: -~ 30857

NUMBER OF CYCLES:) 27

_ Spectral method without sequentlal stopping. If the spectral method is used. w1thout the
sequential stoppmg rule, then the next typed line will be "RUN END:" followed by the limits
wluch were reached. Then there will either be an error message or the hne "NO ERRQR$

'DETECTED DURING SIMULATION." If an initial portion of the run was discarded, this

'~ line will indicate the number of discarded events. The next three lines will. give the simulated

time (excluding any discarded portion of the run), the CPU time consumed by the run (in’
seconds) and the number of simulated events (excluding any dlscarded portion ‘of the run)

For example, we might have :

April 3,1982

'SEC. 13.1.1 / Solution Summaries o S 9T

RUN END EVENT LIMIT : B R LT A,
NO* ERRORS DETECTED DURING SIMULATION 3418’DISCARDED'EVENTS

SIMULATED TIME: ~ 812.77954

CPU ‘TIME: =~ 19.78

-NUMBER OF EVENTS: 30857

Spectral method with sequential stopping. If the spectral method is used with the sequen-
‘tial stopping rule, then for each normally completed sampling period there will be.a line
"SAMPLING PERIOD END:" followed by the limits which caused the sampllng period to
end. If the last sampling period does not end because of its limits but because of the CPU
‘limit or an error, then the next typed line will be "RUN END:" followed by the limits which
were reached. Then there will either be an error message or the line "NO ERRORS DE-
TECTED DURI_NG SIMULATION." If an initial portion of the run was discarded, this line.
will indicate the number of discarded events. The next three lines will give the simulated time

N (excludlng any discarded portlon of the run), the CPU time consumed by the run (in seconds)

and the number of simulated events (excluding any d1scarded portlon of the run). For
“example; we mrght have ' . e

3SAMPLING PERIOD END MEMORY DEPARTURE LIMIT
. RUN :END:. CPU LIMIT T) :
NO ERRORS DETECTED DURING. SIMULATION 3418 DISCARDED EVENTS

o SIMULATED PIME: - 812.77954

: CPU TIME: 19.78
NUMBER OF EVENTS: 30857

1 3.1 2. Perfbrmance Medsures

After the solutlon summary, the user is prompted with "WHAT ",’meanxng "What
performance measures do you want to see?" The rep11es to "WHAT:" are codes indicating

performance measures. The code "all" indicates "all of the usual measures;'" the measures

included and excluded in "all'" will be indicated below. The performance measures are placed
on the RQ2PRNT file, the EVAL command transcript file, as well as the terminal. (ThlS file
has file name the same as the model name and file type RQ2PRNT.) After the performance
measures are shown the "WHAT prompt w111 be repeated unt11 a null. reply is given.

_ Sufflxes may be. added to the performance measure codes to control presentatlon of
conf1dence intervals and/or to’ control the elements (e.g., queues) for which the. measures will :
be given. The confidence 1nterva1 suffix, if any, precedes the suffix for control of elements -
considered. Wxthout a conf1dence 1nterva1 suffix, only point estimates are given. The two .
confidence 1nterva1 suffixes are "ci", which indicates that confidence intervals are to be given
" instead of point estimates, and "bo' (for "both") which indicates that both point estimates
and confidence intervals are to be given. ‘For example, "all" results in only point estimates, -
"allci" results in only confidence intervals and "allbo' results in point estimates and all -
available confidence intervals for the "usual"™ performance measures for all quenes and nodes.

A suffix for control of elements considered consists of either "(*)" or a parenthesized list -
‘of names of 'elements (e g., quetes). “There are slightly different conventions for "all" and the -
other codes, e.g., "ut" for utilization. -'With codes other than !"all", e.g:, "ut", results for
nodes belonglng to a: queue are not given if the code is given without a suffix indicating the
node results are to be ‘given as well as the queue results; the code without a suffix results in.
measures Tor-all queues, and, if appropriate to the measure, results for nodes not assocxated,

* with queues. The "(*)" suffix indicates that measures for nodes associated with a queue are

C April 3, 1982

98 | THE EVAL AND EVALT COMMANDS / SEC: 13

to be given as well as. the queue measures, for all queues. For example, if a queue has two.
classes, then "ut" will give only the utilization for the queue overall, while "ut(*)" will give
_ “the class specific. utilizations. - With "all" results for all queues and nodes are given unless
_ there is a suffix giving a list of names of elements. The "(*)" suffix has no effect with "all'".
Wlth ”all" -and with the other codes, if there is: a suffix giving a list of names of elements, e.g.,
all(cssml cpug,cssml. setemdtype)" or "ut(line. msg_inline.cnt’ 1n), then only measures for
those elements wrll be glven ,

We ‘now list the individual codes ‘and the deflnrtlons of the assocrated performance’
" measures. ' First we list the "usual" measures included in "all", in the order listed with "all",
then we list the other codes and their meanings. In all cases, measures are only avazlable for a
queue or node if there has been at least one departure from that queue or node '

_utr ’ - utlhzatron For an actrve queue the ‘utilization is deflned as the fraction
T oof time a server is in use. (For an infinite server queue the utrhzatron of
“each server is_zero.) For a class the utilization is defined as the fraction
of time a server is in use by jobs of that class. In both cases, these are
average values over all servers of the queue. ' If a queue has heterogene- - .
ous servers (because of different rates and/or different classes accept-
ed) then utilizations will also be given for each server that was used . " @ =
‘during the simulation. For a passive queue the utilization is defined as
the fraction of time a token is'in use. For an allocate node the utiliza-
- tion is defined as the fraction of time a token is in use by jobs of that
 node. In both cases, these are average values over all tokens of the
queue. (Tokens are always homogeneous.) If the number of tokens is not
constant, because of use of create and/or destroy nodes, utilization may not
" be well defined. See the discussion of the "tu" (mean tokens in use)
code.. (If the number of tokens at the end of simulation is not the same
' as the number at the beginning of simulation, a ut111zatron will not be.
,reported). : : '

tp - throughput Throughput is def1ned as the average number of departures"
Lo . per unit time. For active queues and classes departures correspond to, ;
service - completlons For passive queues, '"plain" allocate nodes and
AND allocate nodes departures correspond to release. or destructlon of _
tokens. - For OR allocate nodes, departures correspond to release of
tokens, destruction of tokens or the termination of a request for tokens
~ which has been satisfied by another queue. 'Note that an AND or ORv,v‘ :
~allocate node will have separate performance measures for each queue o
to which it belongs, Except when measures are requested for an AND
- or OR allocate node separately, these measures will be grouped wrth the
corresponding .queues. . Departures for split nodes and flssron nodes
consider only the entering job, not the jobs generated. - o

gl — mean queue length. Queue length for active queues and classes is '
defined as the number of jobs waiting for or holding servers. For
passive queues,-"'plain" allocate nodes, AND allocate nodes and -OR .
allocate nodes, queue length is defined as the number of Jobs waiting for . .
or hold1ng tokens. : - For passive queues with both release and. destroyp
‘nodes, a !'Little’s Rule" estimate of the mean queue length associated -
with release and destruction of tokens, respectively, is obtained from the
throughput multiplied by the mean queueing time. - Note that these two.

-~ mean queue lengths may not add up to the value reported for the queue

- April 3, 1982

: sdql .

at

sdqt :

tu

o

qld L

qtd

tud

SEC. 13.1.2 / Performance Measures

because of jobs-still waiting for tokens at the end of simulation and/ or
]obs still holdmg tokens at the end of simulation. -

‘standa'rd dev1atxon of queue length.

mean queue1ng time. Queuelng time for actlve queues and classes is

defined as the time spent waiting for or holding servers. . For passive

queues, plaln allocate nodes and AND allocate nodes, queueing time

is defined as the time spent waiting for or holding tokens. For OR

allocate nodes, for the queue which provides tokens, queueing time is -
-~defined as the time spent waiting for or holding tokens. ‘For OR allo- -
" cate nodes, for a queue which does not provide tokens, queueing time is

defined as the time spent waiting for tokens. For passive queues with
both release and destroy nodes, queueing times are categorized into

those ending with release of tokens (or end of waiting at an OR allocate f
node) and those ending with destruction of tokens. For all of these.

cases, except for models using the regenerative method, only completed

“queueing times are considered in the mean queueing time and other -
- queueing time méasures. For the regenerative method only, mean
queueing time is not computed directly but is computed. by a. "Little’s"
“Rule' argument so that queueing times in progress may be allowed and .

still have rigorous computation of confidence intervals. -

standard deviation -of -queueing time.

“mean tokens in use. This applies only.to passive queues.” The number
of tokens in' use is the number of tokens allocated. to jobs. .If the ‘num-
ber of tokens of a queue is constant, then the mean number of tokens in-
use is equal to the number of tokens multiplied by the utilization. . If the -
mimber of tokens. of a queue fluctuates, because of the use of create and -
destroy nodes, the number of tokens in use is well defined even though
“the utilization is not well defined.

‘mean total tokens in pool Th1s apphes only to pass1ve queues vThe -

total number of tokens is constant (and equal to the number given on
the "TOKENS:" line) unless create and/or destroy nodes are. used.

queue length distribution. This. only -applies if the dialogue specifies
. gathering of queue length distributions, and then only to the queues and-
: - nodes specified in the dialogue and only up to the maximum lengths
specified in the dialogue. The’ probablhtles of -all queue lengths Wlth"

non-zero probablhtles are given.

queueing tirne distribution This ‘only applies_if the dialogue specifies .

gathering of . queueing time distributions, and then only to the queues

and nodes specified in the dialogue and only for the values specified in
+ the ‘dialogue. The cumulative probabilities of queuemg time. being less _

than or equal to each specified value are given..

distribution: of tokens in use. ' This applles only to passive queues.. This * -
_ only applies if the dialogue specifies gathering of token use distributions, -

* and then only to the queues specified in the dialogue and only up to the -
‘maximum values specified in the dialogue. : The.probabilities of all

numbers of tokens in use with non-zero probabilities are given.

-~ April 3, 1982

99

100 ~ THE EVAL AND EVALT COMMANDS / SEC. 13

“ttd - = distribution of total tokens in pool. This applies only to passive queues.

' This only applies if the dialogue specifies gathering of total token distri-
butions, and then only to the queues specified in the dialogue and only-
up to the maximum values specified in the dialogue. The probabilities of -
.all numbers of ‘tokens with non-zero probabilities are given.

mxgl - - maximum queue length.
nint “ ~ maximum queueing time. -
po - '--epen chain population. This applies only to open chains. 'The popula-

- “tion'is the number of jobs in the chain. . ThlS measure gives the mean.
“‘number of jobs in the cham :

rtm -~ open chain response itime. This -applies only to'open chains. - The
: -~ response time is the time between a job’s entering the chain, either from
‘a source. or spht node, and a job’s departure: through a s1nk "The re-
sponse time is estlmated by a ''Little’s Rule" ‘argument. The chain
~ ‘throughput is defined as the mean number of jobs of the chain which
~‘depart (through the sink) per unit time. The mean response time is -
-~ determined by dividing the chain population: by the: chain throughput. ~
Thus the mean response time'is inflated by the jobs still in the chain:

- All of .the above measures are 1nc1uded in "all'". None of the values below are ‘;in‘cluded in
" all”) :

cnds - number of departures. This is defined as discussed in the definition’ of
B throughput. : ' Lo : ‘
st —. mean service time.: This applies only to active queues and classes. . The

user has specified a distribution, including the mean of that distribution,
but- statistical variability will usually result in a slightly different mean,
which is the value reported for this code. Only completed service times

" are ‘considered, except for the regenerative method. With the regenera-
tive method only, mean service time is determined indirectly from the
utilization divided by the throughput. k

The following values are not truly performance measures in the sense of the above. In
particular, the values reported with the following codes are those at the current state of the
simulated network, even if the simulation is in the midst of an 1ncomplete .replication. or
gregeneratlon cycle which is ignored for the above measures. : :

Ing . -— 'flnal, Iengt‘hs.' This glves the queue lengths at the end of sim‘ulation_. .. '

jv — final job variable values for jobs still in the network: The jobs currently
" in'the network are listed by queue (or node, ‘if "(*)" or an explicit list
" of nodes is used) in the order found in the queue.. The. internal number’
“of the job is g1ven and the values for each job variable are given.

“ev. . = final CV values For each chain, the values of the chain variablee are
- hsted L “ ' ' A
gV L '~ final values of global vanables The final values of global"variebles ere
listed, o B

- April 3, 1982

'SEC. 13.1.3 / Run Continuation, Multiple Solutions EE o1
13.1.3. R“un Continuation and Multiple Solutions

After a null.reply to a "WHAT:" prompt, if run continuation is allowed the next line will.
- be "CONTINUE RUN:", which requires a "yes" or "no" reply. If the reply is "no'" or run
continuation is not allowed, then if the model has parameters, a new prompt for the first
parameter will be given. (If there are no parameters, then the EVAL command terminates.) A
new set of parameters and solution process may begin at this point, or a null reply may be, .
given to end the EVAL command. '

Run eon_tinuation is allowed provided that the simulation has not terminated because. of
an_error, that the simulation did not terminate because of an '"infinite" routingloop :which -
consumes no simulated time, that if independent replications are used that not all replrcatlons'

- have completed, and that if the regenerative method is used there have been at least two-
completed cycles. If "yes" is given to the "CONTINUE RUN:" prompt, then there will be

prompts to control the run continuation. Except for models using mdependent rephcatrons or

~ sequential stopping, these prompts will- be for new values. for limits or guidelines which do not

- already have "infinite" values. New values ‘are required for limits or guidelines -which have
‘been reached. New values for the other limits and guidelines are optional. Limits may only

_ be'increased or left the same by giving a null. reply. With independent replications only the
- CPU limit may be increased. With sequential stopping, only the extra samplmg perlod and :
CPU limit values may be 1ncreased ' .

When a run is continued, the "RUN END:" and/or "SAMPLING PERIOD END " lmes
from earlier portions of the run will be repeated in the simulation summary for later pOI‘thIlS ,
of the run. Otherwise the run is the same as if the larger limits had been specified initially .
(with an appropriately smaller initial portion discarded, if applicable). A run may be contin-
‘ued several times, if appropriate. When a run is finally termlnated new runs wrth new.
parameter values may be made if the mode] has parameters S

"13 2. EVALT Command

v In most respects the EVALT command is the same as the EVAL eommand The EVALT
command is intended for use only when the user is providing a USER numeric function, as
‘discussed in Appendix 3. Rather than using the simulation module, which already has the
default (error stop) copy of USER, EVALT runs the simulation from the object code. llbrarres '
and object code files found on accessed mini-disks. If the accessed mini-disks contain any
files with file name the same as the name of an internal simulation procedure, e.g., USER, and -
file type TEXT, then these files will be used instead of the standard copies of those “ proce-
~dures. Thus the user should be sure to have a file USER TEXT on an accessed mini-disk and
‘to avoid having other TEXT files which might be used inappropriately by the EVALT
command. Other than these characteristics, the only other noticeable differences. between the -
EVAL and EVALT commands are that EVALT is slightly slower to begm simulation, because
of the time required to hnk the entry points together, and that there will be an additional lme
: "EXECUTION BEGINS ', when the simulation begins. -

13.3. EVAL Command Files

We have already discussed or mentioned most of the files used or produced by the EVAL
command; The normal input to the EVAL command is from three files: (1) SYSIN - the
EVAL EXEC issues a CMS FILEDEF command defining SYSIN to be the terminal. (2) The

“reply file (RQ2RPLY) if one exists and (3) the model definition file (RQ2COMP) produced
by SETUP. In addition, EVAL will use as input either RESQ2 APLMBD, which is used to

April 3, 1982

02 THE EVAL AND EVALT COMMANDS / SEC. 13

define the sizes of certain internal tables for the simulation, or RESQ2 NUMERD, which
constrains the number of queue-dependent gueues allowed in a ‘network to be’ solved numer1—
'eally ' ‘

EVAL cannot determine in advance the maximum size of the s1mu1at1on event list or the o
' ',maxrmum numbers of]obs and job copies in the network' during simulation. - File RESQ2
APLMBD on the mini-disk containing EVAL EXEC contains sizes for these tables - and
buffers The default content of the file is

MA«'XEL=2_5,_6 . MAX_JL=’I 024, MAXJDL=256;

where MAXEL is the maximum size of the event list, 'MAXJL is the maximum number of jobs
plus job ‘copies, and MAXJDL is the maximum number of jobs not counting job copies.” The
user may have a copy of RESQ2 APLMBD on a mini-disk in the search order before the
m1ni—disk conta1n1ng the EVAL EXEC; to be used instead of the default copy. The: user may
f1ncrease (or decrease within reason) these sizes in this copy of RESQ2 APLMBD. If an- -error
message says that event list, job list or job data l1st storage has been exceeded, then MAXEL,

MAXJL or MAXJDL respectrvely, should be 1ncreased for that model. (This assumes that, :

the model is not "running wild," e.g., that jobs are not just accumulating at ‘some node.) On -

the other hand, if the user wishes to reduce the virtual storage required, many models wdl Tun
: w1th smaller values; e.g.; many models will run with ' :

'MAXEL=32,‘MAXJL=64,-MAXJDL=32;

.Each event list element requ1res 32 bytes of storage, i.e., With MAXEL=256 the event Tist
elements take 8192 bytes of storage.. The list of jobs and job copies (MAXJL) takes 56 bytes
per element. The job data (MAXIDL) storage depends on the number of job variables. The
storage required per element is 56 bytes plus 8 bytes per job variable, e.g., if the default
maxunum]ob variable index of one 1s used, the storage per element is 72 bytes. - :

" Since the numerical solution becomes increasingly expensive as the number of queues with
v'._queue length dependent service rates increases, the file RESQ2 NUMERD contains a limit to
'the number of queue length dependent queues allowed. The default content of the file is.

' MvAQDL=4{

" The user:is free to create a copy of RESQ2 NUMERD ear11er in the search order to set this to
”any non-negatlve hm1t ‘ -

Wh11e executlng, the EVAL command produces three files: (l) SYSPRINT - the EVAL

 EXEC issues a CMS FILEDEF command defining the terminal to be SYSPRINT.

(2) RQ2PRNT - the transcript of the terminal interaction, - e.g. , for- printing, and ‘
(3) RQ2NTWK - this is a temporary file which is written by the EVAL command and later
erased by the EVAL command.

Flgure '13.1 shoWs these files and their relationships with the commands. |

April 3, 1982

SEC. 13.3 / EVAL Command Files - S 103

2RPLY, ‘
RESQ2

Ao, . S
."NUMERD

CSETUP:

April 3, 1982

Figure 13.1 - Files used with EVAL

104 -

14 PL/I EMBEDDING

Instead of using the EVAL or EVALT commands after a model has been defined w1th the
SETUP command, model expansion may be embedded within a PL/I program. (This assumes
that the PL/I optimizing compiler is available independent of RESQ.) This may be done in
order (1) to produce tables or graphs of results, (2) to coordinate solution of several separate :
models in a hierarchical solution, (3) to provide a preprocessor for determining model
parameters and/or (4) to provide a: postprocessor for manipulating model solutions prior to
display. Section 14.1 discusses the basic procedures for PL/I embedding and the 1nterface to
CMS Section 14.2 discusses procedures for plottmg graphs of model results.. - »

14 1. Basnc Procedures and CMS Commands

_ The bas1c steps in us1ng PL/ 1 embeddrng are (1) to produce an RQ2COMP file usrng the' ‘
SETUP command, (2) to produce a PL/I program, (3) to compile that program, (4) to issue

- 'CMS commands for file definition and object library definition and (5) to execute the user’s

PL/I ptogram. Several different orderings of these steps are possrble but we will assume
assume the RQ2COMP file has been’ produced and discuss the remaining steps in the order
]ust listed.

14 1.1. The PL/I Program

, ‘The PL /I program. calls procedures provided by RESQ to- (1) estabhsh the model,
: def1n1tron(s) given by the RQ2COMP file(s), (2) to specify model parameters, (3) to perform -
the model expansion and solution, and (4) to determine the results of model solution. The
name of the program should not be a name used in EXPANSUB TXTILIB, APLOMB2
TXTLIB or MVASUB TXTLIB. (See Section 14.1.4 for description of. these 11brar1es)
‘Normally the source file for the program will have file name the same as the procedure name
and f11e type either PLIOPT or PLL

The RESQ procedure READMD reads a model definition file (RQ2COMP) whrch has
,been produced by the SETUP command. READMD has no parameters, so the d_eclaratron

DECLARE READMD ENTRY;
- ‘and calling statement

~ CALL READMD;
are sufficient. Normally the file read will have data set name (in the OS sense) RSQ2IP to be
used in the CMS FILEDEF statements. However, if several different RQ2COMP files atre to
be read by the same PL/I program, the TITLE option of the PL/I OPEN statement may be:

-~ used to def1ne other data set names, e.g.,

OPEN FILE(RSQZIP) TITLE ('MODEL1');
CALL READMD; ‘

/*Define parameters, solve, obtain results for MODEL1#*/

OPEN FILE(RSQ2IP) TITLE('MODEL2');
CALL “READMD;))

- April 3, 1982

SEC. 14.1.1 / The PL/I Program . o 108

/*Define parameters, solve, obtain results for MODEL2%/ |

. After the call to READMD, all parameter values need to be defined before calling‘"a' -

procedure to expand and solve the model. Only scalar numeric and vector numeric parameters
are allowed in models to be solved by PL/I embedding. Once a parameter- value has been
defined by one of the following two procedures, its value need not be defined again unless or.
until READMD is called again, i.e., if a model has several parameters, expansion and ‘solution
.may be performed several times, changlng some ‘parameters and-leaving the existing values of -
- other parameters intact without explicitly resetting parameters to their current values. The
RESQ procedure STPARM is used to define values for scalar parameters, one at a time.- The
“declaration for STPARM should be of the form

v DECLARE‘STPARM ENTRY (CHAR(lO).FLOAT BIN(21));

»where ‘the first STPARM parameter gives the name of the model parameter and the second»
STPARM parameter glves the model parameter value, e. g , : o

CALL STPARM(THINKTIME' 75.2);

Values for vector numeric parameters are def1ned by calls to RESQ procedure STPRMV one '
vector at a t1me The declaratlon for STPRMV should be of the form

v 'DECLARE STPRMV ENTRY(CHAR 10), (*) FLOAT BIN(21)),

where the' first STPRMV parameter is the name of the model parameter and the second,

. STPRMV parameter isa vector of values for the model parameter, e. g "

_CALL STPRVM(VRATES ", RATES) ;
‘ Where.RATES is declared by
‘ DECLARE RATES(S) FLOAT BIN(21),

Model expans1on and solutlon are performed by RESQZA for s1mulatlon and RESQZM”
for: numer1cal solutlon The ‘entry declaratlon for either of these procedures is T P

'uDECLARE RESQZX‘ENTRY(FIXED BIN(31));

where "x" is either "A" for simulation or "M" for numerical solution. The parameter for
RESQZA and: RESQZM 1nd1cates ‘whether the dialogue giving "the " solution summary,
- "WHAT:" prompts for performance measures and run continuation, is' to be entered at the",

end of solution. If the parameter is non-zero, e.g.,
iCALL RESQZA(l);'

’then the d1alogue is entered and if the parameter is zero, the d1alogue 1s not entered (and run'
cont1nuat1on is not- possible). : .

Three procedures are available to obtain solution results after calling procedureRESQZA ‘
or RESQ2M. RESQ procedure TYPEVL can be used to enter the dialogue for solution.

summary and "WHAT:" prompts for performance measures, but run continuation is not

ll " 1

possible and the "Ing", "cv'' and "gv"

_ codes may not be used in reply to "WHAT " _-
prompts TYPEVL has no parameters S0 , '

April 3, 1982

106 | - 8 - _ PL/T'EMBEDDING / SEC. 14

DECLARE T¥PEVL ENTRY ;

Cand

CCALL TYPEVL

: are.sufflcxent RESQ procedure FNLMSG may be used to obta1n the "f1nal message
f produced by the solution, i.e., either the "NO ERRORS ..." message or an error message.

' FNLMSG has a f1xed 80 character str1ng as its parameter e. g v

" DECLARE ‘FNILMSG ENTRY(CHAR(BO)
FMSG -~ ~CHAR(80) ;
and
CALL FNLMSG(FMSG

could be used to place the final message in FMSG. RESQ procedure GTRSLT Wlll retrleve a
_ specified performance measure for a given element. The declaration is of the form

" DECLARE GTRSLT ENTRY (CHAR(*) VARYING,
: CHAR(*) VARYING, (3) FLOAT BIN(Z'I)),

where the first parameter-is the name of the element (possibly 1nc1ud1ng a parenthesxzed array

index), the second parameter is a code used in reply to "WHAT:" (excluding suffixes) and the -
“third parameter is used for the point estimate and the. confxdence 1nterva1 if: ava11ab1e e. g,

after ‘ ,

: DECLARE OP (3) FLOAT BIN(ZT);
- CALL GTRSLT('Q2','QL',OP);

the mean queue length for "Q2" would be given in OP(1) and, if avaxlable a confxdence‘,
. interval for the mean queue length would be given in OP(2) and OP(3), with the lower value
-~ in OP(2). (If no confidence interval is available, 0P(2) and OP(3) will be —1.) The element
~‘name:can be the name of any queue or node in the model for which the specified performance
* measure exists. -Only codes "ut", "tp", "ql", "sdgl", "qt" and "sdqt" may be used.
L 14.1. 2 PL/I Compilation
Normally ‘the source , file for the program will have file name the same as the procedure
name and file type either PLIOPT or PLL The CMS PLIOPT command is used to comp11e the
program,e.g., . . -
’iPLIOPT myprog
: could be used to compile program "myprog' and produce.file MYPROG TEXT for use 1n the
- LOAD command as discussed in Section 14.1.4. v ‘

co 1401 3 CMS Commands for Executzon

Pr1or to executxon of the program the CMS GLOBAL and FILEDEF commands must be '
' used'to establish the proper environment. The GLOBAL command is used to 1dent1fy the

April 3, 1982

~SEC. 14.1.3 F/- CMS Commands for Execution ; o : 107

- TXTLIB’s (object code libraries) to be used and the search order of .these libraries, e.g., the
~ statement . ‘ : L .

' GLOBAL TXTLIB EXPANSUB MVASUB APLOMB2 PLILIB

tetlares that EXPANSUB TXTLIB will be the first library searched for external reference,
MVASUB TXTLIB will be the second library searched, etc. EXPANSUB TXTLIB contains -
the procedures described in Section 14.1.1 and other procedures for model expansion.’
MVASUB TXTLIB contains the procedures for numerical solution and APLOMB2 TXTLIB
contains the procedures for simulation. It is assumed that the PL/T optimizing compller rgn
- time ltbrary is avallable as PLILIB TXTLIB. '

The CMS FILEDEF command is used to associate the data set names used in the PL/I
procedures with files in the CMS environment, e.g., the terminal, files on mini- dxsks and-
 virtual spool files. . The FILEDEF command must be used for data set names SYSPRINT,
RSQ2RS, APLMBD (if RESQ2A is to be called), NUMERD (if RESQ2M is to be called), and
either RSQ2IP or corresponding data set names given with the TITLE option of the PL/I
OPEN statement as discussed in Section 14.1.1. Assuming the model name is "mymodel" and
the TITLE option is not used, the following FILEDEF statements are recommended (and
could be placed in a user written EXEC file). .

FILEDEF SYSPRINT TERMINAL (PERM LRECL 132 BLKSIZE 132 RECFM F

- FILEDEF RSQ2RS DISK mymodel RQ2PRNT A (PERM RECFM V BLKSIZE 141
FILEDEF RQ2PLOT DISK mymodel RQ2PLOT A (PERM RECFM V BLKSIZE 141
FILEDEF APLMBD DISK RESQ2 APLMBD * (PERM RECFM F BLKSIZE 80
' FILEDEF NUMERD DISK RESQ2 NUMERD * (PERM RECFM F BIKSIZE 80
FILEDEF RSQ2IP DISK mymodel RQ2COMP ‘* (PERM RECFM V BLKSIZE 2500

-After the GLOBAL and FILEDEF statements have been issued, the LOAD and START
_commands, are used to execute the program, e.g., if the main program has name myprog the 4
‘ followmg could be used e .

LOAD myprog - (NODUP RESET DMSIBM
START'DMSIBM'ISASIZE(—1OOK)

The: RPLOT EXEC discussed in the following section may also be used where plots are not‘, S

de51red (w1thout changes to the EXEC)

14.2. Plotti.ng Procédures
‘,Several procediu'es are supplied with RESQ for producing low resolution graphs of model .

results on a terminal, line printer or other appropriate character oriented device. Other PL/I
callable graphics packages supplied by the user may be used in a similar manner.” - - o

~ April 3, 1982

2w

E 7O nE

e}

108
B
I -
I :
I +
, '
I +
I N
| +
‘v - 4
| %
I .+ *
[+ *
R | + * %
T - B
I + k%
M ok
E + ®*E
[++ %
. = o
Co L E#
I R *
U I A ®k
I RN *
GRS bt sk
T]t ®
I | +4++ *
o .
VA - %%
A | L%
T | | &%
I | .
0 [*
N - %
[%%
SR
| % o o
+ b | | | |
o ARRIVAL RATE
X SCALE 1.00E-01 = 4.00E+00
4 SCALE '2.85E-02 - 'J.17E+00
Flgure 14 1- Example Graph of Model Results
The followmg declaration could be used for the plotting procedures
DECLARE

RQSET. ENTRY (FIXED BIN(31),FIXED BIN(31)),
| RQPLOT ENTRY ((*,%) FLOAT BIN(21)),

ROXLBL ENTRY (CHAR (*). VARYING),

ROYLBL ENTRY (CHAR (*) VARYING),

" PL/1 EMBEDDING / SEC: 14

April 3, 1982

' SEC. 14.2-/ Plotting Procedures ‘ o 09
ROVIEW ENTRY;

The RESQ procedure RQSET is used to define the size of the graph, in terms of rows and
columns available for displaying curves. The first RQSET parameter is the number of rows
and the second is the number of columns. Five additional rows and five additional coluinns
ate used for labeling. For example, ' ' S

- CALL RQSET(20,40);

defines that there are to be 20 rows and 40 columns for curves. (The entire plot will consist
of 25 rows and 45 columns.) The RESQ procedure RQPLOT is given an array defining the
data to be plotted. The data array must have at least two columns, for plotting a single curve,
and should have an additional column for each additional curve to be plotted. The data array
must have at least as many rows as the number of columns specified in the call to RQSET:
The first column gives the values for the X axis, and each add1t1onal column defines Y axis
values for a curve. For example, we might have : : :

DECLARE .
DATA(60,3) FLOAT BIN(21);

/*Define elements of -data fof first 40 rows*/ v
‘ CALL RQPLOT (DATA) ;

1o plot two curves. RESQ procedure RQXLBL is ‘used to give a label for the X ‘axis, and
RESQ procedure RQYLBL is used to give a label for the Y axis, e.g., '

+“CALL ROXLBL(' . - . " - ARRIVAL RATE')
CALL RQYLBL(MEAN RESPONSE TIME CPU UTILIZATION'),

- RESQ procedure RQVIEW displays the graph on-the terminal and on the file wrth data set L
‘name RQ2PLOT. A CMS FILEDEF statement must be used for RQ2PLOT before executmg o

a program callmg RQVIEW eg.,
FILEDEF RQ2PLOT DISK mymodel RQ2PLOT A (PERM RECFM V BLKSIZE 141

Following is a complete program which could be used with model EXAMP 1 in’Append_ix

,EXAMP1£ PROCEDURE OPTIONS(MAIN) REORDER;
' DECLARE .
N FIXED BIN(31), .
(T,DATA(40,3),0P(3)). FL.OAT BIN{(21),
FMSG 'CHAR (80) ,
(FLOAT, SUBSTR) BUILTIN
/*Entry p01nts for RESQ routines: */
'READMD ENTRY,
STPARM ENTRY (CHAR(1O)7FLOAT BIN(21)),
RESQ2M ENTRY(FIXED BIN(31)),
- FNLMSG ENTRY.(CHAR (80)),
'GTRSLT ENTRY (CHAR(*) VARYING,
CHAR (*) VARYING, (3) FLOAT BIN(21))
/*Entry points for RESQ plotting routines:#*/
: RQSET ENTRY(FIXED BIN(31),FIXED BIN(31)),

April 3, 1982

110 e | PL/1 EMBEDDING / SEC. 14

RQPLOT ENTRY ((*,*) FLOAT BIN(21)),
ROXLBL ENTRY (CHAR (*) VARYING),

- ROYIBL. ENTRY(CHAR(*) VARYING),
© " .RQVIEW ENTRY; :

“CALL: READMD; /% Reads RQ2COMP file produced by SETUP*/

“CALI STPARM ('CPIOCYCLES',8.0); /*Set parameter value*/

DO N=1 TO 40; : e

DATA (N, 1) =FLOAT (N) /10.0;
CALL STPARM(' ARVL_RATE',FLOAT(N)/10.0); /*Set parameter Value*/
;~CALL RESQ2M(O), /* Expands model & Solves numerlcally*/
~'CALL FNLMSG(FMSG), ,
IF SUBSTR(FMSG,1,9)=="'NO ERRORS' THEN
STOP; L : ‘

. CALL GTRSLT (' CPUQ', QLﬂLOP); /* Get result #*/

-+ T=0P (1) , , . '

' CALL GTRSLT ("DISKQ', 'QL',0P); /* Get result */ o

" DATA(N,2)=(T+OP(1))/(FLOAT(N)/10.0); /*Mean response time

_ - o (Little's Rule) *7
CALL GTRSLT ('CPUQ','UT',OP); /* Get result */

. DATA(N,3)=0P(1);
" END; -

CALL RQSET (40,40);

CALL RQPLOT (DATA) ;
.~ CALL RQXLBL (" : ARRIVAL RATE');
" CALL' RQYLBL('MEAN RESPONSE TIME CPU UTILIZATION' Yo

CALL RQVIEW;
END";

After compiling th1s procedure with the PLIOPT command we could use the RPLOT EXEC
e. g .y

.rplot,examp1 exemp1
to get the plot shown in Figure 14.1. Following is a listing of RPLOT EXEC::

 §CONTROL “OFF

_EIF &INDEX = 2 &SKIP 4

EBEGTYPE

RPLOT REQUIRES EXACTLY TWO ARGUMENTS, MODEL ‘NAME AND PROGRAM NAME
§END

EXIT 100

STATE &1 RQ2COMP *

§IF ERETCODE = 0 &SKIP 2 : L

ETYPE &1 RQ2COMP FILE NOT FOUND. USE SETUP FIRST.

SEXIT 28

GLOBAL TXTLIB APLOMB2 EXPANSUB MVASUB PLILIB

FILEDEF SYSPRINT TERMINAL (PERM LRECL 132 BLKSIZE 132 RECFM F
FILEDEF RSQ2RS DISK &1 RQ2PRNT A (PERM RECFM V BLKSIZE 141
FILEDEF RQ2PLOT DISK &1 RQ2PLOT A (PERM RECFM V BLKSIZE 141
FILEDEF RSQ2IP DISK &1 RQ2COMP * (PERM RECFM V BLKSIZE 2500
FILEDEF APLMBD DISK RESQ2 APLMBD * (PERM RECFM F BIKSIZE 80
FILEDEF NUMERD DISK RESQ2 NUMERD * (PERM RECFM F BIKSIZE 80
LOAD §2 (NODUP NOMAP RESET DMSIBM

START DMSIBM ISASIZE (- 100K)

April 3, 1982

111

APPENDIX 1 - ADDITIONAL 4EXAMPLES

. This ‘appendix drscusses three complete examples which 1llustrate aspects of RESQ not
- featured in the example of Sectlon 1. The first example is a very simple model w1th two
queues in an open chain.” This example is solved numerically. - The second example is related
to the example of Section 1, but contains a more detailed representatron of an' I/O subsystem
includmg effects of channel and device interaction, and represents round robin scheduling at
the processor. (Termlnals and memory are ignored in this second example.) The third example
‘shows how passive queues, split nodes, fission nodes, fusion nodes and other RESQ elements
- may be used to s1mply represent protocols in ‘communication’ systems : : Lo

'AL1. Numerically Solved Model

Extremely simple queueing models are often sufficient to make initial system design
- decisions, e.g., to rejéct designs with substantially - poorer performance than other designs
being considered. Cyclic queueing networks representing only CPU and disks have' been
found useful in a number of applications. Figure Al.1 shows such a model of .a transactlon
. driven computing system. Transactions arrive at the CPU for processing and then -alternate:
CPU and disk activity until the transaction is completed The disks are represented by a smgle '
queue in the model. v ‘

S CPU DISK SINK"

el G210z E

Figure Al.1 - Open Chain Cyclic Queue Model

Following is. a possible dialogue file for definition of the model:

MODEL : examp 1
METHOD:numerical
NUMERIC PARAMETERS arvl rate cpiocycles
'QUEUE : cpuq : '
TYPE:pS , _ : E
CLASS LIST:cpu. : ' v v G
SERVICE TIMES: standard(025,5) ' SR
QUEUE:diskqg . .
TYPE:active = ' u o S
SERVERS:2 : ' _ - Sl ey
DSPL: fcfs : ‘ , S o
- CLASS LIST:disk ' ‘ o R
~ WORK DEMANDS:.019
'CHAIN:trnsactns’ '
TYPE:open
SOURCE LIST:s
ARRIVAL TIMES:1/arvl_rate

April 3, 1982

112 | . ~ ADDITIONAL EXAMPLES / APP. 1

':s—>epu—>diskf>sink cpuj1/cpiocycles T-1/cpiocycles
END -~ - : '

‘The arrlval rate of transactions and the mean number of CPU 1/0 cycles per transactlon are
left as parameters to be defined when the model is solved. The CPU is represented as having
‘processor sharing scheduhng and hyperexponentral service trmes with mean: 25 milliseconds
and coefficient of variation 5 (i.e., standard deviation 125 milliseconds). Two dlSkS are.
represented by a single queue, with the ‘service tlmes assumed to be. exponential with mean 19
milliseconds. Following is the RQZPRNT file obtained for two sets of. parameter values '

RESQ2 VERSION DATE: MARCH 3, 1982 - TIME: 21:29:10 DATE: 03/09/82
MODEL : EXAMP 1 : R S
ARVL_RATE:3

CPIOCYCLES:8

NO ERRORS DETECTED DURING NUMERICAL SOLUTION.

“'WHATtall

ELEMENT UTILIZATION
CPUQ : 0.60000

DISKQ . .0.22800.

ELEMENT . THROUGHPUT

CPUQ 24.00000

DISKQ 24.00000

ELEMENT . MEAN QUEUE LENGTH

CPUQ- 1.50000

DISKQ 0.48100 .

ELEMENT MEAN QUEUEING TIME

CPUQ . 0.06250 :

DISKQ : 0.02004

ELEMENT ~ OPEN CHAIN POPULATION
TRNSACTNS 1.98100

ELEMENT - OPEN CHAIN RESPONSE TIME
TRNSACTNS 0.66033 ' ‘

WHAT:

ARVL_RATE:4
CPIOCYCLES:8
NO 'ERRORS DETECTED DURING NUMERICAL SOLUTION.

WHAT:all

April 3, 1982

APP. 1.1 / Numerically Solved Model R T

ELEMENT UTILIZATION

CPUQ - - 0.80000
DISKQ . 0.30400
ELEMENT = . THROUGHPUT
‘cPUQ . 32.00000
DISKQ 32.00000
' ELEMENT . - MEAN QUEUE LENGTH
CPUQ : 4.00000
DISKQ =~ = . 0.66991
ELEMENT - MEAN QUEUEING TIME
cpug . 0.12500
DISKQ ' ~.0.02093
ELEMENT " OPEN CHAIN POPULATION
TRNSACTNS 4.66991
ELEMENT ~ OPEN CHATN RESPONSE TIME
TRNSACTNS 1. 16748
WHAT:
ARVL, RATE:

A1.2. 1/O Subsystem Model

‘The computer system model of Section 1 assuimed:that there was no competition between
disks, e.g., for channels. Let us consider a computer System with two disks where . the same
channel must be used to initiate pos1tlomng (arm and/or rotational) and.for transfers. If the
“channel is not available when a device is in the correct rotational position, a job must wait'a
full revolution before it can try again to get the channel and make the transfer: See »Flgure
‘Al.2. This figure is similar to the Section 1 computer system model but omits the' terminals

queue and memory queue. This model also represents round robin scheduling at the CPU .

- using JV(0) to maintain the remalmng service time. There is a passive queue representing the
channel, and there are both passive and active queues representing each deviee. - ~The passive
queues are used for representing conténtion and the active queues are used for representing
timing; there will never be more than one job at the (device) active queues. - After.a job -
acqulres the token for a device, it requests the channel, to initiate arm or rotational posmon-
ing. As'soon as it gets the channel it releases it; we assume the time to initiate positioning is
negligible, but that the time waiting to initiate positioning may not be negligible. ~The device
arm may or may not be at the proper cylinder. We assume that- with probablhty‘
1-MOVEARMP the arm is already at the right cylinder and the job only needs to wait for "
rotational positioning., If the arm is not at the right cylinder we assume €ach of the remaining
- cylinders is equally likely to be the correct one. Global variables are used to keep track of the.
current and chosen cylinder. - After a seek the job initiates and walts for rotatmnal posmomng

Apiil 3, 1982

e : ADDITIONAL EXAMPLES / APP. 1

‘Whether a seek was required-"or_ not, we assume the rotational positioning time is uniformly

distributed from 0 to one revolution.

e emaen e ———————

LI,

Fignre Al.2 -1/0 SubsYstehi Model

After the device is at the. correct rotational posmon the TA status function is used to
~‘determine ‘whether the channel is available. If it is not, then the job is delayed for a full
revolution.. Once the job gets the channel, it has a. transfer time (which we. assume to. be

constant, e.g., one page): and then releases the channel and device. The degree of multlpro— :

*gramrmng is assumed constant. The followmg dialogue file could be used for this model

MODEL: examp?2
s METHOD. 81mulat10n
NUMERIC IDENTIFIERS:mean serve quantum overhead
MEAN SERVE: .02
. QUANTUM: .02
OVERHEAD 0002
SUBMODEL rrgueue /*round robln queue*/
‘ NUMERIC PARAMETERS : mean serve quantum overhead :
. CHAIN PARAMETERS:chn
. QUEUE:q
k TYPE: fcfs -
CLASS LIST: cls

SERVICE TIMES: standard(mln(jv();qnantum)+0verhead,0)f

 SET NODES:set_total

April 3, 1982

o

~ APP. 1.2 / 1/O Subsystem Model

. ASSIGNMENT LIST:jv(0)=standard(mean_serve, 1)

. SET NODES':set remain

" ASSIGNMENT LIST:3v(0)=3jv(0)=-min(jv(0) ,quantum) -
DUMMY NODES: dummy out

CHAIN:chn -
TYPE:external

INPUT:set total
OUTPUT: dummy out
rset_total->cls->set rema1n~>cls dummy out 1f(jv(0)>0) 1f(t)
END OoF SUBMODEL RRQUEUE, .
SUBMODEL 1osys /*subsystem with device contention for channel*/
CHAIN PARAMETERS c
NUMERIC IDENTIFIERS:movearmp

MOVEARMP: 1/3
QUEUE: channel
TYPE:passive
- TOKENS: 1
DSPL: fcfs

ALLOCATE NODE LIST:pos_s_al pos_l_al tranal

NUMBERS OF

TOKENS - TO. ALLOCATE: 1

ALLOCATE NODE LIST:pos_s_a2 pos. 1 a2 trana?
NUMBERS OF TOKENS TO ALLOCATE: T '
RELEASE NODE LIST:pos_s rl pos_l r1 tranrl
RELEASE NODE LIST:pos s -r2 pos_l r2 tranr2
DUMMY NODES : dummyin dummyout
"SUBMODEL:dasd /*individual device*/
NUMERIC PARAMETERS:ncyl startarmt cylt revt trant :
NODE PARAMETERS:pos_s_a-pos_s_¥r pos 1 a pos_l r trana tranr
CHAIN PARAMETERS c
GLOBAL VARIABLE IDENTIFIERS oldcyl newcyl
OLDCYL:ncyl/2

NEWCYL: O
QUEUE:deviceq

TYPE:passive

TOKENS : 1
DSPL:fcfs

ALLOCATE NODE LIST:device

NUMBERS

OF. TOKENS TO ALLOCATE: 1

RELEASE NODE LIST:devicer

QUEUE: timesq

TYPE: fcfs .

CLASS LIST:
- ‘SERVICE

CLASS LIST:

SERVICE

CLASS LIST:

SERVICE

seek

TIMES standard(startarmt+abs(newcyl oldcyl) ++

115

*cylt oy -

lat rev .
TIMES:uniform(O,reyt,1) standard(revt,O)n
tiran g
TIMES standard(trant O)

SET NODES: setnewcyl
yASSIGNMENT LIST:++
newcyl= cell(unlform(o oldeyl-1, (oldeyl=-1)/(ncyl 1)

SET NODES:setoldcyl

',Oldcyl ricyl, (ncyl- oldcyl)/(ncyl 1)))

ASSIGNMENT LIST:oldcyl=newcyl

April 3, 1982

116

CHAIN:c

END OF SUBMODEL DASD

. TYPE:external
INPUT:device’

OUTPUT:devicer ‘
:device->pos_s._a pos_l_ a;movearmp . l-movearmp

' ADDITIONAL EXAMPLES / APP. 1

:pos_s_a->pos_s_r->setnewcyl->seek->setoldcyl->pos 1 a

fpos_1_a->pos_1 _r->lat .
:lat->trana rev;if (ta>0)

1f(t)

:rev->trana rev;if (ta>0) if(t)
:trana->tran->tranr->devicer

" INVOCATION:disk1t
TYPE:dasd
NCYL: 800
STARTARMT: .01
CYLT:.0001
REVT:.0166667
TRANT: . 0029
POS_S _A:pos_s_al

POS_S_R:pos.s_rt-

POS_IL A:pos_1l at

POS_L_R:pos 1 r1 =

TRANA: tranal
TRANR: tranr1
C:¢
" INVOCATION:disk2

- TYPE:dasd =

- NCYL:800
STARTARMT: . 01
‘CYLT:.0001
REVT:. 0166667
TRANT: . 0029
POS_S_ A:pos_s a2
POS_S R:pos_s_ xr2
‘POS_L_A:pos_1 a2
POS_L_R:pos_ 1 r2
TRANA:trana2

' TRANR:tranr2
C:c ‘

~.CHAIN:c

_TYPE:external
INPUT: dummyin
OUTPUT: dummyout

:dummyin->disk?.input disk2.input;.5 .5

:diskt.output disk2.output->dummyout
END OF SUBMODEL ;OSYS
INVOCATION: cpug

TYPE:rrqueue: mean_serve; guantum; overhead; ¢

INVOCATION:io
-TYPE:iosys

C:c

CHATN:c

TYPE:closed .-
POPULATION: 4

 April 3, 1982

APP. 1.2 / 1/O Subsystem Model R TREREE LR S B

:cpuq.output->io. input
tio. output ->cpuq. input
CONFIDENCE "INTERVAL METHOD repllcatlons
JINITIAL- STATE DEFINITION -
CHAIN:c
NODE LIST cpug.set total
., INIT POP:4 .
CONFIDENCE LEVEL:90
' NUMBER OF REPLICATIONS:5
. INITIAL PORTION DISCARDED 10 /*percent*/ R
- REPLIC LIMITS- : RIS
NODES FOR DEPARTURE COUNTS cpuq set total: : i g
DEPARTURES 10000
LIMIT ~--CP SECONDS:300
TRACE:noO
END

Slnce the channel is shared between the dlSkS, the submodel representlng a disk must have
entry and exit’ points for the allocate and release nodes for the channel as well as for the
allocate and release nodes for the disk. Node parameters are used for the channel allocate. and

release nodes. : -

FolloWing is the RQ2?RNT file obtained from the EVAL command:

 RESQ2 VERSION DATE: MARCH 3,.1982 = TIME: 22:29:10 DATE: 03/09/82 .
MODEL : EXAMP2 , - . o S

' REPLICATION . 1 SET;TOTALvDEPARTURE LIMIT

- REPLICATION 2: SET_TOTAL DEPARTURE LIMIT

REPLICATION = 3: SET_TOTAL DEPARTURE LIMIT

REPLICATION = 4: SET_TOTAL DEPARTURE LIMIT

REPLICATION 5: SET_TOTAL DEPARTURE LIMIT

'NO ERRORS DETECTED DURING SIMULATION. 19837 DISCARDED EVENTS

SIMULATED TIME PER REPLICATION;: 207.52304
_ , CPU: TIME: 291.46
NUMBER OF EVENTS PER REPLICATION: .. 35782
NUMBER OF REPLICATIONS: . ‘ 5
WHAT : tpbo
~ INVOCATION INVOCATION ELEMENT THROUGHPUT o
- CPUQ . 0 -~ - 68.54985(68. 37177, 8. 72792) 0.5%:
' 10 CHANNEL:,f 101.30110(100.28430,102.31792) " 2. o%
10 . 'DISK1- . DEVICEQ 21.86382(21.54640,22.18124) 2.9% .
I0 - DISK1 | TIMESQ -52.40106(51.56384,53.23827) 3.2%
'IO-- .. DISK2 DEVICEQ ©21.50816(21.28053,21.73578) " 2. 1%
10 , DISK2 - TIMESQ ~ 51. 48280(50 97803,51. 98758) 2.0%
' “CPUQ SET_TOTAL = 43.36867 '
CPUQ" " SET_REMAIN 68.54947
CPUQ DUMMY_OUT 43.37251
10 : POS_ S R1 . 7.35436
10 POS_L R1 . 21.86263 .

10 .- TRANR 1 21.86166

‘Aprii,'s,"v'19’8'2. :

10 . POS_S_R2
I0 . POS_L_R2
10 TRANR2
IO . © ‘DUMMYIN
) "I0- . - DUMMYOUT
10 .DISK1 .. - DEVICER
I0 . DISK1 SETNEWCYL,
10 DISK1 SETOLDCYL
I0 . DISK2. DEVICER .
10 DISK2 - SETNEWCYL

0 . DISK2 SETOLDCYL

ADDITIONAL EXAMPLES / APP. 1

7.20016
21.50700
21.50700
43.37251
43.36867
21.86166
7.35436
7.35340
21.50700
7.20016
7.20016

‘WHAT;utbo(cpuq.q,io,channel,io.diskT.deviéeq,io.disk2;de§iceq)

- INVOCATION INVOCATION ELEMENT

CPUQ . Q
S .o IO CHANNEL
IO - DISKT . DEVICEQ

IO . . ' DISK2 . . DEVICEQ

WHAT :qlbo (%)

INVOCATION INVOCATION ELEMENT

cPUQ Qo
‘10 CHANNEL
10 POS_S_A7
10 . POS_L A1
10 . - TRANAT .
I0 , POS S A2
I0. . -~ POS L A2
10 TRANA2
‘10 DISK1 . DEVICEQ
10" DISK1 - - = TIMESQ
I0 o DISK1 | SEEK
10 DISKI1 LAT
10 DISK1 REV
I0 DISK1 TRAN
10 : DISK2 DEVICEQ
10 - DISK2 TIMESQ
I0 DISK2 SEEK -
10 DISK2 ° . LAT
10 . ' /DISK2 ' REV

10 . DISK2 TRAN

WHAT: st (*)

INVOCATION INVOCATION ELEMENT

CPUQ Q
I0 ool DISK1. - TIMESQ
0 DISK1 SEEK

10 DISK!1 LAT

UTILIZATION

0.87926(0.87447,0.88406) 1.0%
0.12578(0.12460,0.12696) 0.2%
0.53930(0.52858,0.55002) 2.1%
0.52685(0.52173,0.53196) 1.0%

. MEAN QUEUE LENGTH

2.21399(2.18089,2.24708) 3.0%
0.12935(0.12820,0.13050) 1.8% "~ =
'3.65E-04 (2.95E-04,4 .34E~04) 38.0% .
1.39E-03(1.30E-03,1.48E-03) 13.1%
0.06341(0.06248,0.06433) 2.9% _
4.02E-04(3.75E~04,4.29E-04) 13.3%
1.42E-03(1.32E-03,1.518-03) 13.3%
0.06237(0.06171,0.06303) 2.1%
0.91284(0.87976,0.94592) 7.2%

. 0.53754(0.52681,0.54828) 4.0%

0.27007(0.26338,0.27675) .5.0%
0.18209(0.17829,0.18589) 4.2%
0.02198(0.02002,0.02394) - 17.8%
0.063417(0.06248,0.06433) 2.9%
0.87317(0.86327,0.88307) 2.3%
0.52503(0.57989,0.53017) 2.0%
 0.26165(0.25638,0.26693) 4.0%.
0.17991(0.17757,0.18225) 2.6%
. 0.02109(0.02007,0.02212) 9.7%
0.06237(0.06171,0.06303) 2.1%

MEAN SERVICE TIMES
0.01283

..0.01026

0.03671
' 8.3271E-03

April 3, 1982

APP. 1.2 / 1/0 Subsystem Model - S S £ L1

10 © ' . DISKT. REV 0.01667

10 . DISK1 TRAN 2.9000E-03

1o - IDISK2 TIMESQ 0.01020

IO ‘s T UDISK2: - . SEEK 0.03634

I0 . . DISK2 ~ - . LAT 8.3646E-03

fo - . DISK2 REV ©.0.01667

10 - DISk2. - TRAN" 2.9000E-03

WHA.’I‘ : gv‘

INVOCATIQN INVOCATION ELEMENT FINAL VALUES OF GLOBAL VARIABLES
IO . DISK1 OLDCYL 119.00000
IO .. DISK1' NEWCYL . 119.00000

10 DISK2 ' OLDCYL 645,00000

I0s % . 7...DISK2 .. . NEWCYL = . 645.00000

WHAT:

Some blank columns and less significant d1g1ts have been edited from this copy of the flle 1o, :
allow presentatlon within the column width used in th1s document 4

A1.3, “Communicati‘on Protocol Model

Like the example of Sectlon 1, the example of this section considers termlnals connected :
" 'to an interactive computlng system However, the model of Section ‘1 emphasized representa- ,
tion' of the computer system and ignored communication between thé ‘terminals and ‘the e
computer system The model of this section will ignore details of the computer system, .
representing the computer system by a single queue with queue length dependent serv1ce rates, .
and w1ll focus on communlcatron between ‘the terminals and computmg system

We: assume the termrnals are organlzed in three separate groups. (The submodel defini- -
‘tions given below would apply with any number of groups. Minor modifications in the main
model would be needed to'change the number of groups.) The terminals share a full duplex

2400 baud line to the computer system. In order to.avoid conflicts between traffic destined’

from a terminal group to the computer system, a polling protocol gives each group a turn to
transmit any traffic it has for the computing system. The messages sent from the terminals to
the computing system are fairly short with a maximum length of 640 bits. - However, the"
messages sent from the computing system to terminals are longer and more variable in length,

" with' a mean length of 800 bits. To prevent a long message from monopolizing the line from

the computing system to the terminals, the messages are divided into packets of maximum
length 256 bits. Only 240 of the 256 bits are used for data, with the remaining bits used for
" control information. To prevent a.terminal controller from receiving more data than it can'
- handle, a simple window flow control protocol is used. . The protocol allows only a single
message (typically, several packets) to be sent to a term1na1 group before that group exp11c1t1y
requests another message be sent. o :

The model consists of three submodels, a queue representing the computer system and a
passive queue used for measuring response times. The first submodel, TERM__;GROUP,
represents a termlnal group. There will be one invocation of TERM__GROUP for each
group.. The second submodel, POLL__ LINE represents thé communication line. There is]ust;
one inovcation of POLL . LINE “The third submodel, FLOW__N___ PKT represents the

April 3, 1982

120 - ADDITIONAL EXAMPLES / APP. 1

Ui

Temedrecoz

E |

:

Figﬁre Al.3 - Communication Protéc’ol M()délv

window flow .control protocol and the division of messages into packets.

inVocatiOn'of FLOW N PKT for each terminal group. :

Following is a dlalogue file for definition of TERM__| GROUP.

: SUBMODEL: term_group
NUMERIC PARAMETERS : group_no
NODE PARAMETERS:begin rt-ehd rt
“CHAIN PARAM‘ETERS:C
QUEUE:terminalsq
TYPE: is .
CLASS LIST: termlnals
“SERVICE TIMES:thinktime
© SET . NODES:msg char /*message characteristics#/
ASSIGNMENT LIST:jv(group)=group no
jv{msg_type)=data
jv(msg_leng)=uniform(24,640,17)"
SET NODES:set _cntrl :
‘ASSTGNMENT LIST: jv(group) =group_no
: jv (msg type)=control
jv(msg_leng)=32

There will be one

(Some of the names in
thls dlalogue file are names of numeric identifiers declared in the ‘invoking model.)

++
++

++
F+

April- 3, 1982

APP. 1.3 /- Communication kProtocol Model | e N 121

. SPLIT NODES:gen_.cntrl
FUSION NODES:assmbl pkt
CHAIN:c
TYPE:external
INPUT: assmbl - pkt’
“OUTPUT: set. critrl
assmbl pkt >gen_cntrl->end_rt set_cntrl; spllt
end rt- >term1nals >msg_char->begin_ rt
END OF SUBMODEL TERM GROUP :

Jobs are 1n1t1a11y placed at the termma]s to represent users. " At the end of a. thmk tlme (and i
keying time), a]Ob goes to set node MSG CHAR which sets job.variables’ giving the message:

characteristics; i.e., the group producing the message, the fact that this is ‘a data message (as

‘opposed to a control message for the window flow contro] protocol), and the message length,
The job then goes to node parameter BEGIN__RT which is an allocate node for response time -

measurement. Jobs representing packets returmng from the computing system: go to fuslon
node ASSMBL' "~ PKT. When all packets of a message have arrived at the fusion node, a

single job representing the assembled message leaves the fusion nodé. That job goes to split

‘node GEN__CNTRL to generate a control message which will eventually allow another
message to be ‘sent; ‘as discussed below. The control message job goes to set node
SET__CNTRL which sets the job variables giving its characteristics. From the set node the

‘control message job-will go to the communication line. The job representing the message goes.

to node parameter END__RT, a release node for response time measurement and then goes to
the terminals. .

Following.is a dialogue file for definition of POLL__LINE. (Sorne of the names in this
dialogue file are names of numeric identifiers declared in the invoking'model.) R

SUBMODEL :poll_line
NUMERIC PARAMETERS:no_groups
NODE ' PARAMETERS: inboundin inboundout
CHAIN PARAMETERS:cC
‘GLOBAL VARIABLES: cur group cur prlor(no groups)
.CUR_ GROUP 1
»CUR PRIOR:0
"QUEUE polling
TYPE: passive
TOKENS : 0
"DSPL:prty :
vALLOCATE NODE' LIST:msg_allcte
“NUMBERS OF TOKENS TO ALLOCATE:1 .
PRIORITIES:cur_ prior (jv(group))+jvimsg_type)
" ALLOCATE NODE' LIST:cnt'allcte _
“ " NUMBERS OF TOKENS TO ALLOCATE:1 -
_© 'PRIORITIES:cur prior(cur group)+2
RELEASE :NODE LIST:msg releas
-DESTROY NODE LIST:cnt_dstroy
CREATE NODE LIST: free - msgs
) NUMBERS. OF. TOKENS TO CREATE: 1
QUEUE: inbound
TYPE: fcfs
" CLASS LIST:msg in
SERVICE TIMES: standard(jv(msg leng) 0) /2400
CLASS 'LIST:cnt_in

April 3, 1982

122 | | | | : ADDITIONAL EXAMPLES /' APP. 1

‘ SERVICE TIMES: 32/2400
QUEUE ;outbound
TYPE.prty
CLASS LIST:msg out
SERVICE TIMES: standard(jv(msg leng /2400
PRIORITIES:2
CLASS LIST:cnt out
SERVICE TIMES:32/2400
“PRIORITIES: 1
SET NODES:new_cur
’ASSIGNMENT LIST:cur_prior(cur group)= - ' +4+
' - cur_prlor(cur group)+3*no _groups R
‘ .cur group—(cur group mod no groups)+1 N '
. SET NODES: 1n1t_prlor _ :
: ASSIGNMENT LIST: cur prlor(cur - group) = cur_group*3¥2 1>"++f‘
: cur _group= cur _group+1
TSET NODES:init _group
ASSIGNMENT LIST:cur group—l
CHAIN c
_TYPE:extérnal
INPUT:msg out
©OUTPUT :msg_out . .
S :inboundin->nisg_allcte->msg_in->msqg_ releas >1nboundout
CHAIN:pollingjob ' :
TYPE:closed
‘POPULATION: 1
:1n1t_prlor >1n1t_prlor 1f(cur group< no groups)
elnlt_prlor ->init _group;if(t)
:init group->cnt_out->free msgs->cnt allcte->cnt_dstroy
scnt dstroy >new_cur~>cnt _in->cnt_ out
END OF - SUBMODEL POLL LINE

The key element. of this submodel is the use of the vector of priorities, CUR " PRlOR which

is used with passive queue POLLING. There are three priority levels for a group, high priority

for: the flow control messages, medium priority for data messages and low prlorlty for the -

polhng job.: Group i has highest priority given by CUR PRIOR(z) for flow control nmessages,
priority ‘CUR_PRIOR(i)+1 for data messages and priority CUR. PRIOR(1)+2 for -the
polling. job.. - Polling is accomplished by the polling job creating a token 'at. node
" FREE__MSGS and then waiting at allocate node CNT _ ALLCTE until all higher priority jobs
(flow control and data messages for the group being polled) have received the token, spent a
service time at class MSG__IN and then released the token at MSG~ RELEAS When: the
polling job receives the token it increases the CUR PRIOR value for the group just polled
by 3xNO__GROUPS, thus giving the group just polled the lowest base priority. . (Since the
priority value may bé any integer up to 2311, the values in"CUR __PRIOR can be increased
indefinitely without fear of overflow. in a fea51ble run length. - However, the values in

CUR__ PRIOR could be reset to their initial values periodically if overflow was a concern.)

The relat1vely imitative representation of polling used in the definition of POLL LINE is
expensive in terms of simulated events, because of the polling that occurs when there are no
waiting jobs. Alternate, but more complex, representat1ons may reduce the s1mulat1on
expense -

, , Followmg is a dialogue file for definition of FLOW N PKT., (Some of the names in:
- this dlalogue f1le are names of numeric identifiers declared in the invoking model.)

April 3, 1982

APP13 / Corﬁ:mhxi‘i‘ca'tibh.Pr(‘)to‘co'l‘ Model ‘ 1 L : S : 123 :

SUBMODEL flow n_pkt
‘NODE PARAMETERS:cntrl_ in
CHAIN PARAMETERS: C
QUEUE:flow. cntrl.
S TYPE:passive‘
TOKENS :. 1
DSPL: fcfs
ALLOCATE NODE LIST flowallcte)
-'NUMBERS OF TOKENS TO ALLOCATE: 1 -
DESTROY NODE LIST:flowdstroy
CREATE NODE ‘LIST:new. flow ’
NUMBERS. OF TOKENS TO CREATE 1
SET NODES outbnd_1lng -
ASSIGNMENT LIST: jv(msg leng) standard(BOO 1)
SET NODES: remove pkt
ASSIGNMENT LIST: jv(msg leng)= jV msg leng) - ~240
-~ SET" NODES: new_pkt ‘ i
ASSIGNMENT. LIST:jv(msg_leng)=256
FISSION NODES:packetize
DUMMY" NODES: outputport
CHAIN [e]
TYPE:external
INPUT:outbnd_lng
OUTPUT:outputport
outbnd _Ing->flowallcte- >flowdstroy
:flowdstroy->packetize outputport;if (jv(msg__ leng)>256) 1f(t)
:packetize->remove pkt new_pkt;fission
:remove pkt->packetize outputport; if (jv (msg_ leng)>256) 1f)
:new_pkt->outputport
:entrl__in=>new flow—>s1nk
END OF SUBMODEL FLOW N_PKT

A job representing a mesSage from the computer system goes to set node OUTBND'__’»__L“NG. to’
establish the length of the message. The job then goes to allocate node FLOWALLCTE to

wait for a token. A token will be imade available by a job 'representing a (flow control -

message) arriving from node parameter CNTRL__IN and going to create node NEW " “FLOW.
‘(That job then goes.to the sink.) When a job wa1t1ng at FLOWALLCTE gets a token it will -
then generate new jobs represting packets (if necessary) at fission node PACKETIZE. - Set
node REMOVE__ PKT decrements the message length by 240 (the number of data bits in a
. packet) and set node NEW_ PKT sets the new packet s JVIMSG LNG) to 256 (data blts

plus control bits).- :

~Following is a dialogue file for definition of the main model.

MODEL EXAMDP3
/% Computer system with several remote terminal groups. */
-/* Groups connected to system by polled communication = */
/% line. Flow control and packetlzlng of messages %y
METHOD:simulation
NUMERIC IDENTIFIERS no terms /*per group*/ thlnktlme
'NO_TERMS: 10 '
THINKTIME 20
NUMERIC IDENTIFIERS: control data :
CONTROL: 0 /*Code to’ be used for control messages*/

“April 3, 1982

124 - o | ADDITIONAL EXAMPLES / APP. 1

DATA:1 " /*Code. to be used for data messages*/.‘

" NUMERIC IDENTIFIERS:group msg_type msg_leng
"GROUP: 0 /*¥JV. to be used to indicate group*/

MSG TYPE:1 ~ /*JV to be used to indicate type*/
‘MSG_LENG: 2 /*JV to be used to indicate length*/
MAX JV:2. i]
QUEUE:rtqg /*response tlme*/
TYPE: passive
TOKENS : 2147483647 /*"lnflnlty"*/
DSPL: fcfs
ALLOCATE NODE LIST:begin_rt1 begin rt2 begin rt3
NUMBERS OF TOKENS 'TO ALLOCATE: 1"
"RELEASE .NODE LIST: end rt1 - end rt2 . end_rt3
“QUEUE: comp, sysq '
~ TYPE:active
DSPL:ps
CLASS LIST:comp_ sys
° WORK DEMANDS: 1
SERVER—
RATE:1.4 2.0 2.25 2.4
_DUMMY NODES .poll in cntrl ~rout cntrl ln1 cntrl in2 cntrl in3-
INCLUDE; termgrp
INCLUDE:pollline
INCLUDE: flownpkt
“INVOCATION:group
TYPE: term group
GROUP_NO: 1 :
BEGIN_ RT:begin rtl
~ END_RT:end_rt1
C:c
INVOCATION:group2
- TYPE:texrm_ group
GROUP_NO:2
BEGIN RT:begin_rt2
END_RT:end_rt2 '
C:c
’INvocATION:groups
TYPE:term grOup '
GROUP_NO:3
BEGIN_. RT begln rt3
END_RT:end_rt3
Csc
INVOCATION: line
TYPE:poll line
NO_GROUPS: 3
INBOUNDIN:poll in
'INBOUNDOUT cntrl: rout
C:c
INVOCATION: flow!
: 'TYPE:flow_n_pkt
CNTRL_IN:cntrl in? -
. . C:c :
INVOCATION: flow?2
TYPE: flow_n_pkt

April 3, 1982

APPL:-I.B/Communicatidn'Pretocol'Model L s T T g

LNTRL IN cntrl in2
: C:c
INVOCATION:flow3
- TYPE:flow_n_pkt
CNTRL IN: cntrl in3
C c
CHAIN:c
TYPE:Open
. ibegin rt1 begin - rt2 begln rt3=- >poll in .
~rentrl rout->comp: sys; if (jv(msg - type) data)
centrl rout->centrl _inl; 1f(jv(group)—1)
:cntrl_rout >centrl in2;if (jv(group)=2)
ront¥l_rout->cntrl_in3;if (jv(group)=3)
scomp sys->flowl.input;if (jv(group)=1)
:comp_sys=>flow2.input;if (jv(group)=2).
:oomp_Sys-— >flow3 input; if (jv(group)=3)
iflowl. output flow2.output flow3.output- >llne 1nput
:line.output->group?l.input;if (jv(group)=1)
:line.output->group2.input; if(jv(group)=2)
:line.output->group3.input;if (jv{group)=3) -
sgroupl.output group2.output group3 output >poll in
QUEUES FOR QUEUEING TIME DIST:rtg
"VALUES:.5 1 24 8
NODES FOR QUEUEING TIME DIST: begln rt begln rt2 begln rt3
VALUES: .51 2 48
CONFIDENCE INTERVAL METHOD: spectral
INITIAL STATE DEFINITION-
CHAIN line.pollingjob
NODE LIST: llne init prlor

INIT POP:1
CHAIN:c = . o , v . .
" NODE LIST:groupl.terminals group2.terminals group3.terminals .

INIT POP: no_terms no_terms no_terms
CONFIDENCE ‘LEVEL: 90 N ‘ N
SEQUENTIAL STOPPING RULE:yes
' CONFIDENCE ‘INTERVAL QUEUES:rtg rtg comp_sysqg

"MEASURES: ‘ gt oogtd gt
ALLOWED WIDTHS: 100 10 10
" CONFIDENCE INTERVAL NODES: begln rt1 begin rt2’ begln rt3 -
' MEASURES: gt gt gt
ALLOWED WIDTHS: 100 . 100 ‘ 100"

INITIAL PORTION DISCARDED:10
INITIAL PERIOD LIMITS-
QUEUES FOR DEPARTURE COUNTS:rtq
.DEPARTURES : 1000
LIMIT =. CP SECONDS:500
TRACE:no
END

" This dlalogue deflnes the queues for response time measurement and the computer system,
’ ‘1nvokes the submodels and defines the connections between the 1nvocatrons s

Fol-lowing is an RQ2PRNT file for this model as produced by EVAL.

April:3,.1982"

126 - | ADDITIONAL EXAMPLES ./ APP. 1

RESQ2 VERSION DATE: APRIL 3, 1982 - TIME: 17:56:53 DATE: 04/03/82

MODEL : EXAMP3

SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
 SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION.

5028.19141

SIMULATED TIME:
- CPU TIME: . 1381.07

'NUMBER OF EVENTS: . . 227673

' .WHAT:ut(line.msg_in,line.cnt;in,line.msg_out,liﬁeiqnt_out)

" INVOCATION ELEMENT .~

UTILIZATION
LINE ~~ MSG_IN . 0.20631
LINE : CNT _IN ‘ 0.23099
LINE MSG_OUT 0.48462

LINE CNT_OUT) 0.23007

WHAT:tp(rtq,bégin_rtT,begin_rt2,begin_rt3)

THROUGHPUT

INVOCATION ELEMENT
. RTQ 1.35874
BEGIN RT1 0.46657
BEGIN_RT2 0.44887
0-.44330 -

BEGIN RT3

'WHAT:qtbo(ftq,begin_rt1,begin_rt2,beéin_rt3,comp;sySq)

MEAN QUEUEING TIME

INVOCATION ELEMENT i
o - RTQ . 2.30391(2.21360,2.39422) 7.8%
BEGIN_RT1 ©.2.29731(2.21029,2.38434) 7.6%
BEGIN_RT2 2.35772(2.27390,2.44153)"7.1%
BEGIN RT3 2.25636(2.15468,2:35804) 9.0%
COMP_SYSQ

WHAT:ql(rtq,begin*rt1,begin_r£2,beqin_rt3,cOmp_sysq),‘

INVOCATION - ELEMENT MEAN QUEUE LENGTH

RTQ . 3.13178
BEGIN_RT1 1.07279
BEGIN_RT2 1.05869
BEGIN RT3 1.00030
COMP_SYSQ .. 1.63460
“WHAT:

'CONTINUE RUN:yes

2930° DISCARDED EVENTS

1.20234(1.14318,1.26150) 9.8%

April 3, 1982

‘_APP. 1.3/ ‘C‘ommunication‘ Protocol Model

EXTRA SAMPLING PERIODS: 1
LIMIT < CP SECONDS: 1000

SAMPLING PERIOD' END: RTQ DEPARTURE LIMIT
SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
SAMPL,ING PERIOD END: RTQ DEPARTURE LIMIT
'SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
'SAMPLING PERIOD END: RTQ DEPARTURE LIMIT

NO. ERRORS DETECTED DURING SIMULATION. 2930 DISCARDED EVENTS
SIMULATED TIME: 7542.98047
CPU. TIME: 570.16

NUMBER OF EVENTS: T 343411

gWHAT:ut(line.msg_in,line.cnt;in;lineQmsg_out,line;cnt_oUt)

'INVOCATION. * ELEMENT - UTILIZATION
LINE . MSG_IN 0.20599
LINE " " CNT_IN 0.23301
LINE MSG_OUT 0.47914

LINE. ~ CNT_OUT 0.23180

WHAT: tp (rtq,begin_rtl1,begin_rt2,begin rt3)

INVOCATION ELEMENT THROUGHPUT
- RTQ 1.35861
. BEGIN_RT1 0.45274
BEGIN_ RT2 0.45141
BEGIN_ RT3 0.45446

WHAT:qtbo(rtq,bégin_rt1,begin;rtZ,begin_rt3,comp_sySQ)

INVOCATION

ELEMENT

MEAN QUEUEING TIME

RTQ 2.27488(2.21307,2.33669) 5.4%
BEGIN_RT1 2.27176(2.20855,2.33498). 5.6%
BEGIN_RT2 2.31046(2.22283,2.39809) 7.6%

- BEGIN_RT3 2.24264(2.14938,2.33590) 8.3%

COMP_SYSQ 1.19929(1.16632,1.23225)" 5.5%

WHAT:ql(rtq,begin_rt1,begin_rtZ}begin_rtB,comp;sysq)'

INVOCATION -

April 3,1982

. COMP_SYSQ

~ ELEMENT ' MEAN QUEUE LENGTH

RTQ - "3.09146 o
BEGIN_RT1 1.02852
BEGIN RT2 1.04340
BEGIN RT3 1.01954
1.62968

127

128 : S | ADDITIONAL EXAMPLES / APP. 1

WHAT: gtdbo (*)

Lo INVOCATION ELEMENT o QUEUEING TIME DIS’I‘RIBUTION ’ S
LT . RTQ" 5.00E-01:0.03708 (0. 03404,0.04012) . 0.6%
o 1.00E+00:0. 19633 (0. 18753,0.20513) 1.8%
2.00E+00:0.54167(0.52525,0.55808). 3.3%
-4 .,00E+00:0.87529.(0.86545,0.88513).2.0%
'8.00E+00:0.98985(0.98771,0.99199) 0.4%
- BEGIN RT1 5.00E-01:0.03748(0.02998,0.04498) 1.5% "
: ' 1.00E+00:0.19590(0.18600,0.20580) 2.0% -
2.00E+00:0.53206(0.51399,0.55013)" 3.6%"
4.00E+00:0.87877(0.86588,0.89166) 2.6%,
. 8.00E+00:0.99180(0.98863,0.99497) 0.6%
BEGIN RT2 5.00E-01:0.03465(0.03048,0.03883) 0.8%
’ 1.00E+00:0.18767(0.16722,0.20811) 4.1%
2.00E+00:0.52658 (0.49773,0.55543) 5.8%
4.00E+00:0.86990(0.85482,0.88498) 3.0%
8.00E+00:0.98913(0.98526,0.99301) 0.8%
BEGIN RT3 5.00E~01:0.03909(0.03283,0.04535) 1.3%
1.00E+00:0.20537(0.18920,0.22153) 3.2%
2.00E+00:0.56622(0.54158,0.59086) 4.9%"
4.00E+00:0.87719(0.86155,0.89283)3.1%"
8 0)0

.00E+00:0.98862(0.98558,0.99166) 0.6%-

. - WHAT:gt(line.msg_allcte,line.msg_out)

INVOCATION ELEMENT MEAN QUEUEING T'IME

LINE : ' MSG_ALLCTE = 0.79342-

LINE - MSG_ouT . '0.58095

WHAT:ql(flow1;flowallcte,flow2.fldwallcte,flow3.flowallcte)

INVOCATION = = ELEMENT ~ MEAN QUEUE LENGTH

FLOW1 FLOWALLCTE 0.10062
FLOW2 FLOWALLCTE 0.10598
FLOW3 FLOWALLCTE 0.10036
" WHAT:gv
INVOCATION | ‘ELEMENT | FINAL VALUES OF GLOBAL VARIABLES
‘LINE ‘ CUR_GROUPR =~ . 2.00000
LINE S CUR_PRIOR(1) 3.9830E+05
LINE , CUR_PRIOR(2) - 3.9829E+05
CLINE ' CUR_PRIOR(3) ~ 3.9829E+05
WHAT: .

CONTINUE RUN:no

April 3, 1982

’APPENDIX 2 - NAMES AND KEYWORDS

129

‘A RESQ name may be any strlng beginning with a letter and consrstmg ent1rely of letters, ;

- digits and the characters "$" and "

1. Names are'restr’icted to at most ten characters

" with the following restrictions: -

The translator will accept longer

names, ‘but w111 prmt a warning message: and ignore the extra characters .

2. Names used for model names and hbrary members must be restrrcted to at most elght.“

' characters

3. The name used for the model name and names used for submodel and queue type e
names may not be reused. Other names may be reused in- submodels according to’
traditional rules of block structured programming languages such as PL/I, i.e., a.

" name. may be reused within a submodel even though 1t exists’ wrth entirely drfferent o
.meanmg outside of the submodel T

4. Th_'e ffollowing .keywo'rds may not be used as names: e

ABS
ACCEPTS
ACTIVE
ALL
ALLOCATE
ALLOWED"
AMOUNTS
AND
APLOMB . .
APPROXIMATE
- ARRAYS -
ARRIVAL

BE .

BY

- CEIL
‘CHAIN'
CHAINS
CHANGE. =~
CHECKED,
CLASS
CLOSED

- COMPQF
COMPQP
CONFIDENCE

CONVOLUTION -

COUNTS

CP

CREATE

cv.
CYCLES. ..
DEFINITION -
DELAYS
DEMANDS
DEPARTURE
DEPARTURES

C April 3,1982

. DESTROY

DISCARDED
DISCRETE
DIST

' DISTRIBUTION

DSPL
DUMMY
EDIT

END
EVENT
EVENTS
EXP
EXTERNAL
EXTRA

F

'FCFS

FF
FISSION
FLOOR
FOR

. FRACTION

FUSION
GAMMA

"~ GLOBAL -

GUIDELINES..
HANDLING
HOW e
IDENTIFIER
IF. -

INCLUDE -
INIT

INITIAL,
INITIALLY

~ INPUT
INTERNAL

INTERVAL

INVOCATION
IS

ISQDEP
JFCKTRACE
JOB .

v

LCFS
LENGTH
LEVEL
LIMIT-
LIMITS
LIST. -

LN

LQ
LRTF

MAX
MEASURES -
METHOD
MIN
MODEL

MOVEMENT
MVA

NO .
NODE
NODES
NONE
NOT
NUMBER

‘NUMERIC

NUMERICAL

- OF

OFF ..
ON
OPEN

“OR
'OUTPUT -
'PARAMETER

PARAMETERS -
PASSIVE
PERIOD
PERIODS -

. "POP .
- POPULATION
PREEMPT

PRINT
PRIORITIES
PRTY

 PRTYPR

PS
QL
QLD

" QNET4
QT
.QTD

QUEUE

»QUEUEIN.GV |
‘QUEUES .

QUIT

-~ RATES

REGEN

REGENERATION

RELEASE ‘-

-~ REPLIC i
REPLICATION"
REVIEW

RI
RJQ
RULE

~RUN

1300 S ~ NAMES AND KEYWORDS / APP. 2

SA . SPECTRAL TIMBS TURN -

SAMPLING SPLIT ‘ TO : . TYPE
SAVE - SQ ~ _ TOKEN " UNIFORM"
SCALED S - SRTF o TOKENS . .o . "PSE

~ SECONDS STANDARD TOTAL . USER.
SEED STATE Caqp s S
SEQUENTIAL ~ "STOPPING. 10 : VALUE
SERVER ~ STRING TRACE VALTES.
SERVERS ' SUBMODEL : PR .
SET . . SUBSTITUTION TRANSFER VARIABLE
" SIMULATED T TREE . VARIABLES
CSIMULATION -~ TA 1T = - WIDTHS
SINK TEMPLATE ~ TTD ' WORK
SNAPSHOTS ™ . TU - YES
SOURCE =~ TIME .- TUD L

Where the plural form of a keyword is listed but the singular is not, the singular form -
may be used instead of the plural, ‘e.g., DEMAND may be used instead of DE-
MANDS, but PARAMETER may not be used instead of PARAMETERS. In such
cases the singular form may not be used as an name, even though it is not explicitly
listed above : :

5. The followmg global variable names have specml meanmg They should not be used
~as global variable names unless the special meaning is mtended

S CLOCK . - This global variable contains current simulated time. CLOCK g
S must be initialized to zero (0). CLOCK is available only for
reference within expressions and should not be used as the
variable to be assigned by a set node.. Any attempt to asszgn a
“value to CLOCK durmg simulation will abort the-run.

CIf TRACEON is set to a posive Value, by initialization or by a
set node, simulation trace output will be produced. TRA-
CEON overrides the "INITIALLY ON:" reply. TRACEON is -

“set to 1 at when trace is turned on by the "TURN TRACE -
ON-" specification and is set to 0 when trace is turned off by“ o
the "TURN TRACE OFF pemflcatlon

TRACEON

If JOBTRACE is set to a positive value, job movement trace
- will be produced, provided that trace has been turned on by -
" the "TURN TRACE ON-" specification or by assignment or o
. initialization of TRACEON. JOBTRACE overrides the "IOBv i
- MOVEMENT:" specification. L

JOBTRACE

If QUEUETRACE is set to a positive value, queue trace will
‘be produced, for all queues, provided that trace has been.
turned on by the "TURN TRACE ON-'" specification or by
- assignment or initialization of TRACEON. QUEUETRACE :
overrides the "QUEUES:" specification. ,

' QUEUETRACE

It EVENTTRACE is set'to a positive’value,‘ event hanglling
trace will be produced, provided that trace has been turned on
by the "TURN TRACE ON-" specification or by assignment

EVENTTRACE

April 3,1982

'APP. 2/ N.AM.ES'AND‘»KE_Y,WORDS

LISTTRACE .

SNAPTRACE

 EXPERTRACE

SAUERTRACE

April 3, 1982

or initialization of TRACEON. EVENTTRACE overr1des the =~ 5
"EVENT HANDLING " spéclflcauon B R

131

It LISTTRACE is set to a positive value, ovent list trace will
be produced, provided that trace has- been turned on by the

"TURN TRACE ON-" specification or by ass1gnment or ini- o

"~ "EVENT LIST:" -specifieation

If SNAPTRACE is set to a positive value, snapshot: trace will
- be produced, provided that trace has been turned on by the

' "TURN TRACE ON-" spec1f1cat10n or by assignment or ini-
* tialization of TRACEON. - SNAPTRACE overrldes the -

"SNAPSHOTS:" spec1f1catlon 7

’Thls global varlable is reserved for use by RESQ developers :

This gl_obal variable is reserved for use by 'RESQ'deVelQpers..

‘tialization of TRACEON. . LISTTRACE overrides the :

132
APPENDIX 3 - EXPRESSIONS

RESQ expressions correspond to those of programmmg languages w1th essentially the
same rules as languages such as PL/I, Pascal and Fortran (but. not APL). Section A3.5

discusses’ RESQ expressmns largely from the point of view of expression execution. It is -

“intended to be informal; a more formal definition of RESQ expressions is given in the
grammar in Appendix 4. Except for expressions used in routing predicates; any expression in
RESQ must be such that it can be evaluated to a scalar numeric valu¢, a vector of numeric
values or a matrix of numeric values Section A3.6 discusses expressions for: routing predi-
cates. : '

"Simulation dependent expressions . are those ‘that depend on job varlables chaln
variables, global variables, distribution keywords (Section A3.1), the USER function (Section
A3.2), status functions (Sectlon A3.3) or the PRINT function (Section A3.4). Except where
otherwise noted, simulation dependent expressions may be used anywhere 1n the definition of
a simulation model. ‘Expressions which are not simulation dependent are "simulation inde-
pendent." Only simulation independent expressions may be used in numerically solved models.

 A3.1. Distribution Functions

When one has'little information about random values other than mean values, then it is
reasonable to arbitrarily assume that the random values have a distribution which is completely -
. specified by the mean, e.g., the (negative) exponential distribution. However, when one has
more information, then one would usually like to have a representation which includes that
information. For example, if one knows standard deviations, then one would like to include
standard deviations in a model. RESQ provides a standardized distribution form which is
completely specified by the mean and coefficient of variation and which is expedient for
simulation and confidence interval estimation. (The coefficient of variation is defined as the
standard deviation divided by the mean.) The RESQ STANDARD distribution will often be
‘ suff1c1ent However, if the user has additional information then the user may wish to try to fit
the distribution more precisely. The DISCRETE distribution provides one mechanism . for
doing this, i.e., the user supplies RESQ with a table of values and associated probabilities. If
the discrete dlstrlbutlon is not appropriate or convenient, then one of the more detailed
continuous forms provided by RESQ, the BE (Branching Erlang) or the UNIFORM, may be
- appropriate. Other distributions are indirectly available, and we will give examples of how
indirect definition of distributions may be accomplished. If none of these options are satisfac-
tory for a particular model, the user has the option of defining a PL/I procedure to provide.
distribution values. This can be done with the USER funct1on descnbed in Section A3.2.

- We next describe the full generallty of the BE and UNIFORM dnstrlbutlons prov1ded by

RESQ. We then discuss the RESQ STANDARD distribution and how the BE and UNIFORM
distributions are used in defining this form. - We then discuss the DISCRETE dlstrlbutnon in
more detail and d1scuss the 1nd1rect deflnmon of dlstrlbutlons

A3.1.1. BE (Branching Erlang) Dg'strib.ution

‘ A number of distribution forms can be grouped together as representatives.of the method
of exponential stages. ‘Perhaps the best known of ‘these are the Erlang distribution, the

hypoexponential distribution and the hyperexponential distribution. = The branching Erlang : '

distribution is less well known but includes all three of the above distributions and many other
. distributions as special cases. (The branching Erlang form was originally proposed by Cox. "
- He showed that by using the artifice of complex "probabilities”" and holding "times" that the
branching Erlang form can be used to represent arbitrary distributions with rational Laplace

April 3, 1982

*A;{p.;s.1:';;,"'/,1313‘13,&5@11@;‘E'ﬂagg)_;-D‘ismbmanjj-' . (e 133
e _' transforms Of course one cannot s1mulate complex probablhtles or hold1ng tlmes ok Thef
L branchmg Erlang form 1is: qurte general wrthout the use of complex values) Flgure A3 1
A vAlllustrates the branchmg Erlang form ' - : S e

The ‘BEid1str1button may be thought of as cons1st1ng of K exponentral stages (whrcl‘l are:
represented by circles in . the f1gure) Stage i,i="1, K, has a mean (exponentral timeym; .o
S e and-a "branchlng probabrhty (to be described shortly) p, A sample from the’ drstrlbutron*‘w 0
e .10 consists of the sum of (1ndependent) samples from stages 1to k where kis between 1: and K -
R R "__and selected by, the follow1ng rule ‘With probab111ty prokis chosen to be 1, with probabrhty (1*’.
Co pl)pz, k- 1s chosen to-be 2, ... ‘and with probabrhty = pl)(l — Py (li= 'pK‘_‘]’)'f,;.k is o
RRVE j'chosen 1o be K. In other words p; is the: probabrhty of branchmg past the stages after’s g6 i
Note that p K is 1dentlcally L The mean, M of the BE d1str1but1on is g1ven by S

- Z(l'_ Pl)(l‘Pz) (1 "Pk 1)Pk2m . (A3 1)’.‘;'.

coefficient lo’f »_Va’,riatt:ion',:-Cv,‘.vis -gi‘ven_by- o

R \/ 2 (1‘—”1)(1“‘1’2) (I“Pk 1)Pk[2m +(2)] ” ,
C= Tk T i Mo R e . .(AS 2)'

L The BE dlstnbutxon reduces to the exponenttal d1str1but1on 1f we: set _p1 to 1 and ml toM ¢
S where M is the mean ‘of ‘the: d1str1butlon The BE d1str1butlon reduces to the Erlang dlstr1bu~“ Ve
_ “tioti if ‘we set by to zero for all i dther than K and set m; to M/K _The. hypoexponential ~* =" -
'd1str1butlon isa. generahzatron of the Erlang distribution whrch does not require’ equahty of. the-» P
: stagef-'m'eans, {'mi}.‘;it A"2.fsta'ge,-hypere);'p.one‘nti_al, distrjbution jcan be th’ough’t of as ‘a-’_choicejofv an .o
oK 'exponent;al distribution with mean ml with probab111ty q. and a chorce of an exponentral:
" ,"_"-"jdistrrbuuon with mean ny otherwise. - Without loss of generahty we: may assume my < my
' Then: the BE d1str1butlon with- 2 stages ‘and’ the correspondmg stage means is equxvalent to the _
hyperexponent1al it ‘we set pi to g+ (1 —‘q)ml/ riy. - (Note that if we W1sh 1o have: the_: o
: 'classxcal representatlon of hyperexponentral setvice times at a queue we: can accomphsh thls by”
2 having two classes with: exponential distributions with means m; and m2 and rout1ng a]ob to
(o 'the f1rst class w1th probablhty q and to the. second class otherwrse) S .

ln RESQ the BE d1str1butlon is represented by the keyword "bE" followed by a 'paren."' ok

theslzed list- of - pa1rs of stage means and probab111t1es where the palrs are separated byi_j by i B

:seml-colons (" ",)‘, i e e

S (We rnake "E" upper case in deference to Erlang, but ; he program does not requ1re thlS.‘
A ."‘g‘.-we said ‘before, ‘there:. is no. 1nternal d1st1nctlon between _upper, and lower case) As
':,‘..Jthroughout RESQ commas (" ") may be replaced by blanks v sl T

N

" Figure A3.1 - BE (Branching Erlang) Distribution |

The remamder of Sectron A3 1 1 applres only to s1mulat10ns usrng the. regeneratrve'-'x- e

method forcorrfldence 1ntervals W1th the regeneratrve method W1th BE arrrval and/ or 'servrce’.

trmes At s necessary to consrder the dlstrrbutlon stages in determlmng regeneratlon states but T

i thrs is h1dden trom the ‘user, The s1mulat10n samples: the arrival distribution a stage ata ttme"

so- that a true regeneranon state can’ be determ1ned Instead of an event for the completron of .

".f_fban arr1val tlme, there is-an event for ‘the completron of each stage of an arrlval time. A state -

s ccepted as a regeneratlon state only if all arrrval trmes with the BE' d1str1butlon are ‘in the
- first 'stage. The srmulatlon must handle servrce t1mes srmllarly for classes Wrth non—zero; g

L populatlons 1n the regeneratlon state, BE service tlmes are sampled a. stage at a. t1me if and R

: only if the. correspondmg class has non- zero populatlon in the regeneratmn state A state is
L "accepted as a regeneratlon state only 1f all scrvrce trmes i progress wh1ch have the BE :
‘ vdlstrlbutlon are 1n the f1rst stage ' S : » R

: A3 1 2 UNIFORM Dzstrtbutzon . .

The classrcal umform dlstrrbutlon ls one Wlth un1form (posrtlve) probabrlrty dens1ty over ‘

& - 'fan 1nterval (6, u) and 7610 dens1ty elsewhere. . The uniform distribution provided. by RESQ isa .

: generalrzatron of: the classical form in that it-allows several intervals instead of just one: (Note
~that ‘we choose to exclude the interval end pornts in our definition of the classical .uniform - -
'_'dlstrlbutlon Srmllarly, ‘our generahzatron of the classrcal form. excludes the 1nterval end, L

o 'pomts) See Flgure A3 2.

Each 1nterval Ld= 1, N is spec1f1ed as a trlple l u and pl, representmg the lower

"f-jhound the upper bound and the probability of the 1nterval respectlvely (The probabilrty of e

.“an 1nterval 1s 1ts w1dth tlmes 1ts densrty) The RESQ syntax is:

unlform(ll’ul’pl’ leuN,pN)
“’.For example the classrcal umform drstrlbutlon Would be specrfred as _: o
e uniform(l,u,l)

The rnean”o_,f the,class'i.cal"unifor'm"diStributio’n.' is given by - bj -

M—- l+u e
i and the coefficie_nt.of- VariatiOn is
Cou =1
a+ u)\/ 3

- Alternatlvely, 1f we are g1ven the mean and coeff1c1ent of var1at10n

- DENSITY

A T

.\V‘*

. Figure A3.2 - UNIFORM Density Function

April 3, 1982

'APP. 3.1.2 / UNIFORM Distribution LT s

w=M1 + CV3)

and

A3‘ 1.3‘5 STANDARD, Distribution

e In many c1rcumstances one is satisfied by specifying a distribution by mean and coeffr- E
“-cient - of varratron ‘RESQ 1ncludes a pragmatically chosen collectron of drstrlbutrons $0
specrﬁed The syntax 1s : : S

standard(M,C).

'The drstrrbutron used will have mean M and cmtfrcmnt nt variation C where the spec1f1c form
is: chosen according to the value of C. If C == 0, then the constant value M is used. " If 0 < C
<5, then the classmal un1form form isused. M5 < C<1, then the BE drstrrbuuon is’ used :
w1th SR . v ‘

K = ceil(C—2),

: A
: 2KC?+K 2 K?p4-4KC?

by = 2 e (43.3)
: (K - 1)2(C 4 1) o
p2 s ,‘_’-‘::: pK--~1 e 0 .
~and
my= o= mg = M/(K - pl(m—l))

'Here ce11' is the celllng function, i.e., it returns the next larget 1ntege1 1f its argument is not
an integer. and turns rgument otherwrse Note that this results in the Erlang distribution

for C =5, ¥-3. and 2 If C =1 the exponential distribution is used and if: C > 1 the S

hyperexponentral dlstrlbutron spec1f1ed is used with K = 2,

Mo R : S 435

3
!
|
§

!
z
i

_: a’ndj"v

" The drscont1nu1ty here usmg the. classical uniform drstrlbutron for small coeffrcrent of,
variation and the BE distribution , for larger coefficient of Varratlon is due to our’ general .

my= Mo @39

_ preference for the BE d1str1butlon tempered by the computatronal expense ‘of usmg the BE for S '

small coefflcrent of vauatlon

. April3,1982 .

136 L R S ~ EXPRESSIONS / APP, 3
A3 1. 4 DISCRETE Dzstrtbutton

We have already d1scussed the DISCRETE distribution 1nformally at the beginning of thlS '
appendix The syntax 1s . ‘

discrete(vl,pi; v s VDN
where“ p; is the probability of value v,.

In ‘places where a d1screte d1str1bution is needed e.g., for allocate nodes 1t may be ‘more

convenient to use continuous dlstributlons If a distribution gives a fractlonal value. for a value . :

required to be an integer, the nearest integer is used. For example, if we want to speclfy the’“
values 1 to 10 and 91 to 100 with equal probabihty, it would be more convenient to use. '

uniform(5 10.5,.5;.90.5,100.5,.5)

'than the explicit hsting of all of these values with the discrete form Note that s1nce the
- uniform distribution excludes the end points of the intervals, the values 11 and 101 will not be '
: produced by the above express1on ‘

' A3.1.5. Indirect'D‘efinition of Distributions

- Where distributions' are ekpected in RESQ dialogues : expressions containing distribution -
values may be used. For example, if we wanted the value from an exponential distribution :
_with mean 10 shifted over 3 units, we could use

~ 3+standard(10,1).
I ;we wanted the sum of a uhiform and an exponential value, we could use something like - 5
uniform(0,10,1) +standard(10,1).

' Expressmns not containing distribution keywords (BE, DISCRETE," STANDARD UNI- '
FORM) are taken to be the means of exponential distributions when such expressions are used
for service times, work demands or arrival times. If we wanted a service time distribution to
be the discrete distribution discussed in Section A3.1.4, (the values 1 to 10 and 91 ‘to 100 w1th'
equal probability) then we could use

ceil{uniform(0,10,.5; 90,100,.5))

~instead of the expression for this distribution suggested for allocate nodes. . This expression :
could also’ be used for an allocate node and might be more clear in its intent than the expres- "
sion which depends on rounding. - However, this last expression would be less efficient in -
~simulation run time than the gne previously given. The reason is that the simulation has

special cases for expresslons consisting of a single distribution expression and-its arguments. . '

If those arguments are simulation independent, then the arguments are evaluated before
’s1mulat10n begins and the general express1on code is avoided during simulation (for that
expressmn) : »

Expressmns containing distributions' provide the opportunity to 1nd1rect1y define distribu- =
’,tIOnS not directly provided by RESQ. For example, values from a geometric distribution_

(startmg at one) with mean M can be obtained from the expression

cell(ln(uniform(O,l,1))/ln(1-_- 1/M))

© April 3,1982

APP. 3.1.5 / Indirect Definition of Distributions 137

where In is the natural logarithm function.

A3.2. The USER Function

The USER function may be used to define distribution functions or other functions not
directly available with RESQ and/or to provide RESQ with data from user defined files, e.g.,
for-trace driven simulation. . To do.so, the user writes a PL/I function (with name USER) to
be called whenever a RESQ expression contains a reference to USER. For example, the user
might have

QUEUE: terminalsqg
TYPE:is
CLASS LIST:terminals
SERVICE TIMES:user (meantime; tg(memory))

or

SET NODES:set_leng
ASSIGNMENT LIST:jv(msg_lng)=user (mean_lng(jv(origin)) ;clock)

In the dialogue, the USER function may have any number of arguments provided that ‘at least
one argument is given. These arguments are evaluated before the PL/I function is called and
the values obtained are passed to the function as a vector. In addition to the arguments, four
other values are passed to the PL/I function: (1) a seed to be used in generating random
numbers, assuming the same generator is used as discussed in Section 12.3, (2) a pointer to
the internal data structure used for the job causing the expression to be evaluated, (3) the
internal number of the node causing the expression to be evaluated (the ''to node' if this is a
routing decision) and. (4) the internal number of the queue (if any) to which that node
belongs. ~

Only the function value returned by USER and the seed parameter are examined by the
simulation program after the USER function returns to the calling procedure. The seed
returned must-be positive. If the seed returned is nonpositive, the simulation run will termi-
nate with .an error message. If the seed returned is different than the one supplied to the
USER function, and the expression is used for service times, work demands or arrival times,
the expression containing the USER function call will be treated as if it contained a RESQ
distribution keyword (BE, DISCRETE, STANDARD, UNIFORM) whether it does or not.

If the user does not supply a USER function, the following version is used:

USER: i
PROC (ARGS, SEED,JOB,NODE,QUEUE) RETURNS (FLOAT BIN(53));
DCL - i
ARGS(*) FLOAT BIN(53),
(SEED,NODE,QUEUE) FIXED BIN(31),
--JOB POINTER,
FABORT ENTRY (CHAR(80)) ;

" 'CALL FABORT ('USER -- FUNCTION NOT DEFINED OR NOT LOADED');

The function FABORT causes performance measures to be determined as far as possible, then

terminates the simulation with the error message which it received as its argument. At present
there are no functions available to the user to take advantage of the job information. Func-

April 3, 1982

138 , ' . EXPRESSIONS / APP. 3

tions NODNAM and QUENAM are available to.find the unqualified external name of a node
or queue, respectively,

DCL
NODNAM ENTRY (FIXED BIN(31)) RETURNS(CHAR(22) VARYING),
QUENAM ENTRY (FIXED BIN(31)) RETURNS(CHAR(10) VARYING) ;

Functions NDQUAL and QUQUAL are available to find the quahflcatlon (names of invoca-
tions) of a node or queue, respectively, v

DCL
NDQUAL ENTRY (FIXED BIN(31)) RETURNS (CHAR(240) VARYING),
QUQUAL ENTRY(FIXED BIN(31)) RETURNS(CHAR(240) VARYING) ;:

After the USER PL/I function has been written, it should be compiled using the PL/1
optimizing compiler, to produce a file USER TEXT. Then either the EVALT command
(Section 13.2) or PL/I embedding (Section 14) should be used. The other procedures and
functions we have just -described (FABORT, NODNAM, etc.) will be automatically loaded
with either approach.

A3.3. Status Functions

There are five functions which may be used in numeric expressions which indicate current
status of the network. The functions have an argument specifying a node or queue name.
When:used in routing predicates, the argument is:optional under the c1rcumstances described
with -a specific function. These functions are ~

- SA(queue name) ~ Servers Available. SA returns the number of servers currently
available at an active queue, i.e., the number not in use. The queue name
and parentheses may be omitted if the function is used in a routing predi-
cate and the corresponding destination is a class of the queue.

TA(queue name) - Tokens Available. TA returns the number of tokens currently
available at an passive queue, i.e., the number not in use. The queue name
and parentheses may be omitted if the function is used in a routing predi-
cate and the corresponding destination is an allocate node of the queue.

TH(queue name) - Tokens Held. TH returns the number of tokens of the
specified passive queue held by the job causing the function to be invoked.

QL(node name) - Queue Length. QL returns the current number of jobs
(counting both true jobs and job copies) at a class or an allocate. node.
The node name and parentheses may be omitted if the function is used in a
routing predicate and the corresponding destination is the desired node.

TQ(queue name) - Total Queue. TQ returns the current number of jobs
(counting both true jobs and job copies) at a queue. The queue name and
parentheses may be omitted if the function is used in a routing predlcate
and the corresponding destination is a node of the desired queue.

RJ(node name) - Related Jobs. RJ returns the number of jobs related to the job

causing the function to be invoked. If the node name is given, only jobs at
that node are counted. Otherwise all of the job’s relatives are counted.

April 3, 1982

CAPP. 3.3/ Sta’tus Funetions '~~~ . . o139

(Related jobs are produced by fission nodes. See Section '8.) If the node
- name and parentheses are omitted; RJ returns the total number of]obs
related to the job.
A3.4 The PRINT Functlon
R ln addltlon to the trace capab111t1es d1scussed in Sectlon 12.4, the PRINT functlon may ‘be bf.
used freely to follow the values of numeric expressions. The PRINT function takes a numeric -
expressmn as’ 1ts sole argument and returns the value of its argument. For example, we'might

use..

"CREATE NODE LIST c :
NUMBERS -OF TOKENS TO CREATE: pr1nt(w+1)

or

SET NODES : set leng . :
ASSIGNMENT LIST: jvimsg lng)—prlnt(user(mean lng(jv(orlg)) clock))

' Every t1me an expressmn using the PRINT functlon is evaluated a line of the form
»PRINT o VALUE: : 1 0100000E+02 ASSOCIATED WITH node -
1s produced at the at the termmal and in the RQ2PRNT f11e If pr1nt is used 1n an expressmn_
for routing predrcates or probabllltleS, the assocrated w1th' node will be the destmatlon be1ng
_con51dered S '
“A3.5. Exp‘ression" Evaluation

-~ An expressmn is: bullt up of pr1m1t1ve elements called factors A factor may’,, be’ an“\
un51gned number e.g., T

| a i 45;625‘ »s.zn—ﬁu:: 43568420 _ 1.3vu¥oé
. ‘; (using ‘exdctly‘ two dig’its ,for the exponent, if included) a parentheslzed Slgﬂned f"‘ac'tib’r‘»,; ‘e."g'.;. o
‘{51)“ R . _ . .
an' vi‘den,ti"fie‘rLOr glo'bal variable, e.g.,k '
,:diskb‘,ﬁrebtzl_d chn(1:%) neweyl
“a job or ohain variable,‘
jV (3) ; ,‘ cvia_time_s)
a dis‘trib‘utlon refer_enc_e, e
1:staudaru(lo,é), 'ulscréte(1,.5;3,r55‘.bn(1;o;1pr),3’

" astatus ‘function_oall.,' e.g.;

April 3, 1982 -

140 o R L "EXPRES_SIO‘»NS/;APP.,S”
‘t‘a,(wli.ndowq)v»‘ th(win‘dowq)‘.‘ cil(olassﬂ rj
a parenfhesized | expression, e.g.,
(4+2) |
B a call to the USER deflned functlon e.g.,
use'g (;a (‘win:dowq) i 4+2;uniform (0,1,1))
’ a callbto' the PRINT funvc‘tior'l,”e."g.,
) . ﬁrino ‘('.ta(v\;indo.wq))
or‘a numerlc funetion call, e.g.,

‘min(1,2) . max(3,alpha) ceil(10.3) . £loor(9.99)
“abs (beta) * - exp(-3) In{exp(-3))

These numeric functions are evaluated using the oo‘rresponding functions provided by PL/1:
In SETUP and the RQ2COMP file, numerical values are generally treated as if they were
single precision floating point, i.e., they are usually truncated to roughly six decimal digits,
even if given more precisely by the user. - Global varlables job variables, chain variables and
‘ temporarles used in expression evaluation are maintained as double pre01s1on floating pomt
durmg the s1mulatnon i.e, they have roughly 16 dec1mal dlglts of prec1s1on
Factors are comblned with multiplying operators et " /" and 'mod" to form terms, e.g.,

» 1*print(w)v alpha mod 2 - Jv{(3)/3v(10)’

(MOD is the .modulo function, performed by the PL/I mod function.) A single factor mfay‘
- itself be considered a term if it is not to be used in an operation with a multiplying operator.

Terms are combined with adding operators "+" and "—" to form expressions, e.g.,
1*pr1nt() +5 alpha mod 2+1 5=3v(3)/jv(10)
Note. that the multiplying operators are apphed first before the addmg operators A ‘sir‘igle"
term may itself be considered an expression if it is not to be used in an operation with a

adding operator. - As suggested before, expressions may be parenthesized to force addlng
operators to be used before multiplying operators. ' »

- A3.6. Predicates (Boolean Expressions)

Predicates are used in routing definitions (Section 9). - A predicate is a Boolean 'expre‘sk
‘sion preceded by "if(" and followed by ")". A Boolean expression must evaluate to either'T
v (true) or F (false). o o

_The primitive elements of Boolean expressions are called Boolean factors. A Boolean
‘factor may be a Boolean constant, e.g., R

April 3, 1982

APP;‘3.6. / Predicates (Boolean Expres’sions) : R S EE VS|

‘a relational enpression, e. g,

’}-'< 3*k<=v prlnt();j;k abs(nv(O)) rnod h>=p:e'int(w')f i=3 w-1=3 .'4 _
“the logrcal negatlon of a Boolean factor eg., |

‘}:pot,y>3
' or a predicate, €.g;,
"}f(l<=v ana v<=10) "
B Note theuse lo‘kf“"if " before the pdrenthesized 'Boolean exp‘ressio‘rtz.‘ The followt;ng;isf ineo.‘:i-reet);,‘if.' :
f((l<=v and y<=10))' | ‘

" "Boolean factors are combined with the logical-"and" operation to form Booleanj terms,

LEg . L v :
i<%v and §<=10

A Boolean factor by itself may be consrdered a Boolean term if it is not to be used in an’ and ’
operatlon »

, Boolean terms are comb1ned w1th the: logrcal or" operatron to form Boolean expressrons,v ‘
e.g., - o : : ‘ '

1<=v and v<=10 Or”talwindowq):7

" Note that the and is performed before the or. If the reverse order"bi‘s desired,: thei' lﬁ;édieate L
- notatlon should be used, e. g : : ' : 3

1<=v and if (v<=10 or ta(windowq)=7)

A Boolean term by itself may be cons1dered a Boolean expressron 1f it is not to be used i in an
~or operation. S - »

-~ Note that all of the above Boolean expressions must be enclosed in "zf ! and ") " before they
can be used in routing definitions, e.g., » \ :

' h0st4>link;if(1<=v‘andvif(v<=10 or ta(windowq)=7))

April 3, 1982

142

' APPENDIX 4‘ - BNF GRAMMAR

The tollowmg is a BNF grammar for the dialogue. file language for RESQ ThlS grammar :
also applies- to the interactive dialogue mode, ‘but the interactive processor has. additional:
restrictions, i.e., it excludes some portions of the grammar. In other words, this ‘grammar. .

shows some portions of the language which are accepted in dialogue files but are not present
in 1nteract1ve dralogue ‘

The nonfterminal symbols are enclosed in angular brackets ("<",">"). "The 'following ‘

metasymbols are used: "u=" "|" "[" "" "{" "}" The square brackets and braces are
extensions to the BNF notatron to allow factoring and iteration, respectively. Strings in the
braces may be iterated zero or more times, ‘i.e., they need not appear at all. : Two special
non-terminals are used, <eol> for "end of line," and <empty> for the null string. A "line"
will normally consist of one input record, but the special symbol "++'" may be used to
~ indicate concatenation, as discussed in Section 2. Wherever commas (",") are used as
separators, one or mote blanks may be used as well as or instead of a comma. :

" As usual, the grammar does not completely specifiy the syntax of the language. Ceitain’

-sentences produced by this grammar are semantically invalid and must be rejected by the
SETUP. These semantic restrictions are informally described in Sections 3-12. ‘

Since - thrs grammar is oriented toward dialogue files, a major omission has been made.

Lines of the form ”<prompt> <eol>" are allowed in dialogue files: where they would occur

" in'interactive dialogue, but are left out of the grammar. This grammar also ignores the special

queue types FCFS, PS, IS, etc. Many lines shown as required in this grammar are actually

optional. “As discusséd in Appendix 2, singular forms of keywords may be substituted for

plnural forms when the singular form is not a separate keyword.

<m0del> :
MODEL <ident> <eol>
METHOD: [NUMERICAL | SIMULATION 1 <eol>
<numeric __param_dcl>
<dist__param__dcl>
<numeric__ident _ dcl>

. <dist_ident__dcl> '
‘<globa1 ‘var__del>
<elem__array__dcl>
<max__var__dcl>
<queue__type__ dcl>
<queue__definitions>
<set__definitions>
<split__definitions>
<fission _definitions>
<fusion__definitions>
<dummy__ definitions>
‘<network._temp __ dcl>
<network. _temp. _invocations>

v <chain__definitions>

‘ <method__dep defs 1>
<method__dep_ defs 2>
~ <method__dep__defs 3>
END <eol>

<ident> ::= <letter> { <letter> | <digit> | $ | .t

April 3, 1982

£y

APP.4 /BNFGRAMMAR 03

"<_letter>b t=A | B | .| Vi

. <digif> =0 |,1 | o)
%EXprv>:'::= <-te'r1'n>_'{ <add6p> <‘tebrm> i H
<term> = <factor> { <mulop>_<factqr$ } B
<factor> : |

<1dent> | <array__ 1dent> | <number> | (<expr>) I
<s1m____fcn ca11> | <fen call> | <dist> | (<sign> <factor>')

, <afrdy ident> ::= ‘ .
L <1dent> (<subscr1pt expr> | ; <subscr1pt expr> 1)

' _<subscr1pt__e‘xpr> u=
<expr> | * -

<number> ::= : ' ‘
[<integer> | <integer> . <integer> | . <integer> |- <1nteger>]
[E <sign> <integer> <integer> | <empty> 1

‘ <integer> = <digit> { «digit> }

<s1m fcn ca11>
CCUTA | TA € <queue name>) |
SA | SA (<queue__name>) |
- TQ | TQ (<queue_- name>) |
. QL | QL (<node__name>) |
" TH | TH (<queue__name>) |
"RJ | RJ(<node “name>)

.'<queue___name> = { <invoc__ 1dent> } <id__or ‘afr‘ __id>

<invoc__ident> ::= <ident> [(<expr>) | <empty>]

"<n0deb__name_>i‘::=-‘- { <invoc__ident> 1 <id__or__arr__id>
<fcn_ call> = <fcn;_ident> (<expr> § , <expr> }). :
<fon_ident> ::= MIN | MAX | CEIL | FLOOR | ABS | PRINT | EXP | LN

<Slgn> = 4 I -

; _ .
<mulop>.::i=* | / | MOD
'<addop> =t | E
<d1st>

[STANDARD | BE | UNIFORM | DISCRETE]
(<expr> {[, | ,]<expr>})‘ ,

<numeric _param_dcl> = o ’
{ NUMERIC PARAMETERS <id_or__arr id> {, <id__or__arr 1d> } <eol> }

April 3, 1982

o1 S | | ' BNF GRAMMAR / APP. 4 -

<1d or__ _arr _id> = <ident> | <array___ident>

' <dlst__param del> _
{ DISTRIBUTION PARAMETERS <1d or__arr__id> {, <id__or__arr__id>}
- <eol> } 3 o

<numer1c ident dcl> ; : ‘
§ NUMERIC IDENTIFIERS <1d or _arr_id>{,<id_or_arr__id> } <eol>
<id__or_arr__id> : <expr> {, <expr> } <eol> } ,
{ <1d__or__arr_1d> : <expr> {, <expr> } <eol> }}

“<dist__ident__dcl> ;1= : SRR L
{ DISTRIBUTION IDENTIFIERS: <id__or__arr_id> { , <id__or_ arr 1d> } <eol>
<id _or__arr__id> : <expr> {, <expr> } <eol> }
{ <id__or_ arr__id> : <expr> {, <expr> } <eol> }1}

<global__var_ dcl> ::= ‘
{ GLOBAL VARIABLES: <id__or__arr__id>
{,<id__or__ari__id> } <eol>
<1d___or___arr id> : <expr> 1§, <expr> } <eol> 1}
{ <id__or__arr__id> : <expr> {, <expr> } <eol> } }

| <elem__array__dcl> :
{ CHAIN ARRAYS <array__ident> { , <array__ident> } <eol> }
{ NODE ARRAYS <array__ident> {, <array___1dent> } <eol> }-

<max__var. dcl>:
[MAX JV: <expr> <eol> | <empty> 1
[MAX CV: <expr> <eol> | <empty>]

- <queue__type_ dcl> =
{ <queue__type def> }
[QUEUE TYPE: <eol> | <empty>]

'<queue type def> :

. QUEUE TYPE: <1dent> <eol>
<numeric__param__dcl>
<dist__param_. dcl>
<node - param__dcl>
<queue_ body>
END OF QUEUE TYPE <1dent> <eol>

<node __param__dcl> 1= . ' » . o
: { NODE PARAMETERS <id__or arr____id> {,<id_or arr_id>} <eol>1

<chain__param___dcl> = : :

CHAIN PARAMETERS: <id_or__arr__id>{, <id__or__arr__id> } <eol>

{ CHAIN PARAMETERS:’<id___or___arr___id> {,<id__or_arr__id> <eol>1 -
<queue__ definitions> = <queue__ definition> { <queue__definition> }
<queue__definition> ::= QUEUE: <ident> <eol>

[<queue body> {. TYPE: <ident> <eol> <queune_type _invocation params> '
| TYPE: <ident> : [<expr> | <ident> | <array_ ident>]

- April 3, 1982

APP. 4 / BNF GRAMMAR e T LR e gt

; ‘{‘;‘_'[<expr> I <1dent> l <array 1dent>] i <eol>]

<queue____type invocation__params> : 3 T e
<id_or__arr__id> : [<expr> | <str1ng> | <1dent> l <array ident> 1 <eol> -
{<1d or__arr 1d> [<expr> | <string> | <ident> | <array 1dent>] <eol>}

<queue__body> 1= <act1ve queue body> l ‘<passive__queue___ body>

<actiV’e_.__que,ue____body > =

TYPE: ACTIVE <eol>

SERVERS: <expr> <eol> :

DSPL: [FCFS 1 PRTYPR | LCFS | PS | SRTF | LRTF | PRTY] <eol>
[PREEMPT DIST: <expr>.<eol> | <empty>]

CLASS LIST: <id__or__arr__id> {, <id__or__arr_-id> } <eol> i
WORK DEMANDS: <expt> { , <expr> } <eol>

- [PRIORITIES: <expr> {, <expr> } <eol> | <empty>]

{f CLASS LIST: <id__or__arr_-id> {, <id__or__arr__id> } <eol>
‘'WORK DEMANDS: <expr> { , <expr> } <eol>

I PRIORITIES: <expr> {, <expr> } <eol> | <empty>] }
<server def> {, <server “def> 1

<server__def> ::
SERVER- <eol> .
RATES: <expr> {, <expr> } <eol>
{ RATES: <expr> {, <expr> } <eol>} ' o
'[{ ACCEPTS: <id__or__arr__id> {, <id__or__arr-_id> } <eol> 1} .
| ACCEPTS ALL <eol>] . S

- <passive__queue__body> ::=
' TYPE: PASSIVE <éol>
. TOKENS: <expr> <eol>"
- DSPL: [FCFS | FF | PRTY | PRTYPR] <eol>
. [PREEMPT DIST: <expr> <eol> | <empty>'] ' o T
{ ALLOCATE NODE LIST: <id__or__arr__id> {, <1d or__arr__id> } <eol> "
v <trans__alloc.creat body> } e o
i AND ALLOCATE NODE LIST: <id__or _.array__ id> {", '<id____or_,___arr__jd> } L
 <eol> <trans__alloc__creat body> 1 IR R TS
~ { OR ALLOCATE NODE LIST: <id_: or____arr___id> {,<id _or _arr_id>} <eol>
. <trans__alloc__creat__body> } ' B T e
{TRANSFER NODE . LIST: <id__or__arr__id> {, <id__or_ arr__jd> } <eol> .
- <trans__alloc_creat body> } : R
{ RELEASE } NODE E LIST: <1d or__arr__id>{, <1d or__arr__id> }<eol> ¥ -
{ DESTROY NODE LIST: <1d or arr___1d> i, <1d___or arr._id> } <eol>1"
 { CREATE NODE LIST: <id__or__arr__id> { , <id_ or_ arr 1d> } <eol>
' <trans__alloc__creat__body> } o :

<trans__ alloc ‘ creat body>
NUMBERS OF TOKENS TO [ALLOCATE l CREATE | TRANSFER]
o expr> |, <expr> 1 <eol> v
[PRIORITIES <expr> |, <expr> } <eol> | <empty>]

<set defm1t10ns>

. { SET NODES: <1d or__arr 1d>{ ‘<id__or__arr__id> } <eol>
. ASSIGNMENT LIST <1d or__arr_id> = <expr>

April 3,1982

e o BNF GRAMMAR / APP. 4

{, <id__or_arr__id> = <expr>} ,<eol> %

’<sp11t defmmons> . ;
{ SPLIT NODES: <1d _or__arr__id> {, <id__or__arr__id> } <eol> }

.<flssmn definitions> : S -
4 FIbSION NODES <1d or__arr__id> {, <id__or__arr__id> } <eol> }

<fusi0n____definitions> = ' » v o
{ FUSION NODES: <id__or__arr__id> {, <id__or__arr__id> } <eol> } _

<dummy__ definitions> ::= ' v
{ DUMMY NODES: <id_"or__arr__id> {, <id__or__arr__ id> } <eol> } B

<network__temp__dcl> = { <network_.__templaté> }

<network__template> ::

SUBMODEL: <1dent> <eol>
<nomeric__param__dcl>
<dist _param__dcl>
<node__param__dcl>
<chain__param__dci>

- <numeric__ident__dcl>
<dist__ident__dcl>
<global _var__dcl>
<elem__array__dcl>
<queue__definitions>
<set__definitions>
<split__definitions>
<fission___definitions>
<fusion__definitions>
<dummy__definitions>
<network__temp _dcl>
<network__temp__invocations> -

~ <chain__definitions>
END <eol> .

<network__temp__invocations> :: { <network temp 1nvocat10n> [.

. <network__temp__invocation> :

INVOCATION: <id__or__arr_ 1d> <eol>

[TYPE: <submodel__ " ident> : [<expr> | <ident> | array__id>]
;[<expr> | <ident> | <array_id>]} <eol>

| TYPE: <submodel__ident> <eol> . ' '
<id__or__arr__id> : <expr> <eol>
{f <id__or__arr__id> : <expr> <eol> 1} 1-

<‘chain’ definitions> ;1= { <routing_chain> }

<routing cha1n>
~CHAIN: <id__or__arr 1d> <eol>" .
TYPE: [OPEN | “CLOSED | EXTERNAL] <eol>
[INPUT: <id__or__arr__id> <eol> | <empty>] .
[OUTPUT: <id__or__arr__id> <eol> | <empty>]

- April 3, 1982

APP. 4 / BNF GRAMMAR o ~ o141

[<source def1mt10n> { POPULATION: <expr> | <empty>]
{ <r0ut1ng trans1t10n> <eol> }

<source definition> ‘) ' o
SOURCE LIST: <1d or__arr 1d> { <1d or__arr__id> } <eol> -
ARRIVAL TIMES: <expr> {, <expr> } -

<r0utmg transition> : _
<from__ part>-> <to . part> { -> <t0___part> }

<frgm___part>' = <node___name> i, <node__name> 1

<to" part>
<node name>{ <node __name> }; <control part>

<c0ntrol | __part> :
FISSION | SPLIT {
| <expr> | <pred1cate> 14, ['<expr> | <predlcate> 11

' <predicate> = IF (<Boolean__term> { OR <Boolean__term> })
<Boolean__term> ::= '<Boolean__‘_factof> { AND <BOolean__‘factor> b

<Boolean factor>
' <Boolean - constant> | <expr> <relop> <expr>
| <predicate> | NOT <Boolean__factor>

<Booleén_constaﬁt> =T | 'F
<relop> tmem | e | €| <= | > | D=

‘<meth0d dep defs 1>
{ QUEUES FOR Q QUEUEING TIME DIST: <queue name > { <queue_ name> }
<eol> Co
VALUES: <expr> {, <expr> } <eol>
{ VALUES: <expr> {, <expr> } <eol> } } - N
{ QUEUES FOR QUEUE LENGTH DIST: <queue__name> {, <queue__name> }
<eol> _ : ’ :

- MAX VALUE: <expr> <eol>

- +{ MAX VALUE: <expr> <eol> } } : _ e
{ QUEUES FOR TOKEN USE DIST: <queue__name> { , <queue__name> } <eol>-
MAX VALUE: <expr> <eol> E . Lo
{ MAX VALUE: <expr> <eol> } } ‘ L
{ QUEUES FOR TOTAL TOKEN DIST: <queue name> {, <queue__name> } <eol> -
MAX VALUE: <expr> <eol> S s
{ MAX VALUE: <expr> <eol> } 1} : ‘

- { NODES FOR QUEUEING TIME DIST: <node name> i, <n0de name> } <eol>
‘VALUES: <expr> {, <expr> } <eol> C .
{ VALUES: <expr>{, <expr> } <eol>}1 ‘ ". ~ ,
{'NODES FOR QUEUE LENGTH DIST: <node__name> { , <node__name> } <eol>
MAX VALUE: <expr> <eol> ‘ "
§ MAX VALUE: <expr> <eol> 1} }.

© April 3, 1982

‘»14_3 ‘ ' | - . BNF GRAMMAR / APP, 4

<method _dep__ defs 2>
'CONFIDENCE INTERVAL METHOD: [NONE I REGENERATIVE | SPECTRAL
| REPLICATIONS | <eol>
L INITIAL | REGENERATION] STATE DEFINITION~ <eol>
{ CHAIN <id__ or arr __id> <eol>
NODE LIST: <node name> {, <node__ name> } <eol>
REGEN POP: <expr> { , <expr> } <eol>
INIT POP: <expr> {, <expr> § <eol> } -
CONFIDENCE LEVEL: <expr> <eol>
[NUMBERS OF REPLICATIONS: <expr> <eol>
| SEQUENTIAL STOPPING RULE: [[NO | YES] <eol> - , L
" { QUEUES TO BE CHECKED: <queue__name> { , <queue__name> } <eol>
MEASURES: [QT | QTD | QL | QLD | TU | TUD | TT | TTD | TP | UT]~
flQT | QTD | QL |QLD | TU | TUD | TT | TTS | TP | UT[}<eol>
ALLOWED WIDTHS: <number> { , <number> } <eol>
EXTRA SAMPLING PERIODS: <integer> <eol> }
| SEQUENTIAL STOPPING RULE: [NO | YES] <eol> . B S
{ CONFIDENCE INTERVAL QUEUES: <queue_ name> { , <queue__name> }
<eol> MEASURES: [QT |} QTD.1{,{ QT | QTD]} <eol> : o
ALLOWED WIDTHS: <number> { , <number> } <eol> }
' { CONFIDENCE INTERVAL NODES: <node__name> {, <node name> i
<eol> MEASURES: [QT | QTD 1{,[QT | QID] } <eol>
" ALLOWED WIDTHS: <number> { , <number> } <eol>
EXTRA SAMPLING PERIODS: «integer> <eol> }
INITIAL PORTION DISCARDED <expr> <eol> }
[SAMPLING PERIOD GUIDELINES- <eol> | RUN GUIDELINES— <eol>
| REPLIC LIMITS- <eol> | RUN LIMITS- <eol>] o
| INITIAL PERIOD LIMITS- <eol> |
SIMULATED TIME: <expr> <eol>
CYCLES: <expr> <eol>
EVENTS: <expr> <eol> ‘ S :

. QUEUES FOR DEPARTURE COUNTS: <queue__name> { , <queue__name> } <eol>
DEPARTURES: <expr> { , <expr> } <eol> o RS IR
NODES FOR DEPARTURE COUNTS: <queue__name> { , <queue__name> } <eol>
DEPARTURES: <expr> { , <expr> } <eol> o : ’
LIMIT - CP SECONDS: <expr> <eol>
SEED: <expr> <eol> :

<method__dep_ defs_ 3> ::=

TRACE: [NO | YES] <eol>
- INITIALLY ON: [NO | YES] <eol>

TURN TRACE ON- <eol>
SIMULATED TIME: <expr> <eol>
CYCLES: <expr> <eol>
EVENTS: <expr> <eol> e
QUEUES FOR DEPARTURE COUNTS <queue_ name>{ <queuve_ name>‘}.<eol> o
DEPARTURES: <expr> {, <expr> } <eol>
NODES FOR DEPARTURE COUNTS: <queue__name> { ; <queue name> } <eol>
DEPARTURES: <expr> {, <expr> } <eol> ’ : :
TURN TRACE QOFF- <eol>
SIMULATED TIME: <expr> <eol>.
CYCLES: <expr> <col>
EVENTS: <expr> <ecol>

‘QUEUES FOR DEPARTURE COUNTS: <queue name> i, <queue name> } <eol> .

April 3, 1982

APP. 4 / BNF GRAMMAR -~ R 149

DEPARTURES: <expr> {, <expr> } <eol> R
‘NODES FOR DEPARTURE COUNTS: <queue__nameé> {, <queue_ name> } <eol> -
DEPARTURES: <expr> {, <expr>} <eol> ‘ : SR
JOB MOVEMENT: [YES | NO] <eol> -

[QUEUES: [YES | NO] <eol> , -

| QUEUES: <queue__ name> { , <queue__name> } <eol>

{QUEUES: <queue__name> { , <queue__name> } <eol> }

EVENT HANDLING: [YES | NO] <eol> o

EVENT LIST: [YES | NO] <eol>

SNAPSHOTS: [YES | NO | <eol>

April 3, 1982

150

APPENDIX 5 SETUP ERROR MESSAGES

In addmon to d1splay1ng error messages on the termlnal SETUP produces flle RQZLIST '

“.which contains the same error messages which were d1splayed at the termmal ‘Each error -
message is' listed 1mmed1ately following the statement which caused the error.: (Erroneous
“lines given in interactive mode, and resulting error messages, will not appear in the dralogue or .
listing files.) The error messages from SETUP followed by an explanatron, are descrrbed
below (m alphabetlcal order) ‘ o

HAS TOO‘MANYfDIGITS

RESQ constams must have less than 11 digits. - All l)utv the first lO‘ digits -
w111 be 1gnored . D . S

Co.. IS AN IMPROPER‘CHAIN<IDENTIFIER IN THIS»SUBMODEL"' .

The displayed 1dent1f1er is either not a chain identifier or is an cham array
whlch has already been defined in this (sub)model.

A LisT rN»THis LINE HAS TOO MANY ELEMENTS, BREAK-IT'
There are too many identifiers or expressions in the list. This-problem can.
generally be circumvented by repeating the prompt and sphttlng the ele-
ments in the list among the repeated prompts.

ACTUAL NODE PARAMETER MISSING OR IN ERROR

" During the invocation of a queue type, a formal node parameter of the
queue type has been matched with an invalid node identifier.

ALL CL_ASSES IN A FCFS Q MUST.HAVE SAME WDD WITH NUMERICAL’ SOLUTION
Only a single scalar expression can be given for the work demands of a
- FCFS queue in a model solved numerrcally See Section 11 for other
restrictions for numerical solutions. : ‘ e

ALL- FORMAL PARAMETERS NOT . MATCHED TO:ACTUAL PARAMETERS

All the parameters of a queue type or submodel were not given a value in "
the invocation. : :

ALL NODES 1IN ACCEPTS LIST MUST BE TEMPLATE PARAMETERS

The classes listed in the ACCEPTS list of a server defrmtlon of a queue‘ ‘
type must be parameters of the queue type. »

ALLENQDES IN CLASS LIST MUST BE QUEUE® TEMPLATE PARAMETERS

All identifiers appearing in a , CLASS LIST statement w1th1n a queue type
- must be node parameters of the queue type. '

AN'IDENTIFIER WITH RUNNTNG DIMENSIONS MUST BE ONLY ELEMENT - IN LIST

April 3, 1982

APP. 5 / SETUP ERROR MESSAGES

Typlcally, an .identifier with running dimensions is to be matched to a

~gecond: 1dent1f1er with running dlmensmns and thus must be the only ele- e

ment in the hst a values matched to the second 1dent1f1er

ANALYSIS'HAS'BEEN SUSPENDED STARTING FROMFTHiS‘POINT

SETUP has detected an error whlch has forced the analysis to temporarlly
“be suspended SETUP will continue the analysis of the model as soon as -

possnble
ARRIVAL TIME DI'ETRIB_UTION'MISSING oﬁ IN E_RROR‘
. ’Ihe:arrival:statistics of source nodes in open chains must be declared.
AT ~L"EASTk ONE CHAIN PARAME’l‘ER REQUIRED IN SUBMODEL DEFINITION
) All submodels must have one or more chain parameters.’ |
AVA'ILAELE MEASUnEs ARE UT, TP, QL, QLD, QT,”QTD, TU, TUD, T, TTD

These are the only measures that can appear in- the statement that begms
MEASURES ‘

CHAIN TYPE CAN BE OPEN, CLOSED OR EXTERNAL (SUBMODELS)

Incorrect CHAIN. TYPE speclfled External chains are legal only within a_

submodel definition.

'CHAIN TYPE DCL MISSING OR IN ERROR

_ After a chain identifier is declared, there must be a statement beginning
’I‘YPE: » which declares the chain as open, closed or external.

"COLON MISSING AFTER IDENTIFIER NAME

The syntax for assigning a value to an identifier is an 1dent1f1er name

“followed by a colon followed by an expression.
COLON MISSING AFTER INCLUDE

The correct syntax is INCLUDE: _followed by a file name. ’See Sect’ion 2.

. COLON MISSING IN MODEL NAME DECLARATION

Correct syntax is’MODEL‘: followed by the model name.

COMMENT TERMINATOR MISSING
A comment maynot span multiple lines. Every comment must begin "
and énd (*/) on the same line. Long comments can be included by consec-

utive comment lines.

DCL. FOR EVENT HANDLING: YES OR NO, IS IN ERROR

 April 3, 1982

151

152 SETUP ERROR MESSAGES / APP. 5

This is one Qf the trace options.

DCL FOR EVENT LIST: YES OR NO, ;S IN ERROR
This is_one of the trace options.

nCL FOR JOB MOVEMENT ON OR OFF IS IN ERROR ‘

This is ‘one. of the trace optlons The syntax is JOB MOVEMENT: YES or
NO. | | = oL

DCL FOR QUEUES: YES, NO OR LIST IS IN ERROR

This is one of the trace- optlons The syntax is QUEUES: YES or NO ora.
list of queues. ' S

DCL FOR SNAPSHOT: - YES OR NO, IS IN ERROR
This is one of the trace options.
DECLARATION OF QUEUEING DISCIPLINE MISSING OR IN ERROR

All active queue definitions must have a statement which begins,TYPE: in
~order to specify the queueing discipline at the active queue.

DECLARATION. FOR TRACE INITIALLY ON OR OFF IS MISSING ,
This is one of the trace options and must be given when requesting ‘trace
output. The syntax is INITIALLY ON: YES or NO.

DECLARED DIMENSIONS OF IDENTIFIERS CANNOT BE RUNNING '

The declared dimensions of identifiers and variables cannot contain an
 asterisk.

DEPARTURE,COUNTS»DECLARATION MISSING
Departure counts must be given for the queues specified.
DIMENSION FOR ... ARE UNDEFINED QUANTITIES

The dimension size for the displayed identifier contains an unknown identi-
fler :

DIMENSIONALITY OF PARAMETER EXCEEDS‘ MAXIMUM NUMBER ALLOWED

Numerlc and distribution parameters can have up to 2 d1mens1ons node
‘and chain parameters can have up to 1 dimension.

DIMENSIONS OF ACTUAL AND FORMAL PARAMETERS DO NOT AGREE
The dimensions of a submodel or queue template parameter do not agree

with the dimensions of the expression which it is being assigned.

April 3, 1982

- APP. 5 / SETUP ERROR MESSAGES

VDIMENSIoNsioEzAcTUAL PARAMETER MUST-BE RUNNING (*)

The Value asslgned to a formal parameter that is an array must be an'f‘
- 1dent1f1er or.an expresslon w1th the same number of runmng dlmenslons T

ELEMENT(S) IN CLASS AND VALUE LIST DISAGREE IN DIMENSIONS o

£y !”‘ : Ident1f1ers in the class list with runnlng d1mens1ons (*) must be matched

' w1th a value expresslon with at most one runnlng d1mens1on

V;jEND OF‘FILE NOT REACHED. REMAINING LINES NOT-PARSED

: SETUP has processed the END statement for the model and conslders the’
model complete. “All hnes after the END statement are not consndered part;

of the model

VEND OF QUEUE TYPE STATEMENT MISSING OR IN ERROR

E,153j'

The body of a queue type miust be termrnated by the statement END OF Y :

QUEUE TYPE "queue type name"

END OF SUBMODEL STATEMENT MISSING OR: IN ERROR '“‘I

The statement END OF SUBMODEL "submodel name must appear at the '

: end of every submodel
‘ERRoR DETECTED'IN'NODE'DEFINITION
' ERROR DETECTED IN QUEUE DEFINITION

"ERROR INTVALUE EXPRESSION FOR PARAMETER ‘

An 1ncorrect expressron has been glven for the value of a queue template' -

formal parameter

. EXPRESSION TABLE OVERFLOW COMPILATION SUSPENDED:, EXPRESSION OR . . ' . o

ELEMENT VECTOR TABLE OVERFLOWS SIZE OF .

SETUP has exhausted' the a'va11able' entrles in- one of its internal -tables:
‘The current size of the. express1on table or element vector table which has "'
overflowed is_ given by (. .2, ‘The problem can be rectified by increasing
‘the values of ‘EXPSIZ ‘and ELVSIZ. in the file SETUPD RQZDAT See

Sectlon 2 4 for a descr1pt10n of the SETUPD RQZDAT file.

3 EXTERNAL CHAINS MUST BE’ DCL AS SUBMODEL PARAMETERS

The 1dent1f1er glven asa chain 1dent1f1er for an external chaln ina submodel.

b must be a cha1n parameter of the submodel

FCFS Q MUST HAVE EXPONENTIAL WORK DEMANDS WITH NUMERICAL SOLUTIONS

Only a s1ng1e scalar ar1thmet1c express1on can . be g1ven as. for the workv'v
- demands of an FCFS queue in a model solved numerlcally -See Sectlon 11

S for other restr1ct10ns for numerical solutlons

April3, 1982 0

1 oo . SETUPERROR MESSAGES /'APP. 5

'f'FUSION/SPLIT NODES AND PREDICATEgtNOT ALLOWED'IN}NUMERICAL SOLUTION"
The routmg specrflcatlon must use probab111t1es (between 0 and 1) when a .

- model s solved numerlcally See Sectron 11 for further restrictions: for

i numerical solutions. - S

' IDENTIFIER‘.., IS‘, IMPROPER_LY DEEINEo :

The specified name is not a valid chain, node of queue name.

:IDENTIFIER'NOT"A‘STRING PARAMETERUOE THIS QUEUE TEMPLATE'

In order for an 1dent1f1er to specrfy the queuemg drsc1plrne of a queue type
the 1dent1f1er must bea strmg parameter of the ¢ queue type :

IDENTIFIER‘NOT‘SUITABLE,AS A VALID QUEUEING DISCIPLINE .
"I:‘:he iden_tifier:i;s not a string parameter of the submodel or. queue type. »
‘ILLEQALjARGUMENT(S) IN' FUNCTION cALL

Elther an meorrect expressmn of an mcorrect number of expressrons are e
, contamed between: the parentheses followmg the: functron name:

IMPLICIT DUMMY NODES INVALID AS I/0 NODES WITH NUMERICAL SOLUTION .
Input and. output nodes of an external. cha1n must’ be prevrously defmed
classes of the submodel in a model wrth numerical solutron See Sectron 11
“further restrrctrons for numerrcal solutrons : :
,IMPROPER IDENTIFIER FOUND N IDENTIFIER LIST
See Appendrx 2 for drscussron of legal RESQ names

‘IMPROPER TYPE OF IDENTIFIER USED'IN ARITHMETIC EXPRESSION

Only numeric 1dent1f1ers can be used in all expressmns There are restrrc--_ DR
tions on the use: of d15trrbutron]ob cham and global 1dent1f1ers '

'VINCLUDE FILE NOT FOUND OR HAS . INCORRECT RECORD FORMAT
‘ The frle to be mcluded wrth a f11e type ‘of RQ2INP was not found on anyf o
~“accessed disk nor was found to be a member of any GLOBAL maclib. - An o
included file must have fixed length records of length 80. See sectron 2 for
.2 d1scus51on of the INCLUDE statement. : , ‘
INCORRECT ARITHMETIC EXPRESSION
- See Appendix 3 for disciission of RESQ expressions. =~
INCORRECT CHAIN DEFINITION

See Section 9 for discussion of chains.

April 3, 1982

Pt

APP.’ 5/ sETUP' ERRQR MESS_AGES |
lNCORRE'T CONFIDENCF INTERVAL MLTHOD

The reply to CONFIDENCE INTERVAL METHOD must be - NONE
REGENERATIVE REPLICATIONS or SPECTRAL.

INCORRECT DEFINITION OF INPUT OR OUTPUT NODES

See Section 10 for discussion of input and output synenyms.‘ -
zﬁcoRRﬁér DEFINITIQN,QF NQDES/QDEUES FOR CONFIDENCE INTERVALS:
fINCnRRECT DEFINITIONfOF NODES OR Qununs FOR:DISTRIEUTIONS.

N An illegal .node_ or qﬁeue narne appéars in the identifierilist.‘
,rNceRREer nﬁslﬁITIONgoﬁiQnEdESfOR NODES EORﬁDEPAanRE CDUNTSv.
: INCQEREQTlDEFINITION FOR iaﬁ SEQUENTIAL sroréing'nan,

: FSee_"Se_c_ti’on 12: fdr diseussien of the sequ'ential‘ stbp'ping rule..'
‘INCONRECT,DISCIPLINE CODE

An unknown queuelng drscrplme has been specified. See Sectlon 4 and 5
for d1scuss1on of queuelng d1scrp11nes :

‘INCORRECT_EXPRESSION FOR'THE CONFIDENCE INTERVAL

AL smgle ar1thmetlc express1on must spe01fy the’ confrdence interval; see -

Appendlx 3 for d1scuss1on of RESQ expressrons

INCORRECT,EXPRESSION'FOR THE PREEMPTION DISTANCE '

The preemptlon dlstance must be a slngle scalar arithmetic expresswn See ’

Appendlx 3 for d1scuss1on of RESQ expressions..
INCORRECT EXERESSION'OR;DISTRIBUTIONvEXPRESSION
L See Appendix 3 for discﬁssion of RESQ eXpression's, -

INCORRECT INCLUDE STATEMENT SPECIFIED FILE NOT INCLUDED

The text in the file to be 1ncluded w111 not be processed by SETUP See e

the sectlon on 11brar1es for discussion of ‘the INCLUDE statement
»INCORRECT INVOCATION
INCORRECT‘INVOCATION ARGUMENT

An mcorrect expressron has been glven as a valie. for the. prdmpted formal
parameter of the submodel or queue be1ng 1nvoked .

INCQRRECT JOB,ICHAIN OR GLOBAL VARIABLE“IDENTIFIERv”:

April 3,1982

A6 e T e SETUBERROR’MESSAQES»,i/ APP.5
See Sectlons 3 and 7 for dlscussron of the use of]ob chaln and global

1dent1f1ers ’ , : : : :

- II\LCORRECT JOB OR CHAIN VARIABLE DECLARATION

The response to the MAX CV: orr MAX IV: prompt must be a s1ngle v
anthmetlc expression for the extent of the JV- or CV vector. ”

QINCORREC‘I‘ JV SCALED LIST

_ - Each element 1n the v SCALED LIST should be YES NO or an ar1thme-
" tic expression. .

INCQRRECT METHOD‘DEPENDENT DEFINITION, ANALYSIS,SUSPENDED_

Due to.an error in .the method- dependent: 1nformat1on SETUP cannot;: ‘
analyze the rema1nder of the model

INCORREC'T NESTING OF SUBMODELS COMPILATION SUSPENDED

. SETUP has found more END OF. SUBMODEL statements then there are
- actual submodels

VINCORRECT NODE'LIST

The ‘list of nodes likely contalns an 1nvahd node name or a node wh1ch. ‘
' cannot be referenced i 1n the current context. ' v

"INCORRECT NODE OR CHAINRIDENTIFIER_
INCORRECT NUMBER OF ACTUAL PARAMETERS SPECIFIED
“Expressions for parameter values were found when an end-of-line was =
expected.. See Section 6 for discussion of: matchlng formal parameters wrth
actual values : . :

INCORRECT NﬁMBER'OF'WORK‘DEMANDS OR ARRIVAL TIMES

CIf there are n. classes or- source nodes, then there must be e1ther 1 or n'
work demand or arrival tlmes expressions: '

'INCORRECT'OR ILLEGAL IDENTIFIER FOUND

- See Appendix 2,for discussjon of RESQ names.
INCORRECT OR IMPROPER NODE IDENTIFIER IN'IDENIIFIRR LIsrv,
INCORRECT?OE IRVALID USER.SUPPLIED RROMPT IN INPUT FILEt

The prompt part of a statement (to the left of the colon) is not’ a vahd
RESQ prompt

~ INCORRECT OR»MISSING RELATIONAL OPERATOR

 April 3, 1982

It

)
' ‘A_PjP.f:s / sEﬁUP ERROR MESSAGES - o O . Sk - G 157
Vahd\{elatlonal operators are = f-—, >, k> < <-— ‘.See *Appendix.g_ :
INCORRECT‘OR UNKNOWN - SOLUTION METHOD | | S
»T‘he'solution method should be elther numerical or vs;rm’ulatiorr.,'.,
,rNcekﬁgcTrPARAMETER.QR;iDENTrFiER DECLARATIONH
INcéRRECf éASSIVEfQUEUE‘iEMPLATE DEFINITION
| INeoﬁREcr-éﬁEbréATE IN ROUTING DEFINITION
‘ 'See Section 9 and Appendix 3 'for di‘scus‘siobn of routi}ng‘predicat_es; ‘
o iNCORRﬁCi‘PRIQRITY LIST | |
B The‘ 'prierityblivst is discussed 1n Sections 4 ahd_ 5.
ﬂ:iﬁCORﬁECT ROUTIN¢ TRANSITrON'
| - See vSect_io‘n-9 for elis‘_bcvt.l's"sio‘n’ef‘routi'ng‘.‘ '
ﬁINéORRECT SERVER”DEFrNrrION:‘
e See'.S\eC“t'iOn'4 ‘f(‘)r“"diseus'si()n of server definition.
tigceRﬁEér sETaNobEs>DérrNITION
‘f‘Se‘e_ _Sec’ti.e‘ri‘7 :fo'jrv di}seus.si:o,n» 'Qf set nodes.'
& INCORREcTzsﬁBMeDEL DECLARATIQN
' iﬁeORREcT SUBMODﬁLVNESTING/'END OF SUBMODEL R" ASSUmEb
: ‘T‘he:.errd of the indicated submodel (...) was expected but -rtbt found.
'rﬁceR§ECT TRACING DECLARATION o
. 'Seej'sectioh 12‘ for a_di-seussijeh.(')f the dialogue for Simulatierr tracing. -‘
FINCORRECT USE OF FORMAL NODE PARAMETER OF A QUEUE TEMPLATE

The node parameter of a queue template can only be referred to w1th1n the .
body of the queue type.. :

"iNCoRRECT WORKaDEMANDSvLIST
INITIAL POPULATION DECLARATION MISSING

In deflnmg the initial state of a cham there must be a statement whrch
‘ begms INIT POP ‘ S .

'INPUT AND OUTPUT NODES CANNOT BE SUBMODEL PARAMETERS =~

April 3, 1982

158 SETUP ERROR MES.SAGES / APP.S -
The nodes spec1f1ed in the INPUT and OUTPUT statements in an exter-
nal charn defrnltlon cannot be parameters of the submodel

‘INVALID ID_ENTIFIER IN CLASS LIST SPECIFICATION
See Appendrx 2 for d1scuss1on of vahd RESQ names

‘ INVALID INVOCATION IDENTIFIER QUALIFIES NODE, CHAIN "OR QUEUE
~ One of the -identifiers used to qualify the node, chain or queue name is
_either not a known invocation identifier or is an invocation 1dent1f1er wh1ch

: cannot be referred to-in the current context .
iNVALIDnQUEUE NAME-SPECIFIED'

fJOBSmINITIALLY ATLRELEASE, DESTROY, FUSION, SOURCE OR SINK NODEé

The m1t1a1 state descnptlon of a. chain cannot have]obs 1n1t1alrzed at any of
these types of nodes. v

JOB VAR_IABLES_. NQT ALLOWED IN ARRIVAL TIME DISTRIBUTIONS . -
‘MA:XI,MUM- LEVEL OF SUBMQDEL NESTING EXCEEDED . COMPILATION ENDS.
SETUP can handle up to 40 nested submodels at any one point in a:medel; ,
'MAXIMUM NESTING OF,iNCLUDE,STATEMENTS IS 10 LEVELS‘DEEP
SETUP can process at most 10 INCLUDE statements. s1mu1taneous1y That-
is, a maximum of 10 non completed INCLUDE statements can be present’
durmg the text 1nsert10n required for an INCLUDE statement :

METHOD DECLARATION MISSING OR INCORRECT

After the MODEL: statement there ‘must be a statement which begrns
METHOD

‘MISSING "=" IN SET NODE SET-TO EXPRESSION
The correct syntax of an assignment list is a job, chain or global variable =
name, followed by an =, followed by. an express1on ‘See. Section. 7 for.
discussion of set nodes. R
MISSING'hIF"fIN ROUTING PREDICATE

All routing predrcates start with the word IF See Sectron 9 for drscussron o
of routlng predicates.

MISSING LEFT OR RIGHT PARENTHESIS
NO ALLOCATE NODES HAVE BEEN DEFINED FOR THIS PASSIVE QUEUE

-All passive queues must -have at least one allocate node.

April 3, 1982

APP. 5 / SETUP ERROR MESSAGES
NODE“AND.CHAIN1ARRAYS“MUST BE ONE DIMENSIONAL
. Nodé,énd chain arrays cannot be 2 'dimensional.
NODE* ARRAY REFERENCE. IN NOlDE LIST MUST HAVE RUNNING- (*)' INDEX
The node in questlon has been declared as a node array parameter of thea
queue template and thus must have a running (*) index in the body of' the" :
queue type. -
NODE PARAMETER IN LIST HAS NO CLASS ATTRIBUTES
A node parameter of the queue type was never deflned as-a class w1th1n the‘f
‘body of the queue type and thus cannot appear in the ACCEPTS list of the
server def1n1tlon

NODE PARAMETER I8 NOT USED IN THE BODY OF THE QUEUE TYPE

A node parameter was declared bt never referenced w1th the queue type R
body : : -

'NOT ALL IDENTIFIERS HAVE BEEN ASSIGNED: AN ‘INITIAL VALUE

When global numer1c and drstrrbutlon identifiers are declared they must be ‘.

asslgned an 1n1t1al value immediately after the1r declaratlon
NUMBER OF RUNNING ‘ (*) ’DIMENSIONS DISAGREES WITH IDENT. DIMENSI‘ONS

: The number of runnrng dimensions of 1dent1f1ers in the express1on does not -

-agréee with the number of dimensions of the 1dent1f1er receiving the 1n1t1al"“ fan

value
‘NUMBER OF‘RUNNING.(*) DIMENSION ON LEFT AND RIGHT OF =" DISAGREE
- In a set expression “the number of running dimensions of the job, chain or’V ‘
“global variable must be the same as the number of running drmensrons of
the 1dent1f1ers in the expresslon to the right of the "=", »

.EVNUMEER'OF”SET.NODES AND SET-TO EXPREssIONs;DOfNOT AGREE

If there are N set nodes in the identifier list then there must e1ther one or. -
R N asslgnment 11sts See Sectlon 7 for drscussron of set: nodes

‘NUMBER‘oE;ToKENs,MUST BE'DECLARED

- When def1n1ng a passrve queue, there must be a statement begrnnmg TO-
' KENS 1mmed1ately following the TYPE PASSIVE statement.

ONLY‘A SINGLE NODE/QUEUE FOR DEPARTURE COUNTS WITH SPECTRAL METHOD

‘ONLY: A SINGLE SOURCE "NODE- IS ALLOWED WITH NUMERICAL SOLUTIONS

“An’ open chaln ‘can’ only have a slngle source node ina model solved numer- i

1cally See Sectlon 11 for further restr1ctrons on numer1ca1 solutrons

April 3, 1982

60 | ' SETUP ERROR MESSAGES / APP. 5
ONLY,CLASS} ALLOCATE'AND FUSTON NODES ALLOWED FQR‘QLb OR QTD)

The only types of nodes at wh1ch queue length and queuemg t1me d1str1bu-
. tions can be measured. are class, allocate and fusion nodes. cl

ouLY CLASS SOURCE AND SIuK NODES - ALLOWED WITH NUMERICAL:SOLGTION
| These are the only permlsslble node types if 2 model i is to be solved numer-
“ically. "See section 11 for a d1scuss1on of further restrlcuons on numencal
solutions.
‘ OuLY ON_E DIMENSTONAL ARRAYS OF INVOCATION ARE Z-\LTLOWEDv
: _Ah..invo(‘:ation ’identifier can have at most. one dimension.
ONLY VALie'hEASUREs FOR couFIDENCE INTERVALS ARE QT AND”QTu,f
\Thi's is,true only with the ‘specttal solution method.' o
PARAMETER .I.D'IN:IENSIONS‘MUST Bu SPE;CIFIED AS -RtJNNING
- ’The dimenSions of array parameters must be 'declat'ed,as _runnihg (*).
PAssqu QuEUEs NOT thOWED WITH NUMERTCAL SOLuTION METHOﬁSv |

*Only active queues are allowed in a model which is to be solved numerical-
ly. See Section 11 for further restrictions on numerical solutions.

'POPULATIONS OR SOURCES bECLARATIQN IS MISSING
Open chain definitions must have a statement which begins SOURCE
LIST:. Definitions for closed chains must have . a statement which. begms
POPULATIONS

PREEMPTION DISTANCE NOT DECLARED
A queue with queueing discipline PRTYPR must have a statement which
begins PREMPT DIST:. This statement must 1mmed1ate1y follow. the o
queuemg dlsc1p11ne spec1f1cat10n E

PRIORITY DECLARATION'MISSING

A queue with a PRTY or PRTYPR queuemg d1sc1p11ne must have a state-
- ment which begins PRIORITIES: '

'PRIORITY QUEUEING DISCIPLINES_NOT 'ALLOWED WITH NUMERICAL SOLUTIONS

The only disciplines allowed in a model to be solved numerically are FCFS,
LCFS, PS and IS. See Section 11 for further restrlctlons on numencal
solutlons - ;

v

QUEUE TYPE NAME MUST BE A VALID IDENTIFIER

“April 3, 1982

" APP.5 / SETUP ERRO‘R MESSAGES

An 111egal 1dent1f1er has been used to specn’y the queue fiame. See Apf)en-‘v i

- odix 2 for d1scuss1on of RESQ 1dent1f1ers

) QUEUES TO BE CHECKED FOR SEQUENTIAL STOPPING RULE NOT DECLARED

16l

Aftet requestlng the sequential - stopplng rule there must be a line whlch AT

begins QUEUES TO BE CHECKED

f.RANDQM NUMBER SEED.DCL IS MISSING OR IN ERROR

The correct syntax is the prompt SEED: fOHOWed by a s1ngle arlthmetlc ,‘ o

CXPI'CSSIOII
 REGEN ‘POPULATION‘ ALLOWED ONLY AT ALLOCA’TE FUSION AND CLASS NODES

Each node hsted in the regeneration state must be a prev1ously defxned
allocate fuslon or class node. -

REGENERATION POPULATION DECLARATION MISSING

After: g1v1ng the node list in the regeneration state definition, there must be

a 11ne whlch begins REGEN POP:.
REGENERATTON STATE NODE LIST CANNOT BE EMPTY -
At least one node must be specified in the regeneration state node list.

REGENERATION STATE NODE LIST DECLARATION IS MISSING'

After g1v1ng a cha1n 1dent1f1er for ‘the regeneratlon state deflnltlon there :

“must be a line which beglns NODE LIST:.

REPLICATION LIMITS MISSING OR IN ERROR

After giving the number of repllcatlons there must be the statement REPL-

IC LIMITS-

ROUTING TABLE OVERFLOW : COMPILATION SUSPENDED RQUTING
TABLE OVERFLOWS SIZE OF . :

',SETUP has exhausted the avallable entr1es in 1ts 1nterna1 routlng table
The current size of the routing table is given by (...). This problem can be .-
rectified by incteasing the value of RTBSIZ in the file’ SETUPD RQ2DAT -

~See Sectlon 2. 4 for a descrlptlon of the SETUPD RQ2DAT file. -

LSET TO -DECLARATION MISSING IN SET NODE DEFINITION

Follomng the def1n1t10n of the set node names, there must be a statement

e whlch begins SET TO or ASSIGNMENT LIST:.

ASIMULATION CP TIME IS MISSlNG OR IN ERROR

‘ After def1n1ng the other 11m1ts or guxdellnes a statement begxnnlng LIMIT -

cp SECONDS .must be glven

“April 3, 1982

162 E ' © SETUP ERROR MESSAGES / APP.5

STNK NQpEs:cAﬁvBE PRESENT ONLY IN‘QPEE OR EXTERNAL .CHAINS

A sirlk node cannot appeer in the rodting definitipn of a closed ‘c‘h.ain.'
' STNK NODES CANNOT BE USED IN CLOSED CHAINS » |
eéECIFIEd iﬁEﬁTIFiEﬁ'NOTvA‘PARAMEiER oF THIS.QUEUE TEMPLATE

Attempt made durrng 1nvocat10n of queue type to assign a value to an 4 '
1dent1f1er which is not a parameter of the invoked queue type.

~ SPLIT. OR FIssroN NODESvMUST BELONG TO THE CURRENT SUBMODEL

A split or a fission node must a declared node of the (sub)model in Wthh it -
is used ina routrng definition.

STRING PARAMETERS NOT YET IMPLEMENTED FOR QUEUE DISCIPLiNES

- SYMBOL TABLE OVERFLOW. COMPILATION SUSPENDED. SYMBOL TABLE
' OVERFLOWS SIZE OF ... ' :

. SETUP has exhausted the available entries in its internal syibol table. The -
~ current size of the symbol table is given by (..). . This problem can be .
. rectified by increasing the value of SYMSIZ in the file: SETUPD RQ2DAT. =
See section 2.4 for-a description of the SETUPD RQ2DAT file. :
TABLE DEFINITIEN FILE MISSING - DEFAULTS USED-
SETUP was unable to find the file SETUPD RQZDAT and _h-‘as used default
values for-its internal table sizes. See section 2.4 for -a description of the
SETUPD RQ2DAT file. : : R '
THE ARRAY ... HAS BEEN DECLARED BUT NEVER USED AS A NODE OR A CLAss'

A reference is belng made to a node array that was declared but never
‘defined as a class or other node. : :

:,THE CHAIN ... HAS NOT YET BEEN DEFINED

The indicated chain was used as an external cham in a submodel but has
yet to be defmed in the current (sub)model

'THE'CONFIDENCE INTERVAL METHOD'DECLARATION Is MISSiNG OR.IN ERROR -
After giving information about: the nodes and queues for drstrrbutlon
measures, there must be 2 statement which begins CONFIDENCE INTER-: ,
VAL METHOD:. »

THE DiMENSIONS OF THE ARRAYS CANNOT BE UNDEFINED"

Arrays must have dimension values that are known to SETUP.

'THE ‘IDENTIFIER BEGINNING ... HAS BEEN TRUNCATED TO 10 CHARACTERS

© April 3, 1982

'

APP.'S’/\S‘ETUP‘ERROR MESSAGES =~ B N 163
. All'RESQ 1dent1f1er names must be 10 characters or. less any addltlonal '
characters will be 1gnored ‘ : , _—

THE IDENTIFIER BEGINNING ... IS IMPROPERLY DEFINED

The chain, node or queue name is incorrectly: defined due to eithet an o
1ncorrect qua11f1cat10n or an 1mproper node, queue or cha1n name. o

“THEYIDENTIFIER ... IS ‘AN UNKNOWN OR INCORRECTLY DEFINED QUEUE TYPE,"

Smce the queue type name is undeflned 1t cannot be used ina queue type
invocation. : :

THE IDENTIFIER ... IS AN TMPROPER NODE IDENTIFIER
The identifier shown is eithér an invalid identifier name, not a node identi-
fier, or is a previously defined node 1dent1f1er whlch cannot be referenced'
at this pomt in the (sub)model. :

THE IDENTIFIERE... CANNOT BE"UTILIZED INVTHIS SUBMODEE

The d1splayed 1dent1f1er has been declared outside the current scope ‘and
cannot be referenced at this point in the model. :

THEﬂIDENTIFIER .» . -HAS BEEN DECLARED TWICE

‘An‘i(vlentifie,r_can only be'declared once within a (sub)model. Model and
... queue type names can be used only once. ‘

THE IDENTIFIER ... IS NOT A PARAMETER OF THIS SUBMODEL

An attempt is being made during an invocation to assign a value to an.
_identifier that is not a parameter of the submodel being invoked.

THE IDENTIFIER ;.. WAS GIVEN A VALUE BUT NEVER DEFINED

The displayed identifier was not: declared in th1s 1dent1f1er declaratlon.
statement but an attempt is being made to assign it an initial value.

’ TEE_IDENTIFIER'..; WAérALREADY‘GIVEN:A‘VALUE
.The zttisplayeti'identifier ... Was already assigned au; iuitial fvalue.f
THE LIST I_N"THE .PREV.IOU_‘SV. 4;STATEMENT'_ CANNOT_ BE EMPTY
o A iuul_l response is illegal to the prompt.
Tﬁﬁrﬁoog';,ﬂ'is IMPROPERLI'DEFINED‘OR UNDEDLAEED

The node dlsplayed has. elther yet: to be deflned or has been deflned in
another- submodel but: cannot be referenced here. ;

'THE NUMBER OF VALUES DOES NOT MATCH THE NUMBER. OF ...

" April 3, 1982

'16‘2‘::. St L | E '_'S,E,TU,P ERROR."MESSAGESZV / ‘A;_SP,V 5
1f there are n 1dent1f1ers then there must be eltller lorn values in: the value
list being matched to the identifier list, :

g THE ONLY AQCEPTABLE ANSWERS ARE "YES" AND ','Nb"

' Tan QUEUE .a..ISbIMPROPERLY-DEEiNED OR UNDEQLARED’

| The queue dieplayed has eithef not be declared‘or‘,was i_ncorreelly dec’lar’ed. ’

- THEréeRAMﬁfERd..: HAS Neu'yET,BEEu ASSiGNED AN ACTUAL VALUE |

The dxsplayed parameter (...) of the submodel or queue type belng mvoked’ RS
has not, yet been given a value in this invocation. T

 THE STRING rRoN LIMITS " IS MISSING

If the confidence mterval method is NONE, then after the “initial state
defmmon is glven there must be a line "RUN LIMITS ". ’

THE STRING "RUN PERIOD GUIDELINES- " IS MISSING
When using the regeneratlve confldence interval method without the.se-
quentlal stopplng rule, there must be a line "RUN PERIOD GUIDELINES-‘ .
THE STRING "SAMPLING PERIOD GUIDELINES -" IS MISSING
When using the regenerative confidence interval method and 'the"seduential
stopping rule, there must be a line "SAMPLING PERIOD GUIDELINES
[L : o -) . S .
THE STRING "SEQUENTIAL STOPPING RULE: " IS MISSING:
_When using the regenerative confidence interval method, after 'specifying‘ .
“the confidence interval, there must be a 11ne beg1nn1ng SEQUENTIAL
STOPPING RULE: s

THE - SUBMODEL .. . CANNOT‘BE'INVOKED'AT THIS LEVEL

The submodel name shown () cannot be used in an 1nvocat10n at thlS
point in the (sub)model ~ !

THE SUBMODEL ... HAS NOT-BEEN DEFINED

The identifier shown (.) was never’ defmed as a submodel and hence
cannot be used i in 2 submodel mvocatmn

TYPE DECLARATION. IS MISSING IN INVOCATION
The statement beglnnmg INVOCATION must be 1mmed1ately followed by
a statement beginning TYPE: in order to declare the name of the submodel

being invokes.

UNABLE TO PERFORM FILEDEF FOR INCLUDE FILE

April 3, 1982

APP. 5 /' SETUP ERROR MESSAGES

SETUP was not able to perform a CMS FILEDEF for a file with the given"

name. See Section 2.3 for discussion of the files to be included.
UNDEFINED IDENTIFIER FOUND IN RELATIONAL EXPRESSION

UNKNOWN>IDENTIFIER-SPECIFIES QUEUEING DISCIPLINE

" The only 1dent1f1er that can specify a queueing discipline is a- prev1ous1y :

declared string parameter

USE OF NESTEDvINVOCATION NAMES IS NOT ALLOWED

An mvocatlon name ‘cannot appear in an express1on for the 1ndex of an.

array invocation identifier.
| VALUE EXPRESSION CONTAINS UNDEFINED IDENTIFIERS

. The 1 expression contains identifiers not prev1ously declared as 1dent1f1ers or
parameters of the model.

WARNING : EXTRANEOUS TOKEN(S) BEING SKIPPED UNTIL END OF LINE
_ There are more idéntifiers or expressions of the line than SETUP expected
~~ these extraneous identifiers-or expressions will be 1gnored This warning
is issued, for example, when two initial values are given on the same 11ne

4for a scalar numeric 1dent1f1er

WARNING:‘IMPLICITLY ﬁECLARED’NODE CREATED

CA node whlch has not prev1ously been defined has been used The new -

“node is 1mp11ctly declared to be a dumimy node.

'WARNING: 'LOGICAL LINE LENGTH EXCEEDED. INCREASE'LINSIZ N SETUPD

165

- _SETUP has overflowed its 1nput buffer for- stor1ng an ‘entire loglcal line. - :

This problem can be solved by increasing the value if LINSIZ in the file

SETUPD RQ2DAT. See Section 2.4 for a description of the flle SETUPD o

, RQ2DAT

“WARNING: OPEN ‘CHAIN WITH NO SINK NODE IN CURRENT MODEL LEVEL

The sink node for this open chain chain must have already been declared in

s a portion of this chain defined in a previous submodel invocation.

= WARNING: SOURCE . NODES DEFINITION'MISSING IN OPEN CHAIN

‘Source nodes for this. open chain must have already been def1ned in a

portlon of th1s cha1n def1ned ina prev10us submodel invocation.

‘WARNING THE NODE -+ . HAS BEEN IMPLICITLY DECLARED

A node has been used Wh1ch has not been prev1ously declared or used. The‘

def ault: type for an 1mpllc1tly created node is the dummy type.

April 3, 1982

66 :'SE_TUPERRORMESSAGES‘/\AP'P.5
: 'WARNiNG' "ow IS AN UNDEFINED CHARACTER - INPUT IGNORED .-

The drsplayed character (in betWeen quotes) is not a character recognlzed -
by SETUP The 1nput will be processed ag if th1s character never occurred o

WORK DEMANDS MUST BE DECLARED

The work demand dlstrrbutlon must be def1ned for every class of every:‘
queue. : :

YES AND NO CANNOT BE- SPECIFIED TOGETHER WITH QUEUE NAMES
An response to a QUEUES: tracing prompt that 1nc1udes a hst a queue

. names 1nd1cates that only the specified queves will be traced. Thus, yes/no |
' cannot also’ be spec1f1ed with individual queue names.. O

“In addition to the above error messages, SETUP‘contains internal error messages which should
never occur. All such internal error messages begin with the phrase: "RESQ INTERNAL
ERROR: " ' ' S el

 April 3, 1982

167
APPENDIX 6 '-' EVAL ERROR MESSAGES
"The error- messages produced by the EVAL command come from the expansion processor
or a solution component 0
: A6.1, Expansion l’rocessor Messages.

The follow1ng messages are given in alphabetical order. M'anj‘r of the messages»are' the -
result of internal cons1stency checks and should not occur. ' S

EXPRESSION INVALID OR NOT IMPLEMENTED"
The evaluation of this expréssion has. probably not been implemented yet. -
EXPRESSION‘TABLE EXCEEDED

An invalid expression has been encountered when attemptlng to evaluate an
entry 1n the expressmn table. :

‘INVALiD CODE
ThlS message is caused by an invalid response to the WHAT prompt The
" response could contain an incorrect peiformance measure, inconsistent
response (e.g., poci or rtmbo),{ or a suffix whicll is not c1 or bo '
"INVALiDEoEPARruﬁE COUﬁT
An invalid expression was given for a dueue o'r. nodedepartnre count.
‘iNVALID oISTRIBUTIoN |
o An incorrect work demand distri'bution' was specified.
INVALID DISTRIBUTIdN‘PARAMETER VALUE
: An incorrect di’stril)ntion ,parameter value was “specified.j
INVALID ELEMENT NAME |

The element name given to.the WI—IAT prompt or to subroutine GTRSLT is: k
‘not 1n the. symbol table. -

INVALID ELEMENT TYPE

. The element name glven to the WHAT prompt or to subroutine GTRSLT 1sf .
not.a ‘queue or node

‘INVAtID’EXPRESSION TABLE POINTER
Aninvalid expression has been found.

INVALID MODEL PARAMETER NAME

-~ April3,1982

| 168 o R | - : - ‘ ”‘EVAL ERROR 'MES_SAGES /’A;ip. 6
*The parameter name given to subroutme STPARM Qas not a.model pafam-
eter in the symbol table. - :
Iﬁ?Aﬂ;D.NODE‘NAME
| An ineorrect node r_mme has:been specified.
'LiNVALID éERFORMAﬁCEFMEASURE CODE

The performance measure code given to subroutme GTRSLT was not a
vahd code. L

IﬁVALID oUEUE NAME

’ An incorrect que;ie name has been specified.
INVALID ROUTING STATEMENT

“An iheorreef rouﬁng etétemenf has been specified.
iNVA;ID SYMTB lT,.YPIE FOR PARA_METER |

A parameter has an incorrect symbol table. type. ThlS is probably an 1nter- ‘
~nal RESQ problem , . ‘

NODE DEFINED IN MORE THAN 1 CHAIN
‘The same node name has been used in more than one chain.
NOT IMPLEMENTED
The solution method or an expression is not implemented yet.
NUMBER OF BRANCHES. EXCEEDS. RANGE
This message would be produced if a routing branch was encountered by)
the expansion program’ which was larger than the initial size determmed
: ThlS is probably an internal RESQ problem. :
NUMBER OF CHAINS EXCEEDS RANGE
This message would be produced if a chain was encountered by the expan- :
sion program which was larger than the initial size determmed This is
probably an internal RESQ problem. S
NUMBER OF NODES EXCEEDS RANGE
~ This message would be produced if a node was encountered by the expan-
sion program which was larger than the initial size determlned Th1s is -

probably an internal RESQ problem.

. NUMBER OF QUEUES EXCEEDS RANGE

April 3, 1982.

APP. 6.1 / Expansion Processor Messages o : S e
‘This message would be predu‘ced if a queue was encountered by the éxpan~ |
sion. program which was larger than the 1n1t1al size determmed This is
probably an internal RESQ problem. :

PARAMETER NAME NOT’A VECTOR

A vector value has been spe01f1ed for a scalar parameter in subroutme
"STPRMV. v L

PARAMETER VALUE CAN' NOT BE NULL
" A null value has been specified for a numeric. parameter value.
>QUALIFIED ROUTING NODES NOT IMPLEMENTED

Routing statements of the form mvl nodel >1nv2 node2 are not 1mp1e- '
' mented o :

SIZE. OQF TEXPTE EXCEEDED

The size of the. eXp'ression table for numeric parameter values has b:een"'”
exceeded. This is an internal RESQ problem.

WARﬁtNérf INIT. POP —= CLOSED CHAIN POP
- The initial population .’sbeci‘fied is net equai‘ to the closed ehaih po.pulat‘ipjn.‘
"WARNIﬁG leQDﬁ ﬁOT BRANCHED FROM:
| ‘The named hode 1s branched to but not from.
WARNING - NODE.‘NOT' BRANCHED 0
.'The named node is branched from but not 0.
‘WARNIﬁG‘—;NQbﬁ NOT_Iﬁ'adUTINGs |
‘T‘he hamed hode 1s defined, but not in ’therouting'. "
WARNING - pROBABILIiiEs:bo NOT SUM TO 1
| vThe'probabilities 0ut 'of ,a'n'odedo. not sum to one.
WARNINd - SUEMODEL'NbT INVOKED:

The named submodel is defined but not invoked. '

A6.2. thei'ical soiution Messages

The SETUP command and expansmn processor . do almost all of the error checkmg for
numerlcally solved models The only messages produced are Sl

A NETWORK,WITH ALL QUEUE DEPENDENT RATE QUEUES'MUST

April 3, 1982

0 . BVAL ERROR MESSAGES / APP. 6

" 'HAVE AT LEAST ONE CHAIN THAT VISITS ALL QUEUES . -
* NUMERICAL® SOLUTION NOT IMPLEMENTED FOR THIS NETWORK.

The implémentation does not handle networks without this ;characte‘risti‘c'.‘

QUEUE q IS NOT CONNECTED .TO FIXED RATE SUBNETWORK.
NUMERICAL SOLUTION NOT IMPLEMENTED FOR THIS NETWORK.

The 1mplementat10n does not handle networks without th1s characterxstlc
_SOLUTION : INFEASIBLE. QUEUE q IS SATURATED

This message only occurs with networks with open chains. - The- arrival L
times are such that jobs arrive at queue "g" faster than they can be served.

SOLUTION NOT PERFORMED. TOO MANY QUEUE DEPENDENT RATE QUEUES.

* See discussion of RESQ2 NUMERD in Section 13.3.

A6.3, Simulation Messages _

All s1mulat10n eITOI messages begm with the name of the routine producmg the message
The followmg list is given in alphabetical order. Many of the messages result from internal

consistency checks and should not occur. The discussion below will focus on messages that

are likely to occur and. require further explanation. For messages of the form ... STORAGE
- FULL" see also the discussion file RESQ APLMBD in Section 13.3. Lower case characters are
used to represent model specific information. i and j are used for integer values, x is used for
floating point, values, "ident" is used for an 1dent1f1er "node" is used for node names and
"queue" is used for queve names. ' ' R

ADEVNT adds events to the event list -

ADEVUNT =-- EVENT LIST STORAGE FULL
ADEVNT ~- NEW EVENT TIME BEFORE CLOCK
ADVENT -~ PSEUDO EVENT AT FUTURE TIME

ALLCTE handles "plain" allocate nodes

ALLCTE -- ETPTR(i)= j
ALLCTE -- ETPTR(i)= 3 . : _
ALLCTE -- JOB ALREADY HOLDS TOKENS OF quéue

A job holding tokens at a gwen queue may not request addltxonal tokens at
that queue. :

ALLCTE -- NET(node)= i

ALLCTE -- NP(node)= i

.ALLCTE -- QD(queue) NOT IMPLEMENTED
ALLCTE ~- QUEUE queue NOT PASSIVE
ALLCTE -~ TOKEN AMOUNT i AT node .

i.

Number of tokens requested must be positive

April 3, 1982,

6}

APP. 6‘.3/S'imu1ati'on Meséages o : v SRR o e "_,17‘-1‘.,‘

ALLTKN is'used by ALLCTE and other passive queue r(’)ufines.
ALLTKN ~=- JOB STORAGE AREA FULL
ANDOR »h‘an‘dlesv AND and OR allocate nodes -

ANDOR -= ETPTR(i)= 3
ANDOR ' =- JOB. ALREADY HOLDS TOKENS OF queue‘

A]Ob holdlng tokens at a glven queue may-not request addltlonal tokens at' ..
that queue . S

 ANDOR -~ JOB DATA STORAGE FULL

ANDOR -- JOB STORAGE FULL
ANDOR ~- JOB WITH OUTSTANDING PSEUDOS AT AND-OR NODE'
ANDOR —- NET(n)="1i -

'ANDOR’ =~ TOKEN AMOUNT i AT node .

Number of tokens requested must be positive
APLOMB is responsible for initializing variables for each run or replication.

APLOMB -~ AREA STORAGE FULL
APLOMB. -= ATTEMPT TO USE EXPERIMENTAL C.I. METHOD

APLOMB -- ETPTR(i)= j .
APLOMB ~- INVALID INITIAL PORTION DISCARDED
APLOMB. -- -INVALID JV SCALING VALUE

APLOMB ~- JOB DATA STORAGE FULL
APLOMB -+ JOB STORAGE FULL
APLOMB ~- NAME (APLMBD)

. APLOMB' -—"NEGATIVE INTERARRIVAL TIME AT node

APLOMB ~- NET(i)= j
APLOMB —-- NO ‘NODE FOR GV INIT

APLOMB ~- VALUE(ident)= i

'AQTRAC is used for tracing active queues.

AQTRAC - QUEUE queue LIST FAULTY

ARRIVE handles routing of]ObS from node to node.

ARRIVE ke DESTINATION UNDEFINED
ARRIVE -- ETPTR(i)= j
ARRIVE -- INVALID INDICATOR P= i

ARRIVE —f.JOB WITH RELATIVES AT SINK

ARRIVE -- NO DESTINATION CHOSEN. JUST LEFT NODE node

Probabilities do not sum to 1 and/or no true predicates.

ARRIVE -- NODE node NOT' DEFINED

ARRIVE -— NULL JOB

ARRIVE -~ RET(i)= 3 - ,

ARRIVE ‘~— TRACE STRING TOO LONG :
ARRIVE -- UNDEFINED NODE TYPE, NODE= node

Apiil 3, 1982

2 . EVAL ERROR MESSAGES / APP. 6

VCHECK checks whether system is in regeneration state.
CHECK ~-- UNDEFINED C.I. METHOD i
COMPLT handles completions of service times at active queues,
‘COMPLT ~-- DSPL= i
COMPLT -- JOB job NOT IN QUEUE queue
COMPLT -~ QUEUE queue DEFINITION NOT IMPLEMENTED
COMPLT == QUEUE queue.IS PASSIVE :
COMPLT -+~ ZERO RATE. NOT ALLOWED: -~ QUEUE queue LENGTH i
Expressxon for service rate at glven length is not pOSlthe
CREATE handles create nodes.
CREATE -- ETPTR(i)= 3
CREATE ~- NET(n)= i
CREATE. -- TOKEN AMOUNT i:AT node
Number of tokens created must be non-negative.

' FISSN handles fission nodes.

FISSN -~ JOB DATA STORAGE FULL
FISSN -- JOB STORAGE FULL

FUSN handles fusion nodes.

FUSN. ~- FISSION AND FUSION NODES NOT PAIRED

Relatives other than immediate family at the same fusion node.

- GRLERL determines bE parameters for standard distribution.

GRLERL ~~ COVR= x
GRLERL =~ MEAN= x

NEXPR evaluates numeric expressions.

NEXPR -- CAN'T FIND EXPRESSION FOR ident

NEXPR -- CV SUBSCRIPT i OUT OF RANGE

'NEXPR -- ETPTR(i)= j

NEXBR: ~— ETPTR(i)= j

NEXPR -- EXPRESSION INVALID -

NEXPR —-- EXPRESSTON INVALID OR NOT IMPLEMENTED
NEXPR -- EXPRESSION TABLE EXCEEDED

NEXPR ~- FIXEDOVERFLOW

NEXPR -- ident SUBSCRIPT i OUT OF RANGE AT node
NEXPR —- INVALID EXPRESSION AT node

NEXPR ~~- INVALID NODE FOR QL

rI,‘.hé QL status function applies only to classes and -allbcates.

April 3,1982

APP. 6.3/ Simulation 'Messavge’s' '

NEXPR -~ INVALID NODE NUMBER
/NEXPR -~ INVALID QUEUE FOR SA

The SA: status function applies only to active queues.’

NEXPR - INVALID QUEUE FOR. TA

The TA status function appﬁes only to passive queues.

NEXPR ~-- INVALID QUEUE FOR TQ

NEXPR -- INVALID QUEUE NUMBER

NEXPR ~-- JV SUBSCRIPT i OUT OF RANGE
" NEXPR -~ NODE NAME. EXPECTED AT node
NEXPR -- OVERFLOW . '
NEXPR -- SYMTB(i).DIM 1= j
NEXPR. -= SYMTB(i).DIM 2= j

NEXPR ~- TINDX OR VALUE(i)= j

‘NEXPR =~ USER FUNCTION MUST HAVE AT LEAST ONE ARGUMENT

NEXPR —— USER FUNCTION RETURNS BAD SEED

The seed must remain positive after call to user defined'procék_dure.

NEXPR == VALUE(i)=J
'NEXPR -~ ZERODIVIDE

PA‘SSIVEYhandIes passive queue pseudo events (Appendix 7)-
PASSIVE -- UNMATCHED NUMBER OF JOBS AND QUEUES
'PEXPR handles evaluation of predicates.

PEXPR -- CAN'T FIND EXPRESSION FOR ident
- PEXPR -- CV SUBSCRIPT i OUT OF RANGE
PEXPR -- ETPTR(i)= j
PEXPR —- EXPRESSION INVALID OR NOT IMPLEMENTED
 PEXPR -- EXPRESSION TABLE EXCEEDED :
PEXPR -- ident SUBSCRIPT i OUT OF RANGE AT node.'
PEXPR -~ INVALID EXPRESSION AT ’
PEXPR -- INVALID EXPRESSION AT node
PEXPR -~ JV. SUBSCRIPT i OUT OF RANGE
PEXPR ~- NOT IMPLEMENTED
PEXPR -~ SYMTB(i).DIM 1= j
PEXPR —- SYMTB(i).DIM_2= j
PEXPR -- TINDX OR VALUE(i)= j
PEXPR —~ VALUE(i)= j

PQTRAC hémdles passive queue trace.
POTRAC ——.QUEUE queue LIST FAULTY
REMVEV cancels pending events whjch'becdme invalid.

 REMVEV -~ ATTEMPT TO REMOVE PSEUDO OR PRTYPQ EVENT

April 3, 1982

173

174 | " EVALERROR MESSAGES / APP. 6

'SAMPLE obtalns distribution samples not involving" s1mu1at10n dependent values
(other than random number streams) :

SAMPLE'—r DIST. STAGE= i
SAMPLE -- DISTRIBUTION TYPE= i
SAMPLE -- TOO MANY STAGES -+~ TYPE i

’SE_RARR handles arrivals at active queues.

' SERARR -- CYCLIC DISCIPLINE, QUEUE queue
' SERARR -- ETPTR(i)= j

SERARR -=- F.F. WITH ACTIVE QUEUE queue

. SERARR -~ NEGATIVE SERVICE TIME AT node
“SERARR -- NET(i)= j

SERARR =~ NP(i)= 3
SERARR -- QD (. queue- y= i

.-SERARR == QUEUE queue DEFINITION NOT IMPLEMENTED .
SERARR -~ ZERO RATE NOT ALLOWED ~- QUEUE gueue LENGTH i

Service rate for glven length not posmve
' SETNOD handles set nodes.

SETNOD -- ATTEMPT TO CHANGE CLOCK
SETNOD ~- ATTEMPT TO CHANGE CPSECONDS
_ SETNOD -- CV SUBSCRIPT i OUT OF RANGE
SETNOD ==~ ETPTR(i)= j ‘

SETNOD -~ EXPRESSION TABLE EXCEEDED
SETNOD -- INVALID EXPRESSION AT node
SETNOD .~- JV SUBSCRIPT i OUT OF RANGE
SETNOD ~- NET(node)= i ‘
SETNOD -- SYMTB(i).DIM 1= j
SETNOD -~ SYMTB(i).DIM 2= 7

SMULAT is the central routine which removes events from the event list.
SMULAT -~ APPARENT DEADLOCK (EVENT LIST EMPTY)

SMULAT -- ETPTR(i)= j S

SMULAT -- JOB DATA STORAGE FULL

 SMULAT -- JOB STORAGE FULL .

SMULAT .~-- NEGATIVE INTERARRIVAL TIME AT node

SMULAT ~= NET(i)= j » :

SNKFUS handles sinks and fusion nodes.

SNKFUS —- AND-OR QUEUE. NOT. FOUND

~SPLIT handles split nodes.

"~ SPLIT ~- JOB DATA STORAGE FULL
SPLIT =~=- JOB STORAGE FULL:

TRAN nandles transfer nodes.

April 3, 1982

e

APP, 6.3 / Simulation Messages I : . R 175
TRAN -- CHILD ALREADY HOLDS TOKENS OF queue

Transfer is not allowed if the recipient already holds tokens of ‘the qu‘eué. S

TRAN'P—,CORRECT COPY OF CHILD NOT FOUND

Child is attempting to transfer tokens wh_iéhvit does not hold.
TRAN -- CORRECT COPY OF PARENT NOT. FOUND

Parent is attempting to transfer tokens which it does not hold.
TRAN -- ETPTR(i)= 3
TRAN -= NET(n)= i
TRAN —= NU=i CHILD HOLDS

"Child is attempting to transfer less than all of its tokens
TRAN -- NU=i PARENT HOLDS j

_Parent is attempting to transfer less than all of its tokens

TRAN -- PARENT ALREADY HOLDS TOKENS OF queue

Transfer is not allowed if ‘tyhe recipient alreédy holds tokens of _the,quéué.

"USER is fo_f user de‘f.in‘ed‘ numeric functions (Appendix 3)'.

USER —- FUNCTION NOT DEFINED OR NOT LOADED

April 3, 1982

176

APPENDIX 7 - EVENT HANDLING

" With modeis usmgxpasslve queues, 'flss1on nodes and/or split nodes;. one.must be con-

scious of the likelihood of several jobs moving at the same simulated-fime, say because of the . -

‘refease of enough tokens for several jobs waiting at allocate nodes to each be allocated tokens

There are a number of rules applied to prevent difficulties in such s1tuat1ons, but dlfflcultles
can still arise. It is up to the user to understand ‘the rules and mechamsms to ‘avoid possible
difficulties with szmultaneous events. We first informally discuss the intent of the s1mulat10n
event handhng mechamsm and then describe the mechanism 1tself ' : ‘

A71 Simultaneous Job Movement
The intent of the mechanism is that:

1. Once a job begins to move, it will continue to move until (a) it reaches an
active queue, (b) it reaches an' AND allocate node;, an OR allocate node or
~an allocate node for a PRTY passive queue, (c) it stops at an allocate node
- (Ce. g., because sufficient tokens are not avallable) (d) it stops at a fusion
node or (e) it leaves the network. :
2. Whenever tokens become available attempts to allocate tokens to waltlng
' jobs will be deferred until all jobs able to move at the current sxmulated
time stop moving, according to (1). Once all jobs have stopped moving by
(1), if one or more jobs that had been waiting for tokens have potentlally‘ o
become ‘able to move, an attempt is made to allocate tokens to those'jobs. -
- This is done for each passive queue, one at a time, in the order that the
potential for movement of jobs was discovered. Jobs allocated tokens at
one queue are allowed to move as far as poss1ble accordmg to (1) before

, the next queue is treated.

3. Any jobs which had been stopped (e.g., are waiting for tokens) and can
proceed because of side effects of another job’s behavior, (e.g., release of
tokens) are allowed to move, one at a time, as far-as possible according to
(1) and (2). If there are several such jobs, they are handled in the order in
which they became able to proceed. These jobs move before jobs are
allowed to move because of completion of service time and/or arrival from
a source, even if the service or (inter-)arrival time ends at the current simulat-
ed time. Note that a zero service time at a queue can be used as a buffer,
to artificially stop a job’s movement to let other jobs move.

The rules satisfactorily deal with most situations. ‘However, there is a.potential for problems
- with multiple PRTY passive queues. Consider Flgure A7.1 and assume that node a belongs to -
one PRTY queue, nodes b and ¢ belong to another PRTY queue and that node b has priority
~over node c. Suppose that a job arrives at node ¢ and after that, but at the same simulated:
_ time, another job arrives at node a. Both jobs would be stopped and the job at node ¢ would -
‘then be given a chance at token allocation before the job at node a had a chance at allocate

AT

Figure A7.1 - Passive Queue "Race'' Resolution

~ April 3, 1982

g

Ly

APP. 7.1 /. Simultaneous Job Movement o | »‘ , - DR ‘1‘77, :

node: b If the]Ob at node a were successful at node a and proceeded to node b we could
have the situation where both jobs had arrived at the queue at the same simulated time, but -
the jOb at the lower priority node got tokens and the job at.the hrgher priority node did not.

It is up o the user to ensure that such problems do not occur. Orne way to resolve. this problem'

18 by appropriate ordering of the allocate nodes. In the example, if node b were placed before

node a, the problem would not occur AND allocate nodes are’ also useful in’ avordmg
problems such as' this: : : G :

. AT7.2. ‘Simtllation Evénts

The simulation’ program has two classes of events, "pseudo events' and "real events."
Only real events are counted in the simulation’ summaries produced by EVAL. ‘Pseudo events
always occur at-the current simulated time and are intended to be:transparent to the user

except in the simultaneous]Ob movement situations just discussed. Real events correspond to -

completion: -of service times and arrival times. - (In models using the regenerative method, a
real event may correspond to the completion of a stage of the service time -rather than the

entire time:): Once handling of an event begins, .it is not interupted by scheduhng of other

events. Any pending pseudo events are handled before a real event is handled. Real events
are handled in order of simulated time.” In the case of real events at the same slmulated tlme
the events are handled in the order they were scheduled. '

There are two types of pseudo events, "pseudo'arrivals" and "passive queue.' Any

pending pseudo arrival events are handled before a passive queue event. Among pseudo .

arrival events, events are handled in the order in which they were scheduled. Pseudo arriVal
events may be scheduled because of (1) initialization .of jobs at the begrnnmg of -a run- or

‘ rephcatron (2) generation of jobs by a split or fission node, or (3) the allocation of tokens to .

jobs by a passive queue pseudo event. Passive queue events may be scheduled because of
(1) release of tokens, (2). creation of tokens (3) arrival at a PRTY passive queue, (4) arrival
at an AND allocate node, or (5) arrival at an OR allocate node. 'Among passlve queue events, :

events are handled in the order in which they were scheduled

Service completion events are scheduled because of a job beginning service at an active
queue. Service completion events may be rescheduled because of preemption or changes in
length'at a processor sharing queue. -Arrival time completion events are scheduled. at the
beginning of simulation and at the end of an arrival time. Arrival time events may be .

- rescheduled or canceled because of changes to CV(0).

April 3, 1982

o178

APPENDIX 8 - INSTALLATION

The RESQ dlstrlbutlon tape contalns 17 f11es mcludmg machine. readable coples of thls
document and the RESQ Introductlon and Examples document. (These document copleb are
forrnatted for printing on a line printer and do not contain the 'dlagrams and. some ‘of the
'equat1ons found in the standard paper copies.) After loading these files from tape to d1sk the
installer generates five additional module files using the RQZMOD EXEC found on the tape
All 22 files together require roughly 6.5 million bytes of disk storage, e.g., roughly 14

cylinders of a 3350. However, one large file from the tape (COMPLIB TXTLIB) is - not

‘needed once the modules are generated. If this file and the two document files (also large
~ files) are not retained on disk, then roughly 4.2 million bytes of disk storage, e.g., roughly 9

cylmders of a 3350, are requlred for the RESQ files. If additional conservation of disk space"

is desired, and the EVALT command and PL/I embedding are not to be used, then the other
three TXTLIB files (EXPANSUB, MVASUB and ‘APLLOMB2) need not be retamed on disk
either, reducing the disk storage requlrement to roughly 2.3 million bytes, e.g:, roughly ‘5

cylinders of a"3350.‘ The following discussion assumes (1) that the PL/I optimizing compiler ’
is available on an accessed minidisk as PLILIB TXTLIB, (2) that 5.5 million bytes of disk =
storage (roughly 12 3350 cylinders). is, at least temporarily, available for at least. the 20 files -

“other than the document copies, (3) the disk for the RESQ files is dccessed as- the A dlSk and
(4) the tape is attached as virtual dev1ce 181. :

‘ Usually the installer will ask the machine operator to mount the tape and attach it to the
mstaller s v1rtual machine. When the tape is ready, the message

. TAPE. 181 ATTACHED

should appear on the termlnal The user may then issue the CMS TAPE LOAD command
wh1ch will read the 15. RESQ files on the. tape prior to the first tape mark, e.g.,

tape load
LOADING.
CSETUP EXEC SR
'EVAL EXEC Al
EVALT "EXEC - A1
RPLOT "EXEC © A1
RESQ?2 APLMBD A1
RESQZ - NUMERD. A1

SETUPD ~ RQ2DAT = A1
STXTLIB MODULE A2
STACK MODULE A2
SMACLIB MODULE A2
COMPLIB ' TXTLIB = AT
EXPANSUB TXTLIB A1
MVASUB = TXTLIB A1
APLOMB2 =~ TXTLIB AT

RQ2MOD - EXEC A1
END~OF-FILE OR END-OF-TAPE
R.

{

If the TAPE LOAD command is issued again, the remaining two files on the tape, .the
document copies, will be loaded. (This second TAPE LOAD command is om1tted 1f the
‘document copies are not desired on disk.) ' :

April 3, 1982

Ly

iy

APP. 8 / INSTALLATION e

RESQ. .~ INTRO AT

RESQ . CMSGUIDE A1 -
END-OF-FILE OR END-OF-TAPE
R; i

Then the CP DETACH command is issued to have the tape rewound and detached from the

' 1nstaller s virtual machine:

‘detaCh'tst

TAPE 181 DETACHED
R _

The RQZMOD EXEC 'is now issued to. generate the flve MODULE files (COMPIL'

,EXPNDM EXPWRI1, EXPWRN RAPLMB).

rg2mod .

R;
erase load map

: R;.

(The RQZMOD EXEC can be used to generate the modules one at a time. Issue ' rq2mod 2
for an explanatlon of this option.) Now all RESQ files are in place on the- disk. If any of the

TXT LIB files are to be erased, they may be erased at this time.

To conflrm the files have all been properly loaded and generated issue the CMS LIST- ‘
FILE command. Assuming all 17 files were loaded from the tape and that none of these flleS :

" were subsequently erased, the output from LISTFILE might be

liStfile (alloc

FILENAME FILETYPE FM FORMAT LRECL RECS ~ BLOCKS

SETUP" '~ EXEC - Al F 80 77 - 8
EVAL EXEC Al F 80 M2 12
EVALT EXEC Al F - 80 115 12
RPLOT EXEC A1F 80 19 L2
RESQ2 - APLMBD A1 F 8o 1 S
RESO2 ~ ~ NUMERD - Al F 80 1 1.
SETUPD RQ2DAT .- AT F 80 2 1
STXTLIB - MODULE A2 V 272 2 1
STACK , 'MODULE =~ A2 V. 11352 2 2
SMACLIE MODULE A2 V 272 : 2 - 1
COMPLIB TXTLIB Al F 80 - - 15086,»,, 1509
' EXPANSUB TXTLIB =~ A1 F 80 8746 . 875
MVASUB ~ TXTLIB A1 F 80 - 1274 . 128
APLOMB2 . TXTLIB Al F - 80 13994 1400
RO2MOD ~ EXEC A1 F 80 64 7
RESQ- INTRO A1 v 95 8815 . 406
RESQ’ ~ CMSGUIDE A1 V 80 12970 687
COMPIL - MODULE ~ Al V 65535 9 585
EXPNDM =~ MODULE . A1V 65535 - 7. 435
EXPWR1 = MODULE . A1 V . 65535 6 333
'EXPWRN MODULE A1 V - 65535 . 6 331
v 65535 N 13 - 1934

RAPLMB = MODULE ~ AT

Rj;

April 3, 1982

180 INSTALLATION / APP. 8

" The numbers of records and CMS blocks for the files may have changed slightly between this
writing and the generation of the tape, so the installer should not expect to see exactly the

figures shown above.

April 3, 1982

INDEX

INDEX

-+

+4 9,22,94

A

Access to RESQ system files 21

Active queues 4, 32

Allocate nodes 8, 40

Arrays 7

Arrival times 54

Assignment statements 48

ACTIVE 36

AND allocate nodes 39, 41, 73, 98, 177

B

Blanks 6

o

Chain arrays 30, 58, 72
Chain parameters 7, 53
Chain variables 31, 48, 54, 76
Chains 7, 10, 53

closed 53

external 53

internal 53

open 53
Classes 6, 32
Coefficient of variation 132
Commas 6, 133
Comments 6, 94
Concatenation (""++') 22, 94
Confidence intervals 13, 71, 71, 78
Confidence level 71
Create nodes 39, 44
Cycles 77
CLOCK 130
CPU limits 73
CV 31,54,76

April 3, 1982

D

Destroy nodes 39, 44
Dialogue files 5, 13
Distribution gathering 69
Distribution identifiers 133
Distribution parameters 45, 133
Distributions 6, 12, 132
empirical 132
standard 132
user 132
Branching Erlang 132
BE 132
DISCRETE 8, 136
Erlang 132
Exponential 7, 133
Geometric 136
Hyperexponential 132
Hypoexponential 132
Standard 135 ,
UNIFORM 134, 136
Dummy nodes 52, 63

E

Edit reply 23

Error messages 102
Events 134
Expansion 16

Extended queueing networks 4 ‘

External chains 10
END 83
EVAL -5, 15,21, 26,93 -
arguments 93
table sizes 102
EVALT 93, 101

F

Fission nodes 42, 50, 52
nested 51

Fusion nodes 43, 50

FCFS 8,9, 32, 40, 41, 68, 76

FF 40, 41

FILEDEF 107

FNLMSG 106

181

182
G

' Global variables 29, 48, 84
" GLOBAL TXTLIB 107
GTRSLT 106

H

- Hierarchical representations 2
Hierarchical solution -104
Holding tokens 40

How reply 23

Identifiers 5, 6, 7, 28

- distribution 29

- numeric. 28

Distribution 133 :

Independent replications 74,95
Infinite server 6. .~
. Initial portion discarded .73
Initial state 13, 72
Input synonym 10, 52, 56
Interarrival times 54
_ Invocation arrays 56, 58, 62
 Invocation qualifiers 56
Invocations 11,62
INCLUDE 24

IS 33,68

J

Job copies 40, 43, 44,72, 75,138

Job variables 5 6, 30, 32, 48

Jobs 2
v v6 30
L

Line concatenation 9
Loader tables 22
Lower case 5
LCFS 34,68
LDRTBLS 22
LNG 100

LRTF 36

- INDEX

M

Matrices 27, 29

Matrix " 48 ' ‘ :
Mean value analysis 68
Model parameters 5 '
Multiple assignments 48 .
Multiple entries . 63
Multiple exits 63

MAX CV 31

MAX JV 30

MVA 68

N

Names 129 o
Names reused 60 -

" Naming conventions 5

Node arrays * 30, 48, 55, 72

Node parameters 7, 45, 63, 117 '
Nodes 7 ' o
Numeric parameters 45

‘Numerical expressions 33; 40

Numerical precision 140 -
Numerical solution 37, 68, 105

o

Output synonym 10, 52, 56 ‘
OR allocate nodes 39, 73,98 .
OR Allocate nodes 42

P

Parameter values 94
matching format 46, 62.
. positional format 46, 62
Parameters . 5, 6,7, 15,27
chain 28 '
distribution - 27
node 28, 117
numeric 27
Distribution - 133
Passive queues 4, 8,39, 68
Performance measures 16 '
plotting graphs of 104

Plotting performance measures 104 ‘

Point estimate - 71

Pool of tokens 8, 39

Population (closed chaln) 53 54
Precision. 140

April 3, 1982

o

)

INDEX

Predicates 56
Preemption distance - 35
Priority - 34, 35
Processor sharing 8, 33
Prompts 5, 5

PL/I embedding 20, 104
PRINT 139 . :
PRTY 34,40, 41

"PRTYPR 35

PS '8,"33, 68

Q

Queue length distribution 12 .
Queue length distributions. 69
Queue lengths 12, 40, 69
Queue type 6

Queue types 9, 24 45 .
Queueing disciplines - 32, 36, 40

- Queueing time distribution 12

Queueing time distributions 69 ~
Queueing times 4, 12, 39, 40, 43, 44, 69

- -Quit reply - 23 '

QL 138

R

Random number generation 82

‘Random number streams 82 -

Regeneration state: 134 ‘
Regenerative method 36, 75 95
Related jobs = 39, 42, 50

Release nodes 8,43 -

‘Rélease of tokens 39, -43

Rephcatlon limits 74

Replications 74, 95

Replies 5§

Response times 4 12 39, 40 43, 44

- Review reply. 23°
‘Routing 6, 10, 68 -

Routing chains.. 53 ..
Rotiting definitions 55
Run continuation - 16

Run guidelines 77

Run length 72

Run limits *13, 73
READMD 104
RESQ diagram symbols 2
RESQ diagrams 1° "

" RESQ files 25

RESQ2 APLMBD 101"
RESO2 NUMERD 102

. April 3, 1982

183

RESQ2A 105
RESQ2M 105

RJ 138

RQ2COMP 93
RQ2INP 13, 23, 24
RQ2LIST 25,150
RQ2PRNT 20, 94, 97

RQ2REC 23
RQ2RPLY 93

S

Sampling periods 78, 80 :

‘Save reply 23

Seeds 82.

Semicolons 8 v .

Sequential stopping rule = 77, 80
Servers 32, 37

Service rates 32, 37

Service times 32

Set nodes 8, 30, 48

Simulated time < 130

Simulation 105 ‘
Simulation dependent expressmns 33
Simulation trace 83, 130
Simultaneous resource possess1on 4 39
Sink 43, 53 :
Solut;on method - 5§

Solution summaries 94

Sources 53

Spectral method 79 96

Split nodes 49, 52, 53.

- Status functions 138

Submodel invocations 62 -

Submodel nesting 60, 65

Submodels 2, 7, 24, 60

SA 138

SETUP. 5, 21, 101, 150
argument 22
dialogue file mode 24
edit mode 23
prompting mode . 22
review mode 23
table sizes 26

- SETUPD RQ2DAT 26

SRTF 36
STPARM 105

STPRMV 105

184 R e T EERR o INDEX

T L . ‘ ; Utilization 17
o : : ‘ ~USER function. 20
Text substitution 24 . :
Token use 69 .
Tokens - 8, 39, 39, 42

Total tokens 69 v
Trace 83,130 . o
Transfer nodes 39, 42 : Vector 48
Transient characteristics 71 = Vectors 27, 29
Tutorgals 5 .~ -~ - : “Virtual storage requirement = 21, 93, 102
TA 138 : R T
TH 138
TQ 138 S
TYPEVL 105 w
o ~ Width criteria 78
v -‘ - Work demands. 32, 36

: e . WHAT: 16
_Uppercase "5
User interfaces 4

April 3, 1982

