
:,-. ~

RA 139 (lf41J.27) 4/12/82
Computer Science 184 pages

THE RESEARCH QUEUEING PACKAGE VERSION 2

CMS USERS GUIDE

Charles H. Sauer, Edward A. MacNair and JamesF. Kurose

IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

Abstract: Queueing networks are important as performance models of systems where
performance is principally affected by contention for .resources. Such systems include
computer systems, communication networks, office systems and manufacturing lines. Iri·
order to effectively use queueing networks as performance models, appropriate software
is necessary for definition of the networks to be solved, for solution of the networks (by
simulation and/or numerical methods) and for examination of·the performance measures
obtained.

The Research Queueing Package, Version 2 (RESQ) is a system for constructing and
solving extended queueing network models. We refer to the class of RESQ networks as
"extended" because of characteristics which allow effective representation of system
detail. RESQ incorporates a high level language to concisely describe the structure of
the· model and to specify constraints on· the solution. A main feature of. the language is
the capability to describe models in a hierarchical fashion, allowing an analyst to define
submodels to be used analogously to uSe of macros in programming languages. RESQ
also provides a variety of methods for estimating accuracy of simulation results and
determining simulation run lengths.

Acknowledgement: We are grateful to P. Heidelberger, E. Jaffe, p. Rosenfeld,
M. Reiser; S. Salza, S. Tucci and P.D. Welch for their contributions to RESQ.

This document is the primary documentation for RESQ usage under CMS.
A corresponding document exists for TSO usage. Corrections, comments,
criticisms and suggestions for improvement of these documents and/or
RESQ will be welcomed.

,"

iii

PREFACE

Queueing networks are useful as ,performance models of systems where performance is
principally affected by contention for resources. Such systems include computer systems,
d:litlmunication networks, office systems and manufacturing lines. The Research Queueing
Package, Version 2 (hereafter referred to as RESQ) is a system for constructing queu~ing
network models and solving queueing network models; Simulation methods, including state .of
the art statistical analysis, are provided for the full class of queueing networks allowed in the
RESQ language. Numerical methods are provided fora subset of the queueing networks
allowed by the RESQ. language. '

This document describes usage of RESQ with the CMS component of VM/370 and
VM/SP. A similar document describes usage of RESQ with the TSOcomponent of OS/VS2
MVS. Though this document is intended to be self contained as far as RESQ usage is . .
concerned, for full effectiveness the user should be familiar with

IBM Virtual Machine/System Product: Introduction, GC19-6f OO.

IBM Virtual Machine/System Product: CP Command Reference for General Users,
SC19-621 L.

IBM Virtual Machine/System Product: CMS Command and Macro Reference, SC19-
6209.

IBM Virtual Machine/System Product: System Product Editor Command and Macro
Reference, SC24-S221.

or corresponding publications. General discussion of performance modeling is given in ..

C.H. Sauer and K.M. Chandy, Computer Systems Performance Modeling, Prentice­
Hall,Englewood Cliffs, NJ (1981) .

. More introductory material on RESQ, examples of networks constructed and solved using
RESQ, and discusSion of other related publications are given in

. C.H. Sauer, E.A. MacNair and J.F. Kurose, liThe Research Queueing Package
Versiori 2: Introduction and Examples," mM Research Report RA-138, Yorktown
Heights, New York (Apri11982). .

This document has the following sections:

"Section 1: Introduction" introduces many of the features and capabilities of RESQ and
gives an example of RESQusage.

ilSection 2: The SETUP Command" discusses the command which invokes the RESQ
prompter/translator. The RESQ prompter/translator can be used in either interactive or
batch ("dialogue file") mode or mixed interactive/batch mode.

Sections 3 through 10' discuss RESQ queueing network elements and corresponding'
portions of the dialogue language of the RESQ prompter/translator.

"section 3: Parameters, Identifiers, Variables arid Arrays" discusses the dialogue.language
for declarations of these elements. '

April 3, 1982

iv PREFACE

"Section 4: Active Queues" discusses queueing for resources with timed usage.

"Section 5: Passive Queues" discusses queueing for resources with usage governed by
explicit mechanisms for acquiring and freeing units of a resource. Passive.queues are some of
the most flexible and useful elements in the RESQ language .

. "Section 6: Queue Types" discusses a macro facility for queue definition.

"Section 7: Set Nodes" discusses the RESQ elements used to perform assignment
statements in the programming language sense.

"Section 8: Split, Fission; Fusion and Dummy Nodes" describes nodes used by jobs for
generating other jobs, for synchronizing activities with these jobs and for associated routing
definition.

"Section 9: Routing Chains" discusses the definition of routing between network
elements, including sources and sinks for jobs and routing decision mechanisms.

"Section 10:.Submodels" discusses facilities for macro definition of subnetworks and the
invocation of these subnetworks.

"Section 11: Numerical Solution" discusses the restrictions for numerical solution.

"Section 12: Simulation Dialogues" discusses additional language conventions for
gathering of distributions, for confidence interval estimation, for run length. control and for
simulation trace.

"Section 13: The EV AL and EV AL T Commands" discusses the two CMS commands
available for network solution.

"Section 14: PL/I Embedding" discusses access to RESQ from PL/I procedures as an
alternative to use of the EV AL and EV AL T commands.

"Appendix 1: Additional Examples" illustrates other aspects of RESQ usage.

"Appendix 2: Names and Keywords" describes the requirements for names ofRESQ
elements and discusses reserved keywords and names with special meanings.

"Appendix 3: Expressions" describes the rules for expressions used to represent numb~rs
and distributions, including use of user-defined PL/I functions.

"Appendix 4: BNF Grammar" gives a formal definition of the syntax of the dialogue
language.

"Appendix 5: SETUP Error Messages" discusses the error l11essages produced by the
prompter / translator.

"Appendix 6: EVAL Error Messages" discusses the error messages produced9.uring
n~twork solution.

'--

"Appendix 7: Event Handling" discusses simulation event handling with emphasis on
handling of simultaneous events.

"Appendix 8: Installation" discusses installation of RESQ files.

. April 3, 1982

CONTENTS

1. INTRODUCTION .. 1
1 .1. RESQ Diagrams. .. 1
1.2. RESQ Elements. 4
1.3. RESQ User Interfaces. .. 4
2. THE SETUP COMMAND. 21
2.1. SETUP Command with CMS. .. 21
2.2. SETUP Command Prompting Mode. .. 22
2.3. SETUP Command Dialogue File Mode. 24
2.4. SETUP Command Files . 25
3. PARAMETERS, IDENTIFIERS, VARIABLES AND ARRAYS. 27
3.1. Parameters , 27
3.2. Identifiers .. 28
3.3. Global Variables. .. 29
3.4. Chain and Node Arrays .. 30
3.5. Extents of Job and Chain Variables. .. 30
4. ACTIVE QUEUES '. .. 32
4.1. The FCFS Queue Type. 32
4.2. The IS Queue Type . 33
4.3. The PS Queue Type . 33
4.4. The LCFS Queue Type .. 34
4.5. The PRTY Queue Type. .. 34
4.6. The PRTYPR Queue Type. .. 35
4.7. The ACTIVE Queue Type. .. 36
5. PASSIVE QUEUES , 39
5.1. Allocate Nodes~ .. 40
5.2. AND Allocate Nodes. .. 41
5.3. OR Allocate Nodes. .. 42
5.4. Transfer Nodes .. 42
5.5. Release Nodes .. 43
5.6. Destroy Nodes .. 43
5.7. Create Nodes. .. 44
6. QUEUE TYPES. .. 45
6.1. Definition of Queue Types , 45
6.2. Invocation of Queue Types. .. 46
7. SET NODES .. 48
8. SPLIT, FISSION, FUSION AND DUMMY NODES .. 49
8.1. Split Nodes. 49
8.2. Fission and Fusion Nodes. .. 50
8.3. Dummy Nodes. 52
9. ROUTING CHAINS 53
9.1. Individual Chain Definitions. .. 53
9.1.1. Closed Chain Definitions. 54
9.1.2. Open Chain Definitions. 54
9.1.3 . External Chain Definitions. 55
9.1.4. Routing Definitions. .. 55
9.2. Chain Array Definitions. .. 58
10. SUBMODELS. .. 60
10.1. Sub model Declarations. .. 60
10.2. Sub model Invocations. 62
10.3. Node Parameters. 63

April 3, 1982

lOA . . Submodel Nesting Structures
11. NUMERICAL SOLUTION
12. SIMULATION DIALOGUES•......
12.1. Distribution Gathering .. "
12,2. Confidence Intervals and Run Length " "
12,2.1. Simulation without Confidence Intervals
12.2.2. Independent Replications "
12.2.3. The Regenerative Method ;•...
12.204. The Spectral Method '.'
12.3. Random Number Generation
12.4. Simulation Trace
13. TflE.EVAL AND EVALT COMMANDS "
13.1. EVAL Command ... ,
13.1.1. Solution Summaries .. .
13.1.2. Performance Measures .. .
1;3.1.3. Run Continuation and Multiple Solutions
13.2. EVALT Command "
13.3. EV AL Command Files .. .
14 .. PL/I EMBEDDING .. , .
14,1. Basic Procedures and CMS Commands " ., '
14.1.1. The PL/fProgram ' ; '.'
14.1.2. PL/I Compilation ; ; , .. .
14.1.3. eMS Commands for Execution "
14.2; Plotting Procedures ',' ' .. .
AI. ADDITIONAL EXAMPLES ,
ALl. Numerically Solved Model " ..
A1.2. I/O Subsystem Model .. .
A1.3. Communication Protocol Model
A2. NAMES AND KEYWORDS
A3. EXPRESSIONS .. .
A3.1. Distribution Functions .. .
A3.1.1. BE (Branching Erlang) Distribution , ;
A3.1.2. UNIFORM Distribution .. .
A3.1.3. STANDARD Distribution ;
A3.1 A. DISCRETE Distribution
A3.1.5. Indirect Definition of Distributions
A3.2. The USER Function .. .
A3.3. Status Functions ; ;
A3A. The PRINT Function
A3.5. Expression Evaluation .. .
A3.6. Predicates (Boolean Expressions) , .. .
A4. BNF Grammar ... , :'.
AS. SETUP ERROR MESSAGES
A6. BV AL ERROR MESSAGES
A6.1. Expansion Processor Messages ,
A6.2. Numerical Solution Messages
A6.3. Simulation Messages
A 7. EVENT HANDLING .. .
A7.1. Simultaneous Job Movement , ,
'A7,~. Simulation Events
A8. INSTALLATION '.'
Index

65
68
69
69
71
72
74
75
79
82
&3
93
93
94
97

100
101
101 '.
104
104
104,
106
106
107
111
111
113
119
129
132
132
132
134
135
135
136
137
138
139
139
140
142
150
167
167
169
170
176
176
177
178
181

April 3, 1982

LIST OF FIGURES

Figure 1.1 - Queueing Network Model•... , 1
Figure 1.2 - Active Queues•..... , , :2
Figure 1.3 - Passive Queue ; ., , :2
Figure 1.4 -Symbols for Other Nodes. 2
Figure 1.5,. Terminals and Submodel 2
Figure 1.6 - Computer System Submodel. ..2
Figure 2.1 - Files used with SETUP .. 26
Figure 4.1 - Active Queues. 32
Figure 5.1 - Passive Queue , • 39
Figure 8.1 - Split, Fission, Fusion and Dummy Nodes , .. 49
Figure S.2 - Nesting of Fission and Fusion Nodes. 51
Figure 9.1 - Source and Sink .• 53
Figure 10.1 - Node Parameter Example "63
Figure 13.1 - Files used with EV AL 103
Figure 14.1 - Example Graph of Model Results ; ' , 107
Figure A1.1- Open Chain Cyclic Queue Model. , 111
Figure A1.2 - I/O Subsystem ModeL " .. 114
Figure A1.3 - Communication Protocol Model. , ; 119
Figure A3,1 .,. BE (Branching Erlang) Distribution , .. " •. 133
Figure A3.2 - UNIFORM Density Function " . 134
Figure A 7.1 - Passive Queue "Race" Resolution 176

April 3, 1982

'~

1

1. INTRODUCTION

In many systems, e.g., co.mputing systems, co.mmuniCation netwo.rks,automated offices
and manufacturing lines,co.ntention for resources (queueing) is a dominant facto.r in'system .
performance. The interactio.n between reso.urces and other system elements is o.ften s<>
complex that intuition is in.sufficient fo.r estimating system perfo.rmance. Models are used to.
estimate the perfo.rmance o.f systems when measurement of system ·perfo.rmance is impossible.
(e.g., because the system is not yet operatio.nal) or impractical (e.g., because o.f the human and
o.ther reso.urces requireq). Mo.dels based o.n queueing networks are especially useful because
such mo.dels fo.cus attentio.n on co.ntention for resources.

The basic problems in using queueing network models are to. (1) determine the reso.urceS
and their charaCteristics which will mo.st affect perfo.rmance, (2) formulate a model represent­
ing these resources and characteristics and (3) determitie (by simulatio.n o.r numerical me­
tho.ds) values for perfo.rmance measures (e.g,mean respo.nse time) in the mo.del. The first two.
o.f these pro.blems are highly system specific. Thus we will not address these problems
directly. The Research Queueing Package (RESQ) is a software tool fo.r building queueing
netwo.rk mo.dels. We emphasize "too.l" because RESQis not a. mo.delitself but rather ;:i

facility fo.r co.nstructing and develo.pinga model. As ato.ol, it can be of great value in dealing
with the seco.nd and third basic problems cited abo.ve.

In the fo.llo.wing sectio.ns (1.1 - 1.3) we present a brief o.verview o.f RESQ, .andas an
example, use· RESQ to. develop a queueing network model o.f an interactive computing system.
This example is intended to. illustrate many of the facilities o.f RESQ. Three additio.na:l .
examples are given in Appendix 1: (1) a very simple modelso.lved numerically, (2) a model
which further develo.ps the example in Section 1.3, and (3) a model o.f a simple co.mmunica-
tion netwo.rk used fo.r access to. an interactive computer system. .

1.1. RESQ Diagrams

Effective use o.f RESQ is based o.n co.nstructing diagrams representing queueing netwo.rk
mo.dels. Figure 1.1 illustrates a simple queueing netwo.rk mo.del o.f an interactive co.mputer
system. (This netwo.rk is similar to. networks used as co.mputer system models since the mid
sixties.)

MEMORY ·CJ
. ' . .
" '". .,' ,

. ~-------------~~-----------------. ,*,'. . ' I
,~ I

,,/ DISK1 :
., ' . :

" I
" I
I ' I I

: DECRCYCLE : FREEMEMORY

.0

Figure 1.1 - Queueing Network Mo.del

April 3, 1982

2 INTRODUCTION / SEC. 1

The symbols in Figure 1.1 represent specific elements in the RESQ diagram language.
Figures 1.2 - 1.4 show the symbols for all such elements. Descriptions of the RESQ symbols
will begiveiJ in later sections which discuss the corresponding RESQ elements. The model
considers contention for three kinds of system resources, main .memory, a CPU and disk
memory,and represents the terminals as well. Users of the system are represented by jobs in
the queueing network. Part of a user's time is spent thinking at the terminal and keying in
commands; this part of the user's time is represented by service times of a job (representing·
the user) at the terminals queue. The model assumes there are as manyterininals as users,so
there is no waiting for a terminal; we will still refer to the mOdel representation of the
terminals as an "infinite server queue." After thinking and keying in a command, the user
spends the remaining part of his or her time (for this interaction) waiting for a response. The
job representing the user waits to receive main memory. Once it receives main memory, this
job alternates between computation and I/O activities until the command processing is

'. . . ,.

finished, main memory is released and the user receives the response. The user then begins
another thinking/keying time.

In using RESQto model systems, the· most difficult steps are usually those of describing
system resources and activities as we have just done and developing a carrespondingdiagram;
e.g., Figure 1.1. Also, one must obtain data for amounts of resources required, times spent
holding resources, frequency of resource requests, etc. Having the description, diagram and
data, construction and soluti<;>n of the model using RESQ is an efficient and straightforward
process.

SINGLE
SERVER

MULTIPLE
SERVER'

INFINITE
SERVER

Figure 1.2 - Active Queues
Single, Multiple, Infinite Server

As in programming, in system modeling it is helpful to develop hierarchical representa­
tions of models in order to clarify models, permit the refinement of models and ease the
maintehance of models. RESQ provides a macro-like facility for developing "submodels," i.e.,
parameterized templates of subnetworks. In the example of Figure 1.1 it would be natural to
have a submodel consisting of the queues of the computer system (excluding the terminals). It
would also be natural to represent the disk subsystems as submodels in case a more detailed
representation of the disk subsystems is to be developed later; Figure 1.5 depicts the top level
of such a hierarchy and Figure 1.6 depicts the middle and bottom levels.

April 3, 1982

SEC. 1.1 / RESQ Diagrams

ALLOCATE AND
ALLOCATE

TRANSFER CREATE

POOL OF TOKENS

SUBNElWORK

JOB FLOW
TOKEN FLOW

Figure 1.3 - Passive Queue .

RELEASE

DESTROY

~ SOURCE

-<J SINK

~. SET

~ FISSION

~ FUSION

~ SPLIT·

~ DUMMY

April 3, 1982

Figure 1.4 - Symbols for Other Nodes

TERMINALS

o
I------~----i

)----'-------'-----4!' CSSM 1'i----'----~
I. , :: o ~---~~------

Figure 1.5- Terminals and Submodel

3

4 INTR.ODUCTION / SEC. 1

SETCMDTYPE

·~I

MEMORY r---l
.,~-----------------------~----.-----.

~,' ,
,.,/ ._~q§.'@_1_.g~~!.< !

,.-0 ,I I
" I' I ... ,' . I I I ... I I ,

I I I
I I

j DECRCYCLE ! FREEMEMORY

(INPUT)

Figure 1.6 - Computer System Submodel

1.2. RESQ Elements

In this section we briefly describe some of the elements of RESQ queueing networks that
apply to the above example. We refer to the networks of RESQ as "extended" because of
characteristics absent from classical queueing models. Classical queues are" active" queues in
RESQ terminology. A job's activity is typically focused on the resources of active queues. A
job typically has no interaction with other model elements while at an active queue.

Perhaps the most important of the extensions introduced in extended networks is the
"passive" queue, which allows convenient representation of simultaneous resource possession.
A job typically acquires units of a passive queue resource and holds on to them while visiting
other queues (including other passive queues) and model elements. The job explicitly releases
the units of resource when it no longer needs them. In our computer system example, a job
must hold memory while using .the processor or I/O. devices; a passive queue may be used to
represent this holding of memory. Additional passive queues could be added to the model to
represent contention for channels, device controllers, etc.

As well as representing simultaneous resource possession, passive queues often allow
simple representations of complex mechanisms. For example, in a system where a channel is
shared among position sensing I/O devices and the channel is not held during positioning,
contention for the channel may cause jobs to wait for extra revolutions after positioning
before the channel is acquired and data transfer takes place. This situation can be modeled by
use of a passive queue representing the channel and a. status function testing availability of the
channel, as illustrated in Appendix 1. Communication network protocols and similar mecha­
nisms are often conveniently modeled by passive queues, as also illustrated in Appendix 1.

A third use of passive queues is in measuring response times in subnetworks. Toe
"queueing time" (response time) for a passive queue is defined as the time between a job's
request for units of the passive queue resource and that job's freeing of the units of resource.
Thus in our example the queueing time for the passive queue corresponds to the response time
seen by the terminal users.

April 3, 1982

SEC. 1.3 /RESQ User Interfaces 5

1.3. RESQ User Interfaces

The RESQ user interfaces have been designed for effective use by both novice and
advanced users. The user interfaces are based on interactive dialogues which serve to educate
heW users working with small models. The interactive dialogues provide optional tutorials to
clarify prompts. Trallscripts of interactive dialogue can be easily used to revise and develop
models. There are two basic sets of dialogue, a model definition dialogue and a, model
solution dialogue.

The SETUP command invokes the RESQ prompter/translator for definition or revision of
a model. The prompter automatically provides for immediate correction of syntactic errors. If
a RESQ user realizes a semantic error was made in some previous portion of the dialogue, .he
or she may temporarily suspend the dialogue, correct the error and then resume the dialogue at
the point of suspension. A transcript (a "dialogue file") of a model definition dialogue is kept
for the user. The user may edit this transcript and then have it translated again, with or
without additional interactive dialogue. The EVAL command is used to solve (e.g., to
simulate) a model.

We will now, give an example' of a possible SETUP dialogue for the, model represented by
Figures 1.5 and 1.6. As we present the dialogue we will make arbitrary assumptions about
system characteristics previously left unspecified. The example is presented as, if a typewriter­
type terminal is used, to simplify formatting of this 90cument. However, RESQ is insensitive
to the type of terminal used and, is typically used with a display terminaL

In our examples,upper case characters will correspond to prompts from RESQ compo­
nents and lower case will generally be used for replies from the user. Prompts are always
terminated by a colon (":"). RESQ generates some additional heading lines for sections of
dialogue; these heading lines do not require replies from the user. RESQ is insensitive, to
upper/lower case, but preserves case in listing and transcript files.

The following example will be interspersed with discussion explaining the portjons of
dialogue. A contiguous transcript follows the example dialogue. Assuming we are in the eMS.
environment with access to the mini-disk containing the RESQ files, and with sufficient virtual "
storage, we issue the SETUP command, are prompted for a model name and, after asking for a
tutorial with the special reply "how", give the name "csm" for "computer system model."

setup
MODEL,: how

MODEL NAME MUST START WITH A LETTER,
CONSIST OF ONLY LETTERS AND DIGITS
AND HAVE AT MOST EIGHT CHARACTERS

MODEL:csm
RESQ2 Translator V2.04 (01/19/82) Time: 13:56:12 Date: 01/29/82
MODEL IS CSM

Except for model names, which are constrained to fewer characters for compatibility with
CMS and TSO, names of RESQ elements may be up to ten characters long. Next we indicate.
the solution method, either simulation or numerical:

METHOD: simulation

The first major section of dialogue is used to declare parameters which will be defined when
the solution is performed, to declare identifiers representing expressions and to declare the,'
extent of JV, the vector of variables associated with each job. Solution may be performed

April 3, 1982

6 INTRODUCTION / SEC. 1

repeatedly for different parameter values without reissuing the SETUP or EV AL coinmand,s.
We may list as many parameters as we wish -- SETUP will continue to prompt for parameters
until we give a null reply. If more than one name.is listed on the same line, then the names
are separated by either blanks or commas (","). Our examples will usually use blanks. rath.er
than commas. RESQ treats multiple blanks as equivalent to a single blank.

NUMERIC PARAMETERS:thinktime users
NUMERIC PARAMETERS:

Identifiers are provided to allow naming of expressions (typically, but not necessarily, numeric
constants) for sake of clarity and to allow changes to be made without searching for all
instances of an expression. SETUP expects a list of identifier names. For each name, SETUP
will prompt for an expression for the value associated with the identifier name. SETUP will
prompt for additional lists of names until given a null reply.

NUMERIC IDENTIFIERS:userframes
USERFRAMES:50

NUMERIC IDENTIFIERS:

In out example we assume that there are three types of commands which may be issued by
terminal users. JV(O) will be used to store the command type, and JV(l) will be used to
count the number of CPU-I/O cycles for a particular command. We include a comment to
indicate this usage. Comments may be included in replies using the PL/I convention, i.e., a
comment is a string beginning with "/*", ending with "*/" and not otherwise containing
"*/". A comment must end on the same line it begins on. (As discussed in Section 2.2,
mUltiple physical lines may be concatenated to give the effect of a single logical line.)

MAX JV:how
ENTER AN ARITHMETIC EXPRESSION FOR THE EXTENT OF THE JV VECTOR

MAX JV:1 /*0: command type, 1: cycle count*/

The second major section of dialogue is for definition of queues. First we may define a
Il queue type", a macro definition of a queue dialogue. We indicate here that we choose not to
define a queue type by giving a null reply. We will illustrate definition and invocation of a
user defined queue type later in the dialogue.

QUEUE TYPE:

Next we define individual queues. The only queue outside of the submodel in the network of
Figure 1.5 is the .terminals queue. This queue is assumed to have at least as many servers as
jobs in the network, i.e., it is an "Infinite Server" (IS) queue. We use the predefined IS type,
which indicates an active queue with default characteristics, rather than the general ACTIVE
type. First we are prompted for the queue name, then the queue type.

QUEUE:terminalsq
TYPE:how

VALID QUEUE TYPES ARE: ACTIVE, FCFS, IS, LCFS, PRTY, PRTYPR, PS,
PASSIVE OR A USER DEFINED TYPE

rrYPE: is

In addition to its servers, an active queue has one or more waiting lines called "classes."
Routing definitions will use the class names, not the queue name. The active queues in our
example each have only one class. After prompting for a list of classes, SETUP will.prompt
for the service time distributions associated with the classes. In the following we give the

April 3, 1982

SEC. 1.3 / RESQ User Interfaces I 7

name of a numeric parameter, which will be interpreted as the mean of an. exponential
distribution . .sETUP will prompt for more classes until a null reply is given. SETUP will then
prompt for more queue definitions until a null reply is given.

CLASS LIST~terminals
SER.VICE.TIMES:thinktime

CLASS LIST:
QUEUE:

The third major section of dialogue is for definition of additional nodes not belonging to
queues. "Nodes It in RESQ are functional elements. in the routing, including Classes, the
elements shown in Figure 1.3 except for the pool of tokens and all elements shown in Figure
1.4. None of these nodes appear outside of the submodel of Figure 1.5, so we give null replies
to the prompts for names of these nodes.

SET NODES:
FISSION. NODES:
FUSION NODES:

The. fourth major section of dialogue is for definition of submodels. The submodel definition
dialogue closely parallels the dialogue for model definition, including subsections correspond~
ing .to those sections we have already seen and a routing subsection corresponding to the
model routing section which follows submodeI definition and invocation. First we are
prompted for a name ·of the sub model definition. Then we are prompted for parameter and
identifier definitions.

$UBMODEL:cssm /*Computer System Submodel*/
NUMERIC PARAMETERS:pageframes
NUMERIC PARAMETERS:

Node parameters provide for reference to nodes outside the submodel from within the
submodel. We do not need node parameters with this example.

NODE. PARAMETERS:

Routing "chains" are used to define the routing aniong nodes of a network. A submodel niust
have at least one chain parameter in order to connect the nodes inside of .the subnetwork With
nodes outside of the subnetwork.

CHAIN PARAMETERS:interactiv
CHAIN PARAMETERS:
NUMERIC IDENTIFIERS:cmdtype cyclecount

CMDTYPE: 0 /*JV (0) to be used to indicate command .type* /
·CYCLECOUNT:1/*J~(1) to be ~sed to count CPU-I/O cycles~/

Numeric param(eters and identifiers may be defined as one or two~dimensional arrays. Unlik.e
the special case of JV, which allows zero as an index, the indices of these arrays begin at one.
In our example we have three command types with different numbers of CPU-I/O cycles
associated with each type and with different requirements for page frames for each type.

NUMERIC IDENTIFIERS:cpiocycles(3) pageneed(3)
CPIOCYCLES: 8 15 50
PAGENEED:20 24 30

NUMERIC IDENTIFIERS:cputime

April 3, 1982

8

CPUTIME:.025 /*mean time in seconds*/
NU'MERIC IDENTIFIERS:
QUEUE TYPE:

INTRODUCTION / SEC. 1

A passive queue consists of a pool of tokens to be allocated to jobs and a set of nodes which
operate on that pool and the jobs holding tokens. The passive queue in our example has one
. token for each page frame.. After prompts for the queue name and queue type, we are
prompted for the number of tokens initially in the pool and the scheduling discipline. We
choose "first come first served" (fcfs) scheduling.

QUEUE: memory
TYPE:passive
TOKENS:pageframes
DSPL:fcfs

. Next we are prompted for lists of names of allocate nodes. Jobs wait at allocate nodes until
they are given the number of tokens they request and then move without delay to the next
node in the routing chain for the allocate node. (In the interactive mode, SETUP. gives
prompts only for "plain" allocate nodes. Section 6 will discuss the other kinds of allocate
nodes shown in Figure 1.3.)

ALLOCATE NODE LIST:getmemory
NUMBERS OF TOKENS TO ALLOCATE:pageneed (jv (cmdtype))

ALLOCATE NODE LIST:
RELEASE NODE LIST:freememory

A job visiting a release node returns all tokens.it received from a passive queue. This takes no
simulated time.

RELEASE NODE LIST:
DESTROY NODE LIST:
CREATE NODE LIST:

We assume the CPU has a single server with the "processor sharing" (PS) scheduling disci­
pline. PS is the limiting case of a round robin ("time slicing") discipline when the quantum
(" time slice It) tends to zero; provided there is n(!gligible overhead in switching from job to job;
The service times are assumed to have an exponential distribution with mean given by the
identifier" cputime."

QUEUE:cpuq
TYPE:ps
CLASS LIST:cpu

SERVICE TIMES:cputime
CLASS LIST:

QUEUE:

In our example, when a job leaves the terminals we wish to determine its command type by
random selection and also store the number of CPU-I/O cycles for that type in JV(1). We
aSS\llne that the command is type 1 ~ith probability 0.8, type 2 with probabilityO.iS and type
3 with probability 0.05. A reference to the RESQ "discrete" distribution,
"discrete(1,.8;2,.lS;3,.OS)", will be used to make this random selection. The semicolons (";")
are used to separate the major pairs of values given to the discrete distribution. Semicolons
are used to separate important expressions or lists of expressions in RESQ. Thecommas
separating the pairs of values may be replaced by blanks, as we discussed previously.

April 3, 1982

.-~.

SEC. 1.3/ RESQ User Interfaces 9

Set nodes are used .to perform assignment statemeritsin the sense of programmIng
languages. The assignments may be made to job variables or to two other kinds of variables
we will introduce in Section 8 of this document. The "SET NODES:" prompt requests a list
of names of set nodes. If the list contains more than one name, then the nodes in the list may
perform only one assignment. Otherwise, if the list contains only one name, then several
assignments may be performed by that one node. In the following we will wish to list the two
assignments on a single logical line, but will not have room to do so on a single physical tine.
SETUP allows use of "+ +" at the end of a physical line to indicate the next physical line is to
be concatenated with the current logical line of input to form a single logical line. SETUP will
prompt with a colon (":") for additional physicalline(s).

SET NODES:setcmdtype
A~SIGNMENT tIST:jv(c~dtype)~discrete(1,.8;2, .15;3, ;05), ++

:jv(cyclecount)=cpiocycles(jv(cmdtype))

The assignments are performed in the order listed. In the above definition, thevaIue of
JV(CMDTYPE) used in the second assignment will be the value given by the first assighment..

When a job completes a CPU-I/O cycle, we will decrement JV(1) and test to see if the
job has completed its count by testing for JV(1)=O.

SET NODES:decrcycles
ASSIGNMENT LIST:jv(cyclecount)=jv(cyclecount)-1

SET NODES:
FISSION NODES:
FUSION NODES:

The followingsubmodel definition is very sparse, but could be embellished considerably
without changing its subsequent invocations in the submodel cssm.

SUBMODEL:iosys
NUMERIC PARAMETERS:
NODE PARAMETERS:
CHAIN PARAMETERS:interactiv
CHAIN PARAMETERS:
NUMERIC IDENTIFIERS:

In this example we reuse the name "interactiv" for the chain parameter. As in nested
procedure definitions in block structured programming languages (e.g., PL/I or Pascal), names
used outsideofa submodel definition may be reused within submodel definitions; When.
names. are reused in this manner, the new definition persists within the submodel definition
and the old definition is restored after the submodel definition is completed. On the. other
hand, we could have used an entirely different name for the chain parameter in this example.

In our example we assume each disk is represented by a single server queue with a single
service time representing positioning and transfer and with fcfs scheduling. The RESQ "fcfs"
predefined queue type would naturally be used in this instance. However, we will illustrate a
user defined q1.).eue type with these same assumptions with the added assumptions that service·
times have an exponential distribution with mean 0.06. First we are prompted for the name of
the queue type and names of any numeric parameters.

QUEUE TYPE~diskdef
NUMERIC PARAMETERS:

April 3 , 1982

10 INTRODUCTION / SEC. 1

Every node, e.g., every class, to be associated with a queue defined by a user defined qlleue
type must be declared as a node parameter of the queue type. In this case we will have only
one class.

NODE PA~AMETERS;servicecls
NODE PARAMETERS:

After declaring the parameters, the rest of a queue type definition is very similar to a queue
definition. The reply to "TYPE:" may be any predefined queue type. Because the general
active type allows defining individual servers, the prompt for "SERVICE TIMES:" which we
have seen previously is replaced by "WORK DEMANDS:". The work demanded ofa server
is divided by the service rate to get service times. All of our previous dialogues have assumed
a unit rate server, so work demands and service times are equivalent in these dialogues. In the
following we will avoid defining a server, so we will get a unit rate server by default.

TYPE:active
SERVERS: 1
DSPL:fcfs
CLASS LIST:servicecls

WORK DEMANDS: .06
CLASS LIST:
SERVER­

RATES:
END OF QUEUE TYPE DISKDEF
QUEUE TYPE:

A definition of a queue defined by a user defined queue type, i.e., an invocation of a queue
type definition, will consist of proinpts for parameter values after the queue type is specified.
In this case there is only one parameter, the class.

QUEUE:diskq
TYPE:diskdef
SERVICECLS:disk

QUEUE:
SET NODES:
FISSION NODES:
FUSION NODES:

The following prompts give us the opportunity to define submodels within this submodel
(iosys) definition and to invoke submodel definitions within the definition ofiosys. Since we
have not finished defining iosys, we are not ready to invoke iosys.

SUBMODEL:
INVOCATION:

We have not seen any routing chain definitions yet. The following definition is atypical
because within the sub model there. is only one node, "disk", and so no routing within the
':Iubmodel will be defined. After giving the nam.e of the chain, we indicate that this chain i& to
be completed in the external model, i.e., in the model invoking the submodel "iosys".We
then indicate that "disk" is both the standard entry point and the standard exit point of the
chain. In the invoking model we will refer to "disk" by the synonyms "input" and "output".
The colon prompt (":") is for a routing transition, as we will see below.

April 3, 1982

SEC. 1.3 / RBSQ User Interfaces

CHAIN:interactiv
TYPE: external
INPUT:disk
OUTPUT: disk

CHAIN:
END OF SUBMODEL IOSYS
SUBMODEL:

11

An invocation of a submodel is an instance of the subnetwork defined by the submodel
definition and the parameters specified with the invocation. After a prompt for the invocation
name, there is a prompt for the name of the submodel definition to be used in this invocation.
Assuming only the name of the submodel definition is given, there will be additional prompts
for the parameter values, in this case the name of the chain parameter.

INVOCATION:iosys1
TYPE:iosys
INTERACTIV:interactiv

The prompt "INTERACTIV:" requests the value for the parameter name defined within the
submodel IOSYS definition. The reply "interactiv" supplies a value, the chain parameter
declared within the sub model CSSM .definition. These names happen to. be the same in. our
example, but there is no requirement that they be the same.

For brevity, the prompts for parameter values can be avoided by supplying the parameter
values (in the order the parameters were declared) after the name of the sub model definition,
e.g"

INVOCATION:iosys2
TYPE:iosys: interactiv

INVOCATION:

This invocation creates a second subnetwork with the characteristics of submodel IOSYS. (1n
this case the subnetwork consists only of a single queue.)

The following chain definition is more typical than the previous one. After declaring the
standard entry point .to be the set node setcmdtype and the standard exit~ point to be the·
release node freememory, we define the routing among the nodes of the subnetwork.

CHAIN:interactiv
TYPE:. external
INPUT: setcmdtype ..
OUTPUT:freememory

The following line indiCates that jobs leaving setcmdtype always go to the allocate node
get memory, that jobs leaving getmemory always go to the class cpu and that jobs leaving cpu
go to the standard entry of invocation iosys1 (disk) with probability 0.5 and to the standard
entryof invocation iosys2, also with probability 0.5.

: setcmdtype->getmemory->cpu.:->iosys 1 . input iosys2. input i .5 .5

The following line indicates that jobs leaving the standard exit of either iosys1 or iosys2 go to
set node decrcycles.

April 3, 1982

12 INTRODUCTION! SEC. 1

:iosysl.output iosys2.output->decrcycles

The following line indicates that jobs leaving decrcycles return to cpu if JV(1) is positive and
go to the release node otherwise. The "t" in "if(t)" represents "true".

:decrcycles->cpu freememory;if(jv(cyclecount»O) if(t)

CHAIN:
END OF SUBMODEL CSSM
SUBMODEL:

FollQwing is the invocation of the submodel representing the entire computer system, with
values for the numeric and chain parameters.

INVOCATION:cssml
TYPE:cssm
PAGEFRAMES:userframes
INTERACTIV:interactiv

INVOCATION:

A chain in the model proper will be either open, if there are to be provisions for external
arrivals and departures, or closed, if jobs ar~ fixed within the chain (as in our example). With
a closed chain we must indicate the population, i.e., the number of jobs fixed within the chain.

CHAIN:interactiv
TYPE:closed
POPULATION: users
:terminals->cssml.input
:cssml.output~>terminals

CHAIN:

This completes definition of the model proper. The remaining dialogue section pertains to the
specifics of simulatiOn solution.

Many performance measures are gathered by the simulation by default. However,
gathering of distributions of these measures for all appropriate network elements can be
expensive in both time and memory, so distributions are only gathered when requested. In our
example model the most interesting distribution is likely to be the distribution of response
times seen by the terminal users. The queueing time for the passive queue, defined as the time
of arrival at the allocate node to departure from the release node, will be this desired response
time. The following requests that the cumulative queueing time distribution be gathered for
queueing times from 1 to 8 at unit intervals. The name of the memory passive queue must be
qualified by the invocation name, "cssml," when it is referred to outside of the subJllodel
definition.

QUEUES FOR QUEUEING TIME DIST:cssml.memory
VALUES: 1 2 3 4 5 6 7 8

QUEUES FOR QUEUEING TIME DIST:

We also request that the queue length distribution for the passive queue be gathered for all
possible lengths. Just as queueing time includes time holding tokens, queue length includes
jobs holding tokens.

April 3, 1982

SEC. 1.3 / RESQ User Interfaces

QUEUES FOR QUEUE LENGTH DIST:cssml.memory
MAX VALUE:users
QUEUES FOR QUEUE LENGTH DIST:
NODES FOR QUEUEING TIME DIST:
NODES FOR QUEUE LENGTH DIST:

13

R:E:SQ provides three methods for estimating confidence intervals for performariqe measUres,
and two of these three methods also provide for run length control based on the confidence
intervals: In this example we will not illustrate confidence interval estimation or associated
run length control.

PPNFIDENCE INTERVAL METHOD:pow
CONFIDENCE INTERVAL METHODS ARE: REGENERATIVE, REPLICATIONS, SPECTRAL

OR NONE
CONFIDENCE INTERVAL METHOD:none

For closed routing chains (and open chains which are not initially empty) we must specify
where the jobs of the chain are to be placed initially.

INITIAL STATE DEFINITION­
CHAIN:interactiv

NODE LIST:terminals
INIT POP:users

CHAIN:

The simulation fun will end when the first of the following limits are reached. Simulated
events in this model will correspond exactly to the completions of service at the active queues.
Departures from the passive queue will correspond exactly to the visits to the release node.

RUN LIMITS-
SIMULATED TIME:3600
EVENTS: 50000
QUEUES FOR DEPARTURE COUNTS:cssml.memory

DEPARTURES: 500
QUEUES FOR DEPARTURE COUNTS:
NODES FOR DEPARTURE COUNTS:

LIMIT ~ CP SECONDS:5

Specification that there will be no simulation trace ends definition of thisrilodel.

TRACE: how
ENTER EITHER 'YES' OR 'NO'

TRACE: no
END

NO FATAL ERRORS DETECTED DURING COMPILATION.

Once we have completed the SETUP dialogue, a transcript of the dialogue (a "dialogue
file") is available in a file on mini-disk A with file name the same asthe model name and file
type RQ2INP. This transcript can be edited and used as input to the SETUP command, thus
avoiding repeating the dialogue to make minor changes. Use of the dialogue file mode of
SETUP provides capabilities for language elements not available in the interactive mode.
Most importantly, it is possi.ble to include dialogue fragments,e.g., submodeldefinitions, from
libraries of dialogue. For our example model, file CSM RQ2INP A 1 is

Apdl 3, 1982

14 INTRODUCTION / SEC. 1

MODEL:CSM
METHOD: simulation
NUMERIC PARAMETERS:thinktime users
NUMERIC IDENTIFIERS:userframes

USERFRAMES:50
MAX JV:1 /*0: command type, 1: cycle count*/
QUEUE:terminalsq

TYPE: is
CLASS LIST!terminals

SERVICE TIMES:thinktime
SUBMODEL:cssm /*Computer System Submodel*/

NUMERIC PARAMETERS:pageframes
CHAIN PARAMETERS:interactiv
NUMERIC IDENTIFIERS:cmdtype cyclecount

CMDTYPE:O /*JV(O) to be used to indicate command type*/
CYCLECOUNTll /*JV(l) to be used to count CPU-I/O cycles*/

NUMERIC IDENTIFIERS:cpiocycles(3) pageneed(3)
CPIOCYCLES: 8 15 50
PAGENEED: 20 24 30

NUMERIC IDENTIFIERS:cputime
CPUTIME:.025 /*mean time in seconds*/

QUEUE:memory
TYPE:passive
TOKENS:pageframes
DSPL:fcfs
ALLOCATE NODE LIST:getmemory

NUMBERS OF TOKENS TO ALLOCATE:pageneed(jv(cmdtype))
RELEASE NODE LIST:freememory

QUEUE:cpuq
TYPE:ps
CLASS LIST:cpu

SERVICE TIMES:cputime
SET NODES:setcmdtype

ASSIGNMENT LIST:jv(cmdtype)=discrete(1,.8;2,.15;3 j .05), ++
jv(cyclecount)=cpiocycles(jv(cmdtype))

SET NODES:decrcycles
ASSIGNMENT LIST:jv(cyclecount)=jv(cyclecount)-1

SUBMODEL:iosys
CHAIN PARAMETERS:interactiv
QUEUE TYPE:diskdef

NODE PARAMETERS:servicecls
TYPE: active
SERVERS: 1
DSPL:fcfs
CLASS LIST:servicecls

WORK DEMANDS:.06
SERVER -

END OF QUEUE TYPE DISKDEF
QUEUE:diskq

TYPE:diskdef
SERVICECLS:disk

CHAIN:interactiv
TYPE: external
INPUT: disk

April 3, 1982

SEC. 1.3/ RESQUser Interfaces 15

The dialogue file does not include SETUP prompts which received null replies. Note thaUhe
indentation provided by SETUP clarifies the structure of the model, particularly the nesting of
submodels. (In user creation or modification of dialogue files, the user is free to use other
indentation conventions, including no indentation.)

The EVAL command invokes dialogue for model solution (e.g., simulation). This
dialogue prompts the user for parameter vaIues, performs the solution and then provides the
user with performance measures requested by the user. When this dialogue is complete for a
particular set of parameter values, it may be repeated for a different set of parameter values
without reissuing the EV AL command.

April 3, 1982

16 INTRODUCTION / SE'C. 1

For our example model, we might have the following dialogue with the EVAL command.
First we are prompted for the model name and values for parameters.

eval
RESQ2 EXPANSION AND SOLUTION PROGRAM.
MODEL: how
NAME OF MODEL ALREADY DEFINED WITH SETUP
MODEL:csm
RESQ2 VERSION DATE: JANUARY 29, 1982 - TIME: 17:00:35 DATE: 01/29/82
THINKTI.ME: 16
OSERS:25

Once the parameter values are specified, the model definition is complete and macro­
expansion of the submodel definitions is performed. Then solution commences. When
simulation ends, we get one or more messages indicating why simulation stopped, an error
message or a message indicating no errors were detected, and a summ.ary of the simulation
run.

RUN END: CPU LIMIT
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:

245.77480
5.25
7461

Then we. are prompted "WHAT:" meaning "What performance measures do you want to
see?". A reply of "all" results in a display of aU measures normally provided .. Instead of
"all", we give the code "nd" for number of departures and specify we are only interested in
the passive queue. (A reply of "how" would provide a tutorial listing all such c;odes.)

WHAT:nd(cssm1.memory)
INVOCATION INVOCATION

CSSM1
ELEMENT
MEMORY

NUMBER OF DEPARTURES .
324

We then give the code "qt" for mean queueing time and specify we are only interested in the
passive queue.· (This queueing time is the response time seen by terminal users in the modeled
system.)

WHAT:qt (cssm1 . memory)
INVOCATION . INVOCATION

CSSM1
ELEMENT
MEMORY

MEAN QUEUEING TIME
2.81971

A null reply to "WHAT:" terminates the examination of performance measures.

WHAT:

We are then given the opportunity to extend the simulation run. We may increase any of the
run limits we specified before and let the simulation run until one of the new limits is reached.
[n the following we increase the limit on CPU time. (This example was run on a .model. 3033
processor.)

CONTINUE RUN:yes
LIMIT. - SIMULATED TIME:how
LA.RGER VALUE THAN 3. 600E+03 OR NULL TO KEEP THAT VALUE
TRY AGAIN-

April 3, 1982

SEC. 1.3 / RESQ User Interfaces 17

LIMIT - SIMULATED TIME :
LIMIT - EVENTS:
LIMIT - CSSM 1. MEMORY DEPARTURES:
LIMIT - CP SECONDS: 10

When the simulation reaches one of the new limits, we see the old termination message
followed by a riew one and a new summary of the simulation run. We then receive the
"WHAT:" prompt again.

RUN END: CPU LIMIT
RUN END: CSSM1.MEMORY DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:

WHAT:nd(cssm1.memory)

366.25098
8.10

11528

INVOCATION INVOCATION
CSSM1

ELEMENT
MEMORY

NUMBER OF DEPARTURES
500

WHAT:qt

INVOCATION

CSSM1
CSSM1

INVOCATION

CSSM1
CSSM1
IOSYS1
IOSYS2

ELEMENT MEAN QUEUEING
TERMINALSQ 14.82022
MEMORY 2.95095
CPUQ 0.03118
DISKQ 0.07692
DISKQ 0.07245

The utilization measure is the.fraction of time a server or token is in use.

WHAT:ut

INVOCATION

CSSM1
CSSM1

WHAT:

INVOCATION

CSSM1
CSSM1
IOSYS1
IOSYS2

ELEMENT UTILIZATION
TERMINALSQ 0.00000
MEMORY 0.72492
CPUQ 0.37966
DISKQ 0.45804
DISKQ 0.42182

TIME

We choose to extend the run again, this time intending to reach ·1 000 departure~ from the
memory queUe.

CONTINUE RUN:yes
LIMIT - SIMULATED TIME:
LIMI.T - EVENTS:
LIMIT - CSSM1.MEMORY DEPARTURES:
1000
LIMIT - CP SECONDS:20
RUN END: CPU LIMIT
RUN END: CSSM1.MEMORY DEPARTURE LIMIT

April 3, 1982

18 INTRODUCTION! SEC. 1

RUN END: CSSM1.MEMORY DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:

WHAT:qt (cssm1 .memory)

753.42139
16.29
23054

INVOCATION INVOCATION
CSSM.1

ELEMENT
MEMORY

MEAN QUEUEING TIME
2.78478

Now we examine all of the normally provided performance measures.

WHAT: all

INVOCATION

CSSM1
CSSM1

INVOCATION

CSSM1
CSSM1

INVOCATION

CSSM1
CSSM1

INVOCATION

CSSM1
CSSM1
IOSYS1
IOSYS2

INVOCATION

CSSM1
CSSM1
IOSYS1
IOSYS2
CSSM1
CSSM1
CSSM1

INVOCATION

CSSM1
CSSMl
IOSYS1
IOSYS2

ELEMENT
TERMINALSQ
MEMORY
CPUQ
DISKQ
DISKQ

ELEMENT
TERMINALSQ
MEMORY
CPUQ
DISKQ
DISKQ
FREEMEMORY
SETCMDTYPE
DECRCYCLES

ELEMENT
TERMINALSQ
MEMORY
CPUQ
DISKQ
DISKQ

UTILIZATION
0.00000
0.71155
0.37169
0.44270
0.42385

THROUGHPUT
1.32861
1.32728
14.63590
7.32127
7.31330
1.32728
1.32861
14.63457

MEAN QUEUE
21.30333
3.69666
0.45815
0.56729
0.53651

LENGTH

INVOCATION INVOCATION ELEMENT STD. DEV. OF QUEUE LENGTH

CSSM1
CSSM1

INVOCATION

CSSM1
CSSM1

CSSM1
CSSM1
IOSYS1
IOSYS2

INVOCATION

CSSM1
CSSM1
IOSYS1
IOSyS2

TERMINALSQ
MEMORY
CPUQ
DISkQ
DISKQ

ELEMENT
TERMINALSQ
MEMORY
CPUQ
DISKQ
DISKQ

2.75469
2.75471
0.64897 Ii

0.70332
0.68847

MEAN QUEUEING TIME
15.66380
2.78478
0.03130
0.07749
0.07336

April 3, 1982

SEC. 1.3 / RESQ User Interfaces

INVOCATION

CSSM1
CSSM1

INVOCATION

INVOCATION

INVOCATION

INVocATION

INVOCATION

CSSM1
CSSM1

INVOCATION

CSSM1
CSSM1

April -3, 1982

INVOCATION

CSSMl
CSSM1
IOSYS1
IOSYS2

INVOCATION
CSSM1

INVOCATION
CSSM1

INVOCATION
CSSM1

INVOCATION
CSSM1

INVOCATION

CSSM1
CSSM1
IOSYS1
IOSYS2

INVOCATION

CSSM1
CSSM1
IOSYS1
IOSYS2

ELEMENT
TERMINALSQ
MEMORY
CPUQ
DISKQ
DISKQ

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT
TERMINALSQ
MEMORY
CPUQ
DISKQ
DISKQ

ELEMENT
TERMINALSQ
MEMORY
CPUQ
DISKQ
DISKQ

STD. DEV. OF QUEUEING TIME
15.53620
2.21000
0.03351
0.07348
0.07022

MEAN TOKENS IN USE
35,57744

MEAN TOTAL TOKENS IN POOL
50.00000

QUEUE LENGTH DISTRIBUTION
0:.0.08132
1:0.15607
2:0.17033
3:0.15823
4:0.10955
5:0.08885
6:0.06319
7:0.04998
8:0.05112
9:0.03035

10:0.02341
11:0.01390
12:3.2575E-03
13:4.2857E-04

QUEUEING TIME DISTRIBUTION
1.00E+00:0.21800
2.00E+00:0.50200
3.00E+OO:0.64700
4.00E+00:0.75400
5.00E+00:0.B3500
6.00E+00:0.91700
7.00E+OO:0.95000
8.00E+00:0.96800

MAXIMUM QUEUE LENGTH
25
13
2

2

2

MAXIMUM QUEUEING TIME
132.74031
13.42583
0.38601
0.66154
0.70030

19

20 INTRODUCTION/ SEC. 1

WHAT: .
CONTINUE RUN:no

Having terminated both. the performance measure dialogue and the simulation, we are now
given the opportunity to define a new set of parameters and start a new run.

THINKTIME:
EXPANSION FINISHED.

A transcript of the dialogue with the EV AL command is available on mini-:disk A with file
name the same as the model name and file type RQ2PRNT. For example, we might now wish
to print CSM RQ2PRNT Al on a line printer.

It. is also possible to embed model expansion and solution in a PL/I program. Users tnay
define PL/I functions to provide numerical values to RESQ during the simulation run. For
example, such a function might be used to read service times from a data file in order to
implement a trace-driven simulation.

. April 3, 1982

21

2. THE SETUP COMMAND

This section covers basic usage of the SETUP command within the CMSeilVironment, the
prompting mode of the SETUP command, the file mode of the SETUP command, the mixing
of prompting and file. modes of the SETUP command and. the files used and produced by the
SETUP command. Appendix 5 covers the error messages produced by the SETUP command.

2.t. SETUP Command with CMS

Before issuing the SETUP command, the user should be . sure that his or her virtual
machine has sufficient storage, that the virtual machine has access to the mini-disks containing
the RESQ system files and the PL/I run time library, and that sufficient loader table space is
provided. These steps typically will need to be taken only the first time RESQ is used,
provided appropriate modifications are made to the CP directory and/or PROFILE EXEC.

To determine virtual storage currently available,. issue the command

ep query virtual storage

which.will produce a message of the form

STORAGE =01024K

Usually 1024K (K = 1024 bytes) is sufficient for using the SETUP command. More than
1024K is often required for using the EVAL command (Section 13). To increase. storage,
enter the CPenvironment (e.g., by hitting the PAl key on a 327Xseries terminal) and iss~e

ep define storage 1024k

The response to the DEFINE STORAGE command should be as with the QUERY STORAGE
command, e.g.,

STORAGE = 01024K

However, if .theCP directory maximum virtual storage entry does riot allow the increase, the
response wjll be

STORAGE EXCEEDS ALLOWED MAXIMUM

In this case it is necessary to have your CP directory maximum virtual storage entry changed
(by the computer operations staff) in order to be able to successfully define the desired
storage. (You may wish to have your CP directory default virtual storage entry changed to
give you 1024K without issuing the DEFINE STORAGE command.) It is llotstrictlyneces­
sary to enter CP before issuing the DEFINE STORAGE command, but issuing the DEFINE
STORAGE command from the CMS environment will produce an additional error message
and leave. the virtual machine in the CP environment. After defining sufficient storage, issue

ipl ems

followed by a blank line. This will restore the CMS environment and execute PROFILE
EXEC.

To be sure the mini-disk containing the RESQsystem files is available, issue

April 3, 1982

22 THE SETUP COMMAND / SEC. 2

state setup exec *

If the RESQ files are available then this will only produce the normal CMS ready message. If
the files are not available, the message

FILE 'SETUP EXEC' NOT FOUND

will be produced by the STATE command. To get access to the files, first determine the
userid and virtual address of the mini-disk containing the RESQ files. Then issue the CP
LINK and CMS ACCESS commands for this mini-disk. For example, if the RESQ files are on
mini-disk 195 of userid Sauer, with password "abcde", then you might issue .

cp link to Sauer 195 as 195 rr pass= abcde
access 195 b

(You may wish to insert lines such as these in your PROFILE EXEC.) The SETUP EXEC
assumes that the PL/I optimizing compiler run time library is present on an accessed mini-disk
and that the library has file name PLILIB and file type TXTLIB. The CMSSTATE command
may be used to verify that this is the case. If the library is not present, access to it must be
obtained before using SETUP.

To determine whether sufficient pages are available for the CMS loader tables, issue

query ldrtbls

The response will· be of the form

LDRTBLS = 005

If the number of pages is less than 5, issue

set ldrtbls 5

to ensure sufficient pages are available. (You may wish to insert the SET LDRTBLS com­
mand in your PROFILE EXEC.)

The SETUP command may be issued without an argument, as in the example in Section 1.
When issued without an argument, SETUP will prompt for a model name. Alternatively,
SETUP may be issued with a single argument, which will be interpreted as the model name.
Once the model name is established, the SETUP command is the same whether or not it was

. issued with an argument.

2.2. SETUP Command Prompting Mode

When the SETUP command is issued, it will look for a file with file name the same as the
model name, file type RQ2INP and file mode A. If it finds such a file, it will treat this file as
a dialogue file, using the dialogue file mode discussed in Section 2.3. If SETUP does not find
such a dialogue file, it enters prompting. mode, as in our example in Section 1.

SETUP examines only the first 72 characters of a line. Usually if is not necessary to have
lines longer than this because of the repetition of prompts (e:g., the user can enter more than
one class list per queue.) However, in some circumstances it may be necessary to create
longer 10gicaJ lines. If RESQ finds the string "+ +" at the end of a physical line, it assumes

April 3, 1982

.';:.

SEC. 2.2/ SETUP Command Prompting Mode 23

that the next physical line is part of the current logical line, and the .two lines are concatenated
with the "+ +" removed. This concatenation of physical lines into a single logical line may be
continued as long as the logical line does not exceed the internal buffer (see variable LINSIZ
in file SETUPD RQ2DAT, Section 2.4). In producing dialogue files, it is sometimes necessary
for SETUP to use the. "+ +" concatenation because the length Of the prompt pius the len~th
of the reply exceeds 72 characters .

. In prompting mode the special replies "how," "edit,""review," "save" and"quit"ntay
be gIven in response to any SETUP prompt; their meanings are described below. These
replies should not be included in dialogue files. (SETUP will not put these replies or ~ny
resulting dialogue in dialogue files.)

"How" is given by the user when a clarification of a prompt is desired. SETUP gives a
short tutorial and then reissues the prompt.

"Edit" places the user in an editor looking at a dialogue file. This dialogue file is a
transcript of the dialogue so far, excluding prompts receiving null replies and prompts receiv­
ing the five special replies. The user may make minor changes in this dialogue file, e.g.,
changing numeric values, or may make major changes, e.g., adding or deleting sections of
dialogue. When the user leaves the editor (e.g., by filing) SETUP reprocesses the dialogue file
left by the editor, as discussed in Section 2.3. (The user does not need to indicate to SETUP
which file to process. SETUP will look for the RQ2INP file it gave to the user in the editor.)
If the dialogue file is incomplete, as will usually be the case, then SETUP switches to prompt:­
ing mode when it reaches the end of the file. (If the file is complete, SETUP exits without
further prompting.)

The default editor used is the CMS EDIT command. However, if the user has a file
"NORMAL EDITOR" on the A disk, then the first word in that file is assumed to be the
name of an editor and that editor is used. For example, to use the VM/System Product Editor
(XEDIT) with SETUP the NORMAL EDITOR file should have contents

XEDIT

This assumes that the System Product Editor is available on the specific CMS system being
used. If the editor to be used is invoked by an EXEC, then "EXEC" should follow the EXEC
name on the NORMAL EDITOR record. (Usually editors are invoked by CMS MOOULE
files.) For example, if you have an editor which you invoke using MYEDlTOREXEC,· ih.tm
the NOR.MAL EDITOR file should have contents

MYEDITOR EXEC

"Review" displays the dialogue file on the terminal so that the user may review what he
or she has done. The dhilogue file is a transcript of the dialogue so far, excluding prompts
receiving null replies and prompts receiving the five special replies. The dialogue continues
after the display with the prompt which received the "review" reply.

"Save" causes the dialogue to terminate, with the dialogue sa far, both from file and
interactive mode, saved in the dialogue file (with the same file name as the model name and
file type RQ2INP).

"Quit" causes the dialogue file to terminate, with the last dialogue file retained on fiie
type RQ2INP. This last file is as it existed after the last SETUP edit command, if there was
one; Otherwise it is as it existed when SETUP was issued (possibly empty). What would

April 3, 1982

24 THE SETUP COMMAND / SEC. 2

have become the new dialogue file if "save" had been issued is available with file type
RQ2REC.

2~3 .. SETUP Command Dialogue File Mode

In dialogue file mode, the function of SETUP is analogous to that of a compiler for a
progralllming language. After being given the model name, (in response to the MODEL:
prompt,as an argument or implicitly after editing during prompting mode), SETUP will look
for a file with the model name as file name, file type RQ2INP and file mode A. The file may
have dther fixed or variable length records up to 80 characters long. However, SETUP will
only examine the first 72 characters of each record. Multiple physical records may be
concatenated into a single logical line, as discussed in Section 2.2. If SETUP finds this file,
then it will translate the file, issuing error messages as necessary, until it reaches the end of
the file. If the file is syntactically complete, then SETUP will terminate without prompting the
user. If the file is incomplete, then SETUP will switch to prompting mode to complete the
d,ialogue. .

A number of RESQ features are available in dialogue file mode which are not available in
prompting mode. For example, parameters and identifiers with distribution values instead of
numeric values may be defined, "global variables" for use during simulation may be defined,
and certain simulation specific dialogues may be used. These particular features will be
discussed in Sections 3 and 12, respectively. Perhaps, the most important RESQ feature
available only in dialogue file mode is the "INCLUDE" statement.

The INCLUDE statement iri RESQ is analogous to the preprocessor O/OINCLUDE
~tatements of PL/I or PASCAL. The form of the INCLUDE statement is "INCLUDE:"
followed by a file name. When SETUP encounters an INCLUDE statement, it searches fora
file with the given file name; this file may either be a separate. CMS mini-disk file or be a
member of a MACLIB. If the file is located, then the entire text of the file is logically
substituted in place of the INCLUDE statement and the text of the included file is processed
by SETUP as if it had been part of the original model definition. The file specified in the
INCLUDE statement must either have a file type of RQ2INP or be a member of a library with

. file type MACLIB SETUP will look for the file on all currently accessed mini-disks, not just
mini-disk A. SETUP will first look for a separate CMS file with the specified file name and
file type RQ2INP. If SETUP does not find such a file on any accessed mini-disk, then it will
look in each MACLlB in the list (if any) of MACLIB's declared as global by issuing the CMS
GLOBAL MACLIB command prior to issuing the SETUP command. (The MACLIB's are
searched in the order listed in the GLOBAL command.) In either case, the file should have
fixed length records with length 80. .SETUP will only examine the first 72 characters of each
record. If the file is not found, SETUP will issue an error message.

. The INcLUOE statement is typically used to include submodel or queue type definidotls.
Uowever, arbitrary portions of dialogue may be included with the tN-CLUDE statement; the
INCLUDE facility is a general text substitution mechanism. An INCLUDE statement tan
occur almost anywhere in a dialogue file. Specifically, an INCLUDE statement can occur on
any line in which a RESQ2 keyword prompt and reply can occur. An INCLUDE statement
maY not occur where SETUP would expect an identifier prompt for initializing an identifier or
~lpbal variable or a keyword line where no reply occurs (e.g., "SERVER-").

A dialogue file can contain an arbitrary number of INCLUDE statements. It is possible
to use INCLUDE statements in a nested manner; that is, a file to be included in a model can
itself contain INCLUDE statements. Nesting of INCLUDE statements is allowed to a

April 3, 1982

SEC. 2.3 / SETUP Command Dialogue File Mode 25

maximum depth of 10. The dialogue parsed as a result of INCLUDE: statements does not
appear in the RQ2INPfile produced by SETUP.

In addition to the dialogue file (RQ2INP), SETUP produces a listing file with file name
the same as the model name, file type RQ2LIST and file mode A. This file is very similar to
the dialogue file, but it includes error messages at points where errors were detected (if any
were detected), line numbers for each line, nesting levels of submodels and any dialogue
parsed as. a result of INCLUDE: statements. Following are some fragments of the RQ2LIST
file for the example in Section 1.3.

RESQ2 Translator V2.04 (01/19/82) Time: 16:55:48 Date: 01/29/82

* 1 * 0*
* 2* 0*
* 3* 0*
* 4* 0*
* 5* 0*
* 6* 0*
* 7* 0*
* 8* .·0*
* 9* 0*
* 10* 0*
* 11 * 0*
* 12* 1 *
* 13* 1 *

* 35* 1 *
* 36* 1 *
* 37* 1 *
* 38* 2*
* 39* 2*
* 40* 2*

* 55* 2*
* 56* 1 *
* 57* 1 *

* 68* 1 *
* 69* 0*
* 70* 0*

* 9.2* 0*
* 93* 0*
if< 94* 0*
* 95* 0*

MODEL:CSM

END

METHOD: simulation
NUMERIC PARAMETERS:thinktime users
NUMERIC IDENTIFIERS:userframes

USERFRAMES:50
MAX JV: 1 /*0: command type, 1 : cycle count*/
QUEUE:terminalsq

TYPE: is
CLASS LIST: terminals

SERVICE TIMES:thinktime
SUBMODEL:cssm /*Computer System Submodel*/

NUMERIC PARAMETERS:pageframes
CHAIN PARAMETERS:interactiv

SET NODES:decrcycles
ASSIGNMENT LIST:jv(cyclecount)=jv(cyclecount)-l.

SUBMODEL:iosys
CHAIN PARAMETERS:interactiv
QUEUE TYPE:~iskdef

NODE PARAMETERS:servicecls

END OF SUBMODEL IOSYS
INVOCATION:iosys1

TYPE:iosys

END OF SUBMODEL CSSM
INVOCATION:cssm1

TYPE:cssm

LIMIT - CP SECONDS: 5
SEED: 1
TRACE: no

NO FATAL ERRORS DETECTED DURING COMPILATION.

2.4. SETUP ·Command Files

We have already discussed or mentioned most of the files used or produced by the
SETUP command. The normal input to the SETUP coml1land is from three files: (1) SYSIN­
the SETUP EXEC issues a CMS FILEDEF command defining SYSIN to be the terminal.

April 3, 1982

26 THE SETUP COMMAND / SEC. 2

(2) The dialogue file (RQ2INP) if one exists and (3) SETUPD RQ2DAT, which is used to
define the sizes of certain internal tables. SETUP cannot determine in advance the appropri­
ate sizes for its symbol, expression and routing tables. It cannot determine in· advance· the
appropriate size for its buffers for storing a logical line. File SETUPD RQ2DAT on the
mini-disk containing SETUP EXEC contains sizes for these tables and buffers. The default
content of the file is

SYMSIZ=1005 , EXPSIZ=2005 , ELVSIZ=2505 , RTBSIZ=1005 , LINSIZ=1729;
/*DIMENSIONSOF SYMTAB, EXP. TAB, ELEMENT VECTOR, ROUTING· TAB, BUFFERS*/

where SYMSIZ is the maximum number of symbols (identifiers), EXPSIZ is the maximum
number of expressions, ELVSIZ is the maximum number of expression components (e;g.,
3.1*(i-3) has 5 components: 3.1,*, i, - and 3), RTBSIZ is the maximum number of routing
transitions and LINSIZ is one more than the maximum length (in characters) of a logical line.
The user may have a copy of SETUPD RQ2DAT on a mini-disk in the search order before the
mini-disk containing the SETUP EXEC, to be used instead of the default copy. The user may
increase (or decrease within reason) these table and buffer sizes in this copy of SETUPD
RQ2DAT.

While executing, the SETUP command produces four files: (1) SYSPRINT - the SETUP
EXEC issues a CMS FILEDEF command defining the terminal to be SYSPRINT.
(2) RQ2REC - this is the file which normally will become RQ2INP at the end of the SETUP
command (unless the "quit" special reply is used). (3) RQ2LIST and (4) RQ2COMP - this
is the file, with file name the same as the model name and file type RQ2COMP, which will
provide the input to the EV AL command. If SETUP is used in dialogue file mode and
discovers errors, it will erase the RQ2COMP file it has generated. Unless the "quit" special
reply is used, SETUP will erase the RQ2INP file it was given and rename the RQ2REC file it
generated to be the new RQ2INP.

Figure 2.1 shows these files and their relationships with the commands.

cp c=:;J RQ2DAT
SVSPRltlT

\
SETUP EYH..

Figure 2.1 - Files used with SETUP

April 3,1982

27

3. PARAMETERS, IDENTIFIERS, VARIABLES AND ARRAYS

This section covers the syntax and semantics of the declarations of parameters, identifiers,
variables, chain arrays and node arrays at the beginning of either a model or submodel. The
syntax and semantics are the same in either case, except where otherwise noted.. (Some
similar declarations are used with queue type definitions, but the differences are significa,ht
enough that we discuss those declarations separately in Section 6.) This . section also covers the
syntax and semantics of the declaration of the extents of the vectors of job and chain varia­
bles. . Some of the declarations are not possible in interactive mode because no prompts are
issued to give the opportunity to make the declarations. All of these declarations are optional
in dialogue files (assuming the declared elements are not needed). We discuss these declara­
tions in the order they may appear in a dialogue file.

3.1 .. Parameters

There are four types of parameters allowed in RESQ, numeric paramet~rs, distribJItion
parameters, node parameters and chain parameters. Node parameters and chain parameters
are allowed only in submodels.

Numeric parameters defined at the beginning of a model are given constant numerical
values (i~ternally represented in floating point) when the EV ALor EVALT commands
(Section 13) are issued or when the appropriate procedure is called from aPL/lprogram
calling RESQ (Section 14). Numeric parameters defined at the beginning of a submodel are
given numerical values when the submodel is invoked (Section 10). Names of numeric
parameters may be used in place of numerical constants anywhere in the SETUP dialogue that
numerical constants are appropriate. Numeric parameters may be scalars, vectors or matrices.
As illustrated in Section 1.3, the syntax consists of "NUMERIC PARAMETERS:" followed'
bya list of one or more names to be used for the parameters. A vector parameter is declared
by following the name by a parenthesized expression for the number of elements in the vector.
The elements are indexed starting at one (1). The expression may be any expression. which .
(1) can be evaluated at this point in the dialogue, e,g., any Parameters in the expression have
been previously declared, and (2) is independent of simulation (see Appendix :3 for clarifica­
tion of this distinction). A matrix parameter is declared by following the name by a left
parenthesis ("(,'), an expression for the number of rows, a semi:"colon (";"), an expression for
the number of columns and a right parenthesis (")"). The rows and columns are indexed
starting at one (1). The same constraints are placed on the expressions as for the expression
giving the number of elements in a vector. The line declaring numeric parameters may be
repeated as many tiines as necessary to declare the desired parameters. However, in declaring
parameters, the user should keep in mind the effort required to define values for parameters,
e.g., when the EV AL command is issued, and consider using identifiers instead. Following is
an example of numeric parameter declaration:

NUMERIC PARAMETERS:a b(a)
NUMERIC PARAMETERS:c(2;a+1) d

Distribution parameters m. ay be defined only within dialogue files. Distribution parame-. . .
ters defined at the beginning of a model are given values representing probability distributions
when the EVAL or BV AL T commands are issued or when the appropriate procedure is caUed
from a PL/I program calling RESQ (Section 14). Distribution parameters defined at the
beginning of a submodel are given values representing probability distributions when the
submodel is invoked (Section 10). Names of distribution parameters may be used in place of
probability distributions anywhere in the SETUP dialogue that probability distributions are
appropriate. The values given for distribution parameters may be either numerical values or

April 3, J 982

28 PARAMETERS, IDENTIFIERS, V ARIABLES, ARRAYS /. SEC. 3

probability distributions. RESQ2 probability distributions are discussed in Appendix 3. A
numerical value given for a distribution parameter will be interpreted as either (1) the mean
of an e~ponential distribution, where a continuous distribution is expected, e.g., for service
times, or (2) a constant distribution, where a discrete distribution is expected, e.g., for
numbers of tokens to be allocated or in set node assignment statements. Distribution parame~
ters may be scalars, vectors or matrices. The syntax consists of "DISTRIBUTIONPARAME­
TERS:" followed by a listof one or more names to be used for the parameters. Vector and
matrix parameters are declared as with numeric parameters. The line declaring distribution
parameters may be repeated as many times as necessary to declare the desired parameters.
Followirig is an example of distribution parameter declaration:

. DISTRIBUTION PARAMETERS:b
DISTRIBUTION PARAMETERS:c(2;a+1) d

Node parameters may be defined only within submodels. Node parameters are used to
allow a submodel to refer to nodes outside of the submodel. For further discussion of the use
of nope parameters, see Section 10 and Appendix 1. Names of node parameters may only be
used in routing definitions and as arguments to status functions. Node parameters may be
scalars or vectors. The syntax consists of "NODE PAR.AMETERS:" followed by a list of one
Of more names to be used for the parameters. Vector parameters are declared as with numeric
parameters. The line declaring node parameters may be repeated as many times as necessary
to declare the desired parameters. Following is an example of node parameter declaration:

NODE PARAMETERS:b
NODE PARAMETERS:c(2*a) d

. Chain parameters may be defiried only within submodels. Chain parameters are used to
allow routing chains 1<) cross submodelboundaries, i.e., to connect nodes inside and outside of
submodels. For further discussion of the use of chain parameters, see Section 10 and Appen­
dix 1. N ames of chain parameters are only used in routing definitions in response to the
"CHAIN:" prompt. Chain parameters are always given type "external" within a submodel.
Chain parameters may be scalars or vectors. The syntax consists of "CHAIN P ARAME­
TBRS:" followed by a list of one or more names to be used for the parameters. Vector
parameters are declared as with numeric parameters. The line declaring chain parameters may
be repeated as many times as necessary to declare the desired parameters. Following is an
example of chain parameter declaration: . .

CHAIN PARAMETERS;b
CHAIN PARAMETERS:c(2*a) d

3.2. Identifiers

There are two types of identifiers allowed in RESQ, numeric identifiers and distribution
identifiers.

Numeric identifiers are given numeric expressions defining their values (internally
represented in floating point) immediately following their declarations. Names of numeric
identifiers may be used in place of numerical constants anywhere in the SETUP dialogue that
nl,H'llerical expressions are appropriate. However, simulation dependent values (see Append,~x
3) may not be used in these expressions. Numeric identifiers may be scalars, vectors or
matrices. As illustrated in Section 1.3, the syntax consists of "NUMERIC IDENTIFIERS:"
followed by a list of one or more names to be used for the identifiers. Names of vectors and
matrices are declared as with numeric parameters. Immediately following the line declaring

April 3, 1982

SEC. 3.2 I Identifiers 29

the names of the identifiers will be one or more lines (one per name) gIVmg the identifier
name, a colon ('!:") and the defining expression(s) for that name. In the case of a vector,
defining expressions for all elements are given on the same line. If· there are fewer expressions
than the number of elements in the vector, the last expression is also used for the remaining
elements. Matrices are stored internally as vectors, by rows, i.e., if a matrix has m rows and 11
c:tilumns, the matrix is stored as a vector with mxn elements, with the first n elementso(the
internal vector containing the first row of the matrix, the second n elements of the internal
vector containing the second row of the matrix, and so on. Defining expressions for all
elements of a matrix are given on the same logical line (using concatenation of physical lines,
if necessary) to specify the elements of the internal vector representation. If there are fewer
expressions than the number of elements in the matrix, the last expression is also used for the.
remaining elements, The line declaring numeric identifiers may be repeated as many times as
necessary to declare the desired identifiers. Following is an example of numeric identifier
declaration:

NUMERIC IDENTIFIERS:a b(3) c(3;2)
A: 3 . 1 *min (d, 1)
B:O
C:14.1 7 13

In this example, all three elements of b are zero, c(1;1) is 14.1; c(1;2) is 7 and the remaining
elements are 13.

Distribution identifiers may be. defined only within dialogue files. Distribution identifiers
correspond to numeric identifiers as distribution parameters correspond to numeric parameters;
the syntax is the same except for the keyword difference ("DISTRIBUTION" instead tif
"NUMERIC"). The defining expressions given for distribution identifiers may include, but
need not include, references to probability distributions. Names of distribution identifiers may
be used in place of probability distributions anywhere in the SETUP dialogue. that probability
distributions are appropriate. (RESQ2 probability distributions are discussed in Appendix 3;)
Distribution identifiers may be scalars, vectors or matrices. Where a distribution identifier is
used in the dialogue, the effect is as if the defining expression for that distribution identifier
(or identifier element, in case of a. vector .or matrix identifier) were used in that place, except
for possible differences due to the scope of names with respect to submodels, i.e., the names
in effect where the defining expression is given are the. names referenced in the expression
evaluation. Following is an example of distribution identifier declaration:

DISTRIBUTION IDENTIFIERS:a b(2;3) c
A: discrete (1 , .8; 2, . 15; 3, .05)
B:discrete(x,.8;y,.2) z+bE(l,O;l,l) 3
C:propagate+standard(leng,O)/capacity

3.3. Global Variables

Global variables may be declared only in dialogue files. Global variables inRESQ
correspond to variables in programming languages and can be used· for essentially the same
purposes. The term "global II is used to distinguish these variables from job variableS(JV). and
chain variables (CV). However, global variables may be local to submodels in the sense of
the scope of the names of the variables. Global variables are internally represented in double
precision floating point. The declarations and initial values of global variables are given using
the same syntax as used to declare and define values for numeric identifiers, except the
keywords "GLOBAL VARIABLES" are used. instead of i'NUMERIC IDENTIFIERS".
Simulation dependent values (see Appendix 3) may be used in the defining expressions for

April 3, 1982

30 PARAMETERS, IDENTIFIERS, V ARIABLES, ARRAYS / SEC. 3

initial values for global variables. Global variables may be scalars, vectors or matrices. The
same conventions for internal storage of vector and matrix elements that are used with
numeric identifiers are used with global variables. After global variables are declared; the
values may be changed by assignments associated with set nodes. Examples of the use of
global variables are given in App~ndix 1. Following is an example of global variable declara­
tion:

GLOBAL VARIABLES:a b(3) c(3;2)
A: 3. 1 *min (d, 1)
B:a discrete(1, .3;2,.7) 0
C:14.1 7 13

The expressions are evaluated before simulation begins, so simulation dependent expressions
involving status functions (Appendix 3) are not particularly useful in these expressions.
Distributions may be useful and the USER function (Appendix 3) may be useful. The second
element of b in the example will either be 1 or 2, depending on the random number generated
in evaluating the discrete distribution.

3.4. Chain and Node Arrays

Arrays of routing chains are useful where the several chains have substantially the same
characteristics and the differences between the chains can be simply characterized. Chain
arrays will always be vectors. The routing for an array of chains may be specified for the
entire array in a single chain definition section. The use of chain arrays implies the use of
node arrays with the same numbers of elements in the chain and node arrays. Thedifferences
between chains are specified by use of numeric vectors or matrices in definitions· of routing
probabilities and predicates, in definitions of the node characteristics, etc. Names are declared
as names of chain arrays in the declarations section of a model or submodel. The definition of
the routing chains having this array name is given in the routing section as with scalar chains
(Section 9). The declaration syntax consists of "CHAIN ARRAYS:" followed by a listof·one
or more names. Each name is followed immediately by a parenthesized expression for the
number of elements in the array. The constraints on this expression are the same as for
expressions for the number of elements in a numeric parameter vector. The line declaring
chain arrays may be repeated as many times as necessary to declare the desired arrays.
Following is an example chain array declaration:

CHAIN ARRAYS:interactiv(no_groups) batch (no_types)

Arrays of nodes are necessary with chain arrays and are useful· in other situations. Node
arrays will always be vectors. All elements of a node array will have the same node type,e.g.,
if one element of a particular array is a class, then all elements of that array will be classes.
Further, if one element of a particular node array belongs to a particular queue, theh. all
elements of the array belong to that queue. Names are declared as names of node arrays in
the declarations section of a model or submodel. The definition of the nodes having this array
name is given in the same way as with scalar nodes (Sections 4-8). The declaration syntax
consists of "NODE ARRAYS:" followed by a list of one or more names. Each name is
followed immediately by a parenthesized expression for the Iiumher of elements in the array.
The constraints on this expressioIi are the same as for expressions for the number of elements
in a numeric parameter vector. The line declaring node arrays may be repea,ted as many times
as necessary to declare the desired arrays. Following is an example node array declaration:

NODE ARRAYS:terminals(no_groups) batch_s(no_types)
NODE ARRAYS:cpu(no_groups+no_types)

April 3, 1982

SEC. 3.5 / Extents of Job and Chain Variables 31

3.5. Extents of Job and Chain Variables

Each job in RESQ has a vector of job variables (IV) stored with that job. The vector
begins with index 0 and has extent as declared by .the MAX JV statement, as illustrated in
Section. 1.3. (The disparity of starting with index 0 for job variables and chain variables and
with index 1 for all other RESQ vectors is due to preservation of compatibility with eatiy
versions of RESQ.) The syntaxis "MAX JV;" followed by an expression for the extent, where
the expression has the same constraints as those for the number of elements in a numeric
parameter vector. If the MAX JV statement is omitted, the value 1 is used for the extent, Le.,
reference may only be made to JV(O) and JV(1). ~xcept for jobs produced byspllt and
fission nodes (Section 8), all job variables are initialized to have value 0 (zero). SeeS{lction
13 for a discussion of the storage requirements of jobs and job variables .

. Each chain in RESQhas a vector of chain variables (CV) stored with that chain. The
vector begins with index 0 and has extent as declared by the MAX CV statement. Chain
variables may be used to affect the arrival times for jobs in open chains (Section 9). Other­
. wise, it is usually advisable to use global variables instead of chain variables. The syntax is
"MAX CV;" followed by an expression for the extent, where the expression has the same
constraints as those for the number of elements in a numeric parameter vector. If the MAX
CV statement is omitted, the value 0 is used for the extent,i.e., reference may only be made
to CV(O). All chain variables are initialized to have value 1 (one).

April 3, 1982

32

4. ACTIVE QUEUES

This section covers the syntax and semantics of the definitions of active queues using
predefined queue types .. Section 6 covers definition of queues with user defined queue types.
A job's ~ctivity is typically focused on the resources of active queues. A job typically has no
interaction with other model elements while at an active queue. An active queue consists of
one or more servers and one or more waiting lines called "classes". A class belonging to one
active queue may not belong to another active queue. The classes categorize the characteris­
tics Of jobs currently at the queue in terms of work demand (service requirement) distribu­
tions, priorities and routing. (A class is a particular kind of node in the sense ofRESQ

. routing from node to node.) Examples of work demand could be number of instructions,
number of bytes, etc.' In general, work demanded is divided by service rate to obtain service
time. The service rate is the amount of work the' server can perform in one unit of time. In
the common special case of fixed rate servers, the server may be assumed to have unit rate of
service and the work demand may be expressed as service time. Jobs within a class may be
further distinguished, e.g., by the values of job variables. A job arriving at a class makes a
request for service and waits until it is assigned a server. Once the job is assigned a: server, it
receives service from that server until the service request is satisfied. The service may be
preempted by other jobs arriving at the queue or the server may be shared with other jobs,
depending on the queueing discipline. .

SINGLE
SERVER

MULTIPLE
SERVER

INFINITE
SERVER

Figure 4.1 - Active Queues
Single, Multiple, Infinite Server

Figure 4.1 (a duplicate of Figure 1.2) shows the diagram symbols used for active queues.
We first discuss the simple predefined queue types and then discuss the general case. The
discussion presumes that simulation is used for model solution. See Section 11 for restrictions
for numerically solved models.

4.1. The FCFS Queue Type

The PCFS queue type is used to define a single server queue with first come first served
scheduling. The server has a fixed rate of service of one unit of work per unit of simulated'
time. Jobs are served in order of arrival at the queue, i.e., class distinctions are ignored for
scheduling purposes. After the queue type specification, the FCFS type definition consists of
one or more pairs of lines, the first element of the pair being a list of classes followed by a list
of service time distributions. The following example illustrates the FCFS type:

QUEUE:q
TYPE:fcfs
CLASS LIST: abc

SERVICE TIMES:.5 user(jv(0);3) discrete(10,.5;20,.5)
CLASS LIST: d e(*) /*"(*)" is optional*/

SERVICE TIMES: .6+standard(jv(3) ,0)

April 3, 1982

.:;

SEC. 4.1 / The FCFS Queue Type 33

CLASS LIST: g(*) /*"f" is a reserved keyword for "false"*/
SERVICE TIMES: h(*)

The line pairs of class lists and service times may be repeated as many times as necessary to
define the required classes. An element in the list of service time distributions may be any
nttmerical expression,possibly including simulation dependent values such as status funditms
and job variables and possibly including distribution parameters and identifier:s. Asingle
expression may be given instead of one expression per element in the cia!>s list; the single
expression is then used for all classes in the list.

An element in the class list may be the name of a. node array, indicating all elements, of
the array. The node array name may be followed by "(*)" to explicitly indicate all eleme'fits
are listed, but individual elements of a node array may not be listed. An element in the
service time distribution list corresponding to a node array in the class list must be it vector
(e.g., a numeric parameter or a distribution identifier) of the same length, unless the service
time distribution list consists of a single expression to be used for all elements in the class list.

If a service time expression, after resolution of parameters and identifiers, contains no
references to RESQ. probability distribution keywords, then the value of the expression is
interpreted as the mean of a (negative) exponential probability distribution. (TheRESQ
probability distribution keywords are BE, DISCRETE, StANbARD and UNIFORM. See
Appendix 3 for further discussion of distributions.) If the expression does contain at least one
distribution keyword, then the expression is used directly. In either case, when a job arrives at
a class, a sample is obtained from the service time distribution and stored with the job to be
used when the job is assigned a server.

4.2. The IS Queue Type

The IS queue type is used to define an infinite server "queue." (Since there is no waiting
for service, scheduling is not an issue.) Each server serves at a fixed rate of one unit of work
per unit of simulated time. After the queue type specification, the IS type definition consists
of one or more pairs of lines, the first element of the pair being a list of classes followed by a
list of service time distributions. The rules for the class lists and servicetiine lists are the
same as with the FCFS queue type. The following example illustrates the IS type:

QUEUE:q
TYPE:is
CLASS LIST: a b c

SERVICE TIMES:.5 user(jv(O) ;3) discrete(10, .5;20, .5)
CLASS LIST: d e(*) /*"(*)"is optional*/

SERVICE TIMES:.6+standard(jv(3) ,0)
CLASS LIST: g(*)

SERVICE TIMES: h(*)

4.:t ThePS Queue Type

The PS queue type is used to define a single server queue with the process()t sharing
queueing discipline. Processor sharing is the limiting case of a round robin ("time slicing")
discipline when the quantum ("time slice") tends to zero, provided there is negligible overhead
in switching from job to job. The server serves at a fixed rate of one unit of work per unit of
simulated time. After the queue type specification, the PS type definition consists of one. or
more pairs of lines, the first element of the pair being a list of classes followed by a list of

April 3, 1982

34 ACTIVE QUEUES / SEC. 4

service time distributions. The rules for the class lists and service time lists are the same as
with the FCFS queue type. The following example illustrates the PS type:

QUEUE;q
TYPE:ps
CLASS LIST: a b

SERVICE TIMES:.5 user(jv(0);3)
CLASS LIST: d e(*) /*"(*)"

SERVICE TIMES;.6+standard(jv(3) ,0)
CLASS LIST: g(*)

.SERVICE TIMES: h (*)

4.4. The LCFS Queue Type

c
discrete(10,.5;20, .5)

is optional*/

The LCFS queue type is used to define a single server queue with the last come first
served preemptive resume queueing discipline. An arriving job always preempts a job in
service, if there is one. Jobs are served in reverse order of arrival. When a job is preempted

. and later restarted, its remaining service request is the original request less any service already
received. The server serves at a fixed rate of one unit· of work per unit of simulated time .

. After the queue type specification, the LCFS type definition consists of one or more pairs of
lines, the first element of the pair being a list of classes followed by a list of service time
distributions. The rules for the class lists and service time lists are the same as with the FCFS
queue type. The following example illustrates the LCFS type:

QUEUE:q
TYPE:lcfs
CLASS LIST: abc

SERVICE TIMES:.5 user(jv(O) ;3) discrete(lO, .5;20, .5)
CLASS LIST: d e(*) /*"(*)" is optional*/

SERVICE TIMES:.6+standard(jv(3) ,0)
CLASS LIST: g(*)

SERVICE TIMES: h(*)

4.5. The PRTY Queue Type

The PRTY queue type is used to define a single server queue with a nonpreemptive
priority queueing discipline. An arriving job is assigned a positive integer priority. (This
priority is then fixed until the job leaves the queue.) A priority value closer to zero is consid­
ered a higher priority than a priority value farther from zero. When the server becomes
available and there are waiting jobs, a job with the smallest priority value is selected for
service. Scheduling is first come first served among jobs with the same priority value. The
server serves at a fixed rate of one unit of work per unit of simulated time. After the queue
type specification, the PRTY type definition consists of one or more triples of lines, the first
element of a triple being a list of classes, the second a list of service time distributions and the
third a list of priority expressions. The rules for the class lists and service time lists are the
same as with· the FCFS queue type. The syntax of the priority expression lists is the same as
with service time lists. If a priority expression does not evaluate to an integer, the value is
truucatedto an integer value (the fraction is discarded). The following example illustrates the
PRTY type:

QUEUE:q
TYPE:prty

April 3, 1982

.;;

SEC. 4.5 / The PRTY Queue Type

CLASS LIST: a
SERVICE TIMES:.5
PRIORITIES: 5

b

user(jv(O) ;3)
1

CLASS LIST: d e(*) /*"(*)"
SERVICE TIMES:. 6+standard (jv (3) , 0)
PRIORITIES: 3

CLASS LIST: g(*)
SERVICE TIMES: h(*)
PRIORITIES; p(*)

4.6. The PRTYPR Queue Type

c
discrete(10,.5;20,.5)
jv(jyrty)

is optional*/

35

The PR TYPR queue type is used to define a single server queue with a. preemptive
priority queueing discipline. Preemption decisions are based on the differences between the
priority of the job being served and the priorities of the other jobs in the queue and on the
preemption distance specified in the queue ·definition. By appropriate choiCe of priority
expressions and preemption distance, very general scheduling mechanisms can be represented
with the PRTYPR queueing discipline. An arriving job is assigned a positive integer priority.
(This priority is then fixed until the job leaves the queue.) A priority value closer to zero is
considered a higher priority than a priority value farther from zero. If the arriving. job is of
higher priority than the job in service (if there is a job in service), then if the difference
between the priority values is at least the preemption distance, then preemption occurs. When
a job is preempted and later restarted, its remaining service request is the original request less
any service already received. A preemption distance of 1 (one) results in a strictly preemptive
discipline, i.e., preemption always occurs when a higher priority job arrives, and a sufficiently
large preemption distance, e.g., 2147483647 (231 _1), results in a strictly nonpreemptive
discipline as With PRTY. When the server becomes available and there are waiting jobs, a job
with the smallest priority value is selected for service. Scheduling is first come first served
among jobs with the same priority value. The server serves at a fixed rate of one unit of work
per unit of simulated time. After the queue type specification, there is a line with "PREEMPT
DIST:" followed by an expression for the preemption distance. This expression must be
simulation independent (see Appendix 3). After that line the PRTYPR type definition consists
of one or more triples of lines, the first element of a triple being a list of classes, the second a
list of serviCe time distributions and the third a list of priority expressions. The rules fot the
class lists and service time lists are the same as with the FCFS queue type. The syntax of the
priority expression lists is the same as with service time lists. If a priority expression does not
evaluate to an integer, the value is truncated to an integer value (the fraction is discarded)..
The following example illustrates the PRTYPR type:

QUEUE:q
TYPE:prtypr
PREEMPT DIST:3
CLASS LIST: a

SERVICE TIMES:.5
PRIORITIES: 5

b

user(jv(O) ;3)
1

. CLASS LIST: d e(*) /*;' (*)"
SERVICE TIMES: .6+standard(jv(3) ,0)
PRIORITIES: 3

CLASS LIST: g(*)
SERVICE TIMES: h(*)
PRIORITIES: p(*)

April 3, 1982

·c

discrete(10, .5~20, .5)
jv(jyrty)

is optional*/

36 ACTIVE QUEUES / SEC. 4

For discussion purposes assume that jobs arriving at class C have JV(J PRTY) with value 13
and that all elements of P(*) are 10. Jobs arriving at class B would preempt jobs at classes A,
C and G(*) but not jobs at classes D and E(*). Jobs arriving at classes D or E(*) would
preempt jobs at classes C and G(*) but not class A. Jobs arriving at class A would preempt
jobs at class C or classes G(*). Jobs arriving at classes G(*) would preempt jobs at class C.

4,7. The ACTIVE Queue Type

The ACTIVE queue type is used to define active queues not definable with the above
queue types. This general case allows declaration of multiple server queues other than IS
queues, queueing disciplines not allowed by the other predefined queue types, and queues with
servers that have queue length dependent service rates and/or with servers that will accept
jobs from only a subset of the classes of the queue. Several of the lines in the ACTIVE
dialogue are optional in dialogue files or apply only to certain queueing disciplines. After the
queue type specification, there is a line for definition of the number of servers, which consists
of "SERVERS:" followed by an expression for the number of servers. The expression must
be simulation independent. If the number of servers line is omitted, the queue will have a
single server by default.

Next is a required line for· definition of queueing discipline which consists of "DSPL:"
followed by a keyword representing a queueing discipline. The allowed keywords are FCFS,
PS, LCFS, PRTY, PRTYPR, SRTF and LRTF. (In addition to the generality 9f scheduling
mechanisms possible with the PRTYPR discipline as mentioned in Section 4.6, it should be
recognized that set nodes, routing predicates, passive queues and other RESQ elements may be
used to build complex scheduling mechanisms, as illustrated in Appendix 1.) Only FCFS, PS
and PRTY are allowed with multiple server queues. With SRTF (shortest remaining time
first), the job chosen for service is always the one with the shortest remaining service time. If
an arriving job has service time less than the remaining service time of the job in service, if
any, then the job in service is preempted (with its remaining time saved so that it can resume
where it left off) and the arriving job gets the server. SRTF is the optimum discipline for a
queue in isolation in the sense that it minimizes the mean queueing time by maximizing the
number of completed queueing times. With LRTF(longest remaining time first), the job
chosen for service is always the one with the longest remaining service time. A job is not
preempted by jobs already in the queue even though its remaining service time has become
shorter than one of. those jobs because of the progress it has made. (Thus LRTF is not the
worst possible discipline in the sense that SRTF is the optimal discipline.) If an arriving job
has service time more than the remaining service time of the job in service, if any, then the job
in service is preempted (with its remaining time saved so that it can resume where it left off)
and the arriving job gets the server. With the regenerative method for confidence intervals
(Section 12), the regeneration state should not have any jobs at queues with the SRtFand
LRTF disciplines. If the queueing discipline is PRTYPR, then after the queueing discipline
line there is a required line giving the preemption distance, as with the line following PRTYPR
with the PRTYPR predefined queue type.

Next comes one or more pairs or triples of lines containing class lists and class character­
istics, depending on the queueing discipline. There will be pairs of lines for FCFS, PS, LCFS,
SRTF and LRTF and triples of lines for PRTY and PRTYPR. The first element of a pair will
b~ a class list, as with the FCFS predefined type. The second element of a pair will be a list
of work demand expressions analogous to the service time expressions of the FCFS predefined
type. "WORK DEMANDS:" is used instead of "SERVICE TIMES:" because the service time
will be determined by both the work demand and the service rate, i.e., the amount of work
requested by the job will be divided by the service rate of the. server to determine service time .

. Except for the change in keywords, the characteristics are the same for the work demand line

April 3, 1982

SEC. 4.7 / The ACTIVE Queue Type 37

in the ACTIVE type and the service time line in the FCFS type. In the case of PRTY and
PRTYPR queueing disciplines, the class list and work demand lines are followed by a list of
priority expressions, as with the PRTY and PRTYPR predefined types.

After the class definition section comes the optional server definition section. If ttb
server definitions are given, then all servers are assumed to be fixed unit rate servers which
accept jobs of all classes of the queue. Server definitions are primarily useful.where servers
are to have service rate dependent on queue length, i.e., the total number of jobs at the queue
and/ or where servers only accept jobs from a subset of the classes of the queue.

Service rates dependent on queue length can be used to get the effect of multiple servers
(though it is usually more efficient to actually define multiple servers), to represent increased·
Or decreased server efficiency with varying queue lengths and/or to represent a subnetwork by
a single "composite" queue in an approximate solution. Where service rates depend on queue
length, rates are redetermined whenever the queue length changes. This is true for both
simulation and numerical solution. If in a simulation it is desired that service times depend on
queue length on arrival of a job, but are not affected by later changes in queue length
(including arrivals during service) this can be accomplished by use of the QL or TQ status
functions (see Appendix 3) in expressions for service times (or work demands). Queues with
several classes may be defined with several servers such that each server will accept jobs from
only a subset of the classes. Such a queue may be useful in representing multi-processor
systems where the processors have different characteristics, e.g., some processors canriot
initiate I/O.

A server definition consists of a line "SERVER -" followed by optional definitions of
service rates and classes accepted. Service rates .are defined by one or more lines· of the form
"RATES:" followed by a list of expressions giving service rates for different queue lerigths.
The expressions must be simulation independent (Appendix 3). The first rate given is.used for
queue length 1, the second rate (if given) is used for queue length 2, the third rate for queue
length 3. and so on. The last rate given is used for all larger queue lengths as well as for that
particular queue length. If no rates are given then the server will have a unit rate for all queue
lengths. Classes accepted are declared by one or more lines of the fQrm "ACCEPTS:"
followed by a list of classes accepted by the server. The keyword ALL or an empty list m.ay
be used instead of a list of all classes of the queue; Similarly, if the classes accepted declara­
tion is omitted, then all classes are accepted by the server. The number of server definitions
may be smaller or larger than the number of servers specified at the beginning of the. queue
definition. If the number of definitions is smaller than the last definition, then the last
definition is repeated to make up for the missing definition. Excess definitions are ignored.
The numerical components of RESQ require that a queue with queue length dependent service
rates has the same rate list for each of its servers. Class restricted servers are not allowed
with the numerical solution components of RESQ.

Following is an example ACTIVE queue definition:

QUEUE:q
TYPE:active
SERVERS: 2
DSPL:fcfs
CLASS LIST:c1 c2

WORK DEMANDS:stime
SERVER -

RATES: 1 /*1 job at the queue*/
RATES:.9 /*2 or more jobs at the queue*/

SERVER -

April 3, 1982

3S

RATES: 1 2
ACCEPTS:c2

ACTIVE QUEUES / SEC. 4

April 3, 1982

v

39

5.PASSIYE QUEUES

This section covers the syntax and semantics of the definitions of passive queues using
predefined queue types. Section 6 covers definition of queues with user definedqileue:types.
i'liSsive queues are not allowed with numerical solution (Section 11). Passive queuesaitoW
C6tivenient representation of simultaneous resource possession. A job typically ac<fuires
tokens of a passive queue and holds on to them while visiting other queues (active and/or
passive queues) and 1110del elements. The Job explicitly releases or destroys its tokens whenit
no longer needs them. A secqnd use of passive queues is to model mechanisms such as
communication protocols and protocols for channel-device interaction. (Such usage111ay
il1VQjve other RESQ elements. See Appendix 1 examples.) A third use of passive queues is jn
measllring response times in subnetworks. The "queueing time" (response time) for. a passive
queue is defined as the time between a job's request foi: tokens of the passive queue and that .
job's freeing or destroying of the tokens.

ALLOCATE AND
ALLOCATE

TRANSFER CREATE

POOL OF TOKENS

SUBNETWORK

JOB FLOW
TOKEN FLOW

Figure 5.1 - Passive Queue

RELEASE

DESTROY

A passive queue consists of a pool of tokens to be allocated to jobs and a set of nodes which
operate on that pool and the jobs holding tokens. In addition to the allocate and release nodes
used in the example of Section 1, passive queues may have AND alloc~te nodes for simultane­
ous allocation from several different queues, OR allocate nodes for allocation from any one of
several passive queues, transfer nodes for passing tokens back and forth between related jobs
(Section 8), destroy nodes for destroying tokens held instead of releasing tokens and create .
nodes for adding new tokens to the pool. Except for AND and OR allocate nodes, a. node
belonging to one passive queue may not belong to another passive queue. AND. and OR
alloc.ate nodes are. usually associated with several passive queues. Fusion nodes (Section· 8)
and sinks (Section 9) may have the effect of releasing tokens.. Figure. $.1 (a duplicate of
Figure 1.3) shows the diagram symbols used to represent passive queues.

The passive queue definition dialogue begins with the line for the queue name, as in an
active queue definition: Next is the line "TYPE:passive". There are no predefined types for
passive queues other than the general case. Next is a required line giving the number of
tokens initially in the pool. This line consists of "TOKENS:" followed by an expression. This

April 3, 1982

40 PASSIVE QUEUES / SEC. 5

expression must be simulation independent and non-negative. Next is a required line giving
the queueing discipline. This consists of "DSPL:" followed by a keyword representing the
discipline, either FCFS, FF or PRTY.

For the moment our discussion of queueing disciplines with passive queues assumes no
AND allocate nodes. The effects of those nodes will be discussed in Section 5.2 ... FCFS and
PRTY are essentially the same with passive queues as with active queues. With FCFS,
available tokens are allocated to jobs in order of arrival of the jobs at the queue, the earliest
arrivals getting tokens first. With PRTY, priority expressions are associated with allocate
nodes. Token assignment is in priority order, with first come first served used among jobs .of
the same priority. FF (first fit) is like FCFS but with one difference. If a job near the front
of the queue in first come first served order requires more tokens than are available while. a
job further back (a later arrival) requires no more tokens than are available, with FCFS the
second job will wait while with FF the second job will be given the tokens it requires.

The following example illustrates the beginning of a passive queue definition:

QUEUE:q
TYPE:passive
TOKENS: 2
DSPL:prty

The remainder of the passive queue definition consists of one or more sections defining
particular types of nodes. Each section is optional in dialogue file mode, but a passive queue
must have. at least one allocate node (possibly an AND or an OR allocate node). In ihterac~
tive mode, only the sections for "plain" allocate nodes, release nodes, destroy nodes and
create nodes are presented. The following sections discuss these dialogue sections in the order
expected by SETUP.

5.1. Allocate Nodes

A job arriving at an allocate node (a "plain" allocate node) requests a number of tokens
and waits until those tokens are allocated. When the tokens .are allocated, the job proceeds to
another node according to the routing specification for the allocate node. Though the job is
moving among other nodes, it is considered to remain at the queue and be among the jobs at
the particular allocate node until it frees or destroys the tokens it holds. A job already holding
tokens at a passive queue may not visit an allocate node of that queue until it releases or
destroys those tokens. Jobs holding tokens are considered part of queue length performance
measures for the passive queue and allocate node, and the time spent holding tokens is
included in the queueing time measures for the passive queue and allocate node. Where
passive queues are used for measuring response times, response times may be placed in
categories at the beginning of the response time by choice of allocate node. (See Section 5.6
for discussion ·of categorization of mean response times at the end of a response time.) A"Job
copy" remains in the data structure for the passive queue and allocate node; the job receiving
tokens has a pointer to this job copy.

The declaration of allocate nodes consists of one or more pairs or triples of lines conta.in­
ins allocate node lists and allocate node characteristics, depending on the queueillg disciplj.p.~.
There will be pairs of tines for FCFS and FF and triples of lines for PRTY. The first element
of a pair will be " ALLOCATE NODE LIST:" followed by a list of allocate nodes, analogous
to the class list lines of active queues. The second element of a pair will be a list of expres­
sions indicating the numbers of tokens requested by jobs at allocate nodes in the allocate node
list. This line consists of "NUMBERS OF TOKENS TO ALLOCATE:" followed by a list of

April 3, 1982

SEC. 5.1 / Allocate Nodes 41

expressions and is similar to the service times and work demands lines of active queues. The
differences are the change in keywords and that the expressions are always used "as.is" and
never interpreted as the mean of an exponenthli distribution~ If the result of the expression is
not an integer, the result is rounded to the nearest integer. In the case of the PRTY qlietieirig
discipline, the allocate node list and numbers of tokens to allocate lines are followed by a H8t
of priority expressions, as with active queues with the PRTY discipline. .

The following example illustrates definition of allocate nodes:

ALLOCATE NODE LIST: a b
NUMBERS OF TOKENS TO ALLOCATE: 1 discrete(10,.5;20,.5)
PRIORITIES: 5 jv(j-prty)

ALLOCATE NODE LIST: c d e(*) 1*"(*)" is optional*/
NUMBERS OF TOKENS TO ALLOCATE:user(jv(leng)+3;4.4)
PRIORITIES: 3

. ALLOCATE NODE LIST: f(*)
NUMBERS OF·TOKENS TO ALLOCATE:g(*)
PRIORITIES:· h(*)

5.2. AND Allocate Nodes

An AND allocate node is similar to a plain allocate node, but may be associated with
more than one passive queue. A job arriving at an AND allocate node requests a (possibly
different) number of tokens from each of the queues associated with the node and waits until
all of those tokens can be allocated simultaneously. None of the requested allocations are
made until all can be made. After the allocations are made, it is as if the job sequentially
visited "plain" allocate nodes of each of the queues except that the allocation was performed
ata single node and that the allocations occurredsiniultaneously; Release or destruction of
the tokens occurs as if the tokens had been acquired at "plain" allocate nodes. Separate
performance measures are maintained for the node for each of the queues with which it is
associated.

Different queueing diSciplines may be specified for the several passive queues associated
with an AND allocate node. The simultaneous allocation requirement imposes an additional
constraint on scheduling. FCFS and PRTY do not allow allocation out of order when
allocation in order is not currently possible. FF does allow scheduling out of order when
simultaneous allocation requirements prevent allocation in order. For example, let us suppose
that an AND allocate node is associated with queues A and B. With FCFS or PRTY schedul­
ing at both queues, if the next job in line at queue A is at an AND allocate node and there are
sufficient tokens to satisfy that job's request at queue A but the job is not next irt.line at
queue B or there are insufficient tokens to satisfy its request at queue B, then the job must
wait, and any jobs behind it in line at queue A must also wait, even if they are not at AND
allocate nodes. With FCFS or PRTY scheduling at queue A and FF at queue B, if the next
job in .line at queue A is at an AND allocate node and there are sufficient tokens to satisfy
that job's requests at both queues, then even if the job is not. next in line at queue B it will
receive the requested tokens at both queues (assuming the jobs ahead of it irt line at queue B
can not receive their requested tokens).

AND allocate nodes may be declared only in dialogue files. The declaration of AND
allocate nodes follows the same ruies as for "plain" allocate nodes .except that the node list
line consists of "AND ALLOCATE NODE LIST:" followed by a list of AND allocate nodes.
These nodes will be declared with each queue with whiCh they are to be associated,andmay
have different token requirements and priorities in these different declarations. .

April 3, 1982

42 PASSIVE QUEUES / SEC. 5

The following example illustrates definition of AND allocate nodes: , ,

AND ALLOCATE NODE LIST: a b

NUMBERS OF TOKENS TO ALLOCATE: 1 discrete(10,.5;20,.5)
PRIORITIES: 5 jv(jyrty)

AND ALLOCATE NODE LIST: c d e (*) /*" (*)" is optional*/
NUMBERS OF TOKENS TO ALLOCATE:user(jv(leng)+3;4.4)
PRIORITIES: 3

AND ALLOCATE NODE LIST: f(*)
NUMBERS OF TOKENS TO ALLOCATE:g(*)
PRIORITIES: h(*)

5,3. OR AII9cate Nodes

An OR allocate node is similar to a plain allocate node, but may be associated with :more
,than one passive queue. A job arriving at an OR allocate node requests a (possibly different)
number of tokens from each of the queues associated with the node and waits until one of
those requests can be satisfied~ None of the other requested allocations are made. If several
of the requests can be satisfied, then the first queue in the dialogue which can satisfy a request
for the OR allpcate node is the queue chosen to satisfy the request. After the allocation is
made,' it is as if the job visited only a "plain" allocate node of the queue which satisfied its
request except that the waiting times for the unsatisfied requests are treated as queueing times
at the corresponding queues. Release or destruction of the tokens occurs as if the tokens had
been acquired at "plain" allocate nodes. Separate performance measures are maintained for
the, node for each of the queues with which it is associated.

, Different queueing disciplines may be specified for the several passive queues associated
with an OR allocate node. ,OR allocate nodes may be declared only in dialogue files. The
declaration of OR allocate nodes follows the same rules as for "plain" allocate nodes except
that the node list line consists of "ORALLOCATE NODE LIST;" followed by a list of OR
allocate nodes. These nodes will be declared with each queue with which they are to be
associated, and may have different token requirements and priorities in these different
declarations.

The following example illustrates definition of OR allocate nodes:

OR ALLOCATE NODE LIST: a b
NUMBERS OF TOKENS TO ALLOCATE: 1 discrete(10,.5;20,.5)
PRIORITIES: 5 jv(jyrty)

OR ALLOCATE NODE LISrE: c d e(*) /*"(*)" is optional*/
NUMBERS OF TOKENS TO ALLOCATE:user(jv(leng)+3;4.4)
PRIORITIES: 3

OR ALLOCATE NODE LIST: f (*)

NUMBERS OF TOKENS TO ALLOCATE:g(*)
PRIORITIES: h(*)

~.4. Transfer Nodes

Transfers nodes are related to allocate nodes, but perform a very specializedfuflction,
transfer of tokens between related jobs. The discussion of fission nodes in Section 8 is
prerequisite to this section. 'Transfer nodes are only for use by children. A child arriving at a

April 3, 1982

SEC. 5.4 / Transfer Nodes 43

transfer node requests that either any tokens of the queue that its parent holds be transferred
to the child or that any tokens of the queue that it holds be transferred to the parent. This
transfer must be possible. The simulation will terminate if the transfer is not possible. A visit
to a transfer node' is instantaneous as far as simulated time is concerned. Transfer nodes. are
intended for situations where a passive queue is used for measuring response time$. A
response time measurement begun by a parent (child) may be terminated by a child. (parent).
After the token transfer occurs, it is as if the job receiving the tokens had originally made the
request and been allocated the tokens, in particular, the queueing time that began when the
tokens were requested continues, uninterrupted by the transfer~ In the internal representation,
the job copy pointer in the data structure representing the job giving up the tokens is moved
to the data structure representing the job receiving the tokens. '

. Transfer nodes may be declared only in dialogue files. The declaration of transfer nodes
follows the same rules as allocate nodes except (1) the node list line consists of "TRANSFER
NODE LIST:" followed by a list of transfer nodes,(2) the numbers of tokens line consists of
"NUMBERS OF TOKENS TO TRANSFER:" followed by a list of expressions and (3) there
is no priorities line. The value of the number of tokens to transfer expressions will typically
be either 1 or -1. If the expression is positive, then the transfer is from parent to child. If.
the expression is negative, then the transfer is from child to parent. Note that RESQrequires
that expressions with a unary minus be parenthesized. If the magnitude of the expression is
not identical to the number of tokens held by the job holding the tokens, a fatal simulation
error will occur when the transfer is attempted.

The following example illustrates definition of transfer nodes:

TRANSFER NODE LIST: a b
. NUMBERS OF TOKENS TO TRANSFER: 1 jv(tokns-,-held)

TRANSFER NODE LIST: c d e(*) /*" (*)" is optional*!
NUMBERS OF TOKENS TO TRANSFER: (-'1)

5.5. Release Nodes

Release nodes are used by a job holding tokens to return .all of those tokens to the
passive queue. If a job visits a release node without holding tokens of that queue, the:re is no
effect on the job or the queue and the job proceeds according to the routing specified for the
release node. A visit to a release node is instantaneous as far as simulated time is concerned.
The same mechanism of token release will be performed, if necessary, by a fusion node.
(Section 8) or a sink (Section 9). The release of tokens ends the job's association with the
queue (unless and until it makes a new token request at an allocate node).. In particular, the
queueing time that began when the tokens were requested ends when the tokens are released.
In 'the internal representation, the job copy in the data structure representing the queue is
returned to free storage.

The declaratioll of release nodes consists of one or more lines listing the namesqf release
nodes. These lines consist of "RELEASE NODE LIST:" followed by a list of release nodes.
The following example illustrates definition of release nodes:

RELEASE NODE LIST:a b

RELEASE NODE LIST:c d e(*) /*"(*)" is optional*/

April 3, 1982

44 PASSIVE QUEUES / SEC. 5

5.6. Destroy Nodes

Destroy nodes are used by a job holding tokens to destroy all of those tokens rather than
return them to the passive queue. If a job visits a destroy node without holding tokens of that
queue; there is no effect on the job or the queue, and the job proceeds according to the
routing specfied for the destroy node. A visit to a destroy node is instantaneous as far as
simulated time is concerned. The destruction of tokens ends the job's association with the
qlleue (unless and until it makes a new token request at an allocate node). In particular, the
queueing time that began when the tokens were requested ends when the tokens are destroyed.
For a passive qlleue with both release and destruction of tokens, mean queueing time values
categorized by release or destroy are available (Section 13). Thus, where passive queues are
used for measuring response times, mean response times may be placed in either category,
when the response time is to end, by choice of release or destroy. (If necessary, a create node
may be used to add tokens to the queue to make up for the tokens destroyed.) In the internal
representation, the job copy in the data structure representing the queue is returned to free
storage.

The declaration of destroy nodes consists of one or more lines listing the· names of
d¢stroy nodes. These lines consist of "DESTROY NODE LIST:" followed by a list of destroy
nodes. The following example illustrates· definition of destroy nodes:

DESTROY NODE LIST:a b
DESTROY NODE LIST:c d e(*) /*"(*)" is optional*/

5.7. Create Nodes

Create nodes are used by a job to add new tokens to a passive queue, usually to comple­
ment the effects of a destroy node. A job visiting a create node mayor may not hold tokens
of that queue, the effect is the same in either case. A visit to a create node is instantaneous as
far as simulated time is concerned. In representing communication protocols and similar
mechanisms, it is often the case that a job will destroy tokens and later either create tokens
itself or have another job create tokens. This is effectively a release of tokens, but can be
used to represent delays in notification of token availability (e.g., the transmission delay for an
acknowledgement) .

The declaration of create nodes consists of one or more pairs of lines. The first line of
the pair, listing the names of create nodes, consists of "CREATE NODE LIST:" followed by
a list of create nodes. The second line of the pair consists of "NUMBERS OF TOKENS TO
BE CREATED:" followed by a list of expressions for the numbers of tokens created; The
following example illustrates definition of create nodes:

CREATE NODE LIST: a b

NUMBERS OF TOKENS TO CREATE: 1 discrete (1 0 ,.5; 20 ,.5)
CREATE NODE LIST: c d e (*) /*" (*)" is optional"'/

NUMBERS OF TOKENS TO CREATE:user(jv(leng)+3;4.4)
CREATE NODE LIST: f(*)

NUMBERS OF TOKENS TO CREATE:g(*)

April 3, 1982

~'

45,

6. QUEUE TYPES

This section covers the syntax and semantics of the declaration and usage of user defined
queue types. A user defined queue type is a macro definition of a queue declaration. Queue
types are usually used to create several queue definitions where the differences betweeii the
definitions can be specified by parameters to the queue type. For example, if FCFS were' not
a predefined queue type, the user could define a queue type with the same characteristics (but
somewhat different syntax). ' "

There are two distinct operations involved in the use of queue types: the definition of a
queue type and the invocation of a queue type. The queue type definition consists of the

, specification of a parameterized queue template in which some of the queue type characteris­
tics are given explicit values and other queue type characteristics are left as parameters to be
defined when the queue type is invoked. The explicit values become the default characteristics
of the queue type. Once a queue type has been defined, it can later be'invoked to create a
specific declaration of a queue. A set of parameter values is given as part of the invOcation.
A' queue declared by an invocation of a queue type assu,mes the default characteristiCs of the,
queue type and the parametric characteristics given by the set of parameter values in the
invocation.

6.1. Definition of Queue Types

Queue type definitions are given just prior to queue definitions, in either models or
submodels, as illustrated in the example of Section 1.3. A queue type definition begins with a
line naming the definition, "QUEUE TYPE:" followed by the name. After the name is given
there are sections, in order, for declaration of numeric parameters, distribution parameters and
node parameters. The declaration of numeric parameters and distribution parameters is 'the
same as declarations of these types of parameters at the beginning of a model or su.bmodel,
except in regard to vectors and matrices. Matrix parameters are not allowed withinqu.eue type
definitions. Vectors are allowed, but the declaration of a vector does not give the number of
elements in parentheses as in models and submodels, Rather, a name is declared as a, vector

, by following the name by "(*)", with the number of elements to be determined by the value
supplied for the parameter when the queue type definition is invoked. Botli of thesedeclara­
tions are optional. Distribution parameters may only be declared in dialogue files. Node
parameters have the same syntax as in submodel definitions, except that declaration of vector
node parameters, uses the "(*)" notation given above rather than the notation usedfor
submodel vector parameters, but node parameters have a substantially different meaning in
queue type definitions. Node parameters in queue type definitions are used to list all nodes
(classes, allocate nodes, release nodes, etc.) which are to be declared within the queue type.
Thus node parameter declarations are necessary in queue type definitions. In analogy to block
structured programming languages such as PL/I, the names used for parameters may be 'names
previously used for elements outside of the queue type definition. The nameS declared within
the queue type definition are local to the queue type definition. Node parameter names
cannot be reused in other queue type definitions.

After the parameter definitions, the next ,line gives a predefined queue type that' is to be
the basis of the user defined type. This line consists of "TYPE: "followed by one of the
predefined general types described in Sections 4 and 5, FCFS, IS, PS, LCFS,PRTY;
PRTYPR, ACTIVE or PASSIVE. After the predefined type is given, the qlieuetype defini­
tion follows exactly the rules for that type given in Section 4 or 5, with the freedoni to use
numeric and distribution pan.meters in the expressions and the added requirement that all
nodes listed have been previously declared as node parameters. The queue' type definition is

April 3, 1982

46 QUEUE TYPES / SEC. 6

terminated by a line of the form "END OF QUEUE TYPE" followed by the name of the
queue type.

Following are an example queue type definition for an active queue,

. QUEUE TYPE:CLlink
NODE PARAMETER: class name
TYPE: active
DSPL:fcfs
CLASS LIST:class_name

WORK DEMANDS:standard(jv(O) ,0)
END OF. QUEUE TYPE Q_LINK

and an example definition for a passive queue,

QUEUE TYPE:pfcfs /* passive fcfs queue template */
NUMERIC PARAMETERS:ntokens /* number of tokens in pool */
NODE PARAMETERS:alloc(*) releas
TYPE:passive
TOKENS:ntokens
DSPL:fcfs
ALLOCATE NODE LIST:alloc

NUMBERS OF TOKENS TO ALLOCATE: 1
RELEASE NODE LIST:.releas

END OF QUEUE TYPE PFCFS

6.2. InvocatiOli of Queue Types

A queue type invocation begins as with the queue definitions discussed in Sections 4 and
5, but instead of the name of a predefined type being given on the type definition line, the
name of a user defined type is given. The remainder of the queue definition supplies values
(arguments) for the parameters declared in the queue type definition. There are two ways to
do this, a positional short format and a format which explicitly matches parameter names and
values given. The positional format is analogous to procedure calls and similar statements in
programming languages. On the type definition line, following the name of the user defined
type is a colon (" : ") and then a list of values, with the values separated by semicolons (";").
For example, the queue type "Llink" defined above might be used in the positional format
as follows,

QUEUE:q
TYPE:q_link:c

and the queue type "pfcfs" defined above might be used in the positional format as follows,

QUEUE: memory
TYPE:pfcfs: pageframes; getmemory(*); freememory

.In the matching format, in interactive mode there will be a prompt for every parameter, where
the prompt consists of the name of the parameter followed by a colon (":") and the reply is to
be the value. The prompts will be in the order the parameters were d~c1an~d. In dialogue
mode there must be a line for every parameter, consisting of the parameter name followed by
a colon followed by the value. In dialogue mode these lines may be in any order. They need

April 3, 1982

SEC. 6.2 / Invocation of Queue Types 47

not be in the order the parameters were declared. For example, the queue type "~link"
defined above might be used in the matching format as follows,

QUEUE:q
TYPE:q_link
CLASS_NAME:c

and the queue type "pfcfs" defined above might be used in the matching format.as follows, .

QUEUE:memory
TYPE:pfcfs
NTOKENS:pageframes
ALLOC:getmemory(*)
RELEAS:freememory

In: either format, a parameter value must be either a single expression ora single name. Where
parameters· are declared as vectors, parameter values must also be vectors.

User defined queue types are used only for definition of queues. There should be no
attempted reference elsewhere in the model definition to queue types or parameters defined
within queue types. Invocation of user defined queue types is transparent toRESQ solution
components, i.e., the queue definitions look the same to the solution components as they
would if they had been defined using only predefined queue types.

April 3, 1982

48

7. SET NODES

This section covers the syntax and semantics of set nodes. Set nodes are used to perform
assignment statements in the sense of programming languages. Set nodes are used to assign
values to job variables, global variables and chain variables. Section 3 discusses declaration of
these variables. Set nodes are represented in RESQ diagrams by rectangles shoWing the
assignment statements performed.

The declaration of set nodes, if any are to be declared, follows immediately after the
queue definitions section in either a model or submodel. Set node declarations consist of pairs
of lines, the first line giving a list of set nodes and the second line giving a list of assignment
statements. The set node list line consists of "SET NODES:" followed by one or mOre names
of set nodes. The names may be names of node arrays. An entire node array is indicated
either by just the name or by the name followed by "(*)".

A set node assignment consists of the variable to be assigned, followed by an equals sign
("= "), followed by the expression to be evaluated and assigned to the variable. The variable

·to be assigned must be a single variable, Le., a single assignment may not be used to assign
values to more than one dement of a vector or matrix. If the variable to be assigned is an
element of a vector or matrix, the subscript expressions maybe simulation dependent. The
subscript expressions, if any, are evaluated before the expression to be assigned is evaluated.
The expression to be assigned maybe simulation dependent.

The assignment list line consists of "ASSIGNMENT LIST:" followed by one or more
assignments. If the node list line lists exactly one name (perhaps the name of a node array,
indicating the entire array), then the assignment list line lists one or more assignments tobe
performed at that set node. (The list applies to each element of a node array if anode array
name is given.) These assignments are performed in the order listed when a job visits the set
node. If the node list line lists more than one name, then only one assignment may be
performed at each set node in that list. The assignment list line must list the same number of
assignments as the node list line lists names.

The following example illustrates the declaration of set nodes:

SET NODES:a
ASSIGNMENT LIST:jv(msg_origin}=1 ++

SET NODES:b c(*}

orig_count(1} =orig_count (1) +1 ++
jv(msg_dest}=discrete(2,1/3;3,1/3;4,1/3} ++
jv(msg_lng}=uniform(40,1000,1}

ASSIGNMENT LIST:alpha=beta+discrete(1.3,.5;10,.5} jv(O}=jv(O}+1
SET NODES:set_d_cw
ASSIGNMENT LIST:delay_cw(jv(msg_origin};jv(msg_dest})= ++

alpha*(clock-jv(msg_atime}} ++
+(1-alpha) *delay_cw (jv (msg_origin) ;jv(msg_dest}}

April 3, 1982

49

8. SPLIT, FISSION, FUSION AND DUMMY NODES

This section covers the syntax and semantics of the declaration and usage of split, fission,
fusion and dummy nodes. Figure 8..1 shows the diagram RESQ diagram symbols for these
Mdes. Full understanding of this section presumes knowledge of Section 9 (Routing Chairls),
but this section is intended to be readable prior to reading Section 9~

~ SPLIT

~ FISSION

~ DUMMY

~ FUSION

Figure 8.1 - Split, Fission, Fusion and DumrnyNodes

8; 1. Split Nodes

Split nodes allow a job to produce additional independent jobs. Split nodes are useful in
representing bulk arrival mechanisms and in representing control messages (e.g., acknowledge­
ments) in communication system protocols. The third example in Appendix 1 illustrates this
latter application .. A split node has one entrance, an exit for the job that entered and an
additional exit for each new job to be produced. The newly produced jobs are given the same
job variable values as the existing job. The newly produced jobs do not possess tokens,

. whether or not the existing job possessed tokens. A visit to a split node is instantaneous, as
far as simulated time is concerned.

The routing syntax implicitly declares names of split nodes. It is not necessary to give the
. name of a split node before the routing definition. However, names·· of split. n()desmay be
. explicitly declared prior to the routing definition. Such declarations may help clarify a model
definition and prevent errors. Explicit declarations of split nodes may be given orily in
dialogue files. Declarations of split nodes, if any are to be made, are next in sequence
following definition of set nodes. Split node declarations consist of one or more lines
consisting of "SPLIT NODES:" followed by a list of split nodes, e.g.,

SPLIT NODES:a b c d(*)
SPLI'l' NODES: e

The routing to a split node is defined as with other nodes, e.g., if "y" is the name of a
split node, we might have

:x~>y Zi.9 .1

Ifa name of a split node is not declared prior to the implicit declaration in the routing, a
warning message will occur at the point of implicit declaration, e.g;,

* *ERROR* * WNG: THE NODE "y " HAS BEEN IMPLICITLY DECLARED

April 3, 1982

50 SPLIT, FISSION, FUSION, DUMMY NODES / SEC 8

At this point in the example, assuming no previous declaration, ilt is only known that "y" is the
name of a previously undeclared node. Y might be the name of a fission or dummy node
instead of a split node. The routing from a split node consists of the name of the split node,
followed by an arrow ("-> "), followed by a list of at least two names of nodes (not necessari­
ly distinct names), followed by ";split".For example, we might have

:y->alpha alpha beta;split

If the name ·of the split node has not previously been. declared as a split node, it is a routing
line of this form that indicates the name is the name of a split node. The number of jobs to
be produced is one less than the number of nodes in the list of nodes. The first node iri the
list of nodes is the destination for the existing job (the one that enters the split node). The
remaining nodes in the list of nodes are the destinations for the newly produced jobs. In the
above example there would be two newly produced jobs. The existing job and one of the new
jobs would go to node alpha and the other new job would go to node beta.

8.2. Fission and Fusion Nodes

Fission nodes allow a job to produce additional jobs dependent on the existing job.
Fusion nodes allow for the destruction of the newly produced jobs in a coordinated manner.
Fission and fusion nodes are usually used together in pairs. Fission and fusiori nodes are
useful for representing synchronized processes (tasks) occurring in operating systems. Similar­
ly, fission and fusion nodes are useful for representing parallel physical activities representing
a single logical activity, for example transmission of· a message across a communication
network as a collection of packets.

A fission node has one entrance, an exit for the existing job (referred to as the "parent"),
and an additional exit for each new job to beproduced. The produced jobs are referred to as
"children." Children may themselves enter fission nodes, thus producing hierarchies of jobs,
Children are given the same job variable values as the parent. The children do riot poSsess
tokens, whether or not the parent does. A visit to a fission node is instantaneous, as. far as
simulated time is concerned. Jobs are not allowed to leave the network (i.e., by going to Sinks) as
long as they have relatives (parents or children). If this rule is violated, the simulation termi­
. nates.

In RESQ diagrams a fission node is represented by a tdangle with the entrance at one
vertex and the exits on the opposite side. This corresponds to the split node representation
except that the triangle is not divided into separate sub-triangles for the parent .and child exits.
In the dialogue syntax, fission nodes are treated exactly the same as split nodes, except that
(1) the keyword "FISSION" is used instead of the keyword "SPLIT, " (2) there is an
interactive prompt to optionally declare the names of fission nodes, and (3) in dialogue files,
if the names of fission nodes are declared before the routing definition they are declared after
declarations for split nodes, if any split node declarations are present.

A fusion node provides a place for jobs to wait for related jobs (parents or children). A
fusion node has no effect on jobs without relatives. Such jobs pass through a fusion node
without delay or other effect. No more than one job of a "family" can stay at a fusion node.
If a job arrives at a fusion node and it has relatives, but none of its relatives are at tpifj
part~cular fusion node, it waits at the fusion nodes. When a job arrives at fusion node and it
has a relative at this particular fusion node, two things can happen, depending on the relation­
ship between the jobs. If one is the parent and the other is a child, then the offspring is
destroyed. If both are children, the one that was produced last is destroyed. Before a child is
destroyed, any tokens it holds are released. After destruction of one job, if the other job has

April 3, 1982

SEC. 8.2 I Fission and Fusion Nodes 51

no remai.ning relatives, it proceeds from the exit of the fusion node. If the other job still has
other relatives, it waits at the fusion node for another relative to arrive.

In RESQ diagrams fusion nodes are represented by a triangle with the exit(s)at one
. vertex and the entrance(s) on the opposite side. Names of fusion nodes must be declared as
such. The declarations follow the declarations of fission nodes, if any fission nodes are
declared. A fusion node declaration line consists of "FUSION NODES:" followed bya list of
names of fusion nodes, e.g.,

FUSION NODES:a
FUSION NODES:b c d(*) e

As mentioned above, a child may go to a fission node to produce its own children. There
are two rules which must be kept in mind:

1. Whenever a job visits a fission node, it produces its immediate descendents,
i.e., a job can never directly produce grandchildren.

2. Related jobs more than one generation apart, e.g., grandparents and
grandchildren, may not be present at the same fusion node. If this rule is
violated, the simulation will terminate.

An immediate consequence of theserulesisthat it is usually necessary to have (at leastoile)
separate pair of fission and·fusion nodes for every generation of jobs that is to be produced.

G1 FISS B G2FISSA D G2FUSA

IQf.-<<J :}D--[)~~
C G2FISSB E G2FUSB

IQf.-<' <J~

Figure 8.2 - Nesting of Fission and Fusion Nodes

Figure 8.2 illustrates an abstract set of fission and fusion nodes which might be tailored
to a variety of purposes. For example, suppose a communication network is such that
messages must be broken into packets for transmission and must be broken into sub':'packets
for transmission across certain links. Further, a message consists of exactly two packets and a
packet consists of exactly two sub-packets. Node glfiss (generation 1 fission) in the figure
could represent breaking the message into packets. Since a job that enters glfiss cannot
directly generate grandchildren, it generates two children, representing the packets. Queue a
would be eliminated in this case and the jobs that enter glfiss would .godirectly to glfuse.
The children leaving glfiss would be transmitted across the portion of the network allowing

April 3, 1982 .

52 SPLIT, FISSION, FUSION, DUMMY NODES / SEC. 8

full packets, e.g., queues band c in the figure. Then they reach g2fissa and g2fissb, where
they produce children to represent breaking the packets into sub-packets. A child represents
one sub-packet and a grandchild represents the other. After transmission across the portion of
the network requiring sub-packets, e.g., queues d and e in the figure, a child and grandchild
can reunite at the generation 2 fusion nodes to represent assembling the sub-packets into
packets .. The child (packet) then proceeds further across the network, e.g., through queue fin
the figure to the generation 1 fusion node. When both children have reached the fusion node,
their parent (representing the reassembled message) leaves the fusion node.

Many other situations can be represented by tailoring of the figure. In some situations it
would be appropriate to eliminate the second child and its grandchild (the ones associated with
queue c, g2fissb, queue e and g2fuseb). Note that it would not be correct to have another
fission/fusion pair along the parents path. In that case, the parent would stay indefinitely at
the added fusion node after arriving at that fusion node, while the children produced at glfiss
would stay indefinitely at glfuse after arriving at glfuse.

8.3. Dummy Nodes

Dummy nodes are used in routing definitions to allow specification of routing not
otherwise possible and/or to clarify specification of routing. Dummy nodes have no other
effeCt on the jobs or the network. With split and fission nodes, the syntax of the routing does
not allow decision mechanisms (probabilities and/or predicates) for jobs leaving the exits.
The exits may be names of dummy nodes, and then the normal decision mechanisms may be
used with regard to routing from the dummy nodes. With submodels; only one primary entry
point (the input synonym) and one primary exit point (the output synonym) may be defined
per external routing chain. A dummy node may be used as the primary entry (exit) point
when more than one entry (exit) point is desired. However, the use of node parameters
should be considered as an alternative in this situation. The second example in Appendix 1
illustrates both approaches.

Names of dummy nodes may be implicitly declared as with names of split and fission
nodes. In the case of dummy nodes, there will be nothing in the routing explicitly identifying
the node as a dummy node. The same warning message discussed with split nodes will occur
with implicit declaration of dummy node names. Dummy node names may be declared
·explicitly as with split and fission nodes. Dummy node declarations may be given only in
dialogue files. Dummy node declarations follow fusion node declarations. Each line consists
of "DUMMY NODES:" followed by a list of dummy nodes, e.g.,

DUMMY NODES:a
DUMMY NODES:b c d(*) e

April 3, 1982

s·

S3

9. ROUTING CHAINS

This section covers the syntax and semantics of the declaration of routing chains.
Routing chains define the routing among nodes of the network,i.e., they chain the nodes
together. Routing chains are usually referred to simply as "chains." Each node of the network
belongs to exactly one chain, with the exception of the predefined node "sink" which may be
used in several chains.

There are two basic types of chains, closed and open. Closed chains have a fixedm:imber
of jobs (the "population") which remain among the nodes of the chain throughout the
simulation. Open chains have a (usually) fluctuating number of jobs. Jobs leave the chain
(and the network, simultaneously) by going to the predefined node "sink", which may be used
in all open chain definitions. An open chain usually also has one or more sourceS for external
arrival of jobs, but sources are not strictly necessary in an open chain since jobs initially
placed in the chain may produce additional jobs by visiting split nodes. Initial placement of
jobs at the beginning of simulation, for both closed and open chains, is discussed in Section
12. Sources are declared within open chain declarations. Figure 9.1 showsthe diagram
symbols for sources and sinks. (The symbols are the same except for direction of the arrows.)

~ ~
SOURCE SINK

Figure 9.1 - Source and Sink

In addition to basic chain. types, closed and open, submodels have chains declared as
"external." External chains are those declared as chain parameters at the·· beginning of a
submodel definition (Section 3). An external chain in a submodel is really only part of a
chain,. with the remaining part to be defined in the model (or submodel) that invokes the
submodel. An external chain is determined to be either closed or open by the type of chain
that it is connected to. Submodels may also have chains which are strictly internal. to the
submodel; these chains are declared as closed or open in the submodel.

The definitions of chains in the model proper and of internal chains in submodels follow
the same rules. The definition of external chains is sufficiently similar that We discuss
definition of routing chains in general and indicate the differences between these two situ a­
tions as appropriate.

. ..

, The . definition of routing chains within a model or submodel follows the definition of
queues, other nodes (set nodes, split nodes, fission nodes, fusion nodes, dummy nodes),
submodels .and submodel irivocations so that all nodes to appear in the routing have been
declared.. SubUlOdels and submodel invocations are discussed in Section 10. (Sourcesare
necessarily .associated with a particular chain and are declared within the chain definition.
Split, fission and dummy nodes maybe implicitly declared in the routing as discussed in
Section 8.) Chains which are not elements of chain arrays are declared individually ... Chain
arrays are declared collectively. We first consider chains which are not elements of chain
arrays, then we consider chain arrays.

9.1. I ndiyidual· Chain Definitions

. A chain definition begins with a line with "CHAIN:" followed by the name of the chain.
This will be the first occurrence of the. name of the chain u?less (1) this is an external chain

April 3, 1982

54 ROUTING CHAINS / SEC. 9

definition within a submodel, in which case the name will have previously been declared as a
chain parameter or (2) this chain name has been supplied as the value for a chain parameter
in an invocation of a submodel. Following the chain name line is the chain type line, which
consists of "TYPE:" followed by "closed", "open" or "external". The next few lines,
preceding the actual definition of routing within the chain, are dependent on the chain type.

9.1.1. Closed Chain Definitions

With a closed chain, the only line preceding the routing definition lines is a line giving the
chain population. This line consists of "POPULATION:" followed by an expression Jor the
number of jobs in the chain. This expression must be simulation independent (as defined in
Appendix 3). For example, we might have

CHAIN:c
TYPE:closed
POPULATION: users

for the beginning of the declaration of a closed chain.

9.1.2. Open Chain Definitions

With an open chain there will usually be a pair of lines preceding the actual routing
definitions, for declaration of sources. Declaration of sources is optional, because of the
possible use of split nodes suggested above and the possible definition of sources with external
chain definitions as discussed below, but if no sources are declared in an open chain, a
warning message will. be produced. There is only provision for one pair of source declaration
lines because a single source is usually sufficient, and if many sources are necessary, concaten­
ation may be used to make each line of the pair arbitrarily long. The first of the pair lists the
names of the sources and consists of "SOURCE LIST:" followed by the names. The second
line defines the interarrival time distributions for these sources. It consists of "ARRIYAL
TIMES:" followed by a list of expressions, one per source. For example, we might have·

CHAIN:c
TYPE: open
SOURCE LIST:s
ARRIVAL TIMES:1/msg_rate

for the beginning of the declaration of an open chain.

If an arrival time expression, after resolution of parameters and identifiers, contains no
references to RESQ probability distribution keywords, then the value of the expression is
interpreted as the mean of a (negative) exponential probability distribution. (Exponentia!
interarrival times produce a Poisson arrival process.) (TheRESQ probability distribution
keywords are BE, DISCRETE, STANDARD and UNIFORM. See Appendix 3. for fUrther
discussion of distributions.) If the expression does contain at least one distribution keyword,
then the expression is used directly. In either case, when a source arrival is to be scheduled, a
sample is obtained from the arrival time distribution. If CY(O) is 1 for this chain (as it is
initially), then the next arrival is scheduled at the current time plus the arrival time sample.
"However, if CY(O) for the chain varies from one, the timing mechanism is more comple~,
Cllilnging CY(O) (using a set node) gives arrival times dependent on the current state ofth~
simulation. This can be used to give arrival times dependent on simulated time (for example,
to represent arrival processes dependent on time of day), on numbers of jobs at various queues
(to represent arrivals dependent on congestion), etc. CY(O) is used as an arrival rate factor.
Assuming CY(O). is positive, all samples from arrival time distributions are divided by CY(O)

April 3, 1982

SEC. 9.1.2 / Open Chain Definitions 55

to give the time until the next arrival. If CV(O) changes between the time the arrival is
scheduled and the scheduled time of the arrival, then the remaining time until the arrival is
multiplied by the old value of CV(O) and (assuming CV(O)is still positive) divided by the neW
value of CV(O). The arrival is rescheduled at the current time plus this modified remaining
time. If CV(O) ever becomes zero (or negative) then the source is shut off and will pr(jd1.lC~
no more arrivals during the simulation, regardless of future changes to CV(O).

9;1.3. External Chain Definitions

With an external chain, prior to the actual routing definition there is a pair of lines to
define the input and output synonyms. The first line of the pair consists' of "INPUT: '.'
followed by the name of a single node in the submodel which.may be referred to as "input" in
the invoking model (or submodel). The second line of the pair consists of "OUTPUT:"
followed by the name of a single node in the submodel which may be referred to as "output"

.in the invoking model (or submodel). In dialogue files only, a second pair of lines may be
given to define sources to be part of the chain. The rules for this pairis the same as for the
source declaration pair of lines in open chains. Source declarations here force the value given
to the chain parameter being defined as an external chain to .be an open chain. Following is
an example of a possible definition

CHAIN:c
TYPE: external
INPUT:getmemory
OUTPUT:freememory

for the beginning of the declaration of an external chain.

9.1.4. Routing Definitions

Following the chain type specific declarations discussed in Sections 9.1.1-9~ 1.3, the
remainder of the chain definition is a series of lines defining the routing among th~ nodes' of
the chain. These lines are optional in an external chain, as illustrated in. the chain definition in
submodel "iosys" in the example in Section 1.3. Each of these lines begins with a colon (":")
and describes the routing between two or more nodes.

The simplest routing line declares an unconditional directed path between two nodes. It
consists of a colon (":") followed by a node name, followed .by an arrow ("->"),followedby
another node name. For example, .

:a->b

declares that jobs leaving node A always go to node B. Lines of this form describing a
sequence of nodes may be concatenated, e.g., the lines

:a->b'
:b->c

may be replaced equivalently by

:a:->b->c

The node nameS in lines of these forms, and all of the other forms we discuss in this section,
may be individual elements of node arrays, e.g.,

April 3, 1982

56 ROUTING CHAINS / SEC. 9

:d(3)->e(primarysys+l)

Expressions indicating individual elements must be simulation independent (see Appendix 3).
The node n~es in lines of these forms, a.nd all of the other forms w~ discuss in this section,
may be submodel input/output synonyms, qualified by the submodel invocation name, e.g.,

:invocl.output->invoc2.input
:invoc2.output->invocl.input

Several separate unconditional paths may be grouped together, e~g.,

:a->b
:nodel->node2
:node3->node4

may be expressed on a single line· as

:anodel node3->b node2 node4

In cases like these. where the nodes on the right side are the same, the node name need not be
repeated, and additional paths may be added on the right. For example, the lines '

:diskl->cpu
:disk2->cpu
:disk3->cpu
:cpu->drum

may be expressed on a single line as

:diskl disk2 disk3->cpu->drum

Paths must not be specified more than once, e.g., the following would be incorrect:

:diskl->cpu->drum
:disk2->cpu->drum
:disk3->cpu->drum

(This example would produce an error message from the EV AL command that the probabili­
ties from node "cpu" do not sum to 1.) A set of unconditional paths between node or
invocation arrays may also be expressed on a single line, provided both arrays involved have
the same number of elements. For example, if A and B are invocation arrays, each with N
elements, then the set of lines

:a(l) .output->b(l) . input
:a(2) .output->b(2) . input

:a(N) .output->b(N) . input

may be expressed on a single line as

:a(*) .output->b(*) . input /*"(*)" is optional*/

Conditional routing may be based either on probabilities or on "predicates." A predicate
is an expression with a true or false value. The simplest conditional routing line begins as with

April 3, 1982

SEC. 9.1.4 I Routing Definitions 57

a simple unconditional path, i.e., a colon (":") followed by a node name, followed by an arrow
("~>"), followed by another node name. A semicolon (";") and either a probability expres­
sion or a predicate expression follows the second node name. For example, we might have .

or

:a->bipb
:a->c;pc
:a->d;1-(pb+pc)

:x->Yiif(jv(count»O)
:x->z;if(t)

Probability expressions must have values in the [0,1] interval. (An unconditional path is
represented internally as a conditional path with probability 1.) Probability expressions may be
simulation dependent (Appendix 3). Predicate expressions are normally simulation dependent;
otherwise the routing may be expressed unconditionally. Predicate expressions begin with
"if(" and end with ")". Conditional expressions are evaluated in the order listed, e.g., in the
above example the predicate for the path from X to Y will be evaluated first. "T" represents
the constant "true" value, e.g., in the above pair of lines, jobs leaving node X will always go
to node Z if they do not go to node Y. Predicates are defined in detail in Appendix 3.

Predicates and probabilities may be mixed in describing conditional routing. For example,
if we want to go in a clockwise direction if recent delays have been shortest in that direction
and in a counterclockwise direction if delays have been shortest in that direction but, if recent
delays have been the same in each direction, choose randomly between the two directions, we
might have

: source l->cw.Jlath i if (delay_cw<delay_ccw)
:source1->ccw.Jlathiif (delay_ccw<delay_cw)
:source1->cw.Jlath;.5
:source1->ccw_pathi .5

The possible destinations are considered in order. Predicates are evaluated independently of
probabilities. Probabilities are evaluated as if predicates were not involved. The following
algorithm defines the mechanism more formally:

next node chosen=false
random value=uniform random number on (0,1) interval
do while (... next_node chosen)

if list_of_destinations is empty then
signal error('no destination found')

get next possible destination
if probability for this destination then

if random _ value<probability then
next node chosen=true

else
random value=random value-probability

else /*predicate* / -
next_node _ chosen= predicate

end

When the algorithm terminates normally, the last destination examined is the one used.

April 3, 1982

58 ROUTING CHAINS / SEC. 9

Several conditional paths may be. grouped together on the same line when the node left is
the same. For example, the last three examples could be expressed on the same line as

:a->b Cdipb pc l-(pb+pc)
:x~>y z;if(jv(cQunt»O)if(t)
:sQurcel->cw-path ccw-path cw_path ccw-pathi ++
if (delay_cw<delay_ccw) if (delay_ccw<delay_cw) .5 .5

Conditional paths may be added on the right side of lines with unconditional paths, e.g.,

:u->V->w->x->y z;if(jv(cQunt»O) if(t)

Where a line expresses all conditional paths, those paths have equal probabilities and the
probabilities are the inverse of the number of nodes explicitly named, the semicolon and
probabilities may be omitted, e.g.,

:a->b c d;1/3 1/3 1/3

may be expressed as

:a->b c d

However, if E is a node array with.2 elements,

:a->b c d e(*)

wbuld be equivalent to

:a->b c d e(l) e(2) ;1/4 1/4 1/4 1/4 1/4

an incon'ect specification because the probabilities do not sum to one. The EV AL command
or its equivalent would detect this, but the SETUP command would not, since the expressions
might depend on numeric parameters.

9.2. Chain Array Definitions

All elements of a chain array are defined collectively and may not be defined indiVidually.
All references to nodes, except in status functions in predicates, .must be to node arrays with
the same numbers of elements as the chain array. Numeric values may be given by scalar
expressions, which will be interpreted as vectors with homogeneous elements, by numeric·
vectors with the same numbers of elements as the chain array, or, in situations involving
invocation arrays, by numeric matrices where the numbers of rows are the same as the
numbers of elements in the chain array and the numbers of columns are the same as the
numbers of elements in the invocation arrays. .Distribution values. are given either by scalar
expressions, which are interpreted as vectors with homogeneous elements, or by distribution
vectors. Predicates may be given only as scalar expressions, which are interpreted as vectqrs
with homogeneous elements. Names of vectors are optionally followed by "(*)" and names of
m~trices are optionally followed by "(*; *)".

The form of chain array definitions is essentially the same as that of individual chain
definitions. The definition begins with the "CHAIN:" line. The name of the (previously
declared) chain array is given. The chain types allowed are the same as with individual chains.
With closed chains, the population line gives a numeric array with the respective populations

April 3, 1982

SEC. 9.2 / Chain Array Definitions 59

or a numeric expression giving the population to be used for all of the elements of the chain
array: With open chains, the names given for the source list must be (previously declared)
names of. node arrays. The elements in the arrival time list will either be names of arrays
(numeric or distribution) or spalar expressions to be interpreted as homogeneous vectors.
With' external chains, th~ input/output synonyms will be (previously declared) node' arra}'SI
the source definitions, if given, will follow the same rules as with open chains. The rodting
definitions follow essentially the same rules as with individual chains, with node arrays taking
the place of individual nodes.

The following example illustrates definition of a chain array.

CHAIN:interactiv(*)
TYPE:external
INPUT: setcmdtype (*)
OUTPUT:freememory(*)
:setcmdtype(*)->getmemory(*)->cpu(*)->iosys(*) . input (*) iprob(*i*)
:iosys(*) .output(*)->decrcycles(*)
:decrcycles(*)~~cpu(*) fre~memo~y(*) iif(jv{cyclecourit»O) if(t)

The main point to be noticed is the mapping of the rows and ,columns of the matrix "prob."
Prob(*; 1) contains the probabilities of the conditional paths from cpu(*) to iosys(l).input(*),
prob(*;2) contains the probabilities of the conditional paths from cpu(*) to iosys(2).input(*),
and so on. This definition would have the same interpretation if just the array names .were
given, without the "(*)" and "(*;*)".

April 3, 1982

60

10. SUBJ\IIODELS

This section covers the syntax and semantics of the declaration and invocation of
submodels. Previous sections have covered most of the components of submodel declaration,
since these components are essentially the same as the components of model definitions. This
section wiU give a global look at sub model declaration and a detailed look at invocation of
sUbmodels. The examples in Appendix 1 illustrate some of the issues discussed here.

10.1. Submodel Declarations

Suhmodel declarations follow the declarations of all queues and nodes in the enclosing
model or submodel, e.g., after declaration of dummy nodes. A submodel declaration begins
with a line declaring the name of the submodel, "SUBMODEL:" followed by the name of the
submodel. The sections of a sub model declaration parallel the sections of model definitions.
In order, they are

Declaration of parameters, identifiers, variables and arrays (Section 3). At least one
chain parameter must be declared. Otherwise this section is optional.

Declaration of queue types (Section 6). This section is optional.

• Declaration of queues (Sections 4 and 5). At least one queue or node must be
declared within a submodel. Otherwise this section is optional.

Declaration of set nodes (Section 7). At least one queue or node must be declared
within a submodel. Otherwise this section is optional.

Declaration of split, fission, fusion and dummy nodes (Section 8). At least one
queue or node must be declared within a submodel. Otherwise this section is
optional.

Declaration of submodels. Submodel declarations may be nested within submodels,
as illustrated in the example of Section 1.3. This section is optional.

• Invocations of submodels (Section 10.2). Submodel invocations may be nested
within submodels, as illustrated in the example of Section 1.3. This section is
optional.

• Declaration of routing chains (Section 9). At least one external chain must be
declared within a sub model. Otherwise this section is optional.

The. end of a submodel declaration is indicated by a line of the form "END OF SUBMODEL
name" where "name" is the submodel name.

As in nested procedure definitions in block structured programming languages (e.g., PL/I
Qf pascal), names used outside of a submodel definition may be reused within submod(.')l
Gefinitions. When names are reused in this manner, the new definition persists within tbe
submodel definition and the old definition is restored after the sub model definition is complet­
ed.

Following is the submodel definition used in the example of Section 1.3.

April 3, 1982

SEC. 10.1 / Submodel Declarations

SUBMODEL:cssm /*Computer System Submodel*/
NUMERIC PARAMETERS:pageframes
CHAIN PARAMETERS:interactiv
NUMERIC IDENTIFIERS:cmdtype cyclecount

. CMD'rYPE:O /*JV(O) to be used to indicate command type*/
CYCLECOUNT:1 /*JV(1) to be used to count CPU-I/O cycleS*/

NUMERIC IDENTIFIERS:cpiocycles(3) pageneed(3)
CPIOCYCLES: 8 15 50
PAGENEED: 20 24 30

NUMERIC IDENTIFIERS:cputime
CPUTIME:.025 /*mean time in seconds*/

QUEUE: memory
TYPE:passive
TOKENS:pageframes
DSPL:fcfs
ALLOCATE NODE LIST:getmemory

NUMBERS OF TOKENS TO ALLOCATE:pageneed(jv(cmdtype))
RELEASE NODE LIST:freememory

QUEUE:cpuq
TYPE:ps
CLASS LIST: cpu

SERVICE TIMES:cputime
.SETNODES:setcmdtype

ASSIGNMENT LIST: jv(cmdtype) =discrete C1 ,.8;2, .15;3, .05), ++
jv(cyclecount)=cpiocycles(jV(cmdtype))

SET NODES:decrcycles
ASSIGNMENT LIST:jv(cyclecount)=jv(cyclecount)-1

SUBMODEL:iosys
CHAIN PARAMETERS:interactiv
QUEUE TYPE:diskdef

NODE PARAMETERS:servicecls
TYPE:active
SERVERS: 1
DSPL:fcfs
CLASS LIST:service~ls

WORK DEMANDS:.06
SERVER -

END OF QUEUE TYPE DISKDEF
QUEUE:diskq

TYPE:diskdef
SERVICECLS:disk

CHAIN:interactiv
TYPE: external
INPUT:disk
OUTPUT:disk

END OF SUBMODEL IOSYS
INVOCATION:iosys1

TYPE:iosys
INTERACTIV:interactiv

INVOCATION:iosys2
TYPE:iosys: interactiv

CHAIN:interactiv
TYPE: external
INPUT:setcmdtype

April 3, 1982

61

62 SUBMODELS / SEC. 10

OUTPUT:freememory
:setcmdtype->getmemory->cpu->iosys1.input iosys2.input;.5 .5
:iosys1.output iosys2.output->decrcycles
:decrcycles->cpu freememory;if(jv(cyclecount»O) if(t)

END OF SUBMODEL CSSM

10.2 .. Submodel Invocations

Invocation of a submodel creates an actual subnetwork with the characteristics of the
submodel declaration. The remaining characteristics of the subnetwork created by the
invocation are specified by the parameters given with the invocation. The queues,. nodes and
global variables defined in the sub model declaration do not actually exist until the submodel· is
invoked. The queues nodes and global variables are properly part of the invocation and not
the sub model.

A sub model invocation begins with the line naming the invocation, "INVOCATION:"
followed by the name of the invocation. The remainder of the invocation is syntactically the
same as the invocation of queue types discussed in Section 6. The second line begins with
"TYPE: '.' followed by the name of the submodel to be invoked. The remainder of the
invocation supplies values (arguments) for the parameters declared in the sub model definition.
There are two ways to do this, a positional short format and a format which explicitly matches
parameter names and values given. The positional format is analogous to procedure calls and
similar statements in programming languages. On the type definition line, following the name
of the user defined type is a colon (": ") and then a list of values, with the values separated by
semicolons (";"). For example, the second invocation of "iosys" inthe above example uses
the positional format:

INVOCATION:iosys2
TYPE:iosys: interactiv

In the matching format, in interactive mode there will be a prompt for every parameter, where
the prompt consists of the name of the parameter followed by a colon (":") and the reply is to
be the value. The prompts will be in the order the parameters were declared. In dialogue
mode there must be a line for every parameter, consisting of the parameter name followed by
a colon followed by the value. In dialogue mode these lines may be in any order. They need
not be in the order the parameters were declared. For example, the invocation of "cssm" in
the example of Section 1.3 uses the matching format:

INVOCATION:cssm1
TYPE:cssm
PAGEFRAMES:userframes

·INTERACTIV:interactiv

In either format, a parameter value must be either a single expression or a single name. Whe.re
parameters are declared as vectors, parameter values must also be vectors.

Invocation arrays are declared on the line naming the invocation by following the napw
with a parenthesized expression for the number of invocations in the array. This expression
must be simulation independent (Appendix 3). The elements of invocation arrays must have
the same parameter values. The two invocations of "iosys" in the example of Section 1.3
could be replaced by an invocation array with two elements, e.g.,

April 3, 1982

SEC. 10.2 / Submodel Invocations

END OF SUBMODEL IOSYS
. INVOCATION:iosys1 (2)

TYPE.: iosys
INTERACTIV:interactiv

CHAIN:interactiv
TYPE: external
INpUT:setcmdtype
OUTPUT:freememor¥
:setcmdtype->get~e~ory->cpu->tosys1 (*) . input; .5
:iosys1 (*) .output->decrcycles
:decrcycles->cpu freememory;if(jv(cyclecount»O) if(t)

END OF SUBMODEL CSSM

10.3. Node Parameters

63

In some cases a sub model may not naturally have only one entry point or one exit point
for a given chain. In some cases it will be possible to add a dummy node (or nodes) to the
submodel to transform it to one with a single entry point and a single exit point. In general it
may not be possible or desirable to restrict a chain to having a single entry point anci/ or a
single exit point. Node parameters may be used to provide multiple entry/exit points for a
chain in a submodel. .

A node parameter allows the submodel definition to refer to a node in the irlVoking
(sub)model. The nodes passed as parameters exist only in the invoking {sub)model. Withinthe
(sub)model, node parameters may be used only in the routing definition and in status functions.
Thus node parameters may not be used in prompts for node lists and may not be given the
input or output synonyms.

The routing definition within a sub model may specify routing directly from node parame­
ter to node parameter. However, certain restrictions hold on the expressions allowed for
routing predicates and probabilities in such a situation. We will discuss these restrictions after
the following example ..

Section 3 has already discussed the syntax of node parameter declarations. We now
consider an abstract example to illustrate the node parameter mechanisms. The second and
third examples in Appendix 1 illustrate concrete applications of node parameters.

c- --C1--- -- ----------- ----------------~- -- ----C4--.-----! .

D-~!~) I ONE_FOUR ~
I I t ___ -------------!

C2(P1) C3(P2)

~I
Figure 10.1 - Node Parameter Example

Suppose we wish to have a tandem network of four q·ueues as depicted in Figure 10.1.
Further, we wish to have classes cl and c4 belong to the same submodel but have classes c2

April 3, 1982

64 SUBMODELS / SEC. 10

and c3 belong to the invoking submodel. Thus we necessarily have two inputs and two
outputs for the submodel. We might use the following submodel definition.

SUBMODEL:one_four
NODE PARAMETERS:pl p2
CHAIN PARAMETERS:c
QUEUE:ql

TYPE:fcfs
CLASS LIST:cl

SERVICE TIMES:. 25.
QUEUE:q4

TYPE:fcfs
CLASS LIST:c4

SERVICE TIMES: .25
CHAIN:c

TYPE: external
INPUT:cl
OUTPUT:c4
:cl->pl
:p2-.>c4

END OF SUBMODEL ONE_FOUR

Here we have let classes c1 and c4 have the input and output synonyms, respectively, and we
have let classes c2 and c3 be passed to the submodel as parameters p1 and p2. (Classes c2
and c3 are assumed to be defined in queues of the invoking model.) We could use the
f9110wing invocation.

INVOCATION: inv
TYPE: one_four
Pl :c2
P2:c3
C:c

CHAIN:c
TYPE: open
SOURCE LIST:s
ARRIVAL TIMES:.5
:s->inv.input
:c2->c3
:inv.output->sink

The definition of the routing from c2 to c3 can be expressed either in the invoking model, as
we have done, or in the submodel by using a routing transition from p 1 to p2. If we have a
direct path specified between node parameters in a submodel definition, then the probability
or predicate expression may not include references to global variables local to the sub model,
may not include references to any queues (in status functions) except queues in the outermost
model and may not include references to any nodes (in status functions) except nodes in the
Qut~fmost model. For example, in submodel one_four a line of the form

:pl->p2 ~4;if(ql(c2)<5) if(t)

would be acceptable, but

April 3, 1982

SEC. 10.3 / Node Paraineters 65

:pl->p2 c4;if(ql(cl)<5) if(t)

would not be acceptable. Note that dummy nodes may be added to a submodel to circumvent
this restriction, e.g.,

:pl->d->p2 c4;if(ql(cl)<5) if(t)

where d is a dummynode(declared within the submodel) would be acceptable.

10.4. Submodel Nesting Structures

We have already discussed and illustrated common submodel nesting structures. Typical­
ly, when invocations are included within a submodel, the definition of the invoked.submodel is
also included in the submodel containing the invocation. However, this is not strictly neceS­
sary. Consider the following dialogue sketch.

MODEL: a

SUBMODEL:b

SUBMODEL:c

END OF SUBMODEL C
INVOCATION:cl

TYPE:c

END OF SUBMODEL B
SUBMODEL:d

SUBMODEL:c

END OF SUBMODEL C
INVOCATION:c2

TYPE:c

END OF SUBMODEL D

END

If the· definition of submodel C is the same in both instances, then it would be more conven­
ient for the user to have a single copy of the definition, so that any changes could be made
once instead of twice. (It would also take less time for SETUP to process the dialogue;) Thus
we might use

MODEL: a

SUBMODEL:c

END OF SUBMODEL C
SUBMODEL:b

INVOCATION:cl
TYPE:c

April 3, 1982

66

END OF SUBMODEL B
SUBMODEL:d

INVOCATION:c2
TYPE:c

END OF SUBMODEL D

END

SUBMODELS / SEC. 10

Submodel definitions and invocations must be such that a submodel definition is in either
(1) the same submodel which contains the invocation or (2) the model (i.e;, it is not nested
within another submodel definition). Note that these rules do not preclude having submodel
definitions and invocations in submodel C. It is difficult for the simulation component of
. .' , I

RESQ to verify that these rules have been followed; if they are violated, the violation may not
be detected.

In situations such as this one must be careful about different elements with the same
name. As in most programming languages, the "static chain of reference" is followed. The
static chain of reference considers the static structure of declaration, as opposed to the
"dynamic chain of reference," which considers the structure imposed by the invocations.

For example, if both the model A and the submodel B of the example have a queue
named "q", and there is a reference to "q" in a status function, e.g.,

MODEL: a

QUEUE:q

SUBMODEL:c

:alpha->beta;if(ta(q»O)

END OF SUBMODEL C
SUBMODEL:b

QUEUE:q

INVOCATION:c1
TYPE:c

END OF SUBMODEL B
SUBMODEL:d

INVOCATION:c2
TYPE:c

END OF SUBMODEL D

END

April 3, 1982

SEC. 10.4 / Submodel Nesting Structures. 67

then the two different nesting structures will give different results. In this example, the "q"
referred to in the T A status function will be the one defined in the model, not the "q i, defined
in submodelB.

April 3, 1982

68

11. NUMERICAL SOLUTION

The discussion in the other sections of this document generally assumes that simulation
will be used to obtain model solutions. However, numerical solution is feasible and, usually,
dramatically less expensive than simulation for a subset of the models allowed by simulation.
Computational expense may be large with numerical solution with models with closed chains and
substantial closed chain populations and/or with models with closed chains and several queues with
queue length dependent service rates. The first example in Appendix 1 illustrates the use of
numerical solution. The numerical solution component of RESQ uses the "mean value
analysis" (MVA) algorithm discussed in

S.S. Lavenberg and C.H. Sauer, "Analytical Results for Queueing Models," S.S.
Lavenberg (Editor), Computer Performance Modeling Handbook, to appear, Academic
Press (1982).
B.A. MacNair and S. Tucci, "Implementation of Mean Value Analysis for Open,
Closed and Mixed Queueing Networks," to appear as an IBM Research Report.

The following restrictions apply to a model to be solved numerically:

1. In open chains, arrivals from sources must form a Poisson process. Arrival
rates are constant, i.e., CV(O) must remain 1. Therefore, only an exponen­
tial interarrival time distribution can be given for each source.

2. The routing must be completely specified using only probabilities. No
predicates can be used for any routing decisions.

3. The only nodes allowed are classes, sources and sinks. (Passive queues are
not allowed.)

4. Only four queueing disciplines are allowed: FCFS, PS, LCFS and IS. With
FCFS, there is a further restriction that all classes at a queue must have the
same exponential service time distribution. No priority disciplines are
permitted.

5. At queues with multiple servers all servers must have the same characteris­
tics.

6. The performance measures produced are utilization, throughput, mean
queue length and mean queueing time. No distribution estimates are
available.

A model definition for numerical solution will consist of the (allowed) sec~ions described
so far, followed by a line containing an "END" after the last chain definition.

April 3, 1982

69

12. SIMULATION DIALOGUES

After the definiti'On 'Of r'Outing chains, the definiti'On 'Of the m'Odel pr'Oper, i.e., the
extended queueing netw'Ork, is c'Omplete. H'Owever, where simulation is t'O be used, additi'Onal
ihformati'On is required (1) t'O indicate distributi'Ons gathered, if any, (2) t'O. defiiI.C thtl
confidence interval estimati'On meth'Od, if 'One is t'O be used, (3) t'O dictate the initial state 'Of
the simulated system, (4) t'O define h'Ow the simulati'On run length will be determined, and
(5) t'O define simulati'On tracing, if desired. The f'Oll'Owing secti'Ons discuss the syntax and
semantics 'Of the dial'Ogue f'Or these simulati'On dependent characteristics.

12.1. Distribution Gathering

By default the simulati'On pr'Ogram will gather mean perf'Ormance measures and certai~
'Other measures f'Or all queues, classes and all'Ocate n'Odes (including AND and OR all'Ocate
n'Odes). Thr'Oughputs and departure c'Ounts are gathered by default f'Or 'Other n'Odes. Distribu ..
H'Ons 'Of perf'Ormance measures, e.g., distributi'Ons 'Of queueing time and queue length, are 'Only
gathered up 'On specific user request. Gathering 'Of distributions is less easily defined by default
and may be c'Omputati'Onally expensive unless well defined. The user may specify' that
distributi'Ons 'Of queueing time and queue length be gathered f'Or queues, classes and "plain"
all'Ocate n'Odes (but n'Ot AND and OR all'Ocate n'Odes). In interactive· m'Ode there will be
pr'Ompts f'Or these specificati'Ons, as illustrated iri Secti'On 1.3. These specificati'Ons ate
'Opti'Onal. The user may als'O specify that distributi'Ons 'Of the number 'Of t'Okens in use and the
i'Otal number 'Of t'Okens f'Or a passive queue be gathered. These specificati'Onsmay begiveil
'Only in dial'Ogue files. We n'Ow describe these specificati'Ons in the 'Order they w'Ould 'Occur in
dial'Ogue files.

Cumulative queueing time distributi'Ons are gathered f'Or queues listed 'On lines 'Of the f'Orm
"QUEUES FOR QUEUEING TIME DISTRIBUTION:" f'Oll'Owed by a list 'Of names 'Of queues
(qmilified by inv'Ocati'On names if these queues were declared in subm'Odels). F'Or 'each queue
listed there will n'Ormally be a c'Orresp'Onding line giving the distributi'On values 'Of interest.
This line c'Onsists 'Of "VALUES:" f'Oll'Owed by a list 'Of expressi'Ons~ These expressi'Ons rnustbe
simulati'On independent. The simulati'On pr'Ogram will estimate the probability. that the
queueing time is less· than 'Or equal t'O each 'Of these values. If fewer values lines. are given
than the number 'Of queues listed, the last values line will be used f'Or the remaining queues in
the list. This secti'On f'Or queue queueing time distributi'Ons may be repeated as necessary. F'Or
example, we might have the f'Oll'Owing specificati'On:

QUEUES FOR QUEUEING TIME DIST:cssm1.memory
VALUES: 1 2 3 4 5 6 7 8

QUEUES FOR QUEUEING TIME DIST:cssm1.iosys1.diskq cssm1.iosys2.diskq
VALUES: .03 .06 .12 .24

Queue length distributi'Ons will. be gathered f'Or queues listed 'On lines ·'Of the f'Orm
"QUEUES FOR QUEUE LENGTRDISTRIBUTION:" f'Oll'Owed by a list 'Of names 'Of queues
(qualified by inv'Ocati'On names if these queues were declared in subm'Odels). F'Or each queue
listed there will n'Ormally be a c'Orresp'Onding line giving the maximum queue length 'Of interest;
Thisline c'Onsists 'Of "MAX VALUE:" f'Oll'Owed by a single expressi'On. This expression must
be simulati'On independent. The simulati'On pr'Ogram will estimate the pr'Obability 'Of each
queue length fr'Om zer'O up t'Othis maximum. If fewer 'Of these lines are given than the number
'Of queues listed, the last line will be used f'Orthe remaining queues in the list. This secti'On f'Or
queue queue length distributi'Ons may be repeated as necessary.F'Or example, we might h~lVe
the f'Oll'Owing specificati'On:

April 3, 1982

70 SIMULATION DIALOGUES / SEC. 12

QUEUES FOR QUEUE LENGTH DIST:cssml.memory
MAX VALUE:users

QUEUES FOR QUEUE LENGTH DIST:cssm1.iosys1.diskq cssm1.iosys2.diskq
MAX VALUE: ceil (userframes/20)

Token use distribution specifications are only possible in dialogue files (and only for
passive queues). Token use distributions will be gathered for queues listed on lines of the
form "QUEUES FOR TOKEN USE DISTRIBUTION:" followed by a list of names of queues
(qualified by invocation names if these queues were declared in submodels). For each queue
listed there will normally be a corresponding line giving the maximum number of tokens of
interest. This line consists of "MAX VALUE:" followed by a single expression. This
expression must be simulation independent. The simulation program will estimate the
probability of each number of tokens in use from zero up to this maximum. If fewer of these
lines are given than the number of queues listed, the last line will be used for the remaining
queues in the list. This section for queue token use distributions may be repeated as neces­
sary. For example, we might have the following specification:

QUEUES FOR TOKEN USE DIST:cssm1.memory
MAX VALUE:userframes

Total token distribution specifications are only possible in dialogue files (and only for
passiVe queues). Total token distributions will be gathered for queues listed on lines of the
form "QUEUES FOR TOTAL TOKEN DISTRIBUTION:" followed by a list of names of
queues (qualified by invocation names if these queues were declared in submodels). For each
queue listed there will normally be a corresponding line giving the maximum number of tokens
of interest. This line consists of "MAX VALUE:" followed by a single expression:. This
expression must be simulation independent. The simulation program will estimate the
probability of each number of tokens in the passive queue, including tokens in use, from zero
up ~o this maximum. If fewer of these lines are given than the number of queues listed, the
last line will be used for the remaining queues in the list. This section for queue total token
distributions may be repeated as necessary. For example, we might have the following
specification:

QUEUES FOR TOTAL TOKEN DIST:windowq
MAX VALUE:2*window-1

Cumulative queueing time distributions are gathered for nodes listed on lines of the form
"NODES FOR QUEUEING TIME DISTRIBUTION:" followed by a list of names of nodes
(qualified by invocation names if these nodes were declared in submodels). These nodes must
be either classes or "plain" allocate nodes (not AND or OR allocate nodes). For each node
listed there will normally be a corresponding line giving the distribution values of interest.
This line consists of !IV ALUES: n followed by a list of expressions. These expressions must be
simulation independent. The simulation program will estimate the probability that the
queueing time is less than or equal to each of these values. If fewer values lines are given
than the number of nodes listed, the last values line will be used for the remaining nodes ,in
the list. This section for node queueing time distributions may be repeated as necessary. For
e:w:ample, we might have the following specification:

NODES FOR QUEUEING TIME DIST:cssm1.getmemory
VALUES: 1 2 34 5 6,7 8

NODES FOR QUEUEING TIME DIST:cssm1.iosys1.disk cssm1.iosys2.disk

VALUES: .03 .06 .12 .24

April 3, 1982

SEC. 12.1 / Distribution Gathering 71

Queue length distributions will be gathered for nodes listed on lines of the form "NODES
FOR QUEUE LENGTH DISTRIBUTION:" followed by a listof names of nodes (qualified by
invocation names if these nodes were declared in submodels). These nodes must be .either
classes or "plain" allocate nodes (not AND or OR allocate nodes). For each node listed there
will normally be a corresponding line giving the maximum queue length of interest. This tirte
consists of "MAX VALUE:" followed by a single expression. This expression must be
simulation independent. The simulation program will estimate the probability of each queue
length from zero up to this maximum. If fewer of these lines are given than the number of
nodes listed, the last line will be used for the remaining nodes in the list. This section for
node queue length distributions may be repeated as necessary. FOr example, we might have
the following specification:

NODES FOR QUEUE LENGTH DIST:cssml.getmemory
MAX VALUE:users

NODES FOR QUEUE LENGTH DIST:cssml.iosysl.disk cssml.iosys2.disk
MAX VALUE:ceil(userframes/20)

12.2. Confidence Intervals and Run Length

Much of the remaining dialogue depends on whether confidence interval estimation is
desired, and, if so, which of three methods is chosen. An inherent problem in simUlation is the
statistical· variability of simulation estimates of performance measures. The usual method of
estimating variability of simulation results is to produce "confidence interval"estimates: given
some point estimate p (e.g., for mean queueing time) and other information we estimate a
confidence interval (p - 8, p + 8). The "true" value (for the extended queueing network)
is contained within the interval with some chosen probability, say .9. (The confidence interval
does not indicate how accurately the extended queueing network represents the system being
modeled.) This probability, expressed in percent, e.g., 90%, is known as the "confidence
leveL" The quantity 8 depends on the confidence level; the higher the confidence level is; the
larger 8 is. Note that the true value may lie outside of the confidence interval, but this
happens only with a small. probability (e.g., 1 - .9 = .1). If a simulation is not run long
enough, or if the performance measure considered is highly variable, then 8 may be greater
thanp . and p - 8 may be negative even though the performance measure must be non­
negative. Similarly, for performance measures known to be no greater than 1, e.g., utiliza;.
tions, p and 8 may be such that p + 8 > 1.

RESQ provides three methods for confidence interval estimation. The. methods are
implemented to be as transparent to the user as is practical, i.e., to minimize user decision
making and to minimize required user understanding of the statistical bases of the methods.
Noone method is best for all applications.

o The method of independent replications is the preferred method for estimation of
transient characteristics. Independent replications may be applied to estimation of
equilibrium characteristics, but one of the following two methods will usually be
preferable for estimating equilibrium characteristics,

The regenerative method is the preferred method for estimation of equilibrium
behavior in models with regenerative characteristics. Many models constructed with
RESQ will have regenerative characteristics, but many other models will not.

G The spectral method is the preferred method for estimation of equilibrium behavior
in models without regenerative characteristics. The spectral method may also. be
applied to models with regenerative characteristics. The regenerative method

April 3, 1982

72 SIMULATION DIALOGUES / SEC. 12

requires more user sophistication than the spectral method in that the user must be
able to define "regeneration states." Definition of a model to use the spectral
method is no more difficult than definition of a model to he shnulated without
confidence intervals.

The regenerative method and the spectral method allow automated run length control based on
achieving confidence intervals of a prespecified width. All three methods, independent
replications, the regenerative method and the spectral method, are discussed from a statistical
point of view in

P.D. Welch, "The Statistical Analysis of Simulation Results," S.S. Lavenberg
(Editor), Computer Performance Modeling Handbook, to appear, Academic Press
(1982).

We discuss four cases, simulation without confidence intervals and the three confidence
interval methods.

12.2.1. Simulation without Confidence Intervals

After the distribution specification section, the next line is for specification of the
confidence interval method. This line consists of "CONFIDENCE INTERVAL METHOD:"
followed by "none", "replications", "regenerative" or "spectral". This section assumes that
confidence intervals are not desired, i.e., "none"is given on the confidence interval method
line ..

The next major section is for specifying the initial state of the network when simulation
begins, i.e., how many jobs are to be placed at which nodes. It begins with the line "INITIAL
STA TE DEFINITION -" . Following this line there will be a triple of lines for each chain
which is not empty in the initial state. Open chains with sources may be left empty in the
initial state. If a model consists only of open chains with sources, then no triples need be
given. A triple must be given for each closed chain or chain array. Initial states of open
chains which are to be non-empty initially are specified as with closed chains. The first line of
each triple identifies the chain (or chain array) and consists of "CHAIN: II followed by the
name. Chain array names may optionally be followed by "(*)". The second line of each
triple lists the nodes where jobs are to be placed initially. This line consists of "NODE
LIST:" followed by a list of names of nodes. Where the .initial state of a single chain is being
defined, these must be individual nodes, Le.', elements of node arrays must be listed separately
(and subscript expressions must be simulation independent). Where the initial states of chain
arrays are being defined, the names of nodes in the list must be names of entire node arrays
(optionally followed by "(*)"). These node arrays must all have the same numbers of
elements as the chain array. The third line of the triple gives the numbers of jobs to be placeq
at each node in the previous list. This line consists of "INIT POP:" followed by a list of
expressions and/or names of numeric vectors. For definition of initial state of a single chairl,
the list must cotlsist only of simulation independent expressions, otie per node listed in th~
node list line. For a closed chain, the sum of the values of these expressions inust' equal the
chain population. For definition of the initial states of chain arrays, this list must have the
same number of elements as the list of node names. Expressions are interpreted as values for
each element in the corresponding node array. Numeric vectors must have the same numbers
Qf ~lements as the chain array.

It is not possible to specify job copies in initial state definitions, e.g., it is not possible to
specify that some jobs are at a class while holding tokens at an allocate node. If we want to
specify jobs at a class which hold tokens, then it is necessary to place them at an allocate node
in such a manner that they will immediately proceed to the desired class. For example, if in

April 3, 1982

SEC. 12.2.1 / Simulation without Confidence Intervals 73

the example of Section 1.3 we wish to have 2 jobs initially at queue "cssml.cpuq" holding
tokens of "cssm1.memory" then we should initially place those jobs a:tthe set node
"cssm 1. setcmdtype" :

INITIAL STATE DEFINITION­
tHAIN:interactiv

NODE LIST:terminals
INIT POP: users-2

cssml.setcmdtype
2

When the simulation begins, the jobs will get tokens and go immediately to "cssm1.cpuq". If
we wanted to have tokens initially at a disk queue in this example, then we could add an
allocate node for this purpose such that the jobs leaving the new allocate node would go
directly to the disk queue and such. that jobs never go to this new allocate node from other·
nodes. Then we could place jobs initially at this allocate node and they .would go immediately
to the disk queue, holding tokens, assuming sufficient tokens were available.

The next major section is for specification of simulation run length .. This allows for a
variety of limits to be specified. A limit on CPU time used by the simulation may also be
specified after the other limits. The CPU limit is treated as a special case in some regards,
especially when confidence intervals are estimated. The simulation run stops when the first of
these limits is reached. (As illustrated in Section 1.3, when the run stops these limits rnay. be
increased and the run continued.)

The run limits section begins with a line "RUN LIMITS-". After that line there will lines
for limits and pairs of lines for limits. These lines are all optional in dialogue files. In
interactive mode, null replies to these prompts will result in "infinite" values ·for the corre­
sponding limits. . All of the expressions given in these lines must be simulation independent
(Appendix 3). The first of these lines is for simulated time, "SIMULATED TIME:" followed
by a single expression. The second of these lines is for simulated events, "EVENTS:"
followed bY' a single expression. Simulation events are discussed in Appendix 7. Next in: order
are pairs of lines for limits on numbers of departures from specified queues. . Several such
pairs may be given, as appropriate. The first line of the pair consists of "QUEUES FOR
DEPARTURE COUNTS:" followed by a list of queue names. The second line of the pair
consists of "DEPARTURES:" followed by a list of expressions, one per queue listed on the
previous line. Note that jobs are not counted as departures from passive queues until they
release or destroy tokens, except for jobs waiting for tokens at an OR allocate node which
receive tokens from some other queue of the OR allocate node. Last in order in the run limits
section are pairs of lines for limits on numbers of departures from specified nodes. Several
such pairs may be given, as appropriate. The first line of the pair consists of "NODES FOR
DEPARTURE COUNTS:" ·followed by a list of node names. Node arrays must be listed by
elements, not the entire array. The nodes listed may not be AND or OR allocate nodes. The
second line of the pair consists of "DEPARTURES:" followed by a list of eXPressions, one per
node listed on the previous line:

In dialogue files only, prior to the specification of the run limits we may specify that an
initial portion of the run is to be discarded, i.e., that only performance measures gathered after
this initial portion will be discarded. the length of this portion is specified as a fraction, in
percent, of the run limits (other than the CPU limit). The initial portion ends when the first
of these fractions of the run length limits is reached. The run then ends when the first of the
full limits is reached. The initial portion discarded is specified by a line of the form "INITIAL
PORTION DISCARDED:" followed by a simulation independent expression. This expression
should have a valuein the interval [0,100).

April 3, 1982

74 SIMULATION DIALOGUES / SEC. 12

The CPU limit is specified by a line of the form "LIMIT - CP SECONDS:" followed by a
simulation independent expression. (Note that the keyword is "Cp" so that "cpu" is available
as a name.) This is only a rough limit because the simulation measures CPU time consumed
after every 1000 events and pseudo-events (Appendix 7) and at other points considered
significant. Thus more CPU time may be consumed than specified in this limit if the limit is
reached. between measurements.

The simulation dialogue following the initial state section for the example of Section 1.3
might be

INITIAL PORTION DISCARDED: 10 /*percent*/
RUN LIMITS~

SIMULATEDTIME:3600
EVENTS :50000
QUEUES FOR DEPARTURE COUNTS:cssm1.memory

DEPARTURES: 400
QUEUES FOR DEPARTURE COUNTS:cssm1.iosys1.diskqcssm1.iosys2.diskq

DEPARTURES: 2000 2000
NODES FOR DEPARTURE COUNTS:cssm1.decrcycles

DEPARTURES: 3000
LIMIT - CP SECONDS:5

12.2.2. Independent Replications

This section assumes that "replications" is specified on the confidence interval method
line. With independent replications the simulation run is repeated several times (usually five
to ten times) with each replication. beginning hi the same initial state. The only difference
between the replications is that the random number streams are not reset at the beginning of
the second and subsequent replications, so the replications are different due to statistical
variability. (Section 12.3 discusses the random number streams of the RESQ simulation
program.) The random number streams for the second replication begin where the streams for
the first replication ended, the streams for the third replication begin where the streams for the
s~cond replication ended, etc.

After the confidence interval method line, the initial state of the network is specified,
using the same syntax and semantics as a simulation without confidence intervals (Section
12,2.1).

After the initial state definition section, there are lines to specify the confidence level and
the number of replications. The confidence level line consists of" CONFIDENCE LEVEL: "
followed by a simulation independent expression for the confidence level in percent. A null
reply is allowed for the confidence level prompt in interactive mode. The confidence level line
is optional in dialogue files. If the confidence level is not specified, the default value of 90
(percent) is used. The number of replications line consists of "NUMBER OF REPLICA­
TIONS:" followed by a simulation independent expression. The number of replications must
be explicitly given.

The remainder of the simulation dialogue is essentially the same for replications as it is
for simulation without confidence intervals. The "RUN LIMITS-" line is replaced by a.
":aJIPLIC LIMITS-" line. Otherwise the syntax is the same. The simulated time, event and
departure limits are limits for each replication. A replication stops when the first of these
limits is reached. The initial portion of each replication may be discarded, as with simulation
without confidence intervals. The CPU limit is the limit for the total time .spent on all
replications. When the simulation stops, it may only be resumed if the CPU limit was reached

April 3, 1982

-::',

SEC. 12.2.2 / Independent Replications ·75

before the specified replications were completed. After the simulation stops, the replication
limits may not be increased, nor may the number of replications be increased.

The simulation dialogue following the distribution specification for the example of Section
L3, for the independent replications confidence interval method, might be

CONFIDENCE INTERVAL METHOD:replications
INITIAL STATE DEFINITION­
CHAIN:interactiv

NODE LIST:terminals cssm1.setcmdtype
INIT POP: users-2 2

CONFIDENCE LEVEL:95 l*percent*1
NUMBER OF REPLICATIONS:7
INITIAL PORTION DISCARDED: 10 l*percent*1
REPLIC LIMITS-

SIMULATED TIME:3600
EVENTS: 50000
QUEUES FOR DEPARTURE COUNTS:cssm1.memory

DEPARTURES: 400
QUEUES FOR DEPARTURE COUNTS: cssm1 . iosys 1. diskq cssm1 .iosys2. diskq

DEPARTURES: 2000 2000
NODES FOR DEPARTURE COUNTS:cssm1.decrcycles

DEPARTURES: 3000
LIMIT - CP SECONDS: 100

12.2.3. The Regenerative Method

This section assumes that "regenerative" is specified on the confidence intervalm:ethod
line. The regenerative method applies only to networks which regenerate, i.e., which return
"frequently" (say, at least 10 times in a simulation run) to a state (usually the initial state)
such that future behavior is independent of past behavior. With the example of Section 1.3,
the initial state with all jobs at the terminals is a state with these characteristics. for the
parameters specified in Section 1.3. With other parameters, e.g., with very sinall"thinktimt\,"
that initial state might not occur sufficiently frequently. With a network consisting of only
open chains, the state where the network is empty of jobs will of ten be a suitable choice of
state. The state we have been discussing is called the "regeneration" state. It is usually the
same as the initial state but may be a different state,as we discuss below.

With the regenerative method the simulation run is essentially the same as in simulation
without confidence intervals, but the simulation program recognizes returns to the regeneration
state. When the simulated system returns to the regeneration state, the program gathers

. information that will be used to estimate confidence intervals at the end of the simulation.

After the confidence interval method line, the regeneration and initial states of the
network are specified, using syntax and semantics similar to simulation without confidence
intervals (Section 12.2.1). The "INITIAL STATE DEFINITION-" line is replaced. by
"REGENERATION STATE DEFINITION-". Between the "NODE LIST:" and "INIT
POP:" lines is inserted a "REGEN POP:" line. Except for the difference in keywords, this
line has the same characteristics as the "INIT POP:" line. Since most node types consume
zero simulated time and do not cause j{)bs to wait, non-zero numbers of job copies in the
"REGEN POP:" line are only reasonable for classes, all{)cate nodes and fusion nodes. The
simulation program only allows non-zero numbers of jobs in the "REGEN POp:'i line for
classes and "plain" allo~ate nodes. The values given by this line count both jobs and J()b
copies, so for a closed chain the sum of the values in this line may be more than the chain

April 3, 1982

76 SIMULATION DIALOGUES / SEC. 12

population. For example, for the model of Section 1.3 using the same initial state definition as
in Section 12.2.1, the regeneration state section should be

REGENERATION STATE PEFINITION­
CHAIN:interactiv

NODE LIST:terminals cssm1.setcmdtype
REGEN POP:users-2 0
INIT POP: users-2 2

cssm1.getmemory cssm1.cpu
2 2
o o

Here the initial state and the regeneration state are different, but the simulated system enters
the regeneration state at simulated time zero (because the set node and allocate node take
zero simulated time).

In general, the numbers of jobs and job copies at each node are not sufficient to rigorous­
ly define a regeneration state. . Additional characteristics are defined by default in order to
more rigorously define a regeneration state. Warning messages are issued when the state
defined appears to the program to not be a rigorously defined regeneration state. Warnings
are issued when

• A class has service time or work demand specified by an expression dependent on
simulation variables or status functions or by a distribution not represented by
exponential stages. (Exponential distributions, the BE distribution and the ST AND­
ARD distribution with coefficient of variation at least .5 are the only RESQ distribu­
tions represented by exponential stages. See Appendix 3.) Further, the regeneration
state has a non-zero number of jobs at this class.

A source has arrival time specified by an expression dependent on simulation
variables or status fun.ctions or by a distribution not represented by exponential
stages.

·Global variables are used.

The regeneration state has a non"'zero number of jobs at an allocate node. This
warning only applies to queueing time distribution values other than mean queueing
time. Regeneration states must be more rigorously defined for queueing time
dis tri butions.

When these messages are issued, the program proceeds with the simulation as if a regeneration
state had been rigorously defined. The additional default characteristics of the regeneration
state are

•

Where service times and/or arrival times are represented hy exponential stages, an~
times in progress are in the first stage in the regel1eratioh state:

At active queues where different orderings of the jobs in the queue are important
(e.g., FCFS queueing discipline) the ordering of jobs of different classes is the same
as at the first occurrence of· the required numbers of jobs at all nodes.

• At passive queues the ordering of jobs of different allocate nodes and different
numbers of tokens requested is the same as at the first occurrence of the required
numbers of jobs at each node~

• CV(O) has the value one (1) for all qpen chains (see Section 9.1.2).

April 3, 1982

SEC. 12.2.3 / The Regenerative Method 77

These warnings and default conditions are incomplete in the. sense that there are states which
will be accepted as rigorously defined regeneration states when in fact further conditions must
be placed on .the state definition to obtain a rigorously defined regeneration state.

After the regeneration state definition section, there is a line to specify the confidet1<;e
level, as with independent replications. The confidence level line consists of "CONFIDENCE
LEVEL:" followed by a simulation independent expression for the confidence level in percent.
A null reply is allowed for the confidence level prompt in interactive mode. The confidence
level line is optional in dialogue files. If the confidence level is not specified, the default value
of 90 (percent) is used.

After the (:onfidence level line is a required line . to indicate whether the sequential
stopping rule is to be used. The sequential stopping rule determines run length. based on the
confidence intervals determined at intermediate points in the run. The line consists of
"SEQUENTIAL STOPPING RULE:" followed by "yes" or "noil. We first consider the (:ase
without the sequential stopping rule, then the case with the sequential stopping rule.

If the IIno" reply is given on the sequential stopping rule line, the remainder of the
simulation dialogue is closely similar to the dialogue for simulation without confidence
intervals. The "RUN LIMITS-" line is replaced by a "RUN GUIDELINES-" line. The
periods between returns to the regeneration state are called "cycles." The values in the run
gUidelines are not firm limits because once one of these guidelines is reached, the simulation
run will continue until either (1) the simulated system returns to the regeneration state, thus
completing a regeneration cycle, or (2) the CPU limit is reached. The simulated time, event
and departure lines are the same as with the run limits section for simulation without confi­
dence intervals. After the " SIMULATED TIME:" line there may be a line specifying a 11mit
for number of regeneration cycles for the run. This is truly a limit in that the simulated
system will be returning to the regeneration state when the value is reached. The cycles line
consists of "CYCLES:" followed by an expression for. the number of cycles. The initial
portion discarded line is not allowed with the regenerative method. The CPU limit line is the
same as with simulation without confidence intervals. If the CPU limit is reached in the midst
of a regeneration cycle, only the data from completed cycles will be used in the· performance
measure reports. When the simulation stops, it may be resumed as with simulation without
confidence intervals. If this is done, and the simulation stopped because of the CPU limit, the
simulation resumes in the midst of the incomplete regeneration cycle.

The simulation dialogue following the regeneration state definition, for the example of
Section 1.3, might be

.CONFIDENCE LEVEL:95 /*percent*/
SEQUENTIAL STOPPING RULE:no
RUN GUIDELINES-

SIMULATED TIME:3600
CYCLES: 50
EVENTS: 50000
QUEUES FOR DEPARTURE COUNTS:cssm1.memory

DEPARTURES: 400
QUEUES FOR DEPARTURE COUNTS: cssm 1 . iosys 1 . diskq cssm 1 . iosys2. diskq

DEPARTURES: 2000 2000
NODES FOR DEPARTURE COUNTS:cssm1.decrcycles

DEPARTURES: 3000
LIMIT - CP SECONDS: 100

April 3, 1982

78 SIMULATION DIALOGUES / SEC. 12

If the sequential stopping rule is enabled, i.e., if the "yes"reply is given on the sequential
stopping rule line, the simulation run will consist of one or more subruns, called "sampling
periods." The user specifies the length of these sampling periods in a section corresponding to
the run guidelines section. At the end of each sampling period, confidence intervals will be
computed and evaluated with criteria specified by the user. If the criteria are satisfied, the
simulation run stops. If the criteria are not satisfied, the simulation continues for at least one
more sampling period. The criteria are basically prespecified widths for confidence intervals
forceitain queues and certain performance measures. In addition, the user may require that
these width criteria be satisfied for several successive sampling periods.

After the sequential stopping rule line, there will be one or more triples of lines. The first
line of a triple will be "QUEUES TO BE CHECKED:" followed by a list of names of queues.
A queue name may be repeated in the list if width requirements are to be specified for more
than one performance measure for that queue. The second line ofa triple will be
"MEASURES: I, followed by a list of code, one code per queue name in the previous list. The
allowed codes are

ut Utilization.

tp Throughput.

ql Mean queue length.

qld Queue length distribution.

qt Mean queueing time.

qtd Queueing time distribution.

tu Mean number of tokens in use (passive queues only).

tud Token use distribution (passive queues only).

tt Mean total number of tokens (passive queues only).

tud Total token distribution (passive queues only).

The distribution codes only apply if gathering of that distribution has previously been speci­
fied. Each gathered point of a listed distribution is checked and must satisfy the width
criteria. The third line of the triple consists of "ALLOWED WIDTHS:" followed by a list of
simulation independent expressions, one for each name on the first line of the triple. For the
measures which can only have values in the [0,1] interval, utilization and the distribution
measures, the width specified is absolute width in percent, i.e., the criterion is that 200 x 8 be
less than the specified width, where the confidence interval is (p - 8, p + 8). For the other
measures the width is relative width in percent, i.e., the criterion is that 200 x 8/ p be less than
the specified width. (Where p is zero, the criteria is not satisfied.)

After one or more triples have given the confidence interval width criteria, an additional
requirement may be made that the width criteria be satisfied for several successive sampling
periods. . This requirement is specified by a line of the form "EXTRA SAMPLING PERI­
ODS:" followed by a simulation independent expression. Specification of this requirement is
optional; the default value is zero. The simulation will continue (assuming the CPU limit is
not reached) until this number plus one successive sampling periods satisfy the width criteria.

April 3, 1982

SEC. 12.2.3 / The Regenerative Method 79

The remainder of the dialogue is the same as with the regenerative method without the
sequential stopping rule, except that the line "RUN GUIDELINES-" is replaced by
"SAMPLING PERIOD GUIDELINES-". The sequential stopping rule should be used in a
conservative manner, i.e., the sampling period guidelines should be specified with the intent
that there be only a few, relatively long sampling periods, not many short sampling periods. A
samjJling period will continue until the first return to the regeneration state after one of these
guidelines is reached, unless the CPU limit is reached first. If the the simulation stops because
of the CPU limit, only data from completed regeneration cycles is used. When the siniulation
stops, it may be resumed, but only to increase the CPU limit or to increase the extra sampling
period requirement. If this is done,and the simulation stopped because oftheCPU limit, the
simulation resumes in the midst of the incomplete regeneration cycle.

The simulation dialogue following the regeneration state definition, for the example of
Section 1.3 with sequential stopping might be

CONFIDENCE LEVEL:95 /*percent*/
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:cssm1.memory cssm1.~emory
MEASURES: qt qtd
ALLOWED WIDTHS: 5 /*% - relat~ve*/ 10 /*% - absolute*/

QUEUES TO BE CHECKED:cssm1 ;cpuq cssm1.iosys1.diskq
MEASURES: ut ut
ALLOWED WIDTHS: 10 /*% - absolute*/ 10 /*% -absolute*/

EXTRA SAMPLING PERIODS: 1
SAMPLING PERIOD GUIDELINES­

SIMULATED TIME:3600
CYCLES: 50
EVENTS: 50000
QUEUES FOR DEPARTURE COUNTS:cssm1.memory

DEPARTURES: 400
QUEUES FOR DEPARTURE COUNTS:cssm1.iosys1.diskq cssm1.iosys2.diskq .

DEPARTURES: 2000 2000
NODES FOR DEPARTURE COUNTS:cssm1.decrcycles

DEPARTURES: 3000
LIMIT - CP SECONDS: 100

12.2.4. The Spectral Method

This section assumes that "spectral" is specified on the confidence interval method line.
Most methods in classical statistics for estimating confidence intervals depend on having items
of data that are "independent and identically distributed. "The method of independent
replications achieves this "i.i.d." property by the protocol which repeats the simulation. The
regenerative method depends on being able to observe the Li.d. property during thesimula­
tion run. The spectral method dOes not depend on the. i.i.d. property. Rather, it explicitly
takes into consideration the correlation between data items in the simulation, e.g., the
dependencies between successive queueing times for a given queue. This is done without user
awareness, other than the availability of confidence intervals, so the dialogue for simulation
using the the spectral method is essentially the same as simUlation without confidence inter­
vals. A sequential stopping rule is available with the spectral method, a slightly different rule
than the one usedwith the regenerative method.

The spectral method requires sl,lbstantial additional virtual storage per performance
measure, per queue or node, for its confidence interval calculations, so confidence intervals are
only available for mean queueing times and queueing time distributions, and then only for

April 3, 1982

80 SIMULATION DIALOGUES / SEC. 12

queues and nodes specified by the user prior to the sim.ulation. (The storage requirement for a
given queue or node is on the order of 1600 bytes for mean queueing time, plus 1600 bytes
for each point of the queueing time distribution.) .

After the confidence interval' method line, the initial state of the network is specified,
using the same syntax and semantics as simulation without confidence intervals (Section
i 2'.2.1). After the initial state definition section, there is an optional confidence level line,
II CONFlDENCELEVEL:" followed by a simulation independent expression giving confidence
level in percent. As with the other confidence interval methods, the default is 90%. Then
there is a line indicating whether or not the sequential stopping rule is to be used. As with the
regenerative method, this line consists of "SEQUENTIAL STOPPING RULE:" followed by
"yes" or "no." We first consider the case without the sequential stopping rule, then the case
with the sequential stopping rule.

If the "no" reply is given on the sequential stopping rule line, the next part of the
simulation dialogue consists of (optional) pairs of lines for listing queues which are to have
confidence intervals computed. The first line of a pair consists of "CONFIDENCE INTER­
VAL QUEUES:" followed by a list of names of queues. Names may be repeated if both mean
queueing time and queueing time distribution confidence intervals are to be computed for the
same queue~ The second line of a pair consists of "MEASURES:" followed by a list of codes,
either "qt" for mean queueing time or "qtd" for queueing time distribution, one code per
name in: the previous line. The qtd code only applies if gathering of that distribution was
previously specified. After the pairs of lines for queues follow (optional) pairs of lines for
nodes. The first line of a pair consists of "CONFIDENCE INTERVALQUEUES:" followed
by a list of names of nodes. Only names of classes and "plain" allocate nodes may be listed.
The second line of a pair is as with the queue pairs. The remainder of the dialogue is as with
simulation without confidence intervals, beginning with the optional initial portion discarded
line.

The simulation dialogue following the initial state definition, for the example of Section
1.3, might be

CONFIDENCE LEVEL:95 /*percent*/
SEQUENTIAL STOPPING RULE:no
CONFIDENCE INTERVAL QUEUES:cssm1.memory cssm1.memory

MEASURES: qt qtd
CONFIDENCE INTERVAL NODES:cssm1.cpu

MEASURES: qt
INITIAL PORTION DISCARDED: 10 /*percent*/
RUN LIMITS-

SIMULATED TIME:3600
EVENTS: 50000
QUEUES FOR DEPARTURE COUNTS:cssm1.memory

DEPARTURES: 400
QUEUES FOR DEPARTURE COUNTS:cssm1.iosys1.diskq cssm1.iosys2.diskq

DEPARTURES: 2000 2000
NODES FOR DEPARTURE COUNTS:cssm1.decrcycles

DEPARTURES: 3000
. LIMIT - CP SECONDS: 100

If the sequential stopping rule is enabled, i.e., if the "yes" reply is given on the sequential
stopping rule line, the simulation run will consist of one or more subruns, called "sampling
periods. II Unlike the regenerative method, where these periods are of approximately equal
length, with the spectral method these periods are such that the total run length increases by

April 3, 1982

, SEC. 12.2.4 I The Spectral Method 81

roughly ,50% with each sampling period. As with the regenerative method,' after each
sampling period user specified criteria are used to determine whether to stop the .run. If the
criteria are not satisfied, the simulation continues for at least one more sampling period. The
criteria are basically prespecified widths for confidence intervals for certain performance
measures and certain queues and nodes. In addition, the user may require that these Width
criteria be satisfied for several sJlccessive sampling periods.

After the sequential stopping rule line, there will be two groups of triples of lines
corresponding to the two groups of pairs of lines for the queues/nodes for confidence intervals
a.s in the spectral niethoq witho4f the sequel1tial stopping rule. The first rWo Hnes of each
triple are the same as the pairs of lines: T~~ third line of the .triple consisfs of "A~~OWpp
WIDTHS:" followed by a hst of slmulatIonmdependentexpresslOns, one for each name on the
first line of the triple. For the queueing time distribution, the width specified is absolute width'
in percent, i.e., the criterion is that 200x8be less than the specified width, where the
confidence interval is (p - 8, p + 8). For mean queueing time the width is relative width. in
percent, i.e., the criterion is that 200x8/p be less than the specified width. (Where p is.zero,
the criteria is riot satisfied.)

After these triples have given the ·confidence interval width criteria, an additional
requirement may be made that the width criteria be satisfied for several successive sampling
periods. This requirement is specified by a line of the . form "EXTRA SAMPLINQPERI­
ODS: "followed by a simulation independent expression. Specification of this requirement is
optiomll; the default value is zero. The simulation will continue (assuming the CPU limit is
ii.otreached) until this number plus one successive sampling periods satisfy the widthcriteria~ '.

The remainder of the dialogue is the same as with the spectral method .without the
sequential stopping rule, except that the line "RUN LIMITS-" is replaced by "INITIAL
PERiOD LIMITS.: n. The limits specified a.re for the initial sampling period. These limits are
increased by 50% at the beginning of each sampling period and are then used as limits for the
total length of the run, not the length of the sampling period. The sequential stopping. rule
should be used in a conservative manner, ie~, the initial period Ilmits should be specified with
the intent that there be only a few, relatively long sampling periods, not manyshortsa111.pling
periods. If it is speCified that an initial portion of the run is to bediscatded, only this portion
of the' initial sampling period . is discarded. When the simulation stops, it may be resumed, but
only to increase the CPU limit or to increase the extra sampling period requirement.

The simula.tion dialogue following the initial state definition, for the example of Section
1.3 with sequential stopping might be

C.oNFIDENCE LEVEL:95 /*percent*/
SEQUENTIAL STOPPING RULE:yes

CONE:IDENCE INTERVAL QUEUES:cssm1.memory cssml.memory
MEASURES: qt qtd
ALLOWED WIDTHS: 5 /*%- relative*/10 /*% .,.. absolute*/

'CONFIDENCE INTERVAL NODES:cssm1.cpu
MEASURES: qt
ALLOWED WIDTHS: 10 /*%- absolute*/

EXTRA SAMPLING PERIODS: 1
INITIAL PORTION DISCARDED: 10 /*percent of init:j..al sampli~g perlod*/
INITIAL PERIOD LIMITS-

SIMULATED TIME:3600
EVENTS: 50000
QUEUES FOR DEPARTURE COUNTS: cssm1 . memory '.

DEPARTURES: 400

April 3, 1982

SIMtJtATIONOIALOGUES I SEC. 12

QUEUES .FOR DEPARTURE COUNTS:cssm1.iosys1.diskq cssm1.iosys2.diskq
DEPARTURES: 2000 2000

NODES FOR DEPARTURE COUNTS:cssm1.decrcycles
DEPARTURES: 3000

LIMIT - CP SECONDS: 100

1203. Rahdom Number Generation

the topics of this section affect only a single line of dialogue. This line appears only in
dialogue files and is optioiull in dialogue files. Before discussing this line we. discuss the
generation of (pseudo) random tiumoers in the simulation program.

Set Sources

1 377003613
2 648473574
3 1396717869
4 2027350275
5 1356162430
6- 1752629996
7 645806097
8 201331468
9 1393552473

10 1966641861
11 711072531
12 769795447
13 1074543187
14 1933483444
15 625102656
16 1116874679
17 1442211901
18 989455196
19 1996695068
20 1850124212

Active

1267310126
1741371275

886499692
1014119573

933913228
2082204497

920168983
107961~777
1888797415
1002901030
1582733583
254293472

1095895189
219529399

1706847402
1951007719
1169002398
1482199345
1976077334
775245191

Routing

1976418161
35067978

400884188
1895732964
1904749580
1301700180

63685808
936615625
110322717

1029730003
251900732
725094089
828842333

1471230052
1703522097
1356420548
1670372925
437765009

39279049
2123613511

Passive

150006407
1633650593
751601611

1410990605
1262214427
645360044

1504645702
1063375004
941885586

1753135176
253642018

1701685042
1448665492
1034856864
428280431
259758456
600732272
704726097
398944698
114386769

Table 12.1 :- Seeds for Random Number Stre.ams

Set Nodes

288727775
1499601820
2136214308
1197972807
1888007825

686553263
747119178
154337000
136758808

9182540
303111010
154232008
921093990

1684263351
1166344707
1167753617
1374693082
1812641667

502455872
857532898.

There are five random number streams in the simulation. Separate streams are used for
sources, for active queues, for routing decisions, for passive queues and for set nodes. There
are twenty sets of five seeds for initializing these streams. In a dialogue file, aline may be
inserted after the CPU limit line to indicate which set of five seeds is to be used. Other than
choosing a set of seeds, the user has no control over random number streams. The line
consists of "SEED:" followed by a simulation independent expression. This expression should
be an integer between land 20. If the line is omitted or the expression ha~ an inappropriate
value, set 1 is used. Table 12.1 gives the 20 sets of five seeds. Random integers in the
simulation ate generated by a function of the form

where Xn is the desired random integer and Xn_ 1 is the previous random integer of the stream
or the seed of the stream if no previous random numbers have been obtained from the stream.
(75 == 16807 and 231:1 = 2147483647.) The values in.Table 12~lwere obtained from this
generator by taking every hundred thousandth random integer starting at 377003613. Reading

April 3, 1982

" '

SEC. 12.3 / Random Number Generation

horizontally, the table entries are two million values apart. Uniform random numbers on the
interval (0,1) are obtained by dividing the random integer obtained from the generator by
231 _1. Exponential ran!iom numbers are obtained by taking the natural logarithm of a
uniform randomnuinber on the interval (0,1). The logarithm is negated and then multiplied
by the desired mean of the exponential distribution. All random numbers, in the simulation ate
obtained from simple functions of uniform and exponential random numbers.

12.4. Simulation Trace

Simulation trace lets the user know what happens during (a portion of) a run. This is
useful to the user in developing (debugging) a model. If the user suspects an error in the
simulation program itself, trace can be used to either confirm or deny this suspiCion.

Trace specification is the last section of the model definition. The first line of trace
specification consists of "TRACE:" followed by "yes" or "no". If no trace is indicated (by
','no"), the model definition is completed by a line containing only "END".

If interactive mode is used and trace is indicated (by "yes"), two additional prompts will
be given. The two additional prompts are "JOB MOVEMENT:" and "QUEUES:". The reply
to JOB MOVEMENT: must be either "yes" or "no." The reply to QUEUES: may be "yes" or
"no" or a list of queue names. If the reply.is "yes" then all queues will have "queue trace."
Ininh~ractive mode the model definition is complete after the "QUEUES:" line: '

In dialogue files other forms of trace may be' specified and trace may be selectively
enabled and disabled for portions of a run. After the "TRACE:yes" line comes a line to

. indicate whether trace is initially on or off. This line consists of "INITIALLY ON:" followed
by "yes" or I'no". Then there are two optional sections for specifying When trace will be
turned on during the run and when trace will be turned off during the run. If independent
replications are used for confidence intervals, these sections apply to, each replication. The
syntax and capabilities for turning trace on and off parallel the dialogue sections for specifying
ljmits or guidelines described in Section 12.2. The section for turning trace on begins with a
line "TURN TRACE ON-". Following that are (optional) lines for simulated time,regen:era­
tion cycles (if the regenerative method is used for confidence intervals), simulated events,
queue departure counts, and node departure counts. The. section for turning trace off is the
same syntactically except that the first line is "TURN TRACE OFF:"". After these sections
are two lines for job movement trace and queue trace, corresponding to the interactive
prompts described above. Then there are three additional lines: "EVENT HANDLING: I,'
followed by"yes"or "no", "EVENT LIST: " followed by "yes" or "no" and "SNAPSlIOTS:"
foUowedby "yes" Of "no". An "END" line completes the model definition.

For example, we might have the following:

TRACE:yes,
INITIALLY ON:yes
TURN TRACE 'ON -

SIMULATED TIME:3.5
CYCLES:
EVENTS:
Q{jEUES FOR DEPARTURE COUNTS:cssm1.memory cssm1.cpuq

DEPARTURES: 500 1300
QUEUES FOR DEPARTURE COUNTS:
NODES. FOR DEPARTURE COUNTS:

TURN TRACE OFF -

April 3, 1982

84 SIMULATION DIALOGUES / SEC. 12

SIMULATED TIME: 4.5.
CYCLES:
EVENTS:
QUEUES FOR DEPARTURE COUNTS:cssm1.memory cssnil.cpuq

DEPARTURES: 510·1305
QUEUES FOR DEPARTURE COUNTS:
NODES FOR DEPARTURE COUNTS:

JQBMOVEMENT:yes
QUEUES:memoryq cpuq
EV~NT HANDLING:yes
EVE1:'lT LIST:no
SIiAPSHOTS:no

END /*of mOdel*/

When/he simulated time option is used, it will only have an effect if an event occurs at exactly the
specified time. Wl;1en sever,al options are used to .turn the trace on, they wili each be enforced
if possible, i.e., the trace will be turned on (if it is not already on) at. the occurrence of each
specified conqition. Similarly, several options to turn trace off will each be enforced if
possible. Only one departure count to turn trace on maybe specified for agiy'en queue or
node, and only one. departure count may be specified to turn trace off for a given queue or
node.

The speciatglobal variables discussed in Appendix 2 may also be used to conirol trace. In
addition to the trace capabilities described in this section, Appendix 3 describes the PRINT
function which may be used for observing values of numeric expressions .

. We now give ~xamples of the job movement trace, the queue trace a~dthe event trace.
Eventlist and snapshot trace produce large amounts of output. It is usually inappropriate to use
these forms of trace. We . will. briefly discuss. these two forms of trace at the end of this
section.

The job movement trace, which shows the movement of jobs through the network,is
uSllally the most important. We illustrate some of the job movement trace for arbitrary
pprtions of models which illustrate by example most of the trace output for job movement.
The trace output we show is that from the RQ2PRNT file,. but the same output is also
displayed at the terminal during simulation. We will intersperse explanations before pieces of
trace 6utput.

Sections of trace output are labeled at the beginning by the name of the procedure that
produced the output. The procedure that handles the simulation events and timing is called
"SMULAT."

RESQ2 VERSION DATE: JANUARY 29, 1982 - TIME: 17:45:03 DATE: 01/29/82
MODEL: LOOP.

. .
SMULAT-- SIMULATION BEGINS ...

The procedure that handles routing is called "ARRIVE." Jobs in the network are numbered in
th~ order of their creation. The following says that job 1 is the first departure from a sQlH'C~
named "S." It then gives the current time and number of events. Then it gives the current
network popUlation, both in terms of true jobs and copies of jobs holding tokens at allocate
nodes. Then the destinations are considered in order until one is selected according to its
routing probability or predicate.. Tn this case the first destination is selected:

April 3, 1982

SEC. 12.4 / Simulation Trace 85

ARRIVE -- JOB 1 DEPARTURE 1 FROM S (SOURCE)
CURRENT TIME: 5.6301821E-02 NUMBER OF EVENTS:
POPULATION: 1 JOBS, 0 JOB COPIES
DESTINATION, CONDITION:
BEGINRT(ALLOCATE) , 0.178339 < 1.000000

Jobs are not considered to be "departures" from allocate nodes until they release or destroy
their tokens (except for AND and OR allocate nodes) so even though jobl leaves "beginrt,"
it is not counted as a departure. The trace shows no departure counts for AND and OR
allocate nodes. Since job 1 now holds tokens, a list of nodes' where tokens are held is now
provided by ARRIVE.

ARRIVE -- JOB 1 DEPARTURE 0 FROM BEGINRT (ALLOCATE)
CURRENT TIME: 5.6301821E-02 NUMBER OF EVENTS: 1
POPULATION: 1 JOBS, 1 JOB COPIES
TOKENS HELD: 1 AT BEGINRT
DESTINATION, CONDITION:
SET_MSG_L(SET), 0.343924< 1.000000

Set nodes must evaluate expressions which are dependent on values not known untii simulation
time, e.g., global variables and results of status functions. Expressions are stored interllallyin
prefix ("reverse Polish") notation. Procedure EXPRT serves only to print the prefix form of
the expression. The assignment jv(pkt_Ing)=standard(totlength,l) is to be evaluated.

EXPRT --= SUB1 JV PKT LENG STANDARD ; , TOTLENGTH

If·a chain variable or global variable is assigned a value at a set node, procedure SETNODwill
print this value. However, ARRIVE prints the values of all non-zero job variables, so
SETNOD does not print values of job variables it changes. All of the routing so far has not
involved decisions, i.e., there was only one possible destination. In general IOl,tting may
involve probabilities mixed with predicates, as discussed in Section 9.1.4.

ARRIVE --'JOB 1 DEPARTURE 1 FROM SET_MSG_L (SET)
CURRENT TIME: 5.6301821E-02 NUMBER OF EVENTS: 1
POPULATION: 1 JOBS, JOB COPIES
JV '8..,==0: 1 : 2.670E+02
TOKENS HELD: 1 AT BEGINRT
DESTINATION, CONDITION:
DEST1 (SET), 0.334520 < 0.250000
DEST2(SET), 0.084520 < 0.250000

The foliowing is for jv(msg_dest)=discrete(l,1/3;3,1/3;4,1/3). The internal conventions
for commas and semi-colons are not the same as the external conventions. Internally, a
semicolon is always represented by a "; ," pair which precedes alist element, e.g., "1,1/3".
The symbol "EOX" is used to indicate the end of a list separated by semicolons.

EXPRT -- SUB1 JV MSG DEST
4 / 1 3 EOX

DISCRETE ;, 1 / 3 ;, 3 / 3

EXPRT is also used when predicates are evaluated,. e,g., to. evaluate the predicate
if(jv(pkt_Ieng)<=240).

ARRIVE -- JOB 1 DEPARTURE FROM DEST2(SET)
CURRENT TIME: 5.6301821E-02 NUMBER OF EVENTS:

April 3, 1982

86 SIMULATION QIALOG UES / SEC. 12

POPULATION: 1 JOBS, JOB COPIES
JV' s-,=o: 0: 4. OOOE+OO 1 : 2.6 70E+02
TOKENS HELD: 1 AT BEGINRT
DESTINATION, CONDITION:
C2(CLASS) , (PREDICATE)

EXPRT-- <= SUBl .JV PKT LENG 240
8EPARATE2(FISSION) , 0.278551 < 1.000000

RQutinef'ISSN handles fission nodes. It gives the identities of children it creates.

FISSN-- PARENT IS 1, CHILD IS 2

When a job has relatives, ARRIVE will list immediate relatives (but not grandparents,
grandchildren; etc.).

ARRIVE JOB 1 DEPARTURE 1 FROM SEPARATE2(FISSION)
CURRENT TIME: 5.6301821E-02 NUMBER OF EVENTS: 1
POPULATION: 2 JOBS, 1 JOB COPIES
JV' S-,=O: 0: 4.000E+00 1: 2.670E+02

.. TOKENS HELD: 1 AT BEGINRT
RELATIVES: CHILD 2 AT SEPARATE2
DESTINATION, CONDITION:
DEC_MSG_L2(SET) , (PREDICATE)

EXPRT -- = SUB1 JV PKT LENG - SUB1 JV PKT LENG 240

ARRIVE -- JOB 1 DEPARTURE 1 FROM DEC MSG L2(SET)
CURRENT TIME: 5.6301821E-02 NUMBER OF EVENTS:
POPULATION: 2 JOBS, 1 JOB COPIES
JV'S..,=O: 0: 4;000E+00 1: 2.698E+Ol
TOKENS HELD: 1 AT BEGINRT
RELATIVES: CHILD
DESTINATION, CONDITION:
C2(CLASS) , (PREDICATE)

EXPRT -- <= SUB1 JV PKT LENG 240

2AT SEPARATE2

The service time expression at "C2" is printed by EXPRT because it involves values which
cannot be determined before simulation.

EXPRT -- STANDARD; , / SUBl JV PKT_LENG CAPACITY o

Note that job 1 keeps moving until it reaches a class, as specified in the rules in Appendix 7,
and that job 2 moves at the same clock time after job ·1 stops. Also: children are not con sid­
ered as departuresfrQm fission nodes; children get the same job variables as their parents ..

ARRIVE -- JOB· 2 DEPARTURE 1 FROM SEl?ARATE2(FISSION)
CURRENT TIME: 5.6301821E-02 NUMBER O~ EVENTS: 1
POPULATION: 2 JOBS, 1 JOB COPIES
JV'S-,=O.: 0: 4.000E+00 1: 2.670E+02
RELATIVES: PARENT AT C2
DESTINATION, CONDITION:
SET_PKT_L2(SET), (PREDICATE)

EXPRT = SUB1 JV PKT_LENG 240

April3, 1982

SEC. 12.4 / Simulation Trace 87

When a job arrives at a fusion node and finds no relatives, there isnospeciai indication.

ARRIVE -- JOB 1 DEPARTURE 1 FROM C3(CLASS)
CURRENT TIME: 6.7541439E-02 NUMBER OF EVENTS: 3
POPULATION: 2 JOBS, JOB COPIES
JV'S,=O: 0: 4.000E+00 1: 2.698E+01
TOKENS HELD: 1 AT BEGINRT
RELATIVES: CHILD 2 AT C2
DESTINATION, CONDITION:
ASSEMBLE (FUSION) , (PREDICATE)

EXPRT -- = SUB1 JV MSG_DEST 4

But when a job 'arrives at a fusion node where a relative is waiting, one will be destroyed;
Routine FUSN uses routine SNKFUS to destroy the job.

' ...

ARRIVE

EXPRT -­
FUSN --

JOB 2 DEPARTURE 2 FROM C3 (CLASS,)
CURRENT TIME: 1.6192162E-01 NUMBER OF EVENTS:
POPULATION: 5 ,JOBS, 2 JOB COPIES
JV' S,=O: 0: 4.000E+00 1: 2.400E+02
RELATIVES: PARENT 1 AT ASSEMBLE
DESTINATION, CONDITION:
ASSEMBLE(~USION), (PREDICATE)
= SUB1 JV MSG DEST 4
LOOKING FOR RELATIVES OF JOB 2

FOUND PARENT OF JOB 2 PARENT=
SNKFUS -- JOB 2 AT NODE ASSEMBLE

RoutineSNKFUS also handles sinks.

6

1

ARRIVE -- JOB 1 DEPARTURE 1 FROM ASSEMBLE(FUSION)
CURRENT, TIME: 1.6192162E-01NUMBER OF EVENTS: 6
POPULATION: 4 JOBS, 2 JOB COPIES
JV'S,=O: 0: ,4.odoE+00 1:2.698E+01
TOKENS HELD: 1 AT BEGINRT
DESTINATION, CONDITION:
SINK(SINK), 0.638042 < 1.000000

SNKFUS JOB 1 AT NODE SINK

The following is the form for initial placement of jobs, at the beginning of a run or
replication. A' job is initially placed at node "C2POLL." Since there is more than one chain,
ARRIVE gives the number of jobs in each chain.

ARRIVE -- JOB
CURRENT TIME: O.OOOOOOOE+OO NUMBER OF EVENTS: o
POPULATION: 1 JOBS, o JOB COPIES (o JOBS IN CHMSG 1 J

OBS IN CHPOLL)
DESTINATION, CONDITION:
C2POLL(CLASS), 0.178339 < 1.000000

ARRIVE -- JOB 1 DEPARTURE FROM C2POLL (CLASS)
CURRENT TIME: 3.9999998E-01 NUMBER OF EVENTS:

April 3, 1982

88

POPULATION: 1 JOBS,
OBS IN CHPOLL)
DESTINATION, CONDITION:

SIMULATION DIALOGUES / SEC. 12

o JOB COPIES(o JOBS IN CHMSG 1 J

POLL1 (CREATE), 0.343924 < 1.000000

The following illustrates output for queue trace only. If job movement trace were also
enabled,. the two would be interleaved. Procedure ALLCTE handles allocate nodes.

ALLCTE -'- JOB 1 AT NODE BEGINRT QUEUE RTQ TOKEN REQUEST

When ALLCTE is through; it calls PQTRAC to list the entire queue, in order. The value ""7' 1
is widely used in RESQ2 to represent "undefined." Since "RTQ" is not a priority qu~ue,each
job has undefined priority. The column "TOKNS" lists the number of tokens requested. The
column "HELD?" indicates whether or .not the job holds these tokens by 1 or 0, respectively.
(With priority passive queues,allocation of tokens is handled by SMULAT, which will call
PQTRAC after it tries to allocate tokens to a queue. See Appendix 7.)

PQTRAC JOB NODE PRTY TOKNS HELD?
1 BEGINRT -1 1 1

PQTRAC RTQ TOKENS:2147479808 TOKENS AVAILABLE:2147479807

Procedure SERARR handles arrivals at active queues. The "service request" will usually be
the service time, unless (1) the service time is sampled by stages for the regenerative method
(Appendix 7) or (2) variable rate or heterogeneous servers are involved, in which cases
servers are treated explicitly in the trace output.

SERARR -- JOB 1 AT CLASS C2 QUEUE Q2SERVICE REQUEST 5.620E-03

When SERARR is through, it calls AQTRAC to list th~ whole queue. The time given by
AQTRAC is the remaining service time. "DSTG" is only meaningful when the distribution is
sampled by stages for the regenerative method, in which case it is the current distribution
. stage.

AQTRAC TIME
5.620E-03

AQTRAC Q2 SERVERS:
SERARR -- JOB
AQTRAC TIME

5.620E-03
5.000E-:02

AQTRAC -- Q2 SERVERS:

2

JOB NODE
1 C2

PRTY
-1

DSTG
o

1 SERVERS AVAILABLE:. 0
AT CLASS C2 QUEUE Q2 SERVICE REQUEST 5.000E-02
JOB NODE

1 C2
2 c2

SERVERS AVAILABLE;

PRTY
-1
..,1

DSTG
o
o

b

Routine COMPLT handles completion of service times. It also calls AQTRAC when it is
QQne.

COMPLT -- JOB AT CLASS C2 QUEUE Q2

AQTRAC TIME J·OB NODE PRTY DSTG Q PTR

5.000E-02 2 C2 -1 0

AQTRAC -- Q2 SERVERS: 1 SERVERS AVAILABLE: 0

April 3, 1982

SEC. 12.4 !Simulation Trace 89

When SNKFUS, acting for a sink or fusion node, must release tokens,it prints a message.
When it is done with a particular queue (it may have to release tokens at several queues},it
calls PQTRAC. RELEAS (release nodes), DSTROY(destroy nodes) and CREATE (create
nodes) behave similarly.

sNKFUS
PQTRAC

PQTRl\C

COpy 1 AT NODE BEGINRT QUEUE RTQ
JOB NODE PRTY.TOKNS HELD?

3 BEGIt'lRT . -1 1 1
RTQ TOl<ENS:2147479808 TOKEIiS AVAILABLE:2147479807

. .

The event handling trace is oriented toward the internal mechanics of the simulation fUJI ..

The following examples' show interleaved job movement and event trace. . If other kinds of
trace were enabled, they would be interleaved with this trace. One feature of event handling
trace is that routines SMULAT and ARRIVE will print current CPU time when they check it ..

SMULAT -- ACCUMULATED CP SECONDS = O.OOOE+OO

The routine CHECK is used to determine whether the system is in the regeneration state
(assuming the rege11erative method is used). CHECK has three major sections, whiCh
determine, in order, whether the open chains have the proper populations, whether any sources
with the BE distribution are in their first stage and whether the nodes have the proper
numbers Of jobs. (Additional conditions are also checked but not explicitly reported.)
CHECK reports its successful findings and its overall determination, 1 or 0 depending on
whether or not, respectively, the system is in the regeneration state.

CHECK -- CYCLE END? CHAIN POPS ACCEPTED. SOURCE STAGES ACCEPTED.
NODE POPS ACCEPTED. RESULT=1

Procedure EOSRST (End Of SubRun STate) is used in a variety of situations which delineate
major portions of a simulation~ With the regenerative method,EOSRST is called every time
the system is in the regeneration state. EOSRST takes note of the beginning and ends of
sampling periods for the sequential stopping rule. (When the stopping rule is not enabled,
EOSRST considers the whole run to be a sampling period.)

EOSRST -- CYCLES o LIMIT 2147483647 BEGINNING SAMPLING PERIOD

SMULAT reports each event it handles. Event handling is discussed in Appendix 7. Firstwe
have a source arrival.

SMULAT NO. EVENTS 1 TIME 5.6301821E:-02(SOURCE) SOURCE S

ARRIVE JOB DEPARTURE 1 FROM S(SOURCE)
CURRENT TIME: 5.6301821E-02 NUMBER OF EVENTS:
POPULATION: 1 JOBS, 0 JOB COPIES
DESTINATION, CONDITION:
BEGINRT(ALLOCATE) , 0.178339 < 1.000000

ARRIVE -~ JOB 1 DEPARTURE 0 FROM BEGINRT(ALLOCATE)
CURRENT TIME: 5.6301821E-02 NUMBER OF EVENTS: 1
POPULATION: 1 JOBS, JOB COPIES
TOKENS HELD: 1 AT BEGINRT
DESTINATION, CONDITION:

April 3,1982

90 SIMULATIONDIALOGUES/ SEC. 12

SET_MSG_L(SET) , 0.343924 < 1.000000
EXPRT -- = SUB1 JV· PKT_LENG STANDARD ,TOTLENGTH

ARRIVE -- JOB 1 DEPARTURE 1 FROMSET_MSG_L(SET)

EXPRT --

CURRENT TIME: 5.6301821E-02 NUMBER OF EVENTS:
POPULATION: 1 JOBS, 1 JOB COPIES
JV' S-,=O: 1: 2. 670E+02
TOKENS HELD: 1 AT BEGINRT
DESTINATION, CONDITION:
DEST1 (SET), 0.334520 < 0.250000
DEST2(SET) , 0.084520 < 0.250000

SUB1 JV MSG DEST
4 / 1 3 EOX

DISCRETE i 1 / j i, 3 /

ARRIVE -- .JOB DEPARTURE 1 FROM DEST2(SET)

EXPRT.

FISSN

CURRENT TIME: 5.6301821E-02 NUMBER OF EVENTS:
POPULATION: 1 JOBS, 1 JOB COPIES
JV'· S-,=O: 0: 4.000E+00 1: 2.670E+02
TOKENS HELD: .1 AT BEGINRT
DESTINATION, CONDITION:
C2(CLASS) , (PREDICATE)
<= SUB1 JV PKT LENG 240
SEPARATE2(FISSION) , 0.278551 < 1.000000

PARENT .IS 1, CHILD IS 2

ARRIVE -- JOB 1 DEPARTURE FROM SEPARATE2 (FISSION)
CURRENT TIME: 5.6301821E-02 NUMBER OF EVENTS:
POPULATION:
JV' S-,= 0 : O· :
TOKENS HELD:

2 JOBS, 1 JOB COPIES
4.000E+00 1: 2.670E+02

AT BEGINRT
RELATIVES: CHILD 2 AT SEPARATE2
DESTINATION, CONDITION:
DEC_MSG_L2(SET) , (PREDICATE)

EXPRT. --,. = SURl JV PKT LENG - SUB 1 JV PKT LENG 240

ARRIVE -- JOB 1 DEPARTURE 1 FROM DEC MSG_L2 (SET)

EXPRT
EXPRT

CURRENT TIME: 5.6301821E-02 NUMBER OF EVENTS:
POPULATION: 2 JOBS, 1 JOB COPIES
JV'S-,=O: 0: 4.0DOE+00 1: 2.698E+01
TOKENS HELD:
RELATIVES: CHILD
DESTINATION, CONDITION:
C2(CLASS) , (PREDICATE)
<= SUBl JV PKT LENG

AT BEGINRT
2 AT SEPARATE2

240
STA~DARD ; , / SUBl JV PKT tENG CAPACITY o

3

After the job that arrived .from the source stops moving, a child. it created at a fission node
starts moving with a pseudo-arrival event

SMULA'l' NO. EVENTS 1 TIME 5.6301821E-02(PSEUDO). JOa 2

ARRIVE JOB 2 DEPARTURE 1 FROM SEPARATE2(FISSION)
CURRENT TIME: 5.6301821E-02 NUMBER OF EVENTS: 1
POPULATION: 2 JOBS, 1 JOB COPIES

April 3, 1982

SEC. 12.4 / SimulationTr~ce

JV'S~=O: 0: 4.000E+00
REL~TIVES: PARENT
DESTINATION, CONDITION:
SET-,-PKT_L2.(SET), (PREDICATE)

ElXi?RT -- = SUB1 JV PKT_LENG 240

1: 2.670E+02
AT C2

ARRIVE. -:- JOB :2 DEPARTURE 1 FROM SET_PKT_L2(SET)
CURRENT TIME: 5.6301821E-02 NUMBER OF EVENTS: 1
POPULATION:
JV'S.,=O:
RELATIVES:

2 JOBS,
0: 4.000E+00
PARENT

DESTINATION, CONDITION:

JOB. COPIES
1: 2.400E+02

1 AT C2

C2(CLASS), 0.280669 < 1.000000
EXPRT -- STANDARD i , / SUB1 JVPKT_LENG CAPAcITY o

91 '

CHECK is called before real events are handled, but not before. pseudo:"arrivals or passive
queue allocation attempts.

CHECK -- CYCLE END? RESULT=O

The next event is a service completion.

SMULAT ~- NO. EVENTS
QUEUE Q2·

2 TIME 6. 1921630E-02(SERVER) JOB

ARRIVE -- JOB 1 DEPARTURE 1 FROM C2(CLASS)
CURRENT TIME: 6. 1921630E-02 NUMBER OF EVENTS: 2

EXPRT

EXPRT

POPULATION: 2 JOBS, JOB COPIES
JV'S.,=O:
TOKENS HELD:

0: 4.000E+00 1: 2.698E+01
1 AT BEGINRT

RELATIVES :. CHILD 2 AT C2
DESTINATION, CONDITION:
ASSEMBLE(FUSION), (PREDICATE)
= SUBl JV MSG_DEST 3
C3(CLASS), 0.197507 < 1.000000
STANDARD i , / SUB1 JV PKT_LENG CAPACITY

l'he following shows the form for the passive queue allocation event.

o

SMULAT -- NO. EVENTS 1 TIME 3.9999998E-01(PRTYPQ) QUEUE POLL1Q

With replications, the routine APLOMB indicates the beginning of each replication.

APLOMB ~- BEGIN REPLICATION

EOSRST will indicate the end of the initial portion of a run or replication if that portion has
. been speCified to· be discarded.

EOSRST --END DISCARDED PORTION

EOSRST will indicate the end of a replication, including the limit(s) which caused it to end.

April 3, 1982

92, SIMULATIO~ DIALQOUES/SEC. 12

EOSRST
EOSRST

END REPLICATION
REPLICATION 1: RTQ DEPARTURE LIMIT

If event list trace is enabled, then the entire event list is shown by procedures ADEVNT
or .REMVEV every time an event is added or removed by apr9cedure other than SMULAT.
(StylULAT only removes events from the list to handle them. Other procecluresmust reniove
ev¢nts to handle preemption, to itandlechanges. in quelle length with J>S,. to h~ndle clial}ge~ in
service rate and to handle' changes in source rates.) If snapshot trace is enabled; .theribefore
any kind of event (including pseudo-arrival and passive queue events) is handled, the routine

. .' '.' .' .',',.','. .' '.' . .' .. , I

SNPSHT lists ~be numbers of jobs at each node and queue.

April 3, 19~2

93

13. THE EVAL AND EVALT COMMANDS

. This section covers basic usage of the EVAL command for model solution,and EYALT,
a substitute for the EVAL command, for use with the USER numeric function (Appendix 3).
PL/I embedding (Section 14) may be. used for model solution instead of either of tl1~~e
commands. Appendix 6 covers the error messages produced' by the EV AL and EVAL t
commands.

13.1. EVAL Command

Before issuing the EV AL command, the user should be sure that his or her virtual
machine has sufficient storage, that the virtual machine. has access to the mini-disks containing
the RESQ system files and the PL/I run time library, and that sufficient loader tablespace is
provided. These steps typically will be the same as with the SETUP command (see Section
2.1), except that the EVAL command usually requires more virtual storage, and need to be
taken only the first timeRESQ is used, provided appropriate modifications are. made to the C:P
di~ectoryand/ or PROFILE EXEC. . . .

Depending on the particular model and the sizes specified (perhaps by. default) for
internal dynamic storage areas, the EVAL command will typically require roughly 1300Kbf
virtual storage. With some models and sizes for storage areas, 1100K or less maybe suffi­
cient; while for other situations 1300K will be insufficient. Additional informati()n in this
regard is given in Section 13.,3.

The EVAL command maybe issued without an argument,.as in the example in. Section 1.
. When issued without an argument, EVAL will prompt for a model name. Alternatively,
EVALmay be issued with one or more arguments, the first of which is interpreted as the
model name. Once the model name is established, the EVAL command is the same whether
the model name was obtained from a prompt or an argument.

The EV AL command is oriented toward an interactive prompting mode. This is often the
most effective mode because of the capabilities for selective examination of performance
measures,. far run continuation and for repeated execution with different parameters values.
However, it is possible to provide replies prior to anticipated prompts,either from a file or as
arguments to the EVAL command. Thus the EVAL command may.be executed in a batch
machine or in some other disconnected virtual machine ..

When the EVAL command is issued, it wili look for a' file with file. name the sam.e as the
model name and file type RQ2COMP. If it finds such a fiie on any acces.sed minidisk, it will
assume that the first such file in the search order was generated by the SETUP command and
solve the model defined by that file. If EVAL does not find such a file, it will terminate with

,an error message.

The EVAL command will next look for a file with file name the same as the model name
arid file. type RQ2RPLY. If· it finds such a file on any accessed minidisk, it will assume that
the first such file in the search order isa list of replies to .be used for prompts to be. given by
the EVAL command. The lines of the file are placed on the CMS stack.

The EVAL command may be given additional arguments after the modei name. These
additional arguments are also placed on the CMS stack, .pne per line. The .. arguments are
stacked after any lines stacked from the RQ2RPLY file. If any argument is the word "IlUll"
an empty (blank) line is stacked for that argument. Because of thetokenizing of arguments
withCMS, the arguments may not contain punctuation, i.e., the arguments should be restricted

April 3, 1982

94 THE EVAL AND EVALT COMMANDS I SEC; 13

to numeric; values, the codes for the "WHAT:" prompt, "yes" and "no". Note that these
restrictions do not apply to the RQ2RPL Y file.

EV AL ,examines only the first 120 characters of a physical line. EV AL recognizes the
concatimation symbol "++" as does the SETUP command (Section 2). However; the
concatenation is only allowed for replies to prompts for parameter values and to the.
"WHAT:" prompt. Other prompts given by EVAL in regard to run continuation require only
a few characters, in reply, so concatenation is not considered for these prompts.

EVAL allows comments, enclosed by "1*" and "*1", in all replies except those given as
, arguments, in the EV AI. command. (This restriction is because of CMS tokenizing of argu­
m~nts. } Comments are primarily useful in RQ2RPL Y files.

After the. EVAL command is issued, it immediately types the line "RESQ2 EXPANSION
ANOSO(,UTIONPROQRAM." If·the model name has not been given on the 90mmand line,
then the prompt "MODEL: "will be given, with the name expected as the reply. There.are
. two' l:>asic phases of the EV AL command,macro expansion of submodel invocations and model
solutiotl (e.g., simuhition). After the initial typedline,and the "MODEL: ",prompt, if
necessary, there is a noticeable delay while the module which performs the expansion is lo~ded
Into memory. After the module is loaded, it types a line giving the date ofcreatioti of ,the
tno<;lule and the current· time and· date. If the model has' numeric and I or .. distribution parame­
ters, then there will be prompts for parameter values. Each prompt consists of the parameti::r
name followed by a colon (" :"). The prompts are given in the order that the parameters are
declared in the model defhlition. The expressions given as replies to the prompts foUow the
rules in Appendix 3 but are constrained to use only numeric constants" basic arithmetic
operations and numeric function calls. In the case of distribution parameters, RESQ distribu­
tipn functions may also be used. In the case of array parameters, all values are given on a
single logiCal line. If fewer values are given than the number of array elements, the lastv:alue
is. used for the remaining elements. If more values are given than the number. of array
elements,the extra values are ignor~d.

j 3.1.1. Solution Summaries

. With numerical solution, the same module handles submodel expansion and model
sQluti<;>n. With simulation, after definition of parameter values, if any, the expansion module
writes· a.temporary file to be read by the solution mOdule, the solution module is . loaded"the
temporary file is read and the solution, is performed. Unless simulation. trace ',has been
specified andlor the print. function (Appendix 3) has· been· used, there will be no, more~yped
output until the end of the solution. If numerical solution is used, the only typed output
before the "WHAT:" prompts will be either an error message or the "NO ERRORS OE­
TECTED DURING NUMERICAL SOLUTION" message. 'If simulation is used; the form of
th~ iil\,esprior to the "WHAT:"prompts depends on whether a confidence interval method has
been us~i:t,andif so, whiCh method. If the regenerative method or the spectral method is
used, the form of these lines will also depend on whether or not sequentia,l stopping was used.
Several. of these cases are illustrated in the. examples .. of Section land Appendix 1, as well as
thi:: examples we give here. After the solution summary has been given initially, the user may
have it repeated by replying" sini" (for "simulation summary") to a "WHAT:" prompt. 'The
solutionsummary is placed on the RQ2PRNT file, the EVAL command transcript file, as,well
as the terminal. (This file has file name the same as the model name and filetYPt;l
~Q2PRNT.)

Simulation without confidence intervals. 'If no confidence interval method has be'enused,
then thl.' next typed line will be "RUN END:" followed by' the limit or limits ,which were
reached and caused the run to end. Then there will either be. an error message orthelme

April 3, 1982

SEC. 13.1.1 / Solution Summaries 95

"NO ERRORS DETECTED DURING SIMULATION." If an initial portion of the rU11,was
discarded, this line will also indicate the number of discarded events. The next three lines will
give the simulated time (excluding any dis.carded portion of the run), the CPU time consumed
by the run (in seconds) and the number of simulated events (excluding any discarded portion
ot the run). For example, we might have

RUN END: MEMORY DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION. 3418 DISCARDED EVENTS

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:

812.77954
19.78
30857

Independent replications. If independent replications are used, then there will be a typed
line for each replication indicating the limit or limits which were reached and caused the
replication to end. Then there will either be an error message or the line "NO ERRORS
DETECTED DURING SIMULATION." If initial portions 'of the replications were. discarded,
this line will also indicate the number of discarded events. (If the run ends in the midst Of a
replicatioDQther than the first because of the CPU limit, the number of events for the . partially
completed replication will be included in the discarded event count~ However; iftlie run is
continued, this replication will resume, where it stopped and the events recovered wilL be
removed from the discarded event count.) The next four lines will give the mean simulated
time per replication (excluding discarded portions), the total CPU time consumed by the run
(in s~c6nds), the mean number of simulated events pet replication (excluding discarded
portions) and the number of replications. For example, we might have

REPLICATION 1 : SET TOTAL DEPARTURE
REPLICATION 2·

"
SET TOTAL DEPARTURE

REPLICATION 3: SET TOTAL DEPARTURE
REPLICATION 4: SET TOTAL DEPARTURE
REPLICATION 5: SET TOTAL DEPARTURE
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME PER REPLICATION:
CPU TIME:

NUMBER OF EVENTS PER REPLICATION:
NUMBER OF REPLICATIONS:

LIMIT
LIMIT
LIMIT
LIMIT
LIMIT

19779 DISCARDED EVENTS

207.36981
260.54

35791
5

If independent replications are used but not even the first replication is completed, e.g~,the
CPU limit is reached before the first replication ends normally, then the output will be
essentially. the same as simulation without confidence intervals except that the number of
replications will be given as zero (0). Assuming the first replication did not complete because
cif the CPU limit and not because of an error, the run contimmtion dialogue may be used to
increase the CPU limit and continue the run where it stopped.

Regenerative method without sequential stopping. If the regenerative method is used
without the sequential'stopping rule, then the next typed line will be "RUN END:" followed
by the guidelines and/or limit (CPU) which were reached. Then there will either be an error
message or the line "NO ERRORS DETECTED DURING SIMULATION." If part of the run
was discarded because the simulation did not begin in the regeneration state and/or the
simulation did not end in the regeneration state (because of an error or the CPU limit), this
line will indicate the number of discarded events. (If the run ends in the midst of a regeneia~
tion cycle. other than the first' because of the CPU limit, the number of events for the partially
completed cycle will be included in the discarded event count. However, if the run is .contin~

,April 3, 1982

96 THE EVAL AND·EVALT COMMANDS / SEC. 13

ued, this cycle will resume where it stopped and the events recovered will be removed from the
discarded event count.) The next four lines will give the simulated time (excluding ,any
discarde.d portion of the run), the CPU time consumed by the run (in seconds), thenum,ber of
simulated events (excluding any discarded portion of the run) and the number. of regeneration
cycles. For example, we might have ,;,

RUN END: EVENT GUIDELINE MEMORY DEPARTURE GUIDELINE CPU LIMIT
NO·ERRORS DETECTED DURING SIMULATION. 3418 DISCARDED EVENTS

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:
NUMBER OF CYCLES:

812.77954
19.78
30857

27

If fewer than two regeneration cycles were completed, confidence intervals will not be
available and run continuation wlll not be allowed.

Regenerative method with sequential stopping. If the regenerative method is used with the
sequential· stopping rule, then for each normally completed sampling period there will be a line
"SAMPLING PERIOD END.: II followedby the guidelines which caused the sampling period to
end. If the last sampling pedod does not end because of its guidelines but' because of the
CPUlimh ()r llnerror, then the next typed line will be "RUN END:" follo\Ved by the gl.lic\e­
lines and/or limit (CPU) which were reached. Then there will either be an error message or
the line "NO ERRORS DETECTED DURING SIMULATION." If part of .the run was
discarded because the simulation did not begin in the regeneration state and/or the simulation
did not end in the regeneration state (because of an error or the CPU limit), this line will
indicate the number of discarded events. (If the run ends iIi the midst ofa regeneration cyCle
other than the first because ofthe CPU limit, the number of events for thepartiallycornpleted
cycle will be included in the discarded event count. However, if the run is continued,this
cycle will resume· where it stopped and the events recovered will be removed ftomthe
discarded event count.) The next four lines will give the simulated time (excluding any
discarded portion of the run), the CPU time consumed by the run (in seconds), the number of
simulated events (exCluding any discarded por!ion of the run) and the number ?f regeneration
cycles. For example, we might have

SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE
RUN END: CPU LIMIT
NO ERRORS DETECTED DURING SIMULATION. 3418 DISCARDED EVENTS

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:
NUMBER OF CYCLES:

812.77954
19.78
30857

27

Spectral method without sequential stopping. If the spectral method is used, without the
sequenthll stopping rule; then. the next typed line will be "RUN END:" followed by the. limits
whiPh were reached. Then there will either be an error message or the line "NO ERRORS
DETECTED DURING SIMULATION." If an initial portion of the run was discarded, this
line will. indicate the number of discarded events. The next three line.s will give the simulated
time (excluding any discarded portion of the run), the CPU time consumed by the run (in
seconds) and the number of simulated events (excluding any discarded portion ·of the run).
For example, we might have

April 3, 1982

SEC. 13.1.1 / Solution Summaries

RUN END: EVENT LIMIT
NO ERRORS DETECTED DURING SIMULATION. 3418 DISCARDED EVENTS

'SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:

812.77954
19.78
30857

97

Spectral method with sequential stopping. If the spectral method is used with the sequen ..
tial stopping rule, then for each normally completed sampling period there will be. a line
"SAMPLING PERIOD END:" foliowed by the limits which caused tlie sampling period to
end .. If. the last. sampling period does not. end because of its limits but because of the CPU
limit or an error, then the next typed line will be 'iRUN END:" followed by the limits which
were. reached. Then there will either be an error message or the line "NO ERRORS DE­
TECTED DURING SIMULATION." If an initial portion of the run Was discarded; this line
will indicate the number of discarded events. The next three lines will give the simulated time
(excluding any discarded portion ofthe run), the CPU time consumed by the run (in seconds)
and the number of simulated events (excluding any discarded portion of the run). For
example, we iUight have

SAMPLING PERIOD END: MEMORY DEPARTURE LIMIT
RUN END: CPULI~·lIT

NO ERRORS DETECTED DURING SIMULATION. 3418 DISCARDED EVENTS

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:

13.1.2. Performance Measures

812.77954
19.78
30857

After the solution summary, the user is prompted with "WHAT:", meaning "What
performance measures do you want to see?" The replies to "WHAT:" are codes indicating
performance measures. The code "all" indicates "all of the usual measures;" the measures
included and ~xcluded in "all" willbe indicated below. The performance measures are placed
on the RQ2PRNT file, the BV AL command transcript' file, as well as the terminal. (This file
has file name the same as the model name and file type RQ2PRNT.) After the performance
measures are shown, the "WHAT: "prompt will be repeated until a null.reply is given.

Suffixes may be added to the performance measure codes to control presentation of
confidence intervals and/or to control the elements (e.g., queues) for whiCh the measures will
be given. The confidence interval suffix, if any, precedes the suffix for control of elements
considered. Without a confidence interval suffix, only point estimates are given. The two
confidence interval suffixes are "ci", which indicates that confidence intervals are to be given
instead of point estimates, and "bo" (for "both") which indiCates that both point estimates
and confidence intervals are to be given. For example,"all" results in only point estimates,
"allci" results in only confidence intervals and "allbo" results in point estimates and all
available confidence intervals for the "usual" performance measures for all queues and nodes.

A suffix for control of elements considered consists of either "(*)" ora parenthesized list
of names of elements (e.g., queues). There are Slightly different conventions for"all" and the
other codes, e.g., i'ut" for utilization .. With codes other than !'aU".,e.g., "ut", results for
nodes belonging to a queue are riot given if the code is given without a suffix indicating the
node results are to be given as well as the queue results; the code without a suffix results in
measures for all queues, arid,if appropriate to the measure, results for nodes not associated.
with queues. The" (*)" suffix indiCates that measures for nodes associated with a queue are

April 3, 1982

98 THE EVAL AND EVALT COMMANDS / SEC. U

to be given as well as, the queue measures, for all queues. For example, if a queue has two
classes, then "ut" will give only the utilization for the queue overall, while "ut(*)" will give
the class specific utilizations. With" all" results for all queues and nodes are given unless
there is a suffix giving a list of names of elements. The" (...)" suffix has no effect with" all" .
With "all" and with the other codes, if there is a suffix giving a list of names of elements, e.g.,
"aH(cssml.cpuq,cssml.setcmdtype)" or "ut(line.msg_in;line.cnt_in), then only measures for
those elements will be given.

We now list the individual codes and the definitions of the associated performance
measures. First we list the "usual"measures included in "aU", in the order listed with "all",
then we list. the other codes and their meanings. In all cases, measures are only available for a
queue o'r n~de if there has' been at least one departure from that queue or node. '

ut

tp

ql

utilization. For an active queue the utilization is defined as the fraction
of time a server is in use. (For an infinite server queue the utilization of
each server is zero.) For a class the utilization is defined as the fraction
of time a server is in use by jobs of that class. In both cases, these are
average values over all servers of the queue. If a queue has heterogene­
ous servers (because of different rates and/or different classes accept­
ed) then utilizations will also be given for each server that was uSed
during tht;l simulation. For a passive queue the utilization is defined as
the fraction of tiine a token is in use. For an allocate node the utiliza­
tion is defined as the fraction of time a token is in use by jobs of that
node. In both cases, these are average values over aU tokens of the
queue. (Tokens are always homogeneous.) If the number of tokens is not
constant, because of use of create and/or destroy nodes, utilization may not
be well defined. See the discussion of the "tu" (mean tokens in use)
code. (If the number of tokens at the end of simulation is not the same
as the riumber at the beginning of simulation, a utilization will not be,
reported.)

throughput. Throughput is defined as the average number of departures
per unit time. For active queues and classes, departures correspond to
service completions. For passive queues, "plain" allocate nodes and
AND allocate nodes, departures correspond to release or destruction of
tokens. For OR allocate nodes, depart~res, correspond to release of
tokens, destruction of tokens or the termination of a request for tokens
which has been satisfied by another, queue. 'Note that an AND or OR
allocate node will have separate performance measures for each queue
to which it belongs. Except when measures are requested for an AND
or OR allocate node separately, these measures will be grouped with the
corresponding ,queues, Departures for split nodes and fission nodes
consider only the entering job, not the jobs generated.

mean' queue 1ength. Queue length for active queues and classes is
defined as the number of jobs waiting for 'or 'holding servers. For
passive queues, "plain" allocate nodes, AND allocate nodes and OR
allocate nodes, queue length is defined as the number of jobs waiting for "
or holding tokens. For passive queues with both release and destroy
nodes, a "Little's Rule" estimate of the mean queue length associated
with release and destruction of tokens, respectively, is obtained from the
throughput multiplied by the mean queueing time. Note that these two
mean queue lengths may not add up to the value reported for the queue

April 3, 1982

SEC. 13.1.2/ Performance Measures

because of jobs still waiting for tokens at the end of simulation and/or
jobs still holding tokens at the end of simulation.

sdql standard deviation of queue length.

qt· mean queueing time. Queueing time for active queues and classes is
defined as the time spent waiting for or holding servers. Forpassive
queues, "plain" allocate nodes and AND allocate nodes, queueing time
is defined as the time spent waiting for or holding tokens. For OR
allocate nodes, for the queue which provides tokens, queueing time is
defined. as the time spent waiting for or holding tokens. For OR allo­
cate nodes, fora queue which does not provide tokens, queueing time is
defined as the time spent waiting for tokens. For passive queues with
both release and destroy nodes, queueing times are categorized into
those ending with release of tokens (or end of waiting at an OR allocate
node) and those ending with destruction of .tokens. For all of these.
cases, except for models using the regenerative method, only completed
queueing times are considered in the .mean queueing .time and other
queueing time measures. For the regenerative method only, mean
queueing time is not computed directly but is computed bya "Little's
Rule" argument so that queueing times in progress may .be allowed and
still have rigorous computation of confidence intervals ..

sdqt standard deviational queueing time.

tu .. mean tokens in use. This applies only to passive queues. The number
of tokens in: use is the number of tokens allocated to jobs. If the num­
ber of tokens of a queue is constant, then the mean number of tokens in
use is equal to the number of tokens multiplied by the utilization. If the
mimber.of tokens of a queue fluctuates, because of the use of create and
destroy nodes, the number of tokens in use is well defined even though
the utilization is not well defined.

tt mean total tokens in pool. This applies only to passive queues. The
total number of tokens is constant (and equal to the number given on
the "TOKENS:" line) unless create and/or destroy nodes are used.

qld queue length distribution. This only. applies if the dialogue specifies
gathering of queue length distributions, and then only to the queues and
nodes specified in" the dialogue and only up to the maximum lengths
specified in the dialogue. The probabilities of all queue lengths with
non-zero probabilities are given.

qtd queueing time distribution. This only applies if the dialogue specifies
gathering· of . queueing time distributions, and then only to the queues
and nodes specified in the dialogue and only for the values specified in
the dialogue. The cumulative probabilities of queueing time being less
than or equal to each specified value are given. .

tud distribution of tokens in use. This applies only to passive queues. This
only applies if the dialogue speCifies gathering of token use distributions,
and then only to the queues specified in the dialogue and only up to the
maximum values specified in the dialogue. . The. probabilities of all
numbers of tokens in use with non-zero probabilities are given.

April 3, 1982

99

100 THE EVAL AND EVALT COMMANDS / SEC. 13

ttd distribution of total tokens in pool. This applies only to passive .queues.
This only applies if the dialogue specifies gathering of total token distri.,.
putions, and then only to the queues specified in the dialogue and only
up to the maximum values specified in the dialogue. The probabilities of
all numbers of tokens with non-zero probabilities are given.

mxql maximum queue length.

mxqt maximum queueing time.

po open chain population. This applies only to open chains. The popula-
. tion is the number of jobs in the chain. This measure gives the mean
number ofjobs in the chain.

rtm open chain response time. This applies only to open chains.. The
response time is the time between a job's entering the chain, either from
a source or split node, and a job's departure through a sink. The re­
sponse time is estimated by a "Little's Rule" argument. The chain
throughput is defined as the mean number of jobs of the chain which
depart (through the sink) per unit time. The mean response time is
determined by dividing the chain population· by the chain throughput.
Thus the mean response time is inflated by the jobs still in the chain;

All of· the above measures are included in "all". None of the values below are included hi
"aU" .

nd

st

number of departures. This is defined as discussed in the definition of
throughput.

rrieanservice time. This applies only to active queues and classes. . The
user has specified a distribution, including the mean of that distribution,
but statistical variability will usually result in a slightly different mean,
which is the value reported for this code. Only completed service times
are considered, except for the regenerative method. With the regenera­
tive method only, mean service time is determined indirectly from the
utilization divided by the throughput.

The following values are not truly performance measures in the sense of the above. 11.1
particular, the values reported with the following codes are those at the current state of the
simulated network, even if the simulation is in the midst of an incomplete replication or
regeneration cycle which is ignored for the above measures.

lng

jv "

~v

gv

final lengths. This gives the queue lengths at the end of simUlation.

" final job variable values for jobs still in the network The jobs currently
hi the network are listed by queue (or node, if "(*)" or an explicit list
of nodes is used) in the order found in the queue. The internal number

" of the job is given andthe values for each job variable are given.

final CV values. For each chain, the values of the chain variables are
listed.

final"values of global variables. The final values of global "variables are
listed.

April 3, 1982

,,)

SEC. 13.1.3 / Run Continuation, Multiple Solutions 101

13.1.3. Run Continuation and Multiple Solutions

After a null reply to a "WHAT:" prompt, if run continuation is allowed the next line will
be "CONTINUE RUN:", which requires a "yes" or "no" reply. If the reply is "no" or ruri
continuation is not allowed,then if the model has parameters, a new prompt for the first
patal11eter,will be given. (If there are no parameters, then the EV ALcommand te1'I1linates.) A
new set of. para.meters and solution process may begin at this point,·· or a null reply may·· be
given to end the EV AL command.

Run continuation is allowed provided that the simulation has not terminated because of
an error, that the simulation did not terminate because of an "infinite" routing loop which
consumes no simulated time, that if independent replications are used that not all replications·
have completed, and that if the regenerative method is used there have been at least two
completed cycles. If "yes" is given to the "CONTINUE RUN:" prompt, then there will be
prompts to control the run continuation. Except for models using independent replications Or
sequential stopping, these prompts will be for new values for limits or guidelines whicl1.do not
already have "infinite" values. New values are required for limits or guidelines which have
been reached. New values for the other limits and guideliries are optional. Limits may only
be increased or left the same by giving a null reply. With independent replications only the
CPU limit may be increased. With sequential stopping, only the extra sampling period and
CPU limit values may be increased.

When a run is continued, the "RUN END:" and/or "SAMPLING PERIOD END:" lines
from earlier portions of the run will be repeated in the simulation summary for later portions
of the run. Otherwise the run is the same as if the larger limits had been specified initially
(with an appropriately smaller initial portion discarded, if applicable). A run may be contin-
ued several times, if appropriate. When a run is finally terminated, new runs with new
parameter values may be made if the model has parameters.

13.2. EVALT Command

In most respects the EVALT command is the same as the EVAL command. The EVALT
command is intended for use only when the user is providing a USER numeric function, as
discussed in Appendix 3. Rather than using the simulation module, which already has the
def ault (error stop). copy of USER, EV AL T runs the simulation from the object code libraries
and object code files found on accessed mini-disks. If the accessed mini-disks contain any
files with file name the same as the name of an internal simulation procedure, e.g.,USER,and
file type TEXT, then these files will be used instead of the standard copies of thoseproce~
dures. Thus the user should be sure to have a file USER TEXT on an accessed mini-disk and
to avoid having other TEXT files which might be used inappropriately by the EV ALT
command. Other than these characteristics, the only other noticeabledifferences. between the
EV AL and EV AL T commands are that EV AL T is slightly slower to begirt simulation, because
of the time . required to link the entry points together, and that there. will be an additional line,
"EXECUTION BEGINS ... ", when the simulation begins. .. .

13.3. ·EVAL Command Files

We have already discussed or mentioned most of the files used or produced by the EVAL
command; The normal input to the EVAL command is from three files: (1) SYSIN - the
EV AL EXEC issues a CMS FILEDEF command defining SYSIN to be the terminal. (2) The
reply file (RQ2RPLY) if one exists and (3) the model definition file (RQ2COMP) produced
by SETUP. In addition, EV AL will use as input either RESQ2 APLMBD, which is used to

April 3, 1982

102 THE EV AL AND EVALT COMMANDS / SEC. 13

define the sizes of certain internal tables for the simulation,. or RESQ2 NUMERD, wtuch
constrains the number of queue-dependent queues allowed in a network to be solved nutrieri:­
cally.

EV AL cannot determine in advance the maximum size of the simulation event list or the
maximum numbers of jobs and job copies in the network during simulation. File RESQ2
APLMBD on the mini-disk containing EV AL EXEC contains sizeS for these tables and
buffers. The default content of the file is

MAXEL==256, MAXJL==1024, MAXJDL==256;

where<MAXEL is the maximuD1 size of the event list, MAXJL is the maximum number of jobs
plus job copies, and MAXJDL is the maximum number of jobs not counting job copies. The
user may have a copy of RESQ2 APLMBD on a mini-disk in the search order before the
triini~disk containing the EVAL EXEC, to be used instead of the default copy. The user may
increase (or decrease within reason) these sizes in this copy of RESQ2 APLMBD.If an error
message says that event list, job list or job data list storage has been exceeded, then MAXEL,
~JL or MAXJDL, respectively, should be increased for that model. (This assumes that
the model is not "running wild, II e.g., that jobs are not just accumulating at some node.) On
the other hand, if the user wishes to reduce the virtual storage required, many models will .Tun
with smaller values, e.g., many models will run with

MAXEL=32,MAXJL=64,MAXJDL=32;

Each event list element requires 32 bytes of storage, i.e., with MAXEL=256 the event list
elements take 8192 bytes of storage. The list of jobs and job copies (MAXJL) takes 56 bytes
per element. The job data (MAXJDL) storage depends on the number of job variables~ The
storage required per element is 56 bytes plus 8 bytes per job variable,e.g., if the default
inaximum job variable index of one is used, the storage per element is 72 bytes.

Since the numerical solution becomes increasingly expensive as the numb.er of queues with
queue length dependent service rates increases, the file· RESQ2 NUMERD contains a liniit to
the number of queue length dependent queues allowed. The default content of the file is .

MVAQDL=4;'

The user is free to create a copy of RESQ2 NUMERD earlier in the search orQer to set this to
any non:..negative limit.

While executing, the EVAL yommand produces three files: (1) SYSPRINT - the EVAL
. EXEC issues a CMS FILEDEF command .defining the terminal to be SYSPRINT.
(2) RQ2PRNT - the transcript of the terminal interaction, e.g.,' for printing, and
(3) RQ2NTWK - this is a temporary file which is written by the EV AL command and later
er~sed by the EVAL command.

Figure 13.1 shows these files and their relationships with the commands.

April 3, 1982

SEC. 13.3 / EV AL Command Files 103

SE1\JP

Figure 13.1 - Files used with EVAL

April 3, 1982

104

14. PL/I EMBEDDING

Instead of using the EV AL or EV AL T commands after a model has been defined with the
SETUP command, model. expansion may be embedded within a PL/I program. (This assumes
that the PL/I optimizing compiler is available independent of RESQ.) This may be done in
order (1) to produce tables or graphs of results, (2) to coordinate solution of several separate,
models in a hierarchical solution, (3) to provide a preprocessor for determining model
parameters and/or (4) to provide a postprocessor for manipulating model solutions prior to
display. Section 14.1 discuss~s the basic procedures for PL/I embedding and the interface to
eMS; Section 14.2 discusses procedures for plotting graphs of model results.

14.1. Basic Procedures and CMS Commands

The basic steps in using PL/I embedding are (1) to produce an RQ2COMP file using the
SETUP command, (2) to produce a PL/I program, (3) to compile that program, (4) to issue
CMS commands for file definition and object library definition and (5) to execute the user's
PL/I program. Several different orderings of these steps are possibie, but we will assume
assume the RQ2COMP file has been produced and discuss the remaining steps in the order
just listed.

14.1.1. The PL/IProgram

The PL/I program calls procedures provided by RESQ to (1) establish the model
definition(s) given by the RQ2COMP file(s), (2) to specify model parameters, (3) to perform
the model expansion and solution, and (4) to determine the results of model solution. The
name of the program should not be a name used in EXPANSUB TXTLIB, APLOMB2
TXTLIB or MVASUB TXT LIB. (See Section 14.1.4 for description of these libraries.)
Normally the source file for the program will have file name the same as the procedure name
and file type either PLIOPT or PLI.

The RESQ procedure READMD reads a model definition file (RQ2COMP) which has
been produced by the SETUP com,nand. READMD has no parameters,so the declaration

DECLARE READMD ENTRY;

and calling statement

CALL READMDi

are sufficient. Normally the file read will have data set name (in the OS sense) RSQ2IP, to be
used in the CMS FILEDEF statements'. However, if several different RQ2COMP files ate to
be read by the same PL/I program, the TITLE option of the PL/I OPEN statement maybe
used to define other data set names, e.g.,

OPEN FILE(RSQ2IP) TITLE('MODEL1 ') i

CALL READMD;

/*Define parameters, solve, obtain results for MODEL1*/

OPEN FILE(RSQ2IP) TITLE('MODEL2');
CALL'READMDi

April 3, 1982

I. .

SEC. 14.1.1 / The PL/I Program 105

/*Define parameters, solve, obtain results for MODEL2*/

After the call toREADMD, all parameter values need to be defined before calling· a
procedure to expand and solve the modeL Only scalar numeric and vector numeric parameters
ate allowed in models to be solved by PL/I embedding. Once a parameter value has beeh
defined by one of. the following two procedures, its value need not be defined again unless ()f

until READMD is called again, i.e., if a model has several parameters,expansionand solution
may be performed several times, changing somepara.meters and Jeaving the existing values of
other parameters intact without explicitly resetting parameters to their current values. The
RESQ procedure STPARM is used to define values for scalar parameters, one at a time. The
declaration for STPARM should be of the form

DECLARE STPARM ENTRY (CHAR(10) ,FLOAT BIN(21));

where the first STPARM parameter gives the name of the model parameter and the second
STPARM parameter gives the model parameter value, e.g.,

CALL STPARM (I THINKTIME' ,5.2) ;

Values for vector numeric parameters are defined by calls to RESQ procedure STPRMV, one
vector at a time. The declaration for STPRMV should be of the form

DECLARE STPRMV ENTRY (CHAR (10) , (*) FLOAT BIN (21));

where the· first STPRMv parameter is the name of the model parameter and the second
STPRMV parameter is a vector of values for the model parameter, e.g.,

CALL STPRVM('VRATES' ,RATES);

where. RATES is declared by

DECLARE RlI.TES(5) FLOAT BIN(21);

Model expansion and solution are performed byRESQ2A for simulation and RESQ2M
fONiumericalsolution. The entry declaration for either of these procedures is .

·DECLARE RESQ2x ENTRY(FIXED BIN(31));

where "x" is either "A" for simulation or "M" for numerical solution. The parameter for
RESQ2A and RESQ2Mindicates whether the dialogue giving the solution summary,
"WHAT:" prompts for performance measures and run continuation, is to be entered at the
end of solution. If the parameter is non-zero, e.g.,

. CALL RESQ2A (1) ;

then the dialogue is entered, and if the parameter is zero, the dialogue is not entei:ed(and run
continuation is not possible).

Three procedures are available to obtain solution re~;ults after calling procedure RESQ2A
or RESQ2M. RESQ procedure TYPEVL can be used tei enter the dialogue for solution
summary and "WHAT:" prompts for performance measures, but run continuation is not
possible and the "lng" , "jv", "cv" and "gv" codes may not be used in reply to "WHAT:"
. prompts. TYPEVL has no parameters, so

April 3, 1982

I 106 PL/IEMBEDDING / SEC~ 14

DECLARE TYPEVL ENTRY;

, and

CALL TYPEVLi

are sufficient, RESO procedure FNLMSG may be used to obtain the "final·message"
produced by the solution, Le., either the "NO ERRORS ... "message or an error message.
FNLMSGhas a fixed 80 character string as its parameter, e.g.;

and

DECLARE FNLMSG ENTRY(CHAR(80)),
FMSG CHAR(80) ;

CALL FNLMSG (FMSG) i

could be used to place the final message in FMSG. RESO procedure GTRSLT will retrieve a
specified performance measure for a given element. The declaration is of the form

DECLARE GTRSLT ENTRY (CHAR(*) VARYING,
CHAR(*) VARYING, (3) FLOAT BIN(21));

where the first parameter is the name of the element (possibly including a parenthesized array
index), the second parameter is a code used in reply to "WHAT:" (excluding suffixes) and the.
third parameter is used for the point estimate and the confidence interval, if available,e.g.,
after

DECLARE OP(3) FLOAT BIN(21);
CALL GTRSLT (' Q2 I, 'QL' ,OP) ;

the mean queue length for "02" would be given inOP(1) and, if available,a confidence
interval for the mean queue length would be given in OP(2) andOP(3), with the lower value
in OP(2). (If no confidence interval is available, OP(2) and OP(3) will be -1.) The element
name can be the name of any queue or node in the model for which the specified performance
measure exists. Only codes "ut", "tp", "ql", "sdql", "qt" and U sdqt" may be used.

14.1.2. PL/I Compilation

Normally the source file for the program will have file name the same as the procedure
name and file type either PLIOPT or PLI. The CMS PLIOPTcommand is used to compile the
program, e.g.,

PLIOPT myprog

could be used to compile program "myprog" and produce file MYPROG TEXT for use hi. the
LOAD command as discussed in Section 14.1.4.

14.1.3. CMS Commands for Execution

Prior to execution of the program, the CMS GLOBAL and FILEDEF commands must be
used to establish the proper environment. The GLOBAL comm~d is used to identify the

April 3, 1982

SEC. J 4, 1.3 I CMS Commands for Execution 107

TXTLIB's (object code libraries) to be used and the search order of these libraries, e.g" the
statement

GLOBAL TXTLIB EXPANSUB MVASUB APLOMB2 PLILIB

detlares that EXPANSUB TXTLIB will be the first library. searched for external referetlCeS,
MVASUB TXTLIB will be the second library searched, etc. EXPANSUB TXTLIB contains
the procedures described in Section 14.1.1 and other procedures· for model expansion.
MV ASUB tXTLIB contains the procedures for numerical solution and APLOMB2 TXTLIB
contains the procedures for simulation. It is flssumed that the PL/I optimizing compiler r4n
tim~ Hbrary is available as PLILIB TXTLIB.

The CMS FILEDEF command is used to associate the data set names used in the PL/I
procedures with files in the CMS environment, e.g., the terminal, files on mini-disks and·
virtual spool files. The FILEDEF command must be used for data set names SYSPRINT,
RSQ2RS, APLMBD (if RESQ2A is to be called), NUMERD (if RESQ2M is to be called), and
either RSQ2IP or corresponding data set names given with the TITLE option of the PL/I
OPEN statement as discussed in Section 14.1.1. Assuming the model name is "inymodel" and
the TITLE option is not used, the following FILEDEF statements are recommended (and
could be placed in a user written EXEC file).

FILEDEF SYSPRINT.TERMINAL (PERM LRECL 132 BLKSIZE 132 RECFM F
FILEDEF. RSQ2RS DISK mymodel RQ2PRNT A (PERM RECFM V BLKSIZE 141
FILEDEF RQ2PLOT DISK mymodel RQ2PLOT A (PERM RECFM V BLKSIZE 141
FILEDEF APLMBD DISK RESQ2APLMBD * (PERM RECFM F BLKSIZE 80
FILEDEF NUMERD DISK RESQ2 NUMERD * (PERM RECFM F BLKSIZE 80
FILEDE;F RSQ2IP DISK mymodel RQ2COMP * (PERM RECFM V BLKSIZE 2500

After the GLOBAL and FILEDEF statements have been issued, the LOAD and START
commandsiare used to execute the program, e.g., if the main program has name "myprog", the
following could be used

LOAD myprog (.NODUP RESET DMSIBM
START DMSIBM ISASIZE(-100K)

The RPLOT EXEC discussed in the following section may also be used where plots are not.
desired (without changes to the EXEC).

14.2. Plotting Procedures

Several procedures are supplied with RESQ for producing low resolution graphs of model
results on a terminal, line printer or other appropriate character oriented device. Other PL/I
callable graphics packages supplied by the user may be used in a similar manner.

April 3, 1982

108 PL/I EMBEDDING / SEC,14

M

E
A
N

R
E
S
P
0

N
S

E

T
I
M

E

C

P

U

u

·1

I.

T . +++++
I 1++++
L 1

I. 1

z
A

T

I

o
N

1 *
1*
+

**

*
*

**

*

++
++

++ **
++ *

+++ **
+++ *

++++ **

.*
**

**
*

*
*

**

ARRIVAL RATE

+

+

+

+
+

*
+ *

+ *
+ **

+ *
+ **

+ *
+ **

*
*

X SCALE: 1.00E-01 - 4.00E+OO Q

Y SCALE: 2. 85E,.-02 - . 1. 17E+OO

Figure 14.1 - Example Graph of Mode! Results

The following declaration could be used for the plotting procedures

DECLARE
RQSET ENTRY(FIXED BIN(31) ,FIXED BIN(31)),
RQPLOT ENTRY((*,*) FLOAT BIN(21)),
RQXLBL ENTRY (CHAR(*) V~RYING),
RQYLBL ENTRY (CHAR(*) VARYING),

April 3, 1982

SEC. 14.2IPlotting Procedures 109

RQVIEW ENTRY;

The RESQ procedure RQSET is used to define the size of the graph, in terms of rows and
columns available for displaying curves. The first RQSET parameter is the number of rows
ai1d the second is the number of columns. Five additional rows and five additional columhS
atel used for labeling. For example,

CALL. RQSET(20,40);

defines that there are to be 20 rows and 40 columns for curves. (The entire plot will consist
of 25 rows and 45 columns.) The RESQ procedure RQPLOT is given an array defining the
data to be plotted. The data array must have at least tW() columns, for plotting a single curve,
and should have an additional column for each additional curve to be plotted. The data array
must have at least as many rows as the number of columi1s specified in the call to RQSET.
The first column gives the values for the X axis, and each additional column definesY axis
values for a curve. For example, we might have

DECLARE
DATA(60,3) FLOAT BIN(21);

/*Define elements of data for first 40 rows*/

CALL RQPLOT(DATA);

to plot two curves. RESQ procedure RQXLBL is used to give a label for the X axis, and
RESQ procedure RQYLBL is used to give a label for the Y axis, e.g.,

CALL RQXLBL(' ARRIVAL RATE');
CALL RQYLBL('MEAN RESPONSE TIME CPU UTILIZATION');

RESQ procedure RQVIEW displays the graph on the terminal.and on the file with data set
name RQ2PLOT. A CMS FILEDEF statement must be used for RQ2PLOT before executing
a program calling RQVIEW, e.g.,

FILEDEF RQ2PLOT DISK mymodel RQ2PLOT A (PERM RECFM V BLKSIZE 141

Following is a complete program which could be used with model EXAMPI iriAppendix
1 :

EXAMP1: PROCEDURE OPTIONS(MAIN) REORDER;
DECLARE·

N FIXED BIN(31),
(T,DATA(40,3),OP(3)) FLOAT BIN(21),
FMSG CHAR(80) , .
(FLOAT,SUBSTR) BUILTIN,

/*Entry points for RESQ routines:*/
READMD ENTRY,
STPARM ENTRY (CHAR(10),FLOAT BIN(21)),
RESQ2M ENTRY(FIXED BIN(31)),
FNLMSG ENTRY(CHAR(80)),
GTRSLT ENTRY (CHAR(*) VARYING,

CHAR(*) VARYING, (3) FLOAT IHN(21)),
/*Entry points for RESQ plotting routines:*/

RQSET ENTRY(FIXED BIN(31) ,FIXED BIN(31)),

April 3, 1982

110 PL/I EM~EDDING / SEC. 14

RQPLOT ENTRY((*,*) FLOAT BIN(21)),
RQXLBL ENTRY(CHAR(*) VARYING),

.RQYLBL ENTRY(CHAR(*) VARYING),
RQVIEW· ENTRY;

CALLREADMD;/* Reads RQ2COMP file produced by SETUP*/
CALL STPARM('CPIOCYCLES' ,8.0); /*Set parameter value*/
DO N=l TO 40;

DATA(N,1)=FLOAT(N)/10.0;
CALL STPARM('ARVL_RATE' ,FLOAT(N)/10.0); /*Set parameter valu~*/
CALL RESQ2M(0); /* Expands model & solves numerically*/
CALL FNLMSG (FMgG) ;
IF SUBSTR(FMSG,1,9)..,='NO ERRORS' THEN

STOP;
CALLGTRSLT('CPUQ','QL',OP); /* Get result */
T=OP (1) ;
CALL GTRSLT('DISKQ', 'QL' ,OP); /* Get result*/
DATA(N,2)=(T+OP(1))/(FLOAT(N)./10.0); /*Mean response time

(Little's Rule) */
CALL GTRSLT('CPUQ','UT',OP); /* Get result */
DATA(N,3)=OP(1);

END;
CALL
CALL
CALL
CALL

RQSET(40,40) ;
RQPLOT (DATA) ;
RQXLBL(,
RQYLBL (, MEAN

CALL RQVIEW~
END;

ARRIVAL RATE');
RESPONSE TIME CPU UTILIZATION');

After compiling this procedure, with the PLIOPT command, we could use the RPLOT EXEC,
e.g.,

rplotexampl exampl

to get the plot shown in Figure 14.1. Following is a listing of RPLOT EXEC:.

&CONTROL OFF
&IF &INDEX = 2 &SKIP 4
&BEGTYPE
RPLOT REQUIRES EXACTLY TWO ARGUMENTS, MODEL NAME AND PROGRAM NAME
&END
&EXIT 100
STATE &1 RQ2COMP *
&IF &RETCODE = 0 &SKIP 2
&TYPE &1 RQ2COMP FILE NOT FOUND. USE SETUP FIRST.
&EXIT 28
GLOBAL TXTLIBAPLOMB2 EXPANSUB MVASUB PLILIB
FILEDEF SYSPRINT TERMINAL (PERM LRECL 132 BLKSIZE 132 RECFM F
r'ILEDEF RSQ2RS DISK & 1 RQ2PRNT A (PERM RECFM V BLKSIZE 141
FILEDEF RQ2PLOT DISK &1 RQ2PLOT A (PERM RECFMV BLKSIZE 141
FI:G~DEF RSQ2IP DISK &1 RQ2COMP * (PERM RECFM V BLKSIZE 2500
FILEDEF APLMBD DISK RESQ2 APLMBD * (PERM RECFM F BLKSIZE 80
FILEDEF NUMERD DISK RESQ2 NUMERD * (PERM RECFM F BLKSIZE 80
LOAD &2 (NODUP NOMAP RESET DMSIBM
START DMSIBM ISASIZE(-100K)

April 3, 1982

lIt

APPENDIX I - ADDITIONAL EXAMPLES

This appendix discusses three complete examples which illustrate aspects of RESQ not
. featured in the example of Section 1. The first example is a very simple model with two

queues inan open chain. This example is solved numerically. The second example lsrelated
ttl the example of Section 1, but contains a more detailed representation of an I/O subsystetrt,
including effects of channel and device interaction, and represents round robin scheduling at
the' processor. (Terminals and memory are ignored in this second example.) The third example
shows how passive queues, split nodes, fission nodes, fusion nodes and other RESQ demerits
may be used to simply represent protocols in communication systems.

AI.I. Numerically Solved Model

Extremely simple queueing models are often sufficient to make initial system design
decisions, e.g., to reject designs with substantially poorer performance than other designs
being considered. Cyclic queueing networks representing only CPU and disks h.ave been
found useful in a number of applications. Figure Al.1 shows such a model of a transaction
driven computing system. Transactions arrive at the CPU for processing and then alternate
CPU and disk activity until the transaction is completed. The disks are represented by a single
queue in the model. .

S SINK

Figure Al.1 - Open Chain Cyclic QueueModel

Following is a possible qialogue file for definition of the model:

MODEL:examp1
METHOD: numerical
NUMERIC PARAMETERS:arvl rate cpiocycles
QUEUE:cpuq

TYPE:ps
CLASS·LIST:cpu

SERVICE TIMES:standard(.025,5)
QUEUE:diskq

TYPE:active
SERVERS: 2
DSPL:fcfs
CLASS LIST:disk

WORK DEMANDS: .019
CHAIN:trnsactns

TYPE: open
SOURCE LIST:s
ARRIVAL TIMES:1/arvl_rate

April 3,1982

112 ADDITIONAL EXAMPLES / APP. 1

:s->cpu->disk~>sink cpu;l/cpiocycles l-l/cpiocycles
END

The~rrival rate of transactions and the mean number of CPU-I/O cycles per ttan~action are
left as parameters to be defined when the model is solved. TheCPU is represented as having
processor sharing schj:}duling and llyperexponential service times with mean 25 millisec(mds
and coefficient of variation 5 (i.e., standard deviation 125 milliseconds). Two disks are
represented by a single queue, . with the' service times assumed to be exponential with me:;tn 19
milliseconds. Following is the RQ2PRNT file obtained for two sets 9fparametervalues:

RESQ2 VERSION DATE: MARCH 3, 1982 - TIME: 21:29:10 DATE: 03/09/82
MODEL: EXAMPl
ARVL~RATE:3

CPTOCYCLES:8
NO ERRORS DETECTED DURING NUMERICAL SOLUTION.

WHAT': all

ELEMENT

CPUQ
DISKQ

ELEMENT

CPUQ
DISKQ

ELEMENT

CPUQ'
D::r:SKQ

ELEMENT

CPUQ
DISKQ

ELEMENT

TRNSACTNS

ELEMENT
TRNSACTNS

W!iAT:
ARVL_RATE:4
CPIOCYCLES:8

UTILIZATION
0.60000

0.22800

THROUGHPUT
24.00000
24.00000

MEAN QUEUE LENGTH
1.50000
0.48100

MEAN QUEUEING TIME

0.06250
0.02004

OPEN CHAIN POPULATION

1.98100

OPEN CHAIN RESPONSE TIME
0.66033

NO ERRORS DETECTED DURING NUMERICAL SOLUTION.

WHAT: all

April 3, 1982

APP. 1.1 / Numerically Solved Model 113

ELEMENT UTILIZATION
CPUQ 0.80.000
DISKQ 0.30400

ELEMENT THROUGHPUT
CPUQ 32.00000
DISKQ ·.32.00000

ELEMENT MEAN QUEUE LENGTH
CPUQ 4.00000
DISKQ 0.66991

ELEMENT MEAN QUEUEING TIME
CPUQ 0.12500
DISKQ 0.02093

ELEMENT OPEN CHAIN POPULATION
TRNSACTNS 4.66991

ELEMENT OPEN CHAIN RESPONSE TIME
TRNSACTNS 1 . 16748

WHAT:
ARVL.:-RATE:

Al.2. I/O Subsystem Model

The computer system model of Section 1 assumed that there was no competition between
disks, e.g., for channels. Let us consider a computer system with two disks where the same
channel nmst be used to irtitiate positioning (arm and/or rotational) and for transfers. If the
channel is not available when a device is in the correct rotational position, a job must wait it
full revolution before it can try again to get the channel and make the transfer. See Figure
A1.2. This figure is similar to the Section 1 computer system model but omits the terminals
queue and memory queue. This model also represents round robin scheduling at the CPU
using JV(O) to maintain the remairting service time. There is a passive queue representing the
channel, and there are both passive and active queues representing each device. The passive
queues are used for representing contention and the active queues are used for representing
timing; there will never be more than one job at the (deyiCe) active queues. After a job
acquires the token for a device, it requests the chaimel, to initiate arm or rotational position­
ing. As soon as it gets the channel it releases it; we assume the time to initiate positioning is
negligible, but that the time waiting to initiate positioning may not be negligible.· The device
arm mayor may not be at the proper cylinder. We assume that· with probability
I-MOVEARMP . the arm is already at the right cylinder and the job only needs to wait for
rotational positioning. If the arm is not at the right cylinder we assume each of the remairting
cylinders is equally likely to be the correct one. Global variables are used to keep tra.ck of the
current and chosen cylinder. After a seek the job initiates and waits for rotational positioning.

April 3, 1982

114 ADDITIONAL EXAMPLES / APP: 1

Whether a seek was required or not, we assume the. rotational positioning time is uniformly
distributed from 0 to one revolution.

, , ,
:

__ K? ------ ---. ---- --. ---- -- -- ---- ------------ --- -- ---- -- -- --- .. --- -- -- -- .. -- --_ .. - .. ----_ -- -- .. -I,::!

,'_ !?!~L ____________ ~-------- _____________________________________ •..•• C.,

l 0 IlEVICEQ i
!: 1: l,: ' rT----------~ I ~:: -------------------~ ,
I :: ·~v iL-J'. : I I
I I I I.' I
I I I I I I
: I I I.: I

pEVJCE: : :-------- .. --:: :
I I I II I

I I I I !::,
" H l :1 !.

l _____________ ..; ___ ~_ :" ___ " __ 00 __ i

, , , ,
~ , , , I • ___ .. ____ I , , , ,
t------------------------D-~~-----··---c-.---.----:

i
:
i ,
: ,
: ,
!
: , ,

t ~ ~::::::::::: ::::::: =:::: =:: ::::::::: ::::::::::::::: =:: =:::~::::::::: :::: :I .. , _ _J

Figure Al.2 - I/O Subsystem Model

After the device is at the correct rotational position, the T A status function is used to
determine whether the channel is available. If it is not, then the job is delayed for a full
revolution. Once the job gets the channel, it has· a transfer dme (which we assume to be
constant, e,g., one page) and then releases the channel and device. The degree of multipro­
gramming is assumed constant. The following dialogue file could be used for this model:.

MODEL:examp2
METHOD: simulation
NUMERIC IDENTIFIERS: mean_serve quantum overhead

MEAN_SERVE:.02
QUANTUM: .02
OVERHEAD:.0002 _

SUBt10DEL:rrqueue /*round robin queue*/
NUMERIC PARAMETERS:mean_serve quantum overhead
CHAIN PARAMETERS.: chn
QUEUE:q

TYPE:fcfs
CLASS LIST:cls

SERVICE TIMES: standard (min (jv (0) ,quantum) +overhead, 0)
SET NODES:set_total

April3, 1982

-::,.

APP. 1.2 / I/O Subsystem Model

ASSIGNMENT LIST:jv(O)=standard(mean_serve,l)
SET NODES:set remain
ASSIGNMENT LIST: jv (0) =jv (0) -min (jv (0) , quantum)
DUMMY NODES:dummy_out
CHAIN:chn

TYPE: external
INPUT: set_total
OUTPUT: dummy_out
:set_total->cls->set_remain->cls dummy_outiif'(jv(O»O) if(t)

END OF SUBMODE~ ~RQUEU:g:
SUBMODEL:iosys /*subsystem.with device contention for chanqel*/

CHAIN PARAMETERS:c
NUMERIC IDENTIFIERS:movearmp

MOVEARMP: 1/3
QUEUE: channel

TYPE:passive
.. TOKENS: 1

DSPL:fcfs
ALLOCATE NODE LIST: pos_s_a 1 pos_l_al tranal

NUMBERS OF TOKENS TO ALLOCATE: 1
ALLOCATE NODE LIST:pos_s_a2 pos_l_a2 trana2

NUMBERS OF TOKENS TO ALLOCATE: 1
RELEASE NODE LIST:pos_s_rl pos_l_rl tranrl
RELEASE NODE LIST:pos_s~r2 pos_l_r2 tranr2

DUMMY NODES:dummyin dummyout
SUBMODEL:dasd /*individual device*/

NUMERIC PARAMETERS:ncyl startarmt cylt revt trant
NODE PARAMETERS:pos_s_a pos_s_r pos_l_a pos_l_i:: trana tranr
CHAIN PARAMETERS:c
GLOBAL VARIABLE IDENTIFIERS:oldcyl newcyl

OLDCYL:ncyl/2
NEWCYL:O

QUEUE:deviceq
TYPE:passive
TOKENS: 1
DSPL:fcfs
ALLOCATE NODE LIST:device

NUMBERS OF TOKENS TO ALLOCATE: 1

RELEASE NODE LIST:devicer
QUEUE :timesq

TYPE:fcfs
CLASS LIST:seek

SERVICE TIMES: standard (startarmt+abs (newcyl-oldcyl) ++
*cylt,O)

CLASS LIST:lat rev
SERVICE TIMES:uniform(O,revt,l) standard(revt,O)

CLASS LIST:tran
SERVICE TIMES:standard(trant,O)

SET NODES:setnewcyl
ASSIGNMENT LIST:++

newcyl=ceil(uniform(O,oldcyl-l, (oldcyl-l)/(ncyl-1)i++
oldcyl,ncyl, (ncyl-oldcyl)/(ncyl-l)))

SET NODES:setoldcyl
ASSIGNMENT LIST:oldcyl=newcyl

April 3, 1982

115

116 ADDITIONAL EXAMPLES / APP.l

CHAIN:c
TYPE: external
INPUT:device
OUTPUT:devicer
:device->pos_s_a pos_l_a;movearmp 1-movearmp
:pos_s_a->pos_s_r->setnewcyl->seek->setoldcyl->po~_l_a

:pos_l_a->pos_l_r->lat
:lat->trana rev;if(ta>O) if(t)
:rev->trana rev;if(ta>O) if(t)
:trana~>tran->tranr->devicer

END OF SUBMODEL DASD
INVOCATION:disk1

TYPE:dasd
NCYL:800
STARTARMT: .01
CYLT:.OOOl
REVT: .0166667
TRANT: .0029
POS_S_A:pos_s_a1
POS_S_R:pos~s_r1

POS_L_A:pos_l_a1
PO$_L_R:pos_l_r1
TRANA:trana1
TRANR:tranr1
C:c

INVOCATION:disk2
TYPE:dasd
NCYL:800
STARTARMT: .01
CYLT:.0001
REVT:.0166667
TRANT: .0029
POS_S~A:pos_s_a2

POS_S_R:pos_s_r2
POS_L_A:pos_l_a2
POS_L_R:pos_l_r2
TRANA:trana2
TRANR:tranr2
C:c

CHAIN:c
TYPE: external
INPUT:dummyin
OUTPUT:dummyout
:.dummyin->disk1.input disk2.input;.5 .5·
:disk1.output disk2.output->dummyout

END OF SUBMODEL IOSYS
INVOCATION:cpuq

TYPE:rrqueue: mean serve; quantum; overhead; c
INVOCATION:io

TYPE:iosys
C:c

CHAIN:c
TYPE: closed
POPULATION: 4

April 3, 1982

<.: ..

.. ,:

AFP. 1.2/ I/o Subsystem Model

END

:cpuq~output~>io.input

:io.output->cpuq.input
CONFIDENCE INTERVAL METHOD:replications
INITIAL STATE DEFINITION -
CHAIN:c

NODE LIST:cpuq.set_total
INIT POP:4

CONFIDENCE LEVEL:90
NUMBER OF REPLICATIONS:5
INITIAL PORTION DISCAf.D~D:10 /*percent*/
~EPLIC LIMITS-

NODES FOR DEPARTURE COUNTS:cpuq.set_total
DEPARTURES: 100aO

LIMIT - CP SECONDS:300
TRACE: no

117

Since the channel is shared between the disks, the subniodel representing a disk mUst have
entry and exit points for the allocate and release nodes for the channel as well as for the
allocate and release nodes for the disk. Node parameters are used for the channel allocate and
release nodes.

Following is the RQ2PRNT file obtained from the EVAL command:

RESQ2 VERSION DATE: MARCH 3, 1982 - TIME: 22:29:10 DATE: 03/09/82
MODEL: EXAMP2
REPLICATION
REPLICATION
REPLICATION
REPLICATION

1 :
2:
3 :
4:

SET...:.TOTAL
SET TOTAL -
SET_TOTAL
SET TOTAL -

DEPARTURE LIMIT
DEPARTURE LIMIT
DEPARTURE LIMIT
DEPARTURE· LIMIT

5: SET TOTAL REPLICATION DEPARTURE LIMIT -
NO ERRORS DETECTED DURING SIMULATION. 19837 DISCARDED EVENTS

SIMULATED TIME PER REPLICATION:
CPU TIME:

NUMBER OF EVENTS PER REPLICATION:
NUMBER OF REPLIC~TIONS:

WHAT:tpbo

INVOCATION INVOCATION ELEMENT
CPUQ Q
IO CHANNEL

10 DISK1 DEVICEQ
10 DISK1 TIMESQ
10 DISK2 DEVICEQ
10 DISK2 TIMESQ

CPUQ SET_TOTAL
CPUQ SET_REMAIN
CPUQ DUMMY OUT
10 POS S R1
10 POS_L",,:R1
10 TRANR1

April 3, 1982.

207.52304
291.46
35782

5

THROUGHPUT
68.54985(68.37177,68.72792) 0.5%
101.30110{100.28430,102.31792) 2.DJ.
21.86382 (21.54640,22.18124) 2.9%
52.40106(51.56384,53.23827) 3.2%
21.5081.6(21.28053,21.73578) 2.1%
51.48280(50.97803;51.98758) 2.0%
43.36867
68.54947
43.37251
7.35436
21.86263
21.86166

U8

10
10
10

10

10
10

10

10
10
10
10
DISK1
DISK1
DISK1
DISK2
DISK2
DISK2

ADDITIONAL EXAMPLES / APP. 1

POS_S_R2 7.20016
POS_L_R2 21.50700
TRANR2 21.50700
DUMMYIN 43.37251
DUMMY OUT 43.36867
DEVICER 21.86166
SETNEWCYL 7.35436
SETOLDCYL 7.35340
DEVICER 21.50700
SETNEWCYL 7.20016
SETOLDCYL 7.20016

WHAT: utba (cpuq.q, ia.channel ,ia. disk 1. deviceq, ia. disk2. deviceq)

INVOCATION INVOCATION ELEMENT UTILIZATION
CPUQ Q 0.87926(0.87447,0.88406) 1. 0%
10 CHANNEL 0.12578(0.12460,0.12696) 0.2%

10 DISK1 DEVICEQ 0.53930(0.52858,0.55002) 2.1%
10 DISK2 DEVICEQ 0.52685(0.52173,0.53196) 1.0%

WHAT:qlba(*)

INVOCATION INVOCATION ELEMENT MEAN QUEUE LENGTH
CPUQ Q 2.21399(2.18089~2.24708) 3.0%
10 CHANNEL 0.12935(0.12820,0.13050) 1. 8%
10 POS S A1 3.6~E-04(2.95E-04,4.34E-04) 38.0% .
10 POS_L_A1 1.39E-03(1.30E-03,1.48E-03) 13.1%
10 TRANA1 0 .. 66341 (0.06248,0.06433) 2.9%
10 POS S A2 4.02E~04(3.75E-04,4.29E-04) 13.3%
10 POS_L_A2 1.42E-03(1.J2E-63,1.51E-03) 13..3%
10 TRANA2 0.06237(0~O6171,0.06303) 2.1%

10 DISK1 DEVICEQ 0.91284(0.87976,0.94592) 7.2%
10 DISK1 TIMESQ 0.53754(0.52681,0.54828) 4.0%
io DISK1 SEEK 0.27007(0.26338,0.27675) 5.0%
10 DISK1 LAT 0.18209(0.17829,0.18589) 4.2%
10 DISK1 REV 0.02198(0.02002,0.02394) 17 .8%
10 DISK1 TRAN 0.06341(0.06248,0.06433) 2.9%
10 DISK2 DEVICEQ 0.87317(0.86327,0.88307) 2.3%
10 DISK2 TIMESQ 0.52503(0.51989,0.53017) 2.0%
10 DISK2 SEEK 0.26165(0.25638,0.26693) 4.0%
10 DISK2 LAT 0.17991 (0.17757,0.18225) 2.6%
10 IDISK2 REV 0.b2109(0.02007,O.022i2) 9.7%
10 D!SK2 TRAN 0.06237(O.06i71:b:06303) 2.1%

WHAT: st (*)

INVOCATION INVOCATION ELEMENT MEAN SERVICE TIMES
CPUQ Q 0.01283

10 DISK1 TIMESQ 0 .. 01026
10 DISK1 SEEK 0.03671
10 DISK1 LAT 8.3271E-03

April 3, 1982

'~.

<::

APP. 1.2 I I/O Subsystem Model

10 . DISK1 H.EV

10 DISK1 TRAN
10 DISK2 TIMESQ
10 DISK2 SEEK
10 DISK2 LAT
:to DISK2 REV
10 DISK2 TRAN

WHAT:gv

INVOCATION INVOCATION ELEMENT
10 DISK1 OLDCYL
10 DISK1 NEWCYL
10 DISK2 OL[)CYL
10 DISK2 NEWCYL

WHAT:

0.01667
2.9000E-03

0.01020
0.03634
8.3646E-03
0.01667
2.9000E-03

FINAL VALUES OF GLOBAL VARIABLES
119.00000
.119.00000
645.00000
645.00000

119

Some blank columns and less significant digits have been edited from this copy of the fiIeto.
allow presentation within the column width used in this document.

At.3, Communication Protocol Model

Like the example of Section 1, the example of this section considers terminals connected
to an interactive computing system. However, the model of Section 1 emphasized representa­
tion of the computer system and ignored communication between the terminals and the
computer system. The model of this section will ignore details of the computer system,
representing the computer system by a single queue with queue length dependent service rates,
and will focus on communication between the terminals and computing system.

We assume the termi~als are organized in three separate groups. (The submodel defini­
tionsgiven below would apply with any number of groups. Minor modifications in the main
modelwotild be needed to change the number of groups.) The termiQ.als share a full duplex

.2400 baud line to. the computer system. In· order to avoid conflicts between traffic destined
from a terminal group to the computer system, a polling protocol gives each group a turn to
transmit any traffic it has for the computing system. The messages sent from the terminals ~o
the coniputing system are fairly short with a maximum length of 640 bits. However, the
messages sent from the computing system to tenninals are longer and more variable ~n length,
with a mean length of 800 bits. To prevent a long message from monopolizing the line from
the computing system to the terminals, the messages are divided into packets of maximum
length 256 bits. Only 240 of the 256 bits are used for data,· with the remaining bits used for
control information. To prevent a terminal controller from receiving more data than it can
handle, a simple window flow control protocol is used. The protocol allows only a single
message (typically, several packets) to be sent to a terminal group before that group expliCitly
requests another message be sent.

The model consists of three submodels, a queue representing the computer system and a
passive queue used for measuring response times. The first submodel, TERM_GROUP,
represents a terminal group. There will be one invocation of TERM GROUP for each
group. The second submodel, POLL LINE, represents the communication line. There is just - . .
one inovcation of POLL LINE .. The third submodel, FLOW _N_PKT, represents the

April 3, 1982

120

---D~-----

,-, ,
,1 --, , , ,

ADDITIONAL EXAMPLES / APP. 1

,-_'_Ilft'I ____ - _ - - ____ - ___________ - __ _

, , ,
'!,~
, ~ ~ , '

" , , , , , , , , , ,
, L ,.~I--< 11---+-.....
: I t

, , L _________ ... ~ ___ ~ _______ ... ___________ I

• "" --'~-- -'"'''!'-'' ---7"'''''

,-, ,

, , , , , ,

,I ~-
" , , , ,

, ,
t ___________________ ~-----.----------- ... ---~·

" , , , ,
:: I
• - - __ ,. r - - _ -- - __ I

L~ ______________ ~---_---- _________ ~I

,­,

, , ,

: 1..--4 , , , , , ,

, , , , , , , , , , , , ,
, , L ___________________________ _~---I

.... ---- ... --_ - ___ 1

Figure A1.3 - Communication Protocol Model

window flow control protocol and the division of messages into packets. There will be one
invocation of FLOW _N_PKT for each terminal group.

Following is a .dialogue file for definition of TERM_GROUP. (Some of the names in
this dialogue file are names of numeric identifiers declared in the invoking model.)

SUBMODEL:term_group
NUMERIC PARAMETERS:group_no
NODE PARAMETERS:begin_rt'end_rt
CHAIN PARAMETERS:c
QUEUE:ter~inalsq

TYPE: is
CLASS LIST:terminals

SERVICE TIMES:thinktime
SET NODES:msg_char /*message characteristics*/
ASSIGNMENT LIST:jv(group)=group_no ++

jv(msg_type)=data ++
jv(msg_leng)=uniform(24,640,1)

SET NODES: set cntrl
ASSIGNMENT LIST:jv(grollP)=group_no ++

jv(msg_type)=control ++
jv(msg~leng)=32

April 3, 1982

APP. 1.3 / Comnmnication Protocol Model

SPLIT NODES:gen~cntrl
FUSION NODES:assmbl_pkt
CHAIN:c

TYPE: external
INPu~r: as'smbl_pkt
OUTPUT:set cntrl
:assmbl_pkt->gen_cntrl->end_rt set_cntrlisplit
:end_rt":'>terminals->msg_char->begin~rt

END OF SUBMODEL TERM_GROUP

121'

Jobs' are initially placed at the terminals to represent users. At the end of a, think time (and
keying time), a job goes to set node M'SG_CHAR which sets job variables giving the message
characteristics, i.e., the group producing the message, the fact that this isa data message (as
opposed to a control message for the window flow control protocol)., and the message length.
The job then goes to node parameter BEGIN_RT which is an allocate node for response time
measurement. Jobs representing packets returning from the computing system go to fusion
node ASSMBL PKT. When all packets' of a message have arrived at the fusion node, a
single job representing the assembled message leaves the fusion node. That job goes to split
node GEN CNTRL to generate a control message which will eventuallya1l6w another
message to be sent, as discussed below. The control message job goes to set node
SET CNTRL which sets the job variables giving its characteristics. From the set node the
control message job will go to the communication line. The job representing the message goes,
to node parameter END _RT, a release node for response time measurement, and then goes to
the terminals.

Following is a dialogue file for definition of POLL_LINE. (Some of the names in this
dialogue file are names of numeric identifiers declared in the invokingmodel.)

SUBMODEL:poll_line
NUMERIC PARAME1'ERS: nO_groups
NODE PA:RAMETERS:inboundin inboundout
CHAIN PARAMETERS:c
GLOBAL VARIABLES:cur_group cur_prior (no....:,groups)

,CUR_GROUP: l'

CUR PRIOR:O
QUEUE:polling

TYPE:passive
TOKENS: 0
DSPL:prty ,
ALLOCATE NODE LIST:msg_allcte

NUMBERS OF TOKENS TO ALLOCATE: 1

PRIORITIEs:curyrior(jv(group))+jv(msg_type)
ALLOCATE NODE LIST:cnt_allcte

NUMBERS OF TOKENS TO ALLOCATE: 1

PRIORITIES: curyrior (cm;'_group) +2
RELEASE NODE LIST:msg_releas
DESTROY NODE LIST:cnt_dstroy
CREATE NODE,LIST:free_msgs

NUMBERS OF TOKENS TO CREATE: 1

QUEUE: inbound
TYPE:fcfs
CLASS LIST:msg_'in

SERVICE TIMES:standard(jv(msg~leng),O)/2400
CLASS LIST:cnt in

April 3, 1982

122 ADDIT10NAL EXAMPLES lAPP. 1

SERVICE TIMES:32/2400
QUE,UE: outbound

TYPE:prty
CLASS LIST:msg_out

SERVICE TIMES: standard (jv(msg_leng) ,0)/2400
PRIORITIES: 2

CLASS LIST:cnt out
SERVICE TIMES:32/2400
PRIORITIES: 1

SET NODES:new cur
ASSIGNMENT LIST:curyrior(cur_group)= ++

curyrlor(cur_group)+3*no_groups ++
cur_group=(cur_group mod no_groups)+1

SET NODES:inityrior
ASSIGNMENT LIST: cur_prior (cur_group) =_cur_group*3-2 ++

cur_group=cur_group+1
SET '. NODES,: ini t_group
ASSIGNMENTLIST:cur_gToup=1
CHAIN:c

TYPE:externai
INPUT:msg_out
OUTPUT:msg_out
:inboundin->msg_allcte->msg_in->msg_releas->inboundout

CHAIN:pollingjob
TYPE:closed
POPULATION: 1
: inityrior->inityriori if (cUJ:;~group<=no_groups)
:inityrior->init_grouPiif(t)
:init_group->cnt_out->free_msgs->cnt_allcte->cnt_dstroy
:cnt_dstyoy->new_cur~>cnt_in->cnt-,out

END OF SUBMODEL POLL LINE

The key element of this submodel is the use of the vector of priorities, CUR_PRIOR, which
is used with passive queue POLLING. There are three priority levels for a group',high priority
for the flow control messages, medium priority for data messages and low priority for the
pOlling job. Group i has highest priority given by CUR_PRIOR(i) for flow control messages,
priorityCUR_PRIOR(i)+1 for data messages and priority CUR_PRIOR(iJ+2 for the
polling job. Polling is accomplished by the, polling job creating a token at node
FREE_MSGS and then waiting at allocate node CNT_ALLCTE until all higher priority jobs
(flow control and data messages for, the group being polled) have received the t()ken, spent a
service time at class MSG-,-IN and then released the token at MSG RELEAS. When the
polling job receives the token, it increases the CUR_PRIOR value for the group just polled
by 3'xNO GROUPS, thus giving the group just polled the lowest base priority .. ' (Since the
priority value may be any integer up to 231 _1; the values inCUR PRIOR can be increased
indefinitely without fear of overflow in a feasible run length. However, the values iri
CUR PRIOR could be reset to their initial values periodically if overflow was a concern;)
Ti:J.e relatively imitative representation of polling used in the definition of POLL_LINE is
expensive in terms of simulated events, because of the polling that occurs when there ariOl no
waiUng jobs. Alternate, but more complex, representations may reduce the simulatjon
expense.

Following is a dialogue file for definition of FLOW _ N --'-PKT .. (Some of the names in
this dialogue file are names of numeric identifiers dechtred in the invoking model.)

April 3, 1982

APP. 1.3 / Commun:ication Protocol Model

SUBMODEL:flow_n-pkt
NODE PARAMETERS:cntrl_in
CHAIN PARAMETERS:c
QUEUE:flow.:....cntrl

TYPE:passive
TOKENS: 1
DSPL:fcfs
ALLOCATE NODE LIST:flowallcte

NUMBERS OF TOKENS TO ALLOCATE: 1
DESTROY NODE LIST:flowdstroy
CREArE NODE LIST:new~flow

NUMBERS OF TOKENS TO CREATE: 1
SET NODES:outbnd_lng
ASSIGNMENT LIST:jv(msg_leng)=standard(800,1)
SET NODEs:remove-pkt
ASSIGNMENT LIST:jv(msg_leng)=jv(msg_leng)-240
SET NODES:new-pkt
ASSIGNMENT LIST:jv(msg_leng) =256
FISSION NODES:packetize
DUMMY NODES:outputport
CHAIN:c

TYPE: external
INPUT:outbnd_lng
OUTPUT:outputport
: outbnd_lng-:>flowallcte->flowdstroy
:flowdstroy->packetize outputportjif(jv(msg_leng»256) if(t)
:packetize->remove-pktnew-pktjfission
:remove-pkt->packetize outputportjif(jv(msg_leng»256) if(t)
:new-pkt->outputport
:cntrl in->new flow->sink - -

END OF SUBMODEL FLOW_N_PKT

123

A job representing a message from the computer system goes to set node OUTBND_LNG to
establish the length of the message. The job then goes to allocate node FLOW ALLCTE to
wait fora token. A token will be made available by a job representing a (flow control
message) arriving from node parameter CNTRL_IN and going to create node NEW.-:..FLOW.
(That job then goes to the sink.) When a job waiting at FLOW ALLCTE gets a token, it will
then generate new jobs represting packets (if necessary) at fission node PACKETIZE. . Set
node REMOVE_PKT decrements the message length by 240 (the numb~r of data bits in a
packet) and set node NEW PKT sets the new packet's .JV(MSG . LNG) to 256 (data bits
plus contr~l bits). - . -

. Following is a dialogue file for definition of the main model.

MODEL: EXAMP3
/* Computer system with several remote terminal groups. */
/* Groups connected to system by polled communication */
/* line. Flow control and packetizing of messages. */
METHOD: simulation
NUMERIC ~DENTIFIERS:no_terms /*per group*/ thinktime

NO TERMS: 10
THINKTIME:20

NUMERIC IDENTIFIERS:control data
CONTROL: 0 /*Code to be used for control messages~/

April 3, 1982

124 ADDITIONAL EXAMPLES / APP. 1

DATA: 1 /*Code to be u~ed for data messages*/
NUMERIC IDENTIFIERS:group msg_type msg_leng ,

GROUP: 0 /*JV to be used to indicate group*/
MSG_TYPE:1 /*JV to be used to indicate type*/
MSG_LENG:2 /*JV to be used to indicate length*/

MAX JV:2
QUEUE:rtq /*response time*/

TYPE:passive
TOKENS: 2147 4836LI7 /*" inf ini ty" * /
DSPL:fcfs
ALLOCATE NODE LIST:begin_rt1 begin_rt2 begin_rt3

NUMBERS OF TOKENS TO ALLOCATE: 1 ,
RELEASE NODE LIST: end rt1

QUEUE:comp_sysq
'TYPE: active
DSPL:ps
CLASS LIST:comp_sys

WORK DEMANDS: 1
SERVER-

RATE:1.4 2.0 2.25 2.4

end rt2 end rt3

,DUMMY NODES: poll_in cntrl rout cntrl in1' cntrl in2 cntrL in3,
INCLUDE;termgrp
INCLUDE:pollline
INCLUDE:flownpkt

,INVOCATION:group1
TYPE: term_group
GROUP NO: 1
BEGIN_RT:begin_rt1
END_RT:end_rt1
C:c.

INVOCATION:group2
TYPE: term_group
GROUP NO:2
BEGIN_RT:begin_rt2
END,-RT:end_rt2
C:c

INVOCATION:grQup3
TYPE: term_group
GROUP_NO: 3
BEGIN_RT:begin_rt3
END RT:end rt3 - -
C:c

INVOCATION:lirie
TYPE:poll_line
NO_GROUPS: 3
INBOUNDIN:poH_in
INBOUNDOU'I': cntrl~rout
C:c

INVOCATION:flow1
TYPE:flow_nykt
CNTRL_IN:cntrl in1
C:c

INVOCATION:flow2
TYPE:flow_nykt

April 3, 1982

APP.l.3 / Communication Protocol Model

END

CNTRL_IN:cntrl_in2
C:c

INVOCATION:flow3
TYPE:flow_nykt
CNTRL_IN:cntrl in3
C:c

CHAIN:c
TYPE: open

.:begin_rt1 begln_rt2 begin_rt3->poll_in
:cntrl_rout->comp_sys;if (jv(msg_type)=data)

.: cntrl~rout->cntrl_in 1; if (jv (group) =1)
:cntrl_rout->cntrl_in2;if(jv(groUp)=2)
:cntrl_rout->cntrl_in3;if(jv(group)=3)
: c;:omp_sys->flow1 . input; if (jv (group) =1)
: comp_sys->flow2. input; if (jv (group) =2) .
;comp_sys->flow3.input;if(jv(group)=3)
:flow1.output flow2.output flow3.output->line.input
; line. output->group1. input;if(jv(group) =1)
:line.output->group2.input;if(jv(groupl=2)
:line.output->group3.input;if(jv(group)=3)
:group1.output group2.output group3.output->poll~in

QUEUES FOR QUEUEING TIME DIST:rtq
VALUES:.51 248

NODES FOR QUEUEING TIME DIST:begin_rt1 begin_rt2 begin_rt3
VALUES:.5 1 248

CONFIDENCE INTERVAL METHOD: spectral
INITIAL STATE DEFINITION­
CHAIN:line.pollirigjob

NODE LIST:line.init_prior
INIT POP: 1

CHAIN: c .
NODE LIST:group1.terminals group2.terminals group3.terminals
INIT POP: no terms

CONFIDENCE LEVEL: 90
no terms

SEQUENTIAL STOPPING RULE:yes
CONFII)ENCEINTERVAL QUEUES: rtq rtq comp_sysq

MEASURES: qt qtd qt
ALLOWED WIDTHS: 1 0 1 0 1 0

no terms

CONFIDENCE INTERVAL NODES:begin_rt1 begin~rt2begin_rt3
MEASURES: qt qt qt
ALLOWED WIDTHS: 100 100 100

INITIAL PORTION DISCARDED: 10
INITIAL PERIOD LIMITS-

QUEUES FOR DEPARrURE COUNTS:rtq
DEPARTURES: 1000

LIMIT - CP SECONDS:500
TRACE: no

125

ThiS dialogue defines the queues for response time measurement and the computer system,
invokes the submodelsand defines the connections between the invocations.

Following is an RQ2PRNT file for this model as produced by BV AL.

Apri13,1982

126 ADDITIONAL EXAMPLES! APP. 1

RESQ2 VERSION DATE: APRIL 3, 1982 - TIME: 17:56:53 DATE: 04/03/82
MODEL: EXAMP3
SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION. 2930 DISCARDED EVENTS

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:

5028.19141
38.1.07
227673

. WHAT: ut (line. msg_in, line. ent_in, line .msg_out, line. ent_out)

INVOCATION
LINE
LINE
LINE
LINE

INVOCATION

ELEMENT
MSG IN
CNT IN
MSG_OUT
CNT OUT

ELEMENT
RTQ

BEGIN RT1
BEGIN~RT2

BEGINRT3

UTILIZATION
0.20631
0.23099
0.48462
0.23007

THROUGHPUT
1.35874
0.46657
0.44887
0.44330

WHAT:qtbo(rtq,begin_rtl,begin_rt2,begin_rt3,eoinp_sysq)

INVocATION ELEMENT
RTQ

BEG I N_RT1
BEGIN RT2
BEGIN_RT3

COMP_SYSQ

MEAN QUEUEING TIME
2.30391 (2.21360,2.39422) 7.8%

2.29731 (2.21029,2.38434) 7.6%
2.3577i(2.27390,2.441~3) 7.1%
2.25636(2.15468,2.3~804) 9.6,

1.20234(1.14318,1.;26150) 9.8%

WHAT:ql(rtq,begin_rt1,begin_rt2,begin_rt3,eomp_sysq)

INVOCATION ELEMENT MEAN QUEUE LENGTH
RTQ 3.13178

BEGIN RT1 1.07279
BEGIN_RT2 1 .05869
BEGIN RT3 1.00030

COMP_SYSQ 1 .63460

WHAT:
CONTINUE RUN:yes

April ~, 1982

APP.1.3 / Communication Protocol Model

EXTRA SAMPLlNG PERIODS: 1
LIMIT ~ CP SECONDS: 1000

SAMPLING PERIOD END: RTQ DEPARTURE LIMIT

SAMPLING PERIOD END: RTQ DEPARTURE LIMIT.

SAMPLING PERIOD END: RTQ DEPARTURE LIMIT

SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
SAMPLING PERIOD END: RTQ DEPARTURE LIMIT
NO ERRORS DETEC'rED.DURING SIMULATION. 2930 DISCARDED EVENTS

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:

7542.98047
570.16
343411

. .

.WHAT:ut(line.msg_in,line.cnt..:..in,line.msg_out,line.cnt_out)

INVOCATION ELEMENT UTILIZATION
LINE MSG IN 0;20599 -
LINE· CNT IN 0.23301 -
LINE MSG OUT 0.47914

LINE CNT OUT 0.23180

WHAT:tp(rtq,begin_rt1,begin_rt2,begin_rt3)

INVOCATION ELEMENT

RTQ
BEGIN RT1
BEGIN RT2
BEGIN RT3

THROUGHPUT
1.35861
0.45274
0.45141
0.45446

WHAT:qtbo(rtq,begin_rt1,begin_rt2,begin_rt3,comp_sysq)

INVOCATION ELEMENT
RTQ

BEGIN .RT1
BEGIN RT2
BEGIN RT3

COMP_SYSQ

MEAN QUEUEING TIME
2.27488(2.21307,2.3366~) 5.4%
2.27176(2.20855,2.33498) 5.6%
2.31046(2.22283,2.39809) 7.6%
2.24264(2.14938,2.33590) 8.3%

1.19929(1.16632,1.23225) 5.5%

WHAT:ql(rtq,begin_rt1,begin_rt2,begin_rt3,comp_sysq)

INVOCATION

April 3, 1982

ELEMENT
RTQ

BEGIN RT1
BEGIN_RT2
BEGIN_RT3

COMP_SYSQ

MEAN QUEUE LENGTH
3.09146

1.02852
1.04340
1 .01954

1.62968

127

128

WHAT:qtdbo(*)

INVOCATION ELEMENT
RTQ'

BEGIN RTl

BEGIN RT3

ADDITIONAL EXAMPLES / APP. 1

QUEUEING TIME DISTRIBUTION
5.00E-Ol:Q.03708(0.03404,0.04Q12) 0.6%
1. 00E+00:0.19633 (0.18753,.0.20513)1.8%
2.00E+OD:0.54167(O.52525,O.55808) 3.3%
4.00E+00:0.87529.(O.86545,0.88513) 2.0%
8.00E+00:0.98985(O:98771,0.9919~) 0.4%
5,00E-Ol:0.03748(0.02998.0.04498) 1.5%'
1.00E+00:0.19590(O.18600,O.20580)
2.00E+00:0.53206(O.51399,O.55013)'
4.00E+00:0.87877(O.86588,0.89166)
8.00E+00:0.99180(O.98863,0.99497)
5.00E-Ol:0.03465(O.03048,0.0~883)

1.00E+00:0.18767(O.16722,O.20811)
2.00E+00:0.52658(O.49773,0.55543)
4.0DE+00:0.86990{0.85482,0.88498)
B.00E+00:0.98913(O.98526,0.99301)
5.00E-Ol:0.03909(O.03283,0.04535)
1.00E+00:0.20537(O.18920,0.22153)
2.00E+00:0.56622(O.54158,0.59086)
4.00E+00:0.87719(O.86155,0.89283)
8.00E+00:0.98862(O.98558,0.9~166)

2.0%
3.6%
2.6%
0.6%
0.8%
4.1%
5.8%
3.0%
0.8%
1 .3%
3.2%
4.9%
3.; 1 %
0.6%

WHAT: qt (line. msg_p.llcte, line .msg __ out)

INVOCATION
LINE
LINE

ELEMENT
MSG_ALLCTE
MSG_OUT'

MEAN QUEUEING TIME
0.19342
0.58095

WHAT:ql(flowl:flowallcte,flow2.flowallcte,flow3.flowallcte)

INVOCATION
FLOW 1
FLOW2
FLOW3

WHAT:gv

INVOCATION
'LINE
LINE
LINE
LINE

WHAT:
CONTINUE RUN:no

ELEMENT
FLOWALLCTE
FLOWALLCTE
FLOWALLCTE

ELEMENT
CUR_GROUP
CUR_PRIOR (1)
CUR_PRIOR (2)
CUR_PRIOR (3)

MEAN QUEUE LENGTH
0.10062
0.10598
0.10036

FINAL VALUES OF GLOBAL VARIABLES
2.60000
3.9830E+05
3.9829E+05
3.9829E+05

April 3, 1982

~1.:'~

.'"

129

APPENDIX.2 - NAMES AND KEYWORDS

A RESQ name may be any string beginning with a letter and consisting entirely of letters,
digits and the characters "$" and "_" with the following restrictions:

1. Names are restricted to at most ten characters. The translator will accept longer
names,but will prirtta warning message and ignore the extra characters.

2. Names used f()r model names and library members must be restricted to at most eight
characters.

3. The name used for the model name and names used for submodel and queue type
names may not be reused. Other names may be reused in .submodels according to
traditional rules of block structured programming languages such as PLiI, i.e., a
name.may be reused within a submodel even though .it exists with entirely different
meaning outside of the submodel.

4. The following keywords may not be used as names:

ABS DESTROY INTERVAL OR
ACCEPTS DISCARDED INVOCATION OUTPUT
ACTIVE DISCRETE IS PARAMETER
ALL DIST ISQDEP PARAMETERS
ALLOCATE DISTRIBUTION JFCKTRACE pASSIVE
ALLOWED· DSPL JOB PERIOD
AMOUNTS DUMMY JV PERIODS
AND EDIT LCFS POP
APLOMB END LENGTH POPULATION
APPROXIMATE EVENT LEVEL PREEMPT
ARRAYS EVENTS LIMIT PRINT
ARRIVAL EXP LIMITS PRIORITIES
BE EXTERNAL LIST PRTY
BY EXTRA LN PRTYPR
CEIL F LQ PS
·CHAIN PCFS LRTF Q~
CHAINS FF MAX QLD
CHANGE FISSION MEASURES QNET4
CHECKED. FLOOR METHOD QT
CLASS FOR MIN QTD
CLOSED FRACTION MODEL QUEUE
COMPQF FUSION MOVEMENT QUEUEING
COMPQP GAMMA MVA QUEUES
CONFIDENCE .GLOBAL NO QUIT
CONVOLUTION GUIDELINES NODE RATES
COUNTS HANDLING NODES REGEN
CP HOW NONE REGENERATION
CREATE IDENTIFIER NOT RELEASE
CV IF NUMBER REPLIC
CYCLES INCLUDE NUMERIC REPLICATION
DEFINITION INIT NUMERICAL REVIEW
DELAYS INITIAL OF RJ
DEMANDS INITIALLY OFF RJQ
DEPARTURE .INPUT ON RULE
DEPARTURES INTERNAL OPEN RUN

April 3, 1982

130 NAMES AND KEYWORDS / APP. 2

SA SPECTRAL TIMES TURN
SAMPLING SPLIT TO TYPE
SAVE SQ TOKEN UNIFORM
SCALED SRTF TOKENS USE
SECONDS STANDARD TOTAL USER·
SEED STATE TP UT
SEQUENTIAL . STOPPING TQ VALUE SERVER STRING
SERVERS SUBMODEL TRACE VALUES

SET SUBSTITUTION TRANSFER VARIABLE

SIMULATED T TREE VARIABLES
SIMULATION TA TT WIDTHS
SINK . TEMPLATE TTD WORK
SNAPSHOTS TH TU YES
SOURCE . TIME TUD

Where the plural form of a keyword is listed but the singular is not, the singular form
may be used instead of the plural,·· e.g., DEMAND maybe used instead of DE­
MANDS, hut PARAMETER may not be used instead of PARAMETERS. In such
cases the singular form may not be used as an name, even though it is not explicitly
listed above.

5. The following global variable names have special meaning. They should not be used
as global variable mimes unless the special meaning is intended.

CLOCK

TRACEON

JOBTRACE

- This global variable contains current simulated time. CLOCK
must be initialized to zero (0). CLOCK is available only for
reference within expressions and should not be used as the
variable to be assigned by a set node. Any attempt to assign a
value to CLOCK during simulation will abort the·run.

- If TRACEON is set to a posive value, by initialization or by a
set node, simulation trace output will be produced. TRA­
CEON overrides the "INITIALLY ON:" reply. TRACEON is
set to 1 at when trace is turned on by the "TURN TRACE
ON-" specification and is set to 0 when trace is turned off by
the "TURN TRACE OFF-" specification.

- If JOBTRACE is set to a positive value, job movement trace
will be produced, provided that trace has been turned on by
the "TURN TRACE.ON-" specification or by assignment or
initialization of TRACEON. JOBTRACE overrides the "JOB
MOVEMENT:" specification.

QUEUETRACE - If QUEUETRACE is set to a positive value, queue trace will
be produced, for all queues, provided that t'race has been.
turned on by the "TURN TRACE ON-" specification or by
assignment or initialIzation of TRACEON; QUEUETRACE
overrides the "QUEUES:" specification.

EVENTTRACE - If EVENTTRACE is set to a positive value, event handling
trace will be. produced, provided that trace has been turned on
by the "TURN TRACE ON-" specification or by aSSignment

April 3, 1982

APP; 2 / NAMES AND KEYWORDS

LlSTTRACE.

or initialization of TRACEON .. EVENTTRACE overrides the
"EVENT HANDLING:" sp¢cification.

- If LISTTRACE is set to a positive value, event list trace will
be produced, provided that trace has. been turned on by the
"TURN TRACE ON-" specification or by.assignment or ini­
tialization of TRACEON. LISTTRACE overrides the
"EVENT LIST: "specification.

SNAPTRACE . - If SNAPTRACE is set to a positive value, snapshot trace will
be produced, provided that trace has been turned on by the
"TURN TRACE ON-" specification or by assignment· or ini.;,
tialization of TRACEON. SNAPTRACE overrides the·
"SNAP$lIOTS:" specification.·

EXPERTRACE· - This global variable is reserved for use by RESQ developers.

SAUERTRACE - This. global variable is reserved for use by RESQ developers.

April.3, 1982 .

131

132

APPENDIX 3 - EXPRESSIONS

. RESQ expressions correspond to those of programming languages, with essentially the
same rules as languages such as PL/I, Pascal and Fortran (but not APL). Section A3.5
discusses RESQ expressions largely from the point of view of expression executiQn. It is
intended to be informal; a more. formal definition of RESQ expressions is given in the
grammar in Appendix 4. Except for expressions used in routing predicates, any expression in
RESQ must be such that it can be evaluated to a scalar numeric value, a vector pfnumeric
values or a matrix of numeric values. Section A3.6 discusses expressions for· routing predi­
cates.

"Simulation dependent" expressions are those that depend on job variables, chain
variables, global variables, distribution keywords (Section A3.1), the USER fUnction (Section
A3.2), status functions (Section A3.3) or the PRINT function (Section A3.4). Except where
otherwise noted, simulation dependent expressions may be used anywhere in the definition of
a .simulation model. Expressions which are not simulation dependent are "simulation inde­
pendent." Only simulation independent expressions may be used.in numerically solved models.

A3.I.Distribution Functions

When one has' little information about random values other than mean values, then it is
reasonable to arbitrarily assume that the random values have a distribution which is completely
specified by the mean, e.g., the (negative) exponential distribution. However, when one has
more information, then one would usually like to have a representation which includes that
information. For example, if one knows standard deviations, then one would like to include
standard deviations ina model. RESQ provides a standardized distribution form which is
completely specified by the mean and coefficient of variation and which is expedient for
simulation .and confidence interval estimation. (The coefficient of varh:ttion is ·defined as the
standard deviation divided by the mean.) TheRESQ STANDARD distribution will often be
sufficient. However, if the user has additional information then the user may wish to try to fit
the distribution more precisely. The DISCRETE distribution provides one mechanism for
doing this, i.e., the user supplies RESQ with a table of values and associated probabilities. If
the discrete distribution is not appropriate or convenient; then one of the more detailed
continuous forms provided by RESQ, the BE (Branching Erlang) or the UNIFORM, may be
appropriate. Other distributions are indirectly available, and we will give. examples of how
indirect definition of distributions may be accomplished. If none of these options are satisfac­
tory for a particular model, the user has the option of defining a PL/I procedure to provide
distribution values. This can be done with the USER function described in Section A3.2.

We next describe the full generality of the BE and UNIFORM distributions provided by
RESQ. We then discuss the RE~Q STANDARD distribution and how theBE and UNIFORM
distributions are used in defining this form. We then discuss the DISCRETE distribution in
more detail and discuss the indirect definition of distributions. .

A3.1.1. BE (Branching Erlang)Distribution

A number of distribution forms can be grouped together as representatives of the method
of exponential stages. Perhaps the best known of these are the Erlang distribution, the
hypoexponential distribution and the hyperexponential distribution. The branching Erlang
distribution is less well known but includes all three of the above distributions and many other
distributions as special cases. (The branching ErIang form was originally proposed by Cox.
He showed that by using the artifice of complex "probabilities" and holding "times" that the
branching Erlang form can be used to represent arbitrary distributions with rational Laplace

April 3, 1982 .

'. .. .' ..

API>. '3. t.l' I BE (Branchin,g Erlang) Distribution

transf~rms; Of course; one cannot simulate comp,lexi'protiabiHties" or holding "times."rb.~
branching Erlarig form .is quite general without theiIse of complex values.)' FigureA3.1
illustrates thepranchingErlang form~ "

TheBEdistritilltion may be thought of as consisting orK eXJ?oneritiM stages (\\Thielf ate
.'. representeqby circles in the figure). Stage;,i =l, .. "K,has a mean (exponentialtime)111i

and a; "bran(!hing" probability (to be describeq shortly) Pi' A'. sample from the , distribution
. consists of the sumof(indeperiq~nt) samples .from stages 1 .. to k where kis betweenJ and K .

and selected by the following rule: With probability Pl' kis chosento be 1 ,with probability (1 .
-"-pi>Pz,kis .chosen to pe 2, .. ; andwith.l)robability (1 - Pl)(l ,~p2)~ .. (1""'PK~I); kis
chosen to be K.. In, other words, Pi is the probability. of branching past the stages attersiage i; "
Note thatPK is identically 1, The mean,M,of the BE distribution is.giv'en by" .

. . K . k

M =,:LO ~ Pl)(l- P2)···(l ,.... Pk-'-l)Pk"'Zmi , (A3.1)
,«:=1 i;"1

and the. eoefficie~t ofvariation;C ,is given bY' ..

V.·.··,',f.(1~PI,)(1~P2).H(1-Pk{1)Pk[,' .. ,±,m7+(± mi). 2,] ~ M,2
C ==' . ,k=1 , " ' '1=1 1=1" ' '.

,M
(A3.2)

TheBE distributiorltedl1c~s totheexponenti~l distribution if wes~tPI toland~l.ti:>M
when~ M is the ,mean, of the distribution. The BE., distribution reduces.to the Erlang distribll~'

,tionif we set Pi to zei:o for all i ,dthe.r than. Kand set mito' M / K. " Thehypoexponential"
"distribution is a. generalization of the Erlang distribution which does' not requireequali.ty of. the ,
stag~llH~ans {mJ. A2stagehyp.ere,xPorient~al distril:Jllti()n ,.can be thought of asachoic~ of an
exponentw,l distribution with inean" ml with probability qand a choice' of ' an e~ponentiaL '
distributi6nwithmean m20therwise.Withoutlosf ofgeneraliiy we ,may assume m1< m2' ' "
Then" theBEdistriblltionwith2stagesandthe corresponding stage means is equivalen~ to the
hyperexPoli~ntiarifwe set,pi to~ +(1 ~ q)mdfrlz.(Note that if Vfewi~h~?have tpe
, Classical' represen, ta ti on ,of hyperex:poneiltialsetvice times' at a'q ilene. w e ·~ah· accompllsh this. by,.
having two classes witl)., eXP9i1eiithli distributiori,swithmtmns m land m2 and routing' a jobt()
the firstdasswith probabiHtyq. and' to, the sec,ond class otherwise.)' .

, : In lU~S;QtheI3Edistr.ibutionis represented by, the keyword, ,ibE,' folio~ed byapareri- ,",
, thesized lislo(pairs of stage means andpropabilitieswhere" the pairs are' separateq .by

" .,,' ':, :'11 'II '., " . , " .. ,",,' ,," , '
seml-cQion,s(;,), Le' 1 '

, "bE(m 1 ;P! •. ; .;mK'p Kh

, (W~,l1)ak~i'E"ll~per case in deference tbEilang, butthe program does not requirethis. " As
we saidbefol"e;th~re ..isnolntemal distlnctibn' between upper and lower ca:se.)'As istfue
througho).lt'R.ESQ,' cOrnmas(i, ,.") may bereplated lty blariks .

. . ' . . .' . '. . .. ,: " .' ~ .••.• ; •..••.•..•• <iJi7 ..••.)
FlgureA3.1 .; BE (BtarichingEthlng) Oistrib).ltiori

, ApriJ3,198:4

134 EXPRESSIONS lAPP;. 3,

',' The ry:ntaincietof$ection A3.L la,ppliesonly to sirrlUla,tions using th~' reg~nerative '
, tt1ethod.iorcorifjd~nce il1tervals., With the' regenerative lllethod with BE arrival and/or service
time~, it is necessary to ·constder the distribution st~ges itl determining regeneration states, but

"fhis is hidden, from the, qser. 'The, simu:la tion samples the arriva,ldistriblltion a stage,at~' time
so that a tru~ regeneration state can'beQ.et~rltlined. In!itead,of an event for th~completioriof.

, an arriva,ftime, there is an eventf,Or the 'completion of each stage of ali arrival time. A state
, isac;ceptedas a regenenl;tjon state only if. all ~f!:ival times, with the ~E distributj(m are in th~
fitststage. "The~imulationll1usthalidle service tim~s similarly for, classes \.vith nori-zetb

, popula,ti911sinlbe reg~rieraiion state, " BE servicetimes are sampled a ,stage' ~ta time if and
oi:J.ly if the corresponding class has non-zero popl,llation in the regeneration state: ' A state is
accepted asR (f.~generati{)l1 state only' if all servicetim'es in progressWhieh have, the BE

, distribution are in the first stage> ' , '

AJ.l;2,. UNIFORM Distribution

The ch1ssical unifprm distribution is one with uniform: (positive) probability density over
an interval (l, u) and zer{) density elsewhere." The uniform distdbuHon provided byRESQis a
g~tJ:era1ization of theclass~cal form in that it aJlows s~veral il1tervals instead of j~st one. ' (Note
that we choose, to exclude' the il1terval end points in ,ourdefinltion Of the classical uniform
distribution.Simil~rly, our generalization-of the classical form excludes the interval end
points.) See FigureA3.2. ' , '

Each interval i, i;:::: 1, ... ,N, is specified as a, triple: It, li j and Pi' 'representing the lower
, boun,d, the upper~ound and th~ probability of the interval" respe,ctively. (The probability of

ari i!1terval is its width times its density.) The RESQsynta~ is' '

, , ' . .' "

,Forex~mple; the cb:u:lsical uniform distribution would be specified as

uniform(l,u,l)

The mean of the,>classip~l uniform distribution is given by

M= l+u
2

and the coefficient of variation is

u, - 1 c= --=-..,..:-~
(l + u)v'I·

Alternatively, if we are given the mean andcoeffh::ient of variation,

DENSITY

1

Figure A3;2 - UNIFORM Density Function

;\pril3, 1982

.:=;.

APP; 3.1.2/ UNIFORM Distribution 135

u=MO + C/3)
and

I"" 2M -' u.

A3.1.3. STANDARD Distribution

In many circumstances one is satisfied by specifying a distribution by mean and coeffi­
cieptofvariation. RESQ include~a pragmatically chosen collection of distributions so
specified. The syntax is

," ,

standard(M,C).

The distribution used will have mean M and coefficient of variationC where the specific form
is chosen according to the value of C. If C = 0, then the COllstant value M is used. If 0 < C
< .5, then the classical uniform form is used. If~5 :5 C < 1, then the BE distribution is used
with .

K = ceil(C-·2),

r-'-"--'---
2KC2 + K--2--·,1 1(2+4_4KC2

PI = -------.--.-------
(I(- 1)2(C,2 + 1)

(A3.3)

and

ml= .•. =mf(= M/(K - PI(K-l).

Here "ceil"is the ceiling function, ie., it returns the next larger integer if its argument is not
an integer, an,d, ~ turns it~rgument otherwise. Note that this results in the Erlang, distribution,
for C = .5, Y 3. andy 2. If C= 1 the exponential distribution is used and if C > 1 the
hyperexponential distribution specified is used with K = 2,

(A3:4)

(A3.5)

and

M
m2 = ----=-,;..~;:;:_..:..._==.

I-V 1-1~c2
(A3.6)

The, discontinuity, here, using the classiCal uniform distribution for small coefficient" of
variation and the BE distribution, for larger coefficient of variatiOn, is due to our general
preference for the BE distribution tempered by diecomplltational expense of using theBE for
small coefficient of variation.

April 3, 1982

136 EXPRESSIONS / APP;3

A3.1.4.DISCRETE Dis.tribution

We have already discussed the DISCRETE distribution informally at the beginning of thi~
appendix. The syntax is·

wherePi is the probability of value vi'

In places where a discrete distribution is need~d, e.g .. , for allocate nodes, it may bemore
convenient to use continuous distributions. If a distribution gives a fractional value. for avalu~
required to be an integer, the nearest integer is used. For example, if we ~an,t to specify th~
valuesl to 10 and 91 to 100 with equal probability, it would be more convenient to us~

uniform(.5, 10.5,.5;90.5, 100.5,;5)

than the explicit listing of all of these values with the discrete form. Note .that since the
uniform distribut~on excludes the end points of the intervals, the values 11 and 10 1 will 110t be
produced by the above expression.

A3.1.5. Indirect Definition of Distributions

Where distributions are expected in RESQ dialogues, expressions containing distribution
values may be used. For example, if we wanted the value from an exponential distribution
with mean 10 shifted over 3 units, we could use

3 + standard(1 0, 1).

If we wanted the sum of a uhiform and an exponential value, we could use something like

uniform(O, 10,1) + standard(10, 1).

Expressioris not containing distribution keywords (BE, DISCRETE, STANDARD, UNI­
FORM) are taken to be the means of exponential distributions when such expressions are used
for service times, work demands or arrival times. If we wanted a service time distribution to
be the discrete distribution discussed in Section A3 .1.4, (the values 1 to 10 and 91 to 100 with
equal probability) then we could use

ceil(uniform(0,1O,.5; 90,100,.5»

instead of the expression for this distribution suggested for allocate nodes. This expression
could also be used for an allocate node and might be more clear in its intent than the expres­
sion which depends ort rounding. However, this last expression would be less efficient in
simulation run time than the (}ne previously given. The reason is that the simulation has
special cases for expressions consisting of a single distribution expression and its arguments.
If those arguments are simulation independent, then the arguments are evaluated before
simulation begins and the general expression code is avoided during simulation (for that
e:xpression)~

Expressions containing distributions provide the opportunity to indirectly define distribu­
. tions not directly provided by RESQ. For example, values from a geometric distribution
(starting at one) with mean M can be obtained from the expression

ceil(ln(uniform(O, 1, 1»/ln(1-1 / M»

April 3, 1982

APP . .3.1.5 / Indirect Definition of Distributions 137

where In is the natural logarithm function.

A3.2. The USER Function

The USER function may be used to define distribution functions or other functions not
directly available with RESQ and/or to provide RESQ with data from user defined files, e.g.,
for trace driven simulation. To do so, the user writes a PL/I function (with name USER) to
be called whenever a RESQ expression contains a reference to USER. For example, the user
might have

or

QUEUE:terminalsq
TYPE:is
CLASS LIST:terminals

SERVICE TIMES:user(meantime;tq(memory))

SET NODES:set_leng
ASSIGNMENT LIST:jv(msg_lng)=user(mean_lng(jv(origin)) ;clock)

In the dialogue, the USER function may have any number of arguments provided that at least
one argument is given. These arguments are evaluated before the PL/I function is called and
the values obtained are passed to the function as a vector. In addition to the arguments, four
other values are passed to the PL/I function: (1)a seed to be used in generating random
numbers, assuming the same generator is used as discussed in Section 12.3,(2) a pointer to
the internal data structure used for the job causing the expression to be evaluated, (3) the
internal number of the node causing the expression to be evaluated (the "to node" if this is a
routing decision) and (4) the internal number of the queue (if any) to which that node
belongs. .

Only the function value returned by USER and the seed parameter are examined by the
simulation program after the USER function returns to the calling procedure. The seed
returned must be positive. If the seed returned is nonpositive, the simulation run will termi­
nate with an error message. If the seed returned is different than the one supplied to the
USER function, and the expression is used for service times, work demands or arrival times,
the expression containing the USER function call will be treated as if it contained a RESQ
distribution keyword (BE, DISCRETE, STANDARD, UNIFORM) whether it does or not.

If the user does not supply a USER function, the following version is used:

USER:
PROC(ARGS,SEED,JOB,NODE,QUEUE) RETURNS (FLOAT BIN(53));

DCL
ARGS(*) FLOAT BIN(53),
(SEED,NODE,QUEUE) FIXED BIN(31),

JOB POINTER,
FABORT ENTRY(CHAR(80));

CALL FABORT('USER -- FUNCTION NOT DEFINED OR NOT LOADED');
END;

The function FABORT causes performance measures to be determined as far as possible, then
terminates the simulation with the error message which it received as its argument. At present
there are no functions available to the user to take advantage of the job information. Func-

April 3, 1982

\

138 EXPRESSIONS / APP. 3

tions NODNAM and QUENAM are available to find the unqualified external name of a node
or queue, respectively,

DCL
NODNAM ENTRY(FIXED BIN(31)) RETURNS (CHAR(22) VARYING),
QUENAM ENTRY(FIXED BIN(31)) RETURNS (CHAR(10) VARYING);

Functions NDQUAL and QUQUAL are available to find the qualification (names of invoca­
tions) of a node or queue, respectively,

DCL
NDQUAL ENTRY(FIXED BIN(31)) RETURNS (CHAR(240) VARYING),
QUQUAL ENTRY(FIXED BIN(31)) RETURNS (CHAR(240) VARYING);

After the USER PL/I function has been written, it should be compiled using the PL/I
optimizing compiler, to produce a file USER TEXT. Then either the EVALT command
(Section 13.2) or PL/I embedding (Section 14) should be used. The other procedures and
functions we have just described (FABORT, NODNAM, etc.) will be automatically loaded
with either approach.

A3.3. Status Functions

There are five functions which may be used in numeric expressions which indicate current
status of the network. The functions have an argument specifying a node or queue name.
When used in routing predicates, the argument is optional under the circumstances described
with a specific function. These functions are

. SA(queue name) - Servers Available. SA returns the number of servers currently
available at an active queue, i.e., the number not in use. The queue name
and parentheses may be omitted if the function is used in a routing predi­
cate and the corresponding .destination is a class of the queue.

TA(queue name) - Tokens· Available. TA returns the number of tokens currently
available at an passive queue, i.e., the number not in use. The queue name
and parentheses may be omitted if the function is used in a routing predi­
cate and the corresponding destination is an allocate node of the queue.

TH(queue name) - Tokens Held. TH returns the number of tokens of the
specified passive queue held by the job causing the function to be invoked.

QL(node name) - Queue Length. QL returns the current number of jobs
(counting both true jobs and job copies) at a class or an allocate. node.
The node name and parentheses may be omitted if the function is used in a
routing predicate and the corresponding destination is the desired node.

TQ(queue name) - Total Queue. TQ returns the current number of jobs
(counting both true jobs and job copies) at a queue. The queue name and
parentheses may be omitted if the function is used in a routing predicate
and the corresponding destination is a node of the desired queue.

RJ(node name) - Related Jobs. RJ returns the number of jobs related to the job
causing the function to be invoked. If the node name is given, only jobs at
that node are counted. Otherwise all of the job's relatives are counted.

April 3, 1982

APP. 3.3 / Status Functions

(Related jobs are produced by fission nodes. See Section 8.) If the node
name and parentheses are omitted, RJ returns the total number of jobs
related. to the job.

A3.4. The PRINT Function

·139

In addition to the trace capabilities discussed in Section 12.4, the PRINT function may be
'used freely to follow the values of numeric expressions. The PRINT funCtion takes a numeric
expression as its sole argument and returns the value of its argument. Fore:xample, ""emight
use

CREATE NODE LIST:c
NUMBERS OF TOKENS TO CREATE:print(w+1)

or

SET NODES:set_l~n~
ASSIGNMENT LIST:jv(msg,-lng)=print(user(m~an_lng(jv(orig)};clock))

Every time an expression using the PRINT function is evaluated, a lille of the form

PRINT '"'- VALUE: . 1.0100000E+02 ASSOCIATED WITH node

fs prodUced at the at the terminal and in theRQ2PRNT file. If print is used in an expression
for routing predicates or probabilities, the 11 assoCiated with 11 node will be the destination being
considered.

A3.5. Expression Evahiation

An expression is built up of primitive elements called factor.s. A factor may be. an
unsigned number, e.g.,

45.~25· 3.2E-1D 4.356E+20 1.37E+02

(using exactly two digits Jor the exponent, if included) a parenthesized signed factor,e.g.;

(-:: 1)

an identifier or global variable, e.g.,

disk prob (2) chn(1;*) newcyl

a job or chain variable,

jv (3) cv(a_time sc)

a distribution reference, e.g.,

standard (10,2) discrete(1, .5;3, .5) bE(1 ,0; 1 ,1)

a status function call,. e.g .. ;

April 3,1982

140

ta(windowq) th(windowq) ql(class1) rj

a parenthesized expression, e.g.,

(4+2)

a call to the USER defined function, e.g.,

user(ta(windowq) ;4+2;uniform(O,1,1))

a call to the PRINT function, e.g.,

print (.ta (windowq))

or a numeric function call, e.g.,

min (1,2)
abs(beta)

max(3,alpha)
exp(-3)

ceil(10.3)
In (exp (-3))

EXPRESSIONS I APP .. 3

floor(9.99)

These numeric functions are evaluated using the corresponding functions provided by PL/I.

In SETUP and the RQ2COMPfile, numerical values are generally treated as if they were
single precision floating point, i.e., they are usually truncated .to roughly six decimal digits,
even if given more precisely by the User. Global variables, job variables, chain variables and
temporaries used in expression evaluation are maintained as double· precision floating point
during the simulation, i.e., they have roughly 16decimal digits of precision

Factors are combined with mUltiplying operators "*", "I" and "mod" to form terms, e.g~,

1*print(w) alpha mod 2 jv(3)/jv(10)

(MOD is the ;modulo function, performed by the PL/I mod function.) A single factor may
itself be considered a term if it is not to be used in an operation with a multiplying operator.

Terms are combined with adding operators" +" and" -" to form expressions, e.g.,

1*print(w)+5 alpha mod 2+1 5-jv(3)/jv(10)

Note that the multiplying operators are applied first before the adding operators. A single
term may itself be considered an expression if it is not to be used in an operation with a
adding operator. As suggested before, expressions may be parenthesized to force adding
operators to be used before multiplying operators. .

A3.6. Predicates (Boolean Expressions)

Predicates are used in routing definitions (Section 9). A predicate is a Boolean expres:..
sion preceded by "if(" and followed by")". A Boolean expression must evaluate to eitherT
(true) or F (false) .

. The primitive elements of Boolean expressions are called Boolean factors; A Boolean
factor niay be a Boolean constant, e.g.,

T F

April 3, 1982

APP. 3.6 ! Predicates (Boolean Expressions) 141

a relational expression,e.g.,

v<2 j*k<=v print.(w»j*k abs(jv(O).) mod n>=print(w). i=j w,=3.4

. the logical negation of a Boolean factor, e.g.,

not v>3

orapredicate,e.g. ,

if(l<=v and v<=10) ,

Not~ the use of "if" before the parenthesized Boolean expression. The. following is. incorrect:

if ((1 <=v and v<= 10))

Boolean factors are combined. with the logical "and"· operation to form Boolean terms,
. e.g.,

1<=v and v<=10

A Boolean Hictof by itself may be considered a Boolean ~ei'm if it is not to be used in an and
operation.

Boolean terms are combined with the logical "or" operation to form Boolean expressions,
e.g.,

1<=v and v<=10 or ta(windowq)=7

Note that the and is performed before the or. If the. reverse order is desired, the predicate
notation should be used, e.g.,

1<=v and if(v<~10 or ta(windowq) =7)

A Boolean term by itself may be considered a Boolean expression if it is l10t to be used in an
or operation.

Note that all of the above Boolean expressions must be enclosed in "if(" and '~" 'before they
can be used in routing definitions, e.g.,

host->link;if(1<=v and if(v<=10 or ta (windowq) =7))

April 3, 1982

142

APPENDIX 4 ~ BNF GRAMMAR

The following is a BNF grammar for the dialogue file language for RESQ. This grammar .
also applies to the interactive dialogue mode, but the interactive processor has additippal •.
restrictions, i.e., it excludes some portions of the grammar. In other words, this grammar
shows some portions of the language which are accepted in dialogue files but are nQt present
in interactive dialogue.

The non-:-terminal symbols are enclosed in angular brackets (" <" ," >"). The following
metasymbols are used: "::=" "I" 'T' I']"~ "{" "}" The square brackets and braces are
extensions. to the BNF notation to allow factoring and iteration, respectively. Strings in the
braces may be. iterated zero or more times, i.e., they need not appear at all. Two special
non-terminals are used, <eol> for "end of line," and <empty> for the null string. A "line"
will normally consist of one input record, but the special symbol "+ +" may be used to
indicate concatenation, as discussed in Section 2. Wherever commas (",") are used as
separators, one or more blanks may be used as well as or instead of a comma. .

As usual, the grammar does not completely specifiy the syntax of the language. Cettain
sentences produced by this grammar are semantically invalid and must be rejected by the
SETUP. These semantic restrictions are informally described in Sections 3-12.

Since· this grammar is oriented toward dialogue files, a major omission has been made.
Lines. of the form n <prompt> : <eol> "are allowed in dialogue files where they would occur
in interactive dialogue, but are left out of the grammar. This grammar also ignores the special
queue types PCFS, PS, IS, etc. Many lines shown as required in this grammar are actually
optional. As discussed in Appendix 2, singular forms of keywords may be . substituted for
plural forms when the singular form is not a separate keyword.

<model> ::=
MODEL: <ident> <eol>
METHOD: [NUMERICAL I SIMULATION] <eol>
<numeric _param _ dcl>
<dist _param _del>
<numeric _ ident_ del>
< dist_ident_dcl >
<:global..:-var_ del>
<elem _ array_del>
< max_var_del >
<queue type del> -. -
<queue_definitions>
<set definitions>
<split definitions>
<fission_definitions>
<fusion_definitions>
<dummy_definitions>
·<network _temp_del>
<network_temp_invocations>
< chain_definitions>
<method _ dep _ defs _1 >
<method dep defs 2>
<method = dep= defs _ 3 >
END <eol>

<ident> ::= <letter> { <letter> I <digit> I $ I }

April 3, 1982

. .;

APP. 4 / BNF GRAMMAR

<letter> :: = A I B I ... I Z

<digit> ::= 0 I 1 I ... I 9

<expr> ::= <term> { <addop> <term> }

<term> ::= <factor> { <mulop> <factor> }

<factor> ::=
<ident> I <array . ident> I <number> I (<expr>)1 < sim:..,.jcn_call > T <fcn_call> I <dist> I (<sign> <factor>)

<array_ident> ::=
<ident> (<subscript_expr> { ; <subscript_expr> })

<subscript expr> ::=
<expr> I * ,/

<number> :: =
[<integer> I <integer>. <integer> I . <integer> I <integer> .]
[E <sign> <integer> <integer> I <empty>]

<integer> ::= <digit> { <digit> }

<sim fcn call> ::=
TA I TA «queue name» I
SA I SA (<queue_name» I
TQ I TQ «queue name» I
QL I QL (<node -name>) I
TH I TH (<queu;- name»I
RJ I RJ (<node_name>)

<invoc_ident> ::= <ident> [(<expr>) I <empty>]

<fcn-,-call> ::= <fcn_ident>(<expr> { , <expr> })

<fcn_ident> ::= MIN I MAX I CEIL I FLOOR I ABS I PRINT I EXP I LN

<sign> ::= + I -

<mulop> ::= * I / I MOD

<addop> ::= + I -

<dist> ::=
[STANDARD I BEl UNIFORM I DISCRETE]

(<expr> { [, I ;] <expr> })

<numeric param del> ::=
{NUMERIC PARAMETERS: <id_or_arr_id> { ,<id_or_arr_id> } <eol> }

April 3, 1982

143

144 BNF GRAMMAR / APP.4

<distJ~ram_del> ::=
{ DISTRIBUTION PARAMETERS: <id or arr id> { ,<id or arr id>}

<eol> } - - - - - -

<numeric ident del> ::=
{ NUMERIC IDENTIFIERS: <id_or_arr_id> { ,<id or_arr_id> 1 <eol>
<id . or arr id>: <expr> { , <expr> } <eol> }
{ <id_or_arr_id> : <expr> { , <expr> } <eol> } }

<dist ident del>:: =
{DISTRIBUTION IDENTIFIERS: <id_or_arr_id> { , <id_or_arr---:id> } <eol>
<id orarr id>: <expr> { , <expr> } <eol> }
{ <id_or_arr_id> : <expr> { , <expr> } <eol> } }

<global var del> ::=
{ GLOBAL VARIABLES: <id_or_arr_id>
{ ,<id or art id>} <eol>
<id Or au id>: <expr> { ,<expr> } <eol> }
{ <id_or.:.-arr_id> : <expr> { , <expr> } <eol> } }

<elem array del>:: =
{ CHAIN ARRA YS: <~may _ident> { , <array _ident> } <eol> }
{ NODE ARRAYS: <array_ident> { , <array_ident> } <eol> }

<max var del>:: =
[MAXJV: <expr> <eol> I <empty>]
[MAX CV: <expr> <eol> I <empty>]

<queue type del>:: =
. { <queue -type def>}
[QUEUE TYPE~<eol> I <empty>]

<queue_type _ def> :: =
QUEUE TYPE: <ident> <eol>
<numeric~_param _del>
<dist param del>
<node _par am _del>
<queue body>
END OF QUEUE TYPE <ident> <eol>

<:node_param_dcl> ::=
{ NODE PARAMETERS: <id_or arr id> { ,<id or arr id>} <eol> }

<chain param del> ::=
CHAIN pARAMETERS: <id or arr id> { ,<id or arr id>} <eol>
{CHAIN PARAMETERS: <id_or_arr_id> {, <id_or_arr_id> <eol> }

<queue_definitions> ::= <queue_definition> { <queue __ definition> }

<queue definition>:: = QUEUE: <ident> <eol>
[<queue_body> I TYPE: <ident> <eol> <queue_type_invocation_params>
I TYPE: <ident> : [<expr> I <ident> I <array _ident>]

April 3, 1982

~ ..

APP; 4 / .BNP·GRAMMAR 145

{;[<expr> .1 <ident> I <array_ident>]} <eol>]

<queue. type invocation params> ::=
<id~or_arr_id> : C<:expr> I <string> I <ident> I <~trray ident>] <eol>
{ <id_or_arr_id> : [<expr> J <string> I <ident> I <array_ident>] <eat>}

<queue_body> ::= <active_<Jueue_body> I <passive_queue body>

<active...:-queue_body> ::=
TYPE: ACTIVE <eo}>
SERVERS: <expr> <eo}>
DSPL:[PCPS I PRTYPR I LCPS I PS I SRTP I LRTP I PRTY] <eol>
[PREEMPT DIST:<expr><eot> I <empty>]
CLASS LIST: <id_or_arr_id> { , <id_or...:-arr-.,;id> } <eo}>
WORK DEMANDS: <expr> { , <expr> } <eol> .
[PRIORITIES: <expr> { , <expr> } <eo}> I <empty>]
{ CLASS LIST: <id or ·arr id> { ,<id or arr id>} <eo}>
WORK DEMANDS: <expr> T: <expr> } <eol> -
[PRIORITIES: <expi> { , <expr> } <eol> I <empty>]}
<server_def> { , <server_def> } .

<server_def>::=
SERVER- <eo}>
RATES: <expr> { , <expr> } <eat>
{ RATES: <expr> { , <expr> } <eo}> }

'[{ ACCEPTS: <id or arr id> { ,<id or arr id>} <eat> }
I ACCEPTS: ALL <eol>] - - - -

<passive_queue _body> :: =
TYPE: PASSIVE < eol>
TOKENS: <expr> <eol>
DSPL: [PCPS I PP I PRTY I PRTYPR] <eo}>
[PREEMPT DIST: <expr> <eat> I <empty> 1
{ ALLOCATE NODE LIST: <id_or_arr_id> { , <id_or_arr_id> } <eol>

<trans alloc creat body>}
{ AND ALLOCATE NODE LIST: <id or. array id> { ,<id or. arr. id> }

<eol> <transalloc creat body>}- - - - - .
{ OR ALLOCATENODELIST:<id_or_arr_id> {, <id_or_arr_id> } <eol>

<trans alloc. creat body>} .
{ TRANSFER NODE LIST: <id . or arr id> { ,<id or arr id>} <eo}>

<trans alloc treat body>} -,-- - - -
{J1ELEASENODELIST:<:id or arr id> { ,<id or arr id>} <eol> }
{ DESTROY NODE LIST: <id-or- arr- id>' { , <id-0;- arr- id> } <eol>}
{ CREATE NODE LIST: <id 'Or --;rr id> {, <id 'Or. --arr W> } <eat>

<trans_alloc_creat_body>} -- - -

<trans alloc. creat body>:: =
NUMBERS OP TOKENS TO [ALLOCATE I CREATE I TRANS PER] :

<expr> { , <expr> } <eot>
[PRIORITIES: <expr> { , <expr> } <eo}> <empty>]

. <set . definitions> :: ==
{SET NODES: <id or arr id> {, <id or. arr id>} <eo}>
ASSIGNMENT LIST: <id_or.;......arr_id> = <expr>-

April 3, 1982

146 BNF GRAMMAR i APP. 4

<split_definitions> ::=
{ SPLIT NODES: <id_or_arr_id> { , <id_or_arr_id> } <eol> }

<fission_definitions> ::=
{ FISSION NODES: < id_or_arr_id > { , <id_or_arr_id> } <eol>}

<fu~ion definitions>:: =
{ FUSION NODES: <id_or_arr_id> { , <id_or_arr_id> } <eol> }

<dummy definitions> ::=
{ DUMMY NODES: <id_or_arr_id> { , <id_or_arr_id> } <eol> }

<network_template> ::=
SUBMODEL: <ident> <eol>
< numeric _param _ del>
< dist _param -'-dcl>
<node_param_del>
<chain _param _del>
<numeric ident del>
<dist_ident_ dcI>
<global_var_dcI>
< elem_array_del >
<queue_definitions>
<set definitions>
<split_ definitions>
<fission_definitions>
<fusion_definitions>
< dummy_definitions>
<network_temp _ dcI>
<network_temp _ invocations>
< chain_definitions>
END <eol>

<network temp invocation> ::=
INVOCATION: <id or arr id> <eol>
[TYPE: <submodel-ident> ~ <expr> I <ident> I array id>]

{ ; [<expr> I <ident> I <array _id>]} <eol> .-
·1 TYPE: <submodel_ident> <eol> ..

<id .or arr id>: <expr> <eol>
{ <id_or_arr_id> : <expr> <eoi> }

<chain_definitions> ::= { <routing_chain> }

<routing chain>:: =
CHAIN: <id or arr id> <eol>
TYPE: [OPEN ICLOSED I EXTERNAL] <eol>
[INPUT: <id or arr id>. <eol> I <empty>]
[OUTPUT: <id_or_arr_id> <eol> I <empty>]

April 3,1982

. ~.

APP. 4 / BNF GRAMMAR

[<source_definition> I POPULATION: <expr> I <empty>]
{ : <routing_transition> <eo!> }

<source_definition> ::=
SOURCE LIST: <id or arr id> { ,<id or arr id>} <eol>
ARRIVAL TIMES: <expr> { , <expr>} - - -

<routing_transition> :: =
<from_part> -> <to_part> { -> <toJart> }

<to:"':"part>::=
<node_name> { , <node_name> } ; <control_part> .

<control_part> ::=
FISSION I SPLIT I
[<expr>1 <predicate>]{, [<expr> I <predicate>]}

<predicate> ::= IF (<Boolean_term> { OR <Boolean_term> })

<Boolean_term> ::= <Booleari_factor> {AND <Boolean_factor> } .

<Boolean_factor> ::=
. <Boolean_constant> I <expr> <relop> <expr>

I <predicate> I NOT <Boolean_factor>

<Boolean ___ constant> ::= T I F

<relop> ::== I .,= I < I <= I > I >=

<method dep defs 1>:: =
{ QUEUESFORQUEUEING TIME DIST: <queue_name> { , <queue-,-name> }

<eol>
VALUES: <expr> { , <expr> } <eol>
{ VALUES: <expr> { , <expr> } <eol> } }
{ QUEUES FOR QUEUE LENGTH DIST: <queue_name> {, <queue_name> }

<eol>
MAX VALUE: <expr> <eol>
{ MAX VALUE: <expr> <eol> } }
{ QUEUES FOR TOKEN USE DIST: <queue_name> { , <queue_name> } <eol>
MAX VALUE: <expr> <eol>
{ MAX VALUE: <expr> <eol> } }

147

{ QUEUES FOR TOTAL TOKEN DIST: <queue_name> { , <queue_name> } <:eol>
MAX VALUE: <expr> <eol> .
{ MAX VALUE: <expr> <eol> } }
{ NODES FOR QUEUEING TIME DIST: <node name> { ,<node name> } <eol>
VALUES: <expr> { , <expr> } <eol> -. -
{ VALUES: <expr> { , <expr> } <eol> } }
. { NODES FOR QUEUE LENGTH DIST: <node_name> { , <node_name> } <eol>
MAX VALUE: <expr> <eol>
{ MAX VALUE: <expr> <eol> } }.

April 3, 1982

148 BNF GRAMMAR / APP, 4

<method dep defs 2> ::=
. CONFIDENCE INTERVAL METHOD: [NONE I REGENERATIVE I SPECTRAL

I REPLICATIONS] <eol>
[INITIAL I REGENERATION] STATE DEFINITION- <eol>
{ CHAIN: <id_or_arr_id> <eol>
NODE LIST: <node_name> { , <node~name> } <eol>
REGEN POP: <expr> { , <expr> } <eol>
INIT POP: <expr> { , <expr> } <eol> }
CONFIDENCE LEVEL: <expr> <eol>
[NUMBERS OF REPLICATIONS: <expr> <eol>
I SEQUENTIAL STOPPING RULE: [NO I YES] <eol>

{ QUEUES TO BE CHECKED: <queue name> { ,<queue name>} <eol>
MEASURES: [QT I QTD I QL I QLDI TU I TUD I TTl" TTD I TP I UT 1
{ [QT I QTD I QL I QLD I TU I TUD I TT I TTS I TP I UT [} <eol>
ALLOWED WIDTHS: <number> { , <number> } <eol>
EXTRA SAMPLING PERIODS: <integer> <eol> }

SEQUENTIAL STOPPING RULE: [NO I YES] <eol>
{ CONFIDENCE INTERVAL QUEUES: <queue name> { , <queue name>}
<eol> MEASURES: [QT I QTD] { , [QT I QTD] } <eol> - .
ALLOWED WIDTHS: <number> { , <number> } <eo1> }
{ CONFIDENCE INTERVAL NODES: <node name> { ,<node name>}
<eol> MEASURES: [QT I QTD] { , [QT I QTD] } <eol> -
ALLOWED WIDTHS: <number> { , <number> } <eol>
EXTRA SAMPLING PERIODS: <integer> <eol> }

INITIAL PORTION DISCARDED: <expr> <eol> }
[SAMPLING PERIOD GUIDELINES- <eol> I RUN GUIDELINES- <eol>
I REPLIC LIMITS- <eol> I RUN LIMITS- <eol>]
I INITIAL PERIOD LIMITS- <eol>]
SIMULATED TIME: <expr> <eol>
CYCLES: <expr> <eol>
EVENTS: <expr> <eol>
QUEUES FOR DEPARTURE COUNTS: <queue_name> { , <queue_name> } <eol> .
DEPARTURES: <expr> { , <expr> } <eol>
NODES FOR DEPARTURE COUNTS: <queue_name> { , <queue_name> J <eol>
DEPARTURES: <expr> { , <expr> } <eol>
LIMIT - CP SECONDS: <expr> <eol>
SEED: <expr> <eol>

<method dep defs 3> ::=
TRACE: (NO I YES] <eol>
INITIALL YON: [NO I YES] <eol>
TURN TRACE ON~ <eo1>
SIMULATED TIME: <expr> <eo1>
CYCLES: <expr> <eol>
EVENTS: <expr> <eol>
QUEUES FOR DEPARTURE COUNTS: <queue_name> { , <queue_name>} <eol>
DEPARTURES: <expr> { , <expr> } <eo1>
NOPES FOR DEPARTURE COUNTS: <queue_name> { , <queue_name> } <eol>
DEPARTURES: <expr> { , <expr> } <eol>
TURN TRACE OFF- <eol>
SIMULATED TIME: <expr> <eol>
CYCLES: <expr> <eol>
EVENTS: <expr> <eol>
QUEUES FOR DEPARTURE COUNTS: <queue_name> { , <queue_name> } <eol>

April 3, 198.2

.,,:

APP. 4 / BNF GRAMMAR 149

DEPARTURES: <expr> { , <expr> } <eat>
NODES FOR DEPARTURE COUNTS: <queue_name> { , <queue_name> }.<eot>
DEPARTURES: <expr> { , <expr> 1 <eat>
JOB MOVEMEN'r: [YES I NO] <eat>
[QUEUES: [YES I NO] <eol>
I QUEUES:. <queue_name> { , <queue~name> } <eol>

{QUEUES: <queue_mime> { , <queue_name> } <eot> }
EVENT HANDLING: [YES I NO] <eat>
EVENT LIST: [YES I NO] <eol>
SNAPSHOTS: [YES I NO] <eat>

April 3, 1982

150

APPENDIX 5 - SETUP ERRORl\1ESSAGES ..

In addition to displaying error messages on the terminal, SETUP produ,cesfile RQ2LIST
which contains the same error messages which were displayed at the terminaL:eacherror
message is listed immediately following the statement which caused the error. (Erroneous
lines given in interactive mode, and resulting error messages, will not appear in the dialogu~ or
listing files) The error messages from SETUP, followed by an explanation, are described
below (in alphabetical order).

HAS TOO MANY DIGITS

RESQ constants must have less than 11 digits. All but the first 10 digits
will be ignored.

IS AN IMPROPER CHAIN IDENTIFIER IN THIS SUBMODEL

The displayed identifier is either not a chain identifier or is anchaiti array
which has already been defined in this (sub)modeL

A LIST IN THIS LINE HAS TOO MANY ELEMENTS, BREAK IT'

There are too many identifiers or expressions in the list. This -problem dm
generally be circumvented by repeating the. prompt and splitting the ele­
ments in the list among the repeated prompts.

ACTUAL NODE PARAMETER MISSING OR IN ERROR

Du,ring the invocation of a queue type, a formal node parameter of the
queue type. has been matched with an invalid node identifier.

ALL CLASSES IN A FCFS Q MUST HAVE SAME WDD WITH NUMERICAL SOLUTION

Only a single scalar expression can be given for the work demands of a
FCFS queue in a model solved numerically. See Section 11 for other
restrictions for numerical solutions.

ALL FORMAL PARAMETERS NOT MATCHED TO ACTUAL PARAMETERS

All the parameters of a queue type or submodel were not given a value in
the invocation. . '

ALL NODES IN ACCEPTS LIST MUST BE TEMPLATE PARAMETERS

The classes listed in the ACCEPTS list of a server definition of a queue
type must be parameters of the queue type.

ALL NODES IN CLASS LIST MUST BE QUEUE TEMPLATE PARAMETERS

All identifiers appearing in a CLASS LIST statement within a queue type
must be node parameters of the queue type.

AN IDENTIFIER WITH RUNNING DIMENSIONS MUST BE ONLY ELEMENT IN LIST

April 3, 1982

APP. 5 / SETUP ERROR MESSAGES

Typically,an identifier with running dimensions is to be matched to a
second identifier with running dimensions and thus must be the only .ele-
ment in the list a values matched to the second identifier. .

ANALYSIS HAS BEEN SUSPENDED STARTING FROM THIS POINT

SETUP has detected an error which has forced the analysis to temporarily
be suspended. SETUP will continue the analysis of the model as soon as
possible.

ARRIVAL TIME DISTRIBUTION MISSING OR IN ERROR

The arrival statistics of source nodes in open chains must be declared.

AT LEAST ONE CHAIN PARAMETER REQUIRED IN SUBMODEL DEFINITION

All submodels must have one or more chain parameters.

AVAILABLE MEASURES ARE UT, TP, QL, QLD, QT, QTD, TU, TUD, TT, TTD

These are the only measures that can appear in the statement that begins
MEASURES:.

CHAIN TYPE CAN BE OPEN, CLOSED OR EXTERNAL (SUBMODELS)

Incorrect CHAIN TYPE: speCified. External chains are legal only within a
submodeldefinition.

CHAIN TYPE DCL MISSING OR IN ERROR

After a chain identifier is declared, there must be a statement beginning
TYPE: , which declares the chain as open, closed or external.

COLON MISSING AFTER IDENTIFIER NAME

The syntax for assigning a value to an identifier is an identifier name
followed by a colon followed by an expression.

COLON MISSING AFTER INCLUDE

The correct syntax is INCLUDE: followed by a file name. See Section 2.

COLON MISSING IN MODEL NAME DECLARATION

Correct syntax is MODEL: followed by the model name.

COMMENT TERMINATOR MISSING

A comment may not span multiple lines. Every comment must begin (/*)
and end (* /) on the same line. Long comments can be included by consec­
utive comment lines.

DCL FOR EVENT HANDLING: YES OR NO, IS IN ERROR

April 3, 1982

151

152 SETUP ERROR MESSAGES / APP. 5

This is one of the trace options.

DCL FOR EVENT LIST: YES OR NO, IS IN ERROR

This is one of the trace options.

DCL FOR JOB MOVEMENT ON OR OFF IS IN ERROR

This is one of the trace options. The syntax is JOB MOVEMENT: YES or
NO.

DCL FOR QUEUES: YES, NO OR LIST IS IN ERROR

This is one of the trace options. The syntax is QUEUES: YES or NO ora
list of queues.

DCL FOR SNAPSHOT: YES OR NO, IS IN ERROR

This is one of the trace options.

DECLARATION OF QUEUEING DISCIPLINE MISSING OR IN ERROR

All active queue definitions must have a statement which begins TYPE: in
order to specify the queueing discipline at the active queue.

DECLARATION FOR TRACE INITIALLY ON OR OFF IS MISSING

This is one of the trace options and must be given when requesting trace
output. The syntax is INITIALLY ON: YES or NO.

DECLARED DIMENSIONS OF IDENTIFIERS CANNOT BE RUNNING

The declared dimensions of identifiers and variables cannot contain an
asterisk.

DEPARTURE COUNTS DECLARATION MISSING

Departure counts must be given for the queues specified.

DIMENSION. FOR ... ARE UNDEFINED QUANTITIES

The dimension size for the displayed identifier contains an unknown identi­
fier.

DIMENSIONALITY OF PARAMETER EXCEEDS MAXIMUM NUMBER ALLOWED

Numeric and distribution parameters can have up to 2 dimensions; node
and chain parameters can have up to 1 dimension.

DIMENSIONS OF ACTUAL AND FORMAL PARAMETERS DO NOT AGREE

The dimensions of a submodel or queue template parameter do not agree
with the dimensions of the expression which it is being assigned.

April 3, 1982

APP. 5 I SETUP ERROR MESSAGES
" " . ,I,,' '. ','" ," .. ,.

. ' .
DI'MENSIONSOFACTUALP~RAMETER MUST B.E RUNNING (>I\)

The v~lue assign~d to a formal parameter that is an ~rraymust be an
·identifieroranexpressioDwith the same number of running ciim,ensions.

ELElMENT (S) .INCLASS AND VALUE LIST DISAGREE IN DIMENSIONS

Identifiets in the class list with nmning dimensiQns(*) must be matched
with a value expression with at most one mnlling dimension. .

ENP OF' FILE NOT REACHED. REMAINING LINES NOTPARS1W

SETUP has processed the END statement for the model and considers the
model complete. 'AU lipesafter the END state.ment are not consid~red p~rt
of the model. .' . . .

END'OF QUEUE TYPE STATEMENT M'ISSINGOR IN ERROR
. .

The body of a queue type must be tetminated by the s~atement END ,OF
QUEUE TYPE "queue type name". .

END: OF SUB.MODEL STATEMENT MISSING OR IN ERROR

, The statement END OF SUBMODEL "sublllodel name" must appear at the
end of every submodel.

ERROR DETECTED IN NODE DEFINITION

ERROR DETECTED IN QUEUE DEFINITION

ERROR IN VALUE EXPRESSION FOR PARAMETER

i\.riincorr~ct 'expression has been given for the value ofa qUeue template
formal parameter~ .

EXPRESSION .TABLE OVERFLOW.· 'COMPILATION SUSPENDED. EXPRESSION OR

, . ELEMENT VECTOR TABLE OVERFLOWS SIZE OF ••.

SETUP has exhausted' the available entries in'one of its internal table!>;
The ~urrent size of the exp:ression table or element ve~tor table which has .'
overflowed is, givenby(. .•). The problem can be rectified by incre~sing
the values' of 'EXPSIZand ELVSIZ in the file SETUPD RQ2DAT~ See,
SectioIl2.4 for a description ofthe SETUPD RQ2DAT file. '

EXTERNAL tHAINSMUSTElEDCL AS SUBMODEL PARAMETERS

.The identifier given as a chain identifier for an external chain in a submodel,
must be a chain parameter of the sub model.

FCFS QMUST HAVE EXPONEiNTIAL WORK DEMANDS WITH NUMERICA'LSOLUTIONS

Only a sIngle s~aIar arithmetic expression can be . given 'as for the work'
demaildsof a'n. FCFS queue in a model solved numericaJly. . See Section 11
. for other: restrictions for numerical solutions.

Apr~l 3, 19S2

153

. I
!

154 SETUP ERROR MESSAGES /APP.:S .

FUSION/SPLIT NODES A~D PREDICATESNO,;[, ALLOWED IN NUMERICAt SOLUTION
, . . .

The routingspecificatiQn finist use prob~bilities(betweeri 0 and 1) when: a,
mo4eIissolved numerically. See Section 11 for further restrictions for,
numerical' solutions.

IDENTIFIER ... IS IMPROPERLY DEFINED

The'specifiednatrleisnota valid chain, node or queuenaine.

IDENTIEIER NOT A STRING PARAMETER OF THIS QUEUE TEMPLATE

In' order fotan identifier to specify the queueing discipline ofa queue type,
the identifier.mus! bea string parameter of the queue type. .,

IOENTIFIER NOTsVrTABLE AS A VALID QUEUEING DISCIPLINE'

The identifi~[is not 'a string parameter of the submodel ot q:u~ue type.

I~LEGAL ARGUMENT (S) IN FUNCTION CALL

Either an incorrect expression of an incorrect number of ex'pressions are
contained between the parentheses following the function name;

IMPLICIT DUMMY NODES INVALID AS r/o NODES WITH NUMERICALSOLUT'ION

Input andoutPllt nodes of an exterrial chain must be previously defined
Classes of the submQdel ina model with numerical solution. See Section 11

. further restrictions for numerical solutions.

IMPROPER IDENTIFIER FOUND IN IDENTIFIER LIST

See Appendix 2 for discussion of legal RESQ names.

IMPROpER TYPE OF IDENTIFIER USED IN ARITHMETIC EXPRESSION

Only numeric identifiers can be used in all expressions. There' are' restric­
tionson the use·of distribution; job, chain and globaljdentifiers; . '

INCLUDE FILE NOT FOUND OR HAS INCORRECT RECORD FORMAT

Th~ file to be included, with a file type of RQ2INP was not found on any
accessed disk nor was found to be a member of any GLbBAL maclib. An
included file must have fixed length records of length 80. See section 2 for

, a discussion of the INCLUDE statement.

INCORR.ECT ARITHMETIC EXPRESSION

, See Appendix 3 .fot diSCussion of RESQ expressions.

INCORRECT CHAIN DEFINITION

See Section 9 for discussion of .chains.

April 3, 1982

\
'/

\

APP. 5 / SETlJPE~ROR MESSAGES

INCOl<'Rr~C'l'CbNF:tDENCE' INTERVAL METHOD

The reply to CONFIDENCE INTERVAL METHOD: must be, NONE,
REGENERATIVE, REPLICATIONS or SPECTRAL.

INcORRECT ,DEFINITION OF INPUT OR OUTPUT NODES

See Section 10 for discussion of input and output synonyms.

INCORRECT DEFINITION OF NODES/QUEUES FOR CONFIDENCE INTERVALS

'INCORRECT DEFINITION OF NODES OR QUEUES FOR DISTRIBUTIONS

An illegal node or queue name appears in the identifier list.

INCORRECT DEFINITION' OF QUEUES OR NODES FOR DEPARTURE COUNTS

INCORRECT DEFINITION FOR THE SEQUENTIAL STOPPING RULE

See,Section 12 for discussion of the sequential stopping rule:

INCORRECT DISCIPLINE CODE

An unknown. queueing discipline has been specified. See Section 4 and 5
for discussion of queueing rliscipli.nes.

INCORRECT EXPRESSION FOR THE CONFIDENCE INTERVAL

A single arithmetic expression must specify the confidence interval; see
Appendix 3 for discussion of RESQ expressions.

INCORRECT EXPRESSION FOR THE PREEMPTION DISTANCE

The preemption dis.tance must be a single scalar arithmetic expressio:h., See
Apperidix 3 for discussion of RESQ expressions.

INCORRECT EXPRESSION OR DISTRIBUTION EXPRESSION

, See Appendix 3 for discussion of RESQ expressions,

INCQRRECT INCLUDE STATEMENT,. SPECIFIED FILE NOT. INCLUDED.

The text in the file to be included will not be processed by SETUP. ,See
the section on libraries for discussion ofthe INCLUDE statement.

INCORRECT INVOCATION

INCORRECT INVOCATION ARGUMENT

An incorrect' ~xpressioti ,has been given as a value for the' p'rompted formal
l'arameter of the sub model or queue being invoked. '

INCORRECT JOB,. ,CHAIN OR GLOBAL VARIABLE' IDENTIFIE'R

April 3,'1982

155

156 SETUP. ERROR. MESSA9E~ / APP. 5

See Sections 3 and 7 for discussion of the us~ of· job,chain and ~l<?bal
. identifiers.

IW.CORRECT JOB OR CHAIN VARIABLE DECLARATION

The response to the MAX CV: or MAX JV: prompt must he a single
arithmetic expression for .the extent of the JVor CV ve<;tor ...

INCORRECT JV.SCALED LIST

Each element in the JV SCALED LIST should be YES, NO or an arithme~
. tic expression ..

INCORRECT METHOD DEPENDENT DEFINITION, ANALYSISSUSPENDEP

Due to an error in the method dependent information, SETUP cannot
analyze the remainder of the model.

INCORRECT NESTING OF SUBMODELS, COMPILATION SUSPENDED

~ETUP has found more END OF SUBMODEL statements· then there are
actmil submodels ..

INCORRECT NODE LIST

The list of nodes likely contains an invalid node name or a node whiCh.
cannot be referenced ill the current context.

INCORRECT NODE OR CHAIN IDENTIFIER

INCORRECT NUMBEB. OF ACTUAL. PARAMETERS SPECIFIED

Expressions for parameter values were found when an end~of-line .was
expected. See Section 6 for discussion. of matching formal parameters with
actual values.

INCORRECT NUMBER OF WORK DEMANDS OR ARRIVAL TIMES

If there are n. classes or source nodes, then there must be either 1 or n
work demand or arrival times expressions.

rNCORRECTOR ILLEGAL IDENTIFIER FOUND

See Appendix 2 for discussion of RESQ names.

INCORRECT OR IMPROPER NODE IDENTIFIER IN IDENTIFIER LIST

INCOB.RECT OR INVALID USER SUPPLIED PROMPT IN INPUT FILE

The prof11pt part of a statement (to the left of the colon) is not a valid
RESQ profl:lpL .

INCORRECT OR MISSING RELATIONAL OPERATOR

April 3, 1982

'\

, ')
APP. 5 / SE~UP ERROR MESSAGES, 157

\
\

valid\\elatiOIlal op~rators are =, -. =, >, > =, <, < =; See Appendix 3 .

\

INCORRECT OR UNKNOWN SOLUTION METHOD
\

The solution method should be either numerical or simulation.

INCORRECT PARAMETER OR IDENTIFIER DECLARATION

INCORRECT PASSIVE QUEUE TEMPLATE DEFINITION

INCORRECT PREDICATE IN ROUTING DEFINITION

SeeSection 9 and Appendix 3 for discussion of routing predicates.

INCORRECT PRIORITY LIST

The priority list is discussed in Sections 4 and 5.

INCORRECT ROUTING TRANSITION

See Section 9 for discussion of routing.

INCORRECT SERVER DEFINITION

See Section' 4 for discussion of server definitiol1.

INCORRECT SET NODES DEFINITION

See Section 7 for discussion of set nodes.

INCORRECT SUBMODEL DECLARATION

INCORRECT SUBMODEL NESTING, END OF SUBMODEL ..• ASSUMED

The end of the il1dicated submodel (...) was expected but not found.

INCORRECT TRACING DECLARATION

See section 12 for a discussion of the dialogue for simulation tracing.

INCORRECT USE OF FORMAL NODE PARAMETER OF A QUEUE TEMPLATE'

The node parameter of a queue template can only be referred to within the
body of the queue type.

INCORRECT WORK DEMANDS LIST

INITIAL, POPULATION DECLARATION MISSING

In defining the, initial state ofa chain' there must be a statement' which
begins INIT POP:

, ,

INPUT AND OUTPUT NODES CANNOT BE SUBMODEL PARAMETERS '

April 3, 1982

158 SETUP ERROR MESSAGES IAPr. 5

The nodes specified in ,the INPUT: and OUTPUT: st:;ltem~nts' in an exter-
nal ,chain definition'cannot be p'arameters of the submode1.' '

INVALID IDENTIFIER IN CLASS LIST SPECIFICATION

See Appendix 2 for discussion of valid RESQ names. '

INVA~JD INVOCATION IDENTIFIER QUALIFIES NODE, CHAIN OR QUEUE

One of the, identifiers used to qualify the node, chain or queue name is
, either not a known invocation identifier or is an invocation identifier which
cannot be referred to in the current context;

INVALID QUEUE; NAME SPECIFIED

JOBS INITIALLY AT RELEASE, DESTROY, FUSION, SOURCE OR SINK NODES

The initial state descriPtion of a chain cannot have jobs initialized ,at any of
these types of nodes.

JOB VARIABLES, N¢T ALLOWED IN ARRIVAL TIME DISTRIBUTIONS

MAXIMUM LEVEL OF 8UBMODEL NES'rING EXCEEDED. COMPILA'l'ION ENDS.

SETUP can handle up to 40 nested submodels at any one point in a model.

MAXIMUM NESTING OF. INCLUDE STATEMENTS IS 10 LEVELS DEEP

SETUP can process at most 10 INCLUDE statements simultaneously. That
is, a maximum of 10 non completed INCLUDE statements can be present
during the text insertion required for an INCLUDE statement.

METHOD DECLARATION ,MISSING OR INCORRECT

,After the MODEL: statement, there must be a statement which begins
METHOD:.

MISSING "=" IN SET NODE SET-TO EXPRESSION

The correct syntax of an assignment list is a job, chain or global variable
name, followed by an =, followed by an expression.S.ee Section 7 for
discussion of set nodes.

MISSING "IF" IN ROUTING PREDICATE

All routing predicates start with the word IF. See Section 9 for discussion
of rolltingpredicates.

MISSING LEFT OR RIGHT PARENTHESIS

NO ALL.OCATE NODES HAVE BEEN, DEFINED FOR THIS PASSIVE QUEUE

All passive queues musth~ve at least one allocate node.

April 3, 1982

.-:

APP. 5 / SETUP ERROR MESSAGES

NODE AND. CHAIN ARRAYS MUST BE ONE DIMENSIONAL

Node and chain arrays cannot be 2 dimensional.

NODE ARRAY REFERENCE IN NODE LIST MUST HAVE RUNNING· (*) INDEX

The node in question has been declared as a node array parameter of the
queue template and thus must have a running (*) index in the body of the
queue type.

NODE PARAMETER IN LIST HAS.NO CLASS ATTRIBUTES

A node parameter of the queue type was never defined as a class within the
body of the queue type and thus cannot appear inthe ACCEPTS list of the
server definition.

NODE PARAMETER IS NOT USED IN THE BODY OF THE QUEUE TYPE

A ·nodeparameter was declared bilt never referenced with the queue type
body.

NOT ALL IDENTIFIERS HAVE BEEN ASSIGNED. AN INITIAL VALUE:·

When globai, numeric and distribution identifiers are declared they must be··
assigned an initial vall.;le immediately after their declaration.

NUMBER OF RUNNING .(*) DIMENSIONS DISAGREES WITH IDENT. DIMENSIONS

The. number of running dimensions of identifiers in the expression. does not
agree with the number" of dimensions of the iden.tifier receiving the initial·· .
value. .

NUMBER, OF RONNING (*) DIMENSION ON LEFT AND RIGHT OF n=n DISAGREE

In a set expression, the number of running dimensions of the job, chain or
global variable must be the same as the number of running dimensions of
the identifiers in the expression to the right of the "=".

NUMBER OF SET NODES AND SET-TO EXPRESSIONS .DONOT AGREE

. If there are N set nodes in the identifier list then there must either one· or

.. N assignment lists .. See Section 7 for discussion of set nodes.

NUMBER OF TOKENS MUST BE DECLARED

When defining ~.passive queue, there must b~ a statement beginning TO­
.KENS: immediately following the TYPE: PASSIVE statement.

ONLY A SINGLE NODE/QUEUE FOR DEPARTURE COUNTS WITH SPECTRAL METHOD ..

·ONLY A SINGLE SOURCE NODE IS. ALLOWED WITH NUMERICAL SOLUTIONS

An operi chain can only have a. single source node In a model solvednumer-: .
icallY. See Section 11 for further restrictions onnumei'ical solutions.

April 3, 1982·

159

. .
160 SETUP EItROR MESSAGES / APP. 5 ... ',' , .,

ONLY CLASS, ALLOCATE AND FUSION NODES ALLOWED FOR QLD O:F. QTD

The o~IY types.of nodes at which queue length and queueing time distribu-·
tions Gan be measured are class, alloca.te and fusion nodes.' . .

ONLY CLASS, SOURCE AND SINK NODES ALLOWED WITH NUMERICAL SOLUTION

These are the only permissible node types if a model is to be solved numer­
ically. See section 11 for a discussion of further restrictions on. num~rical
solutions.

ONLY ONE DIMENSIONAL ARRAYS OF INVOCATION ARE ALLOWED

Ail invocation identifier can have at most one dimension.

ONLY VALID MEASURES FOR CONFIDENCE INTERVALS ARE QT ANDQTD

This is. true only with the spectral solution method.

PARAMETER DIMENSIONS MUST BE SPECIFIED AS RUNNING

The dimensions of array parameters must be declared as running (*).

PASSIVE QUEUES NOT ALLOWED WITH NUMERICAL SOLUTION METHODS

. Only active queues are allowed in a model which is to' be solved numerical­
ly. See Section 11 for further restrictions on numerical solutions.

POPULATIONS OR SOURCES DECLARATION IS MISSING.

Open chain definitions must have a statement which begins SOURCE
LIST:. Definitions for closed chains must have. a statement which begins
POPULA nONS:.

PREEMPTION DISTANCE NOT DECLARED

A queue with queueing discipline PRTYPR must have a statement which .
. begins PREMPT DIST:. This statement must immediately follow 'the
queueing discipline specification.

PRIORITY DECLARATION MISSING

A queue with a PRTY or PRTYPR queueing discipline must have astate.­
ment which begins PRIORITIES:

PRIORITY QUEUEING DISCIPLINES NOT ALLOWED WITH NUMERICAL SOLUTIONS

The only disciplines allowed in a model to be solved numerically are PCPS,
LCFS, PS and IS. See Section 11 for further restrictions on numerical
solutions.

QUEUE TYPE NAME MUST BE A VALID IDENTIFIER

. April 3; 1982

'",:' '

APP. 5 I SETUP ERROR MESSAQES

An illegal identifier has been used to specify the queue name. See Appen­
dix 2 for discussion of RESQ identifiers.

QUEUES TO BE CHECKED FOR.SEQUENTIAL STOPPING RULE NOT DECLARED

After requesting the sequential stopping rule, there must be a line which
begins QUEUES· TO BE CHECKED:.

RANDOM NUMBER SEED. DCLIS MISSING OR IN EImOR

The correct syntax is the prompt SEED: followed by a single arithmetic
exp·ression.

REGEN POPULATION ALLOWED ONLY AT ALLocATE FUSION AND CLASS NODES

Each node . listed in the regeneration state must be a previously defined
allocate, fusion or class node.

REGENERATJONPOPULATJONDECLARATION MISSING

After giving the nOde list in the regeneration state definition, there must be
a line which begins REGEN POP:.

REGENERATION STATE NODE LIST CANNOT BE EMPTY

At least one node must be specified in the regeneration state node list.

REGENERATION STATE NODE LIST DECLARATION IS MISSING'
. .

Aftef giving a.chain identifier for the regeneration state definition, there·
inust be aline which begins NODE LIST:.

REPLICATION LIMITS MISSING OR IN ERROR

. After giving the number of replications, there must be the statement REPL­
IC LIMITS,,:.

ROUTING TABLE OVERFLOW. COMPILATION SUSPENDED. ROUTING
TABLE OVERFLOWS SIZE OF ...

SETUP has exhausted the availableen:tries in its internal routing table.
The current size of the routing table is given by (...). This problem can be
rectified by increasing the value of RTBSIZ iil the file BETUPD RQ2DAT.
See Section 2.4 for a description of the SETUPD RQ2DAT file .•.

SET TO.DECLARATION MISSING IN SET NODE DEFINITION

Following the definition of the set node names, there must be a statement
which begins SET TO: or ASSIGNMENT LIST:.

SIMULATION.CP TIME IS MISSING OR IN ERROR

After. defining the other Ihnits otguidelines, it statement beginning LIMiT -.
CP SECONDS:.must be given.

April 3, 1982

161

162 SETUP ERROR ME~SJ\Gl3S / APP.5

. SINK NODES CAN BE PRESENT ONLY IN OPEN OR EXTERNAL.CHAINS
. . .

A sink node cannot appear in the routing definition of a closed chain.

SINK NODES C:ANNOT BE USED IN CLOSED CHAINS

SPECIFIED IDENTIFIER NOT A PARAMETER OF THIS QUEUE TEMPLATE

Attempt made during invocation of queue type to assign a value to an .
identifier which is not a parameter of the invoked queue type.

SPLIT OR FISSION NODES MUST BELONG TO THE CURRENT SUBMODEL

A split or a fission, node must a declared node of the (sub)model in which it
is ~sed in a routing definition.

STRING PARAMETERS NOT YET IMPLEMENTED FOR QUEUE DISCIPLINES

SYMBOL TABLE OVERFLOW. COMPILATION SUSPENDED. SYMBOL TABLE
OVERFLOWS SIZE OF .,.

SETUP has exhausted the available entries in its .internalsyinboltable. The
currerit size of the symbol table is given by (...) .. This problem can be
rectified by increasing the value of SYMSIZ in the file· SETUPP RQ2DAT.
See section 2.4 for·a description of the SETUPD RQ2DAT file.

TABLE DEFINITION FILE MISSING ~ DEFAULTS USED

SETUP was unable to find the file SETUPD RQ2DAT and has used default
values for its internal table sizes. See section 2.4 for.a description of the
SETUPD RQ2DAT file.

THE ARRAY ... HAS BEEN DECLARED BUT NEVER USED AS A NODE OR A CLASS

A reference is being made to a node array that was declared but never
defined as a class or other node.

THE CHAIN ... HAS NOT YET BEEN DEFINED

The indicated chain was used as an external chain in a submodel but has
yet· to be defined in the current (sub)model.

THE CONFIDENCE INTERVAL METHOD DECLARATION IS MISSING OR.IN ERROR

After giving information about the nodes and queues for distribution
measures, there must bea statement which begins CONFIDENCE INTER­
VAL METHOD:.

THE DIMENSIONS OF THE ARRAYS CANNOT BE UNDEFINED

Arrays must have dimension values that are known to SETUP.

THE IDENTIFIER BEGINNING ... HAS BEEN TRUNCATED TO 10 CHARACTERS

AprU3, 1982

APP. 5· /SETUP ER.ROR MESSAGES

All RESQidentifier names must be 10 characters or less; any additional
characters will be ignored.

THE IDENTIFIER BEGINNING ... IS IMPROPERLY DEFINED

The chain, node or queue name is incorrectly defined due to either an
incorrect qualificati9n or an improper node, queue or chain name.

THE IDENTIFIER ... IS AN UNKNOWN OR INCORRECTLY DEFINED QUEUE TYPE

Since the queue type name is undefined, it cannot· be used in a queue type
invocation. . , ,

'rHE' IDENTIFIER ... IS AN IMPROPER NODE IDENTIFIER

The identifier shown is either an invalid identifier name, not a node identi­
fier, or is apreviously defined node identifier whiCh cannot be referenced
at this point in the (sub)model.

THE IDENTIFIER' ... CANNOT BE UTILIZED IN THIS SUBMODEL

The displayed. identifier has been declared outside :the current scope and
cannot, be referenced at this point in the model.

THE .IDENTIFIER ... HAS BEEN DECLARED TWICE

An identifier. can. only be' declared once within a (sub) model. Model and
queue type liames can be Used only once.

THE IDENTIFIER ... IS NOT A PARAMETER OF THIS SUBMODEL

. '. .
An attempt is, being made during an invocation to assign a value to an
identifier that is not a parameter of the submodel being invoke,d.

THE IDENTIFIER ... WAS GIVEN A VALUE BUT NEVER DEFINED

the displayed identifier was not· declared in this identifier declaration
statement but an attempt is being made to assign it an initial value.

THE IDENTIFIER ... WAS 'ALREADY GIVEN A VALUE

The displayed identifier ... was already assigned an initial value.

THE LIST' IN THE PREVIOUS,STATEMENT CANNOT BE EMPTY

A null response is illegal to the prompt.

THE'NODE ... IS IMPROPERLY DEFINED OR UNDECLARED

The node displayed has either yet to be defin:ed or lias been defined in
another subniodeJ but cannot be referenced here.

THE NUMBER OF VALUES DOES NOT MATCH THE.NUMBER OF ...

AprH 3, 1982

163

16'4 S,ETTJP ERROR MESSAGES, / APP, 5

If there are n identifiers then there must be either 1 or' n values in. the value
list being matched to. the identifier list

THE ONLY ACCEPTABLE ANSWERS ARE "YES," AND ','NO"

THE QUEUE , I.S IMPROPERLY DEFINED OR UNDEqLARED

The queue displayed has either not be declared or \Vas incorrectly declared.

THE PARAMETER ... HAS No'r' YET .BEEN ASSIGNED AN ACTUAL VALUE

The displayed parameter (...) of the submodel or queue type being invoked
has not, yet been given a value in this invocation.

THE STRING "RUN LIMITS _" IS MISSING

If the confidence interval method is NONE; then after the initial state
definition is given, there must be a line "RUN LIMITS -".

THE STRING "BUN PERIOD GUIDELINES- " IS MISSING

When using the regenerative confidence interval method without the se­
quential stopping rule, there must be a line "RUN PERIOD GUIDELINES-
" '

THE STRING "SAMPLING PERIOD GUIDELINES -" IS MISSING'

When using the regenerative confidence interval method and the sequential
stopping rule, there must be a line "SAMPLING PERIOD GUIDELINES

"

THE STRING "SEQUENTIAL STOPPING RULE: " IS MISSING'

When using the regenerative confidence interval method, after specifying
"the confidence interval, there must be a line beginning .sEQUENTIAL
STOPPING RULE:.

THE SUBMODEL .. , CANNOT BE INVOKED AT THIS LEVEL

The submodel name shown (... j cannot be used hi an invocation at this
point in the (sub)model.

THE SUBMODEL .,. HAS NOT BEEN DEFINED

The identifier shown (...) was never defined as a submodeland hence
can'not be used in a submodel invocation.

TYPE DECLARATION ts MISSING IN INVOCATION

The statement beginning INVOCATION: must be immediately followed by
a statement beginning TYPE: in order to declare the name of the sUbmodel
being invokes.

UNABJ;..E TO PERFORM FILEDEF FOR INCLUDE FILE

April 3,1982

APP. 5 {SETUP ERROR MESSAGES

SETUP was not able to perform a eMS FILEDEF for a file with the given·
name. See Section 2.3 for discussion of the files to be included.

UNDEFINED IDENTIFIER FOUND IN RELATIONAL EXPRESSION

UNKNOWN IDENTIFIER SPECIFIES QUEUEING DIsclPLINE

The only identifier that can specify a queueing discipline is a .previously
declared string parameter.

USE OF NESTED INVOCATION NAMES IS NOT ALLOWED

An invocation name cannot appear in an expression for the index of an
array invocation identifier.

VALUE EXPRESSION CONTAINS UNDEFINED IDENTIFIERS

The expression contains identifiers not previously declared as identifiers or
parameters of the model.

WARNING: EXTRANEOUS TOKEN(S) BEING SKIPPED UNTIL END OF LINE

. .

There are more identifiers or expressions of the line than SETUP expected
. - these extraneous identifiers· or expressions will be ignored. This waniing

is issued, for example, when two initial values are given on the same line
Jor a scalar numeric identifier.

WARNING: IMPLICITLY DECLARED NODE CREATED

. A node· which has not previously been defined has been used. The new
node is implictly declared to be a dummy node.

WARNING: LOGICAL LINE LENGTH EXCEEDED. INCREASE LINSIZ IN SETUPD

SETUP has overflowed its input buffer for storing an entire logical line.
This problem can be solved by increasing· the value if LINSIZ in the file
SETUPD RQ2DAT. See Section 2.4 fora description of the file SETUPD
RQ2DAT .

. WARNING: OPEN CHAIN WITH NO SINK NODE IN CURRENT MODEL LEVEL

The sink no<ie for this open chain chain must have already been declared in
a portion of this chain defined in a previous submodel invocation ..

WARNING: SOURCE NODES DEFINITION MISSING IN OPEN CHAIN

Source nodes for this op.en chain must have already been defined in a
portion of this chain defined in a previous submodel invocation,

WARNING: THE NODE .. : HAS BEEN IMPLICITLY DECLARED

A node has ·been used which has not been previously declared or used. The
default: type for an implicitly created node is the dummy type.

April 3, 1982

165

16~ SETUP ERROR MESSAGES / APP. 5
, ,

WARNING: " " IS, AN UNDEFINED CHARACTER - INPUT iGNORED
, ,

The displayed character (in between quotes) is not a character recognized
by SEtUP.' The input will be processed asif tp.is character .never occurred.,

WORK DEMANDS MUST BE DECLARED

The work demand distribution must be defined for every class of every
queue.

YES AND NO CANNOT BE,SPECIFIED TOGETHER WITflQUEUE NAMES

An response to. a QUEUES: ttacing prompt that illc1udes, a list a queue
"n~tnes' indicates that only the specified queues will be traced. Thus,. yes/no
cal).uot also'be specified with individual queue names. .

In addition to the above error messages, SETUP contains internal error messages which should
never occur. All such internal error messages begin with the phrase: tlRESQ INTERNAL
ERROR: h, "

April 3, 1982

'.:

167

APPENDIX 6 - EVAL ERROR MESSAGES

The error messages produced by the EV AL command come from the expansion processor
or a solution component. .

A6.1~ Expansion Processor Messages

The following messages are given in alphabetical order. Many of the messages are the
result of internal consistency checks and should not occur.

EXPRESSION INVALID OR NOT IMPLEMENTED

The evaluation of this expression has probably not been implemented yet.

EXPRESSION TABLE EXCEEDED

An invalid expression has been encountered when attempting to evaluate ail
entry in the expression table. .

INVALID CODE

This message is caused by ail invalid response to the WHAT prompt. The
response ~ould· cOI).tain an incorrect performance measure, inconsistent
response (e.g., poci or rtmbo) , or a suffix which is not ci or boo

INVALID DEPARTURE COUNT

An invalid expression was given for a queue or node departure count.

INVALID DISTRIBUTION

An incorrect work demand distribution was specified.

INVALID DISTRIBUTION PARAMETER VALUE

An iI).correct distribution parameter value was specified;

INVALID ELEMENT NAME

The elemeI).t name given to the WHAT prompt or to subroutine G'rRSLT is.
• not in the 'symbol table.

INVALID 'ELEMENT TYPE
, , '

The elem~ntnarne 'given to the WHAT prompt or to sub~outineGTRSLT:is
not aquime or node. , '.

INVALID EXPRESSION TABLE POINTER

An invalid expression has be,en found.

INVALID MODEL PARAMETER NAME

April 3, 1982

168 EVAL ERROR ME~SAGES lApp. 6

The parameter name given to subroutine STPARM Was not a model param.,.
eter in the symbol table.

INVAL~D NODE NAME

An incorre.ct node name has been specified.

INVALID PERFORMANCE MEASURE CODE

The performance measure code given to subroutine GTRSLT was not a
valid. code.

INVALID QUEUE NAME

An incorrect quelJe name has been specified.

INVALID ROUTING STA'l'EMENT

An incorrect routing statement has been specified.

INVALID SYMTB ~YPE FOR PARAMETER

A parameter has an incorrect symbol table type. This is probably an inter-
. nal RESQ problem. . .

NODE DEFINED IN MORE THAN 1 CHAIN

The same node name has been used in more than one chain.

NOT IMPLEMENTED

The solution method or an expression is not implemented yet.

NUMBER OF BRANCHES EXCEEDS RANGE

This message would be produced if a routing branch was encountered by
the expansion program which was larger than the initial size determined.
This is probably an internal RESQ problem.

NUMBER OF CHAINS EXCEEDS RANGE

This message would be produced if a chain was encountered by the expan­
sion program which was larger than the initial size determined. This is

. probably an internal RESQ problem.

NUMBER OF NODES EXCEEDS RANGE

This message would be produced if a node was encountered by the expan­
sion program which was larger than the initial size determined. This is
probably an internal RESQ problem.

NUMBER OF QUEUES EXCEEDS RANGE

April 3, 1982

APP. 6.1 / Expansion Ptocessor Messages

This message would be produced if a queue was encountered by theexpan;.;
sion program which was larger than the initial size determined. This is
probably an internal RESQproblem.

PARAMETER NAME NOTA VECTOR

A vector value has been specified fora scalar parameter in subroutine
STPRMV;

PARAMETER VALUE CAN NOT BE NULL

. A null value has been specified for a numeric parameter. value.

QUALIFIED ROUTING NODES NOT IMPLEMENTED

Routing statements of the form inv1.node1->inv2.node2 are not imple­
mented~

SIZE. OF IEXPTB EXCEEDED

The size of the expression table for numeric parameter values has been
exceeded . .This is an internal RESQproblem.

WARNING - INIT. POP ,= CLOSED CHAIN POp

The initial population specified is not equal to the closed chain population.

WARNING - NODE NOT BRANCHED FROM:

The named node is branched to but not from.

WARNING - NODE NOT BRANCHED TO:

The named node is branched from but not to.

WARNING - N()DE NOT IN ROUTING:

. The named node is defined, but not in the routing.

WARNING - PROBABILITIES DO NOT SUM TO 1

The probabilities out of anode do not sum to one.

WARNING - SUBMODEL NOT INVOKED:

The named submodel is defined but not invoked.

A6.2. Numerical Solution Messages .

.169.

The SET{]P command· ~nd expansion processor do almost all of the ertor checking for
numerically solved models. The only messages produced are

A NETWORK. WITH ALL QUEUE DEPENDENT RATE QUEUES MUST

April 3, 1982

. , '

170 BV AL ERROR MESSAG:gS / APP. 6

HAVE AT LEAST ONE CHAIN THAT VISITS ALL QUEUES,.
NUMERICAL SOLUTION No'r IMPLEMENTED FOR THIS NETWORK.

The implementation does not handle networks without this characteristic.

QUEUE q ,IS NOT CONNECTED TO FIXED RATE SUBNETWORK.
NUMERICAL SOLUT;ION'NOT IMPLEMENTED FOR THIS NETWORK.

The implementation dO,es not handle networks without this characteristic.

SOLUTION INFEASIBLE. QUEUE q IS SATURATED

This message only occurs with ,networks with open chains. . The arrival
times are sucb that jobs arrive at queue "q" faster than they can be served'.

SOLUTION NOT PERFORMED. TOO MANY QUEUE DEPENDENT RATE QUEUES.

See discussion of RESQ2 NUMERD in Section 13.3.

A6.3~ Simulation Messages

All simulation error messages begin with the name of the routine producing the message.
The following list is given in alphabetical order. Many of the messages ,result from internal
consistency checks and should not occur. The discussion below will focus on messages tmit . . ,

are likely to occur and, requIre further explanation. For messages of the form " ... STORAGE
FULL" see also the discussion file RESQ APLMBD in Section 13.3. LOwer case chara~ters are
used to represent model specific information. i and j are used for integervalues~ x is used for
floating point, values, "ident" is used for an identifier, "node" is used for node names and
"queue" is used for queue names.

ADEVNT adds events to the event list

ADEVNT
ADEVNT
ADVENT

EVENT LIST ,STORAGE FULL
NEW EVENT TIME BEFORE CLOCK
PSEUDO EVENT AT FUTURE TIME

ALLCTE handles "plain" allocate nodes

ALLCTE
ALLCTE
ALLCTE

ALr..CTE
ALLCTE
ALLCTE
ALLCTE
ALLCTE

ETPTR(i)= j
ETPTR(i)= j
JOB ALREADY HOLDS TOKENS OF queue

A job holding tokens at a given queue may not request additional tokens at
that queue.

NET (node)= i
NP(node)= i
QD(queue) NOT IMPLEMENTED
QUEUE queue NOT PASSIVE
TOKEN AMOUNT i AT node

Number of tokens requested must be positive

April 3, 1982,

APP. 6.3 / Simulation Messages

ALL TKN is used by ALLCTE and other passive queue routines.

ALLTKN -~ JOB STORAGE AREA FULL

ANbOR handles AND and OR allocate nodes

ANDOR
ANDOR

ANDOR
ANDOR
ANDOR
ANDOR
ANDOR

ETPTR(i)== j

JOB ALREADY HOLDS TOKENS OF queue

A job holding tokens at a given queue may not request additionlll tokens at
that queue.

JOB DATA STORAGE FULL
JOB STORAGE FULL
JOB WITH OUTSTANDING PSEUDOS AT AND-OR NODE
NET(n) == i
TOKEN AMOUNT i AT node

Number of tokens requested must be positive

APLOMB is responsible for initializing variables for each run or replication.

APLOMB
APLOMB
APLOMB
APLOMB
APLOMB
APLOMB
APLOMB
APLOMB
APLOMB
APLOMB
APLOMB
APLOMB

AREA STORAGE FULL
ATTEMPT TO USE EXPERIMENTAL C.I. METHOD
ETPTE(i) == j

I~VALID INITIAL PORTION DISCARDED
·INVALID JV SCALING VALUE
JOB DATA STORAGE FULL
JOB STORAGE FULL
NAME (APLMBD)
NEGATIVE INTERARRIVAL TIME AT nOd.e
NET(i)= j

NO NODE FOR GV INIT
VALUE (ident)= i

. . . .
AQTRAC is used for tracing active queues.

AQTRAC -- .QUEUE queue LIST FAULTY

ARRIVE handles routing of jobs from node to node.

ARRIVE -- DESTINATION UNDEFINED
ARRIVE ETPTR(i)= j

INVALID INDICATOR P= i
JOB WITH RELATIVES AT SINK

ARRIVE
ARRIVE
ARRIVE NO DESTINATION CHOSEN. JUST LEFT NODE node

Probabilities do not sum to 1 and/or no true predicates.

ARRIVE NODE node NOT DE-FINED
ARRIVE NULL JOB
ARRIVE RET(i)= j

ARRIVE -- .TRACE STRING TOO LONG
ARRIVE UNDEFINED NODE TYPE, NODE= node

April 3, 1982

.171

172 EVALERRORMESSAGES / APP. 6

CHECK checks whether system is in regeneration state.

CHECK'-~ UNDEFINED C.I. METHOD i

COMPLT handles completions of service times at active queues.

C()MPLT
COMPLT

COMPLT
COMPLT
COMPLT

DSPL= i
JOB job NOT IN QUEUE queue
QUEUE queue DEFINITION NOT IMPLEMENTED
QoEUE queue IS PASSIVE
ZERO RATE NOT ALLOWED -- QUEUE queue LENGTH i

Expression for service rate at given length is not positive.

CREATE handles create nodes.

CREATE
CREATE
CREATE

ETPTR(i)= j
NET(n)"" i
TOKEN AMOUNT i AT node

Number ()f tokens created must be non-negative.

, FISSN handles fission nodes~

FISSN
FISSN

JOB DATA STORAGE FULL
JOB STORAGE FULL

FUSN handles fusion nodes.

FUSN -- FISSION AND FUSION NODES NOT PAIRED

Relatives other than immediate family at the same fusion node.

GRLERL determines bE parameters for standard distribution.

GRLERL
GRLERL

COVR= x
MEAN== x

NEXPR evaluates numeric expressions.

NEXPR
NEXPR
NEXPR
NEXRR, -­
NEXPR
NEXPR
NEXPR
NEXPR
NEXPR
NEXPR
NEXPR

CAN'T FIND EXPRESSION FOR ident
CV SUBSCRIPT i OUT OF RANGE
ETPTR(i)= j
ETPTR(i)= j
EXPRESSION INVALID
EXPRESSION INVALID OR NOT IMPLEMENTED
EXPRESSION TABLE EXCEEDED
FIXEDOVERFLOW
ident SUBSCRIPT i OUT OF RANGE AT node
INVALID EXPRESSION AT node
INVALID NODE FOR QL

rhe QL status function applies only to classes and allocates.

April 3, 1982

,-,:

ApP. 6.3 / Simulation 'Messages

NEXPR
,NEXPR

INVALID NODE NUMBER
INVALID QUEUE FOR SA

The SA status function applies only to active queues.

NEXPR -- INVALID QUEUE FOR TA

The T A status function applies only to passive queues. '

NEXPR INVALID QUEUE FOR TQ
NEXPR INVALID QUEUE NUMBER
NEXPR JV SUBSCRIPT i OUT OF RANGE
NEXPR NODE NAME, EXPECTED .AT node
NEXPR OVERFLOW
NEXPR SYMTB(i) . DIM_ 1= j

NEXPR SYMTB(i) .DIM_2= j

NEXPR TINDX OR VALUE (i)= j

NEXPR USER FUNCTION MUST HAVE AT LEAST ONE ARGUMEN,T
NEXPR USER FUNCTION RETURNS BAD SEED

The seed must remain positive after call to user defined procedure.

NEXPR
NEXPR

VALUE (i)= J
ZERODIVIDE

PASSIVE handles passive queue pseudo events (Appendix 7).

PASSIVE -- UNMATCHED NUMBER OF JOBS AND QUEUES

. PEXPR handles evaluation of predicates.

PE~PR

PEXPR
PEXPR
PEXPR
PEXPR
PEXPR
PEXPR
PEXPR
PEXPR
PEXPR
PEXPR
PEXPR
PEXPR

,PEXPR

CAN'T FIND EXPRESSION FOR ident
CV SUBSCRIPT iOUT OF RANGE
ETPTR(i)= j

EXPRESSION INVALID OR NOT IMPLEMENTED
EXPRESSION TABLE EXCEEDED
ident SUBSCRIPT,i OUT OF RANGE AT node,
INVALID EXPRESSION AT
INVALID EXPRESSION AT node
JV SUBSCRIPT i OUT OF RANGE
NOT IMPLEMENTED
SYMTB (i). DIM_ 1 = j

SYMTB (i) .DIM_2= j

TINDX OR VALUE(i)= j

VALUE (i)= j

PQTRAC handles passive queue trace.

PQTRAC -- QUEUE queue LIST FAULTY

REMVEV cancels pending events which become invalid.

REMVEV -- ATTEMPT TO REMOVE PSEUDO OR PRTYPQ EVENT

April 3, ~.982

173

174 . EVAL ERROR MESSAGES / APr. 6

SAMPLE obtains distribution samples not involving simulation dependent values
(other than random number streams).

SAMPLE
SAMPLE
SAMPLE

-- DIST. STAGE~ i
DISTRIBUTION TYPE= i
TOO MANY STAGES -- TYPE i

SERARRhandies arrivals at active queues .

. SERARR

SERARR
SERARR
SERARR
SERARR
SERARR
SERARR
SERARR
SERARR

CYCLIC DISCIPLINE, QUEUE queue
ETPTR(i)= j

F.F. WITH ACTIVE· QUEUE queue
NEGATIVE SERVICE TIME AT node
NET(i)= j

NP(i)=j
QD (queue):; i
QUEUE queue DEFINITION NOT IMPLEMENTED
ZERO RATE NOT ALLOWED -- QUEUE queue LENGTH i

Service rate for given length not positive.

SETNOD handles set nodes.

SETNOD
SETNOD
SETNOD
SETNOD
SETNOD
SE'l'NOD
SETNOD
SETNOD
SETNOD
SETNOD

ATTEMPT TO CHANGE CLOCK
ATTEMPT TO CHANGE CPSECONDS
CV SUBSCRIPT i OUT OF RANGE
ETPTR(i)= j

EXPRESSION TABLE EXCEEDED
INVALID EXPRESSION AT node
JV SUBSCRIPT i OUT OF RANGE
NET (node)= i
SYMTB(i) .DIM_l= j
SYMTB (i). DIM_2= j

SMULAT is the central routine which removes events froni the event list.

SMULAT
SMULAT
SMULAT
SMULAT
SMULAT
SMULAT

APPARENT DEADLOCK (EVENT LIST EMPTY)
ETPTR(i)= j

JOB DATA STORAGE FULL
JOB STORAGE FULL.
NEGATIVE INTERARRIVAL TIME AT node
NET(i)= j

SNKFUS handles sinks and fusion nodes.

SNKFUS -- AND-OR QUEUE NOT FOUND

SPLIT handles split nodes.

SPLIT
SPLIT

.JOB DATA STORAGE FULL
JOB STORAGE FULL

TRAN handles transfer nodes.

April 3, 1982

',;:

APP, 6.3 / Simulation Messages

TRAN -- CHILD ALREADY HOLDS TOKENS OF queue

Transfer is not allowed if the recipient already holds tokens·ofthe queue.

TRAN-- CORRECT COpy OF CHILD NOT FOUND

Child is attempting to transfer tokens which it does not hold ..

TRAN -~ CORRECT COpy OF PARENT NOT FOUND

Parent is attempting to transfer tokens which it does not hold.

TRAN -- ETPTR(i)= j
TRAN -- NET (n)= i
TRAN --'NU=i CHILD HOLDS j

Child is attempting to transfer less than all of its tokens

TRAN-- NU=i PARENT HOLDS j

Parent is attempting to transfer less than all of its tokens

TRAN -- PARENT ALREADY HOLDS TOKENS OF queue

Transfer is not allowed if the recipient already holds tokens of ,the queue.
. '

USER is for user defined nmneric functions (Appendix 3).

USER -- FUNCTION NOT DEFINED OR NOT LOADED

April 3, ,1982

175

176

APPENDIX 7 - EVENT HANDLING

With models using' passive queues, fission nodes and/or split. nodes" one, must be con­
scious of the likelihood of several jobs moving at the same simulated time, say because of the
release of enough tokens for ,several jobs waiting at allocate nodes to each be allocated tok(;)fls.
There, are a number of rules applied to prevent difficulties in such situations, but difficulties
can still arise. It is up to the user to understand the rules and mechanisms to avoid possible
difficultie; with simultaneous events. We first informally discuss the'intent of the simulation
event handling mechanism and then describe the mechanism itself.

A7.t. Simultaneous Job Movement

The intent of the mechanism is that:

1. Once a job begins to move, it will continue to move until (a) it reaches an
active queue, (b) it reaches an AND allocate node, an OR allocate node or '
an allocate node for a PRTY passive queue, (c) it stops at an allocate node
(e.g., because sufficient tokens are not available), (d) it stops 'at a fusion
node or (e) it leaves the network.

2. Whenever tokens become available attempts to allocate tokens to waiting
jobs will be deferred until all jobs able to move at the current simulated
time stop moving, according to (1). Once all jobs have stopped moving by
(1), if one or more jobs that had been waiting for tokens have potentially
become able to move, an attempt is made to allocate tokens to those' jobs.

, This is done for each passive queue, one at a time, in the order that the
potential for movement of jobs was discovered. Jobs allocated toke'ns ~t
one queue are allowed to move as far as possible according,to (1) before
the next queue is treated.

3. Any jobs which had been stopped (e.g., are waiting for tokens) and can
proceed because of side effects of another job's behavior, (e.g., rele;;tse of
tokens) are allowed to move, one at a time, as far as possible according to
(1) and (2). If there are several such jobs, they are handled in the order in
which they became able to proceed. These jobs move before jobs are
allowed to move because of completion of service time and/or arrival from
a source, even if the service or (inter-}arrival time ends at the current simulat­
ed time. Note that a zero service time at a queue can be used as a 'buffer,
to artificially stop a job's movement to let other jobs move:

The rules satisfactorily deal with most situations. However, there is a, potential for problems
with mUltiple PRTY passive queues. Consider Figure A 7.1 and assume that node a belongsto
one PRTY queue, nodes band c belong to another PRTY queue and that node bhas priority
over node c. Suppose that a job arrives at node c and after that, but at the same simulated
time, another job arrives at node a. Both jobs would be stopped and the job at node c would
then be given a chance at token allocation before the job at node a had a chance at allocate

Figure A 7.1 - Passive Queue "Race" Resolution

April 3, 1982

,r", .

< •. ',

'-!

APP. 7.1 /Simultaneous Job Movement 177

node b. If the job at node a were successful at node a and proceeded to node b, we could
have the situation where both jobs had arrived at the queue at the same simulated time but
the job at the lower priority node" got tokens and the job at the higher priority node did' not.
ft is up 10 the user to ensure that such problems do not occur. One way to i'esolvethisproblem
is by appropriate ordering of the allocate nodes. In the example, if node b were placed before
node "a, theproblein would not occur. AND allocate nodes are also useful in avoiding
problems such as this:

A 7.2. Simulation Events

The simulation program has two classes of events, "pseudo events" and "real events. II
Only real events are counted in the simulation summaries produced by BV AL. Pseudo events
always occur at thecurre~t simulated time and are intended to be transparent to the user
except in the simultaneous job movement situations just discussed. Real events correspond to
completion of service times and arrival times. ' (In models using the regenerative method, a
teal event may correspond to the completion of a stage of the service time rather than the
entire time;)" Once handling of an event begins," it is riot interupted by scheduling of other
events. Any pending pseudo events are handled before a real. event is handled. Re;ll events
are handled in order of simulated time. In the case of real events at the same simulated time,
the" events are handled in the order they were scheduled.

There" are two types" of pseudo events, "pseudo arrivals" and "passive queue." Any
pending pseudo "arrival events are handled before a passive queue event. Among pseudo
arrival events, events are handled in the order in which they were scheduled. Pseudo arrival
events may be scheduled because of (1) initialization of jobs at the beginning of" a rtin or
replication, (2) generation"of jobs by a split or fission node, or (3) the allocation of tokens to
jobs by a passive queue pseudo event. Passive" queue events may be scheduled because of
(1) release of tokens, (2) creation of tokens, (3) arrival at a PRTY passive queue, (4) arrival
at an AND allocate node, or (5) arrival at an OR allocate node. Among passive queue events,
events are handled in the order in which they were scheduled.

" Service completion events are scheduled because of a job beginning service at an active
queue. Service completion events may be rescheduled because of preemption or changes in
length" at a processor sharing queue. Arrival time completion everits are scheduled at tile
beginning of simulation and at the end of an arrival time. Arrival time events may be
rescheduled or canceled because of changes to CV(O).

April 3, 1982

178

APPENDIX 8 - INSTALLATION

,I • " ,',
The RESQ distribution tape contains 17 files, illcluding machin~ reada~le copies Qf this

document andthe RESQ Introduction and Examples document. (These document copies are
formatted for printing on a line printer and do not contain the diagrams and some of the
equatiolls found in the standard paper copies.) After loading these files from tape to disk, the
installer generates five additional module files using the RQ2MOD EXEC found on the tape.
All' 22 files together require roughly 6.5 million bytes of disk storage, e.g., roughly 14
cylinders, of a 3350. However, one large file from the tape (COMPLIB TXTLIB) is not
needed once the modules are generated. If this file and the two document files (also large
files) are not retained on disk, then roughly 4.2 million bytes of disk storage, e.g., roughly 9
cylinders of a 3350, are required for the RESQ files. If additional conservation of disk space '
is desired, and the EVALT command and PL/I embedding are not to be used, then the other
three TXTLIB files (EXPANSUB, MV ASUB and APLOMB2) need not be ,retained on disk
either,' reducing the disk storage requirement to roughly 2.3 million bytes, e.g., roughly 5
cylin'ders of a 3350. 'The following discussion' assumes (1) that the Pl./I optimizing compiler
'is available on an accessed minidisk as PLIUB TXTLIB, (2) that 5.5 million bytes of disk
storage (roughly 12 3350 cylinders) is, at least temporarily, available for at leaSUhe 20 .files
other than the document copies, (3) the disk for the RESQ files is accessed as the A disk; and
(4) the tape is attached as virtual device 181.

Usually the installer will ask the machine operator to mount the tape and attach it to 'the
installer's virtual machine. When the tape 'is ready, the message

TAPE lB,l ATTACHED

should appear on the terminal. The user may then issue the CMS TAPE LOAD command,
which will read the 15 RESQ files on the tape prior to the first tape mark, e.g.,

tape load
LOADING ...
SETUP EXEC Al
EVAL EXEC Al
EVALT EXEC Al
R,PLOT EXEC Al
RESQ2 APLMBD Al
RESQ2 ' NUMERD Al
SETUPD RQ2DAT Al
STXTLIB MODULE ,A2
STACK MODULE A2
SMACLIB MODULE A2
COMPLIB' 'I'XTLIB Al
EXPANSUB TXTLIB Al
MVASUB TXTLIB Al
APLOMB2 'l'XTLIB Al
RQ2MOD EXEC Al
END-OF-FILE OR END-OF-TAPE

Ri

If the TAPE LOAD command is issued again, the remammg two files on the tape, ,the
document copies, will be loaded. (This second TAPE LOAD command is omitted if the
document copies are not desired on disk.)

April 3" 1982

..: .. \

.~~

APP. 8 / INSTALLATION

RESQ
RESQ

INTRO .A1
CMSGUIDE A1

END-OF-FILE OR END-OF-TAPE
R;

179 ..

Then the CP DETACH command is issued to have the tape rewound and detached frollithe
installer's virtual machine:

detach 181
TAPE 181 DETACHED
R;

The RQ2MOD EXEC is now issued to generate the five MODULE files (COMPIL,
. EXPNDM, EXPWR1, EXPWRN, RAPLMB).

rq2mod
R;
erase load map
R;

(The RQ2MOD EXEC can be used to generate the modules one at a time. Issue "rq2mod 1"
for an explanation of this option.) Now all RESQ files are in place on the disk. If any of the
TXT LIB files are to be erased, they may be erased at this time.

To confirm. the files have all been properly loaded and generated, issue the CMSLIST­
FILE command. Assuming all 17 files were loaded from the tape and that none of these files
were subsequently erased, the output from LISTFILE might be

listfile (alloc
FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS
SETUp· EXEC A1 F 80 77 8.
EVAL EXEC A1 F 80 112 12
EVALT EXEC A1 F 80 115 12
RPLOT EXEC A1F 80 19 2
RESQ2. APLMBD A1 F 80 1
RESQ2 NUMERD A1 F 80 1 .
SETUPD RQ2DAT A1 F 80 2 1
STXTLIB MODULE A2 V 272 2 1
STACK MODULE A2 V 1352 2 2
SMACLIB MODULE A2 V 272 2 1
COMPLIB TXTLIB 1\1 F 80 15086 1509
EXPANSUB TXTLIB Al F 80 8746 875
MVASUB TXTLIB A1 F 80 1274 128
APLOMB2 TXTLIB A1 F 80 13994 1400
RQ2MOD EXEC Al F 80 64 7
RESQ nITRO A1 V 95 8815 406

RESQ ·CMSGUIDE Al V 80 12970 687
COMPIL MODULE A1 V 65535 9 585
EXPNDM MODULE A1 V 65535 7 435
EXPWRl MODULE A1 V 65535 6 333
EXPWRN MODULE Al V 65535 6 33·1
RAPLMB MODULE Al V 65535 13 934
R;

April 3, 1982

180 INSTALLATION / APP. 8

. The numbers of records and eMS blocks for the files may have changed slightly between this
writing and the generation of the tape, so the installer should not expect to see exactly the
figures shown above.

April 3, 1982

INDEX

INDEX

+

++ 9,22,94

6

A

Access to RESQ system files 21
Active queues 4, 32
Allocate nodes 8, 40
Arrays 7
Arrival times 54
Assignment statements 48
ACTIVE 36
AND allocate nodes 39,41,73,98,177

B

Blanks 6

c

Chain arrays 30, 58, 72
Chain parameters 7, 53
Chain variables 31,48,54,76
Chains 7, 10, 53

closed 53
external 53
internal 53
open 53

Classes 6, 32
Coefficient of variation 132
Commas 6, 133
Comments 6, 94 .
Concatenation (" + +") 22, 94
Confidence intervals 13, 71, 71, 78
Confidence level 71
Create nodes 39,44
Cycles 77
CLOCK 130
CPU limits 73
CV 31,54,76

April 3, 1982

D

Destroy nodes 39, 44
Dialogue files 5, 13
Distribution gathering 69
Distribution identifiers 133
Distribution parameters 45, 133
Distributions 6, 12, 132

empirical 132
standard 132
user 132
Branching Erlang 132
BE 132
DISCRETE 8, 136
Erlang 132
Exponential 7, 133
Geometric 136
Hyperexponential 132
Hypoexponential 132
Standard 135
UNIFORM 134, 136

Dummy nodes 52, 63

E

Edit reply 23
Error messages 102
Events 134
Expansion 16
Extended queueing networks 4
External chains 10
END 83
EVAL5, 15,21,26,93·

arguments 93
table sizes 102

EVALT 93,101

F

Fission nodes 42, 50, 52
nested 51

Fusion nodes 43, 50
FCFS 8,9,32,40,41,68,76
FF 40,41
FILEDEF 107
FNLMSG 106

181

182

G

Global variables 29, 48, 84
GLQBAL TXTLIB 107
GTRSLT'106

H.

Hierarchical representations 2
Hierarchical solution 104'
Holding tokens 40
Ho'Y reply 23

I

Identifiers 5,6, 7, 28
distributi~n 29
numeric 28
Distribution 133"

Independent replications 74,95
Infinite server 6
Initial portion discarded 73
Initial state 13, 72
Input synonym 10, 52, 56
Interarrival times 54
Invocation arrays 56, 58, 62
Invocation qualifiers 56
Invocations 11, 62
INCLUDE 24
IS 33, 68

J

Job copies 40, 43, 44, 72, 75, 138
Job variables 5, 6, 30, 32, 48 '
Jobs 2
JV 6,30

L

Line concatenation 9
Loader tables 22
l,pwer case 5
LCFS 34,68
LDRTBLS 22
LNG 100
LRTF 36

M

Matrices 27, 29
Matrix' 48 '
Mean value analysis 68
Model paranieters 5
Multiple assignme..,.ts 48
Multiple entrie's 63'
Multiple exits 63
MAXCV 31
MAX JV 30
MVA 68

N

Names 129
Names reused 60
Naming conventions 5
Node arrays' 30, 48, 55, 72
Node parameters 7,45,63,117
Nodes 7 '
Numeric parameters 45
Numerical expressions 33; 40
Numerical precision 140
Numerical sol:ution 37, 68, 105

o

Output synonym 10,52,56
OR allocate nodes' 39, 73, 98
OR Allocate nodes 42

p

Parameter values. 94
matching format 46, 62
positional format 46, 62

Parameters 5,6,7, 15,27
chain 28
distribution 27
node 28, 117
numeric 27
Distribution 133

Passive queues 4, 8, 39, 68
Performance measures 16

plotting graphs of 104
Plotting performance measures 104
Point estimate 71
Pool of tokens 8, 39
Population (closed chain) 53, 54
Precision 140

INDEX

April 3, 1982

INDEX

Predicates 56
Preemption distance' 35
Priority 34,35
Processor sharing 8, 33
Prompts 5,5
PL/I embedding 20, 104
PRINT 139,
PRTY 34, 40, 41 '
PRTYPR 35
PS '8,33,68

Q

Queue length' distribution 12
Queue length distributions, 69
Queue lengths 12, 40, 69
Queue type 6 ,
Queue types 9, 24, 45
Queueing disciplines 32, 36, 40
Queueing time distributiQn 12

, Queueing time distributions 69
Queueing times 4, 12, 39, 40, 43, 44, 69
Quit reply 23
QL 138

R
, ,

Random number ,generation 82
, Random number streams 82
Regeneration 'state 134
Regenerative method 36,75, 95
Related jobs 39, 42, 50
llelease nodes 8,43
Release of tokens, 39, 43
Replication limits 74'
Replications 74, 95
Replies, 5 '
Response times 4, 12, 39, 40,43, 44
Review reply, 23'
Routing 6, 10,68 '
Routing chains 53
Routing definitions 55
Run continuati,on 16
Run guidelines 77
Run length 72
Run limits 13, 73
READMD 104
RESQ diagram symbols 2
RESQ diagrams l'
RESQ files 25
RESQ2 APLMBD 101
RESQ2 NUMERD 102'

April 3, 1982

RESQ2A 105
RESQ2M 105
RJ 138
RQ2COMP 93
RQ2INP 13,23, 24
RQ2LIST 25, 150
RQ2PRNT 20, 94, 97
RQ2REC 23
RQ2RPLY 93

s

Sampling periods 78, 80
Save reply 23
Seeds 82
Semicolons 8
Sequential stopping rule 77, 80
Servers 32, 37
Service rates 32, 37
Servi ce , times 32
Set nodes 8, 30, 48
Simulated time 130
Simulation 105
Simulation dependent expressions 33
Simulation tra,ce 83, 130
Simultaneous resource possession' 4, 39
Sink 43,53
Solution method 5
Solution summaries 94
Sources 53
Spectral method 79, 96
Split nodes 49, 52, 53
Status functions 138
Submodel invocations 62,
Submodel nesting 60, 65
Submodels 2, 7, 24, 60
SA 138
SETUP 5, 21, 101, 150

argument, 22
dialogue file mode 24
edit mode 23
prompting mode 22
review mode 23
table sizes ,26

SETUPD RQ2DAT 26'
SRTF 36
STPARM 105
STPRMV 105

183

184

T

Textsubstitution 24
Token use 69
Tokens 8,39,39,42
Total tokens 69
Trace 83, 130
Transfer nodes 39, 42
Transient characteristics 71
Tutorials 5
TA 138
TH 138
To" 138
TYPEVL 105

u

Upper case" 5
User interfaces 4

Utilization 17"
USER function 20

v

Vector 48
Vectors 27,29

INDEX

Virtual storage requirement 21,93, 102

w

Width criteria 78
Work demands 32, 36
WHAT: 16

April 3, 1982

