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: Abstract Queuelng networks are important as performance models of systems where
- performance is principally affected by contention for resources.: Such systems include
_ computer systems, communication networks, office systems and manufacturing lines. In
order to effectively use queueing networks as performance models, appropriate software
- is necessary for definition of the networks to be solved, for solution of the networks (by
~'simulation and/or numerrcal methods) and for exammatlon of the performance measures
obtained.

The ReSearch Queueing Package, Version 2 (RESQ) is a system for constructing and
solv1ng extended queueing network models. We refer to the class of RESQ networks as

"extended" because of characteristics which allow effective representatron of system
detail. RESQ incorporates a high level language to concisely describe the.structure of -
the model and to specify constraints on the solution. A main feature of the language is
~the capability to describe models in a hierarchical fashion, allowing an analyst to define
submodels to be used analogously to use of macros in programming languages. RESQ
also provides a variety of methods. for estimating accuracy of simulation results and
~ determining simulation run lengths. :
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PREFACE

~Queueing networks are useful as performance models of systems where performance- is -
principally affected by contention for resources. Such systems.include computer systéms,
communication networks, office systems and manufacturing lines. - The Research Queue¢ing
Package, Version 2 (hereafter referred to as RESQ) is a system for constructing queueing
network models and solving queuelng network models. Simulation'methods, including state of
the art statistical analysis, are provided for the full class of queueing networks allowed. in the - -
RESQ language. Numerical methods are prov1ded for a subset of the queuelng networks ‘
allowed by the RESQ language. i : : :

ThlS document 1ntroduces usage of RESQ and gives examples of s1mple models of

computer and communication systems constructed and solved using RESQ. The RESQ ‘user
should also be familiar with either

C.H. Sauet E.A. MacNair and J.F. Kurose, "The Research Qu.euelng Paokage o
Version 2: CMS Users Guide," IBM Research Report RA—139 Yorktown Heights,
New York (April 1982). :

or

.. C.H." Sauer, E.A. MacNair and“ J.F. Kurose, "The Research Queueing Package
~ Version 2: TSO Users Guide," IBM Research Report RA-140, Yorktown Helghts,
- New York (April 1982). :

' whlchever is appropriate to the operating system being used. These guides also 1nc1ude a few
examples which are more complex than those presented in this document. :

'~ This document has the following sections:
"Section 1: Introduction" introduces some of the features and capabilities of RESQ.
"Section 2: Computer System Model - Numerical Solution" illustrates interactive usage of
the two basic RESQ commands, SETUP and EVAL, using numerical solutlon of a model

dlscussed in Section’ 1.

"Sectlon 3 Dialogue Files - Model Parameters" illustrates the batch mode of the SETUP‘
command and parameters defined with the EVAL command.

- "Section 4: Simultaneous Resource Possess1on - Slmulatlon discusses simulation: of the
- second example of Sectlon 1. '

"Section 5: Confidence Interval Methods discusses the three methods available in RESQ =
tor stat1st1ca1 analysis of 51mulatlon results and automated control of run length.

"Section 6: Sources and Sinks" discusses the RESQ elements for arrival of jobs in the’
- network and departure of jobs from the network.

”Sectlon E Chams discusses the RESQ approach to representing groups of heterogene-'
_ ous jobs. : : ' S » ‘

”Sectlon 8 Job Chain and Global Variables" " describes vanables available dunng
s1mulatlon for purposes analogous to var1ables in the programmlng language sense.
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"Sectlon 9: Routlng discusses the deflnltlon of routlng between network elements

"Sectlon 10 Pass1ve Queues" describes in’ more detail ‘the RESQ elernents for eXp11c1t1y ’
: acqulrlng and freemg units of a resource.

"Sectlon 11: Split, Flssron and FUSIOII Nodes dlscusses the RESQ elements used by Jobs
to generate other jobs and to synchronlze activities wrth these Jobs -

"Sectlon 12 Queue Types dlscusses a macro faclllty for queue deflnltlon
"Sectlon 13: Submodels d1scusses a macro faclhty for subn‘etwork ‘deflnltlon o

"Sectlon 14: PL/I Embeddlng dlscusses access to RESQ from PL/I procedures for
plottmg graphs and constructing hierarchical solutions.
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1. lNTRODUCTlON

Models are used. to. est1rnate the performance of systems when measurement of system
performance is 1mposs1ble (e.g., because the system is not yet operational) ‘or impractical (e.g.,
"because 'of the human and machine resources required). Queueing networks have becoiie
important as. performance models of a varlety of systems where system performance is usually
significantly affected by contention for resources. Queueing network models can be used from

“the early design stages of a system on throughout the life of the system to estimate systemf" ‘

performance.

We will not attempt .a general discussion of queueing networks here, but will try to make
our discussion self-contained. The reader seeking additional background may wish to refer to -
special issues of Computing Surveys (September 1978) and Computer (April 1980), to Sauer -
and Chandy [SAUES81a] and to other books listed in the Blbhography Our examples: will be
of queueing network models of computer’ systems and communication systems. However,
queueing models have been used for decades in examlnrng a wide variety of other systems.
Much of our discussion ‘applies directly to performance issues in office equ1pment manufactur-
‘ing lines and other systems. Our emphasis will also be on performance, but the modehng'"
techniques we present also apply to analys1s of other 1ssues such as re11ab111ty and correctness
(e g, deadlock analys1s) :

: The basrc problems in us1ng queueing network models are to (1) determrne ‘the ‘resources -
and their characteristics which will most affect performance (2) formulate a model represent-"
ing these resources and characteristics and. (3) determine (algebrarcally, numerically or by
s1mulat10n) the values for performance measures (e.g, mean response time) in the model. The -
first of these problems though often difficult, is highly system specific. We will not address
this problem directly. The Research Queuerng Package (RESQ) is a software tool for burldrng
queueing network models. We emphasize '"tool" because RESQ is not a model in itself. ‘As a
tool, it can be of great value in degling with the second and third basic problems just cited.
This document introduces. some/the features of RESQ and their usage For a thorough.
‘dIS(,USSlOn of RESQ see erther ers Gulde cited in the preface : pl

TERMINALS ' T O S SR FLOPPY

: Fi‘g'ur'e'll.l - Queueing Network Model

Figure 1. 1 111ustrates a very srmple queueing network model of an interactive computer
system. - (This network is a simplification of networks used as computer system models since -
the mid sixties.) The model considers contention for three resources of the system, the CPU, a
floppy disk and a hard disk. Users of the system are represented by jobs in the queueing
network. A user spends part of his or her time thinking at the terminal and keying in com-
‘mands. This part of the user’ s t1me is represented by service times of a job (representing the ‘
user) -at the terminals ' queue " The model assuimes there are as many terminals as users, s
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2 ' | : | INTRODUCTION / SEC; 1

there is no waiting for a terminal; we wrll still refer to the model representatron of the
term1nals as a queue. - After keying in a command, ‘the user waits for a response. The jOb
representing the ‘user alternates between computation and I/O actrvrtres until the command
processing is. f1n1shed and the user receives the response. The user then begms another ‘
thrnkrng/ keying time. o

We have made this model srmple because it is our first example, but we have also made it S

:srmple so that a numerlcal solutron of the model will be feasible. For: exact numerical solutron
to be feasible, we must make a number of assumptrons One of these assumptions is that

command processing does not require more than one resource at a time. - This is likely an o

unreasonable assumptron since command processing. will require memory as well as the
resources, prctured the assumptron is reasonable only if there is neghgrble contention for
' memory " Similarly, 1/0 activity in most architectures will require resources not mentroned
e.g., channels and controllers; the assumption: that a single resource is requlred is only
reasonable if there is neghgrble contention for these other resources. A second assumption is
that scheduhng is limited to a fairly restricted set of algorlthms In partrcular priority
scheduling is excluded .Other restrlctrve assumptlons will be con51dered as we discuss and‘
expand upon this model below. :

Without RESQ one ' would likely have two choices with regard to this model and these
assumptions: (1) Accept the model and its results without knowing how much impact the
assumptions have on the results. (2) Reject the model and build a detailed simulation model
in a conventional discrete event simulation language. This second choice would entail new
problems, most notably (a) expense of building and runnlng the model and (b) doubt about
the accuracy of the results (due to the statistical variability of simulation). In the past there
has been very little middle ground between these choices. /‘ advantage of the best features of
npmerical and simulation solutlon

Two of the principal objectives of RESQ have been (1) to brldge this gap between
numerical and simulation methods and (2) to encourage analysts to use a solution méthod B
approprrate to the case at hand. RESQ has succeeded at these objectives partly because of the g
solution methods it provides and partly because of its characterizations of queueing networks.
RESQ is effective because of its solution methods, because of its characterizations of queueing
networks, and because of its user interfaces, which have been engineered to maximize user
productrvrty : :

RESQ provides the "state of the art" in numerical solution methods, so that restrictive
- assumptions can be ‘avoided where possible. RESQ provides simulation solutions with special
features not found in most simulation languages. Most important of these are statistical
output analysis techniques which :provide error estimates (in the form of confidence intervals)
for simulation results and stopping rules for determining when the simulation should end.’
(Statistical . output analysis techniques are discussed in Chapter 7 of Sauer and Chandy '
[SAUES81a], Chapter 4 of Kobayashi [KOBA78] and Chapter 6 of Lavenberg et al
[LAVES82].) The presence of multiple solution methods in one tool makes it possible to use
 the method most -appropriate to a given model and to test the impact of model assumptions:
such as the ones discussed above. Presence of multiple solution methods also makes feasible -
the use of several methods in a hybr1d solution of one model -

We refer to the networks of RESQ as "extended" because of characteristics absent'from
most queueing models. Perhaps the most 1mportant of the extensions is the "passive" queue,
‘which allows convenient representatron of srmultaneous résource possession as in ‘the discus-
~_sion above. . Traditional queues are "active" queues in RESQ.terminology. A job’s activity is
typically focused on the resources of active queues. A job typically has no interaction with
other model elements while at an actlve queue A job typically acquires units of a passive
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MEMORY
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~ ~ FLOPPY
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Figure 1.2 - Network with Passivé Queue

queue resource and holds on to thém while visiting other queues (including other passive
queues) and model elements. The job explicitly releases the units of resource when it no
longer needs them. Figure 1.2 shows the addition of a passive queue representing memory to
the network of Figure 1.1. Inclusion of the passive queue allows us to avoid making the
assumption that command processing does not require more than one resource at a time: This
assumption is' made with the model of Figure 1.1 to make numerical solution feasible; avoid-
ance of the assumption precludes exact numerical solution. Modéls with passive queues are
solved either by simulation or by approximate numerical methods. (Exact numerical solution
for networks with passive queues is possible, in principle, but usually not practical.)

Note that in the figure the passive queue resource is held by the job during I/O activity
~as well. - Additional passive queues could be added to the model to represent the channel
and/or controller contention mentioned above. As well as representing simultaneous resource

" - possession, passive queues are particularly useful for representing complex mechanisms in a

simple manner. For example, contention for a channel may cause I/O devices to experience’
extra revolutions: prior to transfer. Communication network protocols and- algorithms are
additional examples of mechanisms. conveniently represented by passive queues. A third use
of passive queues is in measuring response times in subnetworks. The '"queueing time"
(response time) for a passive queue is defined as the time between a job’s request for units of .
the passive queue resource and that job’s freeing of the units of resource. Thus in Figure 1.2
the queueing time for the passive queue corresponds to the response time seen by the terminal
users.

The RESQ user interfaces are based on interactive dialogues which serve to educate new
_users, yet are designed to accommodate sophisticated users and large models.. The dialogues.
provide optional tutorials to clarify prompts. The translator automatically provides for
immediate correction of syntactic errors. If'a RESQ user discovers a semantic error in prior
portions of the dialogue, he or she may temporarily suspend the dialogue, correct the error and
then resume the dialogue at the point of suspension. A transcript (a 'dialogue file'") of a
model definition dialogue is kept for the user. The user may edit this transcript and then have
it translated again, with or without additional interactive dialogue. In addition to the model
definition dialogue and translator, there is a model evaluation dialogué associated. with the
solution components. This dialogue allows the user to selectively obtain performance’ meas-
~ures. Models may be. defined with parameters so that solutions of several related models may
" be obtained in‘a single evaluation, without retranslation of the model. It is also possible to
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: embed model evaluatron in a PL/I program. - The PL/I embeddmg mechanlsm is useful for
producing graphs or tables of model results for different parameter values An analyst may
use the PL/I embedding mechanism to provrde preprocessmg “and postprocessmg for a given
“model. With such an approach the model may be conveniently used by others who are
-1nterested in the modeled system but not in RESQ. s

There are versions of RESQ for. both MVS/TSO and for VM/ CMS Most of what we
say. apphes to either version.. However, where there are differences, we. assume that CMS is
being used. Our examples are presented as. if a. typewrrter type terminal is being used.
~ However, RESQ is insensitive to the type of terminal used and is typically used with a dlsplay
- terminal.- ‘The assumptron of ‘a - typewriter-type terminal sxmphfres the formattmg of the
- examples.
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2. C'_OM-PUTER' 'SYSTEM MODEL - -NTJMERI,CAL SOLUTION

_ “In thls section we wrll cons1der numerrcal solution of the. example of Frgure 1.1. In dolng
‘ ‘.so we will have to make further assumptlons in addltlon to the ones already - dlscussed

Let us consider the floppy disk queue We assume that the queueing dlsciphne for the disk
is. First-Come-First-Served (F CFS). (We will usually refer to scheduling algorlthms a8
queueing disciplines.) Further, we assume that a job’s service time at the disk has an exponén-

tial distribution independent of the current state of the disk.- Actually, a job’s service time will .

be the sum of several times, including seek time, latency and transfer (and possibly others),

The' seek and latency times will be dependent on the current position of the arm and the.
rotational position of the platters. The following is a possrble RESQ descrrptron of the floppy
drsk queue ‘ ,

QUEUE floppyq

CTYPE:fcfs .

.CLASS LIST: floppy

©  SERVICE TIMES floppytlme_
CLASS LIST:

: This is a'“fragment of a RESQ interactive dialogue; we will show the entire dlalogue shortly .
In this definition we use upper case for the RESQ prompts and lower case for rep11es to those -
prompts The prompts are termlnated by a colon (":"). :

The f1rst prompt is asklng for the name. of the queue We use the name floppyq rather
than "floppy because we want. to save the name "floppy" for another purpose and. because
"floppyq is easily. pronounced: The name we use may be any legal RESQ identifier- (see
Appendix 2 of the Users Guide.). ("Floppydiskq' would not be a legal 1dent1f1er because it

‘ has more than ten characters ) B , , ‘

, The second prompt 1s asklng for the type of the queue The type specifred ‘may be a
general type, i.e., "active" or "passive," or a specialized type, e.g., "'fcfs" as in the example.
A general type alloWs. specification of all queue. characteristics, while a speclahzed type
- assumes certain default specifications and thus allows an abbreviated- dialogue. - The. specializ-
ed type fcfs results in a s1ngle server queue with the FCFS queueing drsc1plrne Further, the
server has a fixed service rate of one (1). (If we want the server to have a dlfferent fixed -
rate, we can divide the mean service time by that rate. . If we want to explicitly define server
-rates, we must use the general active dialogue. The general active dialogue’ is described in -
Section 4 of the Users Guide.). We. will defer until later discussion of some of the other
characterrstrcs assumed by the specialized fcfs type. Generally, the assumptions résult in a
. srmpler spec1f1catlon than mrght otherwise be made. ' ‘ L L

The third prompt is ask1ng for a list of (]ob) classes" at' the queue. In general, an active
queue -may. have many classes. '~ The classes of a queue serve as ''nodes' in the. routing
description of the network; hav1ng multiple classes at a queue allows spec1f1catron of different
_routing paths for different _jobs leaving the queue. Different ‘classes -at a queue may also have
different service requirements, priorities .and other characteristics we will descnbe later.” In
this case ‘there is only one class, which we give the name "floppy. " (A class name may be any
\legal identifier.) We use "floppy'' for the class (rather than the queue) because we wrll use the
class name in our routrng deflnltron and because of the pronouncabrllty of floppyq

The- fourth prompt is for the service time drstrlbutron of ]obs at the queue. The serv1ce"
" time is the: amount of time needed during one visit to the queue. The 1dentrf1er floppytlme
is assumed to have been prev1ously defined. . Assuming floppytrme has been def1ned to have a

1
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6 " COMPUTER SYSTEM MODEL - NIIMERICAL SOLUTION /’,SEC. 2

‘»scalar numerrc value (another possrbrhty will be d1scussed later), it is taken to be the mean of e

o an exponentral drstrlbutron

The flfth prompt is for more class names. The null reply terminates the def1n1t1on of
floppyq If the prompt had not been null there would have been another prompt for servrce
tlmes and yet another class list prompt : : . : ,

: The defrnrtlon of the hard disk queue-can be essentially thé same, e.g., E o

QUEUE dlskq
TYPE: fcfs
. CLASS LIST:disk - .
~ "SERVICE TIMES: dlsktlme-[
CLASS LIST:

. The definition of the cpu queue is similar, but uses the "ps" specialized type:

< QUEUE: cpuq
" TYPE:psS .
CLASS LIST: cpu .
_ SERVICE TIMES cputlme .
CLASS LIST: L

The ps spec1a11zed type uses the Processor-Sharing (PS) queue1ng drsc1p11ne otherwrse it is the
same as thé fcfs specialized type. “The PS’ discipline is defined as the 11m1t1ng case! of a
' Round Robin drsc1p11ne with no overhead as thé quantum (tlme slice) goes to zero. With PS -
and n jobs in the queue, each job gets 1/n" of the server, 1.g; the server s shared equally
among ‘all of the jobs in the queue : : e o

. The frnal queue def1n1tlon is essent1ally the same as the other definitions except that we
‘use the "i specral type, which gives a queue with an Infinite- Server (IS)- d1scrp11ne ie., the
queue always has a server for each ]ob in the queue »

QUEUE termlnalsq
TYPE is :
CLASS LIST: terminals
SERVICE TIMES thlnktlme
CLASS LIST :

'(We use the 1dent1f1er "thrnktrme" because ' term1nalst1me would be too long. Note 'that
"thinktime" should include the keying time and any other times assoc1ated with the termlnals )
o Th1s concludes the queue def1n1trons for th1s model. »

The other pr1n01pal part of the ‘model def1n1tron is that of the routrng The routrng is
',defmed in terms of the transitions between nodes; in this model the only nodes are the classes ;
“In ‘general, the nodes 'of a model may be part1t1oned into”’ "chains'! such that a ]ob at a node in
one chain can never get to a node in another chain. In this model there is only one’ cha1n
‘The follow1ng 1s a pOSSlble routlng defrnrtron for th1s model i

‘ CHAIN: interactive , s SR EEE - i
**ERROR** IDENTIFIER BEGINNING "INTERACTIV":TRUNCATED TO lO-CHARACTERS
TYPE:closed B o S e e
POPULATION : users'
termlnals >cpu
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fcpu- >floppy disk; ;9 »
+floppy~ >term1nals cpu; 1/cplocycles 1—1/cplocycles‘
:disk->terminals cpu t/cpiocycles 1-1/cpiocycles

CHAIN:

The fxrst'prOmpt is for the name of a chain. We have intentionallyv used an identifier
longer than ten characters. Note that RESQ gives a warning message mformmg the user of
the truncated identifier it w111 actually store in 1ts symbol table : :

“The second prompt is for the type of chain, "open' or "closed." Open chains have

"sources" of jobs and "sinks" for jobs. Closed chains do not have sources and sinks.. Usually

the number of jobs in a closed chain is fixed, though we will see exceptlons ‘The chains of
both Flgures 1. 1 and 1.2 are closed : ’

“The third prompt is for. the number of jobs in the closed chain, i.e., its\"pépulé\ti‘on.”. We
assume that the identifier "users" has been previously defined to have a SCalar-numeric value.

The fourth and subsequent prompts, consisting of only colons (":") are for "routing
transitions," i.e.; descriptions of where a job can go when it leaves a node and how it decides
where to go: The first routing transition means that jobs leaving node (class) termmals always -
go to node cpu. The second routing transition means that jobs leaving node cpu: go to node

~ floppy with probability .1 and to node disk with probability .9. The third routing transition

means that jobs leaving node floppy go to node terminals with probability 1/cpiocycles and to
node cpu otherwise. We assume cpiocycles has been defined to have a scalar numeric value.
The fourth transition has the sameé effect for the disk. Together, the third and fourth trans-
itions mean that the number of CPU-I/O cycles a job experiences will have a ‘geometric
distribution (starting at one) with mean cpiocycles. The four transitions have completely
described the routing. A null reply to the next colon prompt terminates the chain descrlptlon

‘A null reply to the next CHAIN: prompt termmates the routmg descrlptlon

.-Having shown the descrlptlon of the queues and the routmg, we now show how these fit
into a complete model description. The model definition -dialogue is invoked by the command

'SETUP The following shows a possible use of SETUP for this model:

‘setup

MODEL:¢sm

- RESQ2 Translator V2.04 (03/02/82) Time: 21:57:48 Date: 03/10/81

"MODEL IS CSM

~METHOD:: how

: SPECIFY SOLUTION METHOD.

SOLUTION METHODS ARE NUMERICAL 'AND “SIMULATION.

"METHOD:numerical

NUMERIC PARAMETERS :

NUMERIC IDENTIFIERS floppytlme dlsktlme cputime thlnktlme users
FLOPPYTIME 22 :
DISKTIME:.019
CPUTIME: .05
THINKTIME 5
USERS: 15 :

NUMERIC IDENTIFIERS: cplocycles-
CPIOCYCLES 8
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8 ' ' . COMPUTER SYSTEM MODEL - NUMERICAL SOLUTION / SEC. 2

v NUMERIC IDENTIFIERS:
QUEUE TYPE: ‘
QUEUE: floppyq
TYPE:fcfs
CLASS LIST:floppy
SERVICE TIMES:floppytime
".CLASS LIST: D
- 'QUEUE:diskq
L IYPE:fofs S
"CLASS LIST:disk
© 'SERVICE TIMES:disktime
. CLASS LIST:- :
QUEUE: cpuq -
TYPE:ps
CLASS LIST:cpu
“SERVICE TIMES:cputime
" CLASS LIST: :
QUEUE: terminalsq
“TYPE:is -
CLASS LIST:terminals .
<. SERVICE- TIMES: thlnktlme
g "CLASS -LIST:
g QUEUE
. SUBMODEL: ‘
o CHAIN? 1nteractlve _ , S e
**ERROR** IDENTIFIER BEGINNING "INTERACTIV" TRUNCATED TO 10 CHARACTERS
TYPE:closed , - ‘ ; R
POPULATION:users .
;termlnals >cpu
cpu->floppy dlsk .9
:floppy- >term1nals cpu; 1/cplocycles 1-1/cplocycles
~idisk- }termlnals cpu; 1/cplocycles 1-1/cpiocycles’

CHAIN:
END

NO FATAL ERRORS DETECTED DURING COMPILATION.
R; T=0.73/1.53 22:11:31

"SETUP will accept a single argument, the model name. If no argument 1s g1ven to SETUP; it
prompts the user for a model name. '

Once the model name is estabhshed SETUP prompts for the solut1on method As with
all RESQ prompts, a reply of "how causes RESQ to produce a brief explanatlon of’ poss1b1e
rephes _ : :

Next is'a prompt for the names of numeric parameters, whose values would be :suppliedk
when the model is solved. For the moment we assume no parameters, ‘but w111 return to thls
feature in the next section.

In the queue and chain definitions we assumed that certain 1dent1f1ers had been prev1ous1y
defined with numeric values. The next prompt gives an opportunity for definition of such
Jidentifiers which have not been declared as parameters. It expects a list of identifiers. After
that prompt come prompts for the values of the identifiers and another prompt for more
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id'entifiers‘ We give another identifier (cpiocycles) and are prompted for its value. We a_.re
then given one more: prompt for numeric identifiers. A null reply terminates prompting:for
" numeric identifiers. R

In this eXample the values given for times are in units of seconds. This is only 1mplloltly
~defined, however. As far as RESQ is concerned, the meaning of the. time unit is unlmportant

the numer1ca1 values produced by RESQ would be ‘the same whether we intended the time

‘units to be microseconds, seconds or hours. It is up to the user to decide upon a time unit and.
" be consistent in using it; e.g., the user may choose the time units to be seconds. It is then up
to the user to provide all input in units of seconds and to interpret 'all tlmes in the RESQ
output in units of seconds

Next we are prompted for the name of a user defined queue type (As - discussed in
Section ‘12, we may define our own queue types which may be used in'a manner similar to the
usage of the predefined queue types fcfs, ps and is.)’ A null reply indicates we are not defining
‘any queue types. (It is always safe to give a null reply to a prompt. Usually SETUP will
accept a null reply as indicating a default value, e.g., no queue type def1n1txons Occas1ona11y‘
SETUP will insist on some other reply; in those cases the user can use "how to: flnd out what
1s expected ) : » '

The queue definitions are the same as the fragments we have already shown. We are then
' prompted for definition of a submodel; a null reply indicates we are not defining any submo-
dels The remainder of ‘the model def1n1txon is the chain deflnltlon already d1scussed -

' Model solutions are obtained with the EVAL command EVAL may be 1ssued w1thout
arguments, in which case it prompts for a model name.  If arguments are given to EVAL, the
-first one is used as a model name. We defer discussion of the mterpretatlon of other algu-
ments. Follow1ng is an EVAL d1alogue for model csm: v

eval )
"RESQ2 EXPANSION AND SOLUTION PROGRAM.
‘MODREL : csm ' L )
RESQ2 VERSION DATE: MARCH 9, 1981 - - TIME: 22:08:11 DATE: 03/10/82

NO ERRORS DETECTED DURING NUMERICA_L SOLUTION.

WHAT:all

ELEMENT . UTILIZATION
FLOPPYQ  ~ . 0.37943
DISKQ . | ©.0.29492
CPUQ 0.86234
TERMINALSQ ' . 0.00000
 ELEMENT THROUGHPUT
'FLOPPYQ O 1.72469.
DISKQ 15.52218
CPUQ. 17.24686
TERMINALSQ + = - 2.15586
ELEMENT MEAN QUEUE LENGTH

FLOPPYQ -~ 0.58712
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UT

TP

< QL
SDOL

QLD

QT
SDQT
QTD

U

TUD
TT
TTD
MXQL

MXQT

PO
RTM
ALL

XXXX

THE FOLLOWING CODES ARE NOT INCLUDED IN

SIM
ND
ST

-LNG
Jv
Ccv
GV

ND,

ELEMENT

CPUQ

Q.

b UTILIZATION
,THROUGHPUT

MXXXXCI

COMPUTER SYSTEM MODEL

- NUMERICAL SOLUTION / SEC, 2

DISK 0.40804
CPUQ.. .. 3.22555
TFRMINALSQ" 10.77929

'ELEMENT- . MEAN QUEUEING TIME
FLOPPYQ ©0.34042

DISKQ. . 0. 02629

CPUQ - ©0,18702

TERMINALSQ . 5.00000

WHAT :how .

CODES ‘ARE: XXXX XXXX (ELEMENT LIST)

XXXXCI (ELEMENT LIST)

XXXXBO XXXXBO(ELEMENT LIST)":
WHERE XXXX IS ONE OF THE FOLLOWING:

MEAN QUEUE

(OF SERVER OR TOKEN)
(DEPARTURES)"
LENGTH"

STANDARD DEVIATION OF QUEUE LENGTH

- QUEUE LENGTH. DISTRIBUTION
~MEAN QUEUEING TIME

STANDARD DEVIATION. OF QUEUEING TIME

(CUMULATIVE)

QUEUEING TIME DISTRIBUTION

MEAN TOKENS IN.USE

DISTRIBUTION OF TOKENS IN USE
MEAN TOTAL

TOKENS IN POOL

DISTRIBUTION OF TOKENS IN’POOL‘

MAXIMUM QL
MAXIMUM QT
OPEN CHAIN

. OPEN CHAIN

ALL OF .THE

POPULATION
RESPONSE TIME
ABOVE

WITHOUT CI OR BO GIVES POINT ESTIMATES ‘ONLY,

XXXXCI GIVES CONFIDENCE INTERVALS ONLY AND o

XXXXBO GIVES BOTH POINT ESTIMATES AND CONFIDENCE INTERVALS .
UNLESS AN ELEMENT LIST IS GIVEN, ONLY QUEUE VALUES ARE PRODUCED.
AN ELEMENT LIST IS A LIST OF QUEUES AND NODES. e

"ALL " B

GIVES SIMULATION SUMMARY AGAIN
NUMBER OF DEPARTURES

MEAN SERVICE TIMES
FINAL LENGTHS

(ACTIVE .QUEUES AND CLASSES ONLY)

FINAL- JV VALUES FOR JOBS STILL IN NETWORK

FINAL CV VALUES

FINAL VALUES OF GLOBAL VARIALBES

ST, LNG AND:JV MAY BE GIVEN WITH A LIST OF QUEUES AND NODES.
GV MAY BE GIVEN WITH A LIST OF VARIABLE NAMES.

TRY AGAIN- -
WHAT: gt (cpug, cpu)

MEAN QUEUEING TIME
0.18702
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L cpU 0.18702

WHAT: qtd
ELEMENT QUEUEING TIME DISTRIBUTION

. WHAT:

EXPANSION FINISHED.
R; T=0.45/0.97 22:13:43

After obtaining the model name, EVAL prints a version date an’d_the‘ current daté and
time. EVAL then prints any error messages or the "NO ERRORS ..." message. After that it

- prompts the user with "WHAT:" meaning "What results do you want to see?" A reply of

"all" causes. all results to be printed. Where queues consist of a single node (e.g., all of the
queues of this example have exactly one class each), only measures for the queues are
produced since the node measures will be the same as the queue measures. :

The utiiizat‘ion is per server. In the case of the terminals, since the number of servers is
"infinite," the utilization of each server is zero. The queue length at a queue is defined: to
include jobs in service, and the queueing time is defined to include service time.

Perhaps the most interesting performance measures for this model are estimates of
response time, but such estimates are not given directly for this model. (We use '"estimate"
here to emphasize that we are dealing with a model and usually do not obtain the values for
the ‘actual system. For this model RESQ. provides exact values for. performance measures
within the limits of numerical error.) By "response time' we know we mean the time from
leaving terminalsq to returning to terminalsq, but RESQ has no way of knowing: this. In
Section 4 we will see how charactenstics of response times can be directly estimated in models
solved by 51mu1at10n

‘We can easily estimate mean response time from the values we already know in at least

two ways: One way is to sum the mean queueing times at cpuq, floppyq and diskgq, weighted -
by the mean number of - visits to each queue per response time. Le., a response time consists

(on the average) of 8 queueing ‘times of .18702 seconds at cpuq, .8 queueing times of .34042
seconds at floppyq and 7.2 queueing times of .02629 seconds at diskq, so ‘the mean ‘response
time estimate is 1.958 seconds.. An easier way is to apply Little’s Rule: mean number of jobs
= throughput x mean response time. We know that the mean number of jobs not at the .
terminals is 15 — 10.77929 = 4.22071, so the mean response time is 4.22071/2.15586 =
1.958 seconds. : : ’

Exact numerical solution for the response time distribution is not. feasible. A commonly
used heuristic is to assume the response time has an exponential distribution, ie in this case
to assume the probability distribution function has the form F(¢f) = 1 — exp(—t/ 1.958). ‘With -
that assumption, we would estimate that the probability the response time is at 'most 1 second
would be 1 = exp(~1/1.958) = .400, that the probability the response time is at most 3
seconds would be 1 — exp(—3/1.958) = .784 and that the probabillty the response time is at
most 5 seconds would be 1 — exp(—5/1.958) = 922 ' ‘

As in SETUP, a reply of "how" causes a tutorial to be printed. In the tutorial ébbve, '

note that there are many performance measures which were not produced by the "al)" reply
These measures are only available with the s1mulat10n solution.
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Any of the codes for performance measures may be qualified by a list of queues and
nodes ~Only measures for those elements will be given. 3

“If a'code for an unavailable measure, e.g., queueing time d1str1but10n in the example is =
given, then only the heading is pr1nted Prompting for measures is terminated by a null reply

We have only shown the terminal. output A transcript of the EVAL dialogue is preserved'
for the user in a file with file name the same as the model name and file type RQ2PRNT.
~ This transcrrpt omrts errors and "how'" output. Thus CSM RQZPRNT would be - :

RESQ2 VERSION DATE: MARCH 9, 1981 ~  TIME: 22:08:11 .DATE: 03/10/82 '
MODEL :CSM’ :
NO. ERRORS” DETECTED. DURING NUMERICAL SOLUTION.

WHAT:all

- ELEMENT . UTILIZATION
FLOPPYQ 0.37943 ’
DISKQ 0.29492
CPUQ 0.86234
TERMINALSQ ~ 0.00000
ELEMENT - THROUGHPUT
FLOPPYQ 1..72469

. DISKQ 15.52218
CPUQ- 17.24686

| TERMINALSQ 2., 15586

- ELEMENT MEAN QUEUE LENGTH
FLOPPYQ 0.58712
DISKQ 0.40804
CPUQ 3.22555
TERMINALSQ 10.77929
ELEMENT MEAN QUEUEING TIME
FLOPRYQ - 0.34042
DISKQ 0.02629
CPUQ ‘ 0.18702 .
TERMINALSQ - 5.00000
WHAT : how

WHAT : gt (cpug, cpu)

ELEMENT

MEAN QUEUEING TIME

-CPUQ 0.18702
"~ CPU 0.18702
WHAT: qtd
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ELEMENT QUEUEING TIME DISTRIBUTION

WHAT:_'
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3. DIALOGUE FILES - MODEL PARAMETERS.

Suppose we wish to evaluate the csm model for a variety of think times and numbers of
users. It would be tedious to change the values of thinktime and users and then issue ‘the
- SETUP and EVAL commands for each pair of values of interest. This is why we provide for
~numeric parameters declared in SETUP but not. defined until EVAL is issued.  In the last
section .when we invoked SETUP we declined to list any numeric parameters. Instead of
listing thinktime and users as numeric identifiers we could have llsted them as numeric
parameters

We wish to do so now, but we wish to avoid gorng through the entire SETUP dialogue
again. We can avoid this effort by use of dialogue files. While using the SETUP command: as
illustrated above, it automatically generated a transcript of the dialogue (prompts and rephes)\
on a file with file name CSM (same as the model name) and file type RQ2INP.

This transcript is verbatim with the following exceptions: (1). The "RESQ Translator....""
and "MODEL IS CSM'" messagés are omitted. (2) Prompts which were given a reply of
"how", the how reply and the how tutorial are omitted. (3) Prompts which were repeated
because of erroneous replies and - the erroneous replies are omitted. (4) Error messages are
~omitted. . (5) Prompts with null replies are omitted. (6) The ''"NO ERRORS ..." message is

omitted. Thus CSM RQ2INP is as follows: :

MODEL:CSM
METHOD:numerical
NUMERIC IDENTIFIERS:floppytime disktime cputime thinktime users
FLOPPYTIME: .22 :
‘DISKTIME:.019
CPUTIME: .05
THINKTIME:5
USERS: 15
- NUMERIC IDENTIFIERS:cpiocycles
. CPIOCYCLES:8
QUEUE: £ loppyaq
TYPE:fcfs
CLASS LIST:floppy
SERVICE TIMES: floppytime
QUEUE:diskq
“TYPE:fcfs
CLASS LIST:disk _
‘ SERVICE TIMES:disktime
QUEUE: cpug '
TYPE:ps
CLASS LIST:cpu
SERVICE TIMES:cputime
QUEUE: terminalsg
TYPE:is
CLASS LIST:terminals
SERVICE TIMES:thinktime
CHAIN: interactive
TYPE:closed
POPULATION:users
terminals >cpu
cpu >floppy disk;.1 .9
:floppy->terminals cpu; 1/cpiocycles 1-1/cpiocycles
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‘:»;disk~>terminals cpu; 1/cpiocycles T—1/cpiocyc1es .
END-.- Lo = ) o :

The followmg 111ustrates edltlng of the dlalogue file w1th the CMS EDIT commandt

edlt csm- rq21np
BEDIT:
case m
locate/METHOD:
. = METHOD: numerical
input - NUMERIC PARAMETERS:thinktime users
next :
! NUMERIC IDENTIFIERS floppytime dlsktlme cputime thlnktlme users
Tange/thlnktlme users// i -
‘v‘ NUMERIC IDENTIFIERS: floppytlme dlsktlme cputlme
locate/THINKTIME
THINKTIME: 5
delete 2
locate/interactive .
CHAIN: interactive
change/ve/v/
CHAIN: 1nteract1v
file
R; T=0.06/0.32 12:49:28

- In this edit session, we first tell the editor that we want mixed lower and upper case. This is
necessary because the dialogue file has preserved the user’s lower case input and the editor
assumes upper case only ‘as its default.. There is one exception to the preservation of lower
case input: If a model is defined without a dialogue file, then the model name is translated to -
‘upper case. ‘Next we locate the solution method prompt and add a line declaring the rumeric
parameters. Next we go to the numeric identifier prompt with thinktime and users and erase
them from the reply. Then we delete the prompts and. replies for values of thinktime and.
users. Finally, we find the "interactive'' name which was too long and remove the final "e.”"

We can now let the SETUP command translate this dialogue file in a batch mode. No. -
interactive dialogue is necessary if we glve the SETUP command the model name as part of
the command.’ ‘ ‘ .

SETUP ‘csm
MODEL IS CSM'
'CONTINUING WITH ' MODEL DEFINITION
NO: FATAL ERRORS DETECTED DURING THE COMPILATION
R; T=0.43/0:96 12: 52: 07

. SeVeral questions may arise in the reader’s mind: (1) Why did SETUP not begin an interactive
dialogue instead of translating the dialogue file? The answer is that, once given the.model
name, SETUP will always try to use a dialogue file if it can find one. As we will see in the
next section, it is possible to switch back and forth between interactive dialogue and dialogue
file within a single issuance of the SETUP command. - (2) What about the prompts that-would
have had null replies in an interactive dialogue but are not present in the dialogue file? In this .

" case there are several instances: there would have been another numeric parameter prompt,
there would have been additional- CLASS LIST: prompts, there would have been another
QUEUE: prompt and there would have been another colon prompt for a routing transmon :
The ansWer is that any prompts ‘with null replies can be removed from a dialogue f11e and
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SETUP will still produce the same results as if the prompts with null replies had been there.
(3) What about error messages and error handling? = The answer is that SETUP will write
error messages on the terminal and attempt to continue processing the dialogue file. However, -
SETUP does not write the offending lines to the terminal. SETUP produces a listing file with
file name equal to the model name and file type RQ2LIST. This file corresponds to the listing
file a compiler would produce and includes error messages after incorrect lines.. CSM
RQ2LIST is as follows: B

RESQ2 Translator v2.04 (03/02/82) Time: 12:50:48 Date: 03/10/81

* 1% 0% . MODEL:CSM

* 2% . 0% METHOD :numerical

* . 3% Q0% ' NUMERIC PARAMETERS:thinktime users : o
* 4% QO ~ NUMERIC IDENTIFIERS floppytime dlsktlme cputlme'-
* 5% (% FLOPPYTIME: .22 S
* Gk O DISKTIME: :019

* 7Ok  CPUTIME:.05

% 8% 0%  NUMERIC IDENTIFIERS:cpiocycles

% 9% 0% - CPIOCYCLES:8

¥ 10% 0% QUEUE: floppydq -

* 11% - 0% TYPE:fcfs

* 12% 0% .- CLASS LIST:floppy

k3% O " SERVICE TIMES: floppytime

*. 4% 0 O% QUEUE:diskqg

* 15% O "TYPE:fcfs

®TEH T Ox CLASS' LIST:idisk:

*717% 0% . SERVICE TIMES: dlbktlme

*18% 0% ' QUEUE:cpuqg

ko 19% 0% © TYPE:ps’

* 0% 0% " CLASS LIST:cpu

* QTR 0k "~ SERVICE TIMES: cputlme

*.02% 0% U QUEUE: termlnalsq

*23% Ok . TYPE:is

* 24% . QO CLASS LIST:terminals

* 5% 0% - SERVICE TIMES: thlnktlme

. 26%. 0¥ - ‘CHAIN:interactiv '

* 27% 0% TYPE:closed

“k 28% (O -POPULATION:users

*.290% - QO :terminals->cpu

* 30% 0% :cpu~>floppy disk;.1 .9

* 3% 0% o :floppy—>term1nals cpu; 1/cplocycles 1—1/cplocycles
* 32% QO% :disk->terminals cpu; 1/cpiocycles. - 1-1/cpioceycles

33% . 0% END
NO FATAL ERRORS DETECTED .DURING COMPILATION.
Now we ‘a're ready to use EVAL again:’

evay{ sm

RESQ2 EXPANSION AND SOLUTION ‘PROGRAM : o .
RESQ2 VERSION DATE: MARCH" 9, 1981 - TIME: 13:08:11" DATE: 03/10/82"
THINKTIME: 10 : S ' ; e o
USERS:15 - ‘ :

NO ERRORS DETECTED DURING NUMERICAL ' SOLUTION. '
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WHAT :ut

ELEMENT UTILIZATION
FLOPPYQ 0.23670
DISKQ ~ ~ 0.18398
CPUQ - 0.53796
TERMINALSQ 0.00000

WHAT; )

- THINKTIME:10

USERS:20 _

'NO ERRORS DETECTED DURING NUMERICAL SOLUTION.

. WHAT:ut

ELEMENT = - UTILIZATION
FLOPPYQ 0.30661
DISKQ 0.23832
CPUQ 0.69685
TERMINALSQ 0.00000

WHAT :
THINKTIME: 10

USERS: 30

NO ERRORS DETECTED DURING NUMERICAL SOLUTION.

WHAT :ut

ELEMENT .° - UTILIZATION
FLOPPYQ 0.40896
DISKQ :0,31787
CPUQ - . 0.92944

‘TERMINALSQ 0:06000
WHATiquterminalsq)
ELEMENTT‘ “MEAN QUEUE LENGTH
TERMINALSQ 23.23608
WHZ‘T :tp (t‘ermi‘n’alsq)

ELEMENT  THROUGHPUT
TERMINALSQ 2.32361

WHAT:

“THINKTIME:

EXPANSION FINISHED.
'R; T=0.50/1.20 14:10:13

Note that we ‘gave the model name to EVAL as part of the command. EVAL then prompts us -
for a value for thinktime and a value for users. We first try twice the previous think time and

the same number of users. As we wduld- expect, the CPU utilization goes down considerably.
When we give a null reply to WHAT: we are prompted for more parameter values. With 20
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users the CPU utilization goes up some, and with 30 users the CPU approaches saturation -
~ again. When we give a null reply for a parameter value the EVAL command termmates

Using the thtle s Rule approach, the mean response- time _estimate is (30
23.23608)/2.32361 = 2.911 seconds. Using the exponential assumptlon the probabxhty the ‘
response time is at most 4 seconds is .747, the probability the response time is at most 6
seconds is .873 and the probabllxty the response tlme is at most 8 seconds is .936.

A file with file name the same as the model name and file type RQ2RPLY may be used
instead of the terminal to give replies to the prompts from EVAL. The RQ2RPLY file may
~include comments using the PL/I comment convention, i.e., comment may be any string
enclosed by "/*" and "*/" which does not contain "*/". However, comments must be
entirely contained on one line, and a line consisting of only a comment is treated as a ‘blank
line: For example, the following RQ2RPLY file could be used with model csm to get the same
results as in the above EVAL dialogue: ,

/*THINKTIME{*/ 10
/*USERS: %/ 15
AT * T aTTC T
J*WHAT : %/ ut

/*WHAT ;% /
/*THINKTIME: */ 10
/*USERS: %/ 20

/*WHAT: */ ut

/*WHAT : %/
/*THINKTIME: */ 10
/*USERS:*/ 30

/*WHAT: %/ ut

J/*¥WHAT : %/ gl (terminalsq)
/*WHAT:*/ tp(terminalsq)
/*WHAT ;% /
/*THINKTIME : %/

In this file the fifth, ninth, fifteenth and sixteenth records have the effect of ‘a null reply. -
To summarize the files we have for this model, let: us use the CMS LISTFILEvcommand: ,

listfile csm

CSM - RO2INP a1l
CsM RO2LIST = Al
CSM - RQ2COMP A1
CSM RO2RPLY - Al
csM CRQ2PRNT A1

'R; T=0.02/0.05 14:21: 30

The RQ2INP file is the dialogue file we have been manipulating. - The RQ2LIST file is a
listing file produced by SETUP; it is primarily useful when errors are encountered in the
RQ2INP file or submodels (see Section 13) are used. The RQ2COMP file .is the file passed
from SETUP to EVAL. The RQ2RPLY file contains the responses to be stacked for EVAL,
as we just discussed. The RQ2PRNT file contains a transcript of the EVAL dialogue. «
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4. SIMULTANEOUS RESOURCE POSSESSION - SIMULATION

. One of the principal limitations of the model of the last' two sections is that it ignores
simultaneous resource possession, i.e., that jobs must have memory -in ‘order to use the
processor or a device.  We can think in terms of a job passively holding memory while it
actively uses the processor or a device. In this section we show how we can add a passive
queue to model csm as in Figure 1.2. In order to do so, we edit the dialogue file from the last
sectlon : :

editfcsm'rq2inp
EDIT:
case m
fname csmwm
next
MODEL: CSM .
charnge /CSM/cSmwm :
MODEL:csmwm -
input /*Computer System Model w1th Memory*/
next.
METHOD: numerical
change/numerical/simulation
. METHOD:simulation '
locate/CHAIN:/
- CHAIN: 1nteract1v
delete *
EOF:
file
R; T=O.13/O.71 15:02: 11

Flrst we change the file name so that the old model will be preserved and change the model
name within the file. (It is not strictly necessary to change the model name within the flle ‘the
f11e name is always used as the model name by RESQ. commands. )

- We also insert a comment explaijning the model name. SETUP uses the PL/I co'mment‘
convention. Comments may be included in replies, where they are treated as ‘blanks,, or may
be inserted on separate lines as above. As with RQ2RPLY, each comment must be confined
to a single line. (This is because the end of a line has meaning in the dialogue file language.
‘A comment too long for one line should be broken into several comments on successwe lines.)
Then we change the solutlon method to simulation. . ;

" We then delete everything after the queue definitions, leaving an zincempiete &ialqgue file:

MODEL csmwm

/*Computer System Model with Memory*/

METHOD:simulation

NUMERIC PARAMETERS:thinktime users

NUMERIC IDENTIFIERS:floppytime disktime cputime
FLOPPYTIME: .22
DISKTIME:.019

- CPUTIME:.05 .

NUMERIC IDENTIFIERS: cplocycles
CPIOCYCLES:8

QUEUE: floppya
TYPE: fcfs
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CLASS LIST:floppy
SERVICE TIMES:floppytime
. QUEUE:diskqg
. TYPE:fcfs
* CLASS- LIST:disk
' SERVICE TIMES:disktime
" QUEUE: ¢pug
T TYPE:pS
CLASS LIST:cpu
SERVICE TIMES: Cputlme
 QUEUE:terminalsqg
TYPE:is
CLASS LIST:terminals
SERVICE TIMES:thinktime

Now we.can use SETUP to translate the partial dialogue file.  When SETUP reaches the end of
- the partial dialogue file, it will switch to interactive mode. SETUP will start prompting us to’
.continue the queue defmltlon since the last line in the file gives the service times for the
termmals :

SETUP csmwm
MODEL IS CSMWM
CONTINUING WITH MODEL DEFINITION...
CLASS LIST:
QUEUE : memory
TYPE:passive
TOKENS:edit
EDIT:
case m
locate/PARAMETERS
NUMERIC PARAMETERS: thlnktlme users .
‘change/users/users partltlons
NUMERIC PARAMETERS:thinktime users partitions -
o file
MODEL IS CSMWM
_CONTINUING WITH MODEL DEFINITION
- TOKENS: partltlons
DSPL fcfs :
BLLOCATE NODE LIST: getmemory
NUMBERS OF TOKENS TO ALLOCATE:1
ALLOCATE NODE LIST:
RELEASE NODE LIST:freememory
RELEASE NODE LIST:
DESTROY NODE LIST:
CREATE NODE LIST:
QUEUE:
SET NODES:
FISSION NODES:
FUSION NODES:
SUBMODEL:
CHAIN:interactiv
'~ TYPE:closed
POPULATION:useéers
:terminals->getmemory~->cpu~->floppy disk;.1 .9
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floppy >freememory cpu; 1/cplocycles 1-1/cpiccycles
tdisk~ >freememory cpu; 1/cplocycles 1-1/cpiocycles
freememory~>term1nals‘

CHAIN v
“QUEUEs FOR QUEUEING TIME DIST:memory
VALUES:1 2 3 4 56 7 8 ’
QUEUES FOR QUEUEING TIME DIST:
QUEUES FOR QUEUE LENGTH DIST:memory
o MAX VALUE: users/2
' QUEUES FOR QUEUE ‘LENGTH DIST:
' NODES FOR QUEUEING TIME DIST:
NODES FOR QUEUE LENGTH DIST:
. CONFIDENCE INTERVAL METHOD:none
_ INITIAL STATE DEFINITION-
e'CHAIN 1nteract1v
' 'NODE LIST:terminals
‘ INIT POP:users - .
CHAIN: '
'RUN LIMITS-
'SIMULATED TIME
. EVENTS:
.QUEUES FOR DEPARTURE COUNTS:memory
-DEPARTURES: 500 '
QUEUES FOR DEPARTURE COUNTS
NODES FOR DEPARTURE COUNTS:
LIMIT - CP SECONDS:10
TRACE: ho '
END , _ v _
NO FATAL ERRORS DETECTED DURING THE COMPILATION. -
R; T=2.22/6.98 15:53:11

_In the definition of the memory queue we give the type as 'passive." There”areho
predefmed special types for passive queues corresponding to fcfs for active queues, but the

‘user can defme spec1a1 types (Section 12)

A passive queue consists of a pool" of "tokens" and a set of nodes which interaet with -

‘the’pool.' (The tokens are analogous to the servers of an active.queue.) The prompt,

"TOKENS:" is asking for the number of tokens in the pool. Let us assume for now that-
memory in the computer system is organized into fixed homogeneous partitions such that a job -
needs exactly one partition -of memory | for processing and/or 1/0. Then a token of the ‘

.passwe queue can represent a partition.

, Now suppose we realize we want‘ the number of partitions to be-a parametet. ‘We-h‘a_ve
not declared an identifier for this purpose, so we would like to. change the dialogue file before

v'we p'roceed As illustrated -above, SETUP will allow us to edit the dialogue. file by replying

"edit" to any prompt. When" SETUP is given the "edit" reply, it places the user in an editor

‘lookmg ata dlalogue file. This dlalogue file includes any interactive dialogue since the SETUP

command was issued. When the user leaves the editor (e.g., by filing) SETUP reprocesses the’
dialogue file left by the editor. If the dialogue file is’ incomplete; then SETUP switches to
prompting mode when it reaches the end of the file. -(If the file is complete, SETUP exits
without further prompting.) ' e e
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In the example, we used the ‘editor to add "partitions" as a parameter. After leaving the
editor with the file command, SETUP retranslates the dialogue file through our reply ''passive"

to TYPE: and then reissues the TOKENS: prompt. We can now reply "partitions" to. that

prompt.

_In-all of our examples, we assume the standard CMS editor. However, other editofs .‘niay '

be made available, as d1scussed in Section 2.2 of the Users Guide.

The next prompt is for the queueing discipline; we use fcfs,

After that we are prompted for a list of allocate nodes. A job goes to an allocate node

when it wants to request tokens from the pool. Allocate nodes in passive queues are the
‘counterparts to classes in active queues. A job will wait at an allocate node until it gets the
number of tokens it has requested. :

The next prompt is for a distribution for the number of tokens a job needs when it comes
to the allocate node. The reply of "1" means that a job needs exactly one token. Note that

this is different from the active queue case where a scalar value implies an exponential.

distribution. The rule is that where continuous distributions are expected, a scalar. value
implies an exponential. distribution, but where a discrete distribution is expected, e. g, because
the resulting value should be an integer, a scalar value implies a constant d1str1butlon

We are then given the opportunity to list more allocate nodes. After a null r‘eply we are

prompted for a list of "release" nodes. A job gives up any tokens it holds (of a specific
passive queue)} at a release node and is considered to leave the queue when it goes through the
release node. We are prompted for more release nodes and give a null reply

We are then prompted for destroy node and create node lists for this queue; there are no
such nodes in this-model and we defer discussion of them until a later section. -

Then we are prompted for another queue, for a list of set nodes, for a list of f1ss10n

nodes, for a list of fusion nodes and for a definition of a submodel; null replies indicate there‘

are none of these

The routing definition is very similar to before but with one new wrinkle: the reply to the .

first colon is a series of concatenated routing transitions.. The concatenation is permissible as
* long as the_final part of the transition does not involve a routing decision (e.g., by probabili~

ties in its "to part," i.e., its right hand side) and the transition does not include certain node

types we have not yet discussed in 1ts "from part," i.e., its left hand s1de ‘

: If we  had w1shed to, we could- have avoided completely respe01fy1ng the routmg cham

interactively and revised the previous definition 1nstead We could -have used the CMS -

COPYFILE command to copy all or part of the previous model definition (RQ2INP) before
we edited it. (If we were using an editor such as XEDIT we could have saved the portion of
the file we deleted on a new file at the same time we deleted it. .In. XEDIT: this would be done
with the PUTD subcommand.) Having this preparation, we could have. given the "edit" reply
to the CHAIN: prompt. -Then, while in the editor, we could have retrieved the old routlng
definition (using the GETFILE subcommand) from the other file and modified that definition,
We would then proceed with the interactive dialogue that follows the routing chain definition
after leaving the editor. - With the CMS EDIT command we use in our examples ‘and this

~ simple model, it is easier to just completely respecify. the routing. However, with a full screen

editor and/or a more complex model, it is more likely to be appropnate to save and modify
portions of dialogue from the previous RQ2INP file than to completely respecify them.
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" After the chain definition we have finished defining the model proper, However, we still
must provide some additional information to define the simulation run. - This 1nformatlon falls
into several categorles : :

1 Spec1f1‘catron»of non-standard performance measures to begathered._
2, Specification'of initial state of the system.

3. “Specification of confldence interval method, 1f any, and parameters of the ..
' _confldence 1nterva1 method.

4, Spec1f1catron of stopping criteria.’
5. Spec1f1catlon of 51mulatlon trace.

In order for the s1mu1atlon to -estimate- distributions of measures such as queuemg t1me, it
- must reserve storage for each point on the distribution. Rather than attempt to guess which
points of the distribution should be gathered for each queue and node and reserve a large
amount of storage for information that may not be of interest to the user, the simulation
requires that the user specify which distributions are to be gathered and what pornts of ‘the
distributions are to be considered. The prompt "QUEUES FOR QUEUEING TIME DIST:" is
asking for a list of queues which are to have queueing time distributions gathered For’ each
queue listed, SETUP will prompt "VALUES:" for a list of points on the distribution for that .
queue’s queueing time. The simulation will produce estimates for the cumulative d1str1but10n
at those points, e.g., in the example the simulation will produce estimates of the probablllty
* the queueing time is less than or equal to 2, less than or equal to 4, etc. The queue length
distribution is treated similarly except: (1) The distribution is estimated for each queue length_
up to some specified maximum (e.g., one half the number of users in the example). (2) The
distribution estimated is not cumulative, i.e., estimates of probab111ty of queue length O, queue
length 1, etc. are produced. -

Wlth the regenerat1ve method for confidence - intervals (Sectlon 4) we must speclfy a

"regeneration' state similar to the initial state. So SETUP asks for the confidence interval

method, if any, before asking for the initial state. We defer discussion of confidence 1nterval
: methods to Section 4

The initial state definition section defines where jobs are to be placed when the simula- -
_ tion begins. - The initial state is described by chains and by nodes within chains. The NODE
LIST: prompt is asking for a list of nodes which will have non-zero populatlons when the
‘simulation begins. The INIT POP: prompt is asking for a list of the corresponding popula-'
tions; for closed chains the sum of the elements in the list should equal the chain populatron
In this example we 1mt1ally place all of the users at the termmals

The run limits section defines conditions other than CPU time consumed which will
terminate the simulation. The default values are intended to be "infinity;" actually the largest
- representable floating point or fixed point values are used, depending on the particular limit.
The simulation will stop when the first limiting value is reached. As we shall see, the limits
specified can be increased after examining the results. Simulated time is time in terms of the
model execution. Simulated events are defined in Appendix 7 of the Users Guide. In the -

“examples of this section the events correspond to completion of sefvice times, i.e., -departures - '

from the active queues. The prompt "QUEUES FOR DEPARTURE COUNTS: " requests a
list of queues where departure count limits are to be cons1dered The DEPARTURES prompt ~
‘requests a correspondmg list of counts. .

April 3, 1982



24 - SIMULTANEOUS RESOURCE POSSESSION - SIMULATION / SEC. 4

The CPU limit is not in the run limits section because the run limits section is replaced by
run "guidelines" with the regenerative method (Section 4). The CPU limit is fairly crude for
tWo'rEESOns':’ (1) The CPU time consumed is only checked occasionally. .The frequency. of -
checking is model and processor dependent but is intended to be roughly once a virtual second
on a 3033. (All examples in this document were run on a 3033.) (2) The CPU time consid-

" ered only includes time consumed during the actual simulation and excludes time prepafing_ for

the run (e.g., reading files, obtaining parameter values, etc.) and time spent after the run
Tte‘r‘minates (e.g:, calculating and printing results). - (If the run is-continued after examining
results, the CPU time consumed includes the time spent calculating and printing results
previously, i.e., the CPU time is from the very beginning of simulation until the end of
simulation.) ’ : : o

The TRACE: prompt asks whether we wish to trace the actions of the simulation
program. If we had said "yes," then we would be prompted for more details (see Section 12
of the Users Guide). L -

- Having defined the model, We can now evaluate it with EVAL.  Using thé.parametelfs
k;fr(')m before,’ i.e., 10 second think time and 30 users, and four partitions, we get the following:

eval csmwm

RESQ2 EXPANSION AND SOLUTION PROGRAM. RS o :
RESQ2’ VERSION DATE: MARCH 9, 1981 - TIME: 16:28:11 DATE: 03/10/82
. THINKTIME: 10 ‘ S e .
USERS 30,

PARTITIONS:4.

RUN END: MEMORY DEPARTURE LIMIT

NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME: 217.73250°
CPU TIME: © 3,77
NUMBER OF EVENTS: 8754
. WHAT: gt (memory)
ELEMENT =~ MEAN QUEUEING TIME
MEMORY 3.56839

WHAT:

CONTINUE RUN:yes

LIMIT - MEMORY DEPARTURES:how

LARGER VALUE THAN ' 500

TRY AGATN- '

LIMIT - MEMORY DEPARTURES: 1000

LIMIT - CP SECONDS:how :

 LARGER VALUE THAN 5 OR NULL TO KEEP THAT 'VALUE
LIMIT - CP SECONDS: :

" RUN END: MEMORY DEPARTURE LIMIT

RUN END: CPU LIMIT

NO ERRORS DETECTED DURING SIMULATION

SIMULATED TIME: 290.88867
 CPU TIME: 5,17

NUMBER OF EVENTS: ' 11507
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WHAT: nd (memory)

ELEMENT
MEMORY

WHAT: gt (memory)

"ELEMENT
MEMORY

WHAT:

NUMBER OF DEPARTURES
651

MEAN QUEUEING TIME

. 3.76333

CONTINUE RUN:yes

LIMIT - MEMORY DEPARTURES:

LIMIT - CP SECONDS:10

RUN END: MEMORY DEPARTURE LIMIT

RUN END: CPU LIMIT

RUN END: MEMORY DEPARTURE LIMIT

NO- ERRORS DETECTED DURING SIMULATION.

WHAT:qt(memqry)

ELEMENT
"MEMORY

WHAT:all

ELEMENT
MEMORY
FLOPPYQ

' DISKQ
CPUQ.

" TERMINALSQ

ELEMENT
'MEMORY
FLOPPYQ
DISKQ

CPUQ
TERMINALSQ
'FREEMEMORY

ELEMENT
MEMORY
FLOPPYQ .
DISKQ

CPUQ
TERMINALSQ

ELEMENT
MEMORY

“April 3, 1982

SIMULATED TIME: 433.38184

CPU TIME: 7 .31

NUMBER OF EVENTS: 16860

MEAN QUEUEING TIME
3.39005

UTILIZATION
0.92252
0.40850
0.31400"
0.91481
0.00000

THROUGHPUT

2.30743
1.85287
16.44046

~18.29333

2.31666
2.30743

MEAN QUEUE LENGTH
7.83167
0.62480
0.43723
2.62806
22.16832

- STANDARD DEVIATION OF QUEUE  LENGTH

4.16640 ‘ :
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FLOPPYQ
'DISKQ .
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ

CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ .
DISKQ
CPUQ -
TERMINALSQ

ELEMENT
MEMORY

ELEMENT
~ MEMORY

ELEMENT
~ MEMORY

ELEMENT
MEMORY

ELEMENT

SIMULTANEOUS ‘RESOURCE POSSESSION - SIMULATION / SEC. 4

0.89727
0.74855
1.27861
4.13894

MEAN QUEUEING TIME

.39005
.33721
.02659
. 14362
.33247

O O O O w

STANDARD DEVIATION OF QUEUEING TIME

2.57104
0.30454
0.02610
0.15563"
9.49582

MEAN TOKENS IN USE
© 3.69009

MEAN TOTAL .TOKENS IN POOL

4.,00000

QUEUE LENGTH DISTRIBUTION

0: 0:01980
1: 0.02854
2: 0.04084
3: 0.06342
4: 0.06928
5: 0.09986
6:.0.09825
7: 0.08047
8:.0.08460
9: 0.09986
10: 0.08180
11: 0.04505
12: 0.03536
13: 0.03193
14: 0.03103
15: 0.04036

QUEUEING TIME DISTRIBUTION
~ 1.00E+00:

2.00E+00:

3.00E+00:
.00E+00:
.00E+00:
.00E+00:
.00E+00:
.00E+00:

0 3o ;b

DISTRIBUTION OF TOKENS IN USE

0.15900
0.34100
0.52400
0.68400
0.78200
0.85500
0.90900
0.93500
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ELEMENT = "DISTRIBUTION OF TOTAL. TOKENS IN 'POOL
ELEMENT = MAXIMUM QUEUE LENGTH
MEMORY _ .19
FLOPPYQ 4
DISKQ 4
CPUQ 4
TERMINALSQ 30
ELEMENT . MAXIMUM QUEUEING TIME
MEMORY v 17.08136
FLOPPYQ 2.43811
"~ DISKQ ' 0.29066
CPUQ 1.60335
TERMINALSQ ©101.23787
WHAT : ,
.CONTINUE .RUN:no
 THINKTIME:

" EXPANSION FINISHED.
R; T= 8. 02/9 51 14:10: 18

The initial simulation run terminated normally because of the departure limit for the memory
queue.  (As the model run was specified, the only other reasons the run would stop would be
for the CPU time limit or an error. ) :

Now we have the response time estimates for the model directly available as the queueing
time estimates for the memory queue. (Consistent with the definition of queueing time for
active queu_es, the queueing time for passive queues is defined as the time from arrival at the
queue to departure from the queue, e.g., release of tokens.) The estimate of mean response
time, 3.57 seconds, is 23% higher than the.response time estimate for the numerically solved
version of ‘this model without memory contention. = Apparently, the memory contention is
having a noticeable effect on response times. We emphasize "apparently” because we have no .
" idea of how much statistical variability has affected the simulation results.-

We may be able to get some idea of the variability by letting the run continue to see if
there is much change in the results. We continued the run by specifying a larger departure
count for the memory queue. - EVAL will prompt for larger limits for values not already at
"infinity." Larger limits are required for limits that have been reached and are optional for
other limits. We then hit the CPU limit after 651 departures. The estimate of mean response
time was considerably higher, 3.76 seconds, after only 151 more departures. Then we
increased the CPU limit so that we would get the full 1000 departures. With the longer run
we got a much smaller estimate of mean response time, 3.39 seconds.. The results we got were
the same as if we had specified 1000 departures initially: Continuation of runs will produce
the same results as if the final limits had been specified initially except possibly for models
which stop because of CPU limits. (Two instances of ‘a given run may take slightly’ different -
CPU times because of the effects of multiprogramming.) ‘

We could have continued the run further to see if the estimate would changé again, ‘but
we would rather use one of the formal approaches described in- the next section: As we wﬂl
see, this short a run for this model produces results with great variability. -

Now‘let us suppose' the memory,is organized in pages instead of partitions. Further, a

job’s processing requires 16 page frames with probability .25, 32 page frames with probability
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.5 and 48 page frames with probability .25. Thus the mean number of frames requlred is 32
(In this example we are restnctmg attention to page frames avallable to users. ) We change the
: model as follows: . o .

edit csmwm rg2inp’
EDIT:.
case' m
locate/partltlons‘
NUMERIC PARAMETFRS:thinktime users partltlons
change/partitions/pageframes
" 'NUMERIC PARAMETERS:thinktime users pageframes
locate/partltlons
" .TOKENS:partitions
chaﬁge/partitions/pageframes
‘ TOKENS: pageframes
locate/NUMBERS OF TOKENS TO ALLOCATE
NUMBERS OF TOKENS TO.ALLOCATE: 1
change/1/dlscrete(16,.25,32,.5,48,.25) .
NUMBERS OF TOKENS TO ALLOCATE:discrete(16,.25;32,.5;48,.25)
locate/DEPARTURES : 500 ” ‘ :
DEPARTURES: 500
‘change/5/10
. DEPARTURES:1000
locate/SECONDS ‘
LIMIT - CP SECONDS:5 "
change/5/10
LIMIT -~ CP SECONDS": 10
file-
R T 0. 09/0 34 14:33: 41

‘Fxrst we changed the name of ‘the parameter specifying the number of tokens. Then we
‘changed the distribution for the number of tokens required from constant at 1 to the above
described distribution. The RESQ '"discrete" accepts any number of pairs of values and
probabilities with the- pairs separated by semicolons (";"). 1In this case there are three pairs.
(The commas between values and probabilities are optional.  Blanks' could be used. “Blanks
could also appear before and/or after the semicolons.) : '

- Now we use SETUP again:

"SETUP  csmwm
MODEL IS. CSMWM
CONTINUING WITH MODEL DEFINITION,
“NO "FATAL ERRORS DETECTED DURING THE COMPILATION.
R; T—O 70/1 38 14:34:21 :

and EVAL, using the the followmg RQ2RPLY file:
/*Thinktime:*/ 10

/*USers */ 30

/*Pageframes:*/ 128

all

/*Continue’ run:*/ no

/*Thinktime:*/
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which produces the following RQ2PRNT file:

RESQ2 VERSION DATE: MARCH 11, 1982 - TIME: 11:47:41° DATE: 03/17/82
MODEL : CSMWM .

THINKTIME: /#Thinktime:*/ 10

USERS:/*Users:*/ 30

PAGEFRAMES:/*Pageframes:*/ 128

RUN END: MEMORY DEPARTURE LIMIT

'NO ERRORS' DETECTED DURING SIMULATION.

SIMULATED TIME: 444 .63232

. CPU TIME: S T7.64
NUMBER OF EVENTS: 16874
WHAT:all
ELEMENT - UTILIZATION
MEMORY . 0.82642 ‘
FLOPPYQ 0.41829
DISKQ 0.31052
" CPUQ o 0.87094
TERMINALSQ 0.00000
ELEMENT THROUGHPUT
MEMORY 2.24905
FLOPPYQ ' 1.78574
- DISKQ =~ . 16.05820
CPUQ . 17 .84845
TERMINALSQ 2.25805
FREEMEMORY 2.24905
ELEMENT “  MEAN. QUEUE LENGTH
MEMORY 7.02301
FLOPPYQ 0.62368
DISKQ » ©0.42275
CPUQ .. 2.30178°
TERMINALSQ = 22.97699
ELEMENT STANDARD DEVIATION OF QUEUE LENGTH
MEMORY '~ 3.77416
FLOPPYQ _.0.87659
DISKQ - 0.72183
CPUQ . 1.38069:
TERMINALSQ = 3.77415
ELEMENT MEAN QUEUEING TIME
MEMORY ' 3. 11431
FLOPPYQ 0.34903
DISKQ ~0.02632
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" CPUQ ‘ 0.12896

. TERMINALSQ 9.81125
ELEMENT  STANDARD DEVIATION OF QUEUEING TIME
MEMORY 2.19806
FLOPPYQ 0.31033
DISKQ 0.02599
CPUQ 0.14421
"TERMINALSQ '9.64321
ELEMENT MEAN TOKENS IN USE
MEMORY 105.78178
ELEMENT MEAN TOTAL TOKENS IN POOL
MEMORY 128.00002 ‘
ELEMENT QUEUE LENGTH DISTRIBUTION
- MEMORY 0:0.02748
o 1:0.05196
2:0.05272
3:0.07851
4:0.07436
5:0.08615
6:0.09493
7:0.07985
8:0.07594
9:0.08690
10:0.07881
11:0.07982
12:0.06958
13:0.02964
14:0.01516
15:0.01056
ELEMENT QUEUEING TIME DISTRIBUTION

MEMORY - 1.00E+00:0.18300
-~ '2.00E+00:0.34600 ..
3.00E+00:0.53200
4.00E+00:0.65700
~5.00E+00:0.83200
6.00E+00:0.90100
7.00E+00:0.95200
8.00E+00:0.97100

ELEMENT DISTRIBUTION OF TOKENS IN USE
ELEMENT DISTRIBUTION OF TOTAL TOKENS IN POOL
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ELEMENT MAXIMUM QUEUE LENGTH
MEMORY. 18
FLOPPYQ 4
DISKQ . . 5
¢PUQ 6
TERMINALSQ ‘ 30
CELEMENT = MAXIMUM QUEUEING TIME
MEMORY *  13.46424
- FLOPPYQ . - 1.,78271
- DISKQ 0.,29332
CPUQ 1.36720
TERMINALSQ 68.87238
WHAT:

CONTINUE RUN: /*Contlnue run: */.no
THINKTIME /*Thlnktlme */

(For the rest of this document we w111 usually show RQ2PRNT files rather than actual
' termmal output)

Wlth 128 page frames spe01f1ed the memory contenuon is the same on the average in the'
sense that if each ]ob requires the mean number of frames, at most four jobs can be in
memory at once. But now we could have a maximum of two jobs in memory if all the jobs
need 48 frames, or up to 8 jobs needing 16 frames. The mean total number of tokens should
be exactly 128; the discrepancy is due to numerical errot,

The results 'fr.om the two runs are noticably different, but we do not really know if the
difference is due to changes in the model or to statistical variability. - One way to consider the
statistical variability of simulation is to estimate confidence intervals. The next sectlon
dlscusses methods for estimating confidence intervals that are provxded in RESQ
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5. CONFIDENCE INTERVAL METHODS

~We have frequently referred to one of the most troublesome problems with sxmulatlon -
We need some indication of the accuracy of simulation estimates because of the statzstzcal'
variability of szmulatton estimates. This statistical variability is due to the use of random
number streams to drive the simulation. Assuming numerical errors are small, there. is no
correspondlng problem with numerical solution. "For example, when we obtained the mean
response time estimate of 2.91 seconds for the last parameters of model csm that was an exact
value for the model. The difference between that value and the mean response time of the
modeled system is due entirely to inaccuracies of the model and of parameter estimation, not -
to inaccuracy of solution. When we obtained the estimate 3.39 seconds for the mean response
time of the initial version of model csmwm, we had no idea of how accurate that estimate was
for the mean response time for the model, much less the modeled system. Though we usually
expect the inaccuracies of our models to be the principal source of error in model estlmates it
behooves us to attempt some estimate of the error 1ntroduced by statistical variability.

- The usual method of estimating variability of simulation results is to produce "confidence
interval" estimates: given some point estimate p (e.g., 3.39 seconds for mean response time)
and other information we produce a confidence interval estimate (p — 8, p + &) and
estimate the "true" value (for the model) is contained within the interval with some chosen
probability, say .9.. This probability, expressed in percent, e.g., 90%, is known as the
"confidence level." The quantity & depends on the confidence level; the higher the confidence
1eve1 is, the larger & is. We will use the term "confidence interval" to avoid the mouthful
"confidence interval estimate" but it should be remembered that the confidence intervals are .
only estimates. Note that the true value may lie outside of the confidence interval; but: this
happens only with a small probability (e.g., 1 — .9 = .1). If a simulation’ is not run long
enough, or if the performance measure considered is highly variable, then § may be. greater
than p and p ~ & may be negative even though the performance measure must be non-
negative. . Similarly, for performance measures known to be no greater than 1, e.g., utiliza-
tlons p and & may be such that p + &6 > 1. :

RESQ provides three methods for confidence interval estimation. The methods are
implemented to be as transparent to the user as is practical, i.e., to minimize user decision
making and to minimize required user understanding of the statistical bases of the methods
No.one method is best for all appllcatlons

o ' The method of independent replications is the preferred method for estimation of v
transient characteristics. Independent replications may be applied to estimation of =
- . equilibrium. characteristics, but one of the following two methods will usually be
preferable for estimating equilibrium characteristics. :

«  The regenerative method is the preferred method for estimation of equilibrium
behavior in models with regenerative characteristics. Many models constructed with
RESQ will have regenerative characteristics, but many other models will not.

o . The spectral method is the preferred method for estimation of equilibrium behavior
in models without regenerative characteristics. ~The spectral method may also be
applied to models with regenerative characteristics. The regenerative method
requires more user sophistication than the spectral method in that the user must be
able to define '"regeneration states.' Definition of a model to use the spectral
method is no more difficult than definition of a model to be simulated without
confidence intervals.
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The regenerative method and the spectral method allow automated run length control based‘ on
achieving' confidence intervals of. a prespecxfled width,  All three methods, independent

' - replications, the regenerative ‘method and the spectral method are discussed from a statistical

point of view in Chapter 6 of Lavenberg et al [LAVE82]. Other references in the Bibliogra-
phy discuss the. statistical aspects of the regenerative method and the spectral method in mbre :
deta11 : ‘ : g

The followmg three subsections are intended to be 1ndependent of each other and the -
remalmng sections of this document. The reader may skip one or more (possibly all) of these
‘subsections. _Examples in subsequent sections will use the confidence interval methods but -
the use of the confldence 1nterva1 methods is a 81de issue 1n the examples. -

-5.1. Independent Replications

A classical method for obtaining confidence intervals is the method of independent
replications. With independent replications we repeat the simulation run several times with
everything except the random number streams reset to the original initial state for each -
replication after the first. The random number streams for the second replication begin where -
the streams for the first replication ended, the streams for the third rephcatlon begrn where the
Vstreams for the second replication ended, etc : :

To use independent replications with csmwm we could first edit the dialogue file:

. edit csmwm rg2inp
EDIT:
locate/CONFIDENCE
CONFIDENCE INTERVAL METHOD:none
delete *
EOF: -
flle .
R; T= 0. 06/0 26 17 00:50

and then use SETUP again:

SETUP  csmwn }
MODEL- IS CSMWM
CONTINUING WITH MODEL DEFINITION.
. CONFIDENCE INTERVAL METHOD: repllcatlons
INITIAL STATE DEFINITION- :
CHAIN:interactiv ‘
NODE LIST:terminals
INIT POP:users
CHAIN: ,
CONFIDENCE LEVEL:90
NUMBER OF REPLICATIONS:5
REPLIC LIMITS-~
' SIMULATED TIME:
EVENTS:
QUEUES FOR DEPARTURE COUNTS memory
'DEPARTURES: 1000 }
QUEUES FOR DEPARTURE . COUNTS:
NODES FOR. DEPARTURE COUNTS :
LIMIT - CP SECONDS: 10 ‘
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TRACE:nO

END'
TNO FATAL ERRORS DETECTED DURING THE" COMPILATION.
R T"1 35/3 56 17:03:00° :

Usually we are interested in equilibrium behavior of the modeled system. In this case we wish-
to have the replications long so that the effects of our choice of initial state will not be
noticeable. (As we will illustrate later in this subsection, it is pos51ble to discard an ‘initial
portion of each’ replication to reduce the effect of the choice of initial state.) We prefer a few
longer replications to many shorter replzcatzons Usually we choose. the number of rephcatlons’
~to be between S and 10. The only significant exception is when we want the replications short
because we want to notice the effects of our choice of initial state, i.c., we are intetested in
. transient behavior rather than equ111br1um behavior. In that case it may be quite reasonable to
have many (20 or more) replications. R

The CP SECONDS limit is the total for all replications. 'We have 1ntentlonally left the
.11m1t too small in.the above dlalogue so that we can demonstrate how the run contmuatlon
mechamsm apphes to rephcatlons :

‘ We used SETUP 1nteract1vely for clanty We could havve appropriately edivt‘ed the
- dialogue file instead, e.g., - ; ; o

edit csmwm rg2inp
EDIT: : ‘
locate/CONFIDENCE
CONFIDENCE INTERVAL METHOD:none
Change/none/repllcatlons
CONFIDENCE INTERVAL METHOD:replications
locate/INIT POPR/
INIT POP:users
input = ‘CONFIDENCE LEVEL:90
input NUMBER' OF REPLICATIONS:5
next
© RUN: LIMITS-
change/RUN/REPLIC/
REPLIC LIMITS-
file o
" R; T=0.11/0.46 17:00:50

and then used ‘SETUP again. Now using EVAL we get the following RQ2PRNT file. . -

" 'RESQ2 VERSION DATE: MARCH 11, 1982 - TIME: 11:20:35 DATE: 03/17/82
MODEL : CSMWM ; s S

THINKTIME:/*Thinktime:*/ 10

USERS:/*Users:*/ 30

PAGEFRAMES: /*Pageframes:*/ 128

REPLICATION 1: MEMORY DEPARTURE LIMIT :

NO ERRORS DETECTED DURING SIMULATION. 6298 DISCARDED EVENTS

SIMULATED TIME PER REPLICATION: 444.63232
CPU TIME: ~10.28

NUMBER OF EVENTS PER REPLICATION: 16874
NUMBER OF REPLICATIONS: ‘ 1
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WHAT 1 qtbo ( memory)

ELEMENT MEAN QUEUEING TIME

MEMORY 3.11431
WHAT:

CONTINUE RUN:/*Continue run:*/ yes
LIMIT - CP SECONDS:/*Limit - CP seconds:*/ 50

 REPLICATION MEMORY DEPARTURE LIMIT

1
REPLICATION = 2: MEMORY DEPARTURE LIMIT
REPLICATION -~ 3: MEMORY DEPARTURE LIMIT
REPLICATION ~ 4: MEMORY DEPARTURE LIMIT

REPLICATION 5: MEMORY DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME PER REPLICATION: 445.37769

v CPU TIME: »  38.05
NUMBER OF EVENTS PER REPLICATION: 16966
NUMBER OF REPLICATIONS: » B

WHAT:allbo
ELEMENT - UTILIZATION

_ MEMORY ' 0.84662(0.83293,0..86030) 2.7%
FLOPPYQ 0.40334(0.39382,0.41286) 1.9%
DISKQ - 0.30808(0.30467,0.31150) 0.7%
CPUQ " .0.89286(0.87936,0.90636) 2.7%
TERMINALSQ 0.00000(0.00000,0.00000)

ELEMENT ' THROUGHPUT

‘MEMORY 2.24855(2.15706,2.34004) 8.1%
FLOPPYQ . 1.81734(1.78729,1.84739) 3.3%
DISKQ 16.10393(15.94658,16.26129) 2.0%

. .CPUQ 17.92303(17.74706,18.09900) 2.0%
TERMINALSQ 2.26418(2.17488,2.35349) 7.9%
FREEMEMORY 6.73585 ’ ’

ELEMENT ‘ MEAN QUEUE LENGTH

MEMORY © 7.65754(6.92341,8.39167) 19.2%
FLOPPYQ . 0.59750(0.57292,0.62207) 8.2%
DISKQ 0.42267(0.41569,0.42966) 3.3%

CPUQ ‘ 2.44248(2.36520,2.51977) 6.3%
TERMINALSQ ~  22.34245(21.60832,23.07658) 6.6%
ELEMENT STANDARD DEVIATION OF: QUEUE LENGTH
MEMORY . 3.81189(3.55682,4.06696) 13.4%
FLOPPYQ 0.85975(0.83129,0.88821) 6.6%
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DISKQ 0.72997(0.72030,0.73963) 2.6%

CPUQ 1.37497(1.34781,1.40212) 3.9%

TERMINALSQ 3.81189(3.55682,4.06696) 13.4%

ELEMENT MEAN QUEUEING TIME _

MEMORY 3.39909(2.96338,3.83480) 25.6%

FLOPPYQ 0.32891(0.31073,0.34709) 11.1%

DISKQ 0.02624(0.02593,0.02656) 2.4%

CPUQ 0.13621(0.13203,0.14040) 6.1%

TERMINALSQ 9.63718(9.33058,9.94379) 6.4%

ELEMENT STANDARD DEVIATION OF QUEUEING TIME

MEMORY 2.30823(2.06275,2.55372) 21.3%

FLOPPYQ . 0.31195(0.29720,0.32671) 9.5%

DISKQ ~© 0.02582(0.02520,0.02645) 4.8%

CPUQ 0.14961(0.14468,0.15454) 6.6%

TERMINALSQ 9.48424(9.16274,9.80575) 6.8%

ELEMENT MEAN TOKENS IN USE ,

MEMORY 108.36685(106.61545,110.11826) 3.2%

ELEMENT MEAN TOTAL TOKENS IN POOL

MEMORY 127.99998 (127.99998,128.00000) 0.0%

ELEMENT QUEUE LENGTH DISTRIBUTION

MEMORY 0:0.01574(0.00823,0.02325) 1.5%

- ~ 1:0.03582(0.02560,0.04605) 2.0%
2:0.04874(0.04095,0.05652) 1.6%
3:0.06408(0.04862,0.07953) 3.1%
4:0.07053(0.05178,0.08928) 3.7%
5:0.07709(0.06065,0.09354) 3.3%
6:0.08961(0.07677,0:.10246) 2.6%
7:0.08638(0.07978,0.09298) 1.3%
8:0.09105(0.07284,0.10926) 3.6%
9:0.09054 (0.08325,0.09782) 1.5%
10:0.08554 (0,06862,0.10246) 3.4%
11:0.07549(0.05956,0.09141) 3.2%
12:0.06065(0.04926,0.07205) 2.3%

13:0.03866(0.02522,0.05210) 2,7%
14:0.02907(0.01547,0.04267) 2.7%
15:0.01951(0.00754,0.03148) 2.4%
ELEMENT QUEUEING TIME DISTRIBUTION o .
MEMORY 1.00E+00:0.15220(0.12760,0.17680) 4.9%
2.00E+00:0.31960(0.27732,0.36188) 8.5%
3.00E+00:0.49200 (0.41864,0.56536) 14.7%
4.00E+00:0.65360(0.56817,0.73903) 17.1%
5.00E+00:0.77840(0.70010,0.85670) 15.7%
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_6.00E+00:0.87260(0.82596,0.91924) . 9.3%
7.00E+00:0.92680(0.89735,0.95625) 5.9%
'8.00E+00:0.95460(0.92936,0.97984) 5.0%

ELEMENT = DISTRIBUTION OF TOKENS IN USE
ELEMENT - : ‘DISTRIBUTION OF TOTAIL TOKENS kIN POOL
ELEMENT MAXIMUM QUEUE LENGTH
MEMORY 22
FLOPPYQ 5
DISKQ" 5
CPUQ 7
- TERMINALSQ .30
ELEMENT MAXIMUM QUEUEING TIME
MEMORY * 16.54839
FLOPPYO 2.71239
DISKQ 0.31800
CPUQ 2.39180
TERMINALSQ 75.52458
WHAT:

" THINKTIME:/*Thinktime:*/

‘With the initial CPU limit, the run stopped during the second replication. - When a run
stops during a replication, the results are based on the completed replications and the partial
replication is discarded if the run is not continued. In this case there is only a single replica--
tion (with results the same as our previous run without replications). There must be at least
two replications for confidence intervals to be produced. The run continuation mechanism
allows us to resume the partial replication where it stopped and continue for the remaining
replications. When the run is completed, the point estimate for the mean response time, 3.40;
is considerably higher than the estimate given by the single run of the last section,3.12.
However, the confidence interval, (2.96, 3.83), is very wide. Thus the confldence interval has
told us that the initial estimate was quite variable.  The numbers after the. confxdence mtervals _
are the widths of the intervals. For the measures which can only have values in the [0, 1]
interval, i.e., utilization and the distribution measures, the width specified is absolute width in
percent, i.e., 200x 8, where the confidence interval is (p — 8, p + 8). For the other

measures the width is relative width in percent, i.e., 200x8/p. (Where p is zero, no width is

given.) The mean response time confidence interval has a relative width of 26%.

At this point we could either increase the replication length or increase the number of
replications to try to get a narrower interval. Usually we would strongly prefer increasing the
replication length over increasing the number of replications. It is for this reason that we do
not provide the option of specifying that the run be contmued by increasing the number of
rephcatlons -

When using independent replications to obtam confldence intervals, or when, makmg a run

without obtaining confidence intervals, is often advisable to. discard results from the 1n1t1al_
transient phase of'a replication or.run.  Results from the. remainder. of the run are, presumably,
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more representatlve of the equilibrium behavior to- be studied if the effects of the initial
system state can be masked. For a formal discussion, see Chapter 6 of Lavenberg et al
[LAVES2]. Immediately before the REPLIC: LIMITS section of a dialogue (RQ2INP) file, a
line of the form "INITIAL PORTION DISCARDED: <expression>" may be inserted. This is
the first instance we have seen of a portion of the dialogue file language which is not part of
the interactive dialogue of SETUP. There are many such instances which we will discuss
where appropriate. The reference for the syntax of such instances (and the entire dialogue file
ylanguage) is the grammar in Appendix 4 of the Users Guide. The expression. gives the
fraction, in percent, of each replication or run that will be discarded. - This fraction:applies
only to the limits in the REPLIC LIMITS and not to the CP SECONDS limit. For each limit
of the section, a temporary limit is established by multiplying the given limit by the fraction.
Once one of these temporary limits is reached, the variables used to accumulate performance
measures are reset, the original limits are put in effect and the replication or run continues. E

In the followmg we indicate that the first 10% of each replication is to be discarded. and
that the replications are to be twice as long as before.

edit csmwm rg2inp
EDIT: ‘ :
locate/NUMBER OF REPLICATIONS
NUMBER OF REPLICATIONS;5
input "INITIAL PORTION DISCARDED:10
locate/DEPARTURES:
DEPARTURES: 1000

change/1/2
‘ DEPARTURES: 2000

locate/SECONDS
’ LIMIT - CP SECONDS:10
change/10/100

. LIMIT = CP SECONDS 100
flle L
R T= O 11/0 46 17:33:50

}JSe SETUP again,

SETUP ‘csmwi

MODEL IS CSMWM

CONTINUING WITH MODEL DEFINITION.

NO FATAL ERRORS DETECTED DURING THE COMPILATION
R; T=0. 85/2 06 17:37:00

and get the followmg results

RESQ2 VERSION DATE: MARCH 11, 1982 .- TIME: 17:38:43 DATE: 03/17/82
MODEL: CSMWM '
THINKTIME:/*Thinktime:*/ 10 -

USERS: /*Users:*/ 30 »

PAGEFRAMES: /*Pageframes:*/ 128

REPLICATION - 1: MEMORY DEPARTURE LIMIT

REPLICATION = 2: MEMORY DEPARTURE LIMIT

REPLICATION  3: MEMORY DEPARTURE LIMIT

REPLICATION ~4: MEMORY DEPARTURE LIMIT

'REPLICATION 5: MEMORY DEPARTURE LIMIT - TR
NO ERRORS DETECTED DURING SIMULATION. 17418 DISCARDED EVENTS
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812.77954

SIMULATED TIME PER REPLICATION:
: v CPU TIME: 77.43
NUMBER - OF “EVENTS PER REFLICATION: 30857
NUMBER 'OF 'REPLICATIONS : ‘ 5
ATt 1
WHAT:allbo
ELEMENT UTILIZATION :
MEMORY" 0.83975(0.83341,0.84609) 1.3%
FLOPRYQ ‘0. 40552 (0.39509,0.41594) 2.1%
DISKQ 0.30475(0.30075,0.30874) 0,8%
CPUQ 0.89125(0.88431,0.89818) 1.4%
TERMINALSQ 0.00000(0.00000,0.00000)
ELEMENT THROUGHPUT
MEMORY : 2.21534(2.17291,2.25777) 3.8%
FLOPPYQ 1.81099(1.76803,1. 85395) 4.7%
DISKQ 4 16.06598(15.95485,16.17711) 1.4%
CPUQ .~ 17.87697(17.73483,18.01910) 1.6%
TERMINALSQ 2.21261(2.17076,2.25446) 3.8%
FREEMEMORY 2.21462
ELEMENT MEAN QUEUE LENGTH
MEMORY 7.77057 (7.35626,8.18487) 10.7%
FLOPPYQ - 0.60917(0.58465,0.63369) 8.1%
DISKQ 0.41371(0.40920,0.41821) 2.2%

CPUQ S 2.42072(2.38423,2.45721) 3.0%
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TERMINALSQ 22.22943(21.81512,22.64372) 3.7%
Ev‘LEMENT STANDARD DEVIATION OF QUEUE. LENGTH
MEMORY 4.14229(3.93683,4.34775) 9.9%
FLOPPYQ 0.87904(0.85098,0.90709) 6.4%
DISKQ 0.71696(0.71349,0.72042) 1.0%
CPUQ 1.37582(1.34426,1.40738) 4.6%
TERMINALSQ 4.14229(3. 93683;4.34775) 9.9%
ELEMENT MEAN QUEUEING TIME ,
MEMORY 3.50457(3.27995,3.72919) 12.8%
FLOPPYQ 0.33633(0.32714,0.34553) 5.5%
DISKQ 0.02575(0.02544,0.02606) 2.4%
CPUQ 0.13537(0.13332,0.13742) 3.0%
TERMINALSQ 9.92243(9.72741,10.11744) 3.9%

- ELEMENT ' STANDARD . DEVIATION OF QUEUEING TIME.
MEMORY | 2.47966(2.35171,2.60760) 10.3%
FLOPPYQ 0.32228(0.30464,0.33993) 11.0%
DISKQ 0.02513(0.02449,0.02577) 5.1%
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CRUQ - 0.15013(0.14653,0.15374) 4,8%

TERMINALSQ 10.07628(9.73916,10.41340) 6.7%

ELEMENT MEAN TOKENS IN USE

MEMORY 107.48819(106.67644,108.29993)  1.5%

ELEMENT ~ MEAN TOTAL TOKENS IN POOL

MEMORY ©127.99998(127.99998,128.00000) 0.0%

ELEMENT QUEUE LENGTH DISTRIBUTION ,

MEMORY : 0:0.01823(0.01281,0.02364) 1.1%
1:0.04016(0.03533,0.04499) 1.0%
2:0.05491(0.04938,0.06045) 1.1%

©3:0.06494(0.05547,0.07442) 1.9%

4:0.06867(0.06012,0.07721) 1.7%
5:0.07573(0.06814,0.08333) 1.5%
6:0.08232(0.07172,0.09293) 2.1%
7:0.08424(0.07792,0.09056) 1.3%
8:0.08469(0.07457,0.09482) 2.0%

9:0.08598(0.07671,0.09524) 1.9%
10:0.07246(0.06459,0.08034) 1.6%
11:0.06966(0.06011,0.07922) 1.9%
12:0.05493(0.04589,0.06397) 1.8%
13:0.04574(0.03158,0.05989) 2.8%
14:0.03538(0.02575,0.04502) 1.9%
15:0.02645(0.01779,0.03511) 1.7%

ELEMENT QUEUEING TIME DISTRIBUTION v
MEMORY 1.00E+00:0.15578(0.13985,0.17170) 3.2%

' 2.00E+00:0.31511(0.28990,0.34032) 5.0%
3.00E+00:0.48067(0.44496,0.51637) 7.1%
4.00E+00:0.63233(0.59074,0.67392) 8.3%
5.00E+00:0.75344(0.71622,0.79067) 7.4%
6.00E+00:0.85033(0.82113,0.87953) 5.8%
7.00E+00:0.90844(0.88613,0.93075) 4.5%
8.00E+00:0,94789(0.93460,0.96118) 2.7% 7

ELEMENT  DISTRIBUTION OF TOKENS IN USE
ELEMENT DISTRIBUTION OF TOTAL_ TOKENS 'IN- POOL
ELEMENT MAXIMUM QUEUE LENGTH

MEMORY 22

FLOPRYQ 5

DISKQ- 6

CPUQ -7

TERMINALSQ 30
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ELEMENT . : .MAXIMUM QUEUEING TIME

MEMORY 18.90594
FLOPPYQ = 2.65272
DISKQ . .0.29766
cpUR - 1.90131.
TERMINALSQ 80.32346
WHAT:

'THINKTIME:/*Thinktime:*/

. "The 17418 dlscarded events are from the initial portions of all 5 replications, i.e., the
average number discarded per replication is 3484. The simulated time and events per rephca-
tion do not count the discarded portions. The point estimate for mean response time -has
increased slightly, from our previous set of replications, from 3.40 to 3.50, and we have a
narrower - confidence interval, (3.28, 3.73). If we wish to have a. narrower interval, then we
should increase the replication length again.

5.2.. The Regenerative Method

The regenerative method is a second method provided for confidence interval estimates
“for equilibrium measures. ‘The principal advantages of the regenerative method over replica-
tions are that we can make a single (long) simulation run instead of multiple (shorter) runs
and that we need not be concerned about the effects of the choice of initial state. However '

there are problems with the regenerative method also.

With the regenerative method we must pick a "regeneration state," similar to the initial .
state. A regeneration state has the properties that (1) The model periodically returns to the
regeneration state. The periods between occurrences of the regeneration state are called
"cycles." (2) When the model enters the regeneration state, the future behavior of the model .
depends only. on the regeneration state, i.e., it is independent of the behavior that led to
entrance to that state. The most convenient examples of regeneration states are found in
Markov and semi-Markov processes. In a "nice" (semi-) Markov process, each state is a
regeneration state, and except for practical considerations, all of the states are equally useful.
A large subset of the queueing networks allowed by RESQ can be describe‘d: as (semi-)
Markov. processes, and these processes will usually be "nice" unless a queue of the network is
‘saturated or a deadlock is possible in the network. - : . N

The principal practical consideration is that we would like the regeneration state to occur
frequently during a simulation of reasonable length. By "frequently'' we mean that there be at
least some minimum number of cycles (say 20) during thie simulation. - If we do not have this
property then we cannot reasonably use the regeneratlve method.

We would also like the state to be one easily detected by the simulation. For this:reason,
RESQ only allows regeneration states which are specified by the number of jobs at each node
with the understanding that additional characteristics of the- ‘states are specified implicitly.
These implicitly specified characteristics are (1) Where arrival and sérvice distributions are
specxfxed by the method of exponential stages (see Appendix 3 of the Users Guide) any arrival
and ?rvwe times in progress are in-the first stage in the regeneration state. (2) At active
queues where different orderings of thie jobs in the queue are important (e.g., FCFS queuemg
d1$01pime) the ordering of jobs of different classes is the same as at the first occurrence of the
required numbers of jobs at all nodes. (3) At passive queues the ordering of jobs of different
allocate nodes and different numbers of tokens requested is the same as at the first occurrence
of the required numbers of jobs at each node. (4) Chain variables of open chains (see
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Sectlon 8) have the value one. In addition to these checks, Aplomb 1ssues ‘warning condltlons
when an apparently correctly defined regeneration state is not: actually a regeneration state

For further discussion of the regenerative method in general, see Crane and Lemome
[CRAN77], Iglehart and Shedler {IGLES80], Chapter 4 of Kobayashi [KOBA78] Chapter 6 of
Lavenberg et al [LAVE82] and Chapter 7 of Sauer and Chandy [SAUES81a].

With model csmwm, our choice of initial state is also a regeneratlon state. We can edlt as
follows

edit c¢smwm rg2inp
EDIT:
locate/CONFIDENCE/
CONFIDENCE INTERVAL METHOD none
" delete *
EOF:
file
R; T=0.06/0.21 15:34:37

and then use SETUP:

SETUP csmwm
MODEL IS CSMWM
CONTINUING WITH MODEL DEFINITION...
CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION-
‘:CHAIN 1nteractlv
NODE. LIST: terminals
REGEN POP: users.
INIT POP users
. CHAIN:
”.-CONEIDENCE LEVEL 90
‘SEQUENTIAL STOPPING RULE no
RUN GUIDELINES-
SIMULATED TIME:
CYCLES:
.. EVENTS:
_QUEUES FOR. DEPARTURE COUNTS:memory
. DEPARTURES: 500 ,
'QUEUES FOR DEPARTURE COUNTS:
NODES FOR DEPARTURE COUNTS:"
LIMIT - CP SECONDS:5
TRACE:no
END : »
S NO FATAL ERRORS DETECTED DURING THE COMPILATION
R; T=0. 86/1 94 15:35:51 -

' The initial state definition section has been replaced by a-regeneration state definition
section. Usually we want to initially place the system in the regeneration state. Occasionally .
this is not easily done and we define the initial state to be a state other than the regene_ration
,‘state.‘ In ‘this case the portion of the simulation prior to the first occurrence of the regenera-
tion state is discarded. See Section 12 of the Users Guide for further discusssion. -
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We will temporarily defer discussion of the sequential stopping rule. The run limits other
than the CPU limit have been replaced by run guidelines. Rather than terminate the simula-
tion when the first of these guidelines is reached the simulation continues until elther the
regeneratxon state is reached again or the CPU limit is reached.

We could-then gét the following RQ2PRNT file:

RESQ2 VERSION DATE: MARCH 11, 1982 - TIME: 20:35:25 DATE: 03/16/82
MODEL : CSMWM ;
THINKTIME: 10

USERS: 30

PAGEFRAMES: 128

RUN END: MEMORY DEPARTURE GUIDELINE

NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME: 286.88623

CPU TIME: 4,99
NUMBER OF EVENTS: 11331
NUMBER OF CYCLES: 13
WHAT:nd (memory)
ELEMENT NUMBER OF DEPARTURES
MEMORY 657
WHAT: gtbo (memory)
ELEMENT. MEAN QUEUEING TIME

MEMORY o 3.69609(3.35480,4.03737) 18.5%

WHAT : :
CONTINUE RUN:yes

GUIDELINE —<MEMORY DEPARTURES: 1000
LIMIT - CP SECONDS:6

RUN END:; MEMORY DEPARTURE GUIDELINE
RUN END: CPU LIMIT

NO ERRORS DETECTED DURING SIMULATION. 1377 DISCARDED EVENTS
SIMULATED TIME: 335.31738
CPU TIME: 6.33 :
NUMBER OF EVENTS: 12850 ‘
NUMBER OF CYCLES: 27

WHAT : nd (memory)

ELEMENT ' NUMBER OF DEPARTURES
MEMORY - 760
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"WHAT:qtbo(memqry)

ELEMENT = MEAN QUEUEING TIME

MEMORY ©3.43366(3.06772,3.79960) 21.3%
WHAT :

CONTINUE RUN:yes

LIMIT - CP SECONDS:40

RUN END: MEMORY DEPARTURE GUIDELINE
RUN END: CPU LIMIT' ‘

RUN END: MEMORY DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME: 561.08374

CPU TIME: 9.52
NUMBER OF EVENTS: 21481
NUMBER OF CYCLES: .32
WHAT :nd (memory)
ELEMENT NUMBER OF DEPARTURES
" MEMORY 1249
WHAT: qtbo (meémory)
'ELEMENT MEAN QUEUEING TIME )
- MEMORY : 3.31099(2.88925,3.73273) .25.5%

WHAT : .
CONTINUE RUN:yes

GUIDELINE - MEMORY DEPARTURES:ZOOO

RUN END: MEMORY DEPARTURE GUIDELINE
RUN END: -CPU LIMIT

RUN END: MEMORY DEPARTURE GUIDELINE
RUN END: MEMORY DEPARTURE GUIDELINE
NO ERRORS DETECTED: DURING SIMULATION.

SIMULATED TIME: 980.62939
CPU TIME: : 16.66
NUMBER OF EVENTS: 37328
NUMBER OF CYCLES:; 57
WHAT : nd(memory)
ELEMENT . NUMBER OF DEPARTURES

MEMORY . 2208
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“WHAT : gtbo (memory)

ELEMENT MEAN. QUEUEING TIME

MEMORY 3.31633(3.03503,3.59764) 17.0%
WHAT:allbo

ELEMENT . UTILIZATION

MEMORY 0.84297(0.81823,0.86770) 4.9%
FLOPPYQ 0.40977(0.38383,0.43572) 5.2%

 DISKQ

(
0.30904(0.30234,0.31574) 1.3%
CPUQ . 0.88643(0.86837,0.90449) 3.6%
TERMINALSQ 0.00000 (0.00000,0.00000)
ELEMENT THROUGHPUT ‘ :
MEMORY 2.25161(2.19484,2.30839) 5.0%-
FLOPPYQ . 1.79069(1.71812,1.86325) 8.1%
DISKQ - 16.11617(15.75942,16.47290) 4.4%
CPUQ ‘ '17.90686(17.53708,18.27663). 4.1%
TERMINALSQ $2.25161(2.19484,2.30839) 5.0%
' FREEMEMORY 2.25161
ELEMENT ‘ MEAN QUEUE LENGTH ; _
MEMORY 7.46711(6.90325,8.03097) 15.1%
FLOPPYQ ' 0.60705(0.55009,0.66402) 18.8%
DISKQ . 0.41974(0.40675,0.43273) 6.2%
CPUQ 2.42949(2.31021,2.54877) 9.8%
TERMINALSQ =~ 22.53288(21.96902,23.09673) 5.0%
'ELEMENT . STANDARD DEVIATION OF QUEUE LENGTH
MEMORY =~ 3.82926
FLOPPYQ ©0.87095
DISKQ 0.72073
CPUQ 1.40257",
TERMTINALSQ 3.82927 .
ELEMENT MEAN QUEUEING TIME ;
MEMORY ' 3.31633(3.03503,3.59764) 17.0%
FLOPPYQ 0.33901(0.31533,0.36269). 14.0% -
'DISKQ 0.02604(0.02554,0.02655) 3.9%.
CPUQ : 0.13567(0.13013,0.14122) 8.2%
TERMINALSQ 10.00743(9.69447,10.32040) 6.3%
ELEMENT ' STANDARD DEVIATION OF QUEUEING TIME
MEMORY 2.26665 : . '
FLOPPYO '~ 7 0.31497
DISKQ '0.02566
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CPUQ
" TERMINALSQ

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT
ELEMENT

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ

TERMINALSQ

CONFIDENCE INTERVAL METHODS / SEC. 5

0.15399
9.77573

MEAN. TOKENS IN USE

MEAN TOTAL TOKENS IN POOL
127.99998

QUEUE LENGTH DISTRIBUTION
0:0.02189(0.01176,0.03201)
1:0.03761(0.02409,0.05113)
2:0.04806(0.03487,0.06125)
3:0.06976(0.05091,0.08862)
4:0.07628(0.05659,0.09596)

5
6
7
8
9

.
.

.
-

07498 (0.06261,0.08735)

08536 (0.07417,0.09656)

0.

0.

0.07594 (0.06764,0 .08425)
0.

0.10343(0.08079,0.12606)

2.0%

‘107;89966(104.73351;111;06580) 5.9%

2.7%

2.6%
3.8%
3.9%
2.5%
2.2%
1.7%

2.8%

4.5%

0~ oUW

10:0.08607(0.06737,0.10478) 3.7%
11:0.,07894(0.05895,0.09894) 4.0%
12:0.06137(0.04304,0.07971) . 3.7%

13:0.03408(0.02542,0.04274)
14:0.02525(0.01918,0.03132)

(

(

(

(

(

(

( .
09154(0.07741,0.10566)

(

(

(

(

(

(

(

1.7%
1.2%

15:0.01416(0.00849,0.01983)  1.1%

QUEUEING

.00E+00:
.00E+00:
.00E+00:
.00E+00:
.00E+00:
.00E+00:
.O0E+00:
.00E+00"

[N eNoNolNoN o)

TIME DISTRIBUTION

.16486(0.12866,0.20105)
.31884(0.26575,0.37193)
.49683(0.43543,0.55823)
.65761(0.60555,0.70966)
.79303 (0.75685,0.82920)
.88225 (0.85880,0.90570)
.93705(0.91911,0.95499)
.96558(0.95279,0.97837)

DISTRIBUTION QFxTCKENS IN USE

MAXIMUM QUEUE LENGTH

21
5
6
7
30

7.2%
10.6%
12.3%
10.4%
7.2%
4.7%
3.6%
2.6%

DISTRIBUTION OF TOTAL TOKENS IN POOL

April 3, 1982



SEC, 5.2/ The Regenerative Method N ' : o » 47

ELEMENT MAXIMUM QUEUEING TIME
MEMORY 13.46424

FLOPPYQ 2.23200

DISKQ £0.29332

¢puo 1.90131

TERMINALSQ .~ .76.31847

WHAT :

CONTINUE RUN:no

' THINKTIME:

The simulation had to run ‘an additional 157 memory departures to get back to the :
regeneration state after the initial departure guideline was reached There were 13 regenera-a’
tion cycles during that part of the run. (If there had been fewer than two cycles, confidence
intervals would not have been estimated and we would not have been allowed to continue the -

run.) The pornt estimate for mean response time, 3.70 seconds, was cons1derably higher than =~

our previous estimates. - The confidence interval, (3.35, 4.04), has a relat1ve wrdth of 19%,
which is not so wide as to be useless,

However, we must be cautious. There is a tendency for the regeneratzve method to underes-
timate confidence interval widths for short runs.

So we doubled the departure guideline. Since we did not increase the CPU limit suffi-
ciently, the run stopped in the midst of a regeneration cycle before reaching the new guideline.
When a run stops in the midst of a regeneration cycle because of the CPU limit or-because of
an error, the partial cycle results are ignored and will be discarded if the run is not continued.
' Lengthenmg the run by only 103 departures resulted in'an additional 14 regeneration cycles, a

noticeably lower point estimate, 3.43 seconds, and a wider confidence interval, (3.07, 3.80).
With a sufficient CPU limit, the run took an additional 249 departures to get back to the -
regeneration state after the guideline was reached. There were only 5 additional regeneration
cycles during this part of the run, so it appears that the length of a regeneration cycle,
-measured in number of departures, is- quite variable for this model. - The point.estimate for
mean response time, 3.31, is considerably lower, and the confidence interval, (2.89, 3.73),is -
considerably wider! (It has a relative width of 25%.) When we increased the departure '
guideline to 2000, the run went 208 departures past the guideline for a total of 57 cycles. The
point estimate, 3. 32, is essentially unchanged, but the conf1dence interval, (3.04, 3.60), is -
narrower, with a relative width of 17%. At this point the run is more than three times as long
(measured in memory departures) as the initial part, but the respective confidence intervals have
“comparable widths!  This suggests that the’ 1n1t1al ran was much too short and that we should
probably contlnue the run further : ‘

So we ‘need a longer run, but how" much longer‘? Rather’ than proceed inthe- above
, manner of lengthen1ng the run and periodically examlnrng the results, we can usé the’ sequen-’
tial stoppmg rule, which automates essentially this procedure. The sequential stopping rule
allows us to speclfy the simulation run length in terms of des1red widths of confrdence
intervals, sub]ect to the usual limit on CPU time. The simulation runs for a’ number of
. regeneratron cycles, e.g., enough for 2000 memory departures, ‘and then' confidence" 1ntervals
are obtalned If the intervals do not meet the width criteria, the simulation continues for more
cycles, e.g., enough for 2000 more memory departures. Then new estimates are made and a
new decision to terminate or continue is reached. This continues until the criteria are satisfied
or the CPU limit is reached The groups of regeneratlon cycles will be referred to ‘as
"sampling periods." ‘
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As before, we can edit the dialogue file,

edit csmwm rq2inp

EDIT: .
locate/SEQUENTIAL

SEQUENTIAL STOPPING RULE:no

delete *

EOF :
~file

R; T=0.06/0.28 15:45:50

and use SETUP again:

SETUP ‘csmwm
MODEL IS CSMWM
CONTINUING WITH MODEL DEFINITION.
- SEQUENTIAL STOPPING RULE:yes
.~ 'QUEUES TO BE CHECKED:memory cpug
' MEASURES:qt gt
ALLOWED WIDTHS:10 10
QUEUES TO. BE CHECKED:
EXTRE SAMPLING PERIODS:
SAMPLING PERIOD GUIDELINES-
SIMULATED TIME:
“CYCLES: :
"EVENTS:
'QUEUES 'FOR .DEPARTURE  COUNTS: memory -
DEPARTURES : 2000
- QUEUES FOR DEPARTURE: COUNTS:
- NODES' FOR DEPARTURE ‘ COUNTS :
“LIMIT - CP'SECONDS : 300
TRACE no
END
NO FATAL :ERRORS DETECTED DURING THE COMPILATION.
R; T=0.83/2.06 15:48:02

. :We are asked for a 11st of queues where we are to obtain and check confidence interval W1dths
“at:the end of a sampling period. Then we. are asked what measures are to be cons1dered The
“reply here should be a list of codes, one code per queue just listed. The codes are a subset of
“those allowed for the "WHAT:" prompt in EVAL: "ut", "tp", "ql", "qld", "qt", "qtd" "t
"tud", "tt"' and "ttd". These correspond to the same measures as in EVAL (see the example
in Sectlon 2 or Sections 12 and 13 of the Users Guide). If we want several measures to be
checked for a given queue, the queue name should be repeated in the "QUEUES TO BE
CHECKED:" prompt. For the distribution measures (gld, qtd, tud and ttd), each gathered
point-of the measure is checked and must satisfy the width criteria. -For the measures which
~can only have. values in the [0, 1] interval, i.e., utilization and the distribution measures, the
‘width specified is absolute width in percent, i.e., the criterion is that 200x 8 be less than the
_specified width, where the confidence interval is (p —.8, p + 8). For the other measures the
width is relative width in percent, i.e., the criterion is ‘that 200><8/ p be less than the spec1fled
width. (Where p is zero, the criteria is not satisfied.) In this and most of our examples we use.
_mean queueing time-for our measure. In this example we use a relative width of 10%. We
are then asked how many extra samphng perlods are to be run with the criteria satlsfled “The
.default is 0. The simulation will continue until this’ number plus one of successive sampling
periods satisfy the criteria. Extra sampling periods force the simulation to run longer and thus -
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can help overcome some of the small sample problems of the sequenhal rule, e.g.; on a very
short run severe underestimates of the confidence interval width may result in the criteria
being accepted. For further discussion of this problem, and the sequent1al stoppmg rule in

general see Lavenberg and Sauer [LAVE77]

Using EVAL again, we get

RESQZ»VERSION DATE: MARCH 11,

MODEL : CSMWM6
THINKTIME: 10

USERS: 30

PAGEFRAMES: 128

SAMPLING
SAMPLING
SAMPLING
SAMPLING
SAMPLING
SAMPLING

PERIOD
PERIOD
PERIOD
PERIOD
PERIOD
PERIOD

END:
END:
END:
END:
END:
END:

MEMORY
MEMORY

MEMORY

MEMORY
MEMORY
MEMORY

1982 -

DEPARTURE
DEPARTURE
DEPARTURE
DEPARTURE
DEPARTURE
DEPARTURE

-TIME:

GUIDELINE
GUIDELINE
GUIDELINE
GUIDELINE
GUIDELINE
GUIDELINE

20:53:25 DATE: 03/16/82

NO ERRORS DETECTED DURING SIMULATION.

5605.87500
95.89
214365

247

- SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:
NUMBER OF CYCLES:

WHAT : gtbo (memory)

 MEAN QUEUEING TIME
3.40792(3.24079,3.57505)

ELEMENT

MEMORY | 9.8%

WHAT : o
CONTINUE RUN:yes -

EXTRA .SAMPLING PERIODS: 1

" SAMPLING
SAMPLING

SAMPLING -

SAMPLING
. SAMPLING
SAMPLING
 SAMPLING

PERIOD
PERIOD
PERIOD
PERIOD
PERIOD
PERIOD
PERIOD

END:
END:
END:
END:
END:
END:
END:

MEMORY
MEMORY
MEMORY
MEMORY
MEMORY
MEMORY

MEMORY"

DEPARTURE

DEPARTURE
DEPARTURE
DEPARTURE
DEPARTURE
DEPARTURE
DEPARTURE

NO ERRORS DETECTED DURING SIMULATION.

GUIDELINE
GUIDELINE
GUIDELINE
GUIDELINE
GUIDELINE
GUIDELINE
GUIDELINE

6521.33203
111.60
249175

276

SIMULATED. TIME:
CPU. TIME:

NUMBER OF "EVENTS:
NUMBER OF CYCLES:

WHAT:allbo
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ELEMENT UTILIZA’I‘ION

MEMORY - 1 0.84923(0.84019,0.85826) 1.8%
FLOPPYQ 0.40042(0.39030,0.41054) 2.0%
DISKQ 0.30727(0.30470,0.30983) 0.5%
CPUQ . 0.89668(0.89112,0.90224) 1.1%
TERMINALSQ 0.00000(0.00000,0.00000)
'ELEMENT THROUGHPUT
MEMORY 2.23528(2.21089,2.25966) 2.2%
FLOPPYQ 1.81558(1.78307,1.84809) 3.6%
DISKQ 16.17137(16.05899,16.28377) 1.4%
CPUQ 17.98695(17.86938,18.10452) 1.3%
TERMINALSQ 2.23528(2.21089,2.25966) 2.2%
FREEMEMORY 2.23528 ‘
ELEMENT. MEAN QUEUE LENGTH
MEMORY = - 7.64376(7.32707,7.96046) 8.3%
FLOPPYQ  0.59513(0.57135,0.61890) 8.0%
DISKQ 0.41651(0.41199,0.42102) 2.2%
CPUQ 2.46919(2.42749,2.51090) 3.4%
TERMINALSQ 22.35623(22.03954,22.67293) 2.8%
ELEMENT . STANDARD DEVIATION OF QUEUE LENGTH
MEMORY 3.98528
FLOPPYQ 0.86826
DISKQ 0.71621
CPUQ 1.37777
TERMINALSQ 3.98528
ELEMENT MEAN QUEUEING TIME
MEMORY = 3.41960(3.25787,3,58134) 9.5%
FLOPPYQ 0.32779(0.31884,0.33673) 5.5%
DISKQ ©0.02576(0.02558,0.02593) 1.4%
CPUQ 0.13728(0.13547,0.13908) 2.6%
TERMINALSQ 10.00154(9.86644,10.13664) 2.7%
* ELEMENT STANDARD DEVIATION OF QUEUEING TTME
MEMORY 2.42467
FLOPPYQ 0.31493
DISKQ 0.02496
CPUQ 0.15238
TERMINALSQ 9.90722
 ELEMENT MEAN TOKENS IN USE
MEMORY . 108.70111(107.54485,109. 85739) 2.1%
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. ELEMENT
- MEMORY

ELEMENT
MEMORY

ELEMENT
' MEMORY

ELEMENT
. ELEMENT -

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

- ELEMENT -
MEMORY .
'FLOPPYQ
DISKQ "
CPUQ
TERMINALSQ

April 3, 1982
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MEAN TOTAL TOKENS IN POOL

MAXIMUM QUEUE LENGTH

21 -
5
6
7
30 -

MAXIMUM QUEUEING TIME
18.26566
2.61646

0.29332

1.94650
112.28362

 DISTRIBUTION OF TOKENS IN USE

.8%
.5%
5%
2%
6%
.9%
.9%
1%

127.99998(127.99998, 128.00000)- 0.0% °
. QUEUE LENGTH DISTRIBUTION
" 0:0.01489(0.01194,0.01783) 0.6%
1:0.03278(0.02788,0.03767) 1.0%
2:0.05154(0,04538,0.05769)  1.2%
3:0.06642(0.06011,0.07273) 1.3%
4:0.07467(0.06810,0.08125) ~1.3%

" 5:0.08610(0.07853,0.09367) 1.5%
6:0.09373(0.08592,0.10154) 1.6%
7:0.08709(0.08065,0.09352) 1.3%
8:0.08705(0.08114,0.09297) 1.2%

© 9:0.08360(0.07667,0.09053) 1.4%

10:0,07682(0.07039,0.08324) - 1.3%

11:0.06680(0.05996,0.07363) - 1.4%

12:0.05581(0.04912,0.06250) 1.3%:

13:0.04234(0.03564,0.04904) 1.3%

14:0.03165(0.02536,0.03793) 1.3%

15:0.01940(0.01449,0.02431) 1.0%

-QUEUEING TIME DISTRIBUTION

.00E+00:0.15689(0.14283,0.17095) 2

.00E+00:0.32428(0.30169,0.34686). 4

:00E+00:0.50051(0.47290,0.52812) 5

.00E+00:0.65123(0.62523,0.67723) 5

.00E+00:0.77636(0.75315,0.79957) 4
<00E+00:0.86033(0.84071,0.87995) 3

.00E+00:0.91583(0.90130,0.93035) 2
.00E+00:0.95122(0.94095,0.96150) 2

) DISTRIBUTION OF TOTAL TOKENS IN POOL
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WHAT:
CONTINUE RUN:no

THINKTIME:
The simuiation ran for a total of 6-sampling periods.

The point estimate for mean response time is 3. 41 seconds, a little lower than what we
got in the last section, and the confidence interval estimate is (3.24, 3.58). The relative width
is 9.8%. When we specified that the run was to continue until the stopping critéria had been
satisfied for two successive sampling periods, one more samphng period was required. There
was a slight increase in the mean response timeé point estimate and both ends of the interval.

We can reasonably conclude, based on either this run or the last run of Section 5. ‘1 “that
memory contention has significantly raised the mean response time above the 2.91 second
estlmate for the model without memory contention. :

, We will indicate how the regenerative method cah be applied to most of the remaining
examples in this document as we discuss those examples.

_ 5.3. The Spectral Method

The spectral method is a third method provided for confidence interval estimates: for
equilibrium measures. Most methods in classical statistics for estimating confidence intervals
depend on having items of data that are "independent and identically distributed." The
method of independent replications achieves this "ii.d." property by the protocel which
repeats the simulation. The regenerative method depends on being able to observe the ii.d.
‘property during the simulation run. The spectral method does not depend on the i.i.d.
property. Rather, it explicitly takes into consideration the correlation between data items in
the simulation, e.g., the dependencies between successive queueing times for a given queue.
_ This is done without user awareness, other than the availability of confidence intervals, so the -
dialogue for simulation using the the spectral method is essentially the same as simulation
without confidence intervals. A sequential stopping rule is available with the spectral method,
a slightly different rule than the one used with the regenerative method. A significant’
advantage of the spectral method over independent replications is that we can make a single
(long) simulation run instead of multiple (shorter) runs and thus we need not be as concerned
about the effects of the choice of initial state. The spectral method applies to equilibrium
behavior of all models simulated using RESQ, not just those with regenerative properties. For
statistical discussion of the spectral method, see Heidelberger and Welch [HEID81].

With model csmwm, we can edit as follows,

edit csmwm rg2inp
EDIT:
locate/CONFIDENCE/
CONFIDENCE INTERVAL METHOD none
delete *
EOF:
file
R; T=0.06/0.27 15:34:37

and then use SETUP:
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SETUP csmwmn
"MODEL IS CSMWM ,
CONTINUING WITH MODEL DEFINITION..
CONFIDENCE INTERVAL METHOD:spectral
INITIAL STATE DEFINITION-
CHAIN:interactiv
NODE LIST:terminals
INIT POP:users
CHAIN:
CONFIDENCE LEVEL: 90
SEQUENTIAL STOPPING RULE:no
CONFIDENCE INTERVAL QUEUES : memory. memory
MEASURES: gt gtd :
CONFIDENCE INTERVAL QUEUES:
CONFIDENCE INTERVAL NODES:
RUN LIMITS-
SIMULATED TIME:
“EVENTS = e
QUEUES FOR DEPARTURE COUNTS:memory
- DEPARTURES : 500
QUEUES FOR DEPARTURE COUNTS:
NODES FOR DEPARTURE COUNTS:
CLIMIT - CP SECONDS 5
TRACE no
END . '
. NO FATAL. ERRORS .DETECTED DURING THE COMPILATION.
R; T=0.86/1.94 15:35:51

~ The differences from the dialogue for simulation without confidence intervals are the
'SEQUENTIAL STOPPING RULE: prompt and the following section for specifying the queues
and nodes which will have confidence intervals determined and the performance measures
Wthh will have confidence intervals determined. The only valid codes for the measures are
"qt" for mean queueing time and "qtd" for queueing time dxstrlbutlon We will temporarxly
defer dlscusswn of the sequential stopping rule. :

We could then get the followmg RQZPRNT file:

RESQ2 VERSION DATE: MARCH 11, 1982 - TIME: 07: 43 :26 DATE 03/17/82‘
MODEL: CSMWM -

THINKTIME: 10

USERS : 30

PAGEFRAMES: 128 v

RUN END: MEMORY DEPARTURE LIMIT

NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME: - 222.28853
CPU.TIME: 3.81
NUMBER OF EVENTS: . 8669
WHAT:qtbo(membry)
ELEMENT MEAN QUEUEING TIME L
MEMORY» 3,58395(2.64355,4.52434) 52.5%
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WHAT:
CONTINUE RUN:yes

LIMIT - MEMORY DEPARTURES: 1000
RUN -END: MEMORY DEPARTURE LIMIT:

RUN END: . CPU LIMIT
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME: 288.99683
CPU TIME: . 5.16

NUMBER OF EVENTS: ‘ 11361

WHAT:gtbo (memory)

ELEMENT MEAN QUEUEING TIME

MEMORY ©3.68594(3.00150,4.37038) 37.1%

WHAT:nd(memory)

ELEMENT NUMBER OF DEPARTURES

MEMORY 659

WHAT : ) :
CONTINUE RUN:yes

LIMIT - CP SECONDS:40

" RUN END: MEMORY DEPARTURE LIMIT

RUN END:. CPU LIMIT _ '
RUN END: MEMORY DEPARTURE LIMIT »
NO- ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME: 444 ,63232
CPU TIME: T3
NUMBER OF EVENTS: 16874
WHAT : gtbo (memory)
ELEMENT © MEAN QUEUEING TIME

MEMORY = 3.11431(2.45703,3.77160) 42.2%

WHAT: .
CONTINUE RUN:yes

LIMIT - MEMORY DEPARTURES : 2000

RUN END: MEMORY DEPARTURE LIMIT
RUN END: CPU LIMIT .

RUN END: MEMORY DEPARTURE LIMIT
RUN END: MEMORY DEPARTURE LIMIT
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NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME:
CPU. TIME:
NUMBER OF EVENTS:

WHAT :gtbo (memory)

ELEMENT
MEMORY

WHAT:allbo

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY .
FLOPPYQ
DISKOQ

CPUQ
TERMINALSQ
' FREEMEMORY

ELEMENT
MEMORY.
FLOPPYQ

- DISKQ

CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ

CPUQ
TERMINALSQ

ELEMENT-
MEMORY
~ FLOPPYQ
DISKQ

CPUQ
_TERMINALSQ
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'888.56274
15.21
33671

3.24788(2.86123,3.63452) 23.8%

UTILIZATION
0.83603
0.40747
0.30796
0.88254
0.00000

'THROUGHPUT

2.25082
1.79503
16.02138
17.81641
2.26095
2.25082

MEAN. QUEUE LENGTH

7.32865
0.59840
0.41833
2.41700
22.67134

STANDARD DEVIATION OF QUEUE LENGTH

.88107
.85949-
.72055
41269
.88107

w =2 O O W

MEAN QUEUEING-TIME
.24788(2.86123,3.63452)

.33337
.02611
13563
.91472

W O O O Ww

23.8%
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ELEMENT STANDARD DEVIATION OF QUEUEING TIME -
MEMORY - 2.27975

FLOPPYQ 0.31128
DISKQ 0.02586
CPUQ 0.15440
TERMINALSQ 9.91142

ELEMENT " MEAN TOKENS IN USE
MEMORY 107.01234

~ELEMENT MEAN TOTALV TOKENS IN POOL
MEMORY " - 128.00000 .

ELEMENT .- QUEUE LENGTH DISTRIBUTION
' MEMORY .0:0.02415
‘ +0.04100

1005174
:0.07241
:0.08038
:0.07820
:0.08513
:0.07596
:0.09054
:0.,09684
:0.08029
:0.07770"
:0.05883
:0.03152
:0.02384
:0.01460

IO UTLE W N -

A e o3 o3 A
Ut & W N - O W

ELEMENT - QUEUEING TIME DISTRIBUTION

MEMORY ' .00E+00:0:17350(0.13270,0.21430) 8.2%

.00E+00:0.33300(0.27786,0.38814) - 11.0%
.00E+00:0:51650(0.44371,0.58929) 14.6%
.00E+00:0:.67450(0.60723,0.74177) 13.5%
.00E+00:0.80150(0.74831,0.85469) - 10.6%
.00E+00:0.88600(0..85188,0.92012) 6.8%

.00E+00:0.93800(0.91297,0.96303) 5.0%

.00E+00:0.96600(0.94776,0.98424) 3.6% .

oOJd o Utk wNn -

ELEMENT DISTRIBUTION OF TOKENS IN USE
ELEMENT 'DISTRIBUTION OF TOTAL TOKENS IN POOL -
ELEMENT  MAXIMUM QUEUE LENGTH

MEMORY 21
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FLOPPYQ 5.

DISKQ 6

CPUQ 7
TERMINALSQ 30
ELEMENT MAXTMOM QUEUEING TIME
MEMORY 13.46424
FLOPPYQ 2.23200
DISKQ v 0.29332
CPUQ 1.90131
TERMINALSQ 76.31847
WHAT:

CONTINUE RUN:no
THINKTIME:

This run gives the same results as the last run of Section 4 but also provides confidence
intervals and results at other run limits.  The mean response time confidence interval at 1000
departures, (2.46, 3.77), and the interval at 2000 departures, (2.86, 3.63), contain the value
for the numerically solved model without memory contention, 2.91, and are sufficiently wide
(respective relative widths of 42% and 24%) that we cannot draw conclus1ons about memory
contention effects :

-This suggests that the initial run was much too short and that we should prébably
continue the run further. We need a longer run, but how much longer? Rather than proceed
in the above manner of lengthening the run and periodically examining the results, we can use
the sequential stopping rile, which automates essentially this procedure. = The sequential
stopping rule allows us to specify the simulation run length in terms of desired widths of
confidence 1ntervals sub]ect to the usual limit on CPU time. The simulation runs for an initial
~ length, e.g., 2000 memory departures, and then confidence intervals are obtained. ~ If the

.intervals do not meet the width criteria, the simulation continues with new limits which -
. increase the total run length by roughly 50%. Then new estimates are made and a new

" decision to terminate or continue is reached. . This continues untll the criteria are’ satlsfled or
the CPU limit is reached. The parts of the run are referred to as "sampling periods."

As 'be'foire, we can edit the dialogue file,

‘edit csmwm rqzinp

EDIT: .

: locate/SEQUENTIAL

' SEQUENTIAL STOPPING RULE:no
delete. *

EOF.:

file

R; T= O 06/0. 28 15 45 50

‘ and use SETUP agaln
SETUP ‘csmwm
MODEL IS CSMWM

CONTINUING WITH. MODEL - DEFINITION. ..
SEQUENTIAL_STOPPING RULE:yes
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CONFIDENCE INTERVAL QUEUES:memory memory
" MEASURES:gt gtd - ‘
ALLOWED WIDTHS:10 10
CONFIDENCE INTERVAL QUEUES:
CONFIDENCE INTERVAL NODES:
_ EXTRA SAMPLING PERIODS:edit
EDIT:
‘case m
locate/ALLOWED WIDTHS:
- ALLOWED WIDTHS:10-10
i INITIAL PORTION DISCARDED:10 /*percent of dnitial perlod*/
file
MODEL- IS CSMWM
CONTINUING WITH MODEL DEFINITION.
INITIAL PERIOD LIMITS- =
" SIMULATED TIME:
EVENTS:
QUEUES FOR DEPARTURE COUNTS :memory
_DEPARTURES: 2000
QUEUES FOR DEPARTURE COUNTS:
NODES FOR DEPARTURE COUNTS:
LIMIT ~ CP SECONDS:300
- TRACE:no
" _END
'NO FATAL ERRORS DETECTED DURING THE COMPILATION
R; T=0.83/2.06 15:48:02

‘We are asked for a list of queues where we are to obtam and check confldence mterval w1dths'
~‘at the end of a sampling period. Then we are askéd what measures are to be considered.
Then we are asked what widths are to be allowed. For the queueing time distribution (qtd),
. each gathered point of .the dlstnbutlon is checked and must satisfy the w1dth criteria. For the
©queueing time distribution, which can only have values in the [0, 1] interval, _t_he width
_specified is absolute width in percent, i.e., the criterion is that'200x8 be less than the
specified width, where the confidence mterval is( ~ 8, p + 8). For mean queueing time .
- (qt), the width is relative width in percent, i.e., the criterion is that 200x8/p be less than the
specified width. (Where p is zero, the cntena is not satlsfled )

We are then asked how many extra sampling periods are to be run with the criteria
satisfied. The default is 0. The simulation will continue until this number plus one- of
successive sampling periods satisfy the criteria. Extra sampling periods force the simulation to .
run longer and thus can help overcome some of the problems of the sequential rule, e.g., on a
‘very short run severe underestimates of the confidence interval width may result in the criteria
being accepted. For further discussion of this problem, and the sequential stopplng rule in
general see Heidelberg and Welch [HEID81]. :

Rather than giving a value to the EXTRA SAMPLING PERIODS: prompt, where we are
willing to accept the zero default, we give the special reply "edit" so that we can insert. an
INITIAL PORTION DISCARDED: line in the dlalogue file. This portion of the flrst samplmg
period will be dlscarded

Using EVAL again, we get

RESQ2 VERSION DATE: APRIL 3, 1982 - TIME: 17:56:07 DATE: 04/03/82

© MODEL:CSMWM6S
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THINKTIME:10

USERS: 30

PAGEFRAMES : 128"

SAMPLING

SAMPLING

SAMPLING
"SAMPLING:

SAMPLING
SAMPLING

PERIOD
PERIOD
PERTOD
PERIOD
PERIOD
PERIOD

END:
END:
END:
END:
END:
END:

‘MEMORY

MEMORY
MEMORY
MEMORY
MEMORY
MEMORY

DEPARTURE
DEPARTURE
DEPARTURE
DEPARTURE
DEPARTURE
DEPARTURE

NO 'ERRORS -DETECTED ‘-DURING SIMULATION.

SIMULATED TIME:

. CPU

TIME:

NUMBER OF EVENTS:

WHAT:gtbo (memory)

ELEMENT-
MEMORY

WHAT:

MEAN '‘QUEUEING TIME .
©3.39314(3.24376,3.54253) 8.8%

CONTINUE RUN:yes

SAMPLING
SAMPLING
SAMPLING

- SAMPLING

SAMPLING

. SAMPLING
SAMPLING

PERIOD"

PERIOD

PERIOD.

PERIOD
PERIOD
PERIOD
PERIOD

END:
END:
END:
"END:
END:
END:
END:

EXTRA SAMPLING PERIODS: 1

MEMORY

"MEMORY

MEMORY
MEMORY
MEMORY
MEMORY
MEMORY

DEPARTURE
DEPARTURE
DEPARTURE
DEPARTURE
DEPARTURE
DEPARTURE
DEPARTURE

NOERRORS DETECTED DURING SIMULATION.

- ELEMENT

MEMORY
FLOPPYQ
DISKQ
CPUQ-

TERMINALSQ

 ELEMENT

MEMORY
FLOPPYQ
DISKQ

WHAT :allbo
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SIMULATED TIME:

CPU

TIME:

NUMBER OF EVENTS:

UTILIZATION
0.84992

.39839
30647
.89810
.00000

THROUGHPUT.
2.22836
1.81512 "
16.18085

LIMIT

LIMIT

LIMIT
LIMIT
LIMIT
LIMIT :

3786 DISCARDED. EVENTS

6096.76563
107.39
232927

LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
3786 DIS

9200.,50391
160.28
351644

CARDED EVENTS
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CPUQ |

TERMINALSQ

FREEMEMORY

. ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ

TERMINALSQ

ELEMENT
MEMORY
 FLOPPYQ
DISKQ

CPUG .
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ -
'DISKQ

CPUQ
 TERMINALSQ

. ELEMENT

_ MEMORY

' FLOPPYQ
DISKQ

CPUQ
TERMINALSQ

ELEMENT
MEMORY

- ELEMENT
MEMORY .-

ELEMENT
MEMORY

CONFIDENCE INTERVAL METHODS / SEC. 5

17.29608

©2.22803

2,22836

MEAN QUEUE LENGTH -
7.66801

0.59354

0.41624

2.47630

22.33199 -

STANDARD DEVIATION OF QUEUE LENGTH
.97375 ’ ’

.87024

.71857

.37433

.97375

MEAN QUEUEING TIME
3.43985(3.33988,3.53982) 5.8%
0.32700 ’ ‘
0.02572

0.13760

10,01154

STANDARD DEVIATION OF QUEUEING TIME
2.42777 o I
0.31059 L

0.02501

0.15214

10.01072

MEAN TOKENS IN USE
108.78951

MEAN TOTAL TOKENS IN POOL
128.00000

' QUEUE LENGTH DISTRIBUTION

0:0.01557
,03242
. 04968 .
.06637
.07511
.08407
.08908
.08593

QoOU R W
o0 0000 O
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. 09090

8:0
9:0.08693 .
10:0.07914
11:0.06877
12:0.05468
13:0.04200
14:0.03094
15:0.01930
ELEMENT QUEUEING TIME DISTRIBUTION v
MEMORY 1.00E+00:0.15520(0.14791,0.16250) 1.5%
2.00E+00:0.32216(0.30920,0.33513) 2.6%
'3.00E+00:0.49410(0.47693,0.51127) 3.4%
4.00E+00:0.64569(0.62781,0.66358) 3.6%
5.00E+00:0.77144(0.75471,0.78817) 3.3%
6.00E+00:0.85875 (0.84547,0.87202) 2.7%
7.00E+00:0.91494(0.90398,0.92589) 2.2%
8.00E+00:0.95137 (0.94339,0.95935) 1.6%
ELEMENT DISTRIBUTION OF TOKENS IN USE
ELEMENT DISTRIBUTION OF TOTAL TOKENS IN POOL
ELEMENT * . MAXIMUM QUEUE LENGTH
MEMORY L2
FLOPPYQ 6
DISKQ 6
CPUQ 7
TERMINALSQ - 30
ELEMENT MAXIMUM QUEUEING TIME
MEMORY 19.19725
FLOPPYQ 2.61646
DISKQ 0.29332
CPUQ. 1.94650
" TERMINALSQ 112.28362
WHAT:

CONTINUE RUN:no
THINKTIME:

The simulation ran for a total of 6 sampling periods. The initial 3786 events of the first
sampling period were discarded. The point estimate for mean response time ‘is 3.39 séconds _
and the confidence interval estimate is (3.24, 3.54). The relative width is 8.8%. When we
specified that the run was to continue until the stopping criteria-had been satisfied for two
successive sampling periods, one more sampling period was required. There was an increase in -
the mean response point estimate and the lower end of the interval.
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.. We can reasonably conclude based on either thlS run: or the last runs of Sectlons 5.1 and -
5.2, that memory contention has significantly raised the mean: response tlme above the 2.91
second estimate for the model without memory contention:
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‘6. SOURCES AND SINKS

_ All'of the models we have considered so far have a fixed population of jobs with no

mechanisms for external arrivals of jobs at the network or departures of ]obs from the:
heétwork. The mechanisms provided for these purposes are nodes called sources" aﬁd‘,
"sinks," respectively. As we said‘before,v routing chains with sources and sinks ‘are "open"

chains.

SOURCE SINK

Flgure 6.1 - Queue in Isolation

The simplest possible open queueing network is a single queue in iselation as shown:in
Figure 6.1. Let us use RESQ to examine the class1cal "M/M/1" queue, i.e., a fcfs queue with
exponential arrival and service times. : :

MODEL : MM »
METHOD :numerical -
'QUEUErq

TYPE:fefs
" CLASS LIST:c
, SERVICE TIMES:4
CHAIN:ch
TYPE:open
SOURCE LIST:s
ARRIVAL TIMES:5
, :s->c->sink
END

All of the above dialogue should be familiar up to the prompt for the cham type After giving
the type as open, there is a prompt for a list of source names and then a prompt for a list of
arrival time distributions. - The name "sink" is predefined as the only sink. The same sink is
shared by all open chains. It is illegal to have a routing transition with a source on the rlght
hand side or a smk on the left hand side,

Now we can get the results from EVAL:
RESQ2 VERSION DATE: OCTOBER 2, 1981
MODEL ; MM1

'NO' ERRORS DETECTED DURING NUMERICAL SOLUTION.

WHAT:all

ELEMENT__ - UTTLIZATION
Q L : 0.80000
ELEMENT - THROUGHPUT
Q. 0.20000
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ELEMENT ' MEAN QUEUE LENGTH

Q - 4.00000

ELEMENT “ f MEAN QUEUEING' TIME'

Q. ©19.99998

- ELEMENT OPEN CHAIN POPULATION

CH ' 4,00000

ELEMENT OPEN CHAIN RESPONSE TIME
CH 19.99998

‘WHAT::

SOURCES AND SINKS / SEC. 6

The open chain population is the mean number of ]obs in. the open cham and the open chaln

response time is the mean time spent in the chain by a job.

Though the queueing time distribution for the M/ M/ 1 queue is known to be exponential

'(see' Kobayashi [KOBA78)), it is not available from the numerical solution component of
RESQ. We can use simulation to obtain estimates of the queueing time distribution, as would

be necessary if we were dealing with-a system without known solution for the queuemg time

dlstrlbutlon The following dlalogue file would be adequate

MOD

EL:mm1 v
METHOD: simulation
QUEUE: g
TYPE: fcfs
CLASS LIST:cC
SERVICE TIMES:4

 CHAIN:ch .

~ END

, TYPE open
 SOURCE LIST:s
ARRIVAL TIMES:5
rs—>c->sink .
QUEUES FOR QUEUEING TIME DIST:g
VALUES: 10 20 30 40 50
CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes .
QUEUES TO BE CHECKED:q
 MEASURES:qt
ALLOWED WIDTHS: 10
SAMPLING PERIOD GUIDELINES -
QUEUES FOR DEPARTURE COUNTS:q
DEPARTURES : 10000
LIMIT -~ CP SECONDS: 100
TRACE: no '
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‘We have not given an explicit definition of the regeneration and initial states. ' If we do not
give an explicit definition of these states for a chain, then there will be no jobs in the chain in
these states. (Thus we must give explicit definitions for these states for closed chains.) It can
be shown that the empty state is the most frequently occurring state for the M/M/1 queue

and for many open networks. Thus it is reasonable as well as convenlent to use the empty
state as we have’ done.

Though the M/M/1 queue is vety simple to solve algebraically, it can require what seem
to be very. long simulation runs for reasonable results. ‘Knowing this in advance, we set the

departure limit at 10,000 departures.

Now ﬁsing EVAL we get

NO ERRORS DETECTED "DURING SIMULATION.

R

April 3, 1982

DEPARTURE

RESQ2 VERSION DATE: OCTOBER 3, 1981
' MODEL : MM .
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
'SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
SAMPLING PERIOD END:  DEPARTURE GUIDELINE

SIMULATED TIME: 3.0210E+05
‘ ‘CPU TIME: 42.39
NUMBER. OF EVENTS: 120132
NUMBER OF CYCLES: 12268
~WHAT:gtbo
ELEMENT MEAN. QUEUEING TIME
18,64873(17.76196,19.53551) 9.5%
WHAT:utbo
ELEMENT UTILIZATION
0 0.79771(0.79058,0.80484) 1.4%
WHAT:,
CONTINUE RUN:yes
EXTRA SAMPLING PERIODS: 1
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
'SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
SAMPLING PERIOD -END: Q DEPARTURE GUIDELINE
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE -
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
SAMPLING PERIOD END: Q GUIDELINE
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NO.'ERRORS DETECTED DURING SIMULATION. .

. SIMULATED TIME: 4.5137E+05

CPU TIME: . - 63.52
NUMBER OF EVENTS: 180320
'NUMBER OF CYCLES: L ..18183 .
WHAT:qtbo
ELEMENT ' MEAN .QUEUEING TIME
Q ' 19.19112(18.35539,20.02684) 8.7%
WHAT:allbo
- ELEMENT UTILIZATION _ ,
Q ' 0.79982(0.79388,0.80575) 1.2%
ELEMENT THROUGHPUT »
Q : 1 0.19975(0.19869,0.20081) 1.1%
s o 0.19975 ‘
SINK 0.19975
ELEMENT ' MEAN QUEUE LENGTH
Q . 3.83337(3.65683,4.00990) 9.2%
ELEMENT STANDARD DEVIATION OF QUEUE LENGTH
Q ) 4.16076
ELEMENT MEAN 'QUEUEING TIME ,
Q » 19.19112(18.35539,20.02684) 8.7%
ELEMENT STANDARD DEVIATION OF QUEUEING TIME
Qo : 18.49261
ELEMENT ' MEAN TOKENS IN USE
ELEMENT  MEAN TOTAL TOKENS IN POOL
ELEMENT QUEUE LENGTH DISTRIBUTION -
* BLEMENT QUEUEING TIME DISTRIBUTION .
Q . 1.00E+01:0.39427(0.38311,0.40542) 2.2%

2.00E+01:0.64136(0.62683,0.65589) 2.9%
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3.00E+01:0.79021(0.77598,0.80443) 2.8%
4.00E+01:0.87709(0.86450,0.88967) 2.5%
5.00E+01:0.93015(0.91954,0.94076) '2.1%

ELEMENT . - DISTRIBUTION. OF TOKENS IN USE -
ELEMENT ~~ ~ DISTRIBUTION OF TOTAL TOKENS TN POOL
ELEMENT ~  MAXIMUM QUEUE LENGTH

0 035

ELEMENT MAXIMUM QUEUEING TIME

Q o 151.03687 o

ELEMENT OPEN CHAIN POPULATION

CH . 3.83337(3.65683,4.00990) 9.2%
ELEMENT | OPEN CHAIN RESPONSE TIME :

CH 19.19112(18.35538,20.02684) 8.7%
WHAT;

CONTINUE 'RUN:no

Arrivals from sources are events as well ‘as service completions.  Thus the initial number
of departures is 60066, which seems like a large number to-obtain a 10% confidence. interval -
width for the mean queueing time, but this illustrates the variability of the M/M/1:queue:at
moderately high utilizations. . Note that open networks and queues with more variable service
times are likely to require even longer runs when utilizations are high.. Note also. that even
with this seemingly long run, the point estimate for mean queueing time is well below the true
- value and the confidence interval does not contain the true value. Only when we continue the:
run, requiring that the width criterion be satisfied for two successive sampling periods, do we ‘
get a confidence interval which contains the true value: Three additional sampling perlods are
required before the criterion is satisfied for two successive sampling perlods

“Sources and sinks are used in exactly the same manner in general networks as in this
example here. We will have more examples with sources and sinks in subsequent. sections. - It
is possible to have the arrival rate of jobs from sources of a chain vary during the smulatlon .
as we. shall see in Section. 8 : v :

,With. th‘e-'regenerative method’ it is almost always most appropriate to use the empty state
for regeneration and initial states for open chains. Though some other state may occur. more
frequently, it is ‘usunally not worth the effort of looking for such a state. If the. empty state
does not occur frequently enough then it is usually not practical to use the regenerative
method. - ,
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7. CHAINS

) All of our examples so far have had a single routing chain. Also, all of our examples have'
had at most one node of a given type per queue (the passive queues have had two nodes, an
allocate and a release). Usually we use more than one routing chain when we want to -
distinguish between different types of jobs.: A queue must have at least one node for each
chain which visits the queue, so more than one chain usually implies more than one node at at
least one queue. (Otherwise we would actually have disjoint subnetworks.) We may want to
have more than one node (of a given type) per queue even if we have only one routing chain
and/or we may want to have a queue with several nodes of the same type which belong to the
same chain in a model with several chains. Chains are disjoint in the sense that a node of one
chain may not belong to another chain (with the exception that all open chains share the same
sink). With models solved by the RESQ numerical component, a job at a source or class of a
. 'given chain must be able to reach any class of the chain unless it goes to a sink first.. A
similar requirement (with nodes in general other than sources and sinks replacing classes in the
above) does not hold for models to be simulated, but most models will satisfy the condltlon
(ln Sectlon 8 2 we will see a model which does not satlsfy this condition.)

EFLOPPY

TERMINALS

~Figure» 7.1 - Single Chain Model

- Before we consider ‘models with- multiple chains, let-us consider ‘a model with a single .
chain but multiple classes at some active queues. Suppose in our original computer system o
model we wished to distinguish between commands for editing, which represent the bulk of
commands in many systems, and other commands, e.g., for compiling and running programs.
Figure 7.1 shows a possible modification for this purpose. We have separate classes for
editing and "running" at the CPU, floppy disk and hard disk queues. A job leaving the
teriminals is determined to be either an editing or a running job and the distinction is preserved
untjl ‘the job returns to ‘the terminals. The following is a possible dialogue file for this. medel:-

MODEL: csmer :
/*Computer System Model with Editing and "Running" users*/
METHOD :numerical
NUMERIC PARAMETERS: thlnktlmo users )
NUMERIC IDENTIFIERS:floppytime disktime ecputime rcputime
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‘FLQPPYTIME:.ZZ
"DISKTIME:.019
“ECPUTIME: .05
RCPUTIME:.075
NUMERIC IDENTIFIERS:ecyclées rcycles
ECYCLES: 4
- RCYCLES:60
QUEUE: £ loppva
TYPE: fcfs )
CLASS LIST:efloppy rfloppy
i SERVICE TIMES:floppytime
QUEUE :diskq ' :
TYPE: fcfs
CLASS LIST:edisk
SERVICE TIMES:disktime
CLASS LIST:rdisk
SERVICE TIMES:disktime
"QUEUE: cpug
TYPE:ps
CLASS LIST:ecpu rcpu
SERVICE TIMES:ecputime rcputime
QUEVUE:terminalsqg ‘
TYPE:is
CLASS LIST:terminals
" SERVICE TIMES: thlnktlme
CHAIN:interactiv
TYPE:closed
POPULATION: users
:terminals->ecpu xrcpu; .95 .05
:ecpu->efloppy edisk;.1 .9
:éfloppy >terminals ecpu-1/ecy¢les 1-1/ecycles
:edisk~->terminals ecpu;1/ecycles 1—1/ecycles
srepu->rfloppy rdisk;.2 .8
:rfloppy->terminals rcpu;1/reycles 1-1/rcycles
. :rdisk->terminals rcpu;l/reycles. 1-1/rcycles
END

The model assumes that the service times are the same for both classes at floppyq and diskq -
and different at cpuq. With exact numerical solution we must assume the same exponential
distribution for all classes at fcfs queues. . The model also has different mean .numbers. of
cycles for the editing and running subnetworks. (We dropped "cpio" from the identifiers to -
~keep under 11 characters.) Note that in the definition of floppyq a single service time value is
given for all classes in the list. In the definition of diskq we used two class lists (whxch could
-each have more than one class if there. ‘were more classes at the queue,)

Using EVAL we can get
RESQ2 VERSION DATE: MARCH 23, 1982 - TIME: 15:22:56 DATE: 04/01/82
MODEL : CSMER S
THINKTIME: 10
USERS : 30
NO ERRORS DETECTED DURING -NUMERICAL SOLUTION

WHAT:all
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ELEMENT
FLOPPYQ
EFLOPPY
RFLOPPY
DISKQ
EDISK

. RDISK
CPUQ-
ECPU
RCPU

TERMINALSQ -

ELEMENT
FLOPPYQ
EFLOPPY
RFLOPPY
DISKQ
EDISK .
RDISK
CPUQ
ECPU
RCPU
TERMINALSQ

ELEMENT
FLOPPYQ
EFLOPPY
RFLOPPY
DISKQ
EDISK
RDISK
CPUQ
ECPU
RCPU
TERMINALSQ

. ELEMENT
FLOPPYQ
EFLOPPY.
- 'RFLOPPY
DISKQ
EDISK
RDISK
CPUQ
ECPU
RCPU
TERMINALSQ

WHAT ;"
THINKTIME:

UTILIZATION

0.48863
0.18947
0.29916

0.25062
0.14727
0.10335

0.94055
0.43061
0.50993

0.00000

, THROUGHPUT

2.22105
0.86122
1.35982

13.19032
7.75102
5.43930

15.41136
8.61224.
6.79912

2.26638

MEAN QUEUE LENGTH

0.92724
0.35954
0.56770

0.33208
0.19514
0.13694

6.07688
2.78219
3.29469

22.66380

MEAN QUEUEING TIME
10.41748

0.41748
0.41748
0.02518
0.02518
0.02518
0.39431
0.32305
0.48458
10.00000

CHAINS'/ SEC. 7
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 With numerical solution, RESQ does not provide utilization estimates for classes ‘at queues -
with multiple servers and/or queue dependent service rates.. We can estimate. mean response
times as before, e.g., by Little’s Rule the mean editing response time is (2.78219 + .35954 +
.19514)/(2.26638 x .95) = 1.550 seconds, the mean running response time is (3.29469 +

56770 +.13694)/(2.26638 x .05) = 35.293 seconds and the mean overall response time is
. 30 - 22 66380)/2 26638 = 3 237 seconds v

EFLOPPY

-

RFLOPPY

ETERMINALS

L
\L

|

RTERMINALS 2CPU

Figure 7.2 - Model with Two Closed Chains

In the model with the single chain, it is unlikely that a user’s successive commands Willvbe .
for "running." Usually an editing command will follow a command for "running." Suppose
that this is not realistic, that users stay in an editing or running mode for quite a while so that
it seems as if there are editing and running wusers rather than merely editing ahd running
commands. Then it might be more appropriate to have two chains as in Figure 7.2. (Another
p0951blllty would be to have infrequent transitions between the chams of Figure 7.2; thén the
"chains" would actually be subchains, not chains.) Suppose we want to consider the system
when one seventh of the users are in the running mode and the rest are in the ed1t1ng mode
Then we would have the following definitions for termmalsq and the chams :

QUEUE: termlnalsq
TYPE: is
CLASS LIST:eterminals rtermlnals
SERVICE TIMES:thinktime
CHAIN:editing
TYPE:closed
POPULATION:users-ceil (users/7)
:eterminals~>ecpu
recpu->efloppy edisk; .9
refloppy->eterminals ecpu; 1/ecycles 1—1/ecycles
;edisk->eterminals ecpu;1/ecycles 1-1/ecycles
 CHAIN:running '
TYPE:closed i
POPULATION: ceil (users/7)
:rterminals->rcpu
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:repu->rfloppy rdisk;.2 .8
:rfloppy->rterminals rcpu;1/rcycles 1-1/rcycles
~“ardisk->rterminals rcpu;1/rcycles 1-1/reycles
END . R B e Ee :

The dialogue file befér’e"‘the definition of términalsq is the same as before. The "ceil"
function gives the smallest integer which is at least as large as the given: argument.  Now we
could get the following: o : ‘

RESQ2 VERSION DATE: MARCH 23, 1982 - TIME:. 16:03:15 DATE: 04/01/82
MODEL: CSMER . '
THINKTIME: 10

USERS: 30 . : _ ;

NO 'ERRORS DETECTED DURING NUMERICAL SOLUTION

WHAT: a1l

ELEMENT  UTILIZATION
FLOPPYQ 0.50873
'EFLOPPY . 0.18965
RELOPPY 0.31907 -
DISKQ ‘ 0.25764
- EDISK 0.14741
RDISK = . ~ ~ 0.11023
CPUQ S 0.97491
ECPU- ..0.43103
RCPU 0.54388.
TERMINALSQ  0.00000
ETERMINALS ~0.00000
'RTERMINALS ~ 0.00000
ELEMENT .  THROUGHPUT
FLOPPYQ 2.31240
EFLOPPY . 0.86207
. RFLOPPY | 1.45034
DISKQ 13.55993
EDISK 7.75859
RDISK 5.80134
CPUQ 15.87234
ECPU | 8.62066
RCPU . 7.25168
TERMINALSQ - 2.27603
ETERMINALS 2.15516
RTERMINALS 0.12086
ELEMENT MEAN QUEUE - LENGTH
FLOPPYQ 0.97826
EFLOPPY 0.37487
RFLOPPY . 0.60339
_DISKQ 0.34472
EDISK ©.0.19748
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RDISK L 0.14724
CPUQ o 5.91675
ECPU 2.87599
RCPU 3.04076
TERMINALSQ.  22.76025
ETERMINALS 21.55165
RTERMINALS 1.20861.
ELEMENT MEAN QUEUEING TIME
FLOPPYQ 0.42305
EFLOPPY - 0. 43485
RFLOPPY - . 0.41604
DISKQ 0.02542
EDISK 0.02545
- RDISK" 0.02538
CPUQ ‘ 0.37277
ECPU : 0.33362
RCPU 0.41932
TERMINALSQ 10.00000
ETERMINALS . 10.00001
RTERMINALS ~ 10.00000
WHAT:
THINKTIME:

. Now- the mean response time for the editing jobs would be (25 - 21. 55165)/2 15516 = 1.600
seconds, ‘the mean response time for the running jobs would be (5 = 1.20861)/. 12086
31.370 seconds and the mean overall response time would be (30 —-22; 760) /2. 27603 3,181

_seconds. : :

With multiple closed chains, execution times may become quite large wzth numerzcal solutzon
when the chain populations are substantial.

Now let us suppose that we return to our original model without distinctions between
interactive users and wish to add a batch workload to that model.- The batch jobs could be
submitted by terminal commands, for example. Figure 7.3 shows an open chain added to the
original figure to’ represent. the batch jobs. The following dialogue file could be used for
Flgure 7.3: :
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IFLOPPY

TERMINALS

E}ELISK

Figure 7.3 - Model with Open and Closed Chains

MODEL: ¢smib

-/*¥Computer System Model with Interactive users and Batch jobs*/

METHOD:numerical

NUMERIC PARAMETERS:thinktimé users brate

' NUMERIC IDENTIFIERS: floppytlme disktime 1cput1me beputime

' FLOPPYTIME: .22
© DISKTIME:.019
ICPUTIME: .05
~BCPUTIME: .075

NUMERIC IDENTIFIERS:icycles beycles
ICYCLES:8
BCYCLES: 100

QUEUE: floppyd

TYPE:fcfs
- CLASS LIST:ifloppy bfloppy
SERVICE TIMES:floppytime

QUEUE: diskqg

TYPE:fcfs: .
CLASS 'LIST:idisk bdisk . )
SERVICE TIMES:disktime e IR "

QUEUE : cpug o '
TYPE:ps
CLASS LIST:icpu bcpu

SERVICE TIMES:icputime bcputime -

QUEUE: terminalsg . ‘
TYPE:is A - o , D -
CLASS LIST:terminals : '

SERVICE TIMES:thinktime _
' CHAIN:interactiv _ ‘ S ' R
TYPE:closed ) )
POPULATION: users
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- :terminals->icpu
viepu->ifloppy idisk;.1 .9
1ifloppy->terminals icpu;1/icycles 1-1/icycles
:idisk=->terminals icpu; 1/icycles 1-1/icycles
CHAIN:batch o B
TYPE:0open
SOURCE LIST:s
ARRIVAL TIMES 1/brate
rs=>bepu. ‘
‘~bcpu->bfloppy bdisk; 2 .8
bfloppy >sink bcpu 1/bcycles ]—1/bcycles
rbdisk~>sink bcpu; 1/beycles 1-1/beycles
END :

"With numerical solution, RESQ requires that closed chains be defined before open chams.;

assume batch jobs are submitted at rate brate. Using EVAL we can'get

" RESQ2 VERSION DATE: MARCH 23, 1982 - TIME: 16:20:21. DATE: 04/01/82
MODEL : CSMIB : - : : L
THINKTIME: 10 -

USERS: 30

BRATE: .01

NO' ERRORS DETECTED DURING NUMERICAL SOLUTION

WHAT:all

April 3, 1982

ELEMENT . UTILIZATION
FLOPPYQ = . 0.43299
IFLOPPY 0.38899
"BFLOPPY - © 0.04400
DISKQ C 0031755
IDISK ~ . . 0.30235
“BDISK ... .0.01520
CPUQ © . 0.95906
CIcPU . . .0.88406
CBCPUL .0.07500
TERMINALSQ 0.00000
ELEMENT . - THROUGHPUT -
FLOPPYQ) 1.96812
IFLOBPY - 1.76812
BFLOPPY ©0.20000
DISKQ 16.71306
IDISK . 15.91307
BDISK 0.80000
CPUQ "~ 18.68118
ICPU 17.68118
BCPU - 0.99999
‘TERMINALSO 2.21015
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. BLEMENT ~  MEAN QUEUE LENGTH

FLOPPYQ « 0.75205
IFLOPPY - . 0.67496.
- BFLOPPY 2..0.,07709
DISKQ 0.46135
IDISK ©~ . 0.43914
BDISK .. .+ - ..0:02221
CPUQ o 7.41557
IepU . 6.78440
SUBCPU . 0:63116
TERMINALSQ .~ 22.107149
ELEMENT =~ ‘MEAN QUEUEING TIME
FLOPPYQ S 0.38212
SIFLOPPY . 0.38174
BFLOPPY . .0.38545
DISKQ C0.02760
IDISK . 0.02760
BDISK 0.02777
CPUQ 0.39695
ICPU - ©.0.38371
BCPU o 0.63117
 TERMINALSQ 10.00000
ELEMENT = OPEN CHAIN POPULATION
BATCH ° L 0,73047 o
ELEMENT - OPEN CHAIN RESPONSE TIME
BATCH ' 73.04666
WHAT : ‘
THINKTIME: -

Now the interactive mean response time is (30 — 22.10149)/2.21015 = 3.5‘74‘se‘cobnds.' We
could obtain the o_v_erall mean response time again, but this seems uninteresting for this model:;

Obgnr chains have negligible effect on the execution time of RESQ humé:rical solutions. X
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8. JOB, CHAIN AND GLOBAL VARIABLES

Job, Chain and Global Variables are available only in- simulation models. These variables
are used. in the: sense- of programming language variables. -Assignment statements for ‘these
variables are performed by set nodes. Expressions containing these variables may be used in

defining service times, arrival times, routmg, priorities, numbers of tokens to be allocated, and =

in most other’ places where numeric expressions are allowed. (The Users Guide indicates
which expressions do not allow use of these variables. Except in those places where the
variables:are expl1c1tly prohibited, expressions may use these variables.) '

8.1. Job Variables ~

-Job var1ables are used to store numeric data with individual ]obs durrng a srmulatron run.
Job variables are identified by the subscripted keyword "JV.'" The subscripts begin at 0 and
may range. up-to a maximum specrf1ed by the user. (Job variables ‘and chain varrables are.
unlike RESQ arrays. in that the lower bound is. 0 1nstead of 1 ) The maxxmum subscrrpt is
‘ specrfred in response to:the prompt '

MAX JV

In a dlalogue frle thrs prompt and the reply would be inserted followrng the 1dent1f1er declara-
tions section. Ir ho maximum is spec1f1ed only JV(O) ‘and JV(1) may be used: All Job‘
_-variables are initialized to O when a job is created except for job variables of ]obs created by
split and fission nodes (Section 11), Job variables are represented mternally as. double
precision floating point numbers. :
Job variables are assigned values at "set" nodes. A set node performs assignment
statements correspondmg to assignment statements in a programmrng language After'queue
-deflnrtrons are completed the interactive mode of SETUP will prompt for a list of set nodes )
‘with the prompt "SET NODES:" and will then prompt for the assignment statements for those
nodes with the prompt "ASSIGNMENT LIST:". After the ASSIGNMENT LIST: prompt
‘there will be another SET NODES: prompt. ' In dialogue files the SET NODES:: and ASSIGN- .
MENT LIST: lines are inserted after the queue definitions. If more than one assignment
statement is to be associated with'a single set node, then this set node should be defrned by a
separate SET NODE and ASSIGNMENT LIST section. Some examples

YSET NODES : alpha ' ~  beta
ASSIGNMENT LIST:jv(leng)=be(1,0; 1,1) Fv(3)=3v(3)+1
SET NODES: = - gamma o : '
ASSIGNMENT LIST:jv(stime)=users/10

'SET 'NODES: delta

ASSIGNMENT LIST: jv(stlme)—users/10 jV(p =j§(p)+1

_Note that use of 1dent1f1ers for subscnpts can improve readabrllty Subscrrpts for job variables

may be expressions requiring simulation trme evaluation, e.g., may involve other job variables:
In ‘this example nodes alhpa, beta and gamnia would each perform a single assighment. - Set

node delta would perform two assignments. A set node may perform any number  of assign-~

ments, but if a set node is to perform more than one assrgnment it must be defined by.a

v separate pair of SET NODE and ASSIGNMENT LIST: lines. The assignments are performed
in.the order listed. Assrgnments for ]ob charn and. global varrables may be mrxed ata smgle
'set node : . v

Job Variables are very useful in service time expressions, e.g,,
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CLASS LIST:transmit
SERVICE TIMES: propagate+standard(jv(leng) 0)/capac1ty

"Standard" is the name of a RESQ d1str1butlon spec1f1ed by the mean and coeff1c1ent of, _
" variation. Coefflclent of variation zero results in a constant value. The above expresslon
‘ would be taken as the mean of an exponentlal d1str1buuon if the name of a dlStrlbllthn was

' D—»D@D

Figure 8.1 - Series Queues with Independence Assumptlon

The class1c app11catlon of job varlables is to avoid making Klelnrock s "'independence
assumptlon in modeling communlcatlon networks: " (This assumption was originally proposed"
~in Kleinrock’s Ph.D. thesis. It is d1scussed further in [KLEI76]) Consider Figure 8.1 and
suppose that the queues represent. communlcatlon links. For simplicity let us-assume the
processing between links is negligible. The transmission times for a given message at each link
will be proportional to each other, with the proportlonallty determined by the link capacities
-(rates). In order to make analytic solution of such a network feasible, Kleinrock ‘conjectured
that one could assume the transmission tlmes were independent and demonstrated by simula-
. tion that this was a reasonable _assumption for some networks. . Whether the assumption is
reasonable or not depends on a number of factors, 1nclud1ng the trafflc 1ntens1ty and the

: network topology. :

The series topology of Figure 8.1 is such that the independence assumption-is not
appropriate. Suppose in Figure 8.1 the queues are FCFS queues with (independent) exponen-
tial service times with mean .125 second and that the arrival times are exponential: with mean

' .25 second. Then each queue may be treated as an M/M/ 1 queue in- isolation.” The queuelng*
times at each queue are exponential with mean .25 second. The response times from source to
sink are the sum of four independent exponentral trmes with mean 25 second ‘S0 they have a
four ‘stage Erlang d1str1butlon with mean 1 second. ‘ : :

'2147433647_

DA -»:@DD

Figure 8.2 - Serles Queues with Interdependence

Now suppose that we wish to test the effects of the independénce assumptlon Assumlng
that the links have the same capacities, then a message will have the same service time at each
“oft the four queues. We can no longer treat the last three queues as M/M/1 'queues because
their arrival and service times are dependent and because the interarrival times at the last two
are not necessar11y exponential. - We can simulate the ‘system ‘using job varlables Flgure 8.2
shows a passive queue and a set node added to Figure 8.1. The passive queue is used ‘to
measure response times. It has an "infinite" number of tokens, i.e., 231—1. ‘A release node is
not necessary; jobs holding tokens release them  when they go to ‘a sink. The mnumeric
identifier msg__stime is given the value 0 and used in JV subscripts to indicate the JV is used
for service times. The set node is used to put the serv1ce time value in JV(msg stlme) The
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standard dlstrlbutlon with coefficient of varlatlon one results in- an exponentlal dlstrlbutlon
"IV(msg__stime)=.125" would result in a constant, not an exponenual value. "The followmg
dialogue file could be used: : ‘

MODEL: fourlink
~METHOD: simulation
NUMERIC IDENTIFIERS msg . Stlme
MSG_ STIME: 0 /%JV to be used*/
QUEUE: rtg ;
TYPE:passive
TOKENS: 2147483647
DSPL:fcfs :
ALLOCATE NODE. LIST:beginrt
NUMBERS OF TOKENS TO ALLOCATE:1
QUEUE:q1
" TYPE:fofs
CLASS LIST:c1 R
SERVICE TIMES:standard(jv(msg _stime),0)
QUEUE: g2 ' : ’
‘TYPE:fcfs
CLASS LIST:c2 .
" SERVICE TIMES:standard(jv(msg_ stime),0)
" QUEUE :q3 ~
. TYPE:fcfs
CLASS LIST:¢3 . :
SERVICE TIMES:standard(jv(msg_stime),0)
QUEUE: g4 : '
' TYPE:fcfs = .-
CLASS LIST:c4 _
SERVICE TIMES-standard(jv(msg stime),O)
SET NODES:set.stime
ASSIGNMENT LIST:jv(msg_ stlme) standard( 125, 1)
“CHAIN:ch
. TYPE:open
SOURCE LIST:s
ARRIVAL TIMES: .25
:s=>beginrt->set stime->c1->c2->c3->c4->sink
QUEUES FOR QUEUEING TIME DIST:rtqg
VALUES:.5 1 1.5 2 2.5 ’
CONFIDENCE INTERVAL METHOD : regenerative
REGENERATION STATE DEFINITION -
’CONFIDENCE LEVEL:90
Y .SEQUENTIAL STOPPING RULE:yes
QUEUES TO BE CHECKED:rtq
MEASURES:qt
ALLOWED WIDTHS: 10
SAMPLING PERIOD GUIDELINES -
QUEUES FOR DEPARTURE COUNTS:rtg
: ‘DEPARTURES :.10000
- LIMIT - CP SECONDS:100 o o
: TRACE: no ' : : \”"
END ‘ :

EVAL will give us the following: -
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:RESQ2 VERSION DATE: OCTOBER 9 1981
MODEL: FOURLINK '

. SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE

NO ERRORS DETECTED DURING SIMULATION.

SIMULATED ‘TIME: 2512.58301
CPU TIME: . 29.56
NUMBER OF. EVENTS: "50285
NUMBER OF CYCLES: 806
: WHAT :utbo
ELEMENT - UTILIZATION
RTQ 2.2010E-09(2.1094E-09,2.2926E~ 09) 0. 0%
Q1 10.50886(0.49823,0.51949) 2.1%
Q2 - 0.50886(0.49823,0.51949) 2.1%
23 0.50886(0.49823,0.51949) - 2.1%
oh 0.50886(0.49823,0.51949) 2.1%
WHAT: tpbo (rtq)
ELEMENT THROUGHPUT- ,
RTQ _ 4.00265(3.94119,4.06411) 3.1%
WHAT: qlbo.
ELEMENT ~ MEAN QUEUE LENGTH
RTQ." = 4.72664(4.52998,4.92329) 8.3%
01 1.00657(0.95876,1.05437) '9.5%
02 1.06901(1.02551,1.11251) 8.1%"
03 1.25355(1.20049,1.30662) 8.5%
ou ©1.39750(1.33610,1.45890) 8.8%
WHAT:qgtbo
ELEMENT MEAN QUEUEING TIME ,
RTQ ‘ 1.18087(1.13909,1.22266) 7.1%
01 0.25148(0.24081,0:26214) 8.5%
Q2 0.26708(0.25784,0,27631) 6.9% "
-Q3 0.31318(0.30191,0.32445) 7.2%
Q4 0.34914(0.33591,0.36238) 7.6%
WHAT: s d_qt i
ELEMENT STANDARD DEVIATION OF QUEUEING TIME
RTQ - 0.72737
Q1 - 0,24087
Q2 0.19031
23 » ©0.19855
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Q4 . 0.20232
WHAT: qtdbo
ELEMENT ~ QUEUEING TIME DISTRIBUTION
RTQ . 5.00E-01:0.17590(0.16287,0.78892) 2.6%
' © 1.00E+00:0.46107(0.43827,0.48388) 4.6%
© 1.50E+00:0.71473(0.69109,0.73836) 4.7%
2.00E+00:0. 86944 (0.85158,0.88731) 3.6%
2.50E+00:0.94094 (0.92910,0.95277) 2.4%
WHAT:

CONTINUE RUN:no

Note the increasing mean queue lengths and mean queueing times as we progress from queues

1 to 4. The response time has a mean 18% higher than with the independence assumption

and is more variable than if it had a four stage Erlang distribution. The queuemg times at
" queues 2, 3 and 4 are less varlable than the exponentlal dlstnbutxon :

We will have more examples of use of job variables in sub_seqhent sections.

8.2. ‘Chain Variables

Chain variables are analogous to job variables except that the numeric data is associated =~
with ‘chains rather. than individual jobs. Chain variables have only one unique functzon, to
control the rates of sources of the chains. Though chain variables can be used for other purposes,’
it will usually be more appropriate to use global variables (Sectzon 8.3) for these purposes ‘

. Chaln vanables are 1dent1f1ed by the subscrlpted keyWord "ev.! The.: subscripts begi‘n at
0 and may range up to a maximum specified by the user. Only chaln variable 0 -affects -
sources The maxxmum subscript can be spec1f1ed only 1n dlalogue flles A line of the form

'vMAX_cv: "max‘sUbscript":

is mserted after the corresponding job varlable definition (or after the 1dent1f1er def1n1t1ons 1f‘
<there is no corresponding job variable definition.) If no maximum is’ spec1f1ed only CV(O)
may be used.  All chain variables are initialized to 1. Chain variables are represented
internally as double precision floating point numbers. B :

~ Chain variables are assigned values at set nodes, as with job variables. If CV(0) for an
‘open chain has a value other than 0, samples from the arrival time distributions are divided by
CV(0) to obtain actual interarrival times. If there are pending source events for an ‘open
chain when CV/(0) is changed to a value other than 0, those events are rescheduled. The new
time until an event is obtained by multiplying the old time until an event by the old value of
CV(O) and dividing that result by the new value of CV(0). Setting CV(0) to 0 shuts off all.
‘'sources for that chain; any pending source events for the chain are deleted from the eveit hst
" and no new events will be scheduled, even if CV(0) should later become non-zero.

As an example of the use of CV(0) to change arrival rates, let us suppose we want to -
look at the behavior of our hypothetical computer system as the number of users-at the
terminals varies during the day. The top part of Figure 8.3 shows users arriving at the
termmals and alternating between thmkmg at the termlnals and waiting for command process- ‘
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' TERMINALS
COMP_SYS

Do

o=
iiécvun=;>f
Ld(m:.i

: Figure 8 3= Arrivals Dependent on Time of Dvay :

ing unt11 they are f1n1shed and leave The computer system is represented by a smgle quete
with queue dependent service rates. Queue dependent rates are discussed in Section 15. "The
. rates we will use were obtained by standard approximation techniques assuming partitioned
memory - with four partltlons - For discussion of approximate: solutions, see' [CHAN78Db,
SAUET9, SAUES81a, LAVES82]. Let us assume “the peak arr1val rate of users is from 1:to 5 in
the afternoon, that the arrival rate is one half the peak rate from 9 to 12'in’ the mormng, that
the arrival rate is one fourth the peak rate during the lunch hour and that the artival rate is
one tenth the. peak rate during the night. The bottom part of Figure 8.3 shows the set nodes
that will be used for this purpose. There will be a single job alternating between set nodes’
and service times representing the above periods. Even though this part of the network is
disjoint from the remainder as far as the jobs are concerned, we will consider the network to
consist of only one chain. - (This is the example ‘we referred to in defmmg chams m Sectlon
10.) The followmg d1alogue file ¢ould be used. s

‘MODEL oneday
- METHOD:simulation ,
NUMERIC PARAMETERS:peakrate
" NUMERIC IDENTIFIERS:thinktime commands
- THINKTIME:10 :
‘COMMANDS : 200
7QUEUE terminalsq -
. TYPE:is '
CLASS LIST:terminals
‘ SERVICE TIMES:thinktime
QUEUE: comp_Sysq ' '
| TYPE:active
SERVERS: T
DSPL:ps
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CLASS LIST:comp_sys
WORK DEMANDS: 1
SERVER " -
RATES: 1. 40292 1. 98614 2.25576 2 38438
' QUEUE: timerq
. TYPE:fcfs »
CLASS LIST:time9to12 timei2tol: -
WORK DEMANDS: standard(10800 0) standard(3600 0)
CLASS. LIST: t1me1t05 tine5to9 )
" WORK DEMANDS:standard(14400,0) standard(57600 0)
SET. NODES:set9to12 setizZtol setl1to5 set5to9.
" ASSIGNMENT LIST:cv(0)=.5 cv(0)=.25 cv(0)=1 cv(O)— 1
CHAIN users
TYPE: open
SOURCE LIST:s
ARRIVAL TIMES: T/peakrate :
Cis->terminals->comp_sys->sink termlnals 1/commands 1—1/commands
:set9tol12->time9tol2->set12tol->timeli2to1~->set1to5
:set1to5->timelto5->set5to9->time5to9->set9tol2
QUEUES FOR QUEUEING TIME DIST:comp_sysq
VALUES:1.2 3 456 7 8
CONFIDENCE INTERVAL. METHOD: repllcatlons
INITIAL STATE DEFINITION -
CHAIN users
NODE LIST:set9tol12
INIT POP:1 .
CONFIDENCE LEVEL:90
NUMBER OF REPLICATIONS:25
REPLIC LIMITS -
© . SIMULATED TIME:28800
LIMIT - CP SECONDS: 2800
TRACE:no

_END.

We are examining transient, not equ111br1um ‘behavior with thls model It would not bev

appropriate to use the regenerative method or the spectral method to obtain confidence
intervals with this model. - This is an example of ‘a situation where it is appropriate t_o use
independent replications with a large number of replications. For the period 9 to. 5 with a
peak rate of one arrival per 100 seconds we get the following: Lo RS

RESQ2 VERSION DATE: SEPTEMBER 4, 1981
MODEL : ONEDAY
PEAKRATE: . 01 : ;
: SIMULATED TIME LIMIT

REPLICATION  1:

REPLICATION ~ 2: SIMULATED TIME LIMIT
REPLICATION 3 SIMULATED TIME LIMIT
REPLICATION ~ 4: SIMULATED TIME LIMIT
REPLICATION. 5: SIMULATED TIME LIMIT
REPLICATION = 6: SIMULATED TIME LIMIT
REPLICATION  7: SIMULATED TIME LIMIT
REPLICATION  8: SIMULATED TIME LIMIT
REPLICATION - - 9: SIMULATED TIME LIMIT
REPLICATION = 10: SIMULATED TIME LIMIT
REPLICATION 11: SIMULATED TIME LIMIT
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'REPLICATION. 12: SIMULATED TIME LIMIT
 REPLICATION 13: SIMULATED TIME LIMIT
" REPLICATION 14: SIMULATED TIME LIMIT
REPLICATION = 15: SIMULATED TIME LIMIT
REPLICATION 16: SIMULATED TIME LIMIT

REPLICATION 17: SIMULATED TIME LIMIT.
REPLICATION 18: SIMULATED TIME LIMIT

REPLICATION - 19: SIMULATED TIME LIMIT
REPLICATION 20: SIMULATED TIME LIMIT
REPLICATION ~21: SIMULATED TIME LIMIT
REPLICATION 22: SIMULATED TIME LIMIT
REPLICATION 23: SIMULATED TIME LIMIT
REPLICATION = 24: SIMULATED TIME LIMIT

REPLICATiON 25:vSIMULATED‘TIME LIMIT .
NO ERRORS DETECTED DURING SIMULATION.‘

SIMULATED TIME PER REPLICATION: 2. 8800E+04
CPU TIME: 805.65

NUMBER OF EVENTS PER REPLICATION: . 72556
NUMBER OF REPLICATIONS: 25

WHAT:utbo

ELEMENT =~ UTTLIZATION

TERMINALSQ 0.00000 (0.00000,0.00000)

COMP_SYSQ . 0.64892(0.63425,0.66360) 2.9%

TIMERQ ~1.00000

WHAT:tpbo(terminalsq,comp;sysq,s,sink)

ELEMENT . THROUGHPUT . :
TERMINALSQ 1.25608(1.21623,1.29592) 6.3%
. COMP_SYSO 1.25589(1.21606,1.29572) 6.3% .
s . 7.2278E-03 ' ’
SINK v 6.3986E-03

WHAT:qlbo(terminalsq, comp sysq)

ELEMENT . MEAN QUEUE LENGTH
TERMINALSQ

12.55767(12.16163,12. 95370) 6.3%

COMP_SYSQ‘ 2.16919(1.87909,2.45929) 26.7%

“WHAT: gtbo (comp_sysq)

ELEMENT MEAN QUEUEING TIME

COMP_SYSQ 1.69493(1.53678,1.85308) 18.7%
WHAT: gtdbo
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'ELEMENT . QUEUEING TIME DISTRIBUTION

COMP_ SYSQ 1.00E+00:0.52675(0.51026,0.54324) 3.3%
L © 2.00E+00:0.74146(0.72224,0.76068) 3.8%
3.00E+00:0.84435 (0.82639,0.86230) 3.6%
. 4.00E+00:0.89907(0.88329,0.91486) 3.2%
© 5.00E+00:0.93120(0.91767,0.94473) 2.7%
6. 00E+00:0.95721(0.93976,0.96267) 2.3%
7.00E+00:0.96450 (0.95484,0.97416) 1.9%
. 8.00E+00:0.97365(0.96555,0.98175) 1.6%"
WHAT ; pobo .
ELEMENT . OPEN CHAIN POPULATION ‘
USERS . 15, 72686 (15. 06218, 16. 39154) 8. 5%
WHAT: rtmbo
ELEMENT OPEN CHAIN RESPONSE TIME a
USERS 2455.07861(2374.40869,2535,74829) 6.6%
 WHAT:

PEAKRATE: -

Note that the chain population and fesponse time values include the timing job. If we want
the mean time users spend in the system we should use Little’s Rule, i.e., 14. 72686/ 0063986
= 2302 seconds

We will see another example of determmlng source rates w1th CV(O) in Section 8. 3

8.3.. Global Variables

Global variables provide for storage of values which may change during simulation. -
(Global variables can be used for values which do not vary during simulation, but. it will"be
more efficient and flexible to use numeric identifiers for these values.) Global variables "aré
used with set nodes and numerical expressions in the same manner as numeric variables are
used in programming languages. ''Global' is used in contrast to job and chain variables,

which are local to jobs and chains, respectively. Global variables may. be defined to be local . -

to submodels. (See Section 13 and Sections 3 -and 10 of the Users Guide). ~Global variables
may be defined as scalars and as one and two dimensional airays. - Global variables' are
defined and given initial values in the same manner as numeric and dlstnbutlon ldentlflers :
followmg the defmltlon of any of those. For example, ' :

GLOBAL VARIABLES:a b(3) c(3 2)
A:3.1 ‘
B:0°
C:14.1 7 13

All of the values for an array are defined on a single line (If necessary, multiple physical lines
may be concatenated to form a single logical line. See Section 2 of the Users Guide.) If fewer
values are given then the number of elements in an array, the last value given is used for.the
femaining elements. In the example above, all three elements of b are initially Zero.  Two
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dlmensmnal arrays are stored by rows, so in the example above c(1 1) is 1n1tlally 14. 1; c(1 2).
_ is initially 7 and the -remaining elements are 1n1t1a11y 13.

i ,'D—epﬁm, CV(0).=,ARATEZ(HIN(P.ARB"-1)‘+1‘) Hl |

£

LIO—)P:P-I. CV (0) =ARATE (MIN (P, ARB-1) +1) L—><] »

Figure 8.4 - Population Dependent Arrivals

Suppose we wish the arrival rate in an open network to be a function of the network popula-
tion. We wish to specify the rates up to some population and have the last rate apply: to. larger
populations. We can accomplish this with a ‘global variable to keep track of the population, p,
and chain variable scaling of the arrival times. See Figure 8.4. The rates are. stored. in
numeric identifier arate, which has upper bound arb. Since RESQ arrays begin with subscript
1, .we use arate(1) for population 0, arate(2) for population 1 and so on with arate(arb) used
for population arb—1 and larger populations. The min (n‘ummum) functlon has exactly two
arguments in RESQ. We could use the following dialogue f11e

MODEL :pda /*Population Dependent Arrlvals*/
METHOD: simulation
NUMERIC PARAMETERS:atime stime
,NUMERIC IDENTIFIERS:arb arate ( arb)
“ARB:4 . ,
AMWEW.BﬂG;ﬂ"
GLOBAL VARIABLES:p
P:0.
QUEUE:q. -
TYPE: fcfs
CLASS LIST:c
SERVICE TIMES:stime
SET NODES:bef
~ ASSIGNMENT LIST: p=p+1 cv(0)=arate(min(p,arb-1)+1)
| 'SET NODES:aft. ' o v
- ASSIGNMENT LIST: p=p-1 cv(0)=arate(min(p,arb-1)+1) .
CHAIN:ch : - ’ SR
- TYPE:open
'SOURCE LIST:s :
- ARRIVAL TIMES:atime
“rs->bef->c->aft->sink
QUEUES. FOR. QUEUEING TIME DIST: q
VALUES: 10 20 30 40 50
QUEUES FOR QUEUE LENGTH DIST:q
' 'MAX VALUE: 10 » ~
- 'CONFIDENCE INTERVAL METHOD regeneratlve.'
" REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes
QUEUES TO.BE CHECKED:q
MEASURES:qt ‘
;. ALLOWED WIDTHS:10
'SAMPLING. PERIOD GUIDELINES -
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QUEUES FOR DEPARTURE. COUNTS:q
DEPARTURES : 10000, '
LIMIT ~ CP SECONDS:50
TRACE:no o
END '

We can gét_ the following results from EVAL:

- RESQ2 VERSION DATE: OCTOBER 9, 1981

MODEL:PDA = -

ATIME: 10

STIME:10

WARNING -- MODEL MAY NOT BE TRULY REGENERATIVE
_BECAUSE OF USE OF GLOBAL VARIABLES

SAMPLING PERIOD END: Q DEPARTURE GUIDELINE

NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME: ~ 1.3733E+05
CPU TIME: 24,60
NUMBER OF EVENTS: 20000
' NUMBER OF CYCLES:" ' 3889
WHAT:utbo
ELEMENT UTILIZATION :
Q- ~-.0.71541(0.70552,0.72530) 2.0%
WHAT : tpbo (q)
ELEMENT THROUGHPUT
Q... .0.07282(0.07192,0.07372) 2.5%"
WHAT:qglbo .
" ELEMENT " MEAN QUEUE LENGTH
Q ... 1.48025(1.43406,1.52644) 6.2% "
WHAT: qtbo
ELEMENT _ MEAN QUEUEING TIME '
0 S 20.32849(19.66095,20.99605) 6.6%
WHAT : q1dbo
"ELEMENT v . QUEUE LENGTH DISTRIBUTION
o © 0:0.28459(0.27470,0.29448) 2.0%
' 1:0.28161(0.27473,0.28849) 1.4%
2:0.22409(0.21753,0.23065) 1.3%
3:0.13062(0.12416,0.13707) 1.3%
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.05129(0.04658,0.05601)  0.9%
.01830(0.01488,0.02172) :0.7% ,
.6111E-03(4.1301E-03,7.0921E-03) 0.3%
.0926E-03 (1.4506E-03,4.7346E-03) 0.3%
.5150E~04(2.0370E~04,8.9931E~04) 0.1%
L4575E~-04(~7.3931E-05,5.6542E~04) 0.1%

O W 9O
N UTw U O o

| WHAT: mxql.

ELEMENT MAXIMUM QUEUE LENGTH

0 9

WHAT: gtdbo

ELEMENT QUEUETNG TIME DISTRIBUTION |

o 1:00E+01:0.35100(0.33882,0.36318) 2.4%
2.00E+01:0.59710(0.58287,0.61133) 2.8%
3.00E+01:0.77060(0.75709,0.78411) .2.7%
4.00E+01:0.87060 (0.85949,0.88171) 2.2% .
5.00E+01:0.93380(0.92553,0.94207) 1.7%

WHAT:

CONTINUE RUN:no
ATIME: -

A model which uses global variables will not be truly regenerative unless the global variables
have the same values each time the model is in the 'regeneration' state. In this ‘model the
global variable p will always have a zero value in the regeneration state. It is required that
CV(0) for open chains has value 1 in the regeneration state (Section 5.2). ‘ '

This example is slightly contrived in that the use of global variables is not - strictly
" necessary. The ql or tq status functions (Appendix 3 of the Users Guide) could be used to
- avoid the global variable p. That approach could be extended to general networks, but the
above approach is likely to be more efficient in general networks. - Other examples with global -
variables are found in Sections 10 and 11 and in Appendix 3 of the Users Guide.

There are a nomber of ﬂglobal variable identifiers which have special meaning to Ap .

and should not be used for other purposes. These are "clock" and several identifiers including
the word "trace" (see Appendix 2 of the Users Guide). Tl -
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9. ROUTING

All of our examples so far have assumed that routmg dec1s1ons are ‘made accordlng to
probabilities. In this case the format of a routing transmon is

frbrn_n‘ode_ ~> to_node; to_nodey ... to_nodey ;i P by ... PN-

The semi-colon ("';") and probabilities are optional if “the probabilities are all equal to the
inverse of the.number of 'to. nodes" (e.g., 1/N). It' is entirely permissible to split the above. -
transition into several, e.g., S ' : '

, from_nodeif> to_nodey; pq
from _node -> to_nodey; by

from node -3 to_nodey; by
s or .

lfrom_node‘—>-to node;; py
from_node -> to node2 to. node3, o2 p3

from node -> to_nodeN; PN

etc. Routing decision may also be made with predicates, i.e., expressidns which represent
Boolean (true or false) values. In the above examples any or all of the probab111t1es could be
replaced by a predlcate of the form o

if ("Boolean expression") .

_ Assummg that all the probabilities are replaced by predrcates then ‘the destmatlon for the
"from node" would be chosen by evaluating the predicates in the order given in the ‘dialogue
and plckmg the first destination where the predicate had a true value. (The remaining
predlcates would ‘not be evaluated.) If none of the predicates had a true value, then an error
condition would exist and-the simulation would be terminated. ~(Predicates_are not allowed
‘with numerical solution in RESQ.)- (Mixtures of probabilities and predicates for. the routmg
“from a grven node are discussed in Section 9 of the Users Guide.) e

Typlcally, the Boolean expres'sibn will consist of one or more relational expression‘s of ‘the
“form ’ : O : - o N .

"nunieric expression™ ‘"relational operator" "numeric expression"

where the numeric expressions may be any legal RESQ numeric expression with a scalar value.. -
The relational operator may be any of the following: "=" (equal), "~=" (not equal), "<"
(less than), "<="" (less than or equal), ">" (greater than) and ">=" (greater than or equal).
The Boolean operators "not", "and" and "or" may be used with the usual meaning, in ‘that
- order of precedence. For example, S "

if (not jv(3)<10 and jv(2)>3 orvp=0)
would be true if p had the value O or if jv(3) Was greater than or equal to 10 and jv(2) 'was‘. ’

greater than 3. To get-other orders of precedence among the operators, we must’ enCIOSe
Boolean expressrons in parentheses preceded by "if". For example, :
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Cif (not if (3v(3)<10 and if(3v(2)>3 or p=0)))

would have exactly the reverse order of precedence of the operators as vthe’p‘revious example.

 SOURCE -

Figure 9.1 - Routing Examp_le

There ‘are many situations where routing predlcates are necessary for descnbmg a model
‘We now “describe a case where predicates may be.used to simplify routing description ina
- model. ' Consider the network of. Figure 9.1. Let us suppose that this is a model of a commu-
nication network (see Section 8.1). The destination for a message is determined upon arrival
of the message (We will assume each destination. is equally likely to be picked.) Since a
message has a specified destination; the routing decision after each queue: (communication
link), whether to proceed to the next queue (message has not reached its destination) or to go
to the sink (message has reached its destination), must be deterministic. There are two ways
© we ‘can represent this: either we have a class at each queue for each possible destination of
_ jobs leaving the queue or we use routing predicates. Let us examine these optlons in’ turn

The followmg dialogue file could be used for the first option:

MODEL: loop
© " METHOD: numerical
~'NUMERIC IDENTIFIERS:mean_atime mean_. stlme
MEAN_ATIME: .1
MEAN_STIME: .15
QUEUE:g1
~ TYPE:fcfs
CLASS LIST:c1d2 c1d3 c1d4a .
: SERVICE TIMES:mean_ stime
QUEUE:q2 c :
TYPE:fcfs ; .
‘ CLASS LIST: c2d3 c2d4 c2d1
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SERVICE TIMES mean_stime
QUEUE: g3
TYPE: fcfs
" CLASS LIST:c3d4 c3di c3d2
) SERVICE TIMES:mean_stime -
- QUEUE: ql
TYPE: fcfs
- CLASS LIST:c4dl c4d2 c4d3
- SERVICE TIMES mean_stime
CHAIN:cC
TYPE: open
. SOURCE LIST:s
ARRIVAL TIMES:mean atime
:s->c¢1d2 e1d3-c1d4;1/12 1/12 1/12
+c1d2->sink.
Cre1d3->c2d3
:c1d4~>c2d4 ‘
Cis->c2d3 c2d4 c2d151/12 1412 1/12
1c2d3->sink
:c2d4->c3d4
:c2d1->c3d1 : v
:s=>c3d4 c3d1 <3d2;1/12 1/12 1/12
:c3d4->sink ’
1c3d1->c4dn
:c3d2->c4d2
ts->cd4dl c4d2 c4d3;1/12 1/12 1/12
:c4d1=>sink: IR
‘s cl4d2->c1d2
rc4d3=>c1d3
END ‘

Here we use. the name cidj for queue i jobs with destma’uon . Though the dlagram shows
four sources and four sinks, we use. only one of each. RESQ allows only one source per chain
* with numerical solution. Since the arrival times for the sources are exponential, i.e., the arrival
~ processes are Poisson, we can combine the sources into a single source with arrlval rate equal
to the sum of the arrival rates of ‘the individual sources. Or equivalently, we make the mean
arrival time the: ‘reciprocal of the sum of the reciprocals of the individual arnval times. The
arrival probabilities for jobs leaving the single source are the arrival rates of the individual
sources normalized so that the probabilities sum to one. In constructing the above dialogue
file we assumed equal arrival rates for each of the sources. Thus the probability a job starts at
a given location is 1/4. RESQ only allows one sink for the entire network EVAL gives us
the followmg results: : :

RESQ2 VERSION DATE: OCTOBER 9, 1981
MODEL: LOOP . v _
NO ERRORS DETECTED DURING NUMERICAL SOLUTION.

 WHAT:ut
ELEMENT ~ ~ UTILIZATION
01 0.75000

Q2 0.75000

03 0.75000
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oa ©-0.75000

WHAT: gt
ELEMENT MEAN QUEUEING TIME

01 " 0.60000 »

Q2 ~ 0.60000

Q3 0.60000

Q4. - 0.60000

WHAT : po

ELEMENT o OPEN CHAIN POPULATION

gei L 11.99999 '
WHAT: rtm

ELEMENT OPEN CHAIN RESPONSE TIME
o : : 1.20000,

WHAT :

By the results of Wong [WONG78], we know that the response time distribution in. this
network has a distribution representable by the method of exponential stages. The distribution
can be represented by the branching Erlang form with three stages, m; = m; = my = .6, p; =
1/3 and p, = .5. From equation (A3.2) in the Users Guide we have C = .8165 and standard
deviation .9798. (This can be seen from Wong s results and the fact that the response time
 will consist of one, two or three queueing times with equal probabﬂlty )

“We can represent this same model using job variables to save the destination of a job and
~predicates which test the value of the job variable.: Let us put the destination in JV(0). Let
““us also store the service time in JV(1); this will give another example of the effects of
" Kleinrock’s independence assumption (see. Section 11). . Finally, let us measure -the. response

: tnmes w1th a passnve queue. We-could use the followmg d1alogue file: R

MODELilon'
© METHOD:simulation
NUMERIC IDENTIFIERS:mean atime mean_stime
“MEAN ATIME:.1
MEAN STIME:. 15
NUMERIC- IDENTIFIERS:mSq. | dest msg_stime
MSG DEST:0 /*JV to be used*/
MSG_STIME: 1 /*JV to be used#*/
MAX JV:1
QUEUE: rtqg
TYPE:passive
TOKENS: 2147483647
DSPL: fcfs
ALLOCATE NODE LIST:beginrt
AMOUNTS: 1
QUEUE: g
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TYPE: fcfs'
CLASS LIST ¢l
WORK DEMANDS: standard(jv(msg stime) ,0)
QUEUE g2l
TYPE: fcfs
CLASS LIST:c2 .
‘ WORK DEMANDS standard(jv(msg stlme) 0)
QUEUE:g3
TYPE: fcfs
CLASS LIST:c3 :
~ WORK ‘DEMANDS : standard(jv(msg_ stlme) 0)
QUEUE q4
TYPE:fcfs =
- CLASS LIST:c4
, . WORK DEMANDS standard(jv(msg stlme) 0)
SET NODES:set stlme o
'_ASSIGNMENT LIST: jv(msg_stlme)?standard(mean;stimé,1)
 SET NODES:set_dest] o o _
- ASSIGNMENT LIST:jv(msg_dest)=discrete(2,1/3; 3,1/3; 4,1/3)
SET NODES: Set_destZ ' : :
ASSIGNMENT LIST:jv(msg dest)=discrete(1,1/3; 3,1/3; 4,1/3)
SET NODES:set_dest3 C ' o
ASSIGNMENT LIST:jv(msg_ dest) dlscrete 1/3, 2,1/3; 4,1/3)
SET NODES:set dest4 ' . ) ‘ :
ASSIGNMENT LIST: jv(msg dest)=discrete(1,1/3; 2,1/3; 3,1/3)
CHAIN:c
TYPE:open
SOURCE LIST:s
ARRIVAL TIMES: mean_atime
:$->beginrt->set -stime->set_dest1 set dest2 set dest3 set dest4
:set_dest1 set_dest2 set dest3 set dest4 >cl c2 ¢ 04
ict ~>sink ¢2; if(jv(msg_dest)=2) if
:c2->sink c3;1if (jv(msg.dest)=3) if
:¢3->sink c4;if(jv(msg.dest)=4) if
rcd->sink c1;1if (jv (msg_ dest)=1) if
QUEUES FOR QUEUEING TIME DIST:rtg
VALUES:.6 1.2 1.8 2.4 3.0 3.6
- CONFIDENCE INTERVAL METHOD:regenerative
"REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:Yyes
OQUEUES TO- BE CHECKED:rtqg
MEASURES:qt
) ALLOWED WIDTHS: 10 )
SAMPLiNG PERIOD GUIDELINES ="
QUEUES FOR DEPARTURE COUNTS:rtg
DEPARTURES: 10000
SLIMIT = CP. SECONDS:250
TRACE;no i

t)

tyﬁ
t)
t

{
(
(
(t)

END
The line

:destl dest2 dest3 destd4->c1 c2 c3 cid
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is. equivalent to the four lines

:desti->cl
sdest2->c2
:dest3->c3
:destd->c4

Such a parallel grouping of transitions is allowed when there is only one "to node" for each
"from node'. The keyword "t" 1n ‘the predicate "if(t)" represents the constant "true'. (The
keyword "f" is available to represent the constant "false" ) ‘

We said that we were simplifying the 'routing, yet the above dialogue is' much ‘longer!
However, the increase in length is due to the use of simulation, to the job variable scaling to
avoid -the independence assumption and to the passive queue for response times.. There are
now four classes instead of twelve (though there are four new set nodes) and there are fewer
* routing transitions.  Though the difference is not dramatlc if there were more links (queues)
then the difference would be more pronounced We are not saying that this second “approach
with job variables and predicates is preferable in general; the RESQ user should cons1der both
approaches in developing a model.

We get the following from EVAL:

RESQ2 VERSION DATE: OCTOBER 9, 1981

MODEL: LOOP o - S
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION. '

. SIMULATED TIME: 4126.73047

CPU TIME: 121.50
NUMBER OF EVENTS: S 123341
NUMBER OF CYCLES: . ‘ 367 3
WHAT : utbo
ELEMENT UTILIZATION ,
RTO ‘ 5.3685E~09(5, 1027E~09,5.6343E-09) 0.0%
01~ - 0.73852(0.72578,0.75126) 2.5% ‘ ‘
Q2 o 0.75653(0.74188,0.77118) 2.9%
03 0.75569(0.74239,0:76900) 2.7%
ou 0,74544(0.73237,0.75851) 2.6%
WHAT : tpbo (rtq)
ELEMENT THROUGHPUT
'RTQ : 9.95679(9.87664,10.03694) 1.6%

WHAT :qqlbo (rtq)
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ELEMENT
RTQ

WHAT : gtbo (rtq)

ELEMENT

RTQ

MEAN QUEUE LENGTH
11.52880(10.95804,12.09957) 9.9%

‘MEAN QUEUEING TIME

WHAT ; sdqt (rtq)

"WHAT:gtbo (rtq)

'ELEMENT

RTQ

WHAT:nd (rtq)

ELEMENT
RTQ
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1.15788(1

.10514,1.21063) 9.1%

DEVIATION OF QUEUEING TIME -

ELEMENT * STANDARD
RTQ 0.98273
WHAT:qtdbo
ELEMENT ‘QUEUEING TIME DISTRIBUTION
RTQ -~ 6:00E-01:0,35635(0.34292,0.36978) 2
' 1.20E+00:0.61885(0.59957,0.63814) 3
1.80E+00:0.78792(0.76920,0.80665) 3
2.40E+00:0.88318(0.86784,0.89852) 3
3,00E+00:0.94042(0.92917,0.95167) 2
3.60E+00:0.97121(0.96404,0.97838) 1
WHAT: :
CONTINUE RUN:/#Continue run:*/ yes
'EXTRA SAMPLING PERIODS: /*Extra periods:*/ 1
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
NO ERRORS - DETECTED DURING SIMULATION.
SIMULATED TIME: 5147.03516
CPU TIME: 152.82
NUMBER OF EVENTS : 154129

NUMBER OF CYCLES: 429

. MEAN QUEUEING TIME :
1.15198 (1

.10696,1.19700) 7.8

NUMBER OF DEPARTURES

51267

/

7%

9%
7%
1%
2%
A%
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WHATiqtdbov

ELEMENT -
RTQ ’

 WHAT:

QUEUEING
6.00E-01
1.20E+00

1.80E+00

2.40E+00
3.00E+00
3.60E-+00

TIME DISTRIBUTION
:0.35526(0.34385,0.36666)

:0.61923(0.60268,0.63578),

:0.79008 (0.77403,0.80613)
:0.88712(0.87407,0.90017)
:0.94308(0.93348,0.95268)
:0.97261(0.96650,0.97873)

CONTINUEYRUN:/*Continue run:*/ no

.3%

2%
.6%
.9%
1.2%

= NTW W

.3%

' ROUTING / SEC. 9

This. is an example where Kleinrock’s independence assumption seems more appropriate; the
‘mean response time estimates are essentially the same, especially when one considers that the
observed throughput is lower than the specified arrival time.
response time in the simulation is very close to the value from Wong’s resuits.

The standard deviation of
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10. PASSIVE QUEUES

Our examples so far have used only part of the generality of the passive queue. ‘We have -
~only used allocate nodes-and release nodes, and usually there has been a single pair of allocate
dhd release nodes for a given queue. However, a passive queue may have an arbitrary nuthbér
of nodes, as long as there is at least one allocate node, and release nodes need not be paired.
with allocate nodes if they are present at all. Many of our models using a passive queue for
measuring response times have no release nodes at all. Note that smks and to a lesser extent
fusion nodes (Section 11), can be used to release tokens.

POOL oF TOKENS

T CTTTTTTOUON
! o . T \ N
-—l—l /\ ;/‘ \— \\ V—
._J Z_Y /// » \\\
/ R ‘ \ R
ALLOCATE = /| SUBNETWORK \ RELEASE .
CREATE  / o - \DESTROY
i
/N - e o -\ ‘|Z ,
JASN . |
| JOB FLOW

——-= TOKEN FLOW

- Figure -10.1 - Passive Queue

There are five other knnds of nodes which may be present in passive queues;” AND
fallocate nodes, OR allocate nodes, transfer nodes, destroy nodes and create: nodes, - AND
allocate, OR -allocate and transfer- nodes are-discussed in Section 5 of the Users Gulde We
‘w111 focus on create and destroy nodés in this section.

sOA create node is used to add tokens 1o the pool of -tokens of .a paste queue ~The
number ‘of tokens created is specified - analogously to specification of the number of tokens -
requested at ‘an allocate node. A create node behaves in the same manner whether or not a -
- job holds tokens of ‘the queue, i.e., a job need not hold tokens to create tokens. A create*
- node ‘has no effect on the job going through it; the. job passes through w1thout delay. The

‘effect 'on jobs waiting for. tokens, if any are waiting, is the same as if thé tokens became o

available through another job releasing tokens. A destroy node is similar to a release node, in
that a job gives up all tokens it holds of the queue, if it holds any, but the tokens are de-
stroyed rather than made available to other jobs. . , :

As an example of the use of create and destroy nodes, let us consider printer spooling in a

simple computer system model. A potential problem with the models we have used so far'is .

that they ignore spooling of disk files to slower speed input/output devices. Let us assume
that there is a 300 line per minute printer supported by the computer system and that there
are two tasks constantly present which handle the spooling. One task fills buffers from the
disk for the printer and the other dumps the buffers to the printer. There are two' buffers for
the printer and each buffer contains 30 lines. Thus the transfer time for one buffer is 6
seconds (307(300/60)). : : o
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FULL BUFFERS

I—:MZ—

PRINTER /)Kff

EMPTY BUFFERS , .‘ \

DISK

FLOPPY

Figure 10.2 - Printer Spooling

To represent the printer spooling we have two chains, one for each task, and two passive
queues, one for full buffers and one for empty buffers. The passive queues will be .used, in -
“part, to represent communication between the tasks, corresponding to the use of semaphores

and similar ‘process communication primitives in -operating systems. - See Figure 10.2.. The
number of tokens of each pool will fluctuate between zero and two, because of create and

destroy nodes, and the total number of tokens will usually be less than two. The task which - |

’ emptles the buffers acquires a'token representing a full buffer; destroysit, transfers the buffer
contents to the printer-and creates a token of the pool representlng empty -buffers. Slmﬂarly
the task which fills the buffers acquires an "empty buffer' token, destroys it, transfers from
the disk to the buffer and creates a token of the "full buffer" pool. The buffer emptying task
‘waits  at the full buffer allocate node when no full buffers are available, and the buffer filling
o task wa1ts at the empty buffer allocate node when no empty buffers-are available.

The’following dialogue file could be used"for this model,

MODEL: cSmwsp
METHOD: simulation : :
NUMERIC IDENTIFIERS : floppytlme dlsktlme cputlme dmp
FLOPPYTIME .22
DISKTIME:.019
JCPUTIME: .05
DMP:Al
NUMERIC IDENTIFIERS:buffers initfulbuf
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BUFFERS: 2
INITFULBUF 2
“NUMERIC IDENTIFIERS: lpm /*llnes/mlnute*/ 1pb /*llnes/buffer*/
LPM: 300
LPB 30
QUEUE: floppvdg
. TYPE:fcfs
CLASS LIST:floppy
. SERVICE TIMES:floppytime
QUEUE: diskq S
TYPE: fcfs’ :
CLASS LIST:disk diskspool
SERVICE TIMES:disktime
QUEUE: cpuqg
TYPE : ps
CLASS LIST:cpu
.~ SERVICE TIMES:cputime
QUEUE: printerq
" TYPE:fcfs .
CLASS LIST printer
SERVICE TIMES:standard( lpb/ lpm/60), 0)
QUEUE:fullbuffer
TYPE:passive
TOKENS : 1n1tfulbuf 1
DSPL fcfs .
ALLOCATE NODE LIST: getfullbuf
NUMBERS OF TOKENS TO ALLOCATE: 1
DESTROY NODE LIST:destfulbuf
CREATE NODE LIST:genfullbuf
NUMBERS ‘OF TOKENS TO CREATE 1
" QUEUE: empbuffer
TYPE:passive
TOKENS :buffers- 1n1tfulbuf
DSPL:fcfs
ALLOCATE NODE LIST:getempbuf
NUMBERS OF TOKENS TO ALLQCATEiW
DESTROY NODE: LIST:destempbuf
CREATE WNODE LIST:genempbuf
‘NUMBERS . OF TOKENS TO'CREATE:W
CHAIN:csm
TYPE;closed
POPULATION: dmp
repu->disk floppy,.9 W
dlSk floppy >cpu )
CHAIN emptying
‘TYPE:closed
POPULATION 1
:getfullpuf->destfulbuf- >pr1nter >genempbuf- >getfullbuf
CHAIN:filling
TYPE:closed
POPULATION: 1
:getempbuf->destempbuf— >dlSkSpOOl >genfu11buf >getempbuf
CONFIDENCE INTERVAL METHOD: regeneratlve
REGENERATION STATE DEFINITION -

'
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CHAIN:Csm
'NODE LIST:cpu
REGEN POP:dmp
INIT POP:dmp
CHAIN:emptying
NODE LIST:printer
REGEN POP: 1
INIT POP: 1
CHAIN:filling
NODE LIST:getempbuf
REGEN POP: 1
INIT POP: 1
CONFIDENCE. LEVEL: 90
SEQUENTIAL STOPPING RULE:yes
QUEUES TO BE CHECKED: floppyq diskq printerq
MEASURES:ut ut ut
ALLOWED WIDTHS:10 10 10
SAMPLING PERIOD GUIDELINES -
QUEUES FOR DEPARTURE. COUNTS : cpud
DEPARTURES : 10000
LIMIT - CP SECONDS:250
TRACE: no
END

We could get the following results from EVAL.

~ 'RESQ2 VERSION DATE: OCTOBER 16, 1981
. MODEL: CSMWSP

WARNING -~ SOME PASSIVE QUEUE QT PROCESSES MAY
NOT BE TRULY REGENERATIVE BECAUSE OF
QUEUEING TIMES IN PROGRESS

WARNING ~-' MODEL MAY NOT BE TRULY REGENERATIVE
BECAUSE OF NON-ZERC POPULATION AT CLASS
WITH DIST. OTHER THAN BRANCHING ERLANG

SAMPLING PERIOD END: CPUQ DEPARTURE GUIDELINE

SAMPLING PERIOD END: CPUQ DEPARTURE GUIDELINE

NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME: 1055.25220

CPU TIME: 33.36
NUMBER OF EVENTS: 40350
NUMBER OF CYCLES:. 8317
WHAT : utbo (*)
ELEMENT- . UTILIZATION
FULLBUFFER 0.00000
EMPBUFFER 0.00000
FLOPPYQ 0.41176(0.36190,0.46162) 10.0%
DISKQ 0.32471(0.31889,0.33053) 1.2%
DISK ‘ 0.32191(0.31611,0.32772) 1.2% :
'DISKSPOOL 2.7956E~03(~5.6492E-04,6.1562E~03) 0.7%

CPUQ .~ 0.95834(0.95279,0.96389) 1.1%
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PRINTERQ

WHAT:qlbo (*)

PRINTERQ

WHAT : tpbo (%)

ELEMENT

-1.00000 (0.99992,1.00008) 0.0%

“BELEMENT MEAN . QUEUE LENGTH
FULLBUFFER 0.00000: L
wi:ZEMPBUFFER‘ ©0.99528(0.98976,1. 00080),1.1%

FLOPPYQ ©0.63072(0.51490,0.74653) 36.7%

DISKQ" 7 0.46227(0,44977,0,47476) 5.4%.

- 'DISK 0.45754 (0.44516,0.46993). 5.4%

- DISKSPOOL 4 7232E-03 (=7 .9525E-04,1.0242E-02) 233. 7%
CPUQ 12291174 (2.86889,2.95459) 2.9%

©1..00000(0.99992, 1.00008) 0.0%

 THROUGHPUT

_FULLBUFFER. .  0.16584(0.03030,0.30138) 163.5%
EMPBUFFER . 0.16584(0.03030,0.30138) 163.5%
FLOPPYQ 1.93792(1.77106,2.10479) 17.2% -
DISKQ 17.18071(16.95303,17.40837) 2.7%

DISK 17.01488(16.78821,17.24153) 2.7%
' DISKSPOOL 0.16584(0.03030,0.30138) 163.5%
cPUQ 18.95280 (18.73048,19.17511)  2.3%
'PRINTERQ 0. 16584 (0.03030, 0. 30138) 163.5%
WHAT':

‘CONTINUE RUN yes

EXTRAkSAMPLING-PERIODS:1 '

SAMPLING PERICD'END; CPUQ DEPARTURE -GUIDELINE
"SAMPLING PERIOD END: CPUQ: DEPARTURE GUIDELINE
' SAMPLING PERIOD END: CPUQ DEPARTURE GUIDELINE

bNO‘ERRORS DETECTED DURING SIMULATION.

WHAT : utbo (%)

ELEMENT

» "Apri':l 3, 1982 -

SIMULATED TIME: 1585.19995

, CPU TIME: 50.02
“NUMBER OF EVENTS: 60544
. 'NUMBER OF CYCLES: 12421

UTILIZATION

FULLBUFFER 0.00000
EMPBUFFER 0.00000
FLOPPYQ 0.41248(0.37124,0.45372) 8.2%
DISKQ 0.32650(0.32175,0.33124) 0.9%
DISK ‘ 0.32351(0.31877,0.32824) 0.9%
DISKSPOOL 2.9893E-03 (8.4241E~05,5.8944E-03) 0.6%.
CPUQ 0.95617(0.95123,0.96111)..
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PRINTERQ 1.00000(0.99993,1.00007).-0,0% -

WHAT :
CONTINUE RUN:no

In this dialogue we see two warning messages about the regeneration state. The second one is
consistent with our previous discussion in Sections 5 and 8.3. Because: we have a job at the

printer class in the regeneration state and because the service times-at that class are not ‘;
represented by the branching Erlang distribution, the state we have chosen is not- truly a

regeneration state. In fact, this model is not-truly regenerative, i.e:, there is no state which is
truly a regeneration state. However, RESQ allows us to proceed as if the model were
regenerative. (We are not especially interested in queueing times with this example, S0 we luse
this approximation of the regenerative method to obtain confidence intervals rather than using
the spectral method. The method of independent replications would also be a reasonable
ch01ce )

- The first warning message has a fairly subtle explanation. Nearly all of our discussion of
regeneration states has implicitly been restricted to the queue length processes underlying the
model and the performance measures obtainable from the queue length process.. Most of 'the

performance measures we have considered, including mean queueing tlme, are obtainable from

the queue length process. The warning message and the following discussion do not apply to
these measures. (Since we are not focusing on queueing times 1n this example, we can
comfortably i 1gnore the warning.) v

In deflnmg a regeneratlon state -for a queueing time process one must be much more

- careful than in defining a regeneration state for a queue length process. For a detalled

-discussion, see Iglehart and Shedler [IGLE80]. If we are to be rigorous, we must not allow

queueing times in progress in our regeneration state if we wish to have defensible confidence
intervals for queueing time distribution points or standard deviations. This is one. of the
reasons we. used the state with all jobs at the term1nals for model csmwm. ~With a few

exceptions, we cannot have queueing times in progress and have those queuelng times truly '

regenerate. Aplomb gives the warning message whenever there are passive queues with jobs
(job copies) at allocate nodes in the specified regeneration state. (A similar warning would
usually -apply to active queues as well, but. there is no such warning issued because (1) a
regeneration state must have some jobs at classes, so. the warning would always appear, and

(2) -active queues are not used to measure response times the way passive queues are.). Though -

it is theoretically possible in some circumstances to have jobs (job copies) at allocate nodes in
the specified regeneration state and obtain meaningful confidence intervals, this w1ll usually
not be practical, :
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F1gure 10.3 - Wlndow Flow Control
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Create and destroy nodes are also very important in representing communication network.
protocols,  We consider an example of a window flow control mechanism sometimes referred
to as "pacing The essence of the pacing mechanism is that there is a limit, called the:
"window," to the number of messages which may be sent from one point in the network to
attother before the recipient says that more messages may be sent. Usually the first message
of the window is marked to indicate to the recipient that a reply should be sent back to the

- . originator. Upon receipt of the reply, the originator may then send another window of

messages. Figure 10.3 depicts a pacing mechanism added to model fourlink of Section 13. The
passive queue initially has the number of tokens equal to the window size. Each message ‘

~ allocates a token before it can proceed. When it gets to‘the destination, it destroys the token.

- If the message was the first of a window, it turns around and goes back to the-create. node at
the origin where it creates a new window of tokens These may be allocated ‘to any waiting
messages. A global variable, wcount, is used.to count the arriving messages modulo the
window size. If an arriving message finds wcount to be zero, that indicates that it is the first
message of the window, and that fact is recorded by setting its' JV(1) to one. The following
dialogue file could be used. & T

MODEL pacing
METHOD : 51mulat10n
NUMERIC PARAMETERS:windowsize
. NUMERIC' IDENTIFIERS:msg_stime p reply
' MSG_STIME:0 /*JV to be used*/
P_REPLY:1 . /*%JV to be used*/
. GLOBAL VARIABLE IDENTIFIERS:wcount
WCOUNT: 0
"MAX JV:1
* QUEUE:rtq
TYPE:passive
TOKENS: 2147483647
DSPL: fcfs
ALLOCATE NODE LIST:beginrt _
NUMBERS OF TOKENS TO-ALLOCATE: 1
RELEASE NODE LIST: endrt
QUEUE windowqg
TYPE:passive
" TOKENS :windowsize
DSPL: fcfs -
ALLOCATE - NODE - LIST: getw1ndow
NUMBERS OF TOKENS TO. ALLOCATE: 1
DESTROY NODE LIST:dropwindow
' CREATE NODE LIST:newwindow
.~ NUMBERS OF TOKENS TO CREATE:windowsize
QUEUE ql
' TYPE prty
CLASS LIST:clr cl1l : :
SERVICE TIMES: standard(]v(msg stlme) 0) standaxrd(.01,0).
PRIORITIES 2.1 SN
QUEUE: g2 '
"TYPE: prty
CLASS LIST:c2r 21 .
SERVICE TIMES: standard(]v(msg stlme) 0) standard(.01,0)
PRIORITIES 2 1 , ' S
~QUEUE:q3
TYPE:prty
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CLASS LIST:c3r €31 S
/SERVICE TIMES: standard(jv msg.stime), O) standard( 01,0).
PRIORITIES:2 1. :

- 'QUEUE:q4
2 TYPE:prty - ,
CLASS LIST:cd4r c4l , ‘ .
SERVICE TIMES:standard(jv(msg_stime),O) Standard(.OI;O)
“PRIORITIES:2. 1 ' '
. 8ET NODES:set stime ~ _
- ASSIGNMENT LIST-jv(msg~stime)=standard(.125;1)
SET ‘-NODES: inccount : i
ASSIGNMENT. LIST:wcount= (wcount+1) mod w1ndows1ze
SET. NODES:setreply
ASSTIGNMENT LIST:jv(p_ reply)—1
CHAIN.ch
 TYPE:open

SOURCE - LIST:s

ARRIVAL TIMES:.25

1S >beg1nrt >set stime->setreply inccount; 1f(wcount O) 1f( )

: setreply->inccount=->getwindow->clr '

:clr->c2r->c3r->cl4r- >dropw1ndow—>endrt

rendrt=>sink c4l;if (jv(p_reply)=0) 1if(t)

:c41->c31->c21~>c11->newwindow->sink

QUEUES FOR QUEUEING TIME DIST:rtqg

VALUES:.5 1 1.5 2 2.5

QUEUES FOR TOKEN USE DIST:windowq

MAX VALUE:2%windowsize-1 :

" QUEUES FOR TOTAL TOKEN DIST:windowq

MAX VALUE: 2*windowsize-1

©° CONFIDENCE INTERVAL METHOD:regenerative
" REGENERATION STATE DEFINITION -
"CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes
QUEUES TO BE CHECKED:rtg
MEASURES :qt
} ALLOWED WIDTHS:10
- SAMPLING PERIOD . GUIDELINES -
' QUEUES FOR DEPARTURE COUNTS:rtqg
 DEPARTURES: 10000
LIMIT - CP SECONDS: 250
TRACE:no
END

~The prty (priority) queueing dlscphne is used to glve the pacing replies prlorlty over the data

messages. Note that the measures of total tokens in the passive queue pool become interesting
when. create and destroy nodes are present. In this model it is possible to have up to
2xwindowsize— 1 tokens in the pool. In dialogue files, it is possible to specify that distribu-
tions of tokens in use and total tokens be gathered, as illustrated above. The syntax is
essentially the same as for queue length distributions. The following can be obtamed with
EVAL:

RESQ2 VERSION DATE: OCTOBER 16, -1981
MODEL: PACING
WINDOWSIZE: 6
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WARNING -- MODEL MAY NOT BE TRULY REGENERATIVE

SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERICD END: RTQ DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION. -

WHAT :utbo (*)

ELEMENT -
RTQ :
WINDOWQ
01
C1R
C1L
Q2
'C2R
C2L
Q3
C3R
C3L
Q4
C4R
C4TL,

WHAT : tubo
ELEMENT
RTQ
WINDOWQ
WHAT : tudbo

ELEMENT
WINDOWO

April 3, 1982

BECAUSE OF USE OF .GLOBAL VARIABLES

7568 . 48047

SIMULATED TIME:
~ CPU TIME: 145.11
NUMBER OF EVENTS: 170544

NUMBER OF CYCLES:

UTILIZATION r .
2.6288E-09 (2.5138E~09,2.7437E-09)
0.75093(0.73342,0.76845) 3.5%
0.50775(0.50135,0.51414) 1.3%
10.50112(0,49476,0.50747) 1.3% *

6.6275E-03(6.5377E-03,6.7173E-03)

0.50775(0.50135,0.51414) 1.3%
0.50112(0.49476,0.50747) 1.3

6.6275E-03(6.5377E~03,6.7173E-03)

0.50775(0.50135,0.51414) 1.3%
0.50112(0.49476,0.50747) 1.3

6.6275E-03(6.5377E~03,6.7173E~-03)

0.50775(0.50135,0.51414) "1.3%
0.50112(0.49476,0.50747) 1.3%

6.6275E-03(6.5377E~03,6.7173E-03)

MEAN TOKENS IN USE

T 2149

%

%

5.64520(5.39842,5.89198) 8.7%

- O W O NOHULE W=

JEEG—Y

0.07033(0.

4.50559 (4.40052,4.61067) 4.7%

DISTRIBUTION OF TOXKENS. IN USE

0:
:0.09848 (0,
:0.11277(0.
:0.11347 (0.
:0.11765 (0.
:0.11517(0,
:0.13371(0.
:0.09138(0.
:0.06271(0.
:0.04551 (0.
:0.02739(0.
:0.01742(0

06581,0.07486)
09344,0.10353)
10769,0.11785)
10904,0.11791)
10789,0.11540)
11188,0.11847)
12858,0.13885)
08688,0.09588)
05881, 0.06662)
04150,0.04952)
02430,0.03047)

)

.01481,0.02003

0.9%
1.0%
1.0%
0.9%
0.8%

0.7%.
-1.0%

0.9%
0.8%
0.8%
0.6%
0.5%

0.0%

0.0%
0.0%

0.0%

0.0%
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WHAT: ttbo.

ELEMENT
RTQ
WINDOWQ

WHAT : ttdbo

ELEMENT

WHAT : g1bo (*)

ELEMENT
RTQ
WINDOWQ
Q1
L CIR
ciL
Q2
C2R
Cc2L
Q3 ‘
C3R
c3L
™
C4R
- CAL

WHAT : gtbo (*)

ELEMENT
RTQ
WINDOWQ
Q1

C1R
C1L

Q2
- C2R
C2L

PASSIVE QUEUES / SEC. 10

MEAN TOTAL TOKENS IN POOL
2.1475E+09 (2. 1474E+O9 2. 1476E+09) . 0. O%
7.87949(7.84877,7.91022) 0.8%

DISTRIBUTION OF TOTAL TOKENS IN POOL

1:1.1777E-03(8.6775E-04,1.4877E-03) 0.1%
2:3.0013E-03(2.5671E-03,3.4356E-03) 0.1%
3:0.01040(0.00953,0.01127) 0.2%
4:0.02528(0.02398,0.02658) 0.3%
5:0.06318(0.06140,0,06496) 0.4%
6:0.17828(0,17243,0.18412) 1.2%
7:0.15969(0.15417,0.16520) 1.1%
8:0.15307(0.14791,0.15822) 1.0%
9:0.15729(0.15191,0.16266) 1.1%
0:0.13858(0.13316,0.14399). 1.1%

1

1
11:0.11007(0.10471,0.11543) 1.1%

MEAN QUEUE LENGTH
5.64520(5.39842,5.89198) 8.7%
5.64520(5.39842,5.89198) 8.7%
1.16712(1.12730,1.20694) 6.8%
1.13603(1.09643,1.17563) 7.0%
1 0.03109(0.02952,0.03266) 10.1%
1.03166(1.00930,1.05402) 4.3%
0.99569(0.97408,1.01730) 4.3%
10.03597(0.03400,0.03794) 11.0%
1.14772(1.12481,1.17063) 4.0%
1.11837(1.09609,1.14066) 4.0%
0.02935(0.02778,0.03092) 10.7%
1.26213(1.23699,1.28727) 4.0%
1.25550(1.23040,1.28061) 4.0%
6.6275E-03 (6.5377E-03,6.7173E-03) 2.7%

MEAN QUEUEING TIME
1.41964(1.36345,1.47584) 7. 9%
1.41964(1.36345,1.47584) 7,9%
0.25158(0.24403,0.25912) 6.0%
0.28569(0,27692,0.29446) 6.1%
0.04691(0.,04509,0.04873) 7.8%

0.22238(0.21838,0.22638) 3.6% .

"0.25039(0.24587,0.25492). 3.6%
0.05428(0.05209,0.05647) '8.1%
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03 . 0.24739(0.24335,0.25144) 3.3%
" C3R T 0.28125(0.27665,0.28584) 3.3%
c3L. 0.04429(0.04254,0.04603) 7.9%
o4 -0.27206(0.26759,0.27652) 3.3%
C4R . .0.31573(0.31053,0.32093) 3.3% .
caL. oo 0.01000 - -
WHAT: gtdbo
'ELEMENT QUEUEING TIME DISTRIBUTION
RTQ 5:00E~01:0.15992(0.15131,0.16854) 1.7%
~ .. 1.00E+00:0.40324(0.38651,0.41998) 3.3%
1.50E+00:0.61713(0.59623,0.63802) 4.2%
2.00E+00:0.76445(0.74380,0.78511) 4.1%
2.50E+00:0.86317(0.84620,0.88014) 3.4% .

WHAT:
CONTINUE. RUN:no

WINDOWSIZE:
With this pacingv kme’cham'sm and the chosen parameter values, mean response is only slightly
increased (from 1.18 to 1.42) but we now know that the destination will neéver need more than

11 buffers (and if there were more origin destination pairs, unnecessary network congestion
-might be avoided.) \
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11. SPLIT, FISSION AND FUSION NODES

. 11.1. Split Nodes

Split nodes allow a job to produce additional independent jobs.- Split’ nodes are often
used in models of communication systems to create control messages, e.g., for acknowledge-
ments or flow control mechanisms. A split node has one entrance, an exit for the job that
entered and an additional exit for each new job to be created. The created jobs are given the
same job variable values as the creating job. The created jobs do not possess tokens, whether'-
or not the creating ]Ob possessed tokens. :

SPLIT
NODE

!\'

Figure 11.1 - Bulk Arrivals

As an abstract example of use of split nodes, suppose we wish to represent ‘a queue with
bulk arrivals, i.e., with several jobs arriving at the same time. A single arriving ‘job can.
become several by going through a split node. See Figure 11.1. A job arriving from the.
source goes to a set node where JV(0) is set to.the actual number of jobs to arrive.  If that .
number is greater than one, the original job goes to the split node: - (Note that the split node is
a separate node; i.e., another node, e.g., a class, cannot serve as a split node.) One created job
leaves the split node through the second (bottom) exit and goes on to the queue. The original
job leaves the split node through the first (top) exit. In our diagrams of split nodes we have
exactly one exit-from the upper half of the triangle and one exit from the bottom half for each

* job created. The original job goes to a set nodé to decrement JV(0). If JV(0) is still greater
“than one, the original job goes to the split node again; otherwise it goes to the queue. " Let the
number of arriving jobs be equally likely to be any value from one up to maXJobs We could
use the followmg dialogue file:

“MODEL: bulk
METHOD:simulation '
- NUMERIC PARAMETERS:atime maxjobs. stime
QUEUE g
TYPE: fcfs
CLASS LIST:c
SERVICE TIMES:stime . :
SET. NODES: setcount deccount
ASSIGNMENT LIST:jv(0)=ceil (uniform(0,maxjobs, 1)) jv{(0)=jv(0)-1
SPLIT NODES:splitnode
CHAIN: ch :
TYPE:open
SOURCE LIST:s
'ARRIVAL TIMES:atime
:s~>setcount->splitnode ¢;if (jv(0)>1) if(t)
splltnode >deccount ¢;split :
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deccount >sp11tnode c; 1f(3v(0)>1) 1f(t)
el >51nk : B : :
QUEUES FOR QUEUEING ‘PIME DIST:q
VALUES:10 20 30 40 50
CONFIDENCE INTERVAL METHOD:regenerative
. REGENERATION STATE DEFINITION -
. CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE: yes
QUEUES TO BE CHECKED q
MEASURES : gt
ALLOWED WIDTHS:10 =
EXTRA SAMPLING PERIODS:0
SAMPI.ING PERIOD GUIDELINES -
QUEUES FOR DEPARTURE COUNTS : a
; DEPARTURES : 10000
LIMIT - CP SECONDS: 300
TRACE:no .
“END

As with -other nodes, the name of a split node may be any legal RESQ name; we use
sphtnode to help clarify the syntax for split nodes.

It is not necessary to give the name of a split node before the routmg defmltlon For .
example we could omit the line ,

SPLIT NODES splltnode
from the above dialogue file and the file: would still be accepted by SETUP When SETUP'
sees the name of a split node in the routing, it does not know whether that name is 1ntended
to be that of a new (split) node or whether it it is a misspelling of the name of another node
For this reason, if we omit the above line, when SETUP encounters the following. lme :

:s—>setcount—>splitnode c; i (3v(0)>1)  if (L)
‘it produces the foilowing warning message at the terminal and in the RQ2LIST file .
/**ERROR**‘ WNG: THE. NODE "SPLITNODE "'HAS BEEN IMPLICITLY DECLARED

SETUP know«s that splitnode is a split node from the routmg transmon with sphtnode as the .
from node '

V tsplitnode—>deccount c;split

This transition indicates that splitnode is a split node W1th the job which entered the nodef e
- going to deccount when it leaves and with one new. job going to node ¢ from the split node. -
. SETUP does not prompt interactively for names of split' nodes. ° Fission nodes (Sectlon i1, 2) ‘
and the dummy nodes we dlscuss below are treated similarly by SETUP: ‘

In general a routing tra_n'sition for a split node would have the form

from node -> to_node; to_node, ... to_nodey ; Split»ﬁ
where from__node is a split node, the job which entéred from _node would go to to__node,,

| “N-1 new jobs would be created by a visit to the split node and they would g0 to-the remain-
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ing nodes to the right of the arrow. As with other routmg transitions, a node name may be
used several times on the right hand side of the routing transition. S

Note that the jobs leaving a split node are not allowed to choose a destmatlon In the
example model, the creating job always goes to the set node and the created job always goes °
to the class. In general, we might wish to make routing decisions for the jobs leaving the split
node; this is a purpose for dummy nodes. - A dummy node has no effect on-a job, We can
speclfy a dummy node as the destination for a job leaving a split node. Then the usual routing
decision mechanism is available for jobs leaving the dummy node. For example, suppose that
in the bulk arrival model we want the number of arrivals to have a geometric distribution
(starting at one) with mean meanjobs. To avoid the warmng message, we could use the
followmg lme after the split node definition

DUMMY NODES:dummynode
Then we could use the following routing definition

:s=->splitnode c;1-=1/meanjobs 1/meanjobs"
:splitnode->dummynode c;split

s dummynode~->splitnode c;1- 1/meanjobs 1/meanjobs
rc=>sink

' The name of a dummy node can be any legal RESQ name; we use "dummynode" for clarity.

With model bulk as first defined above the mean number of ]obs arnvmg at one tlme will
be (maxjobs+1)/2. Usmg EVAL we can get

RESQ2 VERSION DATE: OCTOBER 20, 1987
'MODEL: BULK

ATIME:55

MAXJOBS: 10 -

STIME:5 _

SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE.
NO ERRORS DETECTED DURING SIMULATION,

SIMULATED TIME: 2.9918E+05

CPU TIME: 30.30
NUMBER QF EVENTS: 35511
NUMBER OF CYCLES: 2716
WHAT : utbo
ELEMENT - ° UTILIZATION
Q : 0.50105(0.48742,0.51468) 2.7%
WHAT : tpbo
ELEMENT . - THROUGHPUT
0 BRI 0.10030.(0..09779,0.10281) 5.0%
" SETCOUNT - 0.01840
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DECCOUNT ~ ~  ~0.08190
 SPLITNODE =~ 0.08190

s 0.01840

SINK - 0.10030

WHAT:qlbo‘

ELEMENT ' MEAN QUEUE LENGTH

Q 4,00728(3,75102,4.26354) 12.8%
WHAT: qtbo

ELEMENT MEAN QUEUEING TIME

Qo 39.95358(38.08224,41.82491) 9.4%
‘WHAT:Qtdbo

'ELEMENT - QUEUEING TIME DISTRIBUTION

0 1.00E+01:0.17989(0.17171,0.18807) 1.6%

. 2.00E+01:0.34045(0.32704,0.35386) 2.7%
3.00E+01:0.48915(0.47173,0.50657) 3.5%
4.00E+01:0.60762(0.58830,0.62695) 3.9%
5.00E+01:0.70237(0.68243,0.72231) 4.0%

WHAT:
CONTINUE RUN:no

ATIME:

Note that split node throughput is measured in entered jobs, i.e., created jobs are _not eounte‘d.'”

11.2.- Fission and Fusion Nodes -

-Fission nodes allow a ]ob to create additional jobs dependent on the creating job.: Fusion'
~'nodes allow for the destruction of the created jobs in a coordinated manner. Flssmn and:.
‘fusion nodes are usually used together in pairs. . Fission and fusion nodes are ‘useful for

_representing synchronized processes (tasks) occurring in operating systems.  Similarly, fission o

and fusion nodes are useful for representing parallel physical activities representing a single
logical activity, for example transmission of -a message across-a commumcatron network as a
collection of packets.

" A fission node has one entrance, an exit for the ‘job that entered (referred to as the :
"parent’), and an additional exit for each new job to be created The created jobs are
referred to as "children." Children may themselves enter fission nodes, thus creating hierar-
chies of jobs (see Section 8 of the Users Guide). ' Children are given the same job variable
values as the parent. The children do not possess tokens, whether or not, the. parent does:.
Jobs are not-allowed to go to sinks as long as they have relatzves (parents or chzldren) If this rule
is violated, the simulation terminates.
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In our diagrams we represent a fission node by a triangle with the .entrance ‘at one vertex
“and the exits on the opposite side. This corresponds to the split node representation except
that the triangle is not divided into separate sub-triangles for the parent and children exits. In
the dlalogue syntax, fission nodes are treated exactly the same as split nodes, except -that
(1) the keyword "FISSION" is used instead of the keyword "SPLIT," (2) there ‘is an
interactive prompt to optionally declare the names of fission nodes, and (3) in dialogue files,
- if the names of fission nodes are declared before the routing definition they are defined after
_declarations for split nodes, if any are present. :

A fusion node provides a place for jobs to wait for related jobs (a parent or child_ren).
(A fusion node acts as a dummy node for jobs without relatives, i.e., such jobs pass through a
fusion node without delay or other effect.) No more than one job of a "family" can stay at a
fusion node. If a job arrives at a fusion node and it has relatives, but none of its relatives are
at this particular fusion node, it waits at the fusion nodes. When a job arrives at a fusion
node and it has a relative at this particular fusion node, two things can happen, depending on
the relationship between the jobs. If one is the parent and the other is a child, then the
offspring is destroyed. If both are children, the one that was created last is destroyed. Before
a-child is destroyed, any tokens it holds are released.  After destruction of one job, if the other
ob has no remaining relatives, it proceeds from the exit of the fusion node. If the other job
st111 has other relatives, it waits at the fusion node for another relative to arrive.

. In our diagrams we represent fusion nodes by a triangle with the exit at one vertex and
the entrance(s) on the opposite side. Fusion nodes must be declared immediately before the’
routing, e.g., ' '

FUSION NODES: fusionnode

Fusion nodes appear in the routing without further distinction, i.e., there is no need for a
keyword ‘as in the case of split and fission nodes. - '

A natural application of fission and fusion nodes is to represent messages transmitted ‘as
packets in a communications network In our loop model, an alternatlve to full-duplex links
which might significantly improve performance would be to break long messages into packets,
to be transmitted separately. Let us assume that the maximum packet size is to be 240 bits,
If a message exceeds 240 bits, it will be broken into two or more packets. We represent this
‘by sending a job with JV(0)>240 to a fission node. The parent leaving the fission node has
- IV(0) decremented by 240 and the created job has JV(0) set to 240. (We are ignoring the
headers: and/or trailers which would. be necessary on each packet.) If the parent still has
IV(0)>240 it goes to the fission node again. When a packet gets to its destination, it goes to -
a fusion node which represents assembly of the packets into the original message.. When the
parent and all of its children (if any) have made it to the fusion node, the parent leaves the
fusion node. Figure 11.2 shows the fission and fusmn nodes but not the set nodes.. The
follownng dlalogue flle could be used:
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2

- Figure 11.2 - Packetizing of Messagés

MODEL+: loop
METHOD:simulation v
'NUMERIC IDENTIFIERS:mean_atime
' MEAN_ATIME:.1 ‘
NUMERIC IDENTIFIERS:totlength capacity
TOTLENGTH: 720 . :
- CAPACITY: 4800
NUMERIC IDENTIFIERS:msg dest pkt_leng
MSG_DEST:0 /*JV to be used*/
PKT LENG:1. /*JV to be used#*/
MAX JV:1 ! ‘
QUEUE:rtq
TYPE:passive
TOKENS: 2147483647
DSPL:fcfs ’ »
ALLOCATE NODE:LIST:beginrt: :
. NUMBERS OF TOKENS TO ALLOCATE:1
QUEUE: g1
TYPE:fefs
CLASS LIST:c1 o ,
WORK DEMANDS:standard(jv(pkt_leng)/capacity,0)
QUEUE :g2 ’ S
' TYPE:fcfs
CLASS LIST:c2:
' WORK DEMANDS:standard(jv(pkt_leng)/capacity,0)
QUEUE:q3 :
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TYPE: fcfs
CLASS LIST:c3
WORK DEMANDS:standard (jv(pkt_leng) /capacity,0)
-QUEUE : ¢4
TYPE:fcfs
CLASS LIST:c4
WORK DEMANDS: standard(jv(pkt leng) /capacity,0)
SET NODES:set msg 1
ASSIGNMENT LIST:jv (pkt_ leng) standard(totlehgth 1)
"SET NODES:dec_msg 11 dec_msg 12 dec_msg_13 dec msg 14
ASSIGNMENT LIST:jv(pkt. leng)=3v(pkt_ leng)-240
SET NODES: set_pkt 11 set_pkt_ 12 set_pkt_ 13 set pkt 14
ASSIGNMENT LIST:jv(pkt leng) =240
. SET NODES:dest1 :
ASSIGNMENT LIST:jv(msg_dest)=discrete(2,1/3; 3,1/3; 4,1/3)
SET NODES:dest2
" ASSIGNMENT LIST:jv(msg _dest)=discrete(1,1/3; 3,1/3; 4,1/3)
SET NODES:dest3 : : R
ASSIGNMENT LIST:jv{(msg_dest)=discrete(1,1/3; 2,1/3; 4,1/3)
SET NODES:dest4 ‘
ASSIGNMENT LIST:jv(msg_dest)=discrete(1,1/3; 2,1/3; 3,1/3)
FISSION NODES:separatel separate2 separate3 separate4
FUSION NODES:assemble
CHAIN:c
TYPE:open
SOURCE LIST:s
ARRIVAL TIMES:mean_atime
:s~>beginrt->set_msg_ 1l->destl1 dest2 dest3 dest4d4
:dest1->c1 separatel;if (jv(pkt_leng)<=240) if (t)
:separatel->dec_msg_l1 set_pkt_11;fission
r:dec_msg_1l1->c1 separatel;if (jv(pkt leng)<=240) if (t)
:dest2->c2 separate2;if (jv(pkt leng)<=240) if(t)
:separate2->dec_msg_12 set pkt_12;fission
‘:dec_msg_12—>c2 separate2; if (jv(pkt_leng)<=240) if(t)
;dest3->¢c3 separate3;if (jv(pkt_leng)<=240) if(t)
:separate3->dec_msg 13 set pkt 13;fission :
:dec_msg_13->c3 separate3;if (jv(pkt leng)<=240) if(t)
:destd->c4 separated;if (jv(pkt_leng)<=240) 1f(t)
separate4 >dec_msg_14 set_pkt 14;fission
:dec msg_l4->c4 separated;if (jv(pkt_leng)<=240) 1f(t)
:set_pkt 11 .set pkt 12 set pkt 13 set pkt 14- >cl c2 e3 ch
;¢c1->assemble c2; if(jv(msg_dest)=2) 1f(t)

:c2->assemble c3;1if (jv(msg_dest)=3) if(t)
:¢3->assemble c4;if (jv(msg_dest)=4) if(t)
:c4->assemble c¢1;1f (jvimsg_ dest)—1) f(t)

;assemble~->sink
QUEUES FOR QUEUEING TIME DIST:rtqg

VALUES:.6 1.2 1.8 2.4 3.0 3.6
CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL: 90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:rtq

MEASURES: gt
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ALLOWED WIDTHS:10.
SAMPLING PERIOD GUIDELINES -

QUEUES FO

R DEPARTURE COUNTS:rtq

DEPARTURES: 10000 -

LIMIT - CP S
. TRACE:no
END t

We could then get

RESQ2 VERSION D
MODEL : LOOP

SAMPLING PERIOD
SAMPLING PERIOD
SAMPLING PERIOD
SAMPLING PERIOD
SAMPLING PERIOD
NO. ERRORS ‘DETEC

WHAT :utbo

ELEMENT

RTQ

01

Q3

o4

- WHAT: tpbo(rtq)
~ELEMENT-

RTQ

WHAT:qlbo (rtq)
ELEMENT

RTQ
WHAT : gtbo (rtq)
ELEMENT =

"~ RTQ

WHAT: sdqt (rtq)

“April 3; 1982

ECONDS: 1000

the following from EVAL:

ATE: OCTOBER 20, 1981

END: RTQ DEPARTURE GUIDELINE
END: RTQ DEPARTURE GUIDELINE
END: RTQ DEPARTURE GUIDELINE

END: RTQ DEPARTURE GUIDELINE
END: RTQ DEPARTURE GUIDELINE

TED DURING SIMULATION. -

SIMULATED TIME: 5085.87891
CPU TIME: 488.95

NUMBER OF EVENTS: 408413

" NUMBER OF CYCLES: 1318

UTILIZATION , : : _
4.1214E<09(3.:9229E-09,4.3200E~09) 0.0%

0.75700(0.74489,0.76910)
0.74786(0.73703,0.75869)
0:74743(0.73574,0.75912)

~0.73841(0,.72680,0.75002)

THROUGHPUT

2.4%
2.2%
2.3%
2.3%

9.96209(9.89882,10.02536) 1.3%

MEAN QUEUE LENGTH

8.85070(8.42426,9.27715).9.6%

MEAN QUEUEING TIME

0.88844(0.84769,0.92919) 9.2%
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" ELEMENT STANDARD

RTQ 0.81473

WHAT: gtdbo

ELEMENT QUEUEING

RTQ 6.00E-01:

- 1.20E+00:
1.80E+00:
2. 40E+00;
3.00E+00:
3.60E+00:

WHAT:

CONTINUE RUN:/*Continue
EXTRA SAMPLING PERIODS:/

SAMPLING PERIOD END: RTQ
SAMPLING PERIOD END: RTQ
SAMPLING PERIOD END: RTQ
SAMPLING PERIOD END: RTQ
SAMPLING PERIOD END: RTQ
SAMPLING PERIOD END: RTQ

SPLIT, FISSION AND FUSION NODES / SEC. 11

DEVIATION OF QUEUEING TIME

TIME DISTRIBUTION

0.46939(0.45398,0.48480)
0.73667(0.71883,0.75450)
0.87060(0.85549,0.88572)
0.93901(0.92868,0.94934)
0.97377(0.96776,0.97978)
0.98899 (0.98564,0.99233)

run:*/ yes
*Extra periods:*/ 1

DEPARTURE GUIDELINE
DEPARTURE GUIDELINE
DEPARTURE GUIDELINE
DEPARTURE GUIDELINE
DEPARTURE' GUIDELINE'
DEPARTURE - GUIDELINE

NO ERRORS DETECTED DURING SIMULATION.

1.20E+00;
1.80E+00:

2.40E+00:0.94169(0.93257,0.95080)

3.00E+00:
3.60E+00:

SIMULATED TIME: 6108.71094
CPU TIME: 583.68
NUMBER OF EVENTS: 489485
NUMBER OF CYCLES: 1604
"WHAT:qgtbo(rtqg)
ELEMENT ' MEAN QUEUEING TIME
RTQ 0.88052(0.84438,0.91665) 8.2%
WHAT :nd (rtq)
ELEMENT NUMBER OF DEPARTURES
RTQ 60777
WHAT :qgtdbo
ELEMENT OUEUEING TIME DISTRIBUTION
RTQ . 6.00E-01:0.47112(0.45714,0.48509)

0.73878(0.72295,0.75461)
0.87416(0.86082,0.88750)

0.97524(0.96993,0.98055)
0.98972(0.98678,0.99265)

.6%
.0%
1%
1.2%
0.7%

N W W

2.8%
3.2%

2:.7%

1.8%
1.1%
0.6%

A%
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. WHAT : ! :
CONTINUE RUN /*Cdntlnue run: */ no

The mean response time estlmate, 88 seconds is substantlally 1mproved over the estlmate for
the or1g1na1 model 1.16. seconds ' o ~
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12. QUEUE TYPES

: A queue type is a parametenzed macro deflmtlon of a queue. Queue types are usﬁally‘
used to create multiple instances of a frequently used type of ‘queue. For example, if fcfs were
"not a predefined special RESQ queue type, we could define a correspondmg queue’ type using .

the queue type facﬂlty

There are two distinct operations involved in the use of queue types: the definition ‘of a
qiieue type and the invocation of a queue type. The queue type definition consists of the -
" ‘specification. of a parameterized queue template in which some of the.queue type characteris-
tics are given explicit values and other queue type characteristics are given parametric. values.
The -explicit values become the default characteristics of the queue type. Once a'queue ‘type
has been defined, it can later be invoked to create a specific instance of a queue. As we shall
see, a set of parameter values is given as part of the invocation. A queue-defined by an )
invocation of ‘a queue type assumes the default characteristics of the queue. type and the
parametrlc charactenstlcs glven by the set of parameter values in the invocation.

A:frequently used queue is a simple passive‘-first come first served (pfcfs). quene which
has no create or destroy nodes, a fcfs queueing discipline and a single allocate node at which a
-single token is allocated. Since such a queue is frequently used, we might want to define it as
a special queue type. A definition of a pfcfs queue type is shown in the model below. The ;
following dlalogue corresponds to the first version of csmwm in Section 4. :

‘MODEL  csmwm
METHOD simulation
NUMERIC PARAMETERS: thlnktlme users partltlons
NUMERIC IDENTIFIERS:floppytime disktime cputlme thlnktlme users
FLOPPYTIME: .22
DISKTIME:.019
CPUTIME: .05
NUMERIC IDENTIFIERS:cpiocycles
CPIOCYCLES: 8
QUEUE TYPE:pfcfs /¥ passive fcfs queue template */
NUMERIC PARAMETERS:ntokens  /#* number of tokens.in pool %/
NODE PARAMETERS:alloc releas
TYPE:passive
TOKENS :ntokens
DSPL: fcfs
ALLOCATE NODE LIST:alloc
. NUMBERS OF TOKENS TO ALLOCATE: 1
RELEASE ‘NODE LIST:releas
END -OF QUEUE. TYPE PFCFS
'QUEUE: floppyqg
“ TYPE:fcfs ;
CLASS LIST:floppy
SERVICE TIMES:floppytime
QUEUE:diskg '
“PYPE: fefs
CLASS LIST:disk
| SERVICE TIMES:disktime
QUEUE: cpug :
TYPE: fcfs
CLASS LIST:cpu.
SERVICE TIMES:cputime
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. QUEUE:terminalsqg
. TYPE:is - :
CLASS LIST:terminals
. SERVICE TIMES: thlnktlme . R
’ _QUEUEnmemory Co . /* define. the pa551ve memory gueue */
TYPE¢pfcfs ' : . /% by 1nvok1ng the pfcfs queue type */
‘NTOKENS:partitions
“ALLOC:getmemory .
RELEAS: freememory
CHAIN:interactiv .
CTYPE: cleosed .
POPULATIONS users :
termlnals >getmemory—>cpu—>floppy disk; .1:.9

The queue type defmmons 1mmed1ately precede the queue definitions. Note that with the
exception of the parameter declarations, the body of a queue type is similar to the body of a
queue definition. - The parameter declarations themselves are similar to model parameter
~ declarations with the exception of the NODE PARAMETERS: prompt. ‘All nodes and classes
used within the body of a queue type must be declared as a node parameter of the queue type.

In the above model, the pfcfs queue type is invoked once to define the memory queue. A
queue type is invoked by giving the previously defined queue type name in response tothe
TYPE prompt of a standard queue definition. In addition to giving the name of the queue'
type to be invoked, we must also supply values for the parameters of the queue type; this is
. done lmmedlately following the TYPE prompt Further discussion of queue types is glven in
Sectlon 6 of the Users Guide. :
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13. SUBMODELS

Submodels provide a facility for macro definition of subnetworks. A submodel is a
template for a subnetwork which the user wishes to explicitly delineate (1) ‘because this
clarifies medel structure; (2) because several such -subnetworks (with 'parameter1zable
differences) appear in-a model and/or (3)° because thls submodel is to be (may be): used in
other models. ~

When one uses ("invokes") a submodel with a set of parameter values, then a set of
queues and nodes with the specified values and relationships is added to the network, just as
invocation of an assembly language macro causes a. set of instructions to be added to the
program. . It is important for the user to thihk in terms of macros rather than procedures in
properly understandlng submodels and how they may be used '

- | ~(OUTPUT) -
—‘fj7t‘. o
v,-———a ) | : >
]—Af \/
(INPUT) |
Figure .13'.1 - Computer System Submodel
TERMINALS

L
ol

HOST

Figure 13.2 - Network with Submodel Invocation

- Many of the examples we have given are easily (and appropriately) restated using‘
submodels. For example, consider the computer system model csmwm. Let the -entire
network except for the terminals queue be considered a submodel, as depicted in Figure 13.1.
After specifying the submodel, we can invoke it with parameters in a network corresponding
to the previous model (Figure 13.2) and in other networks The following dialogue file
portlon could define the submodel :

SUBMODEL:cssm /#Computer System  SubModel*/ :
" NUMERIC- PARAMETERS:pageframes floppytime disktime cputime
CHAIN PARAMETERS:chn
"NUMERIC IDENTIFIERS:cpiocycles
CPIOCYCLES:8
' QUEUE:floppyqg
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CTYPE:fofs
o CLASS TIST:floppy - o
" SERVICE TIMES:floppytime
QUEUE,dlskq
TYPE:fcfs .
CLASS LIST:disk
] .SERVICE TIMES:disktime -
QUEUE: cpuq '
‘ TYPE:ps
'CLASS LIST:cpu’
' SERVICE TIMES: cputlme
‘QUEUE :Memory
TYPE: pa851ve
.TOKENS pageframes
DSPL: fcfs
ALLOCATE NODE LIST:getmemory : S S
NUMBERS OF TOKENS TO ALLOCATE: dlscrete(16 .25532,.5;48,.25) .,
RELEASE NODE LIST: freememory R
CHAIN:chn
. TYPE:external
INPUT: getmemory .
OUTPUT: freememory
:getmemory->cpu
~repu->floppy: disk;.1 .9
+floppy->freememory cpu;l1/cpiocycles 1—1/cplocycles.
:disk->freememory cpu;1/cpiocycles 1 1/cplocycles
END OF SUBMODEL CSSM

' Notice that the dialogue very closely parallels the dialogue for an entrre model We focus on
the differences :

A submodel is only part of a network. For a network including a submodel to be
meanin.gful,‘ there must be at least one chain which is partially defined inside the submodel and
partially defined outside the submodel. Such chains must be declared as chain "parameters'» of .
- the submodel. In the current example, there is only one chain. It has the name. chn"'inside
' the submodel and is declared as a parameter :

Additional identifiers '(numeric, distribution,' global variable) may be defined in a
‘submodel declaration. Identifiers defined outsidé a submodel may be used within a submodel.
Names of identifiers may be reused within submodels. The rules for doing so are exactly thei
. same as in block structured programming languages such as PL/ I and PASCAL.

As we S’aid, chains declared as ‘chain parameters are defined partly inside a submo_del and
partly outside a submodel. The type of a chain parameter is defined as 'external" because the
-~ usual type, open or closed, is not determined until the chain definition is completed outside of
the submodel ‘ S

In many s1tuations, submodels can be used with mimmal knowledge of the contents of the
~submodel. To this end, it is possible to give exactly ‘one node of each'chain parameter the
Synonym 'input" and to ‘give exactly one node of each chain parameter the synonym

"output:" When the submodel is invoked, and the chain definition completed, these nodes may
be referred to by these synonyms instead of the names used within the submodel: It is .
‘intended that node input be the primary (usually the only) entry point seer by the invoking
‘model and that node output be the primary (usually the only) exit point seen by the invoking
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model. (The Users Guide discusses and illustrates use of node parameters for multiple entry
and exit points per chain. See Section. 10 and Appendix 1 of the Users Guide.) In the
example, the allocate node and release node are used-as the input and ‘output, respecuvely, of
the routing chain. :

‘ The followmg uses -submodel cssm to ‘obtain a model definition equlvalent to the ‘csmwm
definition of:Section 6. o

 MODEL:csm
S METHOD:simulation
'~ NUMERIC PARAMETERS:thinKtime users pageframes
NUMERIC IDENTIFIERS:floppytime disktime cputime
. FLOPPYTIME: .22
"DISKTIME:.019
CPUTIME: .05 -
NUMERIC IDENTIFIERS: cplocycles
CPIOCYCLES:8.
QUEUE: terminalsqg
. TYPE:is
CLASS LIST:terminals
SERVICE TIMES:thinktime
SUBMODEL:cssm /*Computer System SubModel*/

END OF SUBMODEL CSSM
INVOCATION :host -
TYPE:Ccssm .
PAGEFRAMES : pageframes
FLOPPYTIME: floppytime
DISKTIME:disktime
CPUTIME: cputime
CHN: interactiv
CHAIN:interactiv
TYPE:closed
POPULATION:users
:terminals->host . input
:host.output->terminals
QUEUES FOR QUEUEING TIME DIST: host memory
. VALUES:1.2 3 .4 5.6 7.8
QUEUES FOR QUEUE LENGTH DIST:host. memory
e MAX VALUE users/2. , .
‘ CONFIDENCE INTERVAL METHOD : regeneratlve
REGENERATION STATE DEFINITION-
i . CHAIN:interactiv ‘
' NODE LIST:terminals
REGEN POP:users -
INIT POP:users
CONFIDENCE LEVEL:90
'SEQUENTIAL STOPPING RULE:yes
QUEUES TO -BE CHECKED host memory -
MEASURES:qt
- ALLOWED WIDTHS: 10
SAMPLING PERIOD. GUIDELINES—
QUEUES FOR DEPARTURE COUNTS:host. memory
DEPARTURES : 1000
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LIMIT - cp SECONDS 300
TRACE no
END

We have not repeated the full def1n1t10n of the submodel here. In the actual file, it would not
bé necessary to tse the definition 1f the definition existed as a separate file and were loglcally
inserted at the approprlate point us1ng the INCLUDE statement described in Section 2 of the
Users Gulde .

An invocation is a specific instance of a submodel with its own parameter values: (and its
" own nodes, queues and "global" variables which were defined locally within the submodel).
The INVOCATION prompt requests a name for the invocation.  This name will be needed
later for: qualification of the names of elements of the submodel.  The TYPE prompt requests
the name of -the submodel being invoked. After giving the submodel name, the remaining
prompts of the invocation are for parameter values. For numeric and distribution parameters,
the values given must be. expressions consisting of constants and previously defined identifiers
(posslbly including model parameter identifiers). The value given for a chain parameter will
be the first appearance of that chain name, unless it has previously been used in'an mvocatmn
or it is a chain array (see Section 3 of the Users Gulde)

: Subsequent to the invocation, when it is necessary to refer to elements of the 1nvoked
: submodel ‘these names. are qualified by the invocation name in the  form
1nvocat10n" """ "element". In the example, in the routing the allocate node is referred to as

"host.input" and the release node is referred to as '"host. output In the simulation specific

dialogue, the memory queue is referred to as host.memory. R

The RQ2LIST indicates the level of nestlng of submodel def1n1t10n in the column after
the line number

RESQ Translator V2.04 (10/02/81) Time: 13:42:23 Date: 10/26/81

* 1% 0% MODEL:csm

* 2% 0% METHOD: simulation . :

* 3% 0% . - NUMERIC PARAMETERS:thinktime users pageframes

* 13% 0% SERVICE TIMES:thinktime :

*.o 4% - Q% - SUBMODEL : c§sm /*Computer System SubModel*/ R :
* 15%  TE NUMERIC PARAMETERS: pageframes floppytime dlsktlme cputlme‘
® 16% 1% CHAIN PARAMETERS:chn : '
¥ 45% % L :disk- >freememory cpu; 1/cplocycles 1—1/cplocycles“

* UGk 1% -END. OF ‘SUBMODEL CSSM : .

* 47% 0% ' INVOCATION:host

*

48% 0% " TYPE:cssm

* se;.,o*‘ END

NO FATAL ERRORS DETECTEDvDURING COMPILATION.
Tnis definition ef csniwm with the submodel preduees exactly the same numerical resuifs :

as the definition used at the end of Section 5.2. The output format has an extra column g1v1ng
‘invocation names, as we shall see shortly. e .
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TERMINALS

2 HOST1
O
HOST2

Flgure 13.3 - Network w1th Two Invocatlons -

Having defmed submodel cssm, we can now use it several times in a model For: example
if ‘'we wished to model a pair of computer systems sharing a common set of termlnals as
: plctured in Flgure 13 3 we mlght use. the followmg model deflmtlon o o

MODEL osm
METHOD:simulation
NUMERIC PARAMETERS:thinktime users pageframes
NUMERIC IDENTIFIERS: floppytlme dlsktlme cput1me1 cputlme2
FLOPPYTIME .22
DISKTIME:.019
CPUTIME1: .05
CPUTIME2 .075
QUEUE termlnalsq
TYPE:is
CLASS LIST:terminals
.~ SERVICE TIMES:thinktime
SUBMODEL: cssm /*Computer System SubModel#*/

END OF SUBMODEL CSSM
INVOCATION:host
TYPE:cssm
PAGEFRAMESEpageframes
FLOPPYTIME: floppytime
DISKTIME:disktime
CPUTIME:cputime]
CHN:interactiv
INVOCATION: host2
TYPE:cssm
PAGEFRAMES : pageframes
FLOPPYTIME: floppytime
DISKTIME:disktime
CPUTIME: cputime?2
CHN:interactiv
CHAIN:interactiv
TYPE:closed
POPULATION:users :
sterminals->host1.input host?2.input
:host1.output host2.output->terminals
- QUEUES FOR QUEUEING TIME DIST:host?T.memory host2 memory
VALUES:1 2 3 4 56 78
VALUES:1 2 3 4 56 7 8
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" 'CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION-
CHAIN ‘interactiv .
" 'NODE LIST:terminals.
REGEN POP:users
INIT POP:users
CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes
" QUEUES TO BE CHECKED: host’l memory host2.memory
MEASURES:qt gt
ALLOWED WIDTHS:10 10
SAMPLING PERTOD GUIDELINES=
'QUEUES FOR DEPARTURE COUNTS:terminalsg
DEPARTURES : 10000 .
© LIMIT - CP SECONDS: 1000
TRACE: no '
‘END

The dialogue is essentially the same as before but there are now-two mvocatlons Ass'umiyng"
50 termmals and the other parameters we have used, we could get the followmg from EVAL.

RESQ2 VERSION DATE: OCTOBER 20, 1981

MODEL: CSM '

THINKTIME: 10

USERS:50 -

PAGEFRAMES: 128

SAMPLING PERIOD END: TERMINALSQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: TERMINALSQ DEPARTURE GUIDELINE
SAMPLING PERIOD END:. TERMINALSQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: TERMINALSQ DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME: = .2.0007E+04

. .CPU TIME: 542.76
NUMBER OF EVENTS: 1102672
NUMBER OF CYCLES: 13
. .WHAT:qgtbo
INVOCATION . ELEMENT MEAN. QUEUEING TIME R
‘ ‘ o TERMINALSQ - 9.95654(9.88809,10. 02499) 1.4%
HOST1 v MEMORY 1.67274(1.60467,1.74080) 8.1%
HOSTI . FLOPPYQ - - 0.29691(0.29259,0.30123) 2.9%
- HOST1 - ~° DISKQ - 0.02387(0.02363,0.02411) 2.0% .
HOST1 CPUQ . - 0.10543(0.10329,0.10756) 4.0%
© HOST2 - - © . MEMORY 19.11460(8.72290,9.50631) 8.6%
'HOST2 '~ FLOPPYQ 10.29479(0.28634,0.30324) 5.7%
HOST2 . . DISKQ ‘ 0.02376(0.02362,0.02389) 1.1%
HOST2 =  CPUQ . 0.23773(0.23517,0.24029) 2.2%
WHAT : utbo
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INVOCATION ELEMENT UTILIZATION S
' . . TERMINALSQ 0.00000(0.00000,0,00000) §
HOST1 MEMORY © 0.50065(0.48280,0.51850) 3.6%
HOST1 . FLOPPYQ' 0.28473(0.27743,0.29203) 1.5%
HOST] DISKQ 0.22153(0.21569,0.22738)1.2%
"HOST1 'CPUQ - 0.64912(0.63248,0.66577) 3:3% .
HOST2 © .. MEMORY . 0.90884(0.90452,0.91316) .0.9%
HOST2 FLOPPYQ . 0.28436(0.27804,0.29068) 1.3%
HOST2 : DISKQ - 0:22144(0.21992,0.22297) 0.3%
. "HOST2 . CPUQ 0.97110(0.96828,0.97392) 0.6%
WHAT :
CONTINUE RUN:yes
_EXTRA SAMPLING PERIODS: 1
LIMIT - CP SECONDS:2000
SAMPLING PERIOD END: TERMINALSQ DEPARTURE GUIDELINE
SAMPLING "PERIOD END: TERMINALSQ DEPARTURE “GUIDELINE
- SAMPLING ‘PERIOD  END: TERMINALSQ: DEPARTURE GUIDELINE
SAMPLING PERIOD END: TERMINALSQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: TERMINALSQ DEPARTURE. GUIDELINE -
NO ‘ERRORS' DETECTED DURING SIMULATION: '
SIMULATED TIME: 2.4276E+04
CPU TIME: 660.72
“NUMBER OF EVENTS: 1338170
NUMBER OF CYCLES: - 21
WHAT :iqtbo (host1.memory,host2 .memo;cy) -
INVOCATION ELEMENT MEAN QUEUEING TIME
HOST MEMORY ©1.66722(1.61349,1. 72095) 6. 4%
HOST2 ' MEMORY ‘9.16357(8.82434,9.50280) 7.4%
WHAT:

CONTINUE RUN:no
THINKTIME:

‘As we said before, the output format is essentlally the same, but there is an added column to
- indicate the invocation. . -

Submodels are used extens1vely in the examples in Sect1on 1 and Appendlx 1 of the. Users
Guide. v : S
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14, PL/I EMBEDDING

Instead of using the EVAL command after a model has been defined w1th ‘the SETUP
command, model expansion may be embedded within a PL/I program. This may be done in
order (1) ‘'to produce tables or graphs of results, (2) to coordinate solution of several sepatate
models in a hierarchical solution, (3).to provide a preprocessor for determining model
parameters and/or (4) to provide a postprocessor for manipulating model solutions prior to
dlsplay We briefly illustrate the first two of these applications. For details, see Section 14 of
the Users Gulde :

Several procedures are supplied with RESQ for pioducing fow resolution graphs of model -
results on a terminal, line printer or other appropriate character oriented device. Other. PL/ I
callable graphics packages supplied by the user may be used in a sumlar manner. ‘ '

Followmg is a complete program which could be used with model EXAMPI in Append1x
1 of the Users Guide:

EXAMP 1: PROCEDURE OPTIONS (MAIN) REORDER;
"DECLARE
“N FIXED BIN(31),
(T, DATA(QO 3), OP(3)) FLOAT BIN(21),°
FMSG- CHAR (80) , '
(FLOAT,SUBSTR) BUILTIN,
/*Entry points for RESQ routines:*/
READMD ENTRY, _
STPARM ENTRY (CHAR(10),FLOAT BIN(21)),
RESQ2M ENTRY(FIXED BIN(31)),
© FNLMSG ENTRY (CHAR (80) ),
GTRSLT ENTRY (CHAR (*)- VARYING,
"CHAR (*) VARYING, (3) FLOAT BIN(21))
,/*Entry points for RESQ plotting routines:*/
RQSET ENTRY (FIXED BIN(31) ,FIXED BIN(31)),
" RQPLOT ENTRY ( (*,*) FLOAT BIN(21)),
“RQXLBL ENTRY (CHAR (*) VARYING),
RQYLBL ENTRY (CHAR (*) VARYING),
'RQVIEW ENTRY;
CALL READMD;  /* Reads RQZCOMP file produced by SETUP*/
CALL STPARM(' CPIOCYCLES',S.O), /*Set parameter value*/
‘DO N=1'TO 40; '
DATA (N, 1) =FLOAT (N) /10.0; :
CALL STPARM(' ARVL RATE' ,FLOAT.(N) /10.0) ; /*Set parameter value*/
CALL RESQ2M(0); /* Expands model § solves numerically*/
CALL FNLMSG(FMSG),
IF SUBSTR(FMSG 1 9)ﬁ='NO ERRORS' THEN
STOP;
CALL GTRSLT('CPUQ','QL',0P); /* Get result */
T=0P (1) ; ’
CALL' GTRSLT ('DISKQ','QL',0P); /* Get result */
VDATA(N,Z)—(T+OP(1))/(FLOAT(N)/1O.O), /*Mean response time -
‘ (Little's Rule) EYa
CALL GTRSLT('CPUQ','UT',OP); /* Get result */ '
DATA (N, 3)=0CP (1) ; s
END; .
CALL RQSET (40, 40) ;
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.CALL RQPLOT(DATA) ; } .
CALL RQXIBL(' ARRIVAL RATE');

CALL RQVIEW;

CALL RQYLBL('MEAN RESPONSE TIME CPU UTILIZATION');

‘.E,ND;
M. .

E | +
A |
N +
R ).

E 1. +
Sl g
P +
0 .- +
N *
S .| + *
E | + *

| + * %
T - + %
T i L
Mo T %
E | + ok
o | 4+ %
- 4+ %
C | bk
P | ++ %
U FETI
| -+ *
v. - -+ * %
T ] N *
T [ +4+++ *
1, I * %
T *
7 - * %
A *
T | * %
I *
0 | *
N - * %
‘ | .
| EX
I
| * : :
+ | | | | I T
" "ARRIVAL ‘RATE
X SCALE: 1.00E-01 = 4.00E+00

Y SCALE: 2.85E-02 -~ 1.17E+00

Figure 14:1 - Example Graph of Model Results
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. After complhng this procedure with the PLIOPT command we could use the RPLOT EXEC
e.8, i

rplot examp1 exam§1
to get the plot shown in Figure 14:1.

The next example will illustrate a hierarchical model which passes values for the rates of a
queue dependent server from the inner model to .the outer model.  See the example described
in Sections 4.3 and 8.3 of [LAVES2]. - Figure 14.2 illustrates the outer model, which is a
closed model with two resources: (1) an infinite server representing the terminals-and (2) a
queue dependent server representing the computer system. The followmg dlalogue tile can be
used as input to SETUP: ‘

MODEL:outer-

METHOD : numerical .
NUMERIC PARAMETERS:qrates (4)
QUEUE: termg

TYPE:active

DSPL:is

CLASS  LIST: termlnals

WORK DEMANDS 10

QUEUE csg

TYPE:active -

DSPL: fcfs

CLASS LIST:comsys

WORK ‘DEMANDS?: 1
SERVER -
'RATES:qrates

CHAIN:c?1

TYPE:closed

POPULATION: 30

:terminals->comsys->terminals

END ) '

() TERMINALS -

COMPUTER SYSTEM

Figure 14.2 - Outer Model

- The inner model isa central server model" (Flgure 14. 3) The dlalogue flle for thls model
can be constructed as follows: : . :

MODEL: inner
METHOD : numerical
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NUMERIC PARAMETERS:deg _m_p
L NUMERIC IDENTIFIERS:floppytime dlsktlme Cputime
o FLOPPYTIME: .22

DISKTIME:.019
CPUTIME: .05
QUEUE: floppydg
' TYPE:fcfs
CLASS LIST:floppy
SERVICE  TIME: floppytime
:QUEUE dlskq
_»TYPE fcfs
' 'CLASS LIST:disk
‘ SERVICE TIME: dlsktlme
QUEUE cpuqg
TYPE:fcfs ]
CLASS LIST:cpu
SERVICE TIME:cputime
CHAIN:multi_ prog
TYPE:closed
' POPULATION:deg m_p
scpu->floppy disk;.tV .9
: floppy disk->cpu '
END

The following program can be used to solve these two models hierarchically:

INOUT: 'PROC OPTIONS (MAIN) REORDER;
DCL READMD ENTRY, /* DCL'S for RESQ routlnes */
RESQM ENTRY (FIXED BIN(31)),
GTRSLT ENTRY (CHAR(*) VARYING, '
CHAR(*) VARYING, (3) FLOAT BIN(21)),
STPARM.ENTRY (CHAR(10),FLOAT BIN(21)),
STPRMV ENTRY (CHAR(10), (*) FLOAT BIN(21));
DCL TYPEVL ENTRY; ” :
DCL, RSQ2IP FILE STREAM INPUT;
DCL (DEG M_P) FLOAT BIN(21),
OP(3) FLOAT BIN(21),
QRATES (4) FLOAT BIN(21);
/* INNER MODEL */
CALL READMD;  /* READS INNER RQ2COMP FILE FROM TRANSLATOR */

DO DEG M_P=1 TO 4; /% MULTIPROGRAMMING LEVEL */ ,
CALL STPARM('DEG M _P',DEG M P);  /* SETS PARAMETER DEG M P */
CALL RESQM(0);  /* EXPANDS INNER MODEL & SOLVES #*/ :
CALL GTRSLT ('CPUQ','TP',OP);  /* GET THROUGHPUT FOR CPU */

QRATES (DEG_M_P)=CP(1)/8.0;
END; .
CLOSE FILE (RSQ2IP);
/% QUTER MODEL */
OPEN FILE (RSQ2IP) TITLE('OUTER');
CALL READMD; /* READS OUTER RQ2COMP FILE FROM TRANSLATOR */

CALL STPRMV{( QRATES ,OQRATES) ;- - /* SETS PARAMETER QRATES */
CALL RESQM(0 /* EXPANDS OUTER MODEL & SOLVES - */ ' ‘
CALL TYPEVL,

END INOUT;
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FLOPPY

Figure 14.3 - Inner Model

We have two RESQ models to read, one for the inner model and one for the outer model. The
inner model contains a parameter DEG__M__P representing the multiprogramming level. The
outer model contains a parameter QRATES representing the rates for the queue dependent
server, The variable QRATES will be used to store the results of the inner model and will be

assigned to the parameter of the outer model. The inner model is read and is solved for

DEG__M_ P’s of one, two, three and four. The CPU throughput for each DEG_M_Pis '
divided by 8.0, the mean number of ‘cycles, and stored in QRATES. : The model definition‘ file -
from SETUP is closed so that it can be opened with a different name, enabling the outer
model to be read. The outer model parameter is assigned a value from QRATES, and the

outer mode] is solved. Then the results are displayed interactively.

The followmg shows the execution of th1s program (after compllatlon and approprlate.
CMS commands)

»EXECUTION BEGINS...

NO ERRORS DETECTED DURING NUMERICAL SOLUTION..

WHAT:all

ELEMENT  UTILIZATION
TERMQ .  0.00000
CsQ 0.98158

jof

ELEMENT VTHRg %EPUT
TERMQ

"CsQ - 2. 27025

ELEMENT MEA} Q%?UE LENGTH
TERMQ 02

. CSQ 7.29747
30427
ELEMENT = MEAN QUEUEING TIME
TERMQ ©10.00000
csQ 3.21439
ST &5
WHAT :

R; T=2.26/4.40 11:08:17 .

_ A brief discussion is in order to emphasize the- difference between solving the model in.
this fashion as opposed to using submodels. When submodels are used, the expansion program»

produces and solves one model. With the above hierarchical approach, the inner model is -

evaluated four times and results from it are passed to the outer model; Whlch is solved‘
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separately. This is done to allow an approximate ‘solution, as in the above example. Similar
approaches may be used with simulation, to reduce simulation run times. '
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