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is necessary for definition of the networks to be solved, for solution of the networks (by 
simulation and/or numerical methods) and for examination of the performance me.asures 
obtained. 
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solving extended queueing network models. We refer to the class of RESQ networks as 
"extended" because of characteristics which allow effective representation of system 
detail. RESQ incorporates a high level language to concisely describe the structure of 
the model and to specify constraints on the solution. A main feature of the language is 
the capability to describe models in a hierarchical fashion, allowing an analyst to define 
submodels to be used analogously to use of macros in programming languages. RESQ 
also provides a variety of methods for estimating accuracy of simulation results and 
determining simulation run lengths. 
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PREFACE 

Queueing networks are useful as performance models of systems where performance is 
principally affected· by contention for resources. Such systems. include computer systems, 
conullunication networks, office systems and manufacturing lines. The Research Queueing 
Package, Version 2 (hereafter referred to as RESQ) is a system for constructing queueing 
network models and solving queueing network models. Simulation methods, including state of 
the art statistical analysis, are provided for the full class of queueing networks allowed in the 
RESQ language~ Numerical methods are provided for a subset of the queueing networks 
allowed by the RESQ language. 

This document introduces usage of RESQ and gives examples of simple models of 
computer and communication systems constructed and solved using RESQ. The RESQ user 
should also be familiar with either 

or 

C.H. Sauer, E.A. MacNair and J.F. Kurose, "The Research Queueing Package 
Version 2: CMS Users Guide," IBM Research Report RA-139, Yorktown Heights, 
New York (April 1982). 

C.H. Sauer, E.A. MacNair and; J.F. Kurose, "The Research Queueing Package 
Ver'sion 2: TSO Users Guide," .IBM Research Report RA-140, Yorktown Heights, 
New York (April 1982). 

whichever is appropriate to the operating system being used. These guides also include a few 
examples which are more complex than those presented in this document. 

This document has the following sections: 

"Section 1: Introduction" introduces some of the features and capabilities of RESQ. 

"Section 2: Computer System Model - Nuinerical Solution" illustrates interactive usage of 
the two basic RESQ commands, SETUP and EV AL, using numerical solution of a model 
discussed in Section 1. 

"Section 3: Dialogue Files - Model Parameters" illustrates the batch m.ode of the SETUP 
cominand and parameters defined with the EV AL command. 

"Section 4: Simultaneous Resource Possession - Simulation" discusses simulation' of the. 
second example of Section 1. 

"Section 5: Confidence Interval Methods" discusses the three methods available in RESQ 
for statistical analysis of simulation results and automated control of run length. 

"Section 6: Sources and Sinks" discusses the RESQ elements for arrival of jobs in the 
network and departure of jobs from the network. 

"Section 7: Chains" discusses the RESQ approach to representing groups of heterogene .. 
ous jobs. 

"Section 8: Job, Chain and Global Variables 11 describes variables available during 
simulation for purposes analogous to variables in the programming language sense. 
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"Section 9: Routing" discusses the definition of routing between network elements. 

"Section 10: Passive Queues" describes in more detail the RESQ elementS for explicitly 
acquiring and freeing units of a resource. 

"Section 11: Split, Fission and Fusion Nodes" di~cussesthe RESQ elements used llY jobs 
to generate other jobs and to synchronize activities with these jobs. . 

"Section 12: Queue Types" dis.cusses a macro facility for queue definition. 

"Section 13: Submodels" discusses a macro facility for subnetwork definition. 

"Section 14: PL/I Embedding" discusses access to RESQ from PL/I procedures for 
plotting grapb,s and constructinghierarchical solutions. 
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1. INTRODUCTION 

Models are used to estimate the performance of systems when measurement of system 
performance is impossible (e.g., because the system is not yet operational) or impractical (e.g., 
because of the human and machine resources required). Queueing networks have becott\e 
important as performance models of a variety of systems where system performance is usually 
significantly affected by contention for resources. Queueing network models can be used from 
the early design stages of a system on throughout the life of the system to estimate system 
performance. 

We will not attempt a general discussion of queueing networks here, but will try to make 
our discussion self-:contained. The reader seeking additional background may wish to ref~r to 
special issues of Computing Surveys (September 1978) and Computer (April 1980), to Sauer 
and Chandy [SAUE81a] and to other books listed in the Bibliography. Our examples will be 
of queueing network models. of computer systems and communication systems. However, 
queueing models have been used for decades in examining a wide variety of other systems. 
Much of our discussion applies directly to performance issues in office equipment, manufactur­
ing lines and other systems.' Our emphasis will also be on performance, but the modeling 
techniques we .present also apply to analysis of other issues such as reliability and correctness 
(e.g;, deadlock analysis). 

The basic problems in using queueing network models are to (1) determine the resources 
and their characteristics which will most affect performance, (2) formulate a model represent­
ing these resources and characteristics and (3) determine (algebraically, numerically arby 
simulation) the values for performance measures (e.g, mean response time) in the model. . The 
first of these problems, though often difficult, is highly system specific. We will not address 
this problem directly. The Research Queueing Package (RESQ) is a software tool for building 
queueing network models. We emphasize "tool" because RESQ is not a model in itself. As a 
to~l, it can be o.f great value in d~ng with the second and thir~ basic problems just cited. 
T.hlsd?cument 1Otroduce~ some/mefe.atur~s o~ RESQ and their usage. For a thorough 
dlscusslOn of RESQ, see either Users GUide Cited 10 the preface. 

TERMINALS FLOPPY 

o 
o 

Figure· 1.1 - .Queueing Network Model 

Figure 1.1 illustrates a very simple queueing network model of an interactive computer 
system. (This network isa simplification of networks used as computer system models· since . 
the mid sixties.) The model considers contention for three resources of the system, the CPU, a 
floppy disk and a hard disk. Users of the system are represented by jobs in the queueing; 
network. A user spends piut of his or her time thinking at the terminal and keying in cOm'" 
mands. This part of the user's time is represented by service times of a job (representing the 
user) at the terminals "ql,.leue." The model assumes there are as many terminals as users, so 
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2 INTRODUCTION / SEC. 1 

there is no waiting for a terminal; we will still refer to the model representation of the 
termInals as a queue. After keying in a command, the user waits for a response.· The job 
representing .the user alternates between computation and I/O activities until the command 
pro~essing is. finished and the us.er receives the response .. The USer then begins another 
thinking/keying time. . 

We have made this model simple because it is our first example, but we have also made it 
simple so that a numerical solution of the model will be feasible. For exact numerical solution 
to be feasible, we must make a number of assumptions. One of these assumptions is that 
command processing does not require more than one resource at a ti~e. This is likely an 
unreasonable assumption since command processing will require memory as well as the 
reSOlIrCeS pictured; the assumption is reasonable only if there is negligible contention for 
memory. Similarly, I/O activity in most architectures will require resources not mentioned, 
e.g., channels and controllers; the assumption that a single resource is required is only 
reasonable if there is negligible contention for these other resources. A second assumption is 
that scheduling is limited to a fairly. restricted set of algorithms. In particular, priOrity 
scheduling is excluded. Other restrictive assumptions will be considered as we discuss and 
expand upon this. model below. 

Without RESQ one would likely have two choices with regard to this model and these 
assumptions: (1) Accept the model and its results without knowing how much impact the 
assumptions have on the results. (2) Reject the model and build a detailed simulation model 
in a conventional discrete event simulation language. This second choice would entail new 
problems, most notably (a) expense of building and running the model and (b) doubt about 
the accuracy of the results (due to the statistical variability of simulation). In the past there 
has been very little middle ground between these chbices.fadvantage of the best features of 
numerical and simulation solution. . 

Two of the principal objectives of RESQ have been (1) to bridge this gap between 
numerical and simulation methods and (2) to encourage analysts to use a solution method 
appropriate to the case at hand. RESQ has succeeded at these objectives partly because of the 
solution methods it provides and partly because of its characterizations of queueing networks. 
RESQ is effective because of its solution methods, because of its characterizations of queueing 
networks, and because of its user interfaces, which have been engineered to maximize User 
productivity. 

RESQ provides the "state of the art" in numerical solution methods, so that restrictive 
assumptions can be avoided where possible. RESQ provides simulation solutions with special 
featllres not found in most simulation languages. Most important of these are statistical 
output analysis techniques which provide error estimates (in the form of confidence intervals) 
for simulation results and stopping rules for determining when the simulation should end. 
(Statistical output analysis techniques are ,discussed in Chapter 7 of Sauer and Chandy 
[SAUE81a], Chapter 4 of Kobayashi [KOBA78] and Chapter 6 of Lavenberg et al 
[LA VE82].) The presence of mUltiple solution methods in one tool makes it possible to use 
the method most appropriate to a given model and to test the impact of model assumptions 
such as the ones discussed above. Presence of multiple solution methods also makes feasible 
the use of several methods in a hybrid solution of one model. 

We refer to the networks of RESQ as "extended" because of characteristics absent from 
most queueing models. Perhaps the most important of the extensions is the "passive" queue, 
which allows convenient representation of simultaneous resource possession as in ,the discus­
sion above .. Traditional queues are "active" queues in RESQ.terminology. A job's activity is 
typically focused on the resources of active queues. A job typically has no interaction with 
other model elements while at an active queue. A job typically acquires units of a passive 
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Figure 1.2 - Network with Passive Queue 

queue resource and holds on to them while visiting other queues (including other passive 
queues) and model elements. The job explicitly releases the units of resource when it no 
longer needs them. Figure 1.2 shows the addition of a passive queue representing memory to 
the network of Figure 1.1. Inclusion of the passive queue allows us to avoid making the 
assumption that command processing does not require more than one resource at a time. This 
assumption is made with the model of Figure 1.1 to make numerical solution feasible;. avoid­
ance of the assumption precludes exact numerical solution. Models with passive queues are 
solved either by simulation or by approximate numerical methods. (Exact numerical solution 
for networks with passive queues is possible, in principle, but usually not practical.) 

Note that in the figure the passive queue resource is held by the job during I/O activity 
as well. Additional passive queues could be added to the model to represel1t the channel 
and/ or controller contention mentioned above. As well as representing simultaneous resource 
possession, passive queues are particularly useful for representing complex mechanisms in a 
simple manner. For example, contention for a channel may cause I/O devices to experience 
extra revolutions prior to transfer. Communication network protocols and algorithms are 
additional .examples of mechanisms conveniently represented by passive queues. A third :use 
of passive queues is in measuring response times in subnetworks. The "queueing time" 
(response time) for a passive queue is defined as the time between a job's request for units of 
the passive queue resource and that job's freeing of the units of resource. Thus in Figure 1.2 
the queueing time for the passive queue corresponds to the response time seen by the terminal 
users. 

The RESQuser interfaces are based on interactive dialogues which serve to educate new 
users, yet are designed to accommodate sophisticated tisers and large models. The dialogues 

, provide optional tutorials to clarify prompts. The translator automatically provides for 
immediate correction of syntactic errors. If a RESQ user. discovers a semantic error in prior 
portions of the dialogue, he or she may temporarily suspend the dialogue, correct the error and 
then resume the dialogue at the point of suspension. A transcript (a "dialogue file") of a 
model definition dialogue is kept for the user. The user may edit this transcript and then have 
it translated again, with or without additional interactive dialogue. In addition to the model 
definition dialogue and translator, there is a model evaluation dialogue associated with the 
solution components. This dialogue allows the user to selectively obtain performance meas­
ures. Models maybe defined with parameters so that solutions of several related models may 
be obtained in a single evaluation, without retranslation of the model. It.is also possible to 
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4 INTRODUCTION / SEC. 1 

embed model evaluation in aPL/I program. The PL/I embedding mechanism is useful for 
producing graphs or tables of model results for different parameter values. An analyst may 
use tl;1ePL/I embedding mechanism to provide preprocessing and postproc~ssit).g fOl: a given 
m~del. With such an approach the model may be conveniently ~sed by others who are 
interested in the modeled system, but not in RESQ. . 

There are versions of RESQ for both MVS/TSO and for VM/CMS. Most of what we 
say applies to either version. However, where there are differences, we assume that CMS is 
being·· used. Our examples are presented as if a typewriter-type terminal is being used. 
However, RESQ is insensitive to the type of terminal used and is typically used with a display 
terminal. cThe assumption of a typewriter-type terminal simplifies the formatting of the 
examples. 
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2. COMPUTER: SYSTEM MOI)EL- NUMERlCAL SOLUT. ION .. " . , ... ' ., .... , i " . ": .. "'0.", ',',"'.' ", " " •.. ' .', . 

In this section we will cOI),sider num~dcal solution ofthe example of Figure 1.1. In doing 
. so we will have to make further a~sulllPti()ns in addition to the ones already discuss~d .. 

,Let us consider the floppy disk queue. We assume that the queueing discipline forthe disk 
is First-Come;..First-Served (FCFS). (We will usually refer to scheduling algorithms' as 
queueing disciplines.) Further, we assume that a job's service time at the disk. has an exponen­
tial distribution independent of the current state of the disk. ActlJally, a job;s service timewill 
be the sum of several times, including seek time, latency and transfer (and pos$ibly others), 
Th¢' seek and latency times will be depencient on the current position of the arm and the 
rotational position of the platters. The following isa possible RESQ description of the floppy 
diskql.leue: 

QUEUE:floppyq 
TYPE:fcfs 
CLASS LIST:floppy 

SERVICE TIMES: floppy time 
CLASS LIST: 

This is a fragment ofa RESQ interactive dialogue; we will show the entire dialogue shol'tiy. 
In this definition we Use upper case for the RESQ prompts and lower case for replies to those 
prompts. The prompts are terminated by a colon (":"). 

The first prompt is asking for thenallle ,of the queue. We use the name "floppyq" rather 
than "floppy" because we wahtto save the name "floppy" for another purpose and because 
"floppyq" is easily pronounced; The name we use may be any legal RESQidentifier (see 
Appendix 2 of the Users Guide.). ("Floppydiskq" would not be a legal identifier because it 
has more than ten characters.) 

The secohd>prompt is asking for the type of the queue. The type specified maybe a 
general type, i.e., "active" or "passive," ora specialized type, e.g., "fcfs" as in the example. 
A general type allows specification of all queue characteristics, while a specialized type 
assumes certain default . specifications and thus allows an abbreviated' dialogue. The speeiaHz­
ed type fcfs results in a single server queue with the FCFS quelJeing discipline. Further, the 
server has a fixed service rate of one (1). (If we want the server to have .a different fixed 
rate, we can divide the mean service time by that rate. If we want to explicitly defineset,ver 
rates, we must use the' general active dialogue. The general active dialogue is described in 
Section 4 of the Users Guide.) We will defer until later discussion of some of the ottJ,er 
characteristics assumed by the. specialized fefs type. Generally, the. assumptions result in a 
simpler specification than might otherwise . be made. 

The third prompt is asking for a list of (job) "classes" atthe queue. In general, an active 
queue may, have many classes. The classes of a queue serve as "nodes" in the routing 
description ·of the network; having multiple classes at a queue allows. specification of different 
routing paths for different jobs leaving the queue. Different classes at a queue may also have 
different service requirements, priorities and other characteristics we will describe later. In 
this case there is only one class, which we give.the name "floppy." (A class name may be any 
legal identifier.) We use "flOPPY" for the class (rather than the queue) because we will use.,the 
class name in our routing definition and because of the pronouncability of "floppyq," 

The fourth prompt is for the service time distribution of jobs at the queue. The service' 
time is the amount of time needed during one visit to the queue. The identifier "fl6ppyti~e" 
is assumed to have been previously defined. Assuming floppy time has been defined to have a 

April 3, 1982 



6 COMPUTER SYSTEM MODEL - NUMERICAL SOLUTION /SEC. 2 

sea,lar numeric value (another possibility will be discussed later), it is taken to be the mean of 
an ~xp()nential distribution. . . 

Th~ fifth prompt· is for more class names. The mill reply terminates the definition of 
floppyq. If the prompt had not been null, there would have been another prompt for service 
times and yet another class list prompt. . 

The definition of the hard disk queue can be essentially the same, e.g., 

QUEUE:diskq 
TYPE:fcfs 
CLASS LIST:disk 

SERVICE TIMES:disktime 
CLASS LIST: 

The definition of the cpu queue is similar, but uses the "ps" specialized type: . 

QUEUE:cpuq 
TYPE:ps 
CLASS LIST:cpu 

$ERVICETIMES:cputime 
CLASS LIST: 

The psspecialized type uses the Processor-Sharing (PS) queueing discipline; otherwise it is the 
same as the fcfsspecialized type. The PS discipline. is defined as the limiting case' o,fa 
Round-Robinrliscipline with no overhead as the quantum (tiIlle slice) goes to zero. With PS 
anile n jobs in the queue, each job gets l/nth of the server, i.e.; the server is sharedequ~lly 
al1).ongall of the jobs in the queue~ . 

The final queue definition is essentially the same as the other definitions except that we 
use the ni~"special type, which gives a queue with an Infinite:..Server (IS) discipline, ie., the 
queue always has a server for each job hi the queue. . 

QUEUE:terminalsq 
TY:pE:is 
CLASS LIST:terminals 

SERVICE TIMES:thinktime 
CLASS LIST: 

(We uSe the identifier "thinktime" because "tetminalstime" would be too long. Note that 
"thitiktime" should include the keying time and any other times associated with the termim,tls;) 
Tl}is concludes the queue definitions for this model. . . 

The' other priricipal part of the model definitionis that of the routing. The rbtitinig is 
defined in terms of the transitions between nodes; in this model tl:1e only nodes are the classes. 
Ingeneral,the nodes of a model may be partitioned into "chains" such that a job at a nod,e' in 
one chain can never get to . a node in another chain. III this model there is only onechaib. 
1'J.:!.e following iS'a possible routing definition· for this model: 

CHAIN: interactive 
**ERROR** IDENTIFIER BEGINNING "INTERACTIV" .TRUNCATED TO 10 CHARACTERS 

TYPE: closed 
POPULATION: users . , 

:terminals->cpu 
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:cp~->floppy disk;.l ,9 
:floppy->terminals ppu;l/cpiocycles l-l/cpiocycles 
:disk->terminals cpu;l/cpiocycles l-l/Cpiocycles 

CHAIN: 

7 

The first prompt is for the name of a chain. We have intentionally used an identifier 
longer than ten characters. Note that RESQ gives a warning message informing the user of 
the truncated identifier it will actually store in its symbol table. 

The second prompt is for the type of chain, "open" or "closed." Open chains. ha ve 
"sources" of jobs and "sinks" for jobs. Closed chains do not have sources and sinks. Usually 
the number of jobs in a closed chain is fixed, though we will see exceptions. The chains of 
both Figures 1.1 and 1.2 are closed. 

The third prompt is for the number of jobs in the closed chain, i.e., its "population." We 
assume that the identifier "users" has been previously defined to have a scalar numeric value. 

The fourth and subsequent prompts, consisting of only colons (":") are for "routing 
transitions," i.e., descriptions of where a job can go when it leaves a node and how it decides 
where to go. The first routing transition means that jobs leaving node (class) terminals always 
go to node cpu. The second routing transition means that jobs leaving node cpu go to node 
floppy with probability .1 and to node disk with probability .9. The third routing transition 
means that jobs leaving node floppy go to node terminals with probability 1/ cpiocycles and to 
node cpu oth~rwise. We as.sume cpiocycles has been defined to have a scalar numeric value. 
The fourth transition has the same effect for the disk. Together, the third and fourth trans­
itions mean that the number of CPU-I/O cycles a job experiences will· have a geometric 
distribution (starting at one) with mean cpiocycles. The four transitions have completely 
described the routing. A null reply to the next colon prompt terminates the chain description. 
A null reply to the next CHAIN: prompt terminates the routing description. 

Having shown the description of the queues and the routing, we now show how these fit 
into a .complete model description. The model definition dialogue is invoked by the command 
SETUP. The following shows a possible use of SETUP for this model: 

setup 
MODEL:csm 

RESQ2 Transl~tor V2.04 (03/02/82) Time: 21:57:48 Date: 03/10/81 

MODEL IS CSM 
METHOD:how 

SPECIFY SOLUTION. METHOD. 
SOLUTION METHODS ARE NUMERICAL AND SIMULATION. 

METHOD: numerical 
NUMERIC PARAMETERS: 
NUMERIC UiENTIFIERS: floppy time disktime cputime thinktimeusers 

FLOPPYTIME:.22 
DISKTIME: .019 
CPUTIME: .05 
THINKTIME:5 
USERS:15 

NUMERIC IDENTIFIERS:cpiocycles . 
CPIOCYCLES:8 
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NUMERIC IDENTIFIERS: 
QUEUE TYPE: 
QUEUE:floppyq 

.TYPE:fcfs 
CLASS LIST:floppy 

SERVICE TIMES: floppy time 
CLASS LIST: 

QUEUE:diskq 
TYPE:fcfs 
CLASS LIST:disk 

SERVICE TIMES:disktime 
CLASS LIST: 

QUEUE:cpuq 
TYPE:ps 
CLASS LIST:cpu 

SERVICE TIMES:cputime 
CLASS LIST: 

QUEUE:terminalsq 
TYPE: is 
CLASS LIST:terminals 

SERVICE TIMES:thinktime 
CLASS LIST: 

QUEUE: 
.SUBMODEL: 
CHAIN: interactive 

*~ERROR** IDENTIFIER BEGINNING "INTERACTIV" TRUNCATED TO 10 CHARACTERS 
TYPE: closed 

END 

POPULATION: users 
:terminals->cpu 
:cpu->floppy disk;.1 .9 
:floppy->terminals cpu;1/cpiocycles 1-1/cpiocycles 

. :disk->terminals ~pu;1/cpiocycles 1-1/cpiocycles 

CHAIN: 

NO FATAL ERRORS DETECTED DURING COMPILATION. 
R; T=0.73/1.53 22:11:31 

SETUP will accept a single argument, the model name. If no argument is given to SETUP, it 
prompts the user for a model name. 

Once the model name is established, SETUP prompts for the solution method. As with 
all RESQ prompts, a reply of "how" causes RESQ to produce a brief explanatiol1 of possible 
~9. .; 

Next is a prompt fQr the names of numeric parameters, whose values would be supplied 
when the model is solved. For the moment we assume no parameters, but will return to this 
feature in the next section. 

In the queue and chain . definitions we assumed that certain identifiers had been previously 
defined with numeric values. The next prompt gives an opportunity for definition of such 
identifiers which have not been declared as parameters. It expects a list of iden.tifiers. After 
that prompt come prompts for the values of the identifiers and another prompt for more 
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identifiers. We give another identifier (cpiocycles) and are prompted for its value. We are 
then given one more prompt for numeric identifiers. A null reply terminates prompting. for 
numeric identifiers. 

In this example the values given for times are in units of seconds. This is only implicitly 
defined, however. As far as RESQ is concerned, the meaning of the. time unit is .unimporiant; 
the numerical values produced by RESQ would be the same whether we intended the time 
units to be microseconds, seconds or hours. It is up to the user to decide upon a time unit and 
be consistent in using it; e.g., the user may choose the time units to be seconds. It is then up 
to the user to provide all input in units of seconds and to interpret all times in the RESQ 
output in units of seconds. 

Next we are prompted for the name of a user defined queue type. (As discussed in 
Section 12, we may define our own queue types which may be used in a manner similar to the 
usage of the predefined queue types fcfs, ps and is.) A null reply indicates weare not defining 
any queue types. (It is always safe to give a null reply to a prompt. Usually SETUP will 
accept a null reply as indicating a default value,e.g., rio queue type definitions. Occasionally 
SETUP will insist on some other reply; in those cases the user can uSe "how"to·findout what 
is expected.) 

The queue definitions are the same as the fragments we have already shown. We are then 
prompted for definition of a submodel; a null reply indicates we are not defining any suhmo­
dels. The remainder of the model definitiori is the chain definition already discussed. 

Model solution!! are obtained with theEV AL command. EV AL may be issued. without 
arguments, in which case it prompts for a model name. If arguments are given toBY AL, the 
first one is used as a model name. We defer discussion of the interpretation of other argu­
ments. Following is an EV AL dialogue for model csm: 

eval 
RESQ2 EXPANSION AND SOLUTION PROGRAM. 
MODEL:csm 
RESQ2 VERSION DATE: MARCH 9, 1981 - TIME: 22:08:11 DATE: 03/10/82 
NO .ERRORS DETECTED DURING NUMERICAL SOLUTION. 

WHAT:all 

ELEMENT 
FLOPPYQ· 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ· . 

ELEMENT 
FLOPPYQ 

April 3; 1982 

UTILIZATION 
0.37943 
0.29492 
0.86234 
0.00000 

THROUGHPUT 
1.72469 
15.52218 
17.24686 
2.15.586 

MEAN QUEUE LENGTH 
0.58712 
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DISKQ 

cPtJQ· 
TERMINALSQ 

ELEMENT 
FLOPPYQ 
DISKQ 
C:PUQ· 
TERMINALSQ 

WHAT: how 

0.40804 
3.22555 
10.77929 

MEAN QUEUEING TIME 
0 .. 34042 

. 0.02629 
0,.18702 
5.00000 

CODES ARE:. XXXX XXXX (ELEMENT LIST) 
XXXXCI XXXXCI(ELEMENT LIST) 
XXXXBO XXXXBO(ELEMENT LIST) 

WHERE XXXX IS ONE OF THE FOLLOWING: 
UT - .UTILIZATION (OF SERVER OR TOKEN) 
TP- THROUGHPUT (DEPARTURES) 
QL - MEAN QUEUE LENGTH 

SDQL - STANDARD DEVIATION OF QUEUE LENGTH 
QLD - QUEUE LENGTH DISTRIBUTION 

QT -·MEAN QUEUEING TIME 
SDQT - STANDARD DEVIATION OF QUEUEING TIME 

QTD - (CUMULATIVE) QUEUEING TIME DISTRIBUTION 
TU - MEAN TOKENS IN USE 

TUD - DISTRIBUTION OF TOKENS IN USE 
TT - MEAN TOTAL TOKENS IN POOL 

TTD - DISTRIBUTION OF TOKENS IN POOL 
MXQL - MAXIMUM QL 
MXQT - MAXIMUM QT 

PO - OPEN CHAIN POPULATION 
RTM - OPEN CHAIN RESPONSE TIME 
ALL - ALL OF THE ABOVE 

XXXX WITHOUT CI OR BO GIVES POINT ESTIMATES ONLY, 
XXXXCI GIVES CONFIDENCE INTERVALS ONLY AND 
XXXXBO GIVES BOTH POINT ESTIMATES AND CONFIDENCE INTERVALS. 
UNLESS AN ELEMENT LIST IS GIVEN, ONLY QUEUE VALUES ARE PRODUCED. 
AN ELEMENT LIST IS A LIST OF QUEUES AND NODES. 
THE FOLLOWING CODES ARE NOT INCLUDED IN "ALL": 

SIM - GIVES SIMULATION SUMMARY AGAIN 
ND - NUMBER OF DEPARTURES 
ST - MEAN SERVICE TIMES (ACTIVE .QUEUES AND CLASSES ONLY) 

LNG -FINAL LENGTHS 
JV - FINALJV VALUES FOR JOBS STILL IN NETWORK 
CV - FINAL CV VALUES 
GV - FINAL VALUES OF GLOBAL VARIALBES 

ND, ST, LNG AND JV MAY BE GIVEN WITH A LIST OF QUEUES AND NODES. 
GV MAY BE GIVEN WITH A LIST OF VARIABLE NAMES. 
TRY AGAIN-
WHAT:qt(cpuq,cpu) 

ELEMENT 
CPUQ 

MEAN QUEUEING TIME 
0.18702 
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CPU 0.18702 

WHAT:qtd 

ELEMENT QUEUEING TIME DISTRIBUTION 

WHAT: 

EXPANSION FINISHED. 
R; T=0.45/0.97 22:13:43 

After obtaining the model name, EV ALprints a version date and the current date and 
time.EV AL then prints any error messages or the "NO ERRORS ... " message. After that it 
prompts the user with IIWHAT:" meaning "What results do you want to see?" A reply of 
"all" causes all results to be printed. Where queues consist of a si:ngle node (e.g., all of the 
queues of this example have exactly one class each), only measures for the queues are 
produced since the node measures will be the same as the queue measures. 

The utilization is per server. In the case of the terminals, since the number of servers is 
"infinite," the utilization of each server is zero. The queue length at a queue is defined to 
include jobs in service, and the queueing time is defined to include service .time. 

Perhaps the most interesting performance measures for this model are estimates of 
response time, but such estimates are not given directly for this model. (We use "estimate" 
here to emphasize that we are dealing with a model and usually do not obtain the values· for 
the actual system. For this model RESQ provides exact values for. performance measures 
within the limits of numerical error.) By "response time" we know we mean the time from 
leaving terminalsq to returning to terminalsq, but RESQ has no way of knowing this. In 
Section 4 we will see how characteristics of response times can be directly estimated in models 
solved by simulation. . 

. We can easily estimate mean response time from the values we already know in at least 
two ways: One way is to sum the mean queueing times at cpuq, floppyq and diskq, weighted 
by the mean number of visits to each queue per response time. I.e." a response time consists 
(on the average) of 8 queueing times of .18702 seconds at cpuq, .8 queueing times of .34042 
seconds at floppyq and 7.2 queueing times of .02629 seconds at diskq, so the :mean reSponse 
time estimate is 1.958 seconds. An easier way is to apply Little's Rule::meannumber of jobs 
= throughput x mean response time. We know that the mean number of jobs not at the 
terminals is 15 10.77929 = 4 . .22071, so the mean response time is 4.22071/2.15586 = 
1. 958 seconds. ' 

Exact numerical solution for the response time distribution is not feasible. A commonly 
used heuristic is to assume the response time has an exponential distribution, i.e., in this case 
to assume the probability distribution function has the form F(t) = 1 - exp(-t/1.958).Wiih 
that assumption, we would estimate that the probability the response time is at most 1 second 
would be 1 - exp( -1 /1. 958) = .400, that the probability the response time is at most 3 
seconds would be 1 -exp( -3/1.958) = .784 and that the probability the response time is at 
most 5 seconds would be 1 - exp(-5/1.958) = .922. 

As in SETUP, a reply of "how" causes a tutorial to be printed. In the tutorial above, 
note that there are many performance measures which were not produced by the "all" reply. 
These measures are only available with the simulation solution. 
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Any of the codes for performance measures may be qualified by a list of queues and 
nodes .. Only measures for those elements will be given. 

If a code for an unavailable measure, e.g., queueing time distribution in the exampl6, is 
given, then only the heading is printed. Prompting for measures is terminated by a null reply. 

We have only shown the terminal output. A transcript of the EV AL dialogue is preserved 
for the user in a file with filename the same as the model name and file type RQ2PRNT. 
This transcript omits errors and "how" output. Thus CSM RQ2PRNT would be . 

RESQ2 VERSION DATE: MARCH 9, 1981 - TIME: 22:08:11 DATE: 03/10/82 
MODEL:CSM· 
NO ~RRORS DETECTED DURING NUMERICAL SOLUTION. 

WHAT: all 

ELEMENT UTILIZATION 
FLOPPYQ 0.37943 
DISKQ 0.29492 
CPUQ 0.86234 
TERMINALSQ 0.00000 

ELEMENT THROUGHPUT 
FLOPPYQ 1.72469 
DISKQ 15.52218 
CPUQ 17.24686 
TERMINALSQ 2.15586 

ELEMENT MEAN QUEUE LENGTH 
FLOPPYQ 0.58712 

DISKQ 0.40804 
CPUQ 3.22555 
TERMINALSQ 10.77929 

ELEMENT MEAN QUEUEING TIME 
FLOPPYQ 0 . .34042 
DISKQ 0.02629 

CPUQ 0.18702 
TERMINALSQ 5.00000 

WHAT:how 
WHAT:qt (cpuq, cpu) 

ELEMENT 
CPUQ 

CPU 

WHAT:qtd 

MEAN QUEUEING TIME 
0.18702 

O. 18702 
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ELEMENT 

WHAT: 
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3. DIALOGUE FILES - MODEL PARAMETERS 

Suppose we wish to evaluate the csm model for a variety of think times and numbers of 
users. It would pe tedious to change the values of thinktime and users and then issue the 
SETUP and EVAL commands for each pair of values of interest. This is why we provide for 
numeric parameters declared in SETUP but not defined until EV AL is issued. In the last 
section when we invoked SETUP we declined to list any numeric parameters. Instead of 
listing thinktime and users as numeric identifiers we could have listed them as numeric 
parameters. 

We wish to do so now, but we wish to avoid going through the entire SETUP dialogue 
again. We can avoid this effort by use of dialogue files. While using the SETUP command as 
illustrated above, it automatically generated a transcript of the dialogue (prompts and replies). 
ona file with file name CSM(same as the model name) and file type RQ2INP. 

This transcript is verbatim with the following exceptions: (1) The "RESQ Translator .... " 
and "MODEL IS CSM" messages are omitted. (2) Prompts which were given a reply of 
"how", the how reply and the how tutorial are omitted. (3) Prompts which were repeated 
because of erroneous replies and the erroneous replies are omitted. (4) Error messages are 
omitted. (5) Prompts with null replies are omitted. (6) The "NO ERRORS ... " message is 
omitted. Thus CSM RQ2INP is as follows: 

MODEL:CSM 
METHOD: numerical 
NUMERIC IDENTIFIERS: floppy time disktime cputime thinktime users 

FLOPPY TIME : . 22 
DISKTIME:.019 
CPUTIME: . 05 
THINKTIME:5 
USERS:15 

NUMER+C IDENTIFIERS:cpiocycles 
CPIOCYCLES:8 

QUEUE:floppyq 
TYPE:fcfs 
CLASS LIST:floppy 

SERVICE TIMES: floppy time 
QUEUE:diskq 

TYPE:fcfs 
CLASS LIST:disk 

SERVICE TIMES:disktime 
QUEUE:cpuq 

TYPE:ps 
CLASS LIST:cpu 

SERVICE TIMES:cputime 
QUEUE:terminalsq 

TYPE:is 
CLASS LIST:terminals 

SERVICE TIMES:thinktime 
CHAIN: interactive 

TYPE: closed 
POPULATION: users 
:terminals->cpu 
:cpu->floppy disk;.1 .9 
:floppy->terminals cpu;1/cpiocycles 1-1/cpiocycles 
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:disk->:terminals cpu;1/cpiocycles 1-1/cpiocycles 
END 

The following illustrates editing of the dialogue file with the CMS EDIT command: 

edit csm rq2inp 
EDIT: 
case m 
locate/METHOD: 

M~THOD:numericaL 

ipvut NUMERIC PARAMETERS:thinktime users 
next 

i NUMERIC. IDENTIFIERS: floppy time qisktime cputime thinktime users 
cpange/thinktime users// 

I NUMERIC IDENTIFIERS: floppy time disktime cputi~e 
locate/THINKTIME 

THINKTIME:5 
delete 2 
locate/interactive 

CHAIN: interactive 
change/ve/v/ 

CHAIN:interactiv 
file 
R; T=O.06/0.32 12:49:28 

15 

In this edit session, we first tell the editor that we want mixed lower arid upper case. This is 
necessary because the dialogue file has preserved the user's lower case input and the editor 
assumes upper case only as its default. There is one exception to the preservation of lower 
case input: If a model is defined without a dialogue file, t.hen the model name is translated to 
upper case. Next we locate the solution method prompt and add a line declaring the numeric 
parameters. Next we go to the numeric identifier prompt with thinktime and users and erase 
them from the reply. Then we delete the prompts and replies for values of thinktime and 
users. Finally, we find the "interactive" name which was too long and remove the final u e." 

We can now let the SETUP command translate this dialogue file in a batch mode. No 
interactive dialogue is necessary if we give the SETUP command the model name as part of 
the command. 

SETUP ·csm 
MODEL IS CSM 
CONTINUING WITH MODEL DEFINITION ... 

NO FATAL ERRORS DETECTED DURING THE COMPILATION. 
R; T=O.43/0.96 12:52:07 

Several questions may arise in the reader's mind: (1) Why did SETUP not begin an interactive 
. dialogue instead of translating the dialogue file? The answer is that, once given the model 
name, SETUP will always try to use a dialogue file if· it can find one. As we will see in the 
next section, it is possible to switchback and forth betweeri interactive dialogue and dialogue 
file within a single issuance of the SETUP command. (2) What about the prompts th~twould 
have had null replies in an interactive dialogue but are not present in the dialogue file? In this 
case there are several instances: there would have been another numeric .parameter prompt, 
there would have been additional CLASS LIST: prompts, there would have .beenanother 
QUEUE: prompt and there would have been another colon prompt for a routing transition. 
The answer is that any prompts with null replies can be removed from a dialogue file and 
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SETUP will still produce the same results as if the prompts with null replies had been there. 
(3) What about error messages and error handling? The answer is that SETUP will write 
error messages on the terminal and attempt to continue processing the dialogue file. However, 
SETUP doesnofwrite the offending lines to the terminal. SETUP produces alistirtg file with 
file name equal to the model name and file type RQ2LIST. This file corresponds to the listing 
file a compiler would produce and includes error messages after incorrect lines. CSM 
RQ2LIST is as follows: 

RESQ2 Translator V2.04 (03/02/82) Time: 12:50:48 Date: 03/10/81 

* 1 * 0* 
* 2* 0* 
* 3* 0* 

* 4* 0* 
* 5* 0* 
* 6* 0* 
* 7* 0* 
* 8* 0* 
* 9* 0* 
* 10* 0* 
* 11 * 0* 
* 12* 0* 
* 13* 0* 
* 14* 0* 
* 15* 0* 
* 16* 0* 
* 17* 0* 
* 18* 0* 

* 19* 0* 
* 20* 0* 

* 21* 0* 
* 22* 0* 
* 23* 0* 
* 24* 0* 
* 25* 0* 
* 26* 0* 
* 27* 0* 
* 28* 0* 

* 29* 0* 
* 30* 0* 

MODEL:CSM 
METHOD:numerical 
NUMERIC PARAMETERS:thlnktime users 
NUMERIC IDENTIFIERS: floppy time disktime cputime 

FLOPPYTIME :".22 
DISKTIME:.019 
CPUTIME:.05 

NUMERIC IDENTIFIERS:cpiocycles 
CPIOCYCLES:8 

QUEUE:floppyq 
TYPE:fcfs 
CLASS LIST:floppy 

SERVICE TIMES: floppy time 
QUEUE:diskq 

TYPE:fcfs 
CLASS LIST:disk 

SERVICE TIMES:disktime 
QUEUE:cpuq 

TYPE:ps" 
" CLASS LIST:cpu 

SERVICE TIMES:cputime 
QUEUE:terminalsq 

TYPE: is 
CLASS LIST:terminals 

SERVICE TIMES:thinktime 
CHAIN:interactiv 

TYPE:closed 
POPULATION: users 
:terminals->cpu 
: cpu->floppy disk; .1 .9 

* 31* 
* 32* 

0* 
0* 

:floppy->terminals cpu;1/cpiocycles l-l/cpiocycles 
:disk->terminals cpu;1/cpiocycles 1-1/cpiocycles 

* 33* 0* END 

NO FATAL ERRORS DETECTED .DURING COMPILATION. 

Now we are ready to use EVAL again: 

eval/csm 
RESQ2 EXPANSION AND SOLUTION PROGRAM. 
RESQ2 VERSION DATE: MARCH 9, 1981 ~ TIME: 13:08:11 DATE: 03/10/82 
THINKTIME: 10 " 
USERS: 15 
NO ERRORS DETECTED DURING NUMERICAL SOLUTION. 
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WHAT:ut 

ELEMENT 
FWPPYQ 
DISI<Q 
CPUQ 

UTILIZATION 
0.23670 
0.18398 
0.53796 

TERMINALSQ 0.00000 

WHAT: 
THINKTIME: 1 0 
USERS: 20 
NO ERRORS DETECTED DURING NUMERICAL SOLUTION. 

WHAT:ut 

ELEMENT 
FLOPPYQ 
DISKQ 

UTILIZATION 
0.30661 
0.23832 

CPUQ 0.69685 
TERMINALSQ 0.00000 

WHAT: 
THINKTIME:10 
USERS: 30 
NO ERRORS DETECTED DURING NUMERICAL SOLUTION. 

WHAT:ut 

ELEMENT 
FLOPPYQ 
DISKQ 
CPUQ 

UTILIZATION 
0.40896 
0.31787 
0.92944 

TERMINALSQ 0.00000 

WHAT:ql(terminalsq) 

ELEMENT MEAN QUEUE LENGTH 
TERMINALSQ 23.23608 

WHAT:tp(terminalsq) 

ELEMENT THROUGHPUT 
TERMINALSQ 2.32361 

WHAT: 
THINKTIME: 
EXPANSION FINISHED. 
R; T=0.50/1~20 14:10:13 

17 

Note that we gave the model name to EVAL as part of the command. EV AL then prompts us 
for a value for thinktime and a value for users. We first try twice the previous think time and 
the same number of users. As we would expect, the CPU utilization goes down considerably. 
When we give a null reply to WHAT: we are prompted for more parameter values. With 20 
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users the CPU utilization goes up some, and with 30 users the CPU approaches saturation 
again. When we give a null reply for a parameter value the EV AL command terminates. 

Using the Little's Rule approach, the mean response· time .estimate is. (30 
23.23608)/2.32361 = 2.911 seconds. Using the exponential assumption the probability the 
response time is at most 4 seconds is .747, the probability the response time is at most 6 
seconds is .873 and the probability the response time is at most 8 seconds is .936. 

A file with file name the same as the model name and file type RQ2RPL Y may be used 
instead of the terminal to give replies to the prompts from EVAL. The RQ2RPLY file may 
include comments using the PL/I comment convention, i.e., comment maybe any string 
enclosed by "/*" and "*/" which does not contain "*/". However, comments must be 
entirely contained on one line, and a line consisting of only a comment is treated as a blank 
line, For example, the following RQ2RPLY file could be used with model csm to get the same 
results as in the above EV AL dialogue: 

/*THINKTIME:*/ 10 
/*USERS:*/ 15 
"7'*~m1l:!': *;' uIlCi­
/*WHAT:*/ ut 
/*WHAT:*/ 
/*THINKTIME:*/ 10 
/*TJSERS:*/ 20 
/*WHAT:*/ ut 
/*WHAT: */ 
/*THINKTIME:*/ 10 
/*USERS:*/ 30 
/*WHAT:*/ ut 
/*WHAT:*/ ql(terminalsq) 
/*WHAT:*/ tp(terminalsq) 
/*WHAT:*/ 
/*THINKTlME:*/ 

In this file the fifth, ninth, fifteenth and sixteenth records have the effect ofa null reply. 

To summarize the files we have for this model, let us use the CMS LISTFILE command: 

listfile csm 
CSM RQ2INP A1 
CSM RQ2LIST A1 
CSM RQ2COMP A1 
CSM RQ2RPLY A1 
CSM RQ2PRNT A1 
Ri T=0.02/0.05 14:21:30 

The RQ2INP file is the dialogue file we have been manipulating. . The RQ2LIST file isa 
listing file produced by SETUP; it is primarily useful when errors are encountered in the 
RQ2INP file or submodels (see Section 13) are used. The RQ2COMP file is the file passed 
from SETUP to EV AL. The RQ2RPL Y file contains the responses to be stacked for EV AL, 
as we just discussed. The RQ2PRNT file contains a transcript of the BV AL dialogue. 
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4. SIMULTANEOUS RESOURCE POSSESSION - SIMULATION 

One of the principal limitations of the model of the last two sections is that it ignores 
simultaneous resource possession, i.e., that jobs must have memory in 'order to use the 
processor or a device. We can think in terms of a job passively holding memory while it 
actively uses the processor or a device. In this section We show how we can add a passive 
queue to model csm as in Figure 1.2. In order to do so, we edit the dialogue file from the last 
section: 

eqit csm rq2 inp 
EDIT: 
casem 
fname csmwm 
next 
MODEL:CSM 
change/CSM/csmwm 
MODEL:csmwm 
input /*Computer System Model with Memory*/ 
next 

METHOD: numerical 
change/numerical/simulation 

METHQD:simulation 
locate/CHAIN:/ 

CHAIN:interactiv 
delete * 
EOF: 
file 
R; T=0.13/0.71 15:02:11 

First we change the file name so that the old model will be preserved, and change the model 
name within the file. (It is not strictly necessary to change the model name within the file;.the 
file name is always used as the model name by RESQ commands.) 

. We also insert a comment explaining the model name. SETUP uses the PL/I comment 
convention. Comments may be included in replies, where they are treated as blanks, or may 
be inserted on separate lines as above. As with RQ2RPLY, each comment must be confined 
to a single line. (This is because the end of a line has meaning in the dialogue file language. 
A comment too long for one line should be broken into several comments on. successive lin.es.) 
Then we change the solution method to simulation. 

We then delete everything after the queue definitions, leaving an in~mplete dialogue file: 

MODEL:csmwm 
/*Computer System Model with Memory*/ 
METHOD: simulation 
NUMERIC PARAMETERS:thinktime users 
NUMERIC IDENTIFIERS: floppy time disktime cputime 

FLOPPYTIME: .22 
DISKTIME: .019 
CPUTIME: .05 

NUMERIC IDENTIFIERS:cpiocycles 
CPIOCYCLES:8 

QUEUE:floppyq 
TYPE:fcfs 
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CLASS LIST:floppy 
SERVICE TIMES: floppy time 

QUEUE:diskq 
TYPE: fcfs 
CLASSLIST:disk 

SERVICE TIMES:disktime 
QUEUE:cpuq 

TYPE:ps 
CLASS LIST:cpu 

SERVICE TIMES:cputime 
QUEUE:terminalsq 

TYPE: is 
CLASS LIST:terminals 

SERVICE TIMES:thinktime 

Now we can use SETUP to translate the partial dialogue file.· When SETUP reaches the end of 
the partial dialogue file, it will switch to interactive mode. SETUP will start prompting us to 
continue the queue definition, since the last line in the file gives the service times for the 
terminals. 

SETUP csmwm 
MODEL IS CSMWM 
CONTINUING WITH MODEL DEFINITION ... 

CLASS LIST: 
QUEUE:memory 

TYPE:passive 
TOKENS: edit 

EDIT: 
case m 
locate/PARAMETERS 

NUMERIC PARAMETERS:thinktime users 
change/users/users partitions 

NUMERIC PARAMETERS:thinktime users partitions 
file 
MODEL IS CSMWM 
CONTINUING WITH MODEL DEFINITION ... 

TOKENS: partitions 
DSPL: fcfs 
ALLOCATE NODE LIST:getmemory 

NUMBERS OF TOKENS TO ALLOCATE: 1 
ALLOCATE NODE LIST: 
RELEASE NODE LIST:freememory 
RELEASE NODE LIST: 
DESTROY NODE LIST: 
CREATE NODE LIST: 

QUEUE: 
SET NODES: 
FISSION NODES: 
fUSION NODES: 
SUBMODEL: 
CHAIN:interactiv 

TYPE: closed 
POPULATION: users 
:terminals->getmemory->cpu->floppy disk;.1 .9 
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END 

:floppy->freememory cpu;1/cpiocycles 1-1/cpiocycles 
:disk->freememory cpu;1/cpiocycles 1-1/cpiocycles 
:freememory->terminals 

CHAIN: 
QUEUES FOR QUEUEING TIME DIST:memory 

VALUES: 1 2 3 4 5 6 7 8 
QUEUES FOR QUEUEING TIME DIST: 
QUEUES FOR QUEUE LENGTH DIST:memory 

MAX VALUE:users/2 
QUEUES FOR QUEUE LENGTH DIST: 
NODES FOR QUEUEING TIME DIST: 
NODES FOR QUEUE LENGTH DIST: 
CONFIDENCE INTERVAL METHOD:none 
INITIAL STATE DEFINI.TION­
CHAIN:interactiv 

NODE LIST:terminals 
INIT POP;users 

CHAIN; 
RUN LIMITS­

SIMULATED TIME; 
EVENTS; 
QUEUES FOR DEPARTURE COUNTS:memory 

. DEPARTURES: 500 
QUEUES FOR DEPARTURE COUNTS: 
NODES FOR DEPARTURE COUNTS: 

LIMIT ~ CP SECONDS: 10 
TRACE.: no 

NO FATAL ERRORS DETECTED DURING THE COMPILATION. 
R;T=2.22/6.9815:53:11 
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In the definition of the memory queue we give the type as "passive.'" There are no 
predefined special types for passive queues corresponding to fcfs for active queues, but the 
user can define specialtypes (Section 12). ' ' 

A passive queue consists of a "pool" of "tokens" and a set of nodes which interact with 
the pool. (The tokens are analogous to the servers of an active queue.) The prompt 
"TOKENS:" is asking for the number of tokens in the pool. Let us assume for now that 
memory in the computer system is organized into fixed homogeneous partitions such that a job 
needs exactly one partition of memory for processing and/ or I/O~ Then' a token of the 
passive queue can represent a partition. 

, Now suppose we realize we want the number of partitions to be a parameter. We have 
not declared an identifier for this purpose, so we would like to. change the dialogue file before 
we proceed. As illustrated above, SETUP will allow us to edit the dialogue file by replying 
"edit" to any prompt. When SETUP is given the "edit" reply, it places the l;lser in an editor 
looking at a dialogue file. This dialogue file includes any interactive dialogue since the SETUP 
command was issued. When the user leaves the editor (e.g., by filing) SETUP reprocesses the 
dialogue file left by the editor. If the dialogue file is incomplete; then SETUP switches to 
prompting mode when it reaches the end of the file. (If the file is complete,SETUP .exits 
without further prompting.) 
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III the example, we used the editor to add "partitions" as a parameter. After leaving the 
editor with the file command, SETUP retranslates the dialogue file through O'\1r reply "passive " 
to TYPE: and then reissues the TOKENS: prompt. We can now reply "partitions" to .that 
prompt. 

In all of our examples, we assume the standard CMS editor. However, other editorsniay 
be made available, as discussed in Section 2.2 of the Users Guide. 

The next prompt is for the queueing discipline; we use fefs. 

After that we are prompted for a list of allocate nodes. A job goes to ail allocate node 
when it wants to request tokens from the pool. Allocate nodes ill passive queues are the 
counterparts to classes in active queues. A job will wait at an allocate node until it gets the 
number of tokens it has requested. 

The next prompt is for a distribution for the number of tokens a job needs when it comes 
to the allocate node. The reply of "1" means that a job needs exactly one token. Note that 
this is different from the active queue case where a scalar value implies an exponential 
distribution. The rule is that where continuous distributions are expected, a scalar value 
implies an exponential distribution, tm( where a discrete distribution is expected" e.g., because 
the resulting value should be an integer, a scalar value implies a constant distribution. 

We are then given the opportunity to list more allocate nodes. After a null reply we are 
prompted for a list of "release" nodes. A job gives up any tokens it holds (of a specific 
passive queue) at a release node and is considered to leave the queue when it goes through the 
release node. We are prompted for more release nodes and give a null reply. . 

We are then prompted for destroy node and create node lists for this queue; there are no 
such nodes in this model and we defer discussion of them until a later section. 

Then we are prompted for another queue, for a list of set nodes, for a . list of fission 
nodes, for a list of fusion nodes and fora definition of a submodel; null replies indicate there 
are none of these. 

The routing definition is very similar to before but with one new wrinkle: the reply to the 
first colon isa series of concatenated routing transitions. The concatenation is permissible as 
long as the final part of the transition does not involve a routing decision (e.g., by probabili.,. 
ties in its "to part," i.e., its right hand side) and the transition does not include certain node 
types we have not yet discussed in its "from part," i.e., its left hand side. 

If we had wished to, we could have avoided completely respecifying the routing chain 
interactively and revised the previous definition instead .. We could have used the CMS 
COPYFILE command to copy all or part of the previous model definition (RQ2INP) before 
we edited it. (If we were using an editor such as XEDIT we could have saved the portio~n of 
the file we deleted on a new file at the same time we deleted it. In XEDIT this would be dOile 
with the PUTD subcommand.) Having this preparation, we could have given the "edit" reply 
to the CHAIN: prompt. Then, while in the editor, we could have retrieved the old routing 
definition (using the GETFILE subcommand) from the other file and modified that definition, 
We would then proceed with the interactive dialogue that follows the routing chain definiiloq 
after leaving the editor. With theCMS EDIT command we use in our examples, and this 
simple model, it is easier to just completely respecify the routing. However, with a full screen 
editorand/ or a more complex model, it is more likely to be appropriate to save and modify 
portions of dialogue from the previous RQ2INP file than to completely i:especify them. 
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After the chain definition we have finished defining the model proper, . However, we still 
must provide some additional information to define· the simulation run .. This informatioll falls 
into several categories: ' 

1. Specification of non-standard performance measures to be gathered. 

2. Specification of initial state of the system. 

3. Specification of confidence interval method, ·if any, and parameters of the, 
confidence interval method. 

4. Specification of stopping criteria. 

5. Specification of simulation trace. 

In order for the siniulation to estimate distributions of measures such as queueing time, it 
must reserve storage for each point on the distribution. Rather than attempt to guess which 
points of the distribution should be gathered for each queue and node and reserve a large 
amount of storage for information that may not be of interest to the user, the simulation 
requires that the user specify which distributions are to be gathered and what points of the 
distributions are to be considered. The prompt "QUEUES FOR QUEUEING TIME DIST:" is 
asking for a list of queues which are to have queueing time distributions gathered. For' each 
queue listed, SETUP will prompt "V ALUES:" for a list of points on the distribution for that 
queue's queueing time. The simulation will produce estimates for the cumulative distribution 
at those points, e.g., in the example the simulation will produce estimates of the probability 
the queueing time is less than or equal to 2, less than or equal t04,etc. The queue length 
distribution is treated similarly except: (1) The distribution is estimated for each queue length 
up to some specified maximum (e.g., one half the number of users in the example)~ (2) The 
distribution estimated is not cumulative, i.e., estimates of probability of queue length 0, queue 
length 1, etc. are produced. 

With the regenerative method for confidence intervals (Section 4) we must specify a 
"regeneration" state similar to the initial state. So SETUP asks for the confidence interval 
method, if any, before asking for the initial state. We defer discussion of confidence interval 
methods to Section 4. 

The initial state definition section defines where jobs are to be placed when the simula­
tion begins. The initial state is described by chains and by nodes within chains. The NODE 
LIST: prompt is asking for a list of nodes which will have non-zero populations when the 
simulation begins. The INIT POP: prompt is asking for a list of the corresponding popula­
tions; for closed chains the sum of the elements in the list should equal the chain population. 
Xn this example we initially place all of the users at the terminals. 

The run limits section defines conditions other than CPU time consumed which will 
terminate the simulation. The default values are intended to be "infinity; II actually the largest 
representable floating point or fixed point values are used, depending .on the particular limit. 
The simulation will stop when the first limiting value is reached. As we shall see, the limits 
specified can be increased after examining the results. Simulated time is time in terms of the 
m.odel execution. Simulated events are defined in Appendix 7 of the Users Guide. IIi the 
examples of this section the events correspond to completion of service times, i.e." departures 
from the active queues. The prompt "QUEUES FOR DEPARTURE COUNTS:" requests a 
list of queues where departure count limits are to be considered. The DEPARTURES: prompt 
requests a corresponding list of counts. 
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The CPU limit is not in the run limits section because the run limits section is replaced by 
run "guidelines" with the regenerative method (Section 4). The CPU limit is fairly crude for 
two reasons: (1) The CPU time consumed is only checked occasionally. The frequency of . 
checking is model and processor dependent but is intended to be roughly once a virtual second 
on a 3033. (All examples in this document were run on a 3033.) (2) The CPU time consid­
ered only includes time. consumed during the actual simulation and excludes time preparing for 
the run (e.g., reading files, obtaining parameter values, etc.) and time spent after the· run 
terminates (e.g., calculating and printing results). (If the run is continued after examining 
results, the CPU time consumed includes the time spent calculating and printing results 
previously, Le., the CPU time is from the very beginning of simulation until the end of 
simulation.) 

The TRACE: prompt asks whether we wish to trace the actions of the simulation 
program. If we had said "yes," then we would be prompted for more details (see Section 12 
of the Users Guide). 

Having defined the model, We can now evaluate it with EVAL. Using the param~ters 
from before, i.e., 10 second think time and 30 users, and four partitions, we get the following: 

eval csmwm 
RESQ2 EXPANSION AND SOLUTION PROGRAM. 
REE;Q2VERSION DATE: MARCH 9, 1981 - TIME: 16:28:11 DATE: 03/10/82 

. THINKTIME :1 0 
USERS:30. 
PARTITIONS: 4 
RUN END: MEMORY DEPARTURE LIMIT 
NO ERRORS DETECTED DURING SIMULATION. 

WHAT:qt(memory) 

ELEMENT 
MEMORY 

WHAT: 
CONTINUE RUN:yes 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 

MEAN QUEUEING TIME 
3.56839 

LIMIT - MEMORY DEPARTURES:how 
LARGER VALUE THAN 500 
TRY AGAIN-
LIMIT - MEMORY DEPARTURES: 1000 
LIMIT - CP SECONDS:how 

217.73250 
3.77 
8754 

LARGER VALUE THAN 5 OR NULL TO KEEP THAT VALUE 
LIMIT - CP SECONDS: 
RUN END: MEMORY DEPARTURE LIMIT 
~UN END: CPU LIMIT 
NO ERRORS DETECTED DURING SIMULATION. 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 

290.88867 
5.17 

11507 
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WHAT:nd(memory) 

ELEMENT 
MEMORY 

VitHAT:qt(memory) 

ELEMENT 
MEMORY 

WHAT I 

NUMBER OF DEPARTURES 
651 

MEAN QUEUEING TIME 
3.76333 

CONTINUE RUN:yes 
LIMIT - MEMORY DEPARTURES: 
LIMIT - CP SECONDS: 10 
RUN END: MEMORY DEPARTURE LIMIT 
RUN END: CPU LIMIT 
RUN END: MEMORY DEPARTURE LIMIT 
NO ERRORS DETECTED DURING SIMULATION. 

WHAT:qt(memory) 

ELEMENT 
MEMORY 

WHAT:all 

ELEMENT 
MEMORY 
FLOPPYQ 

. DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 
FREEMEMORY 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 

MEAN QUEUEING TIME· 
3.39005 

UTILIZATION 
0.92252 
0.40850 
0.31400 
0.91481 
0.00000 

THROUGHPUT 
2.30743 
1.85287 
16.44046 

. 18.29333 
2.31666 
2.30743 

MEAN QUEUE LENGTH 
7.83167 
0.62480 
0.43723 
2.62806 
22.16832 

433.38184 
7.31 

16860 

ELEMENT 
MEMORY 

STANDARD DEVIATION OF QUEUE LENGTH 
4.16640 
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FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALS.Q 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ . 

TERMINALSQ 

ELEMENT 
MEMORY 

ELEMENT 
MEMORY 

ELEMENT 
MEMORY 

ELEMENT 
MEMORY 

ELEMENT 

SIMULTANEOUS RESOURCE POSSESSION- SIMULATION / SEC. 4 

0.89727 
0.74855 
1 .27861 
4.13894 

MEAN QUEUEING TIME 
3.39005 
0.33721 
0.02659 
0.14362 
9.33247 

STANDARD DEVIATION OF QUEUEING TIME 
2.57104 
0.30454 
0.02610 
0.15563 
9.49582 

MEAN TOKENS IN USE 
3.69009 

MEAN TOTAL TOKENS 
4.00000 

IN POOL 

QUEUE LENGTH DISTRIBUTION 
0: 0.01980 
1 : 0.02854 
2: 0.04084 
3 : 0.06342 
4: 0.06928 
5: 0.09986 
6: 0.09825 
7: 0.08047 
8: 0.08460 
9: 0.09986 

10: 0.08180 
11 : 0.04505 
12 : 0.03536 
13 : 0.03193 
14: 0.03103 
15 : 0.04036 

QUEUEING TIME DISTRIBUTION 
1.00E+00: 0.15900 
2.00E+00: 0.34100 
3.00E+00: 0.52400 
4.00E+00: 0.68400 
5.00E+00: 0.78200 
6.00E+00: 0.85500 
7.00E+00: 0.90900 
8.00E+00: 0.93500 

DISTRIBUTION OF TOKENS IN USE 
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ELEMENT 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

WHAT: 
CONTINUE RUN:no 
THINKTIME: 

DISTRIBUTION OF TOTAL TOKENS IN POOL 

MAXIMUM QUEUE LENGTH 
19 
4 
4 
4 
30 

MAXIMUM QUEUEING TIME 
17.08136 
2.43811 
0.29066 
1.60335 
101.23787 

EXPANSION FINISHED. 
R; T=8.02/9.51 14:10:18 

27 

The initial simulation run terminated normally because of the departure limit for the memory 
queue. (As the model run was specified, the only other reasons the run would stop would be 
for the CPU time limit or an error.) 

Now we have the response time estimates for the model directly available as the queueing 
time estimates for the memory queue. (Consistent with the definition of queueing time for 
active queues, the queueing time for passive queues is defined as the time from arrival at the 
queue to departure from the queue, e.g., release of tokens.) The estimate of mean response 
time, 3.57 seconds,'is 23 % higher than the response time estimate for the numerically solved 
version of this model without memory contention. Apparently, the memory contention is 
having a noticeable effect on response times. We emphasize "apparently" because we have no ' 
idea of how much statistical variability has affected the simulation results. 

We may be able to get some idea of the variability by letting the run continue to see if 
there is much change in the results. We continued the run by specifying a larger depar.ture 
count for the memory queue. EY AL will prompt for larger limits for values not already at 
"infinity." Larger limits are required for limits that have been reached, and are optional for 
other limits. We then hit the CPU limit after 651 departures. The estimate of mean response 
time was considerably higher, 3.76 seconds, after only 151 more departures. Tbenwe 
increased the CPU limit so that we would get the full 1000 departures. With the longer run 
we got a much smaller estimate of mean response time,3.39 seconds. The results we got were 
the same as if we had specified 1000 departures initially. Continuation of runs will produce 
the same results as if the final limits had been specified initially except possibly for models 
which stop because of CPU limits. (Two instances ofa given run may take slightly' different' 
CPU times because of the effects of multiprogramming.) 

We could have continued the run further to see if the estimate would change again,but 
we would rather use one of the formal approaches described in the next section. As we will 
see, this short a run for this model produces results with great variability. 

Now let us suppose the memory is organized in pages instead of partitions. Further, a 
job's processing requires 16 page frames with probability .25, 32 page frames with probability 
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.5 and 48 page frames with probability .25. Thus the mean number of. frames required is 32. 
(In this example we are restricting attention to page frames available to users.) We change the 
model as follows: 

edit csmwm rq2inp 
EDIT:. 
case m 
locate/partitions 

NUMERIC PARAMETERS:thinktime users partitions 
change/partitions/pageframes 

NUMERIC PARAMETERS:thinktime users pageframes 
locate/partitions 

TOKENS:partitions 
change/partitions/pageframes 

TOKENS:pageframes 
locate/NUMBERS OF TOKENS TO ALLOCATE 

NUMBERS OF TOKENS TO ALLOCATE: 1 
change/1/discrete(16,.25;32,.5;48,.25) 

NUMBERS OF TOKENS TO ALLOCATE: discrete (16, .25;32,.5;48,.25) 
locate/DEPARTURES: 500 

DEPARTURES: 500 
change/5/10 

DEPARTURES: 1000 
locate/SECONDS 

.LIMIT - CP SECONDS: 5 . 
change/5/10 

LIMIT - CP SECONDS: 10 
fil'e 

Ri T=0.09/0.34 14:33:41 

First we changel:i the name of the parameter specifying the number of tokens. Then we 
changed the distribution for the number of tokens required from constant at J to the. above 
described distribution. The RESQ "discrete" accepts any number of pairs of values and 
probabilities with the pairs separated by semicolons (";"). In .this case there are three pairs. 
(The commas between values and probabilities are optional. Blanks could be used. Blanks 
could also appear before and/or after the semicolons.) 

Now we use SETUP again: 

SETUP csmwm 
MODEL IS CSMWM 
CONTINUING WITH MODEL DEFINITION ... 

NO FATAL ERRORS DETECTED DURING THE COMPILATION. 
R; T=0.70/1.38 14:34:21 

and EVAL, using the the followingRQ2RPLY file: 

/*Thinktime:*/ 10 
/*U!3ers:*/ 30 
/*Pageframes:*/ 128 
all 

/*Continue run:*/ no 
/*Thinktime:*/ 
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which produces the following RQ2PRNT file: 

RESQ2 VERSION DATE: MARCH 11, 1982 - TIME: 11: 47: 41 DATE: 03/17/82 
MODEL:CSMWM 
THINKTIME:/*Thinktime:*/ 10 
OSERS:/*Users:*/ 30 
PAGEFRAMES:/*Pageframes:*/ 128 
RUN END: MEMORY DEPARTURE LIMIT 
NO ERRORS DETECTED DURING SIMULATION. 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 

WHAT: all 

ELE.MENT UTILIZATION 
MEMORY 0.82642 
FLOPPYQ 0.41829 
DISKQ 0.31052 
CPUQ 0.87094 
TERMINALSQ 0.00000 

ELEMENT THROUGHPUT 
MEMORY 2.24905 
FLOPPYQ 1.78574 
DISKQ 16.05820 
CPUQ 17.84845 
TERMINALSQ 2.25805 
FREEMEMORY 2.24905 

ELEMENT MEAN QUEUE LENGTH 
MEMORY 7.02301 
FLOPPYQ 0.62368 
DISKQ 0.42275 
CPUQ 2.30178 
TERMINALSQ 22.97699 

444.63232 
7.64 

16874 

ELEMENT STANDARD DEVIATION OF QUEUE LENGTH 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT. 
MEMORY 
FLOPPYQ 
DISKQ 
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3.77416 
0.87659 
0.72183 
1.38069 
3.77415 

MEAN QUEUEING TIME 
3. 11431 
0.34903 
0.02632 
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CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 

ELEMENT 
MEMORY 

ELEMENT 
MEMORY 

ELEMENT 
MEMORY 

ELEMENT 

ELEMENT 

SIMULTANEOUS RESOURCE POSSESSION., SIMULATION/SEd. 4 

0.12896 
9.81125 

STANDARD DEVIATION OF QUEUEING TIME 
2.19806 
0.31033 
0.02599 
0.14421 
9.64321 

MEAN TOKENS IN USE 
105,78178 

MEAN TOTAL TOKENS IN POOL 
128.00002 

QUEUE LENGTH DISTRIBUTION 
0:0.02748 
1 :0.05196 
2:0.05272 
3:0.07851 
4:0.07436 
5:0.08615 
6:0.09493 
7.:0.07985 
8:0.07594 
9:0.08690 

10:0.07881 
11 :0.07982 
12:0.06958 
13:0.02964 
14:0.01516 
15:0 .. 01056 

QUEUEING TIME DISTRIBUTION 
1.00E+00:0.18300 
2.00E+00:0.34600. 
3.00E+00:0 . .53900 
4.00E+00:0.69700 
5.00E+00:0.83200 
6.00E+00:0.90100 
7.00E+00:0.95200 
8.00E+00:0.97100 

DISTRIBUTION OF TOKENS IN USE 

DISTRIBUTION OF TOTAL TOKENS IN POOL 
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ELEMENT 
MEMORY 
FLQPPYQ 
DISKQ 
Cl?rJQ 
if'ElRMINALSQ 

ELEMENT 
MEMORY 
rLOppYQ 
DISKq 
CPUQ 
TERMINALSQ 

WHAT: 

MAXIMUM QUEUE LENGTH 
18 
4 

5 
6 
30 

MAXIMUM QUEUEING TIME 
13.46424 
1.78271 
0.29332 
1.36720 
68.87238 

CONTINUE RUN:/*Continue run:*/.no 

THINKTIME~/*Thinktime:*/ 

31 

(For the rest of this document, we will usually. show RQ2PRNT files rather than actual 
tertninaloutput.) 

With 128 page frames specified, the memory contention is the same on the· average in the 
sense that if each job requires the mean number of frames, at most four jobs can be in 
memory at once. But now we could have a maximum of two jobs in memory if all the jobs 
need 48 frames, or up to 8 jobs needing 16 frames. The mean total number of toke11s should 
be exactly 128; the discrepancy is due to numerical error. 

The results from the two. runs are noticably different, but we do not really know if the 
difference is due to changes in the model or to statistical variability. One way to consider the 
statistical variability of simulation is to estimate confidence intervals. The next section 
discusses methods for estimating confidence intervals that are provided in RESQ. 
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S. CONFIDENCE INTERVAL METHODS 

We have frequently referred to one of the most troublesome problems with simulation: 
We need some indication of the accuracy of simulation estimates because of the statistical 
variability of simulation estimates. This statistical variability is due to the use of random 
number streams to drive the simulation. Assuming numerical errors are small, there is no 
corresponding problem with numerical solution. For example, when we obtained the mean 
response time estimate of 2.91 seconds for the last parameters of model csm that was an exact 
value for the model. The difference between that value and the mean response time of the 
modeled system is due entirely to inaccuracies of· the model and of parameter estimation, not 
to inaccuracy of solution. When we obtained the estimate 3.39 seconds for the mean response 
time of the initial version of model csmwm, we had no idea of how accurate that estimate was 
for the mean response time for the model, much less the modeled system. Though we usually 
expect the inaccuracies of our models to be the principal source of error in model estimates, it 
behooves us to attempt some estimate of the error introduced by statistical variability. 

The usual method of estimating variability of simulation results is to produce "confidence 
interval" estimates: given some point estimate p (e.g., 3.39 seconds for mean response time) 
and other information we produce a confidence interval estimate (p - 8, p +8) and 
estimate the "true" value (for the model) is contained within the interval with some chosen 
probability, say .9. This probability, expressed in percent, e.g., 90%, is known as the 
"confidence level." The quantity 8 depends on the confidence level; the higher the confidence 
level is, the larger 8 is. We will use the term "confidence interval" to avoid the mouthful 
"confidence interval estimate"but it should be remembered that the confidence intervals are 
only estimates. Note that the true value may lie outside of the confidence interval; but this 
happens only with a small probability (e.g., 1 - .9 == .1). If a simulation is not run long 
enough, or if the performance measure considered is highly variable, then 8 may be greater 
than p and p - 8 may be negative even though the performance measure must be· non­
negative. Similarly, for performance measures known to be no greater than 1, e.g., utiliza­
tions, p and 8 may be such that p + 8 > 1. 

RESQ provides three methods for confidence interval estimation. The methods are 
implemented to be as transparent to the user as is practical,i.e., to minimize user decision 
making and to minimize required user understanding of the statistical bases of the methods. 
No one method is best for all applications. 

• The method of independent replications is the preferred method for estimation of 
transient characteristics. Independent replications may be applied to estimation of 
equilibrium characteristics, but one of the following two methods will usually be 
preferable for estimating equilibrium characteristics. 

• The regenerativt;l method is the preferred method for .estimation of equilibrium 
behavior in models with regenerative characteristics. Many models constructed with 
RESQ will have regenerative characteristics, but many ·other models will not. 

• The spectral method is the preferred method for estimation of equilibrium behavior 
in models without regenerative characteristics. The spectral method may also be 
applied to models with regenerative characteristics. The regenerative method 
requires more user sophistication than the spectral method in that the user must be 
able to define "regeneration states." Definition of a model to use the spectral 
method is no more difficult than definition of a model to be simulated without 
confidence intervals. 

April 3, 1982 



SEC. 5/CONFIDENCE INTERVAL METHODS 33 

The regenerative method and the spectral method allow automated run length control based on 
achieving confidence intervals ·of a pre specified width. All three methods, independent 
replications, the regenerative method and the. spectral method, are discussed from a statistical 
point of view in Chapter 6 of Lavenberg et .al [LAVE82]. Other references in the Bibliogra~ 
phy discuss the statistical aspects of the regenerative method and the spectral method in more 
detail. 

The following three subsections are intended to be independent of each other and the 
remaining sections of this document. The reader may skip one· or more (possibly all) of these 
subsections. Examples in subsequent sections will use the confidence interval methods, but 
the use of the confidence interval methods is a side issue in the examples. 

5.1. Independent Replications 

A classical method for obtaining confidence intervals is the method of independent 
replications. With independent replications we repeat the simulation run several times with 
everything except the random number streams reset to the original initial state for each 
replication after the first. The random number streams for the .second replication begin where 
the streams for the first replication ended, the streams for the third replication begin ""here the 
streams for the second replication ended, etc. 

To use independent replications with csmwm we could first edit the dialogue file: 

edit csmwm rq2inp 
EDIT: 
locate/CONFIDENCE 

. CONFIDENCE INTERVAL METHOD:none 
delete * 
EOF: 
file 
R; T=0.06/0.26 17:00:50 

and then use SETUP again: 

SETUP csmwm 
MODEL IS CSMWM 
CONTINUING WITH MODEL DEFINITION ... 

CONFIDENCE INTERVAL METHOD:replications 
INITIAL STATE DEFINITION­
CHAIN:iriteractiv 

NODE LIST:terminals 
INIT POP:users 

CHAIN: 
CONFIDENCE LEVEL:90 
NUMBER OF REPLICATIONS:5 
REPLIC LIMITS-

SIMULATED TIME: 
EVENTS: 
QUEUES FOR DEPARTURE COUNTS:memory 

[)EPARTURES:1000 
QUEUES FOR DEPARTURE COUNTS: 
NODES FOR DEPARTURE COUNTS: 

LIMIT - CP SECONDS: 10 
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TRACE: no 
END 

NO FATAL ERRORS DETECTED DURING THE COMPILATION. 
R; T~1.35/3~56 17:03:00 

Usually we are.interested in equilibrium behavior of the modeled system. In this case we wish 
to have the replications long so that the effects of our choice of initial state will not be 
noticeable. . (As we will illustrate later in this subsection, it. is possible to discard an initial 
porti()n of each replication to reduce the effect of the choice of initial state.) We prefer a few 
longer replications to many shorter replications. Usually we choose the number of replications 
to be between 5 and 10. The only significant exception is when we want the replications short 
because we want to notice the. effects of our choice of initial state, i.e., we are interested in 
transient behavior rather than equilibrium behavior. In that case it may be quite reasonable to 
have many (20 or more) replications. 

The CP SECONDS limit is the total for all replications. We have intentionally left the 
limit too sritall in the above dialogue so that we can demonstrate how the run continuation 
mechanism applies to replications. 

We used SETUP interactively for clarity. We could have appropriately edited the 
dialogue file instead, e.g., 

edit csmwm rq2inp 
EDIT: 
locate/CONFIDENCE 

CONFIDENCE INTERVAL METHOD:none 
change/none/replications 

CONFIDENCE INTERVAL METHOD:replications 
locate/INIT POP/ 

INIT POP:users 
input 
input 
next 

CONFIDENCE LEVEL:90 
NUMBER OF REPLICATIONS:5 

RUN LIMITS.,.. 
ch;;mge/RUN/REPLIC/ 

REPLIC LIMITS­
file 
R; T=0.11/0.46 17:00:50 

and then used SETUP again. Now using EV AL we get the following RQ2PRNT file. 

RESQ2 VERSION DATE: MARCH 11, 1982 - TIME: 11:20:35 DATE: 03/17/82 
MODEL:CSMWM 
THINKTIME:/*Thinktime:*/ 10 
USERS:/*Users:*/ 30 
PAGEFRAMES:/*Pageframes:*/ 128 
REPLICATION 1: MEMORY DEPARTURE LIMIT 
NO ERRORS DETECTED DURING SIMULATION. 

SIMULATED TIME PER REPLICATION: 
CPU TIME: 

NUMBER OF EVENTS PER REPLICATION: 
NUMBER OF REPLICATIONS: 

6298 DISCARDED EVENTS 

444.63232 
10.28 
16874 
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WHAT:qtbo(memory) 

ELEMENT 
MEMORY 

WHAT: 

MEAN QUEUEING TIME 
3.11431 

CONTINUE RUN:/*Continue run:*/ yes 

LIMIT - CP SECONDS:/*Limit - CP seconds:*/ 50 

REPLICATION 1 : MEMORY· DEPARTURE LIMIT 
.REPLICATION 2: MEMORY DEPARTURE LIMIT 
REPLICATION 3 : MEMORY DEPARTURE LIMIT 
REPLICATION 4: MEMORY DEPARTURE LIMIT 
REPLICATJ:ON 5: MEMORY DEPARTURE LIMIT 
NO ERRORS DETECTED DURING SIMULATION. 

SIMULATED TIME PER REPLICATION: 445.37769 
38.05 
16966 

5 

CPU TIME: 
NUMBER OF EVENTS PER REPLICATION: 

.WHAT: allbo 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 
FREE MEMORY 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 

NUMBER OF REPLICATIONS: 

UTILIZATION 
0.84662(0.83293,0~~6030) 2.7% 
0.40334(0.39382,0.41286) 1.9% 
0.30808(0.30467,0.31150) 0.7% 
0.89286(0.87936,0.90636) 2.7% 
0.00000(0.00000,0.00000) 

THROUGHPUT 
2.24855(2.15706,2.34004) 8.1% 
1.81734(1.78729,1.84739) 3.3% 
16.10393(15.g4658,16.26129) 2.0% 
17.92303(17.74706,18.09900) 2.0% 
2.26418(2.17488,2.35349) 7.9% 
6.73585 

MEAN QUEUE LENGTH 
7.65754(6.92341,8.39167) 19.2% 
0.59750(0.57292,0.62207) 8.2% 
0.42267(0.41569 1 0.42966) 3.3% 
2.44248(2.36520,2.51977) 6.3% 
22.34245(21.60832,23.07658) £.6% 

STANDARD DEVIATION OF QUEUE LENGTH 
3.81189(3.55682,4.06696) 13.4% 
0.85975(0.83129,0.88821) 6.61 
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DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 

ELEMENT 
MEMORY 

ELEMENT 
MEMORY 

ELEMENT 
MEMORY 

CONFIDENCE INTERVAL METHODS / SEC. 5 

0.72997(0.72030,0.73963) 2.61 
1.37497(1.34781,1.40212) 3.9% 
3.81189(3.55682,4.06696) 13.4% 

MEAN QUEUEING TIME 
3.39909(2.96338,3.83480) 25.6% 
0.32891(0.31073,0.34709) 11.1% 
0.02624(0.02593,0.02656) 2.4% 
0.13621(0.13203,0.14040) 6.1% 
9.63718(9.33058,9.94379) 6.4% 

STANDARD DEVIATION OF QUEUEING TIME 
2.30823(2.06275,2.55372) 21.3% 
0.31195(0.29720,0.32671) 9.5% 
0.02582(0.02520,0.02645) 4.8% 
0.14961 (0.14468,0.15454) 6.6% 
9.48424(9.16274,9.8Q575) 6.8% 

MEAN TOKENS IN USE 
108.36685(106.61545,110.11826) 3.2% 

MEAN TOTAL TOKENS IN POOL 
127.99998(127:99998,128.00000) 0.0% 

QUEUE LENGTH DISTRIBUTION 
0:0.01574(0.00823,0.02325) 1.5% 
1:0.03582(0.02560,0.04605) 2.0% 
2:0.04874(0.04095,0.05652) 1.6% 
3:0.06408(0.04862,0.07953) 3.1% 
4:0.07053(0.05178,0.08928) 3.7% 
5:0.07709(0.06065,0.09354) 3.3% 
6:0.08961(0.07677,0.10246) 2.6% 
7:0.08638(0.07978,0.09298) 1.3% 
8:0.09105(0.07284,0.10926) 3.6% 
9:0.09054(0.08325,0.09782) 1.5% 

10:0.08554(0.06862,0.10246) 3.4% 
11:0.07549(0.05956,0.09141) 3.2% 
12:0.06065(0.04926,0.07205) 2.3% 
13:0.03866(0.02522,0.05210) 2,7% 
14:0.02907(0.01547,0.04267) 2.7% 
15:0.01951 (0.00754,0.03148) 2.4% 

QUEUEING TIME DISTRIBUTION 
1.00E+00:0.15220(0.12760,0.17680) 4.9% 
2.00E+00:0.31960(0.27732,0.36188) 8.5% 
3.00E+00:0.49200(0.41864,0.56536) 14.7% 
4.00E+00:0.65360(0.56817,0.73903) 17.1% 
5.00E+00:0.77840(0.70010,0.85670) 15.7% 
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ELEMENT 

ELEMENT 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

WHAT: 

. 6~00E+00:0.B7260(0.82596,0 .. 91924) 9.3% 
7.00E+00:0.92680.(0.B9735,0.95625) 5.9% 
8.00E+0010.95460(0.92936,0.97984) 5.0% 

DISTRIBUTION OF TOKENS IN USE 

DISTRIBUTION OF TOTAL TOKENS IN POOL 

MAXIMUM QUEUE LENGTH 
22 
5 
5 
7 
30 

MAXIMUM QUEUEING TIME 
16.54839 
2.71239 
0.31800 
2.39180 
75.52458 

THINKTIME:/*Thinktime:*/ 

37 

With the initial CPU limit, the run stopped during the second replication. When a. run 
stops during a replication, the results are based on the completed replications and the partial 
replication is discarded if the run is not continued. In this case there is only a . single replica:­
tion (with results the same as our previous run without replications). There must be at least 
two replications for confidence intervals to be produced. The run continuation mechanism 
allows us to resume the. partial replication where it stopped and continue for the remaining 
replications. When the run is completed, the point estimate for the mean response time, 3.40, 
is conSiderably higher than the estimate given by the single run of the last section,3.12. 
However, the confidence interval, (2.96, 3.83), is very wide. Thus the confidence interval has 
told us that the initial estimate was quite variable. The numbers after the confidence intervals 
are the widths of the intervals. For the measures which can only have values in the [0, 1] 
interval, i.e., utilization and the distribution measures, the width specified is absCilute width in 
percent, i.e., 200x8, where the confidence interval is (p - 8, p + 8). For the other 
measures the width is relative width in percent, i.e., 200x8/p. (Where p is zero, no Width is 
given.) The mean response time confidence interval has a relative width of 26%. 

At this point we could either increase the replication length or increase the number of 
replications to try to get a narrower interval. Usually we would strongly prefer increasing the 
replication length .over increasing the number of replications. It is for this reason that We do 
not provide the option of specifying that the run be continued by increasing the number of 
replications. 

When using independent replications to obtain confidence intervals,. or when. making a run 
without obtaining confidence intervals, is often advisable to discard results from the initial 
tran'!lient phase of a replication or run. Results from the remainder of the run are, presumably, 
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more representative of the equilibrium behavior to be studied if the effects of the initial 
system state can be masked. For a formal discussion, see Chapter 6 of Lavenberg et at 
[LAVE82]. Immediately before the REPLIG LIMITS section of. a dialogue (RQ2INP) file, a 
line of the form "INITIAL PORTION DISCARDED: <expression>" may be inserted. This is 
the first instance we have seen of a portion of the dialogue file language which is not part of 
the interactive dialogue of SETUP. There are many such instances which we will discuss 
where appropriate. The reference for the syntax of such instances (and the entire dialogue file 
language) is the grammar in Appendix 4 of the Users Guide. The expression gives the 
fraction, in percent, of each replication or run that will be discarded. This fraction applies 
only to the limits in the REPLIC LIMITS and not to the CP SECONDS limit. For each limit 
of the section, a temporary limit is established by multiplying the given limit by the fraction. 
Once one of these temporary limits is reached, the variables used to accumulate performance 
measures are reset, the original limits are put in effect and the replication or run continues. 

In the following we indicate that the first 10% of each replication is to be discarded and 
that the replications are to be twice as long as before. 

edit csmwm rq2inp 
EDIT: 
locate/NUMBER OF REPLICATIONS 

NUMBER OF .REPLICATIONS;5 
input INITIAL PORTION DISCARDED: 10 
locate/DEPARTURES: 

DEPARTURES: 1000 
change/1/2 

DEPARTURES: 2000 
locate/SECONDS 

LIMIT - CP SECONDS: 10 
change/10/100 

LIMIT ~ CP SECONDS: 100 
Hie 
R; T=0.11/0.46 17:33:50 

use SETUP again, 

SETUP csmwm 
MODEL IS CSMWM 
CONTINUING WITH MODEL DEFINITION ... 

NO FATAL ERRORS DETECTED DURING THE COMPILATION. 
R; T=O.85/2.06 17:37:00 

and get the following results 

RESQ2 VERSION DATE: MARCH 11, 1982 - TIME: 17:38:43 DATE:. 03/17/82 
MODEL:CSMWM 
THINKTIME :/*Thinktime: * / 10 
USERS:/*Usets:*/ 30 
PJ\GEFRAMES:/*Pageframes:*/ 128 
REPLICATION 1: MEMORY DEPARTURE LIMIT 
REPLICATION 2: MEMORY DEPARTURE LIMIT 
REPLICATION 3: MEMORY DEPARTURE LIMIT 
REPLICATION 4: MEMORY DEPARTURE LIMIT 
REPLICATION 5: MEMORY DEPARTURE LIMIT 
NO ERRORS DETECTED DURING SIMULATION. 17418 DISCARDED EVENTS 
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SIMULATED TIME PER REPLICATION: 812.77954 
77 .43 
30857 

5 

CPU TIME: 
NUMBER OF EVENTS PER REPLICATION: 

• -,:)1'11'1: I .effloc 1 
WHAT:allbo 

ELEMENT 
MEMORY 
FLOPP.YQ 
DISKQ 

· CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 
FREEMEMORY 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

· ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 

NUMBER OF REPLICATIONS: 

UTILIZATION 
0.83975(0.83341,0.84609) 1.3% 
0.40552(0;39509,0.41594) 2.1% 
0.30475(0.30075,0.30874) 0.8% 
0.89125(0.88431,0.89818) 1.4% 
0.00000(0.00000,0.00000) 

THROUGHPUT 
2.21534(2.17291,2.25777) 3.8% 
1.81099(1.76803,1.85395) 4.7% 
16.06598(15.95485,16.17711) 1.4% 
17.87697(17.73483,18.01910) 1.6% 
2.21261 (2.17076,2.25446) 3.8% 
2.21462 

MEAN QUEUE LENGTH 
7.77057(7.35626,8.18487) 10.7% 
0.60917(0.58465,0.63369) 8.1% 
0.41371 (0.40920,0.41821) 2.2% 
2.42072(2.38423,2.45721) 3.0% 
22.22943(21.81512,22.64372) 3.7% 

STANDARD DEVIATION OF QUEUE LENGTH 
4.14229{3.93683,4.34775) 9.9% 
0.87904(0.85098,0.90709) 6.4% 
0.71696(0.71349,0.72042) 1.0% 
1.37582(1.34426,1.40738) 4.6% 
4.14229(3.93683,4.34775) 9.9% 

MEAN QUEUEING TIME 
3.50457(3.27995,3.72919) 12.8% 
0.33633(0.32714,0.34553) 5.5% 
0.02575(0.02544,0.b2606) 2.4% 
0.13537(0.13332,0.13742) 3.0% 
9.92243(9.72741,10.11744) 3.9% 

STANDARD DEVIATION OF QUEUEING TIME 
2.47966(2.35171,2.60760) 10.3% 
0.32228(0.30464,0.33993) 11.0% 
0.02513(0.02449,0.02577) 5.1% 
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CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 

ELEMENT 
MEMORY 

ELEMENT 
MEMORY 

ELEMENT 
MEMORY 

ELEMENT 

ELEMENT 

E:LEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

CONFIDENCE INTERVAL METHODS / SEC. 5 

0.15013(0.14653,0.15374) 4.8% 
10.07628(9.73916,10.41340) 6.1% 

MEAN TOKENS IN USE 
107.48819(106.67644,108.29993) 1.5% 

MEAN TOTAL TOKENS IN POOL 
127.99998(127.99998,128.00000) 0.0% 

QUEUE LENGTH DISTRIBUT.ION 
0:0.01823(0.01281,0.02364) 1. 1 % 
1:0.04016(0.03533,0.04499) 1. 0% 
2:0.05491 (0.04938,0.06045) 1 . 1% 
3:0.06494(0.05547,0.07442) 1. 9% 
4:0.06867(0.06012,0.07721) 1. 7% 
5:0.07573(0.06814,0.08333) 1. 5% 
6:0.08232(0.07172,0.09293) 2. 1 % 
7:0.08424(0.07792,0.09056) 1.3% 
8:0.08469(0.07457,0.09482) 2.0% 
9:0.08598(0.07671,0.09524) 1. 9% 

10:0.07246(0.06459,0.08034) 1. 6% 
11:0.06966(0.06011,0.07922) 1. 9% 
12:0.05493(0.04589,0.06397) 1. 8% 
13:0.04574(0.03158,0.05989) 2.8% 
14:0.03538(0.02575,0.04502) 1. 9% 
15:0.02645(0.01779,0.03511) 1. 7% 

QUEUEING TIME DISTRIBUTION 
1.00E+OO:O.15578(0.13985,0.17170) 3.2% 
2.00E+OO:O.31511 (0.28990,0.34032) 5.0% 
3.00E+OO:O.48067(0.44496,0.51637) 7.1% 
4.00E+OO:O.63233(0.59074,0.67392) 8.3% 
5.00E+OO:O.75344(0.71622.,0.79067) 7.4% 
6.00E+OO:O.85033(0.82113,0.87953) 5.8% 
7.00E+OO:O.90844(0.88613,0.93075) 4.5% 
8.00E+OO:O.94789(0.93460,0.96118) 2.7% 

DISTRIBUTION OF TOKENS IN USE 

DISTRIBUTION OF TOTAL TOKENS IN POOL 

MAXIMUM QUEUE LENGTH 
22 
5 
6 
7 
30 
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ELEMENT MAXIMUM QUEUEING TIME 
MEMORY 18.90594 
FLOPPYQ 2.65272 
DISKQ 0.29766 
CPUQ 1 .90131 
TERMINALSQ 80.32346 

WHAT: 
THINKTIME:/*Thinktime:*/ 

The 17418 discarded events are from the initial portions of all 5 replications, i.e., the 
average number discarded per replication is 3484. The simulated time and events per replica­
tion, do not count the discarded portions. The point estimate for mean response time has 
increased slightly, from our previous set of replications, from 3.40 to 3.50, and we have a 
narrower confidence interval, (3.28, 3.73). If we wish to have a narrower interval, then we 
should increase the replication length again. 

5.2. The Regenerative Method 

The regenerative method is a second method provided for confidence interval estimates 
for equilibrium measures. The principal advantages of the regenerative method over replica­
tjons are that we can make a single (long) simulation run instead of multiple (shorter) runs 
and that we need not be concerned about the effects of the choice of initial state. However, 
there are problems with the regenerative method also. 

With the regenerative method we must pick a "regeneration state," similar to the initial 
state. A regeneration state has the properties that (1) The model periodically returns to the 
regeneration state. The periods between occurrences of the regeneration state are called 
"cycles." (2) When the model enters the regeneration state, the future behavior of the model 
depends only on the regeneration state, i.e., it is independent of the behavior that led to 
entrance to that state. The most convenient examples of regeneration states are found in 
Markov and semi-Markov processes. In a "nice" (semi-) Markov process, each state is it 
regeneration state, and except for practical considerations, aU of the states are equally useful. 
A large subset of the queueing networks allowed by RESQ can be described as (semi-) 
Markov processes, and these processes will usually be "nice" unless a queue of the network is 
saturated or a deadlock is possible in the network. 

The principal practical consideration is that we would like th'eregeneration state to occur 
frequently during a simulation of. reasonable length. By "frequently" we inean that there be at 
least some minimum number of cycles (say 20) during the simulation. If we do not have this 
property then we cannot reasonably use the regenerative method. 

We would also like the state to be one easily detected by the simulation. For thisteason, 
RESQ only allows regeneration states which are specified by the number of jobs at each node 
with the understanding that additional characteristics of the states are specified implicitly. 
These implicitly specified characteristics are (1) Where arrival and service distributions are 

I 

speCified by the method of exponential stages (see Appendix 3 of the Users Guide) any arrival 
and J1trVice times in progress are in the first stage'in the regeneration state. (2) At ,active 
queu~s where different orderings of the jobs in the queue are important (e.g., FCFS queueing 
disciJ,hne) the ordering of jobs of different classes is the same as at the first occurrence of the 
requi~ed numbers of. jobs at all nodes. (3) At passive queues the ordering of jobs of different 
allocate nodes and different numbers of tokens requested is the same as at thefitst occurrence 
of the required numbers of jobs at each node. (4) Chain variables of open chains (see 
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Section 8) have the value one. In addition to these checks, Aplomb issues warning conditi9ns 
when an apparently correctly defined regeneration state is not actually a regeneration state. 

For further discussion of the regenerative method in general, see Crane and Lemoine 
[CRAN77], Iglehart and Shedler [IGLE80], Chapter 4 of Kobayashi [KOBA78],Cha,pter 6 of 
Lavenberg et at [LAVE82] and Chapter 7 of Sauer and Chandy [SAUE81a]. 

With model csmwm, our choice of initial state is also a regeneration state. We can edi~ as 
follows, 

edit csmwm rq2inp 
EDIT: 
locate/CONFIDENCE/ 

CONFIDENCE INTERVAL METHOD:none 

delete * 
EOF: 
file 
R; T=0.06/0.21 15:34:37 

and then use SETUP: 

SETUP csniWm 
MODEL IS CSMWM 
CONTINUING WITH MODEL DEFINITION ... 

END 

CONFIDENCE INTERVAL METHOD:regenerative 
REGENERATION STATE DEFINITION­
CHAIN:interactiv 

NODE LIST:terminals 
REGEN POP:users 
INIT POP:users 

CHAIN: . 
CONFIDENCE L:g!VEL:90 
SEQUENTIAL STOPPING RULE:no 
RUN GUIDE;LINES-

SIMULATED TIME: 
CYCLES: 
EVENTS: 
QUEUES FOR DEPARTURE COUNTS :,memory 

DEPARTURES: 500 
QUEUES FOR DEPARTURE COUNTS: 
NODES FOR DEPARTURE COUNTS:" 

LIMIT - CP SECONDS:5 
TRACE: no 

NO FATAL ERRORS DETECTED DURING THE COMPILATION. 
R; T~0.86/1;94 15:35:51 

The initial state definition section has been replaced by a regeneration state definitton 
section. Usually we want to initially place the system in the regeneration state. Occasionally 
this is not easily done and we define the initial state to be a state other than the regeneration 
state. In this case the portion of the simulation prior to the first occurrence of .the regen~ra­
tion state is discarded. See Section 120f the Users Guide for further·discusssion. 
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We will temporarily defer discussion of the sequential stopping rule. The run limits other 
than the CPU limit have been replaced by run guidelines. Rather than terminate the simula­
tion when the first of these guidelines is reached the simulation continues until either the 
regeneration state is reached again or the CPU limit is reached. 

We could then get the following RQ2PRNT file: 

RESQ2. VERSION DATE: MARCH 11, 1982 - TIME: 20: 35: 25 DATE: 03/16/82 
MODEL:CSMWM 
THINKTIME:10 
USERS: 30 
PAGEFRAMES:128 
RUN END: MEMORY DEPARTURE GUIDELINE 
NO ERRORS DETECTED DURING SIMULATION. 

WHAT: nd (memory) 

ELEMENT 
MEMORY 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 
NUMBER OF CYCLES: 

NUMBER OF DEPARTURES 
657 

WHAT:qtbo(memory) 

286.88623 
4.99 

11331 
13 

ELEMENT. 
MEMORY 

MEAN QUEUEING TIME 
3.69609(3.35480,4.03737) 18.5% 

WHAT: 
CONTINUE RUN:yes 

GUIDELINE - MEMORY DEPARTURES: 1000 

LIMIT - CP SECONDS~6 

RUN END: MEMORY DEPARTURE GUIDELINE 
RUN END: CPU. LIMIT 
NO ERRORS DETECTED DURING SIMULATION. 

WHAT:nd(memory) 

ELEMENT 
MEMORY 

April 3, 1982 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 
NUMBER OF CYCLES: 

NUMBER OF DEPARTURES 
760 

1377 DISCARDED EVENTS 

335.31738 
6.33 

12850 
27 
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WHAT:qtbo(memory) 

ELEMENT 
MEMORY 

MEAN QUEUEING TIME 
3.43366(3.06772,3.79960) 21.3% 

WHAT: 
CONTINUE RUN :yes 

LIMIT - CP SECONDS:40 

RUN END: MEMORY DEPARTURE GUIDELINE 
RUN END: CPU LIMIT 
RUN END: MEMORY DEPARTURE GUIDELINE 
NO ERRORS DETECTED DURING SIMULATION. 

WHAT:nd(memory) 

ELEMENT 
MEMORY 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 
NUMBER OF CYCLES: 

NUMBER OF DEPARTURES 
1249 

WHAT:qtbo(memory) 

561.08374 
9.52 

21481 
32 

ELEMENT 
MEMORY 

MEAN QUEUEING TIME 
3.31099(2.88925,3.73273) 25.5% 

WHAT: 
CONTINUE RUN:yes 

GUIDELINE - MEMORY DEPARTURES:2000 

RUN END: MEMORY DEPARTURE GUIDELINE 
RUN END: CPU LIMIT 
RUN E.ND: MEMORY DEPARTURE GUIDELINE 
RUN END: MEMORY DEPARTURE GUIDELINE 
NO ERRORS DETECTED DURING SIMULATION. 

WHAT:nd(memory) 

ELEMENT 
MEMORY 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 
NUMBER OF CYCLES: 

NUMBER OF DEPARTURES 
2208 

980.62939 
16.66 
37328 

57 
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WHAT:qtbo(memory) 

ELEMENT 
MBMORY 

WHAT:allbo 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 
FREEMEMORY 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 

April 3, 1982 

MEAN QUEUEING TIME 
3.31633(3.03503,3.59764) 17.0% 

UTILIZATION 
0.84297(0.81823,0.86770) 4.9% 
0.40977(0.38383,0.43572) 5.2% 
0.30904(0.30234,0.31574) 1.3% 
0.88643(0.86837,0.90449) 3.6% 
0.00000(0.00000,0.00000) 

THROUGHPUT 
2.25161 (2.19484,2.30839) 5.0% 
1.79069(1.71812,1.86325) 8.1% 
16.11617(15.75942,16.47290) 4.4% 
17.90686(17.53708,18.27663). 4.1% 
2.25161 (2.19484,2.30839) 5.0% 
2.25161 

MEAN QUEUE LENGTH 
7.46711 (6.90325,8.03097) 15.1% 
0.60705(0.55009,0.66402) 18.8% 
0.41974(0.40675,0.43273) 6.2% 
2.42949(2.31021,2.54877) 9.8% 
22.53288(21.96902,23.09673) 5.0% 

STANDARD DEVIATION OF. QUEUE LENGTH 
3.82926 
0.87095 
0.72073 
1.40257. 
3.82927 

MEAN QUEUEING TIME 
3.3163~(3.03503,3.59764) 17.0% 
0.33901 (0.31533,0.36269) 14.0% 
0.02604(0.02554,0.02655) 3.9% 
0.13567(0.13013,0.14122) 8.2% 
10.00743(9.69447,10.32040) 6.3% 

STANDARD DEVIATION OF QUEUEING TIME 
2.26665 
0.31497 
0.02566 
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CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 

ELEMENT 
MEMORY 

ELEMENT 
MEMORY 

ELEMENT 
MEMORY 

ELEMENT 

ELEMENT 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

CONFIDENCE INTERVAL METHOD'S /SEC. 5 

0.15399 
9.77573 

MEAN TOKENS IN USE 
107.89966(104.73351,111~06580) 5.9% 

MEAN TOTAL TOKENS IN POOL 
127.99998 

QUEUE LENGTH ,DISTRIBUTION 
0:0.02189(0.01176,0.03201) 2.0% 
1:0.03761 (0.02409,0.05113) 2.7% 
2:0.04806(0.03487,0.06125) 2.6% 
3:0.06976(0.05091,0.08862) 3.8% 
4:0.07628(0.05659,0.09596) 3.9% 
5:0.07498(0.06261,0.08735) 2.5% 
6:0.08536(0.07417,0.09656Y 2.2% 
7:0.07594(0.06764,0.08425) 1.7% 
8:0.09154(0.07741,0.10566) 2.8% 
9:0.10343(0.08079,0.12606) 4.5% 

10:0.08607(0.06737,0.10478) 3.7% 
11:0.07894(0.05895,0.09894) 4.0% 
12:0.06137(0.04304,0.07971) 3.7% 
13:0.03408(0.02542,0.04274) 1.7% 
14:0.02525(0.01918,0.03132) 1.2% 
15:0.01416(0.00849,0.01983) 1.1% 

QUEUEING TIME DISTRIBUTION 
1.00E+OO:O.16486(0.12866,0.20105) 7.2% 
2.00E+OO:O.31884(0.26575,0.37193) 10.6% 
3.00E+OO:O.49683(0.43543,0.55823) 12.3% 
4.00E+OO:O.65761 (0.60555,0.70966) 10.4% 
5.00E+OO:O.79303(0.75685,0.82920) 7.2% 
6.00E+OO:O.88225(0.85880,0.90570) 4.7% 
7.00E+OO;O.93705(0.91911,0.95499) 3.6% 
8.00E+OO:O.96558(0.95279,0.97837) 2.6% 

DISTRIBUTION OF TOKENS IN USE 

DISTRIBUTION OF TOTAL TOKENS IN POOL 

MAXIMUM QUEUE LENGTH 
21 , 
5 
6 
7 
30 
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ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

WHAT: 
CONTINUE RUN:no 

THINKTIME: 

MAXIMUM QUEUEING TIME 
13.46424 
2.23200 
0.29332 
1.90131 
76.31847 

47 

The simulation had to run an additional 157 memory departures to get back to the 
regeneration state after the initial departure guideline was reached. There were 13 regenera~ 
tion cycles during that part of the run. (If there had been fewer than two cycles, confidence 
intervals would not have been estimated and we would not have been allowed to continue the 
run) The point estimate for mean response time, 3.70 seconds, was. considera.bly higher than 
our previous estimates. The confidence interval, (3.35, 4.04), has a relative width of 19%, 
which is not so wide as to be useless. 

However, we must be ca.utious. There is a tendency for the regenerative method to underes­
timate confidence interval widths for short runs. 

So we doubled the departure guideline. Since we did not increase the CPU limit suffi­
ciently, the run stopped in the midst of a regeneration cycle before reaching the new guideline. 
When a .run stops in the midst of a regeneration cycle because of the CPU limit or· because of 
an error, the partial cycle results are ignored and will be discarded if the run is not continued. 
Lengthening the run by only 103 departures resulted in an additional 14 regeneration cycles, a 
noticeably lower point estimate, 3.43 seconds, and a wider confidence interval, (3.07, 3.80). 
With a sufficient CPU limit, the run took an additional 249 departures to get back to the 
regeneration state after the guideline was reached. There were only 5 additional regeneration 
cycles during this part of the run, so it appears that the length of a regeneration cycle, 
measured in number of departures, is quite variable for this model. The point estimate for 
mean response time, 3.31, is considerably lower, and the confidence interval, (2.89, 3.73 ),is 
considerably wider! (It has a relative width of 25%.) When we increased the departure 
guideline to 2000, the run went 208 departures past the guideline for a total of 57 cycles. The 
point estimate, 3.32, is essentially unchanged, but the confidence interval, (3.04, 3.60), is 
narrower, with a relative width of 17%. At this point the run is more than three times as long 
(measured in memory departures) as the initial part, but the respective confidence intervals have 
comparable widths! This suggests that the initial run was much too short and that we should 
probably continue the run further. 

So we need a longer run,but how· much longer? Rather than proceed in the above 
manner of lengthening the run and periodically examining the. results, we can use the sequen~ 
tial stopping rule, which automates essentially this procedure. The sequential stopping rule 
allows us to specify the simulation run length in terms of desired widths of confidence 
intervals, subject to the usual limit on CPU. time. The simulation runs for a number of 
regeneration cycles, e.g., enough for 2000 memory departures, and then confidence intervals 
are obtained. If the intervals do not meet the width criteria, the simulation continues for more 
cycles,e,g., enough for 2000 more memory departures. Then new estimates are made arid a 
new decision 1:0 terminate or continue is reached. This continues until the criteria are satisfied 
or the CPU limit is reached. The groups of regeneration cycles will be referred tdas 
"sampling periods." 
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As before, we can edit the dialogue file, 

edit csmwm rq2inp 
EDIT: 
locate/SEQUENTIAL 

SEQUENTIAL STOPPING RULE:no 
delete * 
EOF: 
file 
R; T=0.06/0.28 15:45:50 

and use SETUP again: 

SETUPcsmwm 
MODEL IS CSMWM 
CQNTINUING WITH MODEL DEFINITION ... 

END 

SEQUE~TIAL STOPPING RULE: yes 
QUEUES TO BE CHECKED:memory cpuq 

MEASURES:qt qt 
ALLOWED WIDTHS: 10 10 

QUEUES TO BE CHECKED: 
EXTRA SAMPLING PERIODS: 

SAMPLING PERIOD GUIDELINES­
SIMULATED TIME: 
CYCLES: 
EVENTS: 
QUEUES FOR DEPARTURE COUNTS:memory 

DEPARTURES: 2000 
QUEUES FOR DEPARTURE COUNTS: 
NODES FOR DEPARTURE COUNTS: 

LIMIT - CP SECONDS:300 
TRACE: no 

NO FATAL ERRORS DETECTED DURING THE COMPILATION. 
R; T=b.83/2.06 15:48:02 

We are asked for a list of queues where we are to obtain and check confidence interval widths 
at the end of a sampling period. Then we are asked what measures are to be considered: The 
reply here should be aUst of codes, one code per queue just listed. The codes are a .subset of 
those allowed for the "WHAT:" prompt in EVAL: "ut", "tp", "ql", "qld", "qt", "qtc;l", "tu", 
"tud" , "tt" and "ttd", These correspond to the same measures as i~ EVAL (see the example 
in Section 2 or Sections 12 and 13 of the Users Guide). If we want several measures to be 
checked for a given queue, the queue name should be repeated in the "QUEUES TO BE 
CHECKED:'.' prompt. For the distribution measures (qld, qtd, tud and ttd), each gathered 
point of the measure is checked and must satisfy the width criteria. For the measures which 
can only have values in the [0, 1] interval, i.e., utilization and the distribution measures, the 
width specified ~s absolute width in percent, i.e., the criterion is that 200 x 8 be less than the 
specified width, where the confidence interval is (p- 8, p + 8), For the other measures the 
wi,jth is relative width in percent, Le., the criterion is that 200x8/p be less than the specified 
width, (Where p is zero, the criteria is not satisfied.) In this and most of our examples we use 
mean queueing time for our measure. In this example we use a relative width of 10%. We 
are tl1en asked how many extra sampling periods are to be run with the criteria satilified. The 
default is O. The simulation will continue until this number plus one of successive sampling 
periods satisfy the criteria. Extra sampling periods force the simulation to run longer and thus 
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can help overcome some of the small sample problems of the sequential rule, e.g., on avery 
short run severe underestimates of the confidence interval width may result in the criteria 
being accepted. For further discussion of this problem, and the sequential stopping rule in 
general, see Lavenberg and Sauer [LA VE77]. 

Using EV AL again, we get 

RESQ2 VERSION DATE: MARCH 11, 1982 - TIME: 20:53:25 DATE: 03/16/82 
MODEL:CSMWM6 

THINKTIME:10 
USERS: 30 
PAGEFRAMES:128 
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE 
SAMPLING PERIOD END: MEMORY DEPARTURE GUI.DELINE 
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE 
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE 
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE 
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE 
NO ERRORS DETECTED DURING SIMULATION. 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 
NUMBER OF CYCLES: 

WHAT: q.tbo (memory) 

5605.87500 

95.89 
214365 

247 

ELEMENT 
MEMORY 

MEAN QUEUEING TIME 
3.40792(3.24079,3.57505) 9.8% 

WHAT: 
CONTINUE RUN: yes 

EXTRA SAMPLING PERIODS: 1 

SAMPLING PERIOD END: MEMORY DEPARTURE 
SAMPLING PERIOD END: MEMORY DEPARTURE 
SAMPLING PERIOD END: MEMORY DEPARTURE 

SAMPLING PERIOD END: MEMORY DEPARTURE 

SAMPLING PERIOD END: MEMORY DEPARTURE 

SAMPLING PERIOD END: MEMORY DEPARTURE 
SAMPLING PERIOD END: MEMORY DEPARTURE 

NO ERRORS DETECTED DURING SIMULATION. 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 
NUMBER OF CYCLES: 

WHAT:allbo 
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GUIDELINE 
GUIDELINE 
GUIDELINE 

GUIDELINE 

GUIDELINE 
GUIDELINE 
GUIDELINE 

6521.3;3203 
111 .60 
249175 

276 
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ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 
FREEMEMORY 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 

CONFIDENCE INTERVAL METHODS / SEC. 5 

UTILIZATION 
0.84923(0.84019,0.85826) 1.8% 

0.40042(0.39030,0.41054) 2.0% 
0.30727(0.30470,0.30983) 0.5% 

0.89668(0.89112,0.90224) 1.1% 

0.00000(0.00000,0.00000) 

THROUGHPUT 
2.23528(2.21089,2.25966) 2.2% 

1.81558 (1. 78307,1.84809) 3.6% 

16.17137(16.05899,16.28377) 1.4% 

17.98695(17.86938,1S.10452) 1.3% 

2.23528(2.21089,2.25966) 2.2J 

2.23528 

MEAN QUEUE LENGTH 
7.64376(7.32707,7.96046) 8.3% 

0.59513(0.57135,0.61890) 8.0% 

0.41651 (0.41199,0.42102) 2.2% 

2.46919(2.42749,2.51090) 3.4% 

22.35623(22.03954,22.67293) 2.8% 

STANDARD DEVIATION OF QUEUE LENGTH 
3.98528 

0.86826 

0.71621 

1.37777 

3.98528 

MEAN QUEUEING TIME 
3.41960(3.25787,3,58134) 9.5% 

0.32779(0.31884,0.33673) 5.5% 

0.02576(0.02558,0.02593) 1.4% 

0.13728(0.13547,0.13908) 2.6% 

10.00154(9.86644,10.13664) 2.7% 

STANDARD DEVIATION OF QUEUEING TIME 
2.42467 

0.31493 

0.02496 

0.15238 

9.90722 

MEAN TOKENS IN USE 
108.70111 (107.54485,109.85739) 2.1% 
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ELEMENT MEAN TOTAL TOKENS IN POOL 
MEMORY 127.99998(127.99998,128.00000) 0.0% 

ELEMENT QUEUE LENGTH DISTRIBUTION 
MEMORY 0:0.01489(0.01194,0.01783) 0.6% 

1:0.03278(0.02788,0.03767) 1.0% 
2:0.05154(0.04538,0.05769) 1. 2% 
3:0.06642(0.06011,0.07273) 1. 3% 
4:0.07467(0.06810,0.08125) 1.3% 
5:0.08610(0.07853,0.09367) 1.5% 
6:0.09373(0.08592,0.10154) 1.6% 
7:0.08709(0.08065,0.09352) 1. 3% 
8:0.08705(0.08114,0.09297) 1. 2% 
9:0.D8~60(0.07667,0.09053) 1.4% 

10:0.07682(0.07039,0.08324) 1. 3% 
11:0.06680(0.05996,0.07363) 1.4% 
12:0.05581 (0.04912,0.06250) 1.3% 
13:0.04234(0.03564,0.04904) 1.3% 
14:0.03165(0.02536,0.03793) 1.3% 
15:0.01940(0.01449,0.02431) 1.0% 

ELEMENT QUEUEING TIME. DISTRIBUTION 
MEMORY 1.00E+00:0.15689(0.14283,0.17095) 2.8% 

2.00E+00:0.32428(0.30169,0.34686) 4.5% 
3.00E+00:0.50051 (0.47290,0.52812) 5.5% 
4.DOE+00:0.65123(0.62523,0.67723) 5.2% 
5.doE+00;0.77636(0.75315,0.79957) 4.6% 
6.00E+00:0.86033(0.84071,0.B7995) 3.9% 
7.00E+00:0.91583(0.90130,0.93035) 2.9% 
8.00E+00:0.95122(0.94095,0.96150) 2.1% 

ELEMENT DISTRIBUTION OF TOKENS IN USE 

ELEMENT DISTRIBUTION OF TOTAL TOKENS IN POOL 

ELEMENT MAXIMUM QUEUE LENGTH 
MEMORY 21 
FLOPPYQ 5 
DISKQ 6 
CPUQ 7 
TERMINALSQ 30 

ELEMENT MAXIMUM QUEUEING TIME 
MEMORY 18.26566 
FLOPPYQ 2.61646 
DISKQ 0.29332 
CPUQ 1 .94650 
TERMINALSQ 112.28362 
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WHAT: 
CONTINUE RUN:no 

THINKTIME: 

The simulation ran for a total of 6 sampling periods. 

The point estimate f()r mean response time is 3.41 seconds, a little lower than what we 
got in the last section, and the confidence interval estimate is (3.24, 3.58). The relative width 
is 9.8%. When we specified that the run was to continue until the stopping criteria had been 
satiSfied for two successive sampling periods, one more sampling period was required. There 
was a slight increase in the mean response time point estimate and both ends of the interval. 

We can reasonably conclude, based on either this run or the last run of Section 5.1, that 
memory contention has significantly raised the mean response time above the 2.91 second 
estimate for the model without memory contention. 

We will indicate how the regenerative method can be applied to most of the remaining 
eJ:(.amples in this document, as we discuss those examples. 

5.3. The Spectral Method 

The spectral method is a third method provided for confidence interval estimates for 
equilibrium measures. Most methods in classical statistics for estimating confidence intervals 
depend on having items of data that are "independent and identically distributed." The 
method of independent replications achieves this "Li.d." property by the· protocol which 
repeats the simulation. The regenerative method depends on being able to observe the Li.d. 
property during the simulation run. The spectral method does not depend on the Li.d. 
property. Rather, it explicitly takes into .consideration the correlation between data items in 
the simulation, e.g., the dependencies between successive queueing times for a given queue. 
This is done without user awareness, other than the availability of confidence intervals, so the 
dialogue for simulation using the the spectral method is essentially the same as simulation 
without confidence intervals. A sequential stopping rule is available with the spectral method, 
a slightly different rule than the one used with the regenerative method. A significant 
advantage of the spectral method over independent replications is that we can make a single 
(long) simulation run instead of multiple (shorter) runs and thus we need not be as concerned 
about the effects of the choice of initial state. The spectral method applies to equilibrium 
behavior of all models simulated using RESQ, not just those with regenerative properties. For 
statistical discussion of the spectral method, see Heidelberger and Welch [HEID81]. 

With model csmwm, we can edit as follows, 

edit csmwm rq2inp 
EDIT: 
locate/CONFIDENCE/ 

CONFIDENCE INTERVAL METHOD:none 
d,(;!l@te >I< 

EOF: 
file 
R; T=O.06/0.21 15:34:37 

and then use SETUP: 
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SETUP csmwm 
MODEL IS CSMWM 
CONTINUING WITH MODEL DEFINITION ... 

CONFIDENCE INTERVAL METHOD:spectral 
INITIAL STATE DEFINITION­
CHAIN:interactiv 

NODE LIST:terminals 
INIT POP:users 

CHAIN: 
CONFIDENCE LEVEL:90 
SEQUENTIAL STOPPING RULE:no 

CONFIDENCE INTERVAL QUEUES:memory memory 
MEASURES:qt qtd 

CONFIDENCE INTERVAL QUEUES: 
CONFIDENCE INTERVAL NODES: 

RUN LIMITS­
SIMULATED TIME: 

. EVENTS: 
QUEUES FOR DEPARTURE COUNTS:memory 

DEPARTURES: 500 
QUEUES FOR DEPARTURE COUNTS: 
NODES FOR DEPARTURE COUNTS: 

END 

LIMIT - CP SECONDS:5 
TRACE: no 

NO FATAL ERRORS DETECTED DURING THE COMPILATION. 
Ri T=0.86/1.94 15:35:51 

53 

The differences from the dialogue for simulation without confidence intervals are the 
SEQUENTIAL STOPPING RULE: prompt and the following section for specifying the queues 
and nodes which will have confidence intervals determined and the performance measures 
whichwill have confidence intervals determined. The only valid codes for the measures are 
"qt" for mean queueing time and "qtd" for queueing time distribution. We will temporarily 
defer disc)lssion of the sequential stopping rule. 

We could then get the following RQ2PRNT file: 

RESQ2 VERSION DATE: MARCH 11, 1982 - TIME: 07:43:26 DATE: 03/17/82 
MODEL:CSMWM 
THINKTIME:10 
USERS: 30 
PAGEFRAMES:128 
RUN END: MEMORY DEPARTURE LIMIT 
NO ERRORS DETECTED DURING SIMULATION. 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 

WHAT:qtbo(memory) 

222.28853 
3.81 
8669 

ELEMENT 
MEMORY 

MEAN. QUEUEING TIME 
3.58395(2.64355,4.52434) 52.5J 
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WHAT: 
CONTINUE RUN:yes 

LIMIT - MEMORY DEPARTURES: 1000 

RUN END: MEMORY DEPARTURE LIMIT 
RUN END: CPU LIMIT 
NO ERRORS DETECTED DURING SIMULATION. 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 

WHAT:qtbo(memory) 

288.99683 
5.16 

11361 

ELEMENT 
MEMORY 

MEAN QUEUEING TIME 
3.68594(3.00150,4.37038) 37.1% 

WHAT:nd(memory) 

ELEMENT 
MEMORY 

WHAT.: 

NUMBER OF DEPARTURES 
659 

CONTINUE RUN:yes 

LIMIT - CP SECONDS:40 

RUN END.: MEMORY DEPARTURE LIMIT 
RUN END: CPU LIMIT 
RUN END: MEMORY DEPARTURE LIMIT 
NO ERRORS DETECTED DURING SIMULATION. 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 

WHAT:qtbo(memory) 

444.63232 
7.73 

16874 

ELEMENT 
MEMORY 

MEAN QUEUEING TIME 
3.11431(2.45703,3.77160) 42.2% 

WHAT: 
CONTINUE RUN:yes 

LIMIT - MEMORY DEPARTURES:2000 

RUN END: MEMORY DEPARTURE LIMIT 
RUN END: CPU LIMIT 
RUN END: MEMORY DEPARTURE .LIMIT 
RUN END: MEMORY DEPARTURE LIMIT 
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NO ERRORS DETECTED DURING SIMULATION~ 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 

888.56274 
15.21 
33671 

WHAT:qtbo(memory} 

ELEMENT 
MEMORY 

WHAT:allbo 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 
FREEMEMORY 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 
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MEAN QUEUEING TIME 
3.24788(2.86123,3.63452} 23.8% 

UTILIZATION 
0.83603 
0.40747 
0.30796 
0.88254 
0.00000 

.THROUGHPUT 
2.25082 
1.79503 
16.02138 
17 .81641 
2.26095 
2.25082 

MEAN QUEUE LENGTH 
7.32865 
0.59840 
0.41833 
2.41700 
22.67134 

STANDARD DEVIATION OF QUEUE LENGTH 
3.88107 
0.85949 
0.72055 
1.41269 
3.88107 

MEAN QUEUEING TIME 
3.24788(2.86123,3.63452} 23.8% 
0.33337 
0.02611 
0.13563 
9.91472 
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ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ . 
CPUQ' 
TERMINALSQ 

ELEMENT 
MEMORY 

ELEMENT 
MEMORY 

ELEMENT 
MEMORY 

ELEMENT 
MEMORY 

ELEMENT 

ELEMENT 

ELEMENT 
MEMORY 

CONFIDENCE INTERVAL METHODS / SEC. 5 

STANDARD DEVIATION OF QUEUEING TIME 
2.27975 
0.31128 
0.02586 
0.15440 
9.91142 

MEAN TOKENS IN USE 
107.01234 

MEAN TOTAL TOKENS IN POOL 
128.00000 

QUEUE LENGTH DISTRIBUTION 
0:0.02415 
1 :0.04100 
2:0.05174 
3:0.07241 
4:0.08038 
5:0.07820 
6:0.08513 
7:0.07596 
8:0.09054 
9:0.09684 

10:0.08029 
11:0.07770 
12:0.05883 
13:0.03152 
14:0.02384 
15:0.01460 

QUEUEING TIME DISTRIBUTION 
1.00E+00:0:17350(O.13270,0.21430) 8.2% 
2.00E+00:0.33300(O.27786,0.38814) 11.0% 
3.00E+00:0.51650(O.44371,0.58929) 14.6% 
4.00E+00:0.67450(O.60723,0.74177) 13.5% 
5.00E+00:0.80150(O.74831,0.85469) 10.6% 
6.00E+00:0.88600(O,.85188,0.92012) 6.8% 
7.00E+00:0.93800(O.91297,0.96303) 5.0% 
8.00E+00:0.96600l0.94776,0.98424) 3.6% 

DISTRIBUTION OF TOKENS IN USE 

DISTRIBUTION OF TOTAL TOKENS IN POOL 

MAXIMUM QUEUE LENGTH 
21 
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FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

WHAT: 
CONTINUE RUN:no 

THINKTIME: 

5. 
6 
7 

30 

MAXIMUM QUEUEING TIME 
13.46424 
2.23200 
0.29332 
1.90131 
76.31847 
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This run gives the same results as the last run of Section 4 but aiso provides confidence 
intervals and results at other run limits. The mean response time confidence interval at toOO 
departures, (2.46, 3.77), and the interval at 2000 departures, (2.86, 3.63), contain the value 
for the numerically solved model without memory contention, 2.91, and are sufficiently wide 
(respective relative widths of 42% and 24%) that we cannot draw conclusions about memory 
contention effects. 

This suggests that the initial run was much too short and that we should probably 
continue the run further. We need a longer run, but how much longer? Rather than proceed 
in the above manner of lengthening the run and periodically exanihiing the results, we can use 
the sequential stopping rule, which automates essentially this procedure. The sequential 
stopping rule . allows us to specify the simulation rUn length in . terms of desired widths of 
confidence intervals, subject to the usual limit on CPU time. The simulation runs for an initial 
length, e.g., 2000 memory departures, and then confidence intervals are obtained. If the 
intervals do not meet the width criteria, the simulation continues with new limits· which 
increase the total run length by roughly 50%. Then new estimates are made and a new 
decision to terminate or continue is reached. This continues until the criteria are satisfied or 
the CPU limit is reached. The parts of the run are referred to as "sampling period~." 

As before, we. can edit the dialogue file, 

edit csmwm rq2inp 
EDIT: 
locate/SEQUENTIAL 

SEQUENTIAL STOPPING RULE:no 

delete * 
EOF: 
file 
R; T=0.06/0.28 15:45:50 

and use SETUP again: 

SETUP csmwm 
MODEL IS CSMWM 
CONTINUING WITH MODEL DEFINITION ... 

SEQUENTIAL STOPPING RULE:yes 
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CONFIDENCE INTERVAL QUEUES:memory memory 
MEASURES:qt qtd 
ALLOWED WIDTHS: 10 10 

CONFIDENCE INTERVAL QUEUES: 
CONFIDENCE INTERVAL NODES: 
EXTRA SAMPLING PERIODS:edit 

EDIT: 
case m 
locate/ALLOWED WIDTHS: 

ALLOWED WIDTHS: 10 10 
i INITIAL PORTION DISCARDED: 10 /*percent of initial period*/ 
file 
MODEL IS CSMWM 
CONTINUING WITH MODEL DEFINITION ... 

END 

INITIAL PERIOD LIMITS­
SIMULATED TIME: 
EVENTS: 
QUEUES FOR DEPARTURE COUNTS:memory 

DEPARTURES: 2000 
QUEUES FOR DEPARTURE COUNTS: 
NODES FOR DEPARTURE COUNTS: 

LIMIT - CP SECONDS:300 
TRACE: no 

NO FATAL ERRORS DETECTED DURING THE COMPILATION. 
R; .T=0.83/2.06 15:48:02 

We are asked for a list of queues where we are to obtain and check confidence interval widths 
at the end of a sampling period. Then we are asked whatineasures are to be considered. 
Then we are asked what widths are to be allowed. For the queueing time distribution (qtd) , 
each gathered point of the distribution is checked and must satisfy the width criteria. For the 
queueing time distribution, which can only have values in the [0, 1] interval,the width 
specified is absolute width in percent, i.e., the criterion is that 200x 8be less' than the 
specified width, where the confidence interval is(p - 8, P + 8). For mean queueing time 
(qt), the width is relative width in percent, i.e., the criterion is that 200x8/p be less than the 
specified width. (Where p is zero, the criteria is not satisfied.) . 

We are then asked how many extra sampling periods are to be run with the criteria 
satisfied. The default is O. The simulation will continue until this number plus one of 
successive sampling periods satisfy the criteria. Extra sampling periods force the simulation to 
run longer and thus can help overcome some of the problems of the sequential rule, e.g., on a 
very short run severe underestimates of the confidence interval width may result in the criteria 
being accepted. For further discussion of this problem, and the sequential stopping rule in 
general, see Heidelberg and Welch [HEID81]. 

Rather than giving a value to the EXTRA SAMPLING PERIODS: prompt, where we are 
willi.ng to accept the zero default, we give the special reply "edit" so that we can insert an 
INITIAL PORTION DISCARDED: line in the dialogue file. This portion of the first sampling 
period will be discarded. 

Using EVAL again, we get 

RESQ2 VERSION DATE: APRIL 3, 1982 - TIME: 17:56:07 DATE: 04/03/82 
MODEL:CSMWM6S 
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THINKTIME:10 
USERS:30 
PAGEFRAMES:128 
SAMPLING PERIOD END: MEMORY 
SAMPLING PERIOD END: MEMORY 
SAMPLING PERIOD END: MEMORY 
SAMPLING PERIOD END: MEMORY 
SAMPLING PERIOD END: MEMORY 
SAMPLING PERIOD END: MEMORY 

DEPARTURE 
DEPARTURE 
DEPARTURE 
DEPARTURE 
DEPARTURE 
DEPARTURE 

LIMIT 
LIMIT 
LIMIT 
LIMIT 
LIMIT 
LIMIT 

NO·ERRORS DETECTED DURING SIMULATION. 3786 DISCARDED EVENTS 

SIMULATED TIME: 
. CPU TIME: 

NUMBER OF EVENTS: 

WHAT:qtbo(memory) 

6096.76563 
107.39 
232927. 

ELEMENT 
MEMORY 

MEAN QUEUEING TIME 
3.39314(3.24376,3.54253) 8.8% 

WHAT: 
CONTINUE RUN:yes 

EXTRA SAMPLING PERIODS: 1 

SAMPLING PERIOD END: MEMORY DEPARTURE 
SAMPLING PERIOD END: MEMORY DEPARTURE 
SAMPLING PERIOD END: MEMORY DEPARTURE 
SAMPLING PERIOD END: MEMORY DEPARTURE 
SAMPLING PERIOD END: MEMORY DEPARTURE 

. SAMPLING PERIOD END: MEMORY DEPARTURE 
SAMPLING PERIOD END: MEMORY DEPARTURE 
NO ERRORS DETECTED DURING SIMULATION. 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 

WHAT:allbo 

ELEMENT UTILIZATION 
MEMORY 0.84992 
FLOPPYQ 0.39839 
DISKQ 0.30647 
CPUQ 0.89810 
TERMINALSQ 0.00000 

ELEMENT THROUGHPUT 
MEMORY 2.22836 
FLOPPYQ 1.81512 
DISKQ 16.18085 
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LIMIT 
LIMIT 
LIMIT 
LIMIT 
LIMIT 
LIMIT 
LIMIT 

3786 DISCARDED 

9200.50391 
160.28 
351644 

EVENTS 
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CPUQ 
TERMINALSQ 
FREEMEMORY 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 

FLOPPYQ 

DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
. MEMORY 

FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 

ELEMENT 
MEMORY 

ELEMENT 
MEMORY 

CONFIDENCE INTERVAL METHODS / SEC. 5 

17.99608 
2.22803 
2.22836 

MEAN QUEUE LENGTH 
7.66801 
0.59354 
0.41624 
2 .. 47630 
22.33199 

STANDARD DEVIATION OF QUEUE LENGTH 
3.97375 
0.87024 

0.71857 
1.37433 
oJ.97375 

MEAN QUEUEING TIME 
3.43985(3.33988,3.53982) 5.8% 
0.32700 
0.02572 
0.13760 
10.01154 

STANDARD DEVIATION OF QUEUEING TIME 
2.42777 
0.31059 
0.02501 
0.15214 
10.01072 

MEAN TOKENS IN USE 
108.78951 

MEAN TOTAL TOKENS IN POOL 
128.00000 

QUEUE LENGTH DISTRIBUTION 
0:0.01557 
1:0.03242 
2:0.04968 
3:0.06637 
4:0.07511 
5: 0.08407 
6:0.08908 
7:0.08593 
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ELEMENT 
MEMORY 

ELEMENT 

ELEMENT 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

ELEMENT 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
TERMINALSQ 

WHAT: 
CONTINUE RUN:no 

THINKTIME: 

8:0.09090 
9:0.08693 

10:0.07914 
11:0.06877 
12: O •. 05468 
13:0.04200 
14:0.03094 
15:0.01930 

QUEUEING TIME DISTRIBUTION 
.1.00E+00:0.15520(0.14791,0.16250) 1.5% 
2.00E+00:0.32216(0.30920,0.33513) 2.6% 
3.00E+00:0.49410(0.47693,0.51127) 3.4% 
4.00E+00:0.64569(0.62781,0.66358) 3.6% 
5.00E+00:0.77144(0.75471,0.78817) 3.3% 
6.00E+00:0.85875(0.84547,0.87202) 2.7% 
1.00E+00:0.91494(0.90398,0.92589) 2.2% 
8.00E+00:0.95137(0.94339,0.95935) 1.6% 

DISTRIBUTION OF TOKENS IN USE 

DISTRIBUTION OF TOTAL TOKENS IN POOL 

MAXIMUM QUEUE LENGTH 
21 
6 
6 
7 
30 

MAXIMUM QUEUEING TIME 
19.19725 
2.61646 
0.29332 
1 .94650 
112.28362 
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The simulation ran for a total of 6 sampling periods. The initial 3786 events of the first 
sampling period were discarded. The point estimate for mean response time is 3.39 seconds 
and the confidence interval estimate is (3.24, 3.54). The relative width is 8.8%. When we 
specified that the run was to continue until the stopping criteria had been satisfied for two 
successive sampling periods, one more sampling period was required. There was art increase in 
the mean response point estimate and the lower end of the interval. 
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We can reasonably conclude, based on either this run or the hlst runs of Sections 5.1 and 
5.2, that memory contention has significantly raised the mean response time above the 2.91 
second estimate for the model without memory contention. 
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6. SOURCES AND SINKS 

All . of the models we have considered so far h·ave a fixed population of jobs with no 
mechanisms for external arrivals of jobs at the network or departures of jobs from the 
hetwork. The mechanisms provided for these purposes are nodes called "sources" ~Uid 
"sinks," respectively. As we said before, routing chains with sources and sinks are "open" 
chains. 

~}}-O-<] 
SOURCE SINK 

Figure 6.1 - Queue in Isolation 

The simplest possible open queueing network is a single queue in isolation, as shown in 
Figure 6.1. Let. us use RESQ to examine the classical "MIMI 1" queue, i.e., a fefs queue with 
exponential arrival and service times. 

MODEL:MM1 

END 

METHOD: numerical 
QUEUE:q 

TYPE:fcfs 
CLASS LIST:c 

SERVICE TIMES:4 
CHAIN:ch 

TYPE: open 
SOURCE LIST:s 
ARRIVAL. TIMES:5 
:s->c->sink 

All of the above dialogue should be familiar up to the prompt for the chain type. Aftergiving 
the type as open, there is a prompt for a list of source names and then a prompt for a list of 
arrival time distributions. The name "sink" is predefined as the only sink. The same sink is 
shared by all open chains. It is illegal to have a routing transition with a source on the right 
hand side or a sink on the left hand side. 

Now we can get the results from EV AL: 

RESQ2 VERSION DATE: OCTOBER 2, 1981 
MODEL:MM1 
NO ERRORS DETECTED DURING NUMERICAL SOLUTION. 

WHAT:all 

ELEMENT 

Q 

ELEMENT 

Q 
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UTILIZATION 

0.80000 

THROUGHPUT 
0.20000 
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ELEMENT 

Q 

ELEMENT 

Q 

ELEMENT 
CH 

ELEMENT 
CH 

WHAT: 

MEAN QUEUE LENGTH 
4.00000 

MEAN QUEUEING TIME 
19.99998 

OPEN CHAIN POPULATION 
4.00000 

OPEN CHAIN RESPONSE TIME 
19.99998 

SOURCES AND SINKS I SEC. 6 

The open chain population is the mean number of jobs in the open chain and the oPen chain 
response time is the mean time spent in the chain bya job. 

Though the queueing time distribution for the MIMl1 queue is known to be exponential 
(see Kobayashi [KOBA78]), it is not available from the numerical solution component of 
RESQ. We can use simulation to obtain estimates of the queueing time distribution, as would 
be necessary if we were dealing with a system without known solution for the queueing time 
distribution. The following dialogue file would be adequate: 

MODEL:rnm1 

END 

METHOD: simulation 

QUEUE:C! 
TYPE:fcfs 
CLASS LIST:c 

SERVICE TIMES:4 
CHAIN:ch 

TYPE: open 
SOURCE LIST:s 
ARRIVAL TIMES:5 

:s->c->sink 
QUEUES FOR QUEUEING TIME DIST:q 

VALUES: 10 20 30 40 50 
CONFIDENCE INTERVAL METHOD:reg~nerative 
REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL:90 
SEQUENTIAL STOPPING RULE:yes 

QUEUES TO BE CHECKED:q 
MEASURES:qt 
ALLOWED WIDTHS: 10 

SAMPLING PERIOD GUIDELINES -
QUEUES FOR DEPARTURE COUNTS:q 

DEPARTURES: 10000 
LIMIT- CP SECONDS: 100 
TRACE: no 
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We have not given an explicit definition of the regeneration and initial states. If we do not 
give an explicit definition of these states for a chain, then there will be no jobs in the chain in 
these states. (Thus we must give explicit definitions for these states for closed chains,) It c~m 
be shown that the empty state is the most frequently occurring state for the M/M/1 queue 
and for many open networks. Thus it is reasonable as well as convenient to use the empty 
state as we have done. 

Though the M/M/1 queue is very simple to solve algebraically, it can require what seem 
to be very long simulation runs for reasonable results. Knowing this in advance, we set the 
departure limit at 10,000 departures. 

Now using EVAL we get 

RESQ2 VERSION DATE: OCTOBER 3, 1981 
MODEL:MM1 
SAMPLING 
SAMPLING 
SAMPLING 
SAMPLING 
SAMPLING 
SAMPLING 
NO ERRORS 

WHAT:qtbo 

ELEMENT 
Q. 

WHAT:utbo 

ELEMENT 

Q 

WHAT:. 
CONTINUE 

PERIOD END: Q DEPARTURE GUIDELINE 
PERIOD END: Q DEPARTURE GUIDELINE 
PERIOD END: Q DEPARTURE GUIDELINE 
PERIOD END: Q DEPARTURE GUIDELINE 
PERIOD END: Q DEPARTURE GUIDELINE 
PERIOD END: Q DEPARTURE GUIDELINE 

DETECTED DURING SIMULATION. 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 
NUMBER OF CYCLES: 

3.0210E+05 
42.39 

120132 
12268 

MEAN QUEUEING TIME 
18,64873(17.76196 i 19.53551) 9.5% 

UTILIZATION 
0.79771 (0.79058,0.80484) 1.4% 

RUN:yes 

EXTRA SAMPLING PERIODS: 1 

SAMPLING PERIOD END: Q DEPARTURE GUIDELINE 
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE 
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE 
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE 
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE 
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE 
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE 
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE 
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE 
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NO ERRORS DETECTED DURING SIMULATION. 

WHAT:qtbo 

ELEMENT 

Q 

WHAT:allbo 

ELEMENT 

Q 

ELEMENT 

Q 
S 

SINK 

ELEMENT 

Q 

ELEMENT 

Q 

ELEMENT 

Q 

ELEMENT 

Q 

ELEMENT 

ELEMENT 

j::LEMENT 

ELEMENT 
Q 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 
NUMBER OF CYCLES: 

4.5137E+05 
63.52 

180320 
18183 

MEAN QUEUEING TIME 
19.19112(18.35539,20.02684) 8.7% 

UTILIZATION 
0.79982 (0.79388,0.80575) 1.2% 

THROUGHPUT 
0.19975 (0.19869,0.20081) 1.1% 
0.19975 
0.19975 

MEAN QUEUE LENGTH 
3.83337(3.65683,4.00990) 9.2% 

STANDARD DEVIATION OF QUEUE LENGTH 
4.16076 

MEAN QUEUEING TIME 
19.19112(18.35539,20.02684) 8.7% 

STANDARD DEVIATION OF QUEUEING TIME 
18.49261 

MEAN TOKENS IN USE 

MEAN TOTAL TOKENS IN POOL 

QUEUE LENGTH DISTRIBUTION 

QUEUEING TIME DISTRIBUTION 
1.00E+01:0.39427(0~38311,O.40542) 2.2% 
2.00E+01:0.64136(0.62683,0.65589) 2.9% 
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ELEMENT 

ELEMENT 
Q 

ELEMENT 
Q 

ELEMENT 
CH 

ELEMENT 
CH 

WHAT: 
CONTINUE RUN:no 

3.00E+01:0.79021 (0.77598,0.80443) 2.8% 
4.00E+01:0.87709(0.86450,0.88967) 2.5% 
5.00E+01:0.93015(0.91954,0.94076) 2.1% 

DISTRIBUTION OF TOKENS IN USE· 

DISTRIBUTION OF TOTAL TOKENS IN POOL 

MAXIMUM QUEUE LENGTH 
35 

MAXIMUM QUEUEING TIME 
151.03687 

OPEN CHAIN POPULATION 
3.83337(3.65683,4.00990) 9.2% 

OPEN CHAIN RESPONSE TIME 
19.19112(18.35538,20.02684) 8.7% 
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Arrivals from sources are events as well as service completions. Thus the initial number 
of departures is 60066, which seems like a large number to obtain a 10% confidence interval 
width for the mean queueing time, but this illustrates the variability of the M/M/1 queue at 
moderately high utilizations. Note that open networks and queues with more variable service 
times are likely to require even longer runs when utilizations are high. Note also. that even 
with this seemingly long' run, the point estimate for mean queueing time is well below the true 
value and the confidence interval does not contain the true value. Only when we continue the 
run, requiring that the width criterion be satisfied for two successive sampling periods, do we 
get a confidence interval which contains the true value. Three additional sampling periods are 
required before the criterio.n is satisfied for two successive sampling Periods. 

Sources and sinks are used in exactly the same manner in general networks as in this 
example here. We will have more examples with sources and sinks in subsequent sections~ It 
is possible to have the arrival rate of jobs from sources of a chain vary during the simulation, 
as we shall see in Section 8. 

With the regenerative method it is almost always most appropriate to uSe the empty state 
for regeneration and initial states for open chains. Though some other state may occur more 
frequently, it is usually not worth the effort of looking for such a state. If the empty state 
does not occur frequently enough then it is usually not practical to use the regenerative 
method. 
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7. CHAINS 

All of our examples so far have had a single routing chain. Also, all pf our examples have 
had at most one node of a given type per queue (the passive queues have had two nodes, an 
allocate and a release). Usually we use more than one routing chain when we want to 
distinguish between different types of jobs. A queue must have at least one node for each 
chain which visits the queue, so more than one chain usually implies more than one node at at 
least one queue. (Otherwise we would actually have disjoint subnetworks.) We may want to 
have more than one node (of a given type) per queue even if we have only one routing chain 
and! or we may want to have a queue with several nodes of the same type which belong to the 
same chain in a model with several chains. Chains are disjoint in the sense that a node of one 
chain may not belong to another chain (with the exception that all open chains share the same 
sink). With models solved by the RESQ numerical component, a job at a source or class of a 
given chain must be able to reach any class of the chain unless it goes to a sink first. A 
similar requirement (with nodes in general other than sources and sinks replacing classes in the 
above) does not hold for models to be simulated, but most models will satisfy the condition. 
(In Section 8.2 we will see a model which does not satisfy this condition.) 

TERMINALS 

o 
o 

RCPU 

Figure 7.1 - Single Chain Model 

Before we consider models with mUltiple chains, let us consider it model with a single 
chain but multiple classes at some active queues. Suppose in our original computer system 
model we wished to distinguish between 'commands for editing, which represent the bulk of 
commands in many systems, and other commands, e.g., for compiling and running progr~ms. 
Figure 7.1 shows a possible modification for this purpose. We have separate classes for 
editing and "running" at the CPU, floppy disk and hard disk queues. A job leaving the 
terminals is determined to be either an editing or a running job and the distinction is preserved 
until the job returns to the terminals. The following is a poSsible dialogue file for this. model: 

MODEL:csmer 
/*Computer System Model with Editing and "Running" users*/ 
METHOD: numerical 
NUMERIC PARAMETERS:thinktime users 
NUMERIC IDENTIFIERS: floppy time disktime ecputime rcputime 
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SEC. 7 / CHAINS 

END 

FLOPPYTIME:.22 
DISKTIME:.019 

-ECPUTIME: .05 
RCPUTIME: .075 

NUMERIC IDENTIFIERS:ecycles rcycles 
ECYCLES:4 
RCYCLES:60 

QUEUE:floppyq 
TYPE:fcfs 
CLASS LIST:efloppy rfloppy 

SERVICE TIMES: floppy time 
QUEUE:diskq 

TYPE:fcfs 
CLASS LIST:edisk 

SERVICE TIMES:disktime 
CLASS LIST:rdisk 

SERVICE TIMES:disktime 
QUEUE:cpuq 

TYPE:ps 
CLASS LIST:ecpu rcpu 

SERVICE TIMES:ecputime rcputime 
QUEUE:terminalsq 

TYPE:is 
CLASS LIST:terminals 

SERVICE TIMES:thinktime 
CHAIN:interactiv 

TYPE:closed 
POPULATION: users 
:terminals->ecpu rcpu;.95 .05 
:ecpu->efloppy edisk;.1 .9 
:efloppy->terminals ecpu;1/ecycles 1-1/ecycles 
:edisk->terminals ecpu;1/ecycles 1-1/ecycles 
:rcpu->rfloppy rdisk;.2 .8 
:rfloppy~>terminals rcpu;1/rcycles 1-1/rcycles 
:rdisk->~eiminals rcpu;1/rcycles 1-1/rcycles 

69 

The model assumes that the service times are the same for both classes at floppyq and diskq 
and different at cpuq. With exact numerical solution we must assume the same exponential 
distribution for all classes at fefs queues. The model also has different meannul11bers of 
cycles for the editing and running subnetworks. (We dropped "cpio" from the identifiers to 
keep under 11 characters.) Note that in the definition of floppyq a single service tilne value is 
given for all classes in the list. In the definition ofdiskq we used tWo class lists (which could 
e.ach have more than one class if there were more classes at the queue.) 

Using EVAL we can get 

RESQ2 VERSION DATE: MARCH 23, 1982 - TIME: 15:22:56 DATE: 04/01/82 
MODEL:CSMER 
THINKTIME:10 
USERS:30 
NO ERRORS DETECTED DURING NUMERICAL SOLUTION 

WHAT:all 
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ELEMENT UTILIZATION 
FLOPPYQ 0.48863 

EFLOPPY 0.18947 
RFLOPPY 0.29916 

DISKQ 0.25062 
EDISK 0.14727 
RDISK 0.10335 

CPUQ 0.94055 
ECPU 0.43061 
RCPU 0.50993 

TERMINALSQ 0.00000 

ELEMENT THROUGHPUT 
FLOPPYQ 2.22105 

EFLOPPY 0.86122 
BFLOPPY 1.35982 

DISKQ 13.19032 
EDISK 7.75102 
RDISK 5.43930 

CPUQ 15.41136 
ECPU 8.61224 
RCPU 6.79912 

TERMINALSQ 2.26638 

ELEMENT MEAN QUEUE LENGTH 
FLOPPYQ 0.92724 

EFLOPPY 0.35954 
RFLOPPY 0.56770 

DISKQ 0.33208 
EDISK 0.19514 
RDISK 0.13694 

CPUQ 6.07688 
ECPU 2.78219 
RCPU 3.29469 

TERMINALSQ 22.66380 

ELEMENT MEAN QUEUEING TIME 

FLOPPYQ 0.41748 
EFLOPPY 0.41748 
RFLOPPY 0.41748 

DISKQ 0.02518 
EDISK 0.02518 
RDISK 0.02518 

CPUQ 0.39431 
ECPU 0.32305 
RCPU 0.48458 

TERMINALSQ 10.00000 

WHAT: 
THINKTIME: 
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With numerical solution, RESQ does not provide utilization estimates for Glasses at queues 
with multiple servers and/or queue dependent service rates. We can estimate mean response 
times as before, e.g., by Little's Rule the mean editing response time is (2.78219 + .35954 + 
.19514)/(2.26638 x .95) = 1.550 seconds, the mean running response time is (3.29469 + 
.56770 + .13694)/(2.26638 x .05) = 35.293 seconds and the mean overall response time is 
(30 - 22.66380)/2.26638 =3.237 seconds. 

ETERMINALS 

RTERMINALS RCPU 

Figure 7.2 - Model with Two Closed Chains 

In the model with the single chain, it is unlikely that a user's successive commands will be 
for 11 running. 11 Usually an editing command will follow a command for "running." Suppose 
that this is not realistic, that users stay in an editing or running mode for quite a while so that 
it Seems as if there are editing and running users rather than merely editing and running 
commands. Then it might be more appropriate to have two chains as in Figure 7.2. (Another 
possibility would be to have infrequent transitions between the chains of Figure 7.2; then the 
II chains II would actually be subchains, not chains.) Suppose we want to consider .the system 
when one seventh of the users are in the running mode and the rest are in the editing mode. 
Then we would have the following definitions for terminalsq and the chains: 

QUEUE:terminalsq 
'rYPE: is 
CLASS LIST:eterminals rterminals 

SERVICE TIMES:thinktime 
CHAIN: editing 

TYPE:closed 
POPULATION:users-ceil(users/7) 
:eterminals->ecpu 
:ecpu->efloppy edisk;.l .9 
:efloppy->eterminals ecpu;l/ecycles l-l/ecycles 
:edisk->eterminals ecpu;l/ecycles l-l/ecycles 

CHAIN: running 
TYPE:closed 
POPULATION:ceil(users/7) 
:rterminals->rcpu 
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END 

:rcpu~>rfloppy rdisk;.2 .8 
:rfloppy->rterminals rcpu;1jrc~cles 1-1/rcycles 
:rdisk->rterminals rcpU;1/rcycles 1-1/rcycles 

CHAINS / SEC. 7 

The dialogue file before the definit'ion ofterminalsq is the same a,s before. The "ceil" 
function gives the smallest integer which is at least as large as the given argument. Now we 
could get the· following: 

RESQ2 VERSION DATE: MARCH 23, 1982 - TIME: 16:03:15 DATE: 04/01/82 
MODEL:CSMER 
THINKTIME:10 
USERS: 30 
NO ERRORS DETECTED DURING NUMERICAL SOLUTION 

WHAT:all 

ELEMENT UTILIZATION 
FLOPPYQ 0.50873 

EFLOPPY 0.18965 
RFLOPPY 0.31907 

DISKQ 0.25764 
EDISK 0.14741 
RDISK 0.11023 

CPUQ 0.97491 
ECPU 0.43103 
RCPU 0.54388 

TERMINALSQ 0.00000 
ETERMINALS 0.00000 
RTERMINALS 0.00000 

ELEMENT THROUGHPUT 
FLOPPYQ 2.31240 

EFLOPPY 0.86207 
RFLOPPY 1 .45034 

DISKQ 13.55993 
EDISK 7.75859 
RDISK 5 .. 80134 

CPUQ 15.87234 
ECPU 8.62066 
RCPU 7.25168 

TERMINALSQ 2.27603 
ETERMINALS 2.15516 
RTERMINALS 0.12086 

ELEMENT MEAN QUEUE LENGTH 
FLOPPYQ 0.97826 

EFLOPPY 0.37487 
RFLOPPY 0.60339 

DISKQ 0.34472 
EDISK 0.19748 
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RDISK 0.14724 

CPUQ 5.91675 

ECPU 2.87599 

RCPU 3.04076 

irERMINALSQ 22.76025 

ETERMINALS 21.55165 

RTERMINALS 1.20861 

ELEMENT MEAN QUEUEING TIME 

FLOPPYQ 0.42305 

EFLOPPY 0.43485 

RFLOPPY 0.41604 

DISKQ 0.02542 

EDISK 0.02545 

RDISK 0.02538 

CPUQ 0.3727"1 

ECPU 0.33362 

RCPU 0.41932 

TERMINALSQ 10.000.00 

ETERMINALS 10.00001 

RTERMINALS 10.00000 

WHAT: 

THINKTIME: 

Now the mean response time for the editing jobs would be (25 - 21.55165)/2.15516 = 1.600 
seconds, the mean response time for the running jobs would be (5 - 1.20861)/.12086 = 
31.370 seconds and the mean overall response time would be (30 - 22,760)/2.27603 = J.181 
seconds. 

With multiple closed chains, execution times may become. quite large with numerical solution 
when the chain populations are substantial. 

Now let us suppose that we return to our original model without distinctions between 
interactive users and wish to add a batch workload to that modeL The batch jobs could be 
submitted by terminal commands, for example. Figure 7.3 shows an open chain added to the 
original figure to· represent the batch jobs. The following dialogue file could be used for 
Figure 7.3: 
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TERMINALS 

o 

o 
BCPU 

Figure 7.3 - Model with Open and Closed Chains 

MODEL:csmib 
/*Computer System Model with Interactive users .and Batch jobs*/ 
METHOD: numerical 
NUMERIC PARAMETERS:thinktime users brate 
NUMERIC IDENTIFIERS: floppy time disktime icputime bcputime 

FLOPPYTIME:.22 
DISKTIME: .019 
ICPUTIME: .05 
BCPUTIME: .075 

NUMERIC IDENTIFIERS:icycles bcycles 
ICYCLES:8 
BCYCLES:100 

QUEUE:floppyq 
TYPE:fcfs 
CLASS LIST:ifloppy bfloppy 

SERVICE TIMES: floppy time 
QUEUE:diskq 

TYPE:fcfs 
CLASS LIST:idisk bdisk 

SERVICE TIMES:disktime 
QUEUE:cpuq 

TYPE:ps 
CLASS LIST:icpu bcpu 

SERVICETIMES:icputime bcputime 
QUEUE:terminalsq 

TYPE: is 
CLASS LIST:terminals 

SERVICE TIMES:thinktime 
CHAIN: in teract.i v 

TYPE:closed 
POPULATION: users 
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END 

:terminals->icpu 
:icpu->ifloppy idisk;.1 .9 

:ifloppy->terminals icpu;1/icycles 1-1/icycles 
:idisk->terminals icpu;1/icycles 1-1/icycles 

CHAIN:batch 
TYPE: open 
SOURCE LIS.T: s 

ARRIVAL TIMES:1/brate 
:s->bcpu 

:bcpu->bflopPy pdiskl ! 2 .8 
:bfloppy~>sink bcpu;i/bcycles 1-1/bcycles 

:bdi~k->sink bcpu;1/bcycles 1-1/bcycles 

75 

With numerical solution, RESQ requires that closed chains be defined before open chains. We 
assume batch jobs are submitted at rate brate. Using EV AL we can get 

RESQ2 VERSION DATE: MARCH 23, 1982 - TIME: 16:20:21 DATE: 04/01/82 
MODEL:CSMIB 
THINKTIME:10 
USERS :30 
BRATE: .. 01 
NO ERRORS DETECTED DURING NUMERICAL SOLUTION 

WHAT:all 

ELEMENT UTILIZNrION 
FLOPPYQ 0.43299 
. IFLOPPY 0.38899 

BFLOPPY 0.04400 

DISKQ 0.31755 

IDISK 0.30235 
BDISK 0.01520 

CPUQ· 0.9.5906 
ICPU 0.88406 
BCPU 0.07500 

TERMINALSQ 0.00000 

ELEMENT THROUGHPUT 
FLOPPYQ 1 .96812 

IFLOPPY 1.76812 
BFLOPPY 0.20000 

DISKQ 16.71306 

IDISK 15.91307 
BDISK 0.80000 

CPUQ 18.68118 
ICPU 17.68118 
BCPU ·0.99999 

TERMINALSQ 2.21015 
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ELEMENT MEAN QUEUE LENGTH 
FLOFPYQ 0.75205 

IFLOPPY 0.67496 
BFLOPPY 0.07709 

OISKQ 0.46135 
IDISK 0.43914 
BOISK 0.02221 

CPUQ 7.41557 
ICPU 6.78440 

BCPl.J 0;63116 
TERMINALSQ 22.10149 

ELEMENT MEAN QUEUEING TIME 
FLOPPYQ 0.38212 

IFLOPPY 0.38174 
BFLOPPY 0.3.8545 

OISKQ 0.02760 
rorSK 0.02760 
BOISK 0.02777 

CPUQ 0.39695 
ICPU 0.38371 
BCPU 0.63117 

TERMINALSQ 10.00000 

ELEMENT OPEN CHAIN POPULATION 
BATCH 0.73047 

ELEMENT· OPEN CHAIN RESPONSE TIME 
BATCH 73.04666 

WHAT: 
THINKTIME: 

Now the interactive mean response time is (30 - 22.10149)/2.21015 = 3.574 seconds. We 
could obtain the overall mean response time again, but this seems uninteresting for this modeL 

Open chains have negligible effect on the execution time ofRESQ numerical solutions. 
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8. JOB, CHAIN AND GLOBAL VARIABLES 

Job, Chain and Global Variables are available only in simulation models. These variables 
are used in the sense of programming language variables. Assignment statements for these 
variables .art~ performed by set nodes. Expressions containing these variables may be used in 
defining service times, arrival times; routing, priorities, numbers of tokens to be allocated, and 
inmost other places where numeric expressions are allowed. (The Users Guide indicates 
which expressions do not allow use of these variables. Except in those places where the 
variables are explicitly prohibited, expressions may use these variables.) 

8.1. Job Variables 

Job variables are used to store numeric data with individual jobs during a Simulation run. 
Job variables are identified by the subscripted keyword "JV~" The subscripts begin atO and 
may range up .to .a maximum specified by the user. (Job variables and chain variables are 
unlike. RESQ arrays in that the lower bound is 0 instead of L) The maximum subscript is 
specifi~d in response to the prompt 

MAX JV: 

In a dialogue file, this prompt and the reply would be inserted following the identifier declara­
tions section. If no maximum is specified, only JV(O) 'and JV(1) may be used: Al1job 
variables are initialized to 0 when a job is created except for job variables of jobs created by 
split and fission nodes (Section 11). Job variables are represented internally as double 
precision floating.point numbers. 

Job variables are assigned values at "set" riodes. A set. node performs assignment 
statements corresponding to assignment statements in a programming language. After queue 
definitions are completed the interactive mode of SETUP will prompt for a list of set nodes 
with the prompt "SET NODES:" and will then prompt for the assignment statements for those 
nodes with the prompt "ASSIGNMENT LIST:". After the ASSIGNMENT LIST: prompt 
there will be another SET NODES: prompt. In dialogue files the SET NODES: and ASSIGN­
MENT LIST: lines are inserted· after the queue definitions. If more than oneassignriient 
statement is to be associated with a single set node, then this set node should be defined by a 
separate SET NODE and ASSIGNMENT LIST section. Some examples: 

SET NODES: alpha beta 
ASSIGNMENT LIST:jv{lenq)=be(1,O; 1,1)jv(3)=jv(3)+1 
SET NODES: gamma 
ASSIGNMENT LIST:jV(stime)=user~/10 
SET NODES: delta 
ASSIGNMENT LIST:jv(stime)=users/10 jv(p)=jv(p)+1 

Note that use 9f identifiers for subscripts can improve readability. Subscripts for job variables 
may be expressions requiring simulation time evaluation, e.g., may involve other job variables; 
In this example, nodes alhpa, beta and gamma would each perform a single assignment. Set 
nod~ d~lta would perform two assignments. A set node may perform any number of assign­
ments,. but if a set node is to perform mote than one assignment, it must be defined by. a 
separate pair of SET NODE: and ASSIGNMENT LIST: llnes. The assignments are perf()rmed 
in the order listed. Assignments for job, chain and global variables may be mixed at a single 
set node. 

Job Variables are very useful in service time expressions, e.g., 
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CLASS LIST:transmit 

SERVICE TIMES: propagate+standard (jv (leng} ,0) ICapaci ty 

"Standard" is the name ofa RESQ distribution specified by the mean and coefficient of 
variation. Coefficient of variation zero results in· a constant·· value. The aiove eX/pression 
would be taken as the mean of an exponential distribution if the name of a distribu.tion was 
not prese.nt. 

1 2 3 4. 

Figure 8.1 - Series Queues with Independence Assumption 

The classic application of job variables is to avoid making Kleinrock's"independence 
assumption" in modeling communication networks; (This assumption was originally proposed 
in Kleinrock's Ph.D. thesis. It is discussed further in [KLEI76].) Consider Figure 8.1 and 
suppose that the queues represent communication links. For simplicity let us assume.the 
processing between links is negligible. The transmission times for a given message at each link 
will be propo:rtional to each other, with the proportionality determined by the link capacities 
(rates). In order to make analytic solution of such a network feasible, Kleinrock conjectured 
that one could assume the transmission times were independent and demonstrated by simula­
tion that this was a reasonable assumption for' some networks. Whether the assumption is 
reasonable or not depends on a number of factors, including the traffic· intensity and the 
network topology. 

The series topology of Figure 8.1 is such that the independence assumption is not 
appropriate. Suppose in Figure 8.1 the queues are FCFSqueues with (independent) exponen­
tial service times with mean.125 second and that the arrival times are exponential with mean 
.25 second. Then each queue may be treated as an M/M/1 queue in isolation. The queueing, 
times at each queue are exponential with mean .25 second. The response times from Source to 
sink are the sum of four independent exponential times with mean .25 second,so they have a 
four stage Erlang distribution with mean 1 second. . 

.12147483647.\ 

JV(STIME)= 
STANDARD(.125,1 ) 

1 2 

Figure 8.2 - Series Queues with Interdependence 

3 4 

Now suppose that we wish to test the effects of the independence assumption. Assuming 
that the links have the same capacities, then a message will have the same service time at each 
ofl the four queues. We can no longer treat the last three queues as MIMI 1 queues because 
their arrival and service times are dependent and because the interarrival times at the last two 
are not necessarily exponential. We can simulate the system using job variables. Figure 8.2 
shows a passive queue and a set node added to Figure 8.1. The passive queue is used to 
measure response times. It has an "infinite" number of tokens, i.e., 231 _1. A relcase'node is 
not necessary; jobs holding tokens release them when they. go to a sink. The numeric 
identifier msg stime is given the value 0 and used in JV subSCripts to indicate the JV is used 
for service times. The set node is used to put the service time value in JV(msg_stime). The 
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standard distribution with coefficient of variation one results in an exponential distribution; 
"JV(msg stime) = .125" would result in a constant, not an exponential, value. The following 
dialogue file could be used: . . , 

MObEL:fourlihk 
METHOD: simulation 
NUMERIC U)ENTIFIERS: msg~stirile 

MSG_STIME:O /*JV to be used*/ 
QUEUE:rtq 

TYPE:passive 
TOKENS:2147483647 
DSPL:fcfs 
ALLOCATE NODE LIST:beginrt 

NUMBERS OF TOKENS TO ALLOCATE: 1 
QUEUE:q1 

TYPE:fcfs 
CLASS LIST:c1 

SERVICE TIMES:standard(jv(msg_stime) ,0) 
QUEUE:q2 

TY:PE:fcfs 
CLASS LIST:c2 

SERVICE TIMES:standard(jv(msg_stime) ,0) 
QUEUE:q3 

TYPE:fcfs 
CLASS LIST:c3 

SERVICE TIMES: standard (jv(msg_stime) ,0) 
QUEUE:q4 

TYPE:fcfs 
CLASS LIST:c4 

SERVICE TIMES:standard(jv(msg_stime) ,0) 
SET NODES:set stime 
ASSIGNMENT LIST:jv(msg_stime)=standard(.125,1) 
CHAIN:ch 

TYPE:open 
SOURCE LIST:s 
ARRIVAL TIMES:. 25 
:s->beginrt->set_stime~>c1->c2->c3->c4->sink 

QUEUES FOR QUEUEING TIME DIST:rtq 
VALUES:.5 1 1.5 2 2.5 

CONFIDENCE INTERVAL METHOD:regenerative 
REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL:90 
SEQUENTIAL STOPPING RULE:yes 

END 

QUEUES TO BE CHECKED:rtq 
MEASURES:qt 
ALLOWED WIDTHS: 10 

SAMPLING PERIOD GUIDELINES -
Ql)EUESFOR DEPARTURE COUNTS;rtq 

DEPARTURES: 10000 
LIMIT - CP SECONDS: 100 
TRACE: no 

EV AL will give us the following: 
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RESQ2 VERSION DATE: OCTOBER 9, 1981 
MODEL: FOURLINK 
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
NO. ERRORS DETECTED DURING SIMULATION. 

WHAT::utbo 

ELEMENT 
RTQ 
Q.1 
Q2 
Q3 
Q4 

WHAT:tpbo(rtq) 

ELEMENT 
RTQ 

WHAT:qlbo 

ELEMENT 
RTQ 
Q1 
Q2 
Q3 
Q4 

WHAT:qtbo 

ELEMENT 
RTQ 
Q1 
Q2 
Q3 
Q4 

WHAT:sdqt 

ELEMENT 
RTQ 
Q1 
Q2 
Q3 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF· EVENTS: 
NUMBER OF CYCLES: 

2512.58301 
,29 .. 56 
50285 

806 

UTILIZATION 
2.2010E-09(2.1094E-09,2.2926E-09) 0.0% 
0.50886(0.49823,0.51949) 2.1% 
0.50886(0.49823,0.51949) 2.1% 
0.50886(0.4982~,0.51949) 2.1% 
0.50886(0.49823,0.51949) 2.1% 

THROUGHPUT 
4.00265(3.94119,4.06411) 3.1% 

MEAN QUEUE LENGTH 
4.72664(4.52998,4.92329) 8.3% 
1.00657(0.95876,1.05437) 9.5% 
1 .06901 (1 .02551 ,1 . 11251) 8. 1 % 
1.25355(1.20049,1.30662) 8.5% 
1.39750(1.33610,1.45890) 8.8% 

MEAN QUEUEING TIME 
1.18087(1.13909,1.22266) 7.1% 
0.25148(0.24081,0;26214) 8.5% 
0.26708(0.25784,0.27631) 6.9% 
0.31318(0.30191,0.32445) 7.2% 
0.34914(0.33591,0.36238) 7.6% 

STANDARD DEVIATION OF QUEUEING TIME 
0.72737 
0.24087 
0.19031 
0.19855 
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Q4 

WHAT:qtdbo 

ELE;MENT 
RTQ 

WHAT: 
CONTINUE RUN:no 

0.20232 

QUEUEING TIME DISTRIBUTION 
5.00E-Ol:0.17590(O.16287,0.18892) 2.6% 
1.00E+OO:O.46107(0.43827,0~48388) 4.6% 
1.50E+OO:O.71473(0.69109,0.73836) 4.7% 
2AOOE+OO:O.86944(0.85158,0.88731) 3.6% 
2.50E+OO:O.94094(0.92910,0.95277) 2.4% 

81 

Note the increasing mean queue lengths and mean queueing times as we progress from queues 
1 to 4. The .response time has a mean 18% higher than with the independence assumption 
and is more variable than if it had a four stage Erlang distribution. The queueing times at 
queues 2, 3 and 4 are less variable than the exponential distribution. 

We will have more examples of use of job variables in subsequent sections. 

S.2.Chain Variables 

Chain variables are analogous to job variables except that the numeric data is associated 
with chains rather than individual jobs. Chain variables have only one unique function, to 
control the rates of sources of the chains. Though chain variables can be used for other purposes, 
it will usually be more appropriate to use global variables (Section 8.3) for these purposes. 

Chain variables are identified by the subscripted keyword "CV." The subscripts begin at 
o and may range up to a maximum specified by the user. Only chain variable 0 affects 
sources .. The maximum subscript can be specified only in dialogue files. A line of the form 

MAX CV: "max subscript" 

is inserted after the corresponding job variable definition (or after the identifier definitions if 
there is no corresponding job variable definition.) If no maximum is specified, only CV(O) 
may be used. All chain variables are initialized to 1. Chain variables are represented 
internally as double precision floating point numbers. 

Chain variables are assigned values at set nodes, as with job variables. If CV(O) for an 
open chain has a value other than 0, samples from the arrival time distributions are divide.d by 
CV(O) to obtain actual inter arrival times. If there are pending source even.ts for an open 
chain whenCV(O) is changed to a value other than 0, those events are rescheduled. The new 
time until an event is obtained by multiplying the old time until an event by the old value of 
CV(O) and dividing that result by the new value of CV(O). Setting CV(O) to 0 shuts off all 
sources for that chain; any pending source events for the chain are deleted from the event list 
and no new events will be scheduled, even if CV(O) should later become non-zero. 

As an example of the use of CV(O) to change arrival rates, let us suppose we want to 
look at the behavior of our hypothetical computer system as the number of users at the 
terminals varies during the day. The top part of Figure 8.3 shows users arriving at the 
terminals and alternating between thinking at the terminals and waiting for command. process-
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TERMINALS 

9L., 
or~ 

CV(O)=.5 

CV (0) = .25 

CV (0) =1 

CV (0) =.1 

COMP_SYS 

TIMERQ 

Figure 8,3 - Arrivals Dependent on Time of Day 

ing until they are finished and leave. The computer system is represeilted by a single queue 
with queue dependent service rates. Queue dependent .rates are discussed in Section 15 .. The 
rates we will use were obtained by standard approximation techniques assuming partitioned 
memory with four partitions. For discussion of approximate. solutions, see [CHAN78b, 
SAUE79, SAUE81a,LAVE82]. Let us assume the peak arrivai rate of users is from 1 to 5 in 
the afternoon, that the arrival rate is one half the peak rate from 9 to 12 in the morning, that. 
the arrival rate is one fourth the peak rate during the hinch hour and that the arrival rate is 
one tenth the peak rate during the night. The bottom part .of Figure 8.3 shows the set nodes 
that will be used for this purpose. There will be a single job alternating between set nodes 
alld service times representing the above periods. EVen though this part of the network is 
disjoillt from the remainder as far as the jobs are concerned, we will consider the network to 
consist of only one chain. (This is the example we referred to in defining chains in Section 
10.) The following dialogue file could be used. 

MODEL:onedp.y 
METHOD: simulation 
NOMER!C PARAMETERS:peakrate 
NUMERIC IDENTIFIERS:thinktime commands 

THINKTIME : 1 0 
COMMANDS: 200 

QUEUE:terminalsq 
TYPE:is 
CLASS LIST:terminals 

SERVICE TIMES:thinktime 
QUEUE: comp_sysq 

TYPE:active 
SERVERS: 1 
DSPL:ps 
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END 

CLASS LIST:comp_sys 
WORK DEMANDS: 1 

SERVER -
RATES:1.40292 1.98614 2.25576 2.38438 

QUEUE:timerq 
TYPE:fcfs 
CLASS LIST:time9to12 time12to1 

WORK DEMANDS:standard(10800,O) standard(3600,O) 
CLASS LIST:time1to5 time5to9 

WORK DEMANDS:standard(14400,O) standard(57600,O) 
SET NODES:set9to12 set12to1 set1to5 set5to9 
ASSIGNMENT LIST:cv(0)=.5 cv(0)=.25 cv(0)=1 cv(0)=.1 
CHAIN:users 

TYPE: open 
SOURCE LIST:s 
ARRIVAL TIMES:1/peakrate 
:s->terminals':">comp_sys->sink terminals;1/commands 1-1/commands 
:set9t612->time9to12->set12to1->time12to1->set1to5 
:set1to5->time1to5->set5to9->time5to9->set9to12 

QUEUES FOR QUEUEING TIME DIST:comp_sysq 
VALUES: 1 2 3 4 5 6 7 8 

CONFIDENCE INTERVAL METHOD: replications 
INITIAL STATE DEFINITION -
CHAIN: users 

NODE LIST:set9to12 
INITPOP:1 

CONFIDENCE LEVEL:90 
NUMBER OF REPLICATIONS:25 
REPLIC LIMITS -

SIMULATED TIME:28800 
LIMIT - CP SECONDS:2800 
TRACE: no 
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We are exammmg transient, not equilibrium,behavior with this model. It would not be 
appropriate to use the regenerative method or the spectral method to obtain . confidence 
intervals with this model. This is an example of a situation where it is appropriate to use 
independent replications with a large number of replicationS. For the period 9 to 5 with a 
peak rate of one arrival per 100 seconds we get the following: . 

RESQ2 VERSION DATE: SEPTEMBER 4, 1981 
MODEL:ONEDAY 
PEAKRATE: . 01 
REPLICATION 1 : SIMULATED TIME LIMIT 
REPLICATION 2 : SIMULATED TIME LIMIT 
REPLICATION 3: SIMULATED TIME LIMIT 
REPLICATION 4: SIMULATED TIME LIMIT 
REPLICATION 5: SIMULATED TIME LIMIT 
REPLICATION 6: SIMULATED TIME LIMIT 
REPLICATION 7 : SIMULATED TIME LIMIT 
REPLICATION 8: SIMULATED TIME LIMIT 
REPLICATION 9: SIMULATED TIME LIMIT 
REPLICATION 10: SIMULATED TIME LIMIT 
REPLICATION 11 : SIMULATED TIME LIMIT 
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REPLICATION 12: SIMULATED TIME LIMIT 
REPLICATION 13: SIMULATED TIME LIMIT 
REPLICATION 14: SIMULATED TIME LIMIT 
REP:LIChTION 15: SIMULATED TIME LIMIT 
REPLICATION 16: SIMULATED TIME LIMIT 
REPLICATION 17: SIMULATED TIME LIMIT 
REPLICATION 18: SIMULATED TIME LIMIT 
REPLICATION 19: SIMULATED TIME LIMIT 
REPLIChTION 20: SIMULATED TIME LIMIT 
REPLICATION 21: SIMULATED TIME LIMIT 
REPLICATION 22: SIMULATED TIME LIMIT 
REPLICATION 23: SIMULATED TIME LIMIT 
REPLICATION 24: SIMULATED TIME LIMIT 
REPLICATION 25: SIMULATED TIME LIMIT 
NO ERRORS DETECTED DURING SIMULATION. 

SIMULATED .TIME PER REPLICATION: 
CPU TIME: 

NUMBER OF EVENTS PER REPLICATION: 
NUMBER OF REPLICATIONS: 

WHAT:utbo 

2.8800E+04 

805.65 

72556 

25 

ELEMENT 
TERMINALSQ 
COMP_SYSQ 
TIMERQ 

UTILIZATION 
0.00000(0.00000,0.00000) 

0.64892(0.63425,0.66360) 2.9% 

1.00000 

WHAT:tpbo(terminalsq,comp_sysq,s,si.nk) 

ELEMENT 
TERMINf\.LSQ 
COMP_SYSQ 

S 
SINK 

THROUGHPUT 
1.25608(1.21623,1.29592) 6.3% 

1.2558911.21606,1.29572) 6.3% 

7.2278E-03 

6. 3986E-03 

WHAT:qlbo(terminalsq,comp_sysq) 

ELEMENT 
T,ERMINALSQ 
COMP_SYSQ 

. MEAN QUEUE LENGTH 
12.55767(12.16163,12.95370) 6.3% 

2.16919(1.87909,2.45929) 26.71 

WHAT.: qtbo (comp_sysq) 

ELEMENT 
COMP_SYSQ 

WHAT:qtdbo 

MEAN QUEUEING TIME 
1.69493(1.53678,1.85308) 18.7% 
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ELEMENT 
COMP_SYSQ 

WJiAT;pobo 

ELEMENT 
USERS 

WHJI,T:rtmbo 

ELEMENT 
USERS 

WHAT: 
PEAKRATE: 

QUEUEING TIME DISTRIBUTION 
1.00E+00:0.52675(0.51026,0.54324) 3.3% 
2.00E+00:0.74146(0.72224,0.76068) 3.8% 
3.00E+OO:0.84435(0.82639,0.86230) 3.6% 
4.00E+00:0.89907(0.88329,O.91486) 3.2% 
5.00E+00:0.93120(O.91767,0.94473) 2.7% 
6.00E+00:0.95121 (0.93976,0.96267) 2.3% 
7.00E+OO:0.96450(0~95484,0,97416) 1.9% 
8.00E+00:0.97365(0.96555,0.98175) 1.6% 

OPEN CHAIN POPULATION 
15 .. 72686(15.06218,16.39154) 8.5% 

OPEN CHAIN RESPONSE TIME 
2455.07861 (2374.40869,2535.74829) 6.6% 

85 

Note that the chain population and response time values include the timing job. If we want 
themean time users spend in the system we should useLittle's Rule, i.e., 14.72686/.0063986 
= 2302 seconds. 

We will see another example of determining source rates with CV(O) in Section 8;3. 

8.3. Global Variables 

Global variables provide for storage· of values which may change during simulation .. 
(Global variables can be used for values which do not vary during simulation, but it will be 
more efficient and flexible to use numeric identifiers for these values.) Global variables are 
used with set nodes and numerical expressions in the same manIler as numeric variables are 
used in programming languages. "Global" is used in contrast to job and chain variables, 
which are local to jobs and chains, respectively. Global variables may be defined to be local 
to subrtlodels. (See Section 13 and Sections 3 and 10 of the Users Guide). Global variables 
may be defined as scalars and as one and two dimensional arrays. Global variables are 
defined and given initial values in the same manner as numeric and distribution identifiers, 
following the definition of any of those. For example, 

GLOBALVARIABLES:a b(3) c(3;2) 
A: 3.1 
B:O 
C:14.1 7 13 

All of the values for an array are defined on a single line (If necessary, multiple physical lines 
may be concatenated to form a single logical line. See Section 2 of the Users Guide.) If fewer 
values are given then the number of elements in an array, the last value given is used for the 
remaining elements. In the example above, all three elements of bare initially zero. Two 
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dimensional arrays are stored by rows, so in the example above c(1;1) is initi~Hy 14.1; c(1;2) 
is initiillly 7 and theremainil1g elements are il)itially 13. . . 

P=P+l. CV(O)=ARATEtMIN(P.ARB~l)+l) 

L---__ ~KJ 
Figure 8.4 - Population Dependent Arrivals 

Suppose we wish the arrival rate in an open network to be a function of the network popula­
tion .. We wish to specify the rates up to some population and have the last rate apply to larger 
populations. We can accomplish this with a global variable to keep track of the population,p, 
and chain variable scaling of the arrival times. See Figure 8.4. The rates are stored in 
numeric identifier arate, which has upper bound arb. Since RESQ arrays begin with subs<:;ript 
l,we use arate(1) for pbpulationO, arate(2) for population 1 and so on with arate(arb) used 
for population arb-l and larger populations. The min (minimum) function has exactly two 
arguments in RESQ. We could use the following dialogue file: 

MODEL:pda /*Population Dependent Arrivals*/ 
METHOD: simulation 
NUMERIC PARAMETERS:atime stime 
NUMERIC IDENTIFIERS:arb arate(arb) 

ARB:4 
ARATE:1 .8 .6 .4 

GLOBAL VARIABLES:p 
P:O 

QUEUE:q 
TYPE:fcfs 
CLASS LIST:c 

SERVICE TIMES:stime 
SET NODES:bef 
ASSIGNMENT LIsT: p=p+1 cv (0) =arate (min (p, arb-1) +1) 
SET NODES.: aft 
ASSIGNMENT LIST: p=p-1 cv(O)=arate(min(p,arb-l)+1) 
CHAIN:ch 

TYp'E:open 
SOURCE LIST:s 
ARRIVAL TIMES:atime 
:s->bef->c->aft->sink 

QUEUES FOR QUEUEING TIME DIST:q 
VALUES:10 20 30 40 50 

QUEUES FOR QUEUE LENGTH DIST:q 
MAX VALUE: 10 

CONFIDENCE INTERVAL METHOD:regenerative 
REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL:90 
SEQUENTIAL STOPPING RULE:yes 

QUEUES TO BE CHECKED:q 
MEASURES:qt 
ALLOWED WIDTHS: 10 

SAMPLING PERIOD GUIDELINES -
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QUEUES FOR DEPARTURE COUNTS:q 
DEPARTURES: 10000 

LIMIT - CP SECONDS:50 
TRACE: no 

r~ND 

We can get the following results from EVAL: 

RESQ2 VERSION DATE: OCTOBER 9, 1981 
MObEL:PDA 
ATIME: 10 
STIME: 10 
WARNING -- MODEL MAY NOT BE TRULY REGENERATIVE 

BECAUSE OF USE OF GLOBAL VARIABLES 
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE 
NO ERRORS DETECTED DURING SIMULATION. 

WHAT:utbo 

ELEMENT 
Q 

WHAT: tpho (q) 

ELEMENT 
Q 

WHAT:qlbo 

ELEMENT 
Q 

WHAT:qtbo 

ELEMENT 
Q 

WHAT:qldbo 

ELEMENT 
Q 

April 3, 1982 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 
NUMBER OF CYCLES: 

UTILIZATION 

1.3733E+05 
24.60 
20000 

3889 

0.71541 (0.70552,0.72530) 2.0% 

THROUGHPUT 
0.07282(0.07192,0.07372) 2.5% 

MEAN QUEUE LENGTH 
1.48025(1.43406,1.52644) 6.2% 

MEAN QUEUEING TIME 
20.32849(19.66095,20.99605) 6.6% 

QUEUE LENGTH DISTRIBUTION 
0:0~28459(0.27470,0.29448) 2.0% 
1 :0.28161 (0.27473,0.28849) 1.4% 
2:0.22409(0.21753,0.23065) 1.3% 
3:0.13062(0.12416,0.13707) 1.3% 
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WHAT:mxql 

ELEMENT 

Q 

WHAT:qtdbo 

ELEMENT 

Q 

WHAT: 
CONTINUE RUN:no 

ATIME: 

JOB, CHAIN AND GLOBAL VARIABLES / SEC. 8 

4:0.05129(0.04658,0.05601) 0.9% 
5:0.01830(0.01488,0.02172) 0.7% 
6:5.6111E-03(4.1301E-03,7.0921E-03) 0.3% 
7:3.0926E-03(1.4506E-03,4.7346E-03) 0.3% 
8:5 .. 5150E-04(2.0370E-04,8.9931E-04) 0.1% 
9:2.4575E-04(-7.3931E-05,5.6542E-04). 0.1% 

MAXIMUM QUEUE LENGTH 
9 

QUEUEING TIME DISTRIBUTION 
1.00E+01:0.35100(0.33882,0.36318) 2.4% 
2.00E+01:0.59710(0.58287,0.61133) 2.8% 
3.00E+01:0.77060(0.75709,0.78411) 2.7% 
4.00E+01:0.87060(0.85949,0.88171) 2.2% 
5.00E+01:0.93380(0.92553,0.94207) 1.7% 

A model which uses global variables will not be truly regenerative unless the global variables 
have the same values each time the model is in the "regeneration" state. In this model the 
g~obal variable p will always have a zero value in the regeneration state. It is required that 
CV(O) for open chains has value 1 in the regeneration state (Section 5.2). 

This example is slightly contrived in that the use of global variables is not strictly 
necessary. The ql or tq status functions (Appendix 3 of the Users Guide) could be used to 
avoid the global variable p. That approach could be extended to general networks, but the 
above approach is likely to be more efficient in general networks. Other examples with gtobal 
variables are. found in Sections 10 and 11 and in Appendix 3 of the Users Guide. 

There are a number of global variable identifiers which have special ~ean~~g to. ~ 
and should not be used for other purposes. These are "clock" and severalldenttflers mchidmg 
the word "trace" (see Appendix 20f the Users Guide). 
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9. ROUTING 

All of our examples so far have. assumed that routing decisions are made according to 
probabilities. In this case the format of a routing transition is 

The semi-colon (";") and probabilities are optional if the probabilities are all equal to the 
inverse of the number of "to. nodes" (e.g., liN). It is entirely permissible to split the above 

etc. Routing decision may also be made with predicates, i.e., expressions which represent 
Boolean (true or false) values. In the above examples any or all of the probabilities could be 
replaced by a predicate of the form 

if ("Boolean expression") . 

Assuming that all the probabilities are replaced by predicates then the destination for the 
"from node" would be chosen by evaluating the predicates in the order given in the dialogue 
and picking the first destination where the predicate had a true value. (The remaining 
predicates would not be evaluated.) If none of the predicates had a true value, then an error. 
coiJdition would exist and the simulation would be terminated. (Predicates are not allowed 
with numerical solution in RESQ.) (Mixtures of probabilities and predicates for the routing 
from a given node are discussed in Section 9 of the Users Guide.) ... . 

TYPically, the Boolean expression will consist of one or more relational expressions of· the 
form 

"numeric expression" i'relational operator" "numeric expression" 

where the numeric expressions may be any legal RESQ numeric expression with a scalar value. 
The relational operator may be any of the following: "=" (equal),".;.,=" (not equal), "<" 
(less than), "<=" (less than or equal), ">" (greater than) and ">=" (greater than or equal). 
The Boolean operators "not", "and" and "or" may be used with the usual meaning, in that 
order of precedence. For example, 

if(not jv(3)<10 and jv(2»3 or p=O) 

would be true ifp had the value 0 or if jv(3) was greater than or equal to 10 and jv(2) was 
greater than 3. To get other orders of precedence among the operators, we must enclose 
Boolean expressions in parentheses preceded by "if". For example, 
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if(not if(jv(3)<10 and if(jv(2»3 or p=O))) 

would have exactly the reverse order of precedence of the operators as the previous example. 

SOURCE SINK 

SINK LINK SOURCE 

LINK 
LINK 

SOURCE 
LINK SINK 

SINK SOURCE 

Figure 9.1 - Routing Example 

There are many situations where routing predicates are necessary for describing a model. 
We now describe a case where predicates may be used to simplify routing description in a 
model. Consider the network of Figure 9.1. Let us suppose that this is a model of a commu­
nication network (see Section 8.1). The destination for a message is determined upon .arrival 
of the message. (We will assume each destination is equally likely to be picked.) Since a 
message has a specified destination, the routing decision after each queUe (communication 
link), whether to proceed to the next queue (message has not reached its destin3:tion) or to go 
to the sink (message has reached its destination), must be deterministic. There are two ways 
wecari represent this: either we have a class at each queue for each possible destination of 
jobs leaving the queue or we use routing predicates. Let us examine these options in turn. 
The following dialogue file could be used for the first option: 

MODEL: loop 
METHOD: numerical 
NUMERIC IDENTIFIERS:mean_atime mean stime 

MEAN ATIME: . 1 
MEAN_STIME: .15 

QUEUE:q1 
TYPE:fcfs 
CLASS LIST:c1d2 c1d3 c1d4 

SERVICE TIMES:mean stime 
QUEUE:q2 

TYPE:fcfs 
CLASS LIST:c2d3 c2d4 c2d1 
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END 

SERVICE TIMES:mean_stime 
QUEUE:q3 

TYPE:fcfs 
CLASS LIST:c3d4 c3dl c3d2 

SERVICE TIMES:mean_stime 
QUEUE:q4 

TYPE:fcfs 
CLASS LIST:c4d1 c4d2 c4d3 

SERVICE TIMES:mean_stime 
CHAIN:c 

TYPE:open 
SOURCE LIST:s 
ARRIVAL TIMES:mean_atime 
:s->cld2 cld3 c1d4;1/12 1/12 1/12 
:c1d2->sink 
:c1d3->c2d3 
:c1d4->c2d4 
:s->c2d3 c2d4 c2d1;1/12 1/12 1/12 
:c2d3->sink 
:c2d4->c3d4 
:c2d1->c3dl 
:s->c3d4 c3d1 c3d2;1/12 1/12 1/12 
:c3d4->sink 
:c3d1->c4d1 
:c3d2->c4d2 
:s->c4d1 c4d2 c4d3;1/12 1/12 1/12 
:c4dT'-'>sink 
:c4d2->cld2 
:c4d3->c1d3 

91 

Her.e we use the name cidj for queue i jobs with destination j. Though the diagram shows 
four sources and four sinks, we use only one of each. RESQ allows only one source per chain 
with numerical solution. Since the arrival times for the sources are exponential, i.e., the arrival 
processes are Poisson, we can combine the sources into a single source with arrival rate equal 
to the sum of the arrival rates of the individual sources. Or equivalently, we make the mean 
arrival time the reciprocal of the .sum of the reciprocals of the individual arrival times. The 
arrival probabilities for jobs leaving the single source are the arrival rates of the individual 
sources normalized so that the probabilities sum to one. In constructing the above dialogue . 
file we assumed equal arrival rates for each of the sources. Thus the probability a job starts at 
a given location is 1/4. RESQ only allows one sink for the entire network. EV AL gives US 

the following results: 

RESQ2 VERSION DATE: OCTOBER 9, 1981 
MODEL:. LOOP 
NO ERRORS DETECTED DURING NUMERICAL SOLUTION. 

WHAT:ut 

ELEMENT 
Q1 
Q2 
Q3 
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UTILIZATION 
0.75000 
0.75000 
0.75000 
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Q4 

WHAT:gt 

ELEMENT 
Q1 
Q2 
Q3 
Q4 

WHAT: po 

ELEMENT 
C 

WHAT:rtm 

ELEMENT 
C 

WHAT: 

0.75000 

MEAN QUEUEING TIME 
0.60000 
0.60000 
0.60000 
0.60000 

OPEN CHAIN POPULATION 
11.99999 

OPEN CHAIN RESPONSE TIME 
1.20000 

ROUTING / SEC. 9. 

By the results of Wong [WONG78]; we know that the response time distribution in this 
network has a distribution representable by the method of exponential stages. The distribution 
can be represented by the branching Erlang form with three stages, ml = m2 = m3= .6, PI = 
1/3 and P2 = .5. From equation (A3.2) in the Users Guide we have C = .8165 and standard 
deviation .9798. (This can be seen from Wong's results and the fact that the response time 
will consist of one, tW() or three queueing times with equal probability.) 

We can represent this same model using job variables to. save the destination of a job .and 
predicates which test the value of the job variable. Let us put the destination in JV(O). Let 
us also st()re the service time in JV(1); this will give another example of the effects of 
Kleinrock's independence assumption (see Section 11). Finally, let us meaSure the response 

. times with a passive queue. We could use the following dialogue file: 

MODEL: loop 
METHOD: simulation 
NUMERIC IDENTIFIERS:mean_atime mean_stime 

MEAN_A TIME: . 1 
MEAN_STIME:.15 

NUMERIC IDENTIFIERS:msg_dest msg_stime 
MSG_DEST:O /*JV to be used*/ 
MSG_STIME:1 /*JV to be used*/ 

MAX JV: 1 
QUEUE:rtq 

TYPE:passive 
TOKENS: 2147483647 
DSPL:fcfs 
ALLOCATE NODE LIST:beginrt 

AMOUNTS: 1 
QUEUE:q1 
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TYPE:fcfs 
CLASS LIST:c1 

WORK DEMANDS:standard(jv(msg_stime) ,0) 
QUEUE:q2 

TYPE:fcfs 
CLASS LIST:c2 

WORK DEMANDS:standard(jv(msg_stime) ,0) 
QUEUE:q3 

TYPE:fcfs 
CLASS LIST:c3 

WORK DEMANDS: standard (jv (msg_stime) ,0) 
QUEUE:q4 

TYPE:fcfs 
CLASS LIST:c4 

WORK DEMANDS:standard(jv(msg_stime),O) 
SET NODES:set_stime 
ASSIGNMENT LIST:. jv (msg_stime)=standard (mean_stime, 1) 
SET NODES:set~dest1 
ASSIGNMENT LIST: jv (msg_dest) =discrete (2, i /3; 3,1/3; 4,1/3) 
SET NODES:set dest2 
ASSIGNMENT LIST: jv (msg_dest) =discrete (1,1/3; 3,1/3; 4,1/3) 
SET NODES:set dest3 . -
ASSIGNMENT LIST:jv(msg_dest)=discrete(1,1/3; 2,1/3; 4,1/3) 
SET NODES:set dest4 
ASSIGNMENT LIST:jv(msg_dest)=discrete(1,1/3; 2,1/3; 3,1/3) 
CHAIN:c 

TYPE:open 
SOURCE LIST:s 
ARRIVAL TIMES:mean atime 
:s->beginrt->set_stime->set_dest1 set_dest2 set dest3 set~dest4 
:set-,-dest1 set_dest2 set_dest3 set_dest4"'->c1 c2 c3 c4 
:c1->sink c2;if(jv(msiLdest)=2) if(t) 
:c2->sink c3;if(jv(msg_dest)=3) if(t) 
:c3->sink c4;if(jv(msg~dest)=4) if(t) 
:c4->sink c1;if(jv(msg_dest)=1) if(t) 

QUEUES FOR QUEUEING TIMEDIST:rtq 
VALUES:.6 1.2 1.8 2.43.0 3.6 

CONFIDENCE INTERVAL METHOD:regenerative 
'REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL:90 

END 

SEQUENTIAL STOPPING RULE:yes 
QUEUES TO BE CHECKED:rtq 

MEASURES:qt 
ALLOWED WIDTHS: 10 

SAMPLING PERIOD GUIDELINES -
QUEUES FOR DEPARTURE COUNTS:rtq 

DEPARTURES: 10000 
LIMIT - CP SECONDS:250 
TRACE: no 

The line 

:dest1 dest2 dest3 dest4->c1 c2 c3 c4 
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is. equivalent to the four lines 

:destl-c>c1 
:dest2->c2 
: dest3.->c3 
:dest4->c4 

ROUTING / SEC. 9. 

Such a parallel grouping of transitions is allowed when there is only one "to node" for each 
"from node". The keyword "t" in the predicate "if(t)" represents the constant "true". (The 
keyword "f" is available to represent the constant "false".) 

We said that we were simplifying the routing, yet the above dialogue is much longer! 
However, the increase in length is due to the use of simulation, to the job variable scaling to 
avoid the independence assumption and to the passive queue for response times. There are 
now four classes instead of twelve (though there are four new set nodes) and there are fewer 
routing transitions. Though the difference is not dramatic, if there were more links (queues) 
then the difference would be more pronounced. We are not saying that this second approach 
with job variables and predicates is preferable in general; the RESQ user should consider both 
approaches in developing a model. 

We get the following from EV AL: 

RESQ2 VERSION DATE: OCTOBER 9, 1981 
MODEL: LOOP 
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
NO ERRORS DETECTED DURING SIMULATION. 

WHAT:utbo 

ELEMENT 
RTQ 
Q1 
Q2 
Q3 
Q4 

WHAT:tpbo(rtq) 

ELEMENT 
RTQ 

WHAT:qlbo(rtq) 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 
NUMBER OF CYCLES: 

4126.73047 
121.50 
123341 

367 

UTILIZATION 
5.3685E-09(5.1027E-09,5.6343E-09) 0.0% 
0.73852(0.72578,0.75126) 2.5% 
0.75~53(0.74188,0.77118) 2:9% 
0.75569(0.74239,0!769dO) 2.7% 
0:74544(0.73237,0.75851) 2.6% 

THROUGHPUT 
9.95679(9.87664,10.03694) 1.6% 
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ELEMENT 
RTQ 

WHAT:qtbo(rtq) 

ELEMENT 
RTQ 

WHl\T;sdqt (rtq) 

~LEMENT 

RTQ 

WHAT:qtdbo 

ELEMENT 
RTQ 

WHAT: 

MEAN QUEUE LENGTH 
11.52880(10.95804,12.09957) 9.~% 

MEAN QUEUEING TIME 
1.15788(1.10514,1.21063) 9.1 % 

STANDARD DEVIATION OF QUEUEING TIME 
0.98273 

QUEUEING TIME DISTRIBUTION 
6;00E-01:0.35635(0.34292,0.36978) 2.1% 
1.20E+OO:O.61885(0.59957,0.63814) 3.91 
1.80E+OO:O.78792(0.76920,0.80665) 3.7% 
2.40E+OQ:O.88318(0.86784,0.89852) 3.1% 
3.00E+OO:O.94042(0.92917,0.95167) 2.2% 
3.60E+OO:O.97121 (0.96404,0.97838) 1.4% 

CONTINUE RUN:/*Continue run:*/ yes 

EXTRA SAMPLING PERIODS:/*Extra periods:*/ 

SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
NO ERRORS DETECTED DURING SIMULATION. 

WHAT:qtbo(rtq) 

ELEMENT 
RTQ 

WHAT:nd(rtq) 

ELEMENT 
RTQ 

April 3,1982 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 
NUMBER OF CYCLES: 

5147.03516 
152.82 
154129 

429 

MEAN QUEUEING TIME 
1.15198(1.10696,1.19700j 7.8% 

NUMBER OF DEPARTURES 
51267 
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WHATigtdbo 

ELEMENT 
RTQ 

WHAT: 

QUEUEING TIME DISTRIBUTION 
6.00E-01:0.35526(0.34385,0.36666) 2.31 
1.20E+00:0.61923(0.60268,0.635781 3.3% 
1.80E+00:0.79008(0.77403,0.80613) 3.2% 
2.40E+00:0.88712(0.87407,0.90017) 2.6% 
3.00E+00:0.94308(0.93348,0.95268) 1.9% 
3.60E+00:0.97261 (0.96650,0.97873) 1.2% 

CONTINUE RUN:/*Continue run:*/ no 

ROUTING / SEC. 9 

This is an example where Kleinrock's independence assumption seems more appropriate; the 
mean response time estimates are essentially the same, espeCially when one considers that the 
observed throughput is lower than the specified arrival time. The standard deviation of 
response time in the simulation is very close to the value from Wong's results. 
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10. PASSIVE QUEUES 

Our examples so far have used only part of the generality of the passive queue. We have 
only used allocate nodes and release nodes, and usually there has been a single pair of allocate 
ahd release nodes for a given queue. However, a passive queue may have an arbitrary nuthb~r 
of nodes, as long as there is at least one allocate node, and release nodes need not be pairM 
with allocate nodes if they are present at all. Many of our models using a passive queue for 
measuring response times have no release nodes at all. Note that sinks, and to a lesser extent, 
fusion nodes (Section 11), can be used to release tokens. 

POOL OF TOKENS 

~_--~--------1~~t--~"" 
I / \ " 
I I \. " 
I / \' 

I \ 
~------~~T ~----~~----~ 

\ 

ALLOCATE 
CREATE 

SUBNETWORK 
\ 

\ RELEASE 
\ 

\OESTROY 
\ 

JOB FLOW 
TOKEN FLOW 

Figure 10.1 - .Passive Queue 

There are five other kinds of nodes which may be present in passive queues; AND 
allocate nodes, OR allocate nodes, transfer nodes, destroy nodes and create nodes. AND 
allocate, OR allocate and transfer nodes are discussed in Section 5 of the Users Guide. We 
will focus on create and destroy nodes in this section. 

A create node.is used to add tokens to thepobl of tokens of a passive queue. . The 
nUlV-berof tokens created is specified analogously to specification of the number of tokens 
requested at an allocate node. A create node behaves in the same manner whether or. not a 
job holds tokens of the queue, i.e., a job need not hold tokens to create tokens. A create 
node has no effect on the job going through it; the job passes through withoHt delay. The 
effect on jobs waiting for tokens, if any are waiting,is the same as if the tokens becaJ:ile 
available through another job releasing tokens. A destroy node is similar to a release node,in 
that a job gives up all tokens it holds of the queue, if it holds any, but the tokens are de­
stroyed rather than made available to other jobs. 

As an example of the use of create and destroy nodes, let tis consider printerspobling in a 
simple computer system model. A potential problem with the models we have used so far is 
that they ignore spooling of disk files to slower speed input/output devices.. Let us assUme 
tha.t there is a 300 line per minute printer supported by the computer system and that there 
are two tasks constantly present which handle the spooling. One task fills buffers from the 
disk for the printer and the other dumps the buffers to the printer. There are two buffers for 
the printer and each buffer contains 30 lines. Thus the transfer time for one buffer is 6 . 
seconds (30/(300/60)). 

April 3, 1982 



98 PASSIVE QUEUES / SEC. 10 

FULL BUFFERS /'~\ 
"..."'" // \ 

"..."'" / \ 

\ 
\ 
\ 

. "... / 

ThW' 
CPU 

Figure 10.2 - Printer Spooling 

To represent the printer spooling we have two chains, one for each task, and two passive 
queues, one for full buffers and one for empty buffers. The passive queues will be used, in 
part, to represent communication between the tasks, corresponding to the use of semaphores 
and similar process communication primitives in operating systems. See Figure 10.2. The 
number of tokens of each pool will fluctuate between zero and two, because of create and 
d'estroy nodes, and the total number of tokens will usually be less than two.. The task which 
empties the buffers acquires a token representing a full buffer, destroys it, transfers the buffer 
contents to the printer and creates a token of the pool representing empty buffers. Similarly 
the task which fills the buffers acquires an "empty buffer" token, destroys it, transfers from 
the disk to the buffer and creates a token of the "full buffer 11 pooL The buffer emptying task 
waits at the full buffer allocate node when no full buffers are available, and the buffer filling 
task waits at the empty buffer allocate node when no empty buffers are available. 

The following dialogue file could be used for this model. 

MODEL:csmwsp 
METHOD: simulation 
NUMERIC IDENTIFIERS: floppy time disktime cputime dmp 

FLOPPYTIME:.22 
DISKTIME: .019 
CPUTIME: .05 
DMP:4 

NUMERIC IDENTIFIERS:buffers initfulbuf 
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BUFFERS: 2 
INITFULBUF:2 

NUMERIC IDENTIFIERS:lpm /*lines/minute*/ lpb /*lines/buffer*/ 
LPM: 300 
LPB:30 

QUEUE:floppyq 
TYPE:fcfs 
CLASS LIST:floppy 

SERVICE TIMES: floppy time 
\;2U~UE:diskq 

TYPE:fcfs 
CLASS LIST:disk diskspool 

SERVICE TIMES:disktime 
QUEUE:cpuq 

TYPE:ps 
CLASS LIST:cpu 

SERVICE TIMES:cputime 
QUEUE:printerq 

TYPE:fcfs 
CLASS LIST:printer 

SERVICE TIMES:standard(lpb/(lpm/60) ,0) 
QUEUE:fullbuffer 

TYPE:passive 
TOKENS:initfulbuf-1 
DSPL:fcfs 
ALLOCATE NODE LIST:getfullbuf 

NUMBERS OF TOKENS TO ALLOCATE: 1 
DESTROY NODE LIST:destfulbuf 
CREATE NODE LIST:genfullbuf 

NUMBERS OF TOKENS TO CREATE: 1 
QUEUE:empbuffer 

TYPE:passive 
TOKENS:buffers-initfulbuf 
DSPL:fcfs 
ALLOCATE NODE LIST:getempbuf 

NUMBERS OF TOKENS TO ALLOCATE: 1 
DESTROY NODE LIST:destempbuf 
CREATE NODE LIST:genempbuf 

NUMBERS OF TOKENS TO CREATE: 1 
CHAIN:csm 

TYPE:closed 
POPULATION:dmp 

. :cpu->disk floppy;. 9.1 
:disk floppy->cpu 

CHAIN: emptying 
TYPE: closed 
POPULATION: 1 
:getfullbuf->destfulbuf->printer->genempbuf->getfullbuf 

CHAIN: filling 
TYPE: closed 
POPULATION: 1 
:getempbuf->destempbUf->diskspool->genfullbuf->geteIilpbuf 

CONFIDENCE INTERVAL METHOD:regenerative 
REGENERATION STATE DEFINITION -

April 3,1982 
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CHAIN:csm 
NODE LIST:cpu 
REGEN POP:dmp 
INIT POP:dmp 

CHAIN; emptying 
NODE LIST:printer 
REGEN POP: 1 
INIT POP: 1 

CHAIN: filling 
NODE LIST:getempbuf 
REGEN POP:1 
INIT POP: 1 

CONFIDENCE LEVEL:90 
SEQUENTIAL STOPPING RULE:yes 

QUEUES TO BE CHECKED.: floppyq diskq printerq 
MEASURES:ut ut ut 

END 

ALLOWED WIDTHS: 10 10 10 
SAMPLING PERIOD GUIDELINES -

QUEUES FOR DEPARTURE COUNTS:cpuq 
DEPARTURES: 10000 

LIMIT - CP SECONDS:250 
TRACE: no 

We could get the following results from EVAL. 

RESQ2 VERSION DATE: OCTOBER 16, 1981 
MODEL:CSMWSP 
WARNING -- SOME PASSIVE QUEUE QT PROCESSES MAY 

NOT BE TRULY REGENERATIVE BECAUSE OF 
QUEUEING TIMES IN PROGRESS 

WARNING -- MODEL MAY NOT BE TRULY REGENERATIVE 
BECAUSE. OF NON-ZERO POPULATION AT CLASS 
WITH DIST. OTHER THAN BRANCHING ERLANG 

SAMPLING PERIOD END: CPUQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: CPUQ DEPARTURE GUIDELINE 
NO ERRORS DETECTED DURING SIMULATION. 

WHAT:utbo(*) 

ELEMENT 
FlJtLBUFFER 
EMPBUFFER 
FLOPPYQ 
DISKQ 

DISK 
DISKSPOOL 

CPUQ 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 
NUMBER OF CYCLES: 

UTILIZATION 
0.00000 

1055.25220 
33.36 
40350 

8317 

0.00000 
0.41176(0.36190,0.46162) 10.0% 
0.32471(0.31889,0.33053) 1.2% 

0.32191(0.31611,0.32772) 1.2% 
2.7956E-03(-5.6492E-04,6.1562E~03) 0.1% 

0.95834(0.95279,0.96389) 1.1% 
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PRINTERQ 

WHAT:qlbo(*) 

ELEMENT 
F'ULLBUFFER 

~MPBUFFER 
FLOPPYQ 
DISKQ 

DISK 
DtSKSPOOL 

CPUQ 
PRINTERQ 

WHA:T:tpbo(*) 

ELEMENT 
FULLBUFFER 
EMPBUFFER 
F'LOPPYQ 
DISKQ 

DISK 
·DISKSPOOL 

CPUQ 
PRINTERQ 

WHAT: 

1.00000(0.99992,1.00008) 0.0% 

MEAN QUEUE LENGTH 
0.00000 
0;995~8(0.98976,1.00080) 1.1% 
0.63072(O.51490,0~74653) 36.7% 
0.46227(0;44917,0.47476) 5.4%, 
0.45754(0.44516~0.46993) 5.4% 
4~7232E-03(-7.95a5E-04,1.0242E-02) 233.7% 

2.91174(2.86889,2.95459) 2.9% 
1.00000(0.99992,1.00008) 0.0% 

THROUGHPUT 
0.16584(0.03030,0.30138) 163.5% 
0.16584(0.03030,0.30138) 163.5% 
1 .93792 ( 1 .77106,2.10479) 17.2 % 
17;18071 (16.95303,17.40837) 2.7% 

17.01488(16.78821,17.24153) 2.7% 
0.16584(0.03030,0.30138) 163.5% 

18.95280(18.73048,19.17511) 2.3% 
0.16584(0.03030,0.30138) 163.5% 

CONTINUE RUN:yes 

EXTRA SAMPLING PERIODS: 1 

SAMPLING PERIOD END: CPUQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: CPUQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: CPUQ DEPARTURE GUIDELINE 
NO ERRORS DETECTED DURING SIMULATION. 

WHAT:utbo(*) 

ELEMENT 
FULLBUFFER 
EMPBUFFER 
FLOPPYQ 
DISKQ 

DISK 
DISKSPOOL 

CPUQ 

April 3, 1982 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 
NUMBER OF CYCLES: 

UTILIZATION 
0.00000 

1585.19995 
50.02 
60544 
12421 

0.00000 
0.41248(0.37124,0.45372) 8.2% 
0.32650(0.32175,0.33124) 0,9% 

0.32351 (0.31877,0.32824) 0.9% 
2.9893E-~3(8,4241E~05,5.8944E-03) 0.6% 

0.95617(0.95123,0.96111) 1.0% 

101 



102 PASSIVE QUEUES / SEC .. 10 

PRINTERQ 1.00000(0.99993,1.00007) 0,0% 

WHAT: 

CONTINUE RUN:no 

In this dialogue we see two warning messages about the regeneration state. The second one is 
consistent with our previous discussion in Sections 5 and 8.3. Because we have a job at the 
printer class in the regeneration state and because the service times at that class are. not 
represented by the branching Erlang distribution, the state we have chosen is not truly a 
regeneration state. In fact,this model is not truly regenerative, i.e;, there is no state which is 
truly a regeneration state. However, RESQ allows us to proceed as if the model were 
regenerative. (We are not especially interested in queueing times with this example, so we use 
this approximation of the regenerative method to obtain confidence intervals rather than using 
the spectral method.. The method of independent replications would also be a reasonable 
choice.) 

The first warning message has a fairly subtle explanation. Nearly all of our discussion of 
regeneration states has implicitly been restricted to the queue length processes underlying the 
model and the performance measures obtainable from the queue length process. Most of the 
performance measures we have considered, including mean queueing time, are obtainable from 
the queue length process. The warning message and the following discussion do not apply to 
these measures. (Since we are not focusing on queueing times in this example, we can 
comfortably ignore the warning.) 

In defining a regeneration state for a queueing time process, one must be rilUch more 
careful than in defining a regeneration state for a queue length process. For a detailed 
discussion, see Iglehart and Shedler [IGLE80]. If we are to be rigorous, we must not aUow 
queueing times in progress in our regeneration state if we wish to have defensible confidence 
intervals for queueing time distribution points or standard deviations. This is one of the 
reasons we used the state with all jobs at the terminals for model csmwm. With a few 
exceptions, . we cannot have queueing times in progress and have those queueing times truly 
regenerate. Aplomb gives the warning message whenever there are passive queues with jobs 
(job copies) at allocate nodes in the specified regeneration state. (A similar warning would 
usually apply to active queues as well, but there is no such warning issued because (1) a 
regeneration state must have some jobs at classes, so. the warning would always appear, .and 
(2) active queues are not used to measure response times the way passive queues are.) Though 
it is theoretically possible in some circumstances to have jobs (job copies) at allocate nodes in 
the specified regeneration state and obtain meaningful confidence intervals, this will usually 
not be practical. 

L==L~.~NDO~ 
/1 ------

// 1 -----
/ 1 ---------]/\/ --

1 
1 
1 

Figure 10.3- Window Flow Control 
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Create and destroy nodes are also very important in representingcommunicatiori network 
protocols. We consider an example of a window flow control mechanism.' sometimes referred 
to as "pacing." The essence of the pacing mechanism is that there is a limit, called the 
"window," to the number of messages which may be sent from one point in the network to 
Mother before the recipient says that more messages may be sent. Usually the first messag~ 
of the window is marked to indicate to the recipient that a reply should be sent back' to . the 
originator. Upon receipt of the reply, the originator may then send another window of 
messages. Figure 10.3 depicts a pacing mechanism added to model fourlink of Section 13. The 
passive queue initially has the number of tokens equal to the window size. Each message 
allocates a token before it can proceed. When it gets tolhe destination,it destroys the token. 
If the message was the first of a window, it turns around and goes back to the· create node at 
the origin where it creates a new window of tokens. These may be allocated to any waiting 
messages. A global variable, wcount, is used. to count the arriving messages' modulo the 
window size. If an arriving message finds wcount to be zero, that indicates that it is the first 
message of the window, and that fact is recorded by setting its JV(1) to one. The following 
dialogue file could be used. 

MODEL: pacing 
METHOD: simulation 
NUMERIC PARAMETERS:windowsize 
NUMERIC IDENTIFIERS:msg_stimep_reply 

MSG_STIME:O /*JV to be used*/ 
P~REPLY:l /*JV to be used*/ 

GLOBAL VARIABLE IDENTIFIERS:wcount 
WCOUNT:O 

MAX JV: 1 
QUEUE:rtq 

TYPE:passive 
TOKENS:2147483647 
DSPL:fcfs 
ALLOCATE NODE LIST:beginrt 

NUMBERS OF TOKENS TO ALLOCATE: 1 
RELEASE NODE LIST:endrt 

QUEUE:windowq 
TYPE:passive 
TOKENS:windowsize 
DSPL:fcfs 
ALLOCATE NODE LIST:getwindow 

NUMBERS OF TOKENS TO ALLOCATE: 1 
DESTROY NODE LIST:dropwindow 
CREATE NODE LIST:newwindow 

NUMBERS OF TOKENS TO CREATE:.windowsize 
QUEUE:ql 

TYPE:prty 
CLASSLIST:clr ell 

SERVICE TIMES:standard(jv(msg_stime) ,0) standard(.Ol,O) 
PRIORITIES:2 1 

QUEUE:q2 
TYPE:prty 
CLASS LIST:c2r c21 

SERVICE TIMES:standard(jv(msg_stime) ,0) standard(.Ol,O) 
PRIORITIES:2 1 

. QUEUE:q3 
TYPE:prty 
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CLASS LIST:c3r c31 
SERVICE TIMES: standard (jv (msg~stime) ,0) standard (.01 ,0) . 
PRIORITIES:21 

QUEUE:q4. 
TYPE:prty. 
CLASS LIST:c4r c41 

SERVICE .TIMES: standard (jv (msg_stime) ,0) standard ( . 01. ,0) 
PRIORITIES:2 1 

.SET NODES:set_stime 
ASSIGNMENT LIST: jv (msg_stime) =standard (.125,1) 
SET NODES:inccount 
ASSIGNMENT LIST:wcount=(wcount+1) mod windowsize 
SET NODES:setreply 
ASSIGNMENT LIST:jv(p_reply)=1 
CHAIN:ch 

TYPE: open 
SOURCE LIST:s 
ARRIVAL TIMES:.25 
:s->beginrt->set_stime->setreply inccount;if (wcount=O) if(t) 
:setreply->inccount->getwindow->c1r 
:c1r->c2r->c3r->c4r->dropwindow->endrt 

END 

:endrt->sink c41;if(jv(p_reply)=0) if(t) 
:c41->c31->c21->c11->newwindow~>sink 

QUEUES FOR QUEUEING TIME DIST:rtq 
VALUES: .5 1 1. 5 2 2. 5 

QUEUES FOR TOKEN USE DIST:windowq 
MAX VALUE:2*windowsize-1 

QUEUES FOR TOTAL TOKEN DIST:windowq 
MAX VALUE:2*windowsize-1 

CONFIDENCE INTERVAL METHOD:regenerative 
REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL:90 
SEQUENTIAL STOPPING RULE:yes 

QUEUES TO BE CHECKED:rtq 
MEASURES:qt 
ALLOWED WIDTHS: 10 

SAMPLING PERIOD GUIDELINES -
QUEUES FOR DEPARTURE COUNTS:rtq 

DEPARTURES: 10000 
LIMIT - CP SECONDS:250 
TRACE: no 

The prty (priority) queueing discpline'is used to give the pacing replies priority over the data 
messages. Note that the measures of total tokens in the passive queue pool become interesting 
when. create and destroy nodes are present. In this model it is possible to have up to 
2 x windowsize-1 tokens in the pool. In dialogue filels, it is possible to specify that distribu­
tions of tokens in use and total tokens be gathered, as illustrated above. The syntax is 
e1'sentially the same as for queue length distributions. The following can be obtained with 
EVAL: 

RESQ2 VERSION DATE: OCTOBER 16, 1981 
MODEL: PACING 
WINDOWSIZE:6 
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WARNING -- MODEL MAY NOT BE TRULY REGENERATIVE 
BECAUSE OF USE OF GLOBAL VARIABLES 

SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
NO ERRORS DETECTED DURING SIMULATION. 

WHAT :utbo (*) 

ELEMENT 
RTQ 
WINDOWQ 
Q1 

C1R 
C1L 

Q2 
C2R 
C2L 

Q3 
C3R 
C3L 

Q4 
C4R 
C4L 

WHAT:tubo 

ELEMENT 
RTQ 
WINDOWQ 

WHAT:tudbo 

ELEMENT 
WINDOWQ 

April 3,.1982 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 
NUMBER OF CYCLES: 

UTILIZATION 

7568.48047 
145. 11 
17.0544 
I'" 2149 

.·.r 

2. 6288E-09 (2. 5138E'-09, 2. 7437E-09) 0.0% 
0.75093(0.73342,.0.76845) 3.5% 
0.50775(0.50135,0.51414) 1.3% 

0.50112(0.49476,0.50747) 1.3% 
6.6275E-03(6.5377E-03,6.7173E-03) 0.0% 

0.50775(0.50135,0.51414) 1.3% 
0.50112(0.49476,0.50747) 1.3% 
6.6275E-03(6.5377E-03,6.7173E-03) 0.0% 

0.50775(0.50135,0.51414) 1.3% 
0.50112(0.49476,0.50747) 1.3% 
6.6275E-03(6.5377E-03,6.7173E-03) 0.0% 

0.50775(0.50135,0.51414) 1.3% 
0.50112(0.49476,0.50747) 1.31 
6.6275E-03(6.5377E-03,6.7173E-03) 0.0% 

MEAN TOKENS IN USE 
5.64520(5.39842,5.89198) 8.7% 
4.50559(4.40052,4.61067) 4.7% 

DISTRIBUTION OF TOKENS IN USE 
0:0.07033(0.06581,0.07486) 0.9% 
1:0.09848(0.09344,0.10353) 1.0% 
2:0.11277(0.10769,0.11785) 1.0% 
3:0.11347(0.10904,0.11791) 0.9% 
4:0.11165(0.10789,0.11540) 0.8% 
5: O. 11517 (0. 11188,0. 11847) O. 7 % 
6:0.13371(0.12858,0.13885) 1.0% 
7:0.09138(0.08688,0.09588) 0.9% 
8:0.06271 (0.05881,0.06662) 0.8% 
9:0.04551 (0.04150,0.04952)0.8% 
10:0.02739(0.02430~0.03047) 0.6% 
11:0.01742(0.01481,0.02003) 0.5% 
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WHAT:ttbo 

ELEMENT 
RTQ 
WINDOWQ 

WHAT:ttdbo 

ELEMENT 

WHAT:qlbo(*) 

ELEMENT 
RTQ 
WINDOWQ 
Q1 

C1R 
C1L 

Q2 
C2R 
C2L 

Q3 
C3R 
C3L 

Q4 
C4R 
C4L 

WHAT:qtbo(*) 

ELEMENT 
RTQ 
WJ:NDOWQ 
Ql 

C1R 
C1L 

Q2 
C2R 
C2L 

PASSIVE QUEUES / SEC. 10 

MEAN TOTAL TOKENS IN POOL 
2.1475E+09(2.1474E+09,2.1476E+09) 0.0% 
7.87949(7.84877,7.91022)0.8% 

DISTRIBUTION OF TOTAL TOKENS IN POOL 
1: 1. 1 777E-03 (8. 6775E-04, 1 . 4877E-03) 0.1 % 
2:3.0013E-03(2.5671E-03,3.4356E-03) 0.1% 
3:0.01040(0.00953,0.01127) 0~2% 

4:0.02528(0.02398,0.02658) 0.3% 
5:0.06318(0.06140,0.06496) 0.4% 
6:0.17828(0.17243,0.18412) 1.2% 
7:0.15969(0.15417,0.16520) 1.1% 
8:0.15307 (0.14791,0.15822) 1.0% 
9:0.15729(0.15191,0.16266) 1.1% 

10:0.13858(0.13316,0.14399) 1.1% 
11 : 0.11007 (0.10471 ,0.11543) 1.1 % 

MEAN QUEUE LENGTH 
5.64520(5.39842,5.89198) 8.7% 
5.64520(5.39842,5.89198) 8.7% 
1.16712(1.12730,1.20694) 6.8% 

1.13603(1.09643,1.17563) 7.0% 
0.03109(0.02952,0.03266) 10.1% 

1.03166(1.00930,1.05402) 4.3% 
0.99569(0.97408,1.01730) 4.3% 
0.03597(0.03400,0.03794) 11.0% 

1.14772(1.12481,1.17063) 4.0% 
1.11837(1.09609,1.14066)4.0% 
0.02935(0.02778,0.03092) 10.7% 

1.26213(1.23699,1.28727) 4.0% 
1.25550(1.23040,1.28061) 4.0% 
6.6275E-03(6.5377E-03,6.7173E-03) 2.7% 

MEAN QUEUEING TIME 
1.41964(1.36345,1.47584) 7.9% 
1.41964(1.36345,1.47584) 7.9% 
0.25158(0.24403,0.25912) 6.0% 

0.28569(0.27692,0.29446) 6.1% 
0.04691 (0.04509,0.04873) 7.8% 

0.22238(0.21838,0.22638) 3.6% 
0.25039(0.24587,0.25492) 3,6% 
0.05428(0~05209,0.05647) 8.1% 
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Q3 
C3R 
C3L 

Q4 
C4R 
C4L 

WHAT:qtdbo 

. ELEMENT 

RTQ 

WHAT: 
CONTINUE RUN:no 

WINDOWSIZE: 

0.24739(0.24335,0.25144) 3.3% 
0.28125(0.27665,0.28584) 3.3% 
0.04429(0.04254;0.04603) 7.9% 

0.27206(0.26759,0.27652) 3.3% 
0.31573(0.j1053,0.32093) 3.3% 
0.01000 

QUEUEING TIME DISTRIBUTION 
5;00E-01 :0.15992 (0.15131 ,0.16854) 1.7% 
1.00E+OO:O.40324(0.38651,0.41998) 3.3% 
1.50E+OO:O.61713(0.59623,0.63802) 4.2% 
2.00E+OO:O.76445(0.74380,0.78511) 4.1% 
2.50E+OO:O.86317(0.84620,0.88014) 3.4% 
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With this pacing mechanism and the chosen parameter values, mean response is only slightly 
increased (from 1.18 to 1.42) but we now know that the destination will never need more than 
11 buffers (and if there were more origin destination pairs, unnecessary network congestioIi 
might be avoided.) 
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U. SPLIT, FISSION AND FUSION NODES 

11.1. Split Nodes 

Split nodes allow a job to produce additional independent jobs. Split nodes are often 
used in models of communication systems to create control messages, e.g., for acknowledge­
ments or flow control mechanisms. A split node has one entrance, an exit for the job that 
entered and an additional exit for each new job to be created. The created jobs are given the 
same job variable values as the creating job. The created jobs do not possess tokens, whether· 
or not the creating job possessed tokens. 

Figure 11.1 - Bulk Arrivals 

As an abstract example of use of split nodes, suppose we wish to represent a queue with 
bulk arrivals, i.e., with several jobs arriving at the same time. A single arriving job can 
become several by going through a split node. See Figure 11.1. A job arriving from the 
source goes to a set node where JV(O) is set to the actual number of jobs to arrive. If that 
number is greater than one, the original job goes to the split node. (Note that the split node is 
a separate node; i.e., another node, e.g., a class, cannot serve as a split node.) One created job 
leaves the split node through the second (bottom) exit and goes on to the queue. The original 
job leaves the split node through the first (top) exit. In our diagrams of split nodes we have 
exactly one exit from the upper half of the triangle and one exit from the bottom half for each 
job created. The original job goes to a set node to decrement JV(O). If JV(O) is still greater 
than one, the original job goes to the split node again; otherwise it goes to the queue. Let the 
number of arriving jobs be equally likely to be any value from one up to maxjobs. We could 
use the following dialogue file: 

. MODEL: bulk 
METHOD: simulation 
NUMERIC PARAMETERS:atime maxjobs stime 
QUEUE:q 

TYPE:fcfs 
CLASS LIST:c 

SERVICE TIMES:stime 
SET NODES: setcount deccount 
ASSIGNMENT LIST:jv(O)=ceil(uniform(O,maxjobs,l)) jv(O)=jv(O)-l 
SPLIT NODES:splitnode 
CHA~N:ch 

TYPE: open 
SOURCE LIST:s 
ARRIVAL TIMES:atime 
:s->setcount->splitnode ciif(jv(O»l) if(t) 
:splitnode->deccount c;split 
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. END 

: deccount->splitnode c; if(jv (0»1) if (t) 
:c->sink 

QUEUES FOR QUEUEING TIME DIST:q 
VALUES:10 20 30 40 50 

CONFIDENCE INTERVAL METHOD:regenerative 
REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL:90 
SEQUENTIAL STOPPING RULE:yes 

QUEUES TO BE CHECKED:q 
~EASURES;qF 
ALLOWED WIDTHS: 1 0 

EXTRA SAMPLING PERIODS:O 
SAMPLING PERIOD GUIDELINES -

QUEUES FOR DEPARTURE COUNTS:q 
DEPARTURES: 10000 

LIMIT - Cp·SECONDS:300 
TR1\CE:no 

109 

As with other nodes, the name of a split node may be any legal RESQ name; we use 
"splitnode" to help clarify the syntax for split nodes. 

It is not necessary to give the name of a split node before the routing definition. Foi: 
example, We could omit the line 

SPLIT NODES:splitnode 

from the above dialogue file and the file· would still be accepted by SETUP .. When SETlJP 
sees the name of a split node in the routing, it does not know whether that name is int~nded 
to be. that of a new (split) node or whether it it is a misspelling of the name of another node. 
For this reason,if we omit the above line, when SETUP encounters the following line 

: s->setcount->splitnode c; if (jv (0) >1) if (t) 

it produces the following warning message at the terminal and in the RQ2LIST file 

**ERROR** WNG: THE NODE "SPLITNODE " HAS BEEN IMPLICITLY DECLARED 

SETUP knows that splitnode is a split node froin the routing transition with splitnode as the 
from node: . 

:splitnode->deccount c;split 

This transition indicates that splitnode is a split node, with the job which entered the node 
going to deccourtt when it leaves and with one new job going to nodec from the split node. 
SETUP does not prompt interactively for names of split nodes. Fission nodes (Section 11.2) 
and the dummy nodes we discuss below are treated Similarly by SETUP. . . 

In general a routing transition for a split node would have the form 

where from.--;node is a split nod~, the job which entered from_node would go to to_nodel' 
N-1 new jobs would be created by a visit to the split node and they would go to the remain-
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ing nO.des to' the right O.f the arrO.w. As with O.ther rO.uting transitiO.ns, a nO.de name may be 
used several times O.n the right hand side O.f the rO.uting transitiO.n. 

NO.te that the jO.bs leaving a split node are nO.t allO.wed to' chO.O.se a destination. In the 
example mO.del, the creating jO.b always gO.es to' the set nO.de and the created jO.balways gO.es 
to' the class. In general, we might wish to' make rO.uting decisiO.ns for the jO.bs leaving the split 
nO.de; this is a purpO.se fO.r dummy nO.des. A dummy nO.de has no. effect O.n a jO.b. We can 
specify a dummy nO.de as the destinatiO.n fO.r a jO.b leaving a split nO.de. Then the usual rO.uting 
decisiO.n mechanism is available fO.r jO.bs leaving the dummy nO.de. FO.r example, suppO.se that 
in the bulk arrival mO.del we want the number O.f arrivals to' have a geO.metric distributiO.n 
(starting at O.ne) with mean meanjO.bs. To. avO.id the warning message, we cO.uld use the 
fO.llowing line after the split nO.de definitiO.n 

DUMMY NODES:dummynode 

Then we cO.uld use the fO.llO.wing rO.uting definitiO.n 

:s~>splitnode c;1-1/meanjobs 1/meanjobs 
:splitnode->dummynode c;split 
:dummynode->splitnode c;1-1/meanjobs 1/meanjobs 
:c->sink 

The name O.f a dummy nO.de can be any legal RESQ name; we use "dummynO.de" fO.r clarity. 

With mO.del bulk as first defined abO.ve the mean number O.f jO.bs arriving at O.ne time will 
be (maxjO.bs+1)/2. Using EVAL we can get 

RESQ2 VERSION DATE: OCTOBER 20, 1981 
MODEL: BULK 
ATIME:55 
MAXJOBS: 10 
STIME:5 
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE 
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE 
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE 
NO ERRORS DETECTED DURING SIMULATION. 

WHAT:utbo 

ELEMENT 

Q 

WH.AT:tpbo 

ELEMENT 

Q 
SETCOUNT 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 
NUMBER OF CYCLES: 

2.9918E+05 
30.30 
35511 

2716 

UTILIZATION 
0.50105(0.48742,0.51468) 2.7% 

THROUGHPUT 
0.10030(0.09779,0.10281) 5.0% 
0.01840 
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DECCOUNT 
SPLITNODE 
S 

SINK 

WHA'l':qlbo 

ELEMENT 
Q 

WHAT:qtbo 

ELEMENT 
Q 

WHAT:qtdbo 

ELEMENT 
Q 

WHAT: 
CONTINUE RUN:no 

ATIME: 

0.08190 
0.08190 
0.01840 
0.10030 

MEAN QUEUE LENGTH 
4,00728(3.75102,4.26354) 12.8% 

MEAN QUEUEING TIME 
39.95358(38.08224,41.82491) 9.4% 

QUEUEING TIME DISTRIBUTION 
1.00E+01 :0.17989(0.17171 ,0.18807) 1.6% 
2.00E+01:0.34045(0.32704,0.35386) 2.7% 
3.00E+01rO.48915(0.47173,0.50657) 3.5% 
4.00E+01:0.60762(0.58830,0.62695) 3.9% 
5.00E+01:0.70237(0.68243,0.72231) 4.0% 
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Note that split node throughput is measured in entered jobs, i.e., created jobs are. not counted. 

11.2. Fission and Fusion Nodes 

Fission nodes allow a job to create additional jobs dependent on the creating job. Fusion 
nodes allow for the destruction of the created jobs in a coordinated manner.. Fission and 
fusion nodes are usually used together in pairs. Fission and fusion nodes are useful for 
representing synchronized processes (tasks) occurring in· operating systems. Similarly, fission 
and fusion nodes ate useful for representing parallel physical activities representing a. single 
logical activity, for example transmission of a message across a communication network as a 
collection of packets. 

A fission node has one entrance, an exit for the job that entered (referred to as the 
"parent"), and an additional exit for each new job to be created. The created jobs are 
referred to as "children." Children may themselves enter fission nodes, thus creating hierar­
chies of jobs (see Section 8 of the Users Guide). Children are given the same job variable 
values as the parent. The children do not possess tokens, whether or not the patent. does. 
Jobs are not allowed to go to sinks as long as they have relatiVes (parents or children). If this rule 
is violated, the simulation terminates. 
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In our diagrams we represent a fission node by a triangle with the entrance at one vertex 
and the exits on the opposite side. This corresponds to the split node representation except 
that the triangle is not divided into separate sub-triangles .for the parent and children exits. In 
the dialogue syntax, fission nodes are treated exactly the same as split nodes, except that 
(1) the keyword "FISSION" is used instead of the keyword "SPLIT," (2) th.ereis an 
interactive prompt to optionally declare the names of fission nodes, and (3) in dialogue files, 
if the names of fission nodes are declared before the routing definition they are defined after 
declarations for split nodes,if any are present. 

A fusion node provides a place for jobs to wait for related jobs (a parent or children). 
(A fusion node acts as a dummy node for jobs without relatives, i.e., such jobs pass through a 
fusion node without delay or other effect.) No more than one job of a "family" can stay at a 
fusion node. If a job arrives at a fusion node and it has relatives, but none of its relatives are 
at this particular fusion node, it waits at the fusion nodes. When a job arrives at a fusion 
node and it has a relative at this particular fusion· node, two things can happen, depending on 
the relationship between the jobs. If one is the parent and the other is a child, then· the 
offspring is destroyed. If both are children, the one that was created last is destroyed. Before 
a child is destroyed, any tokens it holds are released. After destruction of one job, if the other 
job. has· no remaining relatives, it proceeds from the exit of the fusion node. If the other jpb 
still has other relatives, it waits at the fusion node for another relative to arrive. 

In our diagrams we represent fusion nodes by a triangle with the exit at one vertex and 
the entrance(s) on the opposite side. Fusion nodes must be declared immediately before the 
routing, e.g., 

FUSION NODES:fusionnode 

Fusion nodes appear in the routing without further distinction, i.e., there is no need for a 
keyword as in the case of split and fission nodes. 

A natural application of fission and fusion nodes is to represent messages transmitted as 
packets in a communications network. In our loop model, an alternative to full-duplex links 
which might significantly improve performance would be to break long messages into packets, 
to be transmitted separately. Let us assume that the maximum packet size is to be 240 bits. 
If a message exceeds 240 bits, it will be broken into two or more packets. We represent this 
by sending a job with JV(0»240 to a fission node. The parent leaving the fission node has 
JV(O) decremented by 240 and the created job has JV(O) set to 240. (We are ignoring the 
headers and/or trailers which would be necessary on each packet.) If the parent still has 
JV(0»240 it goes to the fission node again. When a packet gets to its destination, it goes to 
a fusion node which represents assembly of the packets into the original message. When the 
parent and all of its children (if any) have made it to the fusion node, the parent leaves the 
fusion node. Figure 11. 2 shows the fission and fusion nodes but not the set nodes. The 
following dialogue file could be used: 
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Figure 11.2 - Packetizing of Messages 

MODEL: loop 
METHOD: simulation 
NUMERIC IDENTIFIERS:mean atime 

MEAN ATIME: . 1 
NUMERIC IDENTIFIERS:totlength capacity 

TOTLENGTH: 720 
CAPACITY: 4800 

NUMERIC IDENT'IFIERS:msg_dest pkt_leng 
MSG..c..DEST:O /*JV to be used*/ 
PKT LENG:l /*JV to be used*/ 

MAX JV: 1 
QUEUE:rtq 

TYPE:passive 
TOKENS:2147483647 
DSPL:fcfs 
ALLOCATE NODE LIST:beginrt 

NUMBERS OF TOKENS TO ALLOCATE: 1 
QUEUE:ql 

TYPE:fcfs 
CLASS LIST:cl 

WORK DEMANDS:standard(jv(pkt_leng)/capacity,O) 
QUEUE:q2 

TYPE:fcfs 
CLASS LIST:c2 

WORK DEMANDS:standard(jv(pkt_leng)/capacity,O) 
QUEUE:q3 

. April 3, 1982 
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TYPE:fcfs 
CLASS LIST:c3 

WORK DEMANDS:standard(jv(pkt_leng)/capacity,O) 
QUEUE:q4 

TYPE:fcfs 
CLASS LIST:c4 

WORK DEMANDS:standard(jv(pkt_leng)/capacity,O) 
SET NODES:set_rnsg_l 
ASSIGNMENT LIST: jv(pkt_leng)=standard(totlength,1) 
SET NODES:dec_rnsg_11 dec_rnsg_12 dec_rnsg_13 dec_rnsg_14 
ASSIGNMENT LIST:jv(pkt:.-leng)=jv(pkt_leng)-240 
SET NODES:set-pkt_11 set-pkt_12 set-pkt_13 set-pkt_14 
ASSIGNMENT LIST:jv(pkt_leng)=240 
SET NODES:dest1 
ASSIGNMENT LIST: jv(rnsg_dest)=discrete (2, 1/3; 3,1/3; 4,1/3) 
SET NODES:dest2 
ASSIGNMENT LIST:jv(rnsg_dest)=discrete(1,1/3; 3,1/3; 4,1/3) 
SET NODES:dest3 
ASSIGNMENT LIST:jv(rnsg_dest)=discrete(1,1/3; 2,1/3; 4,1/3) 
SET NODES:dest4 
ASSIGNMENT LIST: jv (rnsg_dest) =discrete( 1,1/3; 2,1/3; 3,1/3) 
FISSION NODES:separate1 separate2 separate3 separate4 
FUSION NODES:assernble 
CHAIN:c 

TYPE: open· 
SOURCE LIST:s 
ARRIVAL TIMES:rnean atirne 
:s->beginrt->set_rnsg_l->dest1 dest2 dest3 dest4 
:dest1->c1 separate1;if(jv(pkt_leng)<=240) if(t) 
:separate1->dec_rnsg_11 set-pkt_11;fission 
: dec_rnsg~11->c 1 separate1; if (jv (pkt_leng) <=240) if (t) 
:dest2->c2 separate2; if (jv(pkt_leng)<=240) if(t) 
:separate2->dec_rnsg_12 set-pkt_12;fission 
:dec_rnsg_12->c2 separate2;if(jv(pkt_leng)<=240) if(t) 
;dest3->c3 separate3;if(jv(pkt_lengj<=240) if(t) 
:separate3->dec_rnsg_13 set-pkt_13;fission 
: dec_rnsg_13->c3 separate3 i if (jv (pkt_leng) <=240) if (t) 
:dest4->c4 separate4;if(jv(pkt_leng)<=240) if(t) 
:separate4->dec_rnsg_14 set-pkt_14ifission 
:dec_rnsg_14->c4 separate4; if (jv (pkt_leng) <=240) if(t) 
:set-pkt_11 set-pkt_12 set-pkt_13 set-pkt_14->c1 c2 c3 c4 
:c1->assernble c2;if(jv(rnsg_dest)=2) if(t) 
:c2->assernble c3;if(jv(rnsg_dest)=3) if(t) 
: c3->assernble c4; if (jv (rnsg_dest) =4) if (t) 
:c4->assernble c1;if(jv(rnsg_dest)=1) if(t) 
:assernble->sink 

QUEUES FOR QUEUEING TIME DIST:rtq 
VALUES: . 6 1. 2 1. 8 2. 4 3. 0 3. 6 

CONFIDENCE INTERVAL METHOD:regenerative 
REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL:90 
SEQUENTIAL STOPPING RULE:yes 

QUEUES TO BE CHECKED:rtq 
MEASURES:qt 
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We could then get the following from EVAL: 

RESQ2 VERSION DATE: OCTOBER 20, 1981 
MODEL: LOOP 
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
NO. ERRORS DETECTED DURING SIMULATION. 

WHAT:utbo 

ELEMENT 
RTQ 
Q1 
Q2 
Q3 
Q4 

WHAT:tpbo(rtq) 

ELEMENT 
RTQ 

WHAT:qlbo(rtq) 

ELEMENT 
RTQ 

WHAT:qtbo(rtq) 

ELEMENT 
RTQ 

WHAT: sdqt (rtq) 

April 3; 1982 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 
NUMBER OF CYCLES: 

5085.87891 
488.95 
408413 

1318 

UTILIZATION 
4.1214E-09(3.9229E-09,4.3200E-09) 
0.75700(0.74489,0.76910) 2.4% 
0.74786(0.73703,0.75869) 2.2% 
0.74743(0.73574,0.75912) 2.3% 
0.73841 (0.72680,0.75002) 2.3% 

THROUGHPUT 
9.96209(9.89882,10.02536) 1. 3% 

MEAN QUEUE LENGTH 
8.85070(8.42426,9.27715) 9.6% 

MEAN QUEUEING TIME 
0.88844{0.84769,0.92919) 9.2% 
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ELEMENT 
R'I'Q 

WHAT:qtdbo 

ELEMENT 
RTQ 

WHAT: 

STANDARD DEVIATION OF QUEUEING TIME 
0.81473 

QUEUEING TIME DISTRIBUTION 
6.00E-01:0.46939(0.45398,O.48480) 3.1% 
1.20E+00:0.73667(0.71883,O.75450) 3.6% 
1.80E+00:0.87060(0.85549,0.88572) 3.0% 
2.40E+00:0.93901 (0.92868,0.94934) 2.1% 
3.00E+00:0.97377(0.96776,0.97978) 1.2% 
3.60E+00:0.98899(0.98564,0.99233) 0.7% 

CONTINUE RUN:/*Continue run:*/ yes 

EXTRA SAMPLING PERIODS:/*Extra periods:*/ 

SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE 
NO ERRORS DETECTED DURING SIMULATION. 

WHAT:qtbo(rtq) 

ELEMENT 
RTQ 

WHAT:nd(rtq) 

ELEMENT 
RTQ 

WHAT:qtdbo 

EI,EMENT 
R'VQ 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 
NUMBER OF CYCLES: 

6108.71094 
583.68 
489485 

1604 

MEAN QUEUEING TIME 
0.88052(0.84438,0.91665) 8.2% 

NUMBER OF DEPARTURES 
60777 

QUEUEING TIME DISTRIBUTION 
6.00E-01:0.47112(0.45714,0.48509) 2.8% 
1.20E+00:0.73878(0.72295,O.75461) 3.2% 
1.80E+00:0.87416(0.86082,0.88750) 2.7% 
2.40E+00:0.94169(0.93257,0.95080) 1.8% 
3.00E+OO:0.97524(0.96993,O.98055) 1.1% 
3.60E+OO:0.98972(0.98678,0.99265) 0.6% 
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WHA:T: 

CONTINUE RUN: j*Cdntinue run: */ no 

Th~ m.ean response time estimate,.88 seconds, is substantially improvecl over the estimate for 
the origiitalmo~el,1 .. 16.seconds. 
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12. QUEUE TYPES 

A queue type is a parameterized macro definition of a queue. Queue types are us~ally 
used to create multiple instances of a frequently used type of queue. For example, if fcfs were 
nbt a predefined specialRESQ queue type, we could define a corresponding queue type using 
the queue type,facility. 

There are two distinct operations involved in the use of queue types: the .definition' of a 
queue type and the invocation of a queue type. The queue type "definition consists of the 
specification of a parameterized queue template in whiGh some of the queue, type chanlcteris­
tics are given explicit values and other queue type characteristics are given parametric,values. 
The explicit values become the default characteristics of the queue type. Once a queue type 
has been defined, it can later be invoked to create a specific instance of a queue. As we shall 
see, a set of parameter values is given as part of the invocation. A queue defirte~by an 
invocationbfa queue type assumes the default characteristics of the queue, type and the 
parametric characteristics given by the set of parameter values in the invocation. 

A frequently used queue is a simple passive first come first served (pfefs) queue whiCh 
has no create or destroy nodes, a fcfs queueing discipline and a single allocate node at which a 
single token is allocated. Since such a queue is frequently used, we might want to define it as 
a, special queue type. A definition of a pfcfs queue type is shown in the model below. The 
following dialogue corresponds to the first version of csmwm in Section 4. 

MODEL:csmwm 
METHOD: simulation 
NUMERIC PARAMETERS:thinktime users partition::; 
NUMERIC IDENTIFIERS: floppy time disktime cputime thinktime users 

FLOPPYTIME: . 22 
DISKTIME:,. 019 
CPUTIME:.05 

NUMERIC IDENTIFIERS:cpiocycles 
CPIOCYCLES:8 

QUEUE TYPE:pfcfs /* passive fcfs queue template */ 
NUMERIC PARAMETERS:ntokens /*number of tokens in pool */ 
NODE PARAMETERS:alloc releas 
TYPE:passive 
TOKENS:ntokens 
DSPL:fcfs 
ALLOCATE NODE LIST:alloc 

NUMBERS OF TOKENS TO ALLOCATE: 1 
RELEASE NODE LIST:releas 

END OF QUEUE TYPE PFCFS 
QUEUE:floppyq 

TYPE:fcfs 
CLASS LIST:floppy 

SERVICE TIMES: floppy time 
QUEUE:diskq 

TYPE:fcfs 
CLASS LIST:disk 

SERVICE TIMES:disktime 
QUEUE:cpuq 

TYPE:fcfs 
CLASS LIST:cpu 

SERVICE TIMES:cputime 
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. QUimE:terminalsq 
TYPE:is 

. CLASS LIST: terminals 
SERVICE T:J:MES:thinktime 

QUEUE:memory 1* qefine the passive memory queue *1 
TYPE:pfefs 1* by invoking the pfefs queue type *1 
NTOKENS:partitions 
ALLoe: getmemory 
RELEAS:freememory 

CHAIN:interaetiv 
TYPE:elosed 
POPULATIONS:users 
:terminals->getmemory->epu;">floppy disk; .1 .9 
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The queue type definitions immediately precede the queue definitions. Note that with the 
exception of the parameter declarations, the body of a queue type is similar to the body of a 
queue definition. The parameter declarations themselves are similar to model parameter 
declarations with the exception of the NODE PARAMETERS: prompt. All nodes and classes 
used within the body of a queue type must be declared as a node parameter of the queue type. 

In the above model, the pfefs queue type is invoked once to define the memory queue. A 
queue type is invoked by giving the previously defined queue type name in response to the 
TYPE prompt of a· standard queue· definition. In addition to giving· the name of the queue 
type to be invoked, we must also supply values for the par(lmeters of the queue type; this is 
done· immediately following the TYPE prompt. Further discussion of queue types is given in 
Section 6 of the Users Guide. 
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13. SUBMODELS 

Submodels provide a facility for macro definition of subnetworks. A submodel is a 
template for a subnetwork which the user wishes to explicitly delineate (1) because this 
clarifies model structure, (2) because several such subnetworks (withparameterizable 
differences) appear ina model and/or (3) because this submodel is to be (may be) used in 
other mogels. 

When one uses ("invokes") a submodel with a set of parameter values, then a set of 
queues and nodes with the specified values and relationships is added to the network, just as 
invocation of an. assembly language macro causes a set of instructions to be. added tb the 
program. It is important for the user to think in terms of macros rather than procedures in 
properly understanding submodels and how they may be used. 

Figure 13.1 - Computer System Submodel 

TERMINALS 

o r------., 
>-------?i HOST 1-: ---~ o L ______ .J 

Figure 13;2- Network with Submodel Invocation 

Many of the examples we have given are easily (and appropriately) restated using 
submodels. For example, consider the computer system model csmwm. Let the entire 
network except for the terminals queue be considered a submodel, as depicted in Figure 13.1. 
After specifying the submodel, we can invoke it with parameters in a network corresponding 
to the previous model (Figure 13.2) and in other networks. The following dialogue file 
portion could define the submodel. 

SUBMODEL:cssm j*Computer System SubModel*j 
NUMERIC PARAMETERS:pageframes floppy time disktime cputime 
CHAIN PARAMETERS:chn 
NUMERIC IDENTIFIERS:cpiocycles 

CPIOCYCLES:8 
QUEUE: f loppyq . 
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TYPE:fcfs 
9LASSLIST:floppy 

SERVICE TIMES: floppy time 
QUEUE :diskq 

TYPE:fcfs 
CLASS LIST:disk 

·SERVICE TIMES:disktime 
QUEUE:cpuq 

TYPE:ps 
CLASS LIST:cpu 

SERVICE TIMES:cputime 
QUEUE: memory 

TYPE:passive 
TOKENS:pageframes 
DSPL:fcfs 
ALLOCATE .NODE LIST:getmemory 

NUMBERS OF TOKENS TO ALLOCATE: discrete (16, .25;32,.5;48, .25) 
RELEASE NODE LIST:freememory 

CHAIN:chn 
TYPE: external 
INPUT:getmemory 
OUTPUT:freememory 
:getmemory->cpu 
:cpu->floppy disk;.1 .9 
: floppy- >freememory cpu; 1/ cpiocycles ·1-'-1/ cpiocyc les 
:disk->freememory cpu;1/cpiocycles 1-1/cpiocycles 

END OF SUBMODEL CSSM 
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Notice that the dialogue very closely parallels the dhilogue for an entire model. We focus oh 
the differences. 

A submodel is only part of a network. For a network including a submodel to be 
meaningful, there must be at least one chain which is partially defined inside the submodel and 
partially defined outside the submodel. Such chains must be declared as chaihparameters of 
the submodel. In the current example, there is only one chain. It has the name" chn" inside 
the submodel and is declared as a parameter. 

Additional identifiers (numeric, distribution, global variable) may be defined in a 
submodel declaration. Identifiers defined outside a submodelmay be used within a submodeL 
N ames of identifiers may be reused within submodels. The rules· for doing so· are exactly the. 
same as in block structured programming languages suchas PL/I and PASCAL. 

As We said, chains declared as chain parameters are defined partly inside a submodel and 
partly outside a submodel. The type of a chain parameter is defined as "external" because the 
usual type, open or closed, is not determined until the chain definition is completed outside of 
the submodel. 

In many situations, submodels can be used with minimal knowledge of the contents of the 
submodel. To this end, it is possible to give exactly one node of each chain parameter the 
synonym "input" and to give exactly one node of each chain parameter the synonym 
"outpuL" When thesubmodel is invoked, and the chain definition completed, these nodes may 
be referred to by these synonyms instead of the names used within the submodeL It is 
intended that node input be the primary (usually the only) entry point seen by the invoking 
model and that node output be the primary (usually the only) exit point seen by the invoking 
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model. (The Users Guide discusses and illustrates use of node parameters for multiple entry 
and exit points per chain. See Section 10 and Appendix 1 of the Users Guide.) In the 
example, the allocate node and release node are used as the input and output, respectively, of 
the routing chain. 

The following uses submodel cssm to obtain a model definition equivalent to thecstnwm 
definition of Section 6. 

MODEL:csm 
METHOD: simulation 
NUMERIC PARAMETERS:thinktime users pageframes 
NUMERIC IDENTIFIERS: floppy time disktime cputime 

FLOPPYTIME:.22 
DISKTIME:.019 
CPUTIME: .05 

NUMERIC IDENTIFIERS:cpiocycles 
CPIOCYCLES:8 

QUEUE:terminalsq 
TYPE: is 
CLASS LIST:terminals 

SERVICE TIMES:thinktime 
SUBMODEL:cssm /*Computer System SubModel*/ 

END OF SUBMODEL CSSM 
INVOCATION:.host 

TYPE:cssm I 

PAGEFRAMES:pageframes 
FLOPPYTIME:floppytime 
DISKT1ME:disktime 
CPUTIME:cputime 
CHN:interactiv 

CHAIN:interactiv 
TYPE:closed 
POPULATION: users 
: terminals->host. input 
:host.output->terminals 

QUEUES FOR QUEUEING TIME DIST:host.memory 
VALUES:1 2 3 4 5.6 7 8 

QUEUES FOR QUEUE LENGTH DIST:host.memory 
MAX VALUE:users/2 

CONFIDENCE INTERVAL METHOD:regenerative 
REGENERATION STATE DEFINITION-· 
CHAIN:interactiv 

NODE LIST:terminals 
REGEN POP:users 
IN IT POP:users 

CONFIDENCE LEVEL:90 
SEQUENTIAL STOPPING RULE:yes 

QUEUES TO BE .CHECKED:host.memory 
. MEASURES:qt 

ALLOWED WIDTHS: 10 
SAMPLING PERIOD GUIDELINES-

QUEUES FOR DEPARTURECOUNTS:host.memory 
DEPARTURES: 1000 
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END 

LIMIT - CP SECONDS:300 
.TRACE:no 

123 

We have not repeated the full definition of the submodel here. In the actual file, it would fibt 
be necessary to use the definition if the definition existed as a separate file and were logically 
inserted at the appropriate point using the INCLUDE statement described in Section 2 of the 
Users Guide. 

An invocation is a specific instance of a submodel with its own parameter values (and its 
own nodes, queues and "global" variables which were defined locally within the submodel). 
The INVOCATION prompt requests a name for the invocation. This name will be needed 
later for qUalification of the names of elements of the submodel. The TYPE prompt requests 
the .. name of the submodel being invoked. After giving the submodel.name, the remaining 
prompts of the invocation are for parameter values. For numeric and distribution parameters, 
the values given must be expressions consisting of constants and previously defined identifiers 
(possibly including model parameter identifiers). The value given for a chain parameter will 
be the first appearance of that chain name, unless it has previously been used in an invocation 
or it is a chain array (see Section 3 of the Users Guide). 

Subsequent to the invocation, when it is neces~ary to refer to elements·· of the invoked 
submodel, these names. are qualified by the invocation mime in the form 
"invocation" "." "element". In the example, in the routing the allocate node is referred to as 
"host.input" and the release node is referred to as "host.output". In the simulation specific 
dialogue, the memory queue is referred to as host. memory. . 

The RQ2LIST indicates the level of nesting of submodel definition in the column after 
the line number: 

RESQ Translator V2.04 (10/02/81) Time: 13:42:23 Date: 10/26/81 

* 1* 0* MODEL:csm 
* 2* 0* 
* 3* 0* 

* 13* 0* 
* 14* 0* 
* 15* 1* 
* 16* 1* 

* 45* 1 * 
* 46* 1 * 
* 47* 0* 
* 48* 0* 

* 80* 0* END 

METHOD: simulation 
NUMERICPARAMETERS:thinktime users pageframes 

SERVICE TIMES:thinktime 
SUBMODEL:cssm /*Computer System SubModel*/ 

NUMERIC PARAMETERS:pageframes floppy time disktime cputime 
CHAIN PARAMETERS:chn 

:disk->freememory cpu;1/cpiocycles 1-1/cpiocycles 
END OF SUBMODEL CSSM 
INVOCATION: host 

TYPE:cssm 

NO FATAL ERRORS DETECTED DURING COMPILATION. 

This definition of csmwm with the submodel produces exactly the same numerical results 
as the definition used at the end of Section 5.2. The output format has an extra column giving 
invocation names, as we shall see shortly, 
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TERMINALS 

o 

o 

,-------., 
HOST! I 

'-______ J 

J-------, 
HOST2 I 

I I --------' 

Figure 13.3 - Network with Two Invocations 

Having defined submodel cssm, we can now use it several times in a modeL For example, 
if we wished to model a pair of computer systems sharing a common set of terminals as 
pictured in Figure 133, we might use the following model definition. 

MODEL:csm 
.METHOD:simulation 
NUMERIC PARAMETERS:thinktime users page frames 
NUMERIC IDENTIFIERS: floppy time disktime cputime1 cputime2 

FLOPPYTIME: .22 
DISKTIME: .019 
CPUTIME1:.05 
CPUTIME2:.075 

QUEUE:terminalsq 
TYPE:is 
CLASS LIST:terminals 

SERVICE TIMES:thinktime 
SUBMODEL:cssm /*Computer System SubModel*/ 

END .OF SUBMODEL CSSM 
INVOCATION:hostl 

TYPE:cssm 
PAGEFRAMES:pageframes 
FLOPPYTIME:floppytime 
DISKTIME:disktime 
CPUTIME:cputimel 
CHN:interactiv 

INVOCATION:host2 
TYPE:c;:ssm 
PAGEFRAMES:pageframes 
FLOPPYTIME:floppytime 
DISKTIME:disktime 
CPUTIME:cputime2 
CHN:interactiv 

CHAIN:interactiv 
TYPE: closed 
POPULATION: users 
:terminals->hostl.input host2.input 
:hostl.output host2.output->terminals 

QUEUES FOR QUEUEING TIME DIST:hostl.memory host2.memory 
VALUES: 1 2 3 4 5 6 7 8 
VALUES: 1 2 3 456 7 8 
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END 

CONFIDENCE INTERVAL METHOD:regenerative 
REGENERATION STATE DEFINITION..., 
CHAIN:interactiv 

NODE LIST:terminals 
REGEN POP:users 
INIT POP:users 

CONFIDENCE LEVEL:90 
SEQUENTIAL STOPPING RULE:yes 

QUEUES TO BE CHECKED:host1.memory host2.memory 
MEASURES:qt qt 
ALLOWED WIDTHS: 10 10 

SAMPLING PERIOD GUIDELINES~ 
QUEUES FOR DEPARTURE COUNTS:terminalsq 

DEPARTURES: 10000 
LIMIT - CP SECONDS: 1000 
TRACE: no 
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The dialogue is essentially the same as before, but there are now two invocations. Assuming 
50 terminals and the other parameters we have used, we could get the following. from EVAL. 

RESQ2 VERSION DATE: OCTOBER 20, 1981 
MODEL:CSM 
THINKTIME:10 
USERS: 50 
PAGEFRAMES:128 
SAMPLING PERIOD END: TERMINALSQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: TERMINALSQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: TERMINALSQ DEPARTURE GUIDELINE 
SAMPLING PERIOD END: TERMINALSQ DEPARTURE GUIDELINE 
NO ERRORS DETECTED DURING SIMULATION. 

WHAT:qtbo 

INVOCATION 

HOST1 
HOST1 
HOST1 
HOST1 
HOST2 
HOST2 
HOST2 
HOST2 

WHAT::utbo 

April 3, 1982 

SIMULATED TIME: 2.0007E+04 
542.76 

1102672 
13 

CPU TIME: 
NUMBER OF EVENTS: 
NUMBER OF CYCLES: 

ELEMENT 
TERMINALSQ 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 
MEMORY 
FLOPPYQ 
DISKQ 
CPUQ 

MEAN QUEUEING TIME 
9.95654 (9.88809,10.02499) 1.4% 
1. 67274 (1. 60467 ,1. 74080) 8.1 % 
0.29691(O.29259iO.3012J) 2.9% 
0.02387(0.0236~,0.02411) 2.0% 
0.10543(0.10329,0.10756) 4.0% 
9.11460(8.72290,9.50631) 8.6% 
0.29479(0.28634,0.30324) 5.7% 
0.02376(0.02362,0.02389) 1.1% 
0.23773(0.23517~0.24029) 2.2% 
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INVOCATION ELEMENT UTILIZATION 
TERMINALSQ 0.00000(0.00000,0.00000) 

HOST1 MEMORY 0.50065(0.48280,0.51850) 
HOST1 FI:.oPPYQ 0.28473(0.27743,0.29203) 
HOST1 DISKQ 0.22153(0.21569,0.22738) 
HOS'!'1 CPUQ 0.64912(0.63248,0.£6577) 
HOST2 MEMORY 0.90884(0.90452,0.91316) 
HOST2 FLOPPYQ 0.28436(0.27804,0.29068) 
HOST2 DISKQ 0.22144(0.21992,0.22297) 
HOST2 CPUQ 0.97110(0.96828,0.97392) 

WHAT: 
CONTINUE RUN:yes 

EXTRA SAMPLING PERIODS: 1 

LIMIT - CP SECONDS:2000 

SAMPLING 
SAMPLING 
SAMPLING 
SAMPLING 
SAMPLING 
NO ERRORS 

PERIOD END: TERMINALSQ DEPARTURE GUIDELINE 
PERIOD END: TERMINALSQ DEPARTURE GUIDELINE 
PERIOD END: TERMINALSQ DEPARTURE GUIDELINE 
PERIOD END: TERMINALSQ DEPARTURE GUIDELINE 
PERIOD END: TERMINALSQ DEPARTURE GUIDELINE 

DETECTED DURING SIMULATION. 

SIMULATED TIME: 
CPU TIME: 

NUMBER OF EVENTS: 
NUMBER OF CYCLES: 

2.4276E+04 
660.72 

1338170 
21 

WHAT:qtbo(host1.memory,host2.memory) 

MEAN QUEUEING TIME 

3.6% 
1. 5% 
1. 2% 
3,3% 
0.9% 
1. 3% 
0.3% 
0.6% 

INVOCATION 
HOST1 
HOST2 

ELEMENT 
MEMORY 
MEMORY 

1.66722 (1.61349, 1.72095) 6.4% 
'9.16357(8.82434,9.50280) 7:4% 

WHAT: 
CONTINUE RUN:no 

THINKTIME: 

As we said before, the output format is essentially the same, but there is an added column to 
indicate the invocation. 

Submodels are used extensively in the examples in Section land Appendix 1 of the Users 
Guide. 
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14. PL/I EMBEDDING 

Instead· of using· the BV AL command after a model has been defined with· the SETUP 
command, model expansion may be embedded within a PL/I program. This may bedolle in 
order. (1) to produce tables or graphs of results, (2) to coordinate solution of several separate 
models in a hierarchical solution, (3) to provide a preprocessor for determining model 
parameters and/or (4) to provide a postprocessor for manipulating model solutions prior to. 
display. We briefly illustrate the first two of these applications. For details, see Section 14 of 
the tJ sers Guide. 

Several procedures are supplied with RESQ for producing low resolution graphs of model 
results on a terminal, line printer or other appropriate character oriented device. Other PL/I 
callable graphics packages· supplied by the user may be used in a similar manner. 

Following is a complete program which could be used with model EXAMP1 in Appendix 
1 of the Users Guide: 

EXAMP1: PROCEDURE OPTIONS(MAIN) REORDER; 
DECLARE 

N FIXED BIN(31), 
(T,DATA(40,3),OP(3)) FLOAT BIN(21), 

FMSG CHAR (80) , 
(FLOAT,SUBSTR) BUILTIN, 

/*Entrypoints for RESQ routines:*/ 
READMD ENTRY, 
STPARM ENTRY (CHAR(10) ,FLOAT BIN(21)), 
RESQ2M ENTRY(FI~ED BIN(31)), 
FNLMSG ENTRY(CHAR(80)), 
GTRSLT ENTRY (CHAR(*) VARYING, 

~HAR(*) VARYING, (3) FLOAT BIN(21)), 
/*Entry points for RESQ plotting routines:*/ 

RQSET ENTRY(FIXED BIN(31) ,FIXED BIN(31)), 
·RQPLOT ENTRY((*,*) FLOAT BIN(21)), 

RQXLBL ENTRY(CHAR(*) VARYING), 
RQYLBL ENTRY(CHAR(*) VARYING), 
RQVIEW ENTRY; 

CALL READMD; /* Reads RQ2COMP file produced by SETUP*/ 
CALL STPARM('CPIOCYCLES',8.0); /*Set parameter value*/ 
DO N=1 TO 40; 

DATA(N,.1) =FLOAT (N) /1 0.0 i 
CALL STPARM('ARVL_RATE' ,FLOAT(N)/10.0); /*Set parameter value*/ 
CALL RESQ2M(0); /* Expands model & solves numerically*/ 
CALL FNLMSG(FMSG); 
IF SUBSTR(FMSG,1,9),='NO ERRORS' THEN 

S.TOPi 
CALL GTRSLT( 'CPUQ', 'QL' ,OP) i /* Get result */ 
T=OP (1) ; 

I 
CALL GTRSLT ( 'DISKQ' , 'QL' , OP); /* Get result * / 
DATA(N,2)=(T+OP(1))/(FLOAT(N)/10.0); /*Mean response time 

(Little's Rule) */ 
CALL GTRSLT( 'CPUQ', 'UT' ,OP); /* Get result*/ 
DATA(N,3)=OP(1); 

END; 
CALL RQSET (40,40) i 
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CALL RQPLOT(DATA) i 

CALL RQXLBL(' ARRIVAL RATE'); 
CALL RQYLBL('MEAN RESPONSE TIME CPU UTILIZATION'); 
CALL RQVIEWi 

END; 
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Figure 14.1 - Example Graph of Model Results 
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After compiling this procedure, with the PLIOPT command, we could use the RPLOTEXEC; 
e.g., 

rplot examp1 examp1 

to get the plot shown in Figure 14,1. 

The next example will illustrate a hierarchical model which passes values for the rates of a 
queue dependent server from the inner model to the outer model. See the example deScribed 
in Sections 4.3 and 8.3 of [LA VE82]. Figure 14.2 illustrates the outer model, which is a 
closed model with two resources: (1) an infinite server representing the terminals and (2) a 
queue dependent server representing the computer system. The following dial()gue file can be 
used 3$ input to SETUP: 

MODEL: outer 

END 

METHOD: numerical 
NUMERIC PARAMETERS:qrates(4) 
QUEUE:termq 

TYPE:active 
DSPL:is 
CLASS LIST:terminals 

WORK DEMANDS: 10 
QUEUE:csq 

TYPE:active 
DSPL:fcfs 
CLASS LIST:comsys 

WORK DEMANDS: 1 
SERVER -

RATES:qrates 
CHAIN:c1-

TYPE: closed 
POPULATION: 30 
:terminals->comsys->terminals 

TERMINALS 

COMPUTER SYSTEM 
Figure 14.2 - Outer Model 

The inner model is a "central server model" (Figure 14.3). The dialogue file for this model 
can be constructed as follows: 

MODEL: inner 
METHOD: numerical 
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END 

NUMERIC PARAMETERS:deg_m-p 
NUMERIC IDENTIFIERS: floppy time disktime cputime 

FLOPPYTIME: .22 
DISKTIME:.019 
CPUTIME:.05 

QUEUE:floppyq 
TYPE:fcfs 
CLASS LIST:floppy 

SERVICE TIME: floppy time 
QUEUE:diskq 

TYPE:fcfs 
CLASS LIST:disk 

SERVICE TIME:disktime 
QUEUE:cpuq 

TYPE:fcfs 
CLASS LIST:cpu 

SERVICE TIME:cputime 
CHAIN:multi_prog 

TYPE: closed 
POPULATION :.deg_m_p 
:cpu->floppy disk;.1 .9 
:floppy disk->cpu 

PL/I EMBEDDING / SEC. 14 

The following program can be used to solve these two models hierarchically: 

INOUT: PROC OPTIONS (MAIN) REORDER; 
DCL READMD ENTRY, /* DCL'S for RESQ routines. */ 

RESQM ENTRY (FIXED BIN (31 )) , 
GTRSLT ENTRY (CHAR(*) VARYING, 

CHAR(*) VARYING, (3) FLOAT BIN(21)), 
STPARM ENTRY (CHAR ( 10) , FLOAT BIN (21) ) , 
STPRMV ENTRY (CHAR(10), (*) FLOAT BIN(21)); 

DCL TYPEVL ENTRY; 
DCL RSQ2IP FILE STREAM INPUT; 
DCL (DEG_M_P) FLOAT BIN(21), 

OP(3) FLOAT BIN(21), 
QRATES(4) FLOAT BIN(21); 

/* INNER MODEL */ 
CALL READMD; /* READS INNER RQ2COMP FILE FROM TRANSLATOR */ 
DO DEG_M_P=1 TO 4; /* MULTIPROGRAMMING LEVEL */ 

CALL STPARM('DEG_M_P' ,D~G_M_P); /* SETS PARAMETER DEG_M P */ 
CALL RESQM(O); /* EXPANDS INNER MODEL & SOLVES */ 
CALL GTRSLT ( , CPUQ' , 'TP' ,OP) ; /* GET THROUGHPUT FOR CPU * / 
QRATES(DEG_M_P)=OP(1)/8.0; 

END; 
CLOSE FILE (RSQ2IP); 

/* OUTER MODEL */ 
OPEN FILE (RSQ2IP) TITLE ( 'OUTER' ) ; 
CALL READMD; /* READS OUTER RQ2COMP FILE FROM TRANSLATOR */ 
CALL STPRMV ( 'QRATES' , QRATES) ; /* SETS PARAMETER QRATES * / 
CALL RESQM(O); /* EXPANDS OUTER MODEL & SOLVES */ 
CALL TYPEVLi 

END INOUTi 
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FLOPPY 

Figure 14.3 - Inner Model 

We have two RESQ models to read, one for the inner model and one for the outer model. The 
inner model contains a parameter DEG_M_P representing the multiprogramming level. The 
outer model contains a parameter ORATES representing the rates for the queue depel1dent 
server. The variable ORATES will be used to store the results of the inner model and will be 
assigned to the parameter of the outer model. The inner model is read and is solved for 
DEG M P's of one, two, three and four. The CPU throughput for each DEG M P is 
divided bYs.O, the mean number of cycles, and stored in ORATES. The model definiti-;m file 
from SETUP is closed so that it can be opened with a different name, enabling the outer 
model to be read. The outer model parameter is assigned a value from QRATES, and the 
outer model is solved. Then the results are displayed interactively. 

The following shows the execution of this program (after compilation and appropriate 
CMS commands): 

EXECUTION BEGINS ... 
NO ERRORS DETECTED DURING NUMERICAL SOLUTION. 

WHAT:all 

ELEMENT 
TERMQ 
CSQ 

ELEMENT 
TERMQ 
CSQ 

ELEMENT 
TERMQ 
CSQ 

ELEMENT 
TERMQ 
CSQ 

WHAT: 

UTILIZATION 
0.00000 
0.981.58 

f (, f 

THR<iU~UT 

2. 27~l~ 
2.27025 

MEAIj. Qll:~JE 
22."'~Bf 
7.29747 

10 11.1.. 

LENGTH 

MEAN QUEUEING TIME 
10.00000 
3.21439 

b.ri 

R; T=2.26/4.40 11:08:17 

A brief discussion is in order to emphasize the difference between· solving the model in. 
this fashion as opposed to usingsubmodels. When submodels are used, the expansion program 
produces and solves one model. With the above hierarchical approach, the inner model is 
evaluated Jour times and results from it are passed to the outer model, which is solved 
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separately. This is done to allow an approximate solution, as in the above example. Similar 
approaches may be used with simulation, to reduce simulation run times. 
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