
\.:

RA 138 (#41126) 4/12/82
Computer Science 135 pages

THE RESEARCH QUEUEING PACKAGE VERSION 2

INTRODUCTION AND EXAMPLES

Charles H. Sauer, Edward A. MacNair and James F. Kurose

IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

Abstract: Queueing networks are important as performance models of systems where
performance is principally affected by contention for resources. Such systems include
computer systems, communication networks, office systems and manufacturing lines. In
order to effectively use queueing networks as performance models, appropriate software
is necessary for definition of the networks to be solved, for solution of the networks (by
simulation and/or numerical methods) and for examination of the performance me.asures
obtained.

The Research Queueing Package, Version 2 (RESQ) is a system for constructing and
solving extended queueing network models. We refer to the class of RESQ networks as
"extended" because of characteristics which allow effective representation of system
detail. RESQ incorporates a high level language to concisely describe the structure of
the model and to specify constraints on the solution. A main feature of the language is
the capability to describe models in a hierarchical fashion, allowing an analyst to define
submodels to be used analogously to use of macros in programming languages. RESQ
also provides a variety of methods for estimating accuracy of simulation results and
determining simulation run lengths.

Acknowledgement: We are grateful to P. Heidelberger, E. Jaffe, P. Rosenfeld,
M.Reiser, S. Salza, S. Tucci and P.D. Welch for their contributions to RESQ.

This document supplements the CMS and TSO RESQ Users Guides,the
primary documents for RESQ usage. Corrections, comments, criticisms and
suggestions for improvement of these documents and/or RESQ will be
welcomed.

iii

PREFACE

Queueing networks are useful as performance models of systems where performance is
principally affected· by contention for resources. Such systems. include computer systems,
conullunication networks, office systems and manufacturing lines. The Research Queueing
Package, Version 2 (hereafter referred to as RESQ) is a system for constructing queueing
network models and solving queueing network models. Simulation methods, including state of
the art statistical analysis, are provided for the full class of queueing networks allowed in the
RESQ language~ Numerical methods are provided for a subset of the queueing networks
allowed by the RESQ language.

This document introduces usage of RESQ and gives examples of simple models of
computer and communication systems constructed and solved using RESQ. The RESQ user
should also be familiar with either

or

C.H. Sauer, E.A. MacNair and J.F. Kurose, "The Research Queueing Package
Version 2: CMS Users Guide," IBM Research Report RA-139, Yorktown Heights,
New York (April 1982).

C.H. Sauer, E.A. MacNair and; J.F. Kurose, "The Research Queueing Package
Ver'sion 2: TSO Users Guide," .IBM Research Report RA-140, Yorktown Heights,
New York (April 1982).

whichever is appropriate to the operating system being used. These guides also include a few
examples which are more complex than those presented in this document.

This document has the following sections:

"Section 1: Introduction" introduces some of the features and capabilities of RESQ.

"Section 2: Computer System Model - Nuinerical Solution" illustrates interactive usage of
the two basic RESQ commands, SETUP and EV AL, using numerical solution of a model
discussed in Section 1.

"Section 3: Dialogue Files - Model Parameters" illustrates the batch m.ode of the SETUP
cominand and parameters defined with the EV AL command.

"Section 4: Simultaneous Resource Possession - Simulation" discusses simulation' of the.
second example of Section 1.

"Section 5: Confidence Interval Methods" discusses the three methods available in RESQ
for statistical analysis of simulation results and automated control of run length.

"Section 6: Sources and Sinks" discusses the RESQ elements for arrival of jobs in the
network and departure of jobs from the network.

"Section 7: Chains" discusses the RESQ approach to representing groups of heterogene ..
ous jobs.

"Section 8: Job, Chain and Global Variables 11 describes variables available during
simulation for purposes analogous to variables in the programming language sense.

April 3, 1982

iv PREFACE

"Section 9: Routing" discusses the definition of routing between network elements.

"Section 10: Passive Queues" describes in more detail the RESQ elementS for explicitly
acquiring and freeing units of a resource.

"Section 11: Split, Fission and Fusion Nodes" di~cussesthe RESQ elements used llY jobs
to generate other jobs and to synchronize activities with these jobs. .

"Section 12: Queue Types" dis.cusses a macro facility for queue definition.

"Section 13: Submodels" discusses a macro facility for subnetwork definition.

"Section 14: PL/I Embedding" discusses access to RESQ from PL/I procedures for
plotting grapb,s and constructinghierarchical solutions.

April 3, 1982

CONTENTS

1. INTRODUCTION .. ' .. " 1
2. COMPUTER SYSTEM MODEL - NUMERICAL SOLUTION ~ . : .; 5
3. DIALOGUE FILES - MODEL PARAMETERS '" 14
4. SIMULTANEOUS RESOURCE POSSESSION - SIMULATION ' ... , 19
5. CONFIDENCE INTERVAL METHODS 32
5.1. Independent Replications . • 33
5.2. The Regenerative Method " ' 41
5.3. The Spectral Method. 52
6. SOURCES AND SINKS .. ; 63
7. CHAINS .. ' : . .. 68
8. JOB, CHAIN AND GLOBAL VARIABLES , ., 77
8.1. Job Variables ' '. 77
8.2. Chain Variables. .. 81
8.3. Global Variables " '" 85
9. ROUTING , .. 89
10. PASSIVE QUEUES :. 97
11. SPLIT, FISSION AND FUSION NODES•............... ; . ~ . .. 108
11.1. Split Nodes " ',' .. , 108
11.2. Fission and Fusion Nodes , , '111
12. QUEUE TYPES ... ;'. . • .. 118
13. SUBMODELS. 120
14. PL/IEMBEDDING 127
Bibliography. .. 133
Index " , 134

April 3, 19~2

LIST OF FIGURES

Figure J.l - Queueing Network Model .. 1
Figure 1.2 - Network with Passive Queue 2
figure 6.1 - Queue in Isolation , 63
FjgUl;e7.1 - Single Chain Model. 68
Figure 7.2 -Model with Two Closed Chains ,. 71
Figure 7.3 - ¥odel with Open and Closed Chains ,73
Figure 8.1 - Series Queues with Independence Assumption 7S
Figure 8.2 - Series Queues with Interdependence. 78
Figure 8.3 - Arrivals Dependent on Time of Day ,. 81
Figure 8.4 - Population pep~ndent Arrivals. 86
Figure 9; 1 - :.:touting E"ample. 90
Figure 10.1 - Passive Queue " 97
Figure 10.2·- Printer Spooling .. 97
Figure 10.3 - Window FloW Control. .. 102
Figure 11.1 - Bulk Arrivals. .. 108
Figure 11.2 - Packetizing of Messages ~. 112
Figure 13.1 - Computer System Submodel.. 120
Figure 13,2 ~ Network with Submodel Invocation. 120
Figure 13.3- Network with Two Invocations. 123
Figure 14.1 - Example Graph of Model Results , 128
Figure 14.2- Outer Model. 129
Figure 14.3 - Inner Model. 130

. April 3, 1982

1

1. INTRODUCTION

Models are used to estimate the performance of systems when measurement of system
performance is impossible (e.g., because the system is not yet operational) or impractical (e.g.,
because of the human and machine resources required). Queueing networks have becott\e
important as performance models of a variety of systems where system performance is usually
significantly affected by contention for resources. Queueing network models can be used from
the early design stages of a system on throughout the life of the system to estimate system
performance.

We will not attempt a general discussion of queueing networks here, but will try to make
our discussion self-:contained. The reader seeking additional background may wish to ref~r to
special issues of Computing Surveys (September 1978) and Computer (April 1980), to Sauer
and Chandy [SAUE81a] and to other books listed in the Bibliography. Our examples will be
of queueing network models. of computer systems and communication systems. However,
queueing models have been used for decades in examining a wide variety of other systems.
Much of our discussion applies directly to performance issues in office equipment, manufactur­
ing lines and other systems.' Our emphasis will also be on performance, but the modeling
techniques we .present also apply to analysis of other issues such as reliability and correctness
(e.g;, deadlock analysis).

The basic problems in using queueing network models are to (1) determine the resources
and their characteristics which will most affect performance, (2) formulate a model represent­
ing these resources and characteristics and (3) determine (algebraically, numerically arby
simulation) the values for performance measures (e.g, mean response time) in the model. . The
first of these problems, though often difficult, is highly system specific. We will not address
this problem directly. The Research Queueing Package (RESQ) is a software tool for building
queueing network models. We emphasize "tool" because RESQ is not a model in itself. As a
to~l, it can be o.f great value in d~ng with the second and thir~ basic problems just cited.
T.hlsd?cument 1Otroduce~ some/mefe.atur~s o~ RESQ and their usage. For a thorough
dlscusslOn of RESQ, see either Users GUide Cited 10 the preface.

TERMINALS FLOPPY

o
o

Figure· 1.1 - .Queueing Network Model

Figure 1.1 illustrates a very simple queueing network model of an interactive computer
system. (This network isa simplification of networks used as computer system models· since .
the mid sixties.) The model considers contention for three resources of the system, the CPU, a
floppy disk and a hard disk. Users of the system are represented by jobs in the queueing;
network. A user spends piut of his or her time thinking at the terminal and keying in cOm'"
mands. This part of the user's time is represented by service times of a job (representing the
user) at the terminals "ql,.leue." The model assumes there are as many terminals as users, so

April 3, 1982

2 INTRODUCTION / SEC. 1

there is no waiting for a terminal; we will still refer to the model representation of the
termInals as a queue. After keying in a command, the user waits for a response.· The job
representing .the user alternates between computation and I/O activities until the command
pro~essing is. finished and the us.er receives the response .. The USer then begins another
thinking/keying time. .

We have made this model simple because it is our first example, but we have also made it
simple so that a numerical solution of the model will be feasible. For exact numerical solution
to be feasible, we must make a number of assumptions. One of these assumptions is that
command processing does not require more than one resource at a ti~e. This is likely an
unreasonable assumption since command processing will require memory as well as the
reSOlIrCeS pictured; the assumption is reasonable only if there is negligible contention for
memory. Similarly, I/O activity in most architectures will require resources not mentioned,
e.g., channels and controllers; the assumption that a single resource is required is only
reasonable if there is negligible contention for these other resources. A second assumption is
that scheduling is limited to a fairly. restricted set of algorithms. In particular, priOrity
scheduling is excluded. Other restrictive assumptions will be considered as we discuss and
expand upon this. model below.

Without RESQ one would likely have two choices with regard to this model and these
assumptions: (1) Accept the model and its results without knowing how much impact the
assumptions have on the results. (2) Reject the model and build a detailed simulation model
in a conventional discrete event simulation language. This second choice would entail new
problems, most notably (a) expense of building and running the model and (b) doubt about
the accuracy of the results (due to the statistical variability of simulation). In the past there
has been very little middle ground between these chbices.fadvantage of the best features of
numerical and simulation solution. .

Two of the principal objectives of RESQ have been (1) to bridge this gap between
numerical and simulation methods and (2) to encourage analysts to use a solution method
appropriate to the case at hand. RESQ has succeeded at these objectives partly because of the
solution methods it provides and partly because of its characterizations of queueing networks.
RESQ is effective because of its solution methods, because of its characterizations of queueing
networks, and because of its user interfaces, which have been engineered to maximize User
productivity.

RESQ provides the "state of the art" in numerical solution methods, so that restrictive
assumptions can be avoided where possible. RESQ provides simulation solutions with special
featllres not found in most simulation languages. Most important of these are statistical
output analysis techniques which provide error estimates (in the form of confidence intervals)
for simulation results and stopping rules for determining when the simulation should end.
(Statistical output analysis techniques are ,discussed in Chapter 7 of Sauer and Chandy
[SAUE81a], Chapter 4 of Kobayashi [KOBA78] and Chapter 6 of Lavenberg et al
[LA VE82].) The presence of mUltiple solution methods in one tool makes it possible to use
the method most appropriate to a given model and to test the impact of model assumptions
such as the ones discussed above. Presence of multiple solution methods also makes feasible
the use of several methods in a hybrid solution of one model.

We refer to the networks of RESQ as "extended" because of characteristics absent from
most queueing models. Perhaps the most important of the extensions is the "passive" queue,
which allows convenient representation of simultaneous resource possession as in ,the discus­
sion above .. Traditional queues are "active" queues in RESQ.terminology. A job's activity is
typically focused on the resources of active queues. A job typically has no interaction with
other model elements while at an active queue. A job typically acquires units of a passive

April 3, 1982

SEC. 1 / INTRODUCTION 3

MEMORY

. TERMINALS FLOPPY

: I 0p
o ALLOCATE

Figure 1.2 - Network with Passive Queue

queue resource and holds on to them while visiting other queues (including other passive
queues) and model elements. The job explicitly releases the units of resource when it no
longer needs them. Figure 1.2 shows the addition of a passive queue representing memory to
the network of Figure 1.1. Inclusion of the passive queue allows us to avoid making the
assumption that command processing does not require more than one resource at a time. This
assumption is made with the model of Figure 1.1 to make numerical solution feasible;. avoid­
ance of the assumption precludes exact numerical solution. Models with passive queues are
solved either by simulation or by approximate numerical methods. (Exact numerical solution
for networks with passive queues is possible, in principle, but usually not practical.)

Note that in the figure the passive queue resource is held by the job during I/O activity
as well. Additional passive queues could be added to the model to represel1t the channel
and/ or controller contention mentioned above. As well as representing simultaneous resource
possession, passive queues are particularly useful for representing complex mechanisms in a
simple manner. For example, contention for a channel may cause I/O devices to experience
extra revolutions prior to transfer. Communication network protocols and algorithms are
additional .examples of mechanisms conveniently represented by passive queues. A third :use
of passive queues is in measuring response times in subnetworks. The "queueing time"
(response time) for a passive queue is defined as the time between a job's request for units of
the passive queue resource and that job's freeing of the units of resource. Thus in Figure 1.2
the queueing time for the passive queue corresponds to the response time seen by the terminal
users.

The RESQuser interfaces are based on interactive dialogues which serve to educate new
users, yet are designed to accommodate sophisticated tisers and large models. The dialogues

, provide optional tutorials to clarify prompts. The translator automatically provides for
immediate correction of syntactic errors. If a RESQ user. discovers a semantic error in prior
portions of the dialogue, he or she may temporarily suspend the dialogue, correct the error and
then resume the dialogue at the point of suspension. A transcript (a "dialogue file") of a
model definition dialogue is kept for the user. The user may edit this transcript and then have
it translated again, with or without additional interactive dialogue. In addition to the model
definition dialogue and translator, there is a model evaluation dialogue associated with the
solution components. This dialogue allows the user to selectively obtain performance meas­
ures. Models maybe defined with parameters so that solutions of several related models may
be obtained in a single evaluation, without retranslation of the model. It.is also possible to

April 3, 1982

4 INTRODUCTION / SEC. 1

embed model evaluation in aPL/I program. The PL/I embedding mechanism is useful for
producing graphs or tables of model results for different parameter values. An analyst may
use tl;1ePL/I embedding mechanism to provide preprocessing and postproc~ssit).g fOl: a given
m~del. With such an approach the model may be conveniently ~sed by others who are
interested in the modeled system, but not in RESQ. .

There are versions of RESQ for both MVS/TSO and for VM/CMS. Most of what we
say applies to either version. However, where there are differences, we assume that CMS is
being·· used. Our examples are presented as if a typewriter-type terminal is being used.
However, RESQ is insensitive to the type of terminal used and is typically used with a display
terminal. cThe assumption of a typewriter-type terminal simplifies the formatting of the
examples.

April 3, 1982

is

2. COMPUTER: SYSTEM MOI)EL- NUMERlCAL SOLUT. ION .. " . , ... ' ., , i " . ": .. "'0.", ',',"'.' ", " " •.. ' .', .

In this section we will cOI),sider num~dcal solution ofthe example of Figure 1.1. In doing
. so we will have to make further a~sulllPti()ns in addition to the ones already discuss~d ..

,Let us consider the floppy disk queue. We assume that the queueing discipline forthe disk
is First-Come;..First-Served (FCFS). (We will usually refer to scheduling algorithms' as
queueing disciplines.) Further, we assume that a job's service time at the disk. has an exponen­
tial distribution independent of the current state of the disk. ActlJally, a job;s service timewill
be the sum of several times, including seek time, latency and transfer (and pos$ibly others),
Th¢' seek and latency times will be depencient on the current position of the arm and the
rotational position of the platters. The following isa possible RESQ description of the floppy
diskql.leue:

QUEUE:floppyq
TYPE:fcfs
CLASS LIST:floppy

SERVICE TIMES: floppy time
CLASS LIST:

This is a fragment ofa RESQ interactive dialogue; we will show the entire dialogue shol'tiy.
In this definition we Use upper case for the RESQ prompts and lower case for replies to those
prompts. The prompts are terminated by a colon (":").

The first prompt is asking for thenallle ,of the queue. We use the name "floppyq" rather
than "floppy" because we wahtto save the name "floppy" for another purpose and because
"floppyq" is easily pronounced; The name we use may be any legal RESQidentifier (see
Appendix 2 of the Users Guide.). ("Floppydiskq" would not be a legal identifier because it
has more than ten characters.)

The secohd>prompt is asking for the type of the queue. The type specified maybe a
general type, i.e., "active" or "passive," ora specialized type, e.g., "fcfs" as in the example.
A general type allows specification of all queue characteristics, while a specialized type
assumes certain default . specifications and thus allows an abbreviated' dialogue. The speeiaHz­
ed type fcfs results in a single server queue with the FCFS quelJeing discipline. Further, the
server has a fixed service rate of one (1). (If we want the server to have .a different fixed
rate, we can divide the mean service time by that rate. If we want to explicitly defineset,ver
rates, we must use the' general active dialogue. The general active dialogue is described in
Section 4 of the Users Guide.) We will defer until later discussion of some of the ottJ,er
characteristics assumed by the. specialized fefs type. Generally, the. assumptions result in a
simpler specification than might otherwise . be made.

The third prompt is asking for a list of (job) "classes" atthe queue. In general, an active
queue may, have many classes. The classes of a queue serve as "nodes" in the routing
description ·of the network; having multiple classes at a queue allows. specification of different
routing paths for different jobs leaving the queue. Different classes at a queue may also have
different service requirements, priorities and other characteristics we will describe later. In
this case there is only one class, which we give.the name "floppy." (A class name may be any
legal identifier.) We use "flOPPY" for the class (rather than the queue) because we will use.,the
class name in our routing definition and because of the pronouncability of "floppyq,"

The fourth prompt is for the service time distribution of jobs at the queue. The service'
time is the amount of time needed during one visit to the queue. The identifier "fl6ppyti~e"
is assumed to have been previously defined. Assuming floppy time has been defined to have a

April 3, 1982

6 COMPUTER SYSTEM MODEL - NUMERICAL SOLUTION /SEC. 2

sea,lar numeric value (another possibility will be discussed later), it is taken to be the mean of
an ~xp()nential distribution. . .

Th~ fifth prompt· is for more class names. The mill reply terminates the definition of
floppyq. If the prompt had not been null, there would have been another prompt for service
times and yet another class list prompt. .

The definition of the hard disk queue can be essentially the same, e.g.,

QUEUE:diskq
TYPE:fcfs
CLASS LIST:disk

SERVICE TIMES:disktime
CLASS LIST:

The definition of the cpu queue is similar, but uses the "ps" specialized type: .

QUEUE:cpuq
TYPE:ps
CLASS LIST:cpu

$ERVICETIMES:cputime
CLASS LIST:

The psspecialized type uses the Processor-Sharing (PS) queueing discipline; otherwise it is the
same as the fcfsspecialized type. The PS discipline. is defined as the limiting case' o,fa
Round-Robinrliscipline with no overhead as the quantum (tiIlle slice) goes to zero. With PS
anile n jobs in the queue, each job gets l/nth of the server, i.e.; the server is sharedequ~lly
al1).ongall of the jobs in the queue~ .

The final queue definition is essentially the same as the other definitions except that we
use the ni~"special type, which gives a queue with an Infinite:..Server (IS) discipline, ie., the
queue always has a server for each job hi the queue. .

QUEUE:terminalsq
TY:pE:is
CLASS LIST:terminals

SERVICE TIMES:thinktime
CLASS LIST:

(We uSe the identifier "thinktime" because "tetminalstime" would be too long. Note that
"thitiktime" should include the keying time and any other times associated with the termim,tls;)
Tl}is concludes the queue definitions for this model. . .

The' other priricipal part of the model definitionis that of the routing. The rbtitinig is
defined in terms of the transitions between nodes; in this model tl:1e only nodes are the classes.
Ingeneral,the nodes of a model may be partitioned into "chains" such that a job at a nod,e' in
one chain can never get to . a node in another chain. III this model there is only onechaib.
1'J.:!.e following iS'a possible routing definition· for this model:

CHAIN: interactive
ERROR IDENTIFIER BEGINNING "INTERACTIV" .TRUNCATED TO 10 CHARACTERS

TYPE: closed
POPULATION: users . ,

:terminals->cpu

April 3, 1:982

SEC. 2 / COMPUTER SYSTEM MODEL,,; NUMERICAL SOLUTION.

:cp~->floppy disk;.l ,9
:floppy->terminals ppu;l/cpiocycles l-l/cpiocycles
:disk->terminals cpu;l/cpiocycles l-l/Cpiocycles

CHAIN:

7

The first prompt is for the name of a chain. We have intentionally used an identifier
longer than ten characters. Note that RESQ gives a warning message informing the user of
the truncated identifier it will actually store in its symbol table.

The second prompt is for the type of chain, "open" or "closed." Open chains. ha ve
"sources" of jobs and "sinks" for jobs. Closed chains do not have sources and sinks. Usually
the number of jobs in a closed chain is fixed, though we will see exceptions. The chains of
both Figures 1.1 and 1.2 are closed.

The third prompt is for the number of jobs in the closed chain, i.e., its "population." We
assume that the identifier "users" has been previously defined to have a scalar numeric value.

The fourth and subsequent prompts, consisting of only colons (":") are for "routing
transitions," i.e., descriptions of where a job can go when it leaves a node and how it decides
where to go. The first routing transition means that jobs leaving node (class) terminals always
go to node cpu. The second routing transition means that jobs leaving node cpu go to node
floppy with probability .1 and to node disk with probability .9. The third routing transition
means that jobs leaving node floppy go to node terminals with probability 1/ cpiocycles and to
node cpu oth~rwise. We as.sume cpiocycles has been defined to have a scalar numeric value.
The fourth transition has the same effect for the disk. Together, the third and fourth trans­
itions mean that the number of CPU-I/O cycles a job experiences will· have a geometric
distribution (starting at one) with mean cpiocycles. The four transitions have completely
described the routing. A null reply to the next colon prompt terminates the chain description.
A null reply to the next CHAIN: prompt terminates the routing description.

Having shown the description of the queues and the routing, we now show how these fit
into a .complete model description. The model definition dialogue is invoked by the command
SETUP. The following shows a possible use of SETUP for this model:

setup
MODEL:csm

RESQ2 Transl~tor V2.04 (03/02/82) Time: 21:57:48 Date: 03/10/81

MODEL IS CSM
METHOD:how

SPECIFY SOLUTION. METHOD.
SOLUTION METHODS ARE NUMERICAL AND SIMULATION.

METHOD: numerical
NUMERIC PARAMETERS:
NUMERIC UiENTIFIERS: floppy time disktime cputime thinktimeusers

FLOPPYTIME:.22
DISKTIME: .019
CPUTIME: .05
THINKTIME:5
USERS:15

NUMERIC IDENTIFIERS:cpiocycles .
CPIOCYCLES:8

Aprii 3,1.982

8 COMPUTER SYSTEM MODEL - NUMERICAL SOLUTION / SEC. 2

NUMERIC IDENTIFIERS:
QUEUE TYPE:
QUEUE:floppyq

.TYPE:fcfs
CLASS LIST:floppy

SERVICE TIMES: floppy time
CLASS LIST:

QUEUE:diskq
TYPE:fcfs
CLASS LIST:disk

SERVICE TIMES:disktime
CLASS LIST:

QUEUE:cpuq
TYPE:ps
CLASS LIST:cpu

SERVICE TIMES:cputime
CLASS LIST:

QUEUE:terminalsq
TYPE: is
CLASS LIST:terminals

SERVICE TIMES:thinktime
CLASS LIST:

QUEUE:
.SUBMODEL:
CHAIN: interactive

*~ERROR** IDENTIFIER BEGINNING "INTERACTIV" TRUNCATED TO 10 CHARACTERS
TYPE: closed

END

POPULATION: users
:terminals->cpu
:cpu->floppy disk;.1 .9
:floppy->terminals cpu;1/cpiocycles 1-1/cpiocycles

. :disk->terminals ~pu;1/cpiocycles 1-1/cpiocycles

CHAIN:

NO FATAL ERRORS DETECTED DURING COMPILATION.
R; T=0.73/1.53 22:11:31

SETUP will accept a single argument, the model name. If no argument is given to SETUP, it
prompts the user for a model name.

Once the model name is established, SETUP prompts for the solution method. As with
all RESQ prompts, a reply of "how" causes RESQ to produce a brief explanatiol1 of possible
~9. .;

Next is a prompt fQr the names of numeric parameters, whose values would be supplied
when the model is solved. For the moment we assume no parameters, but will return to this
feature in the next section.

In the queue and chain . definitions we assumed that certain identifiers had been previously
defined with numeric values. The next prompt gives an opportunity for definition of such
identifiers which have not been declared as parameters. It expects a list of iden.tifiers. After
that prompt come prompts for the values of the identifiers and another prompt for more

April 3, 1982

::,;'

SEC. 2 / COMPUTER SYSTEM MODEL- NUMERICAL SOLUTION 9

identifiers. We give another identifier (cpiocycles) and are prompted for its value. We are
then given one more prompt for numeric identifiers. A null reply terminates prompting. for
numeric identifiers.

In this example the values given for times are in units of seconds. This is only implicitly
defined, however. As far as RESQ is concerned, the meaning of the. time unit is .unimporiant;
the numerical values produced by RESQ would be the same whether we intended the time
units to be microseconds, seconds or hours. It is up to the user to decide upon a time unit and
be consistent in using it; e.g., the user may choose the time units to be seconds. It is then up
to the user to provide all input in units of seconds and to interpret all times in the RESQ
output in units of seconds.

Next we are prompted for the name of a user defined queue type. (As discussed in
Section 12, we may define our own queue types which may be used in a manner similar to the
usage of the predefined queue types fcfs, ps and is.) A null reply indicates weare not defining
any queue types. (It is always safe to give a null reply to a prompt. Usually SETUP will
accept a null reply as indicating a default value,e.g., rio queue type definitions. Occasionally
SETUP will insist on some other reply; in those cases the user can uSe "how"to·findout what
is expected.)

The queue definitions are the same as the fragments we have already shown. We are then
prompted for definition of a submodel; a null reply indicates we are not defining any suhmo­
dels. The remainder of the model definitiori is the chain definition already discussed.

Model solution!! are obtained with theEV AL command. EV AL may be issued. without
arguments, in which case it prompts for a model name. If arguments are given toBY AL, the
first one is used as a model name. We defer discussion of the interpretation of other argu­
ments. Following is an EV AL dialogue for model csm:

eval
RESQ2 EXPANSION AND SOLUTION PROGRAM.
MODEL:csm
RESQ2 VERSION DATE: MARCH 9, 1981 - TIME: 22:08:11 DATE: 03/10/82
NO .ERRORS DETECTED DURING NUMERICAL SOLUTION.

WHAT:all

ELEMENT
FLOPPYQ·
DISKQ
CPUQ
TERMINALSQ

ELEMENT
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ· .

ELEMENT
FLOPPYQ

April 3; 1982

UTILIZATION
0.37943
0.29492
0.86234
0.00000

THROUGHPUT
1.72469
15.52218
17.24686
2.15.586

MEAN QUEUE LENGTH
0.58712

10 COMPUTER SYSTEM MODEL - NUMERICAL SOLUTION / SEC. 2

DISKQ

cPtJQ·
TERMINALSQ

ELEMENT
FLOPPYQ
DISKQ
C:PUQ·
TERMINALSQ

WHAT: how

0.40804
3.22555
10.77929

MEAN QUEUEING TIME
0 .. 34042

. 0.02629
0,.18702
5.00000

CODES ARE:. XXXX XXXX (ELEMENT LIST)
XXXXCI XXXXCI(ELEMENT LIST)
XXXXBO XXXXBO(ELEMENT LIST)

WHERE XXXX IS ONE OF THE FOLLOWING:
UT - .UTILIZATION (OF SERVER OR TOKEN)
TP- THROUGHPUT (DEPARTURES)
QL - MEAN QUEUE LENGTH

SDQL - STANDARD DEVIATION OF QUEUE LENGTH
QLD - QUEUE LENGTH DISTRIBUTION

QT -·MEAN QUEUEING TIME
SDQT - STANDARD DEVIATION OF QUEUEING TIME

QTD - (CUMULATIVE) QUEUEING TIME DISTRIBUTION
TU - MEAN TOKENS IN USE

TUD - DISTRIBUTION OF TOKENS IN USE
TT - MEAN TOTAL TOKENS IN POOL

TTD - DISTRIBUTION OF TOKENS IN POOL
MXQL - MAXIMUM QL
MXQT - MAXIMUM QT

PO - OPEN CHAIN POPULATION
RTM - OPEN CHAIN RESPONSE TIME
ALL - ALL OF THE ABOVE

XXXX WITHOUT CI OR BO GIVES POINT ESTIMATES ONLY,
XXXXCI GIVES CONFIDENCE INTERVALS ONLY AND
XXXXBO GIVES BOTH POINT ESTIMATES AND CONFIDENCE INTERVALS.
UNLESS AN ELEMENT LIST IS GIVEN, ONLY QUEUE VALUES ARE PRODUCED.
AN ELEMENT LIST IS A LIST OF QUEUES AND NODES.
THE FOLLOWING CODES ARE NOT INCLUDED IN "ALL":

SIM - GIVES SIMULATION SUMMARY AGAIN
ND - NUMBER OF DEPARTURES
ST - MEAN SERVICE TIMES (ACTIVE .QUEUES AND CLASSES ONLY)

LNG -FINAL LENGTHS
JV - FINALJV VALUES FOR JOBS STILL IN NETWORK
CV - FINAL CV VALUES
GV - FINAL VALUES OF GLOBAL VARIALBES

ND, ST, LNG AND JV MAY BE GIVEN WITH A LIST OF QUEUES AND NODES.
GV MAY BE GIVEN WITH A LIST OF VARIABLE NAMES.
TRY AGAIN-
WHAT:qt(cpuq,cpu)

ELEMENT
CPUQ

MEAN QUEUEING TIME
0.18702

April 3, 1982

SEC. 2 / COMPUTER SYSTEM MODEL - NUMERICAL SOLUTION 11

CPU 0.18702

WHAT:qtd

ELEMENT QUEUEING TIME DISTRIBUTION

WHAT:

EXPANSION FINISHED.
R; T=0.45/0.97 22:13:43

After obtaining the model name, EV ALprints a version date and the current date and
time.EV AL then prints any error messages or the "NO ERRORS ... " message. After that it
prompts the user with IIWHAT:" meaning "What results do you want to see?" A reply of
"all" causes all results to be printed. Where queues consist of a si:ngle node (e.g., all of the
queues of this example have exactly one class each), only measures for the queues are
produced since the node measures will be the same as the queue measures.

The utilization is per server. In the case of the terminals, since the number of servers is
"infinite," the utilization of each server is zero. The queue length at a queue is defined to
include jobs in service, and the queueing time is defined to include service .time.

Perhaps the most interesting performance measures for this model are estimates of
response time, but such estimates are not given directly for this model. (We use "estimate"
here to emphasize that we are dealing with a model and usually do not obtain the values· for
the actual system. For this model RESQ provides exact values for. performance measures
within the limits of numerical error.) By "response time" we know we mean the time from
leaving terminalsq to returning to terminalsq, but RESQ has no way of knowing this. In
Section 4 we will see how characteristics of response times can be directly estimated in models
solved by simulation. .

. We can easily estimate mean response time from the values we already know in at least
two ways: One way is to sum the mean queueing times at cpuq, floppyq and diskq, weighted
by the mean number of visits to each queue per response time. I.e." a response time consists
(on the average) of 8 queueing times of .18702 seconds at cpuq, .8 queueing times of .34042
seconds at floppyq and 7.2 queueing times of .02629 seconds at diskq, so the :mean reSponse
time estimate is 1.958 seconds. An easier way is to apply Little's Rule::meannumber of jobs
= throughput x mean response time. We know that the mean number of jobs not at the
terminals is 15 10.77929 = 4 . .22071, so the mean response time is 4.22071/2.15586 =
1. 958 seconds. '

Exact numerical solution for the response time distribution is not feasible. A commonly
used heuristic is to assume the response time has an exponential distribution, i.e., in this case
to assume the probability distribution function has the form F(t) = 1 - exp(-t/1.958).Wiih
that assumption, we would estimate that the probability the response time is at most 1 second
would be 1 - exp(-1 /1. 958) = .400, that the probability the response time is at most 3
seconds would be 1 -exp(-3/1.958) = .784 and that the probability the response time is at
most 5 seconds would be 1 - exp(-5/1.958) = .922.

As in SETUP, a reply of "how" causes a tutorial to be printed. In the tutorial above,
note that there are many performance measures which were not produced by the "all" reply.
These measures are only available with the simulation solution.

April 3, 1982

12 COMPUTER SYSTEM MODEL - NUMERICAL SOLUTION / SEC. 2

Any of the codes for performance measures may be qualified by a list of queues and
nodes .. Only measures for those elements will be given.

If a code for an unavailable measure, e.g., queueing time distribution in the exampl6, is
given, then only the heading is printed. Prompting for measures is terminated by a null reply.

We have only shown the terminal output. A transcript of the EV AL dialogue is preserved
for the user in a file with filename the same as the model name and file type RQ2PRNT.
This transcript omits errors and "how" output. Thus CSM RQ2PRNT would be .

RESQ2 VERSION DATE: MARCH 9, 1981 - TIME: 22:08:11 DATE: 03/10/82
MODEL:CSM·
NO ~RRORS DETECTED DURING NUMERICAL SOLUTION.

WHAT: all

ELEMENT UTILIZATION
FLOPPYQ 0.37943
DISKQ 0.29492
CPUQ 0.86234
TERMINALSQ 0.00000

ELEMENT THROUGHPUT
FLOPPYQ 1.72469
DISKQ 15.52218
CPUQ 17.24686
TERMINALSQ 2.15586

ELEMENT MEAN QUEUE LENGTH
FLOPPYQ 0.58712

DISKQ 0.40804
CPUQ 3.22555
TERMINALSQ 10.77929

ELEMENT MEAN QUEUEING TIME
FLOPPYQ 0 . .34042
DISKQ 0.02629

CPUQ 0.18702
TERMINALSQ 5.00000

WHAT:how
WHAT:qt (cpuq, cpu)

ELEMENT
CPUQ

CPU

WHAT:qtd

MEAN QUEUEING TIME
0.18702

O. 18702

April 3, 1982

\,!

SEC. 2 / COMPUTER SYSTEM MODEL - NUMERICAL SOLUTION

ELEMENT

WHAT:

April 3, 1982

QUEUEING TIME DISTRIBOTION

13

14

3. DIALOGUE FILES - MODEL PARAMETERS

Suppose we wish to evaluate the csm model for a variety of think times and numbers of
users. It would pe tedious to change the values of thinktime and users and then issue the
SETUP and EVAL commands for each pair of values of interest. This is why we provide for
numeric parameters declared in SETUP but not defined until EV AL is issued. In the last
section when we invoked SETUP we declined to list any numeric parameters. Instead of
listing thinktime and users as numeric identifiers we could have listed them as numeric
parameters.

We wish to do so now, but we wish to avoid going through the entire SETUP dialogue
again. We can avoid this effort by use of dialogue files. While using the SETUP command as
illustrated above, it automatically generated a transcript of the dialogue (prompts and replies).
ona file with file name CSM(same as the model name) and file type RQ2INP.

This transcript is verbatim with the following exceptions: (1) The "RESQ Translator "
and "MODEL IS CSM" messages are omitted. (2) Prompts which were given a reply of
"how", the how reply and the how tutorial are omitted. (3) Prompts which were repeated
because of erroneous replies and the erroneous replies are omitted. (4) Error messages are
omitted. (5) Prompts with null replies are omitted. (6) The "NO ERRORS ... " message is
omitted. Thus CSM RQ2INP is as follows:

MODEL:CSM
METHOD: numerical
NUMERIC IDENTIFIERS: floppy time disktime cputime thinktime users

FLOPPY TIME : . 22
DISKTIME:.019
CPUTIME: . 05
THINKTIME:5
USERS:15

NUMER+C IDENTIFIERS:cpiocycles
CPIOCYCLES:8

QUEUE:floppyq
TYPE:fcfs
CLASS LIST:floppy

SERVICE TIMES: floppy time
QUEUE:diskq

TYPE:fcfs
CLASS LIST:disk

SERVICE TIMES:disktime
QUEUE:cpuq

TYPE:ps
CLASS LIST:cpu

SERVICE TIMES:cputime
QUEUE:terminalsq

TYPE:is
CLASS LIST:terminals

SERVICE TIMES:thinktime
CHAIN: interactive

TYPE: closed
POPULATION: users
:terminals->cpu
:cpu->floppy disk;.1 .9
:floppy->terminals cpu;1/cpiocycles 1-1/cpiocycles

April 3, 1982

SEC. 3 / DIALOGUE FILES - MODEL PARAMETERS

:disk->:terminals cpu;1/cpiocycles 1-1/cpiocycles
END

The following illustrates editing of the dialogue file with the CMS EDIT command:

edit csm rq2inp
EDIT:
case m
locate/METHOD:

M~THOD:numericaL

ipvut NUMERIC PARAMETERS:thinktime users
next

i NUMERIC. IDENTIFIERS: floppy time qisktime cputime thinktime users
cpange/thinktime users//

I NUMERIC IDENTIFIERS: floppy time disktime cputi~e
locate/THINKTIME

THINKTIME:5
delete 2
locate/interactive

CHAIN: interactive
change/ve/v/

CHAIN:interactiv
file
R; T=O.06/0.32 12:49:28

15

In this edit session, we first tell the editor that we want mixed lower arid upper case. This is
necessary because the dialogue file has preserved the user's lower case input and the editor
assumes upper case only as its default. There is one exception to the preservation of lower
case input: If a model is defined without a dialogue file, t.hen the model name is translated to
upper case. Next we locate the solution method prompt and add a line declaring the numeric
parameters. Next we go to the numeric identifier prompt with thinktime and users and erase
them from the reply. Then we delete the prompts and replies for values of thinktime and
users. Finally, we find the "interactive" name which was too long and remove the final u e."

We can now let the SETUP command translate this dialogue file in a batch mode. No
interactive dialogue is necessary if we give the SETUP command the model name as part of
the command.

SETUP ·csm
MODEL IS CSM
CONTINUING WITH MODEL DEFINITION ...

NO FATAL ERRORS DETECTED DURING THE COMPILATION.
R; T=O.43/0.96 12:52:07

Several questions may arise in the reader's mind: (1) Why did SETUP not begin an interactive
. dialogue instead of translating the dialogue file? The answer is that, once given the model
name, SETUP will always try to use a dialogue file if· it can find one. As we will see in the
next section, it is possible to switchback and forth betweeri interactive dialogue and dialogue
file within a single issuance of the SETUP command. (2) What about the prompts th~twould
have had null replies in an interactive dialogue but are not present in the dialogue file? In this
case there are several instances: there would have been another numeric .parameter prompt,
there would have been additional CLASS LIST: prompts, there would have .beenanother
QUEUE: prompt and there would have been another colon prompt for a routing transition.
The answer is that any prompts with null replies can be removed from a dialogue file and

April 3, 1982

16 DIALOGUE FILES.,- MODEL PARAMETERS I SEC. 3

SETUP will still produce the same results as if the prompts with null replies had been there.
(3) What about error messages and error handling? The answer is that SETUP will write
error messages on the terminal and attempt to continue processing the dialogue file. However,
SETUP doesnofwrite the offending lines to the terminal. SETUP produces alistirtg file with
file name equal to the model name and file type RQ2LIST. This file corresponds to the listing
file a compiler would produce and includes error messages after incorrect lines. CSM
RQ2LIST is as follows:

RESQ2 Translator V2.04 (03/02/82) Time: 12:50:48 Date: 03/10/81

* 1 * 0*
* 2* 0*
* 3* 0*

* 4* 0*
* 5* 0*
* 6* 0*
* 7* 0*
* 8* 0*
* 9* 0*
* 10* 0*
* 11 * 0*
* 12* 0*
* 13* 0*
* 14* 0*
* 15* 0*
* 16* 0*
* 17* 0*
* 18* 0*

* 19* 0*
* 20* 0*

* 21* 0*
* 22* 0*
* 23* 0*
* 24* 0*
* 25* 0*
* 26* 0*
* 27* 0*
* 28* 0*

* 29* 0*
* 30* 0*

MODEL:CSM
METHOD:numerical
NUMERIC PARAMETERS:thlnktime users
NUMERIC IDENTIFIERS: floppy time disktime cputime

FLOPPYTIME :".22
DISKTIME:.019
CPUTIME:.05

NUMERIC IDENTIFIERS:cpiocycles
CPIOCYCLES:8

QUEUE:floppyq
TYPE:fcfs
CLASS LIST:floppy

SERVICE TIMES: floppy time
QUEUE:diskq

TYPE:fcfs
CLASS LIST:disk

SERVICE TIMES:disktime
QUEUE:cpuq

TYPE:ps"
" CLASS LIST:cpu

SERVICE TIMES:cputime
QUEUE:terminalsq

TYPE: is
CLASS LIST:terminals

SERVICE TIMES:thinktime
CHAIN:interactiv

TYPE:closed
POPULATION: users
:terminals->cpu
: cpu->floppy disk; .1 .9

* 31*
* 32*

0*
0*

:floppy->terminals cpu;1/cpiocycles l-l/cpiocycles
:disk->terminals cpu;1/cpiocycles 1-1/cpiocycles

* 33* 0* END

NO FATAL ERRORS DETECTED .DURING COMPILATION.

Now we are ready to use EVAL again:

eval/csm
RESQ2 EXPANSION AND SOLUTION PROGRAM.
RESQ2 VERSION DATE: MARCH 9, 1981 ~ TIME: 13:08:11 DATE: 03/10/82
THINKTIME: 10 "
USERS: 15
NO ERRORS DETECTED DURING NUMERICAL SOLUTION.

April 3, 1982

SEC. 3·/DIALOGUE FILES - MODEL PARAMETERS

WHAT:ut

ELEMENT
FWPPYQ
DISI<Q
CPUQ

UTILIZATION
0.23670
0.18398
0.53796

TERMINALSQ 0.00000

WHAT:
THINKTIME: 1 0
USERS: 20
NO ERRORS DETECTED DURING NUMERICAL SOLUTION.

WHAT:ut

ELEMENT
FLOPPYQ
DISKQ

UTILIZATION
0.30661
0.23832

CPUQ 0.69685
TERMINALSQ 0.00000

WHAT:
THINKTIME:10
USERS: 30
NO ERRORS DETECTED DURING NUMERICAL SOLUTION.

WHAT:ut

ELEMENT
FLOPPYQ
DISKQ
CPUQ

UTILIZATION
0.40896
0.31787
0.92944

TERMINALSQ 0.00000

WHAT:ql(terminalsq)

ELEMENT MEAN QUEUE LENGTH
TERMINALSQ 23.23608

WHAT:tp(terminalsq)

ELEMENT THROUGHPUT
TERMINALSQ 2.32361

WHAT:
THINKTIME:
EXPANSION FINISHED.
R; T=0.50/1~20 14:10:13

17

Note that we gave the model name to EVAL as part of the command. EV AL then prompts us
for a value for thinktime and a value for users. We first try twice the previous think time and
the same number of users. As we would expect, the CPU utilization goes down considerably.
When we give a null reply to WHAT: we are prompted for more parameter values. With 20

April 3, 1982

18 DIALOGUE FILES - MODEL PARAMETERS / SEC. 3

users the CPU utilization goes up some, and with 30 users the CPU approaches saturation
again. When we give a null reply for a parameter value the EV AL command terminates.

Using the Little's Rule approach, the mean response· time .estimate is. (30
23.23608)/2.32361 = 2.911 seconds. Using the exponential assumption the probability the
response time is at most 4 seconds is .747, the probability the response time is at most 6
seconds is .873 and the probability the response time is at most 8 seconds is .936.

A file with file name the same as the model name and file type RQ2RPL Y may be used
instead of the terminal to give replies to the prompts from EVAL. The RQ2RPLY file may
include comments using the PL/I comment convention, i.e., comment maybe any string
enclosed by "/*" and "*/" which does not contain "*/". However, comments must be
entirely contained on one line, and a line consisting of only a comment is treated as a blank
line, For example, the following RQ2RPLY file could be used with model csm to get the same
results as in the above EV AL dialogue:

/*THINKTIME:*/ 10
/*USERS:*/ 15
"7'*~m1l:!': *;' uIlCi­
/*WHAT:*/ ut
/*WHAT:*/
/*THINKTIME:*/ 10
/*TJSERS:*/ 20
/*WHAT:*/ ut
/*WHAT: */
/*THINKTIME:*/ 10
/*USERS:*/ 30
/*WHAT:*/ ut
/*WHAT:*/ ql(terminalsq)
/*WHAT:*/ tp(terminalsq)
/*WHAT:*/
/*THINKTlME:*/

In this file the fifth, ninth, fifteenth and sixteenth records have the effect ofa null reply.

To summarize the files we have for this model, let us use the CMS LISTFILE command:

listfile csm
CSM RQ2INP A1
CSM RQ2LIST A1
CSM RQ2COMP A1
CSM RQ2RPLY A1
CSM RQ2PRNT A1
Ri T=0.02/0.05 14:21:30

The RQ2INP file is the dialogue file we have been manipulating. . The RQ2LIST file isa
listing file produced by SETUP; it is primarily useful when errors are encountered in the
RQ2INP file or submodels (see Section 13) are used. The RQ2COMP file is the file passed
from SETUP to EV AL. The RQ2RPL Y file contains the responses to be stacked for EV AL,
as we just discussed. The RQ2PRNT file contains a transcript of the BV AL dialogue.

April 3, :1982

19

4. SIMULTANEOUS RESOURCE POSSESSION - SIMULATION

One of the principal limitations of the model of the last two sections is that it ignores
simultaneous resource possession, i.e., that jobs must have memory in 'order to use the
processor or a device. We can think in terms of a job passively holding memory while it
actively uses the processor or a device. In this section We show how we can add a passive
queue to model csm as in Figure 1.2. In order to do so, we edit the dialogue file from the last
section:

eqit csm rq2 inp
EDIT:
casem
fname csmwm
next
MODEL:CSM
change/CSM/csmwm
MODEL:csmwm
input /*Computer System Model with Memory*/
next

METHOD: numerical
change/numerical/simulation

METHQD:simulation
locate/CHAIN:/

CHAIN:interactiv
delete *
EOF:
file
R; T=0.13/0.71 15:02:11

First we change the file name so that the old model will be preserved, and change the model
name within the file. (It is not strictly necessary to change the model name within the file;.the
file name is always used as the model name by RESQ commands.)

. We also insert a comment explaining the model name. SETUP uses the PL/I comment
convention. Comments may be included in replies, where they are treated as blanks, or may
be inserted on separate lines as above. As with RQ2RPLY, each comment must be confined
to a single line. (This is because the end of a line has meaning in the dialogue file language.
A comment too long for one line should be broken into several comments on. successive lin.es.)
Then we change the solution method to simulation.

We then delete everything after the queue definitions, leaving an in~mplete dialogue file:

MODEL:csmwm
/*Computer System Model with Memory*/
METHOD: simulation
NUMERIC PARAMETERS:thinktime users
NUMERIC IDENTIFIERS: floppy time disktime cputime

FLOPPYTIME: .22
DISKTIME: .019
CPUTIME: .05

NUMERIC IDENTIFIERS:cpiocycles
CPIOCYCLES:8

QUEUE:floppyq
TYPE:fcfs

April 3, 1982

20 SIMULTANEOUS RESOURCE POSSESSION - SIMULATION / SEC .. 4

CLASS LIST:floppy
SERVICE TIMES: floppy time

QUEUE:diskq
TYPE: fcfs
CLASSLIST:disk

SERVICE TIMES:disktime
QUEUE:cpuq

TYPE:ps
CLASS LIST:cpu

SERVICE TIMES:cputime
QUEUE:terminalsq

TYPE: is
CLASS LIST:terminals

SERVICE TIMES:thinktime

Now we can use SETUP to translate the partial dialogue file.· When SETUP reaches the end of
the partial dialogue file, it will switch to interactive mode. SETUP will start prompting us to
continue the queue definition, since the last line in the file gives the service times for the
terminals.

SETUP csmwm
MODEL IS CSMWM
CONTINUING WITH MODEL DEFINITION ...

CLASS LIST:
QUEUE:memory

TYPE:passive
TOKENS: edit

EDIT:
case m
locate/PARAMETERS

NUMERIC PARAMETERS:thinktime users
change/users/users partitions

NUMERIC PARAMETERS:thinktime users partitions
file
MODEL IS CSMWM
CONTINUING WITH MODEL DEFINITION ...

TOKENS: partitions
DSPL: fcfs
ALLOCATE NODE LIST:getmemory

NUMBERS OF TOKENS TO ALLOCATE: 1
ALLOCATE NODE LIST:
RELEASE NODE LIST:freememory
RELEASE NODE LIST:
DESTROY NODE LIST:
CREATE NODE LIST:

QUEUE:
SET NODES:
FISSION NODES:
fUSION NODES:
SUBMODEL:
CHAIN:interactiv

TYPE: closed
POPULATION: users
:terminals->getmemory->cpu->floppy disk;.1 .9

April 3, J 982

SEC. 4 / SIMULTANEOUS RESOURCE POSSESSION - SIMULATION

END

:floppy->freememory cpu;1/cpiocycles 1-1/cpiocycles
:disk->freememory cpu;1/cpiocycles 1-1/cpiocycles
:freememory->terminals

CHAIN:
QUEUES FOR QUEUEING TIME DIST:memory

VALUES: 1 2 3 4 5 6 7 8
QUEUES FOR QUEUEING TIME DIST:
QUEUES FOR QUEUE LENGTH DIST:memory

MAX VALUE:users/2
QUEUES FOR QUEUE LENGTH DIST:
NODES FOR QUEUEING TIME DIST:
NODES FOR QUEUE LENGTH DIST:
CONFIDENCE INTERVAL METHOD:none
INITIAL STATE DEFINI.TION­
CHAIN:interactiv

NODE LIST:terminals
INIT POP;users

CHAIN;
RUN LIMITS­

SIMULATED TIME;
EVENTS;
QUEUES FOR DEPARTURE COUNTS:memory

. DEPARTURES: 500
QUEUES FOR DEPARTURE COUNTS:
NODES FOR DEPARTURE COUNTS:

LIMIT ~ CP SECONDS: 10
TRACE.: no

NO FATAL ERRORS DETECTED DURING THE COMPILATION.
R;T=2.22/6.9815:53:11

21

In the definition of the memory queue we give the type as "passive.'" There are no
predefined special types for passive queues corresponding to fcfs for active queues, but the
user can define specialtypes (Section 12). ' '

A passive queue consists of a "pool" of "tokens" and a set of nodes which interact with
the pool. (The tokens are analogous to the servers of an active queue.) The prompt
"TOKENS:" is asking for the number of tokens in the pool. Let us assume for now that
memory in the computer system is organized into fixed homogeneous partitions such that a job
needs exactly one partition of memory for processing and/ or I/O~ Then' a token of the
passive queue can represent a partition.

, Now suppose we realize we want the number of partitions to be a parameter. We have
not declared an identifier for this purpose, so we would like to. change the dialogue file before
we proceed. As illustrated above, SETUP will allow us to edit the dialogue file by replying
"edit" to any prompt. When SETUP is given the "edit" reply, it places the l;lser in an editor
looking at a dialogue file. This dialogue file includes any interactive dialogue since the SETUP
command was issued. When the user leaves the editor (e.g., by filing) SETUP reprocesses the
dialogue file left by the editor. If the dialogue file is incomplete; then SETUP switches to
prompting mode when it reaches the end of the file. (If the file is complete,SETUP .exits
without further prompting.)

April 3, 1982

22 SIMULTANEOUS RESOURCE POSSESSION.., SIMULATION / SEC 4

III the example, we used the editor to add "partitions" as a parameter. After leaving the
editor with the file command, SETUP retranslates the dialogue file through O'\1r reply "passive "
to TYPE: and then reissues the TOKENS: prompt. We can now reply "partitions" to .that
prompt.

In all of our examples, we assume the standard CMS editor. However, other editorsniay
be made available, as discussed in Section 2.2 of the Users Guide.

The next prompt is for the queueing discipline; we use fefs.

After that we are prompted for a list of allocate nodes. A job goes to ail allocate node
when it wants to request tokens from the pool. Allocate nodes ill passive queues are the
counterparts to classes in active queues. A job will wait at an allocate node until it gets the
number of tokens it has requested.

The next prompt is for a distribution for the number of tokens a job needs when it comes
to the allocate node. The reply of "1" means that a job needs exactly one token. Note that
this is different from the active queue case where a scalar value implies an exponential
distribution. The rule is that where continuous distributions are expected, a scalar value
implies an exponential distribution, tm(where a discrete distribution is expected" e.g., because
the resulting value should be an integer, a scalar value implies a constant distribution.

We are then given the opportunity to list more allocate nodes. After a null reply we are
prompted for a list of "release" nodes. A job gives up any tokens it holds (of a specific
passive queue) at a release node and is considered to leave the queue when it goes through the
release node. We are prompted for more release nodes and give a null reply. .

We are then prompted for destroy node and create node lists for this queue; there are no
such nodes in this model and we defer discussion of them until a later section.

Then we are prompted for another queue, for a list of set nodes, for a . list of fission
nodes, for a list of fusion nodes and fora definition of a submodel; null replies indicate there
are none of these.

The routing definition is very similar to before but with one new wrinkle: the reply to the
first colon isa series of concatenated routing transitions. The concatenation is permissible as
long as the final part of the transition does not involve a routing decision (e.g., by probabili.,.
ties in its "to part," i.e., its right hand side) and the transition does not include certain node
types we have not yet discussed in its "from part," i.e., its left hand side.

If we had wished to, we could have avoided completely respecifying the routing chain
interactively and revised the previous definition instead .. We could have used the CMS
COPYFILE command to copy all or part of the previous model definition (RQ2INP) before
we edited it. (If we were using an editor such as XEDIT we could have saved the portio~n of
the file we deleted on a new file at the same time we deleted it. In XEDIT this would be dOile
with the PUTD subcommand.) Having this preparation, we could have given the "edit" reply
to the CHAIN: prompt. Then, while in the editor, we could have retrieved the old routing
definition (using the GETFILE subcommand) from the other file and modified that definition,
We would then proceed with the interactive dialogue that follows the routing chain definiiloq
after leaving the editor. With theCMS EDIT command we use in our examples, and this
simple model, it is easier to just completely respecify the routing. However, with a full screen
editorand/ or a more complex model, it is more likely to be appropriate to save and modify
portions of dialogue from the previous RQ2INP file than to completely i:especify them.

April 3, 1982

SEC. 4 / SIMULTANEOUS RESOURCE POSSESSION - SIMULATION 23

After the chain definition we have finished defining the model proper, . However, we still
must provide some additional information to define· the simulation run .. This informatioll falls
into several categories: '

1. Specification of non-standard performance measures to be gathered.

2. Specification of initial state of the system.

3. Specification of confidence interval method, ·if any, and parameters of the,
confidence interval method.

4. Specification of stopping criteria.

5. Specification of simulation trace.

In order for the siniulation to estimate distributions of measures such as queueing time, it
must reserve storage for each point on the distribution. Rather than attempt to guess which
points of the distribution should be gathered for each queue and node and reserve a large
amount of storage for information that may not be of interest to the user, the simulation
requires that the user specify which distributions are to be gathered and what points of the
distributions are to be considered. The prompt "QUEUES FOR QUEUEING TIME DIST:" is
asking for a list of queues which are to have queueing time distributions gathered. For' each
queue listed, SETUP will prompt "V ALUES:" for a list of points on the distribution for that
queue's queueing time. The simulation will produce estimates for the cumulative distribution
at those points, e.g., in the example the simulation will produce estimates of the probability
the queueing time is less than or equal to 2, less than or equal t04,etc. The queue length
distribution is treated similarly except: (1) The distribution is estimated for each queue length
up to some specified maximum (e.g., one half the number of users in the example)~ (2) The
distribution estimated is not cumulative, i.e., estimates of probability of queue length 0, queue
length 1, etc. are produced.

With the regenerative method for confidence intervals (Section 4) we must specify a
"regeneration" state similar to the initial state. So SETUP asks for the confidence interval
method, if any, before asking for the initial state. We defer discussion of confidence interval
methods to Section 4.

The initial state definition section defines where jobs are to be placed when the simula­
tion begins. The initial state is described by chains and by nodes within chains. The NODE
LIST: prompt is asking for a list of nodes which will have non-zero populations when the
simulation begins. The INIT POP: prompt is asking for a list of the corresponding popula­
tions; for closed chains the sum of the elements in the list should equal the chain population.
Xn this example we initially place all of the users at the terminals.

The run limits section defines conditions other than CPU time consumed which will
terminate the simulation. The default values are intended to be "infinity; II actually the largest
representable floating point or fixed point values are used, depending .on the particular limit.
The simulation will stop when the first limiting value is reached. As we shall see, the limits
specified can be increased after examining the results. Simulated time is time in terms of the
m.odel execution. Simulated events are defined in Appendix 7 of the Users Guide. IIi the
examples of this section the events correspond to completion of service times, i.e." departures
from the active queues. The prompt "QUEUES FOR DEPARTURE COUNTS:" requests a
list of queues where departure count limits are to be considered. The DEPARTURES: prompt
requests a corresponding list of counts.

April3, 1982

24 SIMULTANEOUS RESOURCE POSSESSION - SIMULATION / SEC. 4

The CPU limit is not in the run limits section because the run limits section is replaced by
run "guidelines" with the regenerative method (Section 4). The CPU limit is fairly crude for
two reasons: (1) The CPU time consumed is only checked occasionally. The frequency of .
checking is model and processor dependent but is intended to be roughly once a virtual second
on a 3033. (All examples in this document were run on a 3033.) (2) The CPU time consid­
ered only includes time. consumed during the actual simulation and excludes time preparing for
the run (e.g., reading files, obtaining parameter values, etc.) and time spent after the· run
terminates (e.g., calculating and printing results). (If the run is continued after examining
results, the CPU time consumed includes the time spent calculating and printing results
previously, Le., the CPU time is from the very beginning of simulation until the end of
simulation.)

The TRACE: prompt asks whether we wish to trace the actions of the simulation
program. If we had said "yes," then we would be prompted for more details (see Section 12
of the Users Guide).

Having defined the model, We can now evaluate it with EVAL. Using the param~ters
from before, i.e., 10 second think time and 30 users, and four partitions, we get the following:

eval csmwm
RESQ2 EXPANSION AND SOLUTION PROGRAM.
REE;Q2VERSION DATE: MARCH 9, 1981 - TIME: 16:28:11 DATE: 03/10/82

. THINKTIME :1 0
USERS:30.
PARTITIONS: 4
RUN END: MEMORY DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION.

WHAT:qt(memory)

ELEMENT
MEMORY

WHAT:
CONTINUE RUN:yes

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:

MEAN QUEUEING TIME
3.56839

LIMIT - MEMORY DEPARTURES:how
LARGER VALUE THAN 500
TRY AGAIN-
LIMIT - MEMORY DEPARTURES: 1000
LIMIT - CP SECONDS:how

217.73250
3.77
8754

LARGER VALUE THAN 5 OR NULL TO KEEP THAT VALUE
LIMIT - CP SECONDS:
RUN END: MEMORY DEPARTURE LIMIT
~UN END: CPU LIMIT
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:

290.88867
5.17

11507

April 3, 1982

SEC. 4 / SIMULTANEOUS RESOURCE POSSESSION - SIMULATION

WHAT:nd(memory)

ELEMENT
MEMORY

VitHAT:qt(memory)

ELEMENT
MEMORY

WHAT I

NUMBER OF DEPARTURES
651

MEAN QUEUEING TIME
3.76333

CONTINUE RUN:yes
LIMIT - MEMORY DEPARTURES:
LIMIT - CP SECONDS: 10
RUN END: MEMORY DEPARTURE LIMIT
RUN END: CPU LIMIT
RUN END: MEMORY DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION.

WHAT:qt(memory)

ELEMENT
MEMORY

WHAT:all

ELEMENT
MEMORY
FLOPPYQ

. DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ
FREEMEMORY

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:

MEAN QUEUEING TIME·
3.39005

UTILIZATION
0.92252
0.40850
0.31400
0.91481
0.00000

THROUGHPUT
2.30743
1.85287
16.44046

. 18.29333
2.31666
2.30743

MEAN QUEUE LENGTH
7.83167
0.62480
0.43723
2.62806
22.16832

433.38184
7.31

16860

ELEMENT
MEMORY

STANDARD DEVIATION OF QUEUE LENGTH
4.16640

April 3, 1982

25

26

FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALS.Q

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ .

TERMINALSQ

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT

SIMULTANEOUS RESOURCE POSSESSION- SIMULATION / SEC. 4

0.89727
0.74855
1 .27861
4.13894

MEAN QUEUEING TIME
3.39005
0.33721
0.02659
0.14362
9.33247

STANDARD DEVIATION OF QUEUEING TIME
2.57104
0.30454
0.02610
0.15563
9.49582

MEAN TOKENS IN USE
3.69009

MEAN TOTAL TOKENS
4.00000

IN POOL

QUEUE LENGTH DISTRIBUTION
0: 0.01980
1 : 0.02854
2: 0.04084
3 : 0.06342
4: 0.06928
5: 0.09986
6: 0.09825
7: 0.08047
8: 0.08460
9: 0.09986

10: 0.08180
11 : 0.04505
12 : 0.03536
13 : 0.03193
14: 0.03103
15 : 0.04036

QUEUEING TIME DISTRIBUTION
1.00E+00: 0.15900
2.00E+00: 0.34100
3.00E+00: 0.52400
4.00E+00: 0.68400
5.00E+00: 0.78200
6.00E+00: 0.85500
7.00E+00: 0.90900
8.00E+00: 0.93500

DISTRIBUTION OF TOKENS IN USE

April 3, 1982

SEC. 4 / SIMULTANEOUS RESOURCE POSSESSION - SIMULATION

ELEMENT

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

WHAT:
CONTINUE RUN:no
THINKTIME:

DISTRIBUTION OF TOTAL TOKENS IN POOL

MAXIMUM QUEUE LENGTH
19
4
4
4
30

MAXIMUM QUEUEING TIME
17.08136
2.43811
0.29066
1.60335
101.23787

EXPANSION FINISHED.
R; T=8.02/9.51 14:10:18

27

The initial simulation run terminated normally because of the departure limit for the memory
queue. (As the model run was specified, the only other reasons the run would stop would be
for the CPU time limit or an error.)

Now we have the response time estimates for the model directly available as the queueing
time estimates for the memory queue. (Consistent with the definition of queueing time for
active queues, the queueing time for passive queues is defined as the time from arrival at the
queue to departure from the queue, e.g., release of tokens.) The estimate of mean response
time, 3.57 seconds,'is 23 % higher than the response time estimate for the numerically solved
version of this model without memory contention. Apparently, the memory contention is
having a noticeable effect on response times. We emphasize "apparently" because we have no '
idea of how much statistical variability has affected the simulation results.

We may be able to get some idea of the variability by letting the run continue to see if
there is much change in the results. We continued the run by specifying a larger depar.ture
count for the memory queue. EY AL will prompt for larger limits for values not already at
"infinity." Larger limits are required for limits that have been reached, and are optional for
other limits. We then hit the CPU limit after 651 departures. The estimate of mean response
time was considerably higher, 3.76 seconds, after only 151 more departures. Tbenwe
increased the CPU limit so that we would get the full 1000 departures. With the longer run
we got a much smaller estimate of mean response time,3.39 seconds. The results we got were
the same as if we had specified 1000 departures initially. Continuation of runs will produce
the same results as if the final limits had been specified initially except possibly for models
which stop because of CPU limits. (Two instances ofa given run may take slightly' different'
CPU times because of the effects of multiprogramming.)

We could have continued the run further to see if the estimate would change again,but
we would rather use one of the formal approaches described in the next section. As we will
see, this short a run for this model produces results with great variability.

Now let us suppose the memory is organized in pages instead of partitions. Further, a
job's processing requires 16 page frames with probability .25, 32 page frames with probability

April3, 1982

28 SIMULTANEOUS RESOURCE POSSESSION.· - SIMULATION / SEC. 4 . . ,

.5 and 48 page frames with probability .25. Thus the mean number of. frames required is 32.
(In this example we are restricting attention to page frames available to users.) We change the
model as follows:

edit csmwm rq2inp
EDIT:.
case m
locate/partitions

NUMERIC PARAMETERS:thinktime users partitions
change/partitions/pageframes

NUMERIC PARAMETERS:thinktime users pageframes
locate/partitions

TOKENS:partitions
change/partitions/pageframes

TOKENS:pageframes
locate/NUMBERS OF TOKENS TO ALLOCATE

NUMBERS OF TOKENS TO ALLOCATE: 1
change/1/discrete(16,.25;32,.5;48,.25)

NUMBERS OF TOKENS TO ALLOCATE: discrete (16, .25;32,.5;48,.25)
locate/DEPARTURES: 500

DEPARTURES: 500
change/5/10

DEPARTURES: 1000
locate/SECONDS

.LIMIT - CP SECONDS: 5 .
change/5/10

LIMIT - CP SECONDS: 10
fil'e

Ri T=0.09/0.34 14:33:41

First we changel:i the name of the parameter specifying the number of tokens. Then we
changed the distribution for the number of tokens required from constant at J to the. above
described distribution. The RESQ "discrete" accepts any number of pairs of values and
probabilities with the pairs separated by semicolons (";"). In .this case there are three pairs.
(The commas between values and probabilities are optional. Blanks could be used. Blanks
could also appear before and/or after the semicolons.)

Now we use SETUP again:

SETUP csmwm
MODEL IS CSMWM
CONTINUING WITH MODEL DEFINITION ...

NO FATAL ERRORS DETECTED DURING THE COMPILATION.
R; T=0.70/1.38 14:34:21

and EVAL, using the the followingRQ2RPLY file:

/*Thinktime:*/ 10
/*U!3ers:*/ 30
/*Pageframes:*/ 128
all

/*Continue run:*/ no
/*Thinktime:*/

April 3, 1982

SEC. 4 / SIMULTANEOUS RESOURCE POSSESSION - SIMULATION

which produces the following RQ2PRNT file:

RESQ2 VERSION DATE: MARCH 11, 1982 - TIME: 11: 47: 41 DATE: 03/17/82
MODEL:CSMWM
THINKTIME:/*Thinktime:*/ 10
OSERS:/*Users:*/ 30
PAGEFRAMES:/*Pageframes:*/ 128
RUN END: MEMORY DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:

WHAT: all

ELE.MENT UTILIZATION
MEMORY 0.82642
FLOPPYQ 0.41829
DISKQ 0.31052
CPUQ 0.87094
TERMINALSQ 0.00000

ELEMENT THROUGHPUT
MEMORY 2.24905
FLOPPYQ 1.78574
DISKQ 16.05820
CPUQ 17.84845
TERMINALSQ 2.25805
FREEMEMORY 2.24905

ELEMENT MEAN QUEUE LENGTH
MEMORY 7.02301
FLOPPYQ 0.62368
DISKQ 0.42275
CPUQ 2.30178
TERMINALSQ 22.97699

444.63232
7.64

16874

ELEMENT STANDARD DEVIATION OF QUEUE LENGTH
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT.
MEMORY
FLOPPYQ
DISKQ

April 3, 1982

3.77416
0.87659
0.72183
1.38069
3.77415

MEAN QUEUEING TIME
3. 11431
0.34903
0.02632

29

30

CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT

ELEMENT

SIMULTANEOUS RESOURCE POSSESSION., SIMULATION/SEd. 4

0.12896
9.81125

STANDARD DEVIATION OF QUEUEING TIME
2.19806
0.31033
0.02599
0.14421
9.64321

MEAN TOKENS IN USE
105,78178

MEAN TOTAL TOKENS IN POOL
128.00002

QUEUE LENGTH DISTRIBUTION
0:0.02748
1 :0.05196
2:0.05272
3:0.07851
4:0.07436
5:0.08615
6:0.09493
7.:0.07985
8:0.07594
9:0.08690

10:0.07881
11 :0.07982
12:0.06958
13:0.02964
14:0.01516
15:0 .. 01056

QUEUEING TIME DISTRIBUTION
1.00E+00:0.18300
2.00E+00:0.34600.
3.00E+00:0 . .53900
4.00E+00:0.69700
5.00E+00:0.83200
6.00E+00:0.90100
7.00E+00:0.95200
8.00E+00:0.97100

DISTRIBUTION OF TOKENS IN USE

DISTRIBUTION OF TOTAL TOKENS IN POOL

April 3, 1982

SEC. 4 / SIMULTANEOUS RESOURCE POSSESSION - SIMULATION

ELEMENT
MEMORY
FLQPPYQ
DISKQ
Cl?rJQ
if'ElRMINALSQ

ELEMENT
MEMORY
rLOppYQ
DISKq
CPUQ
TERMINALSQ

WHAT:

MAXIMUM QUEUE LENGTH
18
4

5
6
30

MAXIMUM QUEUEING TIME
13.46424
1.78271
0.29332
1.36720
68.87238

CONTINUE RUN:/*Continue run:*/.no

THINKTIME~/*Thinktime:*/

31

(For the rest of this document, we will usually. show RQ2PRNT files rather than actual
tertninaloutput.)

With 128 page frames specified, the memory contention is the same on the· average in the
sense that if each job requires the mean number of frames, at most four jobs can be in
memory at once. But now we could have a maximum of two jobs in memory if all the jobs
need 48 frames, or up to 8 jobs needing 16 frames. The mean total number of toke11s should
be exactly 128; the discrepancy is due to numerical error.

The results from the two. runs are noticably different, but we do not really know if the
difference is due to changes in the model or to statistical variability. One way to consider the
statistical variability of simulation is to estimate confidence intervals. The next section
discusses methods for estimating confidence intervals that are provided in RESQ.

April 3, 1982

32

S. CONFIDENCE INTERVAL METHODS

We have frequently referred to one of the most troublesome problems with simulation:
We need some indication of the accuracy of simulation estimates because of the statistical
variability of simulation estimates. This statistical variability is due to the use of random
number streams to drive the simulation. Assuming numerical errors are small, there is no
corresponding problem with numerical solution. For example, when we obtained the mean
response time estimate of 2.91 seconds for the last parameters of model csm that was an exact
value for the model. The difference between that value and the mean response time of the
modeled system is due entirely to inaccuracies of· the model and of parameter estimation, not
to inaccuracy of solution. When we obtained the estimate 3.39 seconds for the mean response
time of the initial version of model csmwm, we had no idea of how accurate that estimate was
for the mean response time for the model, much less the modeled system. Though we usually
expect the inaccuracies of our models to be the principal source of error in model estimates, it
behooves us to attempt some estimate of the error introduced by statistical variability.

The usual method of estimating variability of simulation results is to produce "confidence
interval" estimates: given some point estimate p (e.g., 3.39 seconds for mean response time)
and other information we produce a confidence interval estimate (p - 8, p +8) and
estimate the "true" value (for the model) is contained within the interval with some chosen
probability, say .9. This probability, expressed in percent, e.g., 90%, is known as the
"confidence level." The quantity 8 depends on the confidence level; the higher the confidence
level is, the larger 8 is. We will use the term "confidence interval" to avoid the mouthful
"confidence interval estimate"but it should be remembered that the confidence intervals are
only estimates. Note that the true value may lie outside of the confidence interval; but this
happens only with a small probability (e.g., 1 - .9 == .1). If a simulation is not run long
enough, or if the performance measure considered is highly variable, then 8 may be greater
than p and p - 8 may be negative even though the performance measure must be· non­
negative. Similarly, for performance measures known to be no greater than 1, e.g., utiliza­
tions, p and 8 may be such that p + 8 > 1.

RESQ provides three methods for confidence interval estimation. The methods are
implemented to be as transparent to the user as is practical,i.e., to minimize user decision
making and to minimize required user understanding of the statistical bases of the methods.
No one method is best for all applications.

• The method of independent replications is the preferred method for estimation of
transient characteristics. Independent replications may be applied to estimation of
equilibrium characteristics, but one of the following two methods will usually be
preferable for estimating equilibrium characteristics.

• The regenerativt;l method is the preferred method for .estimation of equilibrium
behavior in models with regenerative characteristics. Many models constructed with
RESQ will have regenerative characteristics, but many ·other models will not.

• The spectral method is the preferred method for estimation of equilibrium behavior
in models without regenerative characteristics. The spectral method may also be
applied to models with regenerative characteristics. The regenerative method
requires more user sophistication than the spectral method in that the user must be
able to define "regeneration states." Definition of a model to use the spectral
method is no more difficult than definition of a model to be simulated without
confidence intervals.

April 3, 1982

SEC. 5/CONFIDENCE INTERVAL METHODS 33

The regenerative method and the spectral method allow automated run length control based on
achieving confidence intervals ·of a pre specified width. All three methods, independent
replications, the regenerative method and the. spectral method, are discussed from a statistical
point of view in Chapter 6 of Lavenberg et .al [LAVE82]. Other references in the Bibliogra~
phy discuss the statistical aspects of the regenerative method and the spectral method in more
detail.

The following three subsections are intended to be independent of each other and the
remaining sections of this document. The reader may skip one· or more (possibly all) of these
subsections. Examples in subsequent sections will use the confidence interval methods, but
the use of the confidence interval methods is a side issue in the examples.

5.1. Independent Replications

A classical method for obtaining confidence intervals is the method of independent
replications. With independent replications we repeat the simulation run several times with
everything except the random number streams reset to the original initial state for each
replication after the first. The random number streams for the .second replication begin where
the streams for the first replication ended, the streams for the third replication begin ""here the
streams for the second replication ended, etc.

To use independent replications with csmwm we could first edit the dialogue file:

edit csmwm rq2inp
EDIT:
locate/CONFIDENCE

. CONFIDENCE INTERVAL METHOD:none
delete *
EOF:
file
R; T=0.06/0.26 17:00:50

and then use SETUP again:

SETUP csmwm
MODEL IS CSMWM
CONTINUING WITH MODEL DEFINITION ...

CONFIDENCE INTERVAL METHOD:replications
INITIAL STATE DEFINITION­
CHAIN:iriteractiv

NODE LIST:terminals
INIT POP:users

CHAIN:
CONFIDENCE LEVEL:90
NUMBER OF REPLICATIONS:5
REPLIC LIMITS-

SIMULATED TIME:
EVENTS:
QUEUES FOR DEPARTURE COUNTS:memory

[)EPARTURES:1000
QUEUES FOR DEPARTURE COUNTS:
NODES FOR DEPARTURE COUNTS:

LIMIT - CP SECONDS: 10

April 3, 1982

34 CONFIDENCE INTERVAL METHODS / SEC. 5

TRACE: no
END

NO FATAL ERRORS DETECTED DURING THE COMPILATION.
R; T~1.35/3~56 17:03:00

Usually we are.interested in equilibrium behavior of the modeled system. In this case we wish
to have the replications long so that the effects of our choice of initial state will not be
noticeable. . (As we will illustrate later in this subsection, it. is possible to discard an initial
porti()n of each replication to reduce the effect of the choice of initial state.) We prefer a few
longer replications to many shorter replications. Usually we choose the number of replications
to be between 5 and 10. The only significant exception is when we want the replications short
because we want to notice the. effects of our choice of initial state, i.e., we are interested in
transient behavior rather than equilibrium behavior. In that case it may be quite reasonable to
have many (20 or more) replications.

The CP SECONDS limit is the total for all replications. We have intentionally left the
limit too sritall in the above dialogue so that we can demonstrate how the run continuation
mechanism applies to replications.

We used SETUP interactively for clarity. We could have appropriately edited the
dialogue file instead, e.g.,

edit csmwm rq2inp
EDIT:
locate/CONFIDENCE

CONFIDENCE INTERVAL METHOD:none
change/none/replications

CONFIDENCE INTERVAL METHOD:replications
locate/INIT POP/

INIT POP:users
input
input
next

CONFIDENCE LEVEL:90
NUMBER OF REPLICATIONS:5

RUN LIMITS.,..
ch;;mge/RUN/REPLIC/

REPLIC LIMITS­
file
R; T=0.11/0.46 17:00:50

and then used SETUP again. Now using EV AL we get the following RQ2PRNT file.

RESQ2 VERSION DATE: MARCH 11, 1982 - TIME: 11:20:35 DATE: 03/17/82
MODEL:CSMWM
THINKTIME:/*Thinktime:*/ 10
USERS:/*Users:*/ 30
PAGEFRAMES:/*Pageframes:*/ 128
REPLICATION 1: MEMORY DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME PER REPLICATION:
CPU TIME:

NUMBER OF EVENTS PER REPLICATION:
NUMBER OF REPLICATIONS:

6298 DISCARDED EVENTS

444.63232
10.28
16874

April 3, 1982

SEC. 5.1 / lndependent Replications

WHAT:qtbo(memory)

ELEMENT
MEMORY

WHAT:

MEAN QUEUEING TIME
3.11431

CONTINUE RUN:/*Continue run:*/ yes

LIMIT - CP SECONDS:/*Limit - CP seconds:*/ 50

REPLICATION 1 : MEMORY· DEPARTURE LIMIT
.REPLICATION 2: MEMORY DEPARTURE LIMIT
REPLICATION 3 : MEMORY DEPARTURE LIMIT
REPLICATION 4: MEMORY DEPARTURE LIMIT
REPLICATJ:ON 5: MEMORY DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME PER REPLICATION: 445.37769
38.05
16966

5

CPU TIME:
NUMBER OF EVENTS PER REPLICATION:

.WHAT: allbo

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ
FREE MEMORY

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ

NUMBER OF REPLICATIONS:

UTILIZATION
0.84662(0.83293,0~~6030) 2.7%
0.40334(0.39382,0.41286) 1.9%
0.30808(0.30467,0.31150) 0.7%
0.89286(0.87936,0.90636) 2.7%
0.00000(0.00000,0.00000)

THROUGHPUT
2.24855(2.15706,2.34004) 8.1%
1.81734(1.78729,1.84739) 3.3%
16.10393(15.g4658,16.26129) 2.0%
17.92303(17.74706,18.09900) 2.0%
2.26418(2.17488,2.35349) 7.9%
6.73585

MEAN QUEUE LENGTH
7.65754(6.92341,8.39167) 19.2%
0.59750(0.57292,0.62207) 8.2%
0.42267(0.41569 1 0.42966) 3.3%
2.44248(2.36520,2.51977) 6.3%
22.34245(21.60832,23.07658) £.6%

STANDARD DEVIATION OF QUEUE LENGTH
3.81189(3.55682,4.06696) 13.4%
0.85975(0.83129,0.88821) 6.61

April 3, 1982

35

36

DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT
MEMORY

CONFIDENCE INTERVAL METHODS / SEC. 5

0.72997(0.72030,0.73963) 2.61
1.37497(1.34781,1.40212) 3.9%
3.81189(3.55682,4.06696) 13.4%

MEAN QUEUEING TIME
3.39909(2.96338,3.83480) 25.6%
0.32891(0.31073,0.34709) 11.1%
0.02624(0.02593,0.02656) 2.4%
0.13621(0.13203,0.14040) 6.1%
9.63718(9.33058,9.94379) 6.4%

STANDARD DEVIATION OF QUEUEING TIME
2.30823(2.06275,2.55372) 21.3%
0.31195(0.29720,0.32671) 9.5%
0.02582(0.02520,0.02645) 4.8%
0.14961 (0.14468,0.15454) 6.6%
9.48424(9.16274,9.8Q575) 6.8%

MEAN TOKENS IN USE
108.36685(106.61545,110.11826) 3.2%

MEAN TOTAL TOKENS IN POOL
127.99998(127:99998,128.00000) 0.0%

QUEUE LENGTH DISTRIBUTION
0:0.01574(0.00823,0.02325) 1.5%
1:0.03582(0.02560,0.04605) 2.0%
2:0.04874(0.04095,0.05652) 1.6%
3:0.06408(0.04862,0.07953) 3.1%
4:0.07053(0.05178,0.08928) 3.7%
5:0.07709(0.06065,0.09354) 3.3%
6:0.08961(0.07677,0.10246) 2.6%
7:0.08638(0.07978,0.09298) 1.3%
8:0.09105(0.07284,0.10926) 3.6%
9:0.09054(0.08325,0.09782) 1.5%

10:0.08554(0.06862,0.10246) 3.4%
11:0.07549(0.05956,0.09141) 3.2%
12:0.06065(0.04926,0.07205) 2.3%
13:0.03866(0.02522,0.05210) 2,7%
14:0.02907(0.01547,0.04267) 2.7%
15:0.01951 (0.00754,0.03148) 2.4%

QUEUEING TIME DISTRIBUTION
1.00E+00:0.15220(0.12760,0.17680) 4.9%
2.00E+00:0.31960(0.27732,0.36188) 8.5%
3.00E+00:0.49200(0.41864,0.56536) 14.7%
4.00E+00:0.65360(0.56817,0.73903) 17.1%
5.00E+00:0.77840(0.70010,0.85670) 15.7%

Apri13, 1982

SEC. 5.1 I Independent Replications

ELEMENT

ELEMENT

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

WHAT:

. 6~00E+00:0.B7260(0.82596,0 .. 91924) 9.3%
7.00E+00:0.92680.(0.B9735,0.95625) 5.9%
8.00E+0010.95460(0.92936,0.97984) 5.0%

DISTRIBUTION OF TOKENS IN USE

DISTRIBUTION OF TOTAL TOKENS IN POOL

MAXIMUM QUEUE LENGTH
22
5
5
7
30

MAXIMUM QUEUEING TIME
16.54839
2.71239
0.31800
2.39180
75.52458

THINKTIME:/*Thinktime:*/

37

With the initial CPU limit, the run stopped during the second replication. When a. run
stops during a replication, the results are based on the completed replications and the partial
replication is discarded if the run is not continued. In this case there is only a . single replica:­
tion (with results the same as our previous run without replications). There must be at least
two replications for confidence intervals to be produced. The run continuation mechanism
allows us to resume the. partial replication where it stopped and continue for the remaining
replications. When the run is completed, the point estimate for the mean response time, 3.40,
is conSiderably higher than the estimate given by the single run of the last section,3.12.
However, the confidence interval, (2.96, 3.83), is very wide. Thus the confidence interval has
told us that the initial estimate was quite variable. The numbers after the confidence intervals
are the widths of the intervals. For the measures which can only have values in the [0, 1]
interval, i.e., utilization and the distribution measures, the width specified is absCilute width in
percent, i.e., 200x8, where the confidence interval is (p - 8, p + 8). For the other
measures the width is relative width in percent, i.e., 200x8/p. (Where p is zero, no Width is
given.) The mean response time confidence interval has a relative width of 26%.

At this point we could either increase the replication length or increase the number of
replications to try to get a narrower interval. Usually we would strongly prefer increasing the
replication length .over increasing the number of replications. It is for this reason that We do
not provide the option of specifying that the run be continued by increasing the number of
replications.

When using independent replications to obtain confidence intervals,. or when. making a run
without obtaining confidence intervals, is often advisable to discard results from the initial
tran'!lient phase of a replication or run. Results from the remainder of the run are, presumably,

April 3, 1982

38 CONFIDENCE INTERVAL METHODS / SEC. 5

more representative of the equilibrium behavior to be studied if the effects of the initial
system state can be masked. For a formal discussion, see Chapter 6 of Lavenberg et at
[LAVE82]. Immediately before the REPLIG LIMITS section of. a dialogue (RQ2INP) file, a
line of the form "INITIAL PORTION DISCARDED: <expression>" may be inserted. This is
the first instance we have seen of a portion of the dialogue file language which is not part of
the interactive dialogue of SETUP. There are many such instances which we will discuss
where appropriate. The reference for the syntax of such instances (and the entire dialogue file
language) is the grammar in Appendix 4 of the Users Guide. The expression gives the
fraction, in percent, of each replication or run that will be discarded. This fraction applies
only to the limits in the REPLIC LIMITS and not to the CP SECONDS limit. For each limit
of the section, a temporary limit is established by multiplying the given limit by the fraction.
Once one of these temporary limits is reached, the variables used to accumulate performance
measures are reset, the original limits are put in effect and the replication or run continues.

In the following we indicate that the first 10% of each replication is to be discarded and
that the replications are to be twice as long as before.

edit csmwm rq2inp
EDIT:
locate/NUMBER OF REPLICATIONS

NUMBER OF .REPLICATIONS;5
input INITIAL PORTION DISCARDED: 10
locate/DEPARTURES:

DEPARTURES: 1000
change/1/2

DEPARTURES: 2000
locate/SECONDS

LIMIT - CP SECONDS: 10
change/10/100

LIMIT ~ CP SECONDS: 100
Hie
R; T=0.11/0.46 17:33:50

use SETUP again,

SETUP csmwm
MODEL IS CSMWM
CONTINUING WITH MODEL DEFINITION ...

NO FATAL ERRORS DETECTED DURING THE COMPILATION.
R; T=O.85/2.06 17:37:00

and get the following results

RESQ2 VERSION DATE: MARCH 11, 1982 - TIME: 17:38:43 DATE:. 03/17/82
MODEL:CSMWM
THINKTIME :/*Thinktime: * / 10
USERS:/*Usets:*/ 30
PJ\GEFRAMES:/*Pageframes:*/ 128
REPLICATION 1: MEMORY DEPARTURE LIMIT
REPLICATION 2: MEMORY DEPARTURE LIMIT
REPLICATION 3: MEMORY DEPARTURE LIMIT
REPLICATION 4: MEMORY DEPARTURE LIMIT
REPLICATION 5: MEMORY DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION. 17418 DISCARDED EVENTS

April 3, 1982

SEC. 5.1 / Independent Replications

SIMULATED TIME PER REPLICATION: 812.77954
77 .43
30857

5

CPU TIME:
NUMBER OF EVENTS PER REPLICATION:

• -,:)1'11'1: I .effloc 1
WHAT:allbo

ELEMENT
MEMORY
FLOPP.YQ
DISKQ

· CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ
FREEMEMORY

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

· ELEMENT
MEMORY
FLOPPYQ
DISKQ

NUMBER OF REPLICATIONS:

UTILIZATION
0.83975(0.83341,0.84609) 1.3%
0.40552(0;39509,0.41594) 2.1%
0.30475(0.30075,0.30874) 0.8%
0.89125(0.88431,0.89818) 1.4%
0.00000(0.00000,0.00000)

THROUGHPUT
2.21534(2.17291,2.25777) 3.8%
1.81099(1.76803,1.85395) 4.7%
16.06598(15.95485,16.17711) 1.4%
17.87697(17.73483,18.01910) 1.6%
2.21261 (2.17076,2.25446) 3.8%
2.21462

MEAN QUEUE LENGTH
7.77057(7.35626,8.18487) 10.7%
0.60917(0.58465,0.63369) 8.1%
0.41371 (0.40920,0.41821) 2.2%
2.42072(2.38423,2.45721) 3.0%
22.22943(21.81512,22.64372) 3.7%

STANDARD DEVIATION OF QUEUE LENGTH
4.14229{3.93683,4.34775) 9.9%
0.87904(0.85098,0.90709) 6.4%
0.71696(0.71349,0.72042) 1.0%
1.37582(1.34426,1.40738) 4.6%
4.14229(3.93683,4.34775) 9.9%

MEAN QUEUEING TIME
3.50457(3.27995,3.72919) 12.8%
0.33633(0.32714,0.34553) 5.5%
0.02575(0.02544,0.b2606) 2.4%
0.13537(0.13332,0.13742) 3.0%
9.92243(9.72741,10.11744) 3.9%

STANDARD DEVIATION OF QUEUEING TIME
2.47966(2.35171,2.60760) 10.3%
0.32228(0.30464,0.33993) 11.0%
0.02513(0.02449,0.02577) 5.1%

April 3, 1982

39.

40

CPUQ
TERMINALSQ

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT

ELEMENT

E:LEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

CONFIDENCE INTERVAL METHODS / SEC. 5

0.15013(0.14653,0.15374) 4.8%
10.07628(9.73916,10.41340) 6.1%

MEAN TOKENS IN USE
107.48819(106.67644,108.29993) 1.5%

MEAN TOTAL TOKENS IN POOL
127.99998(127.99998,128.00000) 0.0%

QUEUE LENGTH DISTRIBUT.ION
0:0.01823(0.01281,0.02364) 1. 1 %
1:0.04016(0.03533,0.04499) 1. 0%
2:0.05491 (0.04938,0.06045) 1 . 1%
3:0.06494(0.05547,0.07442) 1. 9%
4:0.06867(0.06012,0.07721) 1. 7%
5:0.07573(0.06814,0.08333) 1. 5%
6:0.08232(0.07172,0.09293) 2. 1 %
7:0.08424(0.07792,0.09056) 1.3%
8:0.08469(0.07457,0.09482) 2.0%
9:0.08598(0.07671,0.09524) 1. 9%

10:0.07246(0.06459,0.08034) 1. 6%
11:0.06966(0.06011,0.07922) 1. 9%
12:0.05493(0.04589,0.06397) 1. 8%
13:0.04574(0.03158,0.05989) 2.8%
14:0.03538(0.02575,0.04502) 1. 9%
15:0.02645(0.01779,0.03511) 1. 7%

QUEUEING TIME DISTRIBUTION
1.00E+OO:O.15578(0.13985,0.17170) 3.2%
2.00E+OO:O.31511 (0.28990,0.34032) 5.0%
3.00E+OO:O.48067(0.44496,0.51637) 7.1%
4.00E+OO:O.63233(0.59074,0.67392) 8.3%
5.00E+OO:O.75344(0.71622.,0.79067) 7.4%
6.00E+OO:O.85033(0.82113,0.87953) 5.8%
7.00E+OO:O.90844(0.88613,0.93075) 4.5%
8.00E+OO:O.94789(0.93460,0.96118) 2.7%

DISTRIBUTION OF TOKENS IN USE

DISTRIBUTION OF TOTAL TOKENS IN POOL

MAXIMUM QUEUE LENGTH
22
5
6
7
30

April 3, 1982

SEC. 5.1 / Independent Replications 41

ELEMENT MAXIMUM QUEUEING TIME
MEMORY 18.90594
FLOPPYQ 2.65272
DISKQ 0.29766
CPUQ 1 .90131
TERMINALSQ 80.32346

WHAT:
THINKTIME:/*Thinktime:*/

The 17418 discarded events are from the initial portions of all 5 replications, i.e., the
average number discarded per replication is 3484. The simulated time and events per replica­
tion, do not count the discarded portions. The point estimate for mean response time has
increased slightly, from our previous set of replications, from 3.40 to 3.50, and we have a
narrower confidence interval, (3.28, 3.73). If we wish to have a narrower interval, then we
should increase the replication length again.

5.2. The Regenerative Method

The regenerative method is a second method provided for confidence interval estimates
for equilibrium measures. The principal advantages of the regenerative method over replica­
tjons are that we can make a single (long) simulation run instead of multiple (shorter) runs
and that we need not be concerned about the effects of the choice of initial state. However,
there are problems with the regenerative method also.

With the regenerative method we must pick a "regeneration state," similar to the initial
state. A regeneration state has the properties that (1) The model periodically returns to the
regeneration state. The periods between occurrences of the regeneration state are called
"cycles." (2) When the model enters the regeneration state, the future behavior of the model
depends only on the regeneration state, i.e., it is independent of the behavior that led to
entrance to that state. The most convenient examples of regeneration states are found in
Markov and semi-Markov processes. In a "nice" (semi-) Markov process, each state is it
regeneration state, and except for practical considerations, aU of the states are equally useful.
A large subset of the queueing networks allowed by RESQ can be described as (semi-)
Markov processes, and these processes will usually be "nice" unless a queue of the network is
saturated or a deadlock is possible in the network.

The principal practical consideration is that we would like th'eregeneration state to occur
frequently during a simulation of. reasonable length. By "frequently" we inean that there be at
least some minimum number of cycles (say 20) during the simulation. If we do not have this
property then we cannot reasonably use the regenerative method.

We would also like the state to be one easily detected by the simulation. For thisteason,
RESQ only allows regeneration states which are specified by the number of jobs at each node
with the understanding that additional characteristics of the states are specified implicitly.
These implicitly specified characteristics are (1) Where arrival and service distributions are

I

speCified by the method of exponential stages (see Appendix 3 of the Users Guide) any arrival
and J1trVice times in progress are in the first stage'in the regeneration state. (2) At ,active
queu~s where different orderings of the jobs in the queue are important (e.g., FCFS queueing
disciJ,hne) the ordering of jobs of different classes is the same as at the first occurrence of the
requi~ed numbers of. jobs at all nodes. (3) At passive queues the ordering of jobs of different
allocate nodes and different numbers of tokens requested is the same as at thefitst occurrence
of the required numbers of jobs at each node. (4) Chain variables of open chains (see

April 3, 1982

42 CONFIDENCE INTERVAL METHODS / SEC. 5

Section 8) have the value one. In addition to these checks, Aplomb issues warning conditi9ns
when an apparently correctly defined regeneration state is not actually a regeneration state.

For further discussion of the regenerative method in general, see Crane and Lemoine
[CRAN77], Iglehart and Shedler [IGLE80], Chapter 4 of Kobayashi [KOBA78],Cha,pter 6 of
Lavenberg et at [LAVE82] and Chapter 7 of Sauer and Chandy [SAUE81a].

With model csmwm, our choice of initial state is also a regeneration state. We can edi~ as
follows,

edit csmwm rq2inp
EDIT:
locate/CONFIDENCE/

CONFIDENCE INTERVAL METHOD:none

delete *
EOF:
file
R; T=0.06/0.21 15:34:37

and then use SETUP:

SETUP csniWm
MODEL IS CSMWM
CONTINUING WITH MODEL DEFINITION ...

END

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION­
CHAIN:interactiv

NODE LIST:terminals
REGEN POP:users
INIT POP:users

CHAIN: .
CONFIDENCE L:g!VEL:90
SEQUENTIAL STOPPING RULE:no
RUN GUIDE;LINES-

SIMULATED TIME:
CYCLES:
EVENTS:
QUEUES FOR DEPARTURE COUNTS :,memory

DEPARTURES: 500
QUEUES FOR DEPARTURE COUNTS:
NODES FOR DEPARTURE COUNTS:"

LIMIT - CP SECONDS:5
TRACE: no

NO FATAL ERRORS DETECTED DURING THE COMPILATION.
R; T~0.86/1;94 15:35:51

The initial state definition section has been replaced by a regeneration state definitton
section. Usually we want to initially place the system in the regeneration state. Occasionally
this is not easily done and we define the initial state to be a state other than the regeneration
state. In this case the portion of the simulation prior to the first occurrence of .the regen~ra­
tion state is discarded. See Section 120f the Users Guide for further·discusssion.

April 3, 1982

SEC. 5.2 / The Regenerative Method 43

We will temporarily defer discussion of the sequential stopping rule. The run limits other
than the CPU limit have been replaced by run guidelines. Rather than terminate the simula­
tion when the first of these guidelines is reached the simulation continues until either the
regeneration state is reached again or the CPU limit is reached.

We could then get the following RQ2PRNT file:

RESQ2. VERSION DATE: MARCH 11, 1982 - TIME: 20: 35: 25 DATE: 03/16/82
MODEL:CSMWM
THINKTIME:10
USERS: 30
PAGEFRAMES:128
RUN END: MEMORY DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

WHAT: nd (memory)

ELEMENT
MEMORY

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:
NUMBER OF CYCLES:

NUMBER OF DEPARTURES
657

WHAT:qtbo(memory)

286.88623
4.99

11331
13

ELEMENT.
MEMORY

MEAN QUEUEING TIME
3.69609(3.35480,4.03737) 18.5%

WHAT:
CONTINUE RUN:yes

GUIDELINE - MEMORY DEPARTURES: 1000

LIMIT - CP SECONDS~6

RUN END: MEMORY DEPARTURE GUIDELINE
RUN END: CPU. LIMIT
NO ERRORS DETECTED DURING SIMULATION.

WHAT:nd(memory)

ELEMENT
MEMORY

April 3, 1982

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:
NUMBER OF CYCLES:

NUMBER OF DEPARTURES
760

1377 DISCARDED EVENTS

335.31738
6.33

12850
27

44 CONFIDENCE INTERVAL METHODS / SEC, 5

WHAT:qtbo(memory)

ELEMENT
MEMORY

MEAN QUEUEING TIME
3.43366(3.06772,3.79960) 21.3%

WHAT:
CONTINUE RUN :yes

LIMIT - CP SECONDS:40

RUN END: MEMORY DEPARTURE GUIDELINE
RUN END: CPU LIMIT
RUN END: MEMORY DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

WHAT:nd(memory)

ELEMENT
MEMORY

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:
NUMBER OF CYCLES:

NUMBER OF DEPARTURES
1249

WHAT:qtbo(memory)

561.08374
9.52

21481
32

ELEMENT
MEMORY

MEAN QUEUEING TIME
3.31099(2.88925,3.73273) 25.5%

WHAT:
CONTINUE RUN:yes

GUIDELINE - MEMORY DEPARTURES:2000

RUN END: MEMORY DEPARTURE GUIDELINE
RUN END: CPU LIMIT
RUN E.ND: MEMORY DEPARTURE GUIDELINE
RUN END: MEMORY DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

WHAT:nd(memory)

ELEMENT
MEMORY

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:
NUMBER OF CYCLES:

NUMBER OF DEPARTURES
2208

980.62939
16.66
37328

57

April3, 1982

SEC. 5.2 / The Regenerative Method

WHAT:qtbo(memory)

ELEMENT
MBMORY

WHAT:allbo

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ
FREEMEMORY

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ

April 3, 1982

MEAN QUEUEING TIME
3.31633(3.03503,3.59764) 17.0%

UTILIZATION
0.84297(0.81823,0.86770) 4.9%
0.40977(0.38383,0.43572) 5.2%
0.30904(0.30234,0.31574) 1.3%
0.88643(0.86837,0.90449) 3.6%
0.00000(0.00000,0.00000)

THROUGHPUT
2.25161 (2.19484,2.30839) 5.0%
1.79069(1.71812,1.86325) 8.1%
16.11617(15.75942,16.47290) 4.4%
17.90686(17.53708,18.27663). 4.1%
2.25161 (2.19484,2.30839) 5.0%
2.25161

MEAN QUEUE LENGTH
7.46711 (6.90325,8.03097) 15.1%
0.60705(0.55009,0.66402) 18.8%
0.41974(0.40675,0.43273) 6.2%
2.42949(2.31021,2.54877) 9.8%
22.53288(21.96902,23.09673) 5.0%

STANDARD DEVIATION OF. QUEUE LENGTH
3.82926
0.87095
0.72073
1.40257.
3.82927

MEAN QUEUEING TIME
3.3163~(3.03503,3.59764) 17.0%
0.33901 (0.31533,0.36269) 14.0%
0.02604(0.02554,0.02655) 3.9%
0.13567(0.13013,0.14122) 8.2%
10.00743(9.69447,10.32040) 6.3%

STANDARD DEVIATION OF QUEUEING TIME
2.26665
0.31497
0.02566

45

46

CPUQ
TERMINALSQ

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT

ELEMENT

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

CONFIDENCE INTERVAL METHOD'S /SEC. 5

0.15399
9.77573

MEAN TOKENS IN USE
107.89966(104.73351,111~06580) 5.9%

MEAN TOTAL TOKENS IN POOL
127.99998

QUEUE LENGTH ,DISTRIBUTION
0:0.02189(0.01176,0.03201) 2.0%
1:0.03761 (0.02409,0.05113) 2.7%
2:0.04806(0.03487,0.06125) 2.6%
3:0.06976(0.05091,0.08862) 3.8%
4:0.07628(0.05659,0.09596) 3.9%
5:0.07498(0.06261,0.08735) 2.5%
6:0.08536(0.07417,0.09656Y 2.2%
7:0.07594(0.06764,0.08425) 1.7%
8:0.09154(0.07741,0.10566) 2.8%
9:0.10343(0.08079,0.12606) 4.5%

10:0.08607(0.06737,0.10478) 3.7%
11:0.07894(0.05895,0.09894) 4.0%
12:0.06137(0.04304,0.07971) 3.7%
13:0.03408(0.02542,0.04274) 1.7%
14:0.02525(0.01918,0.03132) 1.2%
15:0.01416(0.00849,0.01983) 1.1%

QUEUEING TIME DISTRIBUTION
1.00E+OO:O.16486(0.12866,0.20105) 7.2%
2.00E+OO:O.31884(0.26575,0.37193) 10.6%
3.00E+OO:O.49683(0.43543,0.55823) 12.3%
4.00E+OO:O.65761 (0.60555,0.70966) 10.4%
5.00E+OO:O.79303(0.75685,0.82920) 7.2%
6.00E+OO:O.88225(0.85880,0.90570) 4.7%
7.00E+OO;O.93705(0.91911,0.95499) 3.6%
8.00E+OO:O.96558(0.95279,0.97837) 2.6%

DISTRIBUTION OF TOKENS IN USE

DISTRIBUTION OF TOTAL TOKENS IN POOL

MAXIMUM QUEUE LENGTH
21 ,
5
6
7
30

April 3, 1982

SEC. 5.2/ The Regenerative Method

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

WHAT:
CONTINUE RUN:no

THINKTIME:

MAXIMUM QUEUEING TIME
13.46424
2.23200
0.29332
1.90131
76.31847

47

The simulation had to run an additional 157 memory departures to get back to the
regeneration state after the initial departure guideline was reached. There were 13 regenera~
tion cycles during that part of the run. (If there had been fewer than two cycles, confidence
intervals would not have been estimated and we would not have been allowed to continue the
run) The point estimate for mean response time, 3.70 seconds, was. considera.bly higher than
our previous estimates. The confidence interval, (3.35, 4.04), has a relative width of 19%,
which is not so wide as to be useless.

However, we must be ca.utious. There is a tendency for the regenerative method to underes­
timate confidence interval widths for short runs.

So we doubled the departure guideline. Since we did not increase the CPU limit suffi­
ciently, the run stopped in the midst of a regeneration cycle before reaching the new guideline.
When a .run stops in the midst of a regeneration cycle because of the CPU limit or· because of
an error, the partial cycle results are ignored and will be discarded if the run is not continued.
Lengthening the run by only 103 departures resulted in an additional 14 regeneration cycles, a
noticeably lower point estimate, 3.43 seconds, and a wider confidence interval, (3.07, 3.80).
With a sufficient CPU limit, the run took an additional 249 departures to get back to the
regeneration state after the guideline was reached. There were only 5 additional regeneration
cycles during this part of the run, so it appears that the length of a regeneration cycle,
measured in number of departures, is quite variable for this model. The point estimate for
mean response time, 3.31, is considerably lower, and the confidence interval, (2.89, 3.73),is
considerably wider! (It has a relative width of 25%.) When we increased the departure
guideline to 2000, the run went 208 departures past the guideline for a total of 57 cycles. The
point estimate, 3.32, is essentially unchanged, but the confidence interval, (3.04, 3.60), is
narrower, with a relative width of 17%. At this point the run is more than three times as long
(measured in memory departures) as the initial part, but the respective confidence intervals have
comparable widths! This suggests that the initial run was much too short and that we should
probably continue the run further.

So we need a longer run,but how· much longer? Rather than proceed in the above
manner of lengthening the run and periodically examining the. results, we can use the sequen~
tial stopping rule, which automates essentially this procedure. The sequential stopping rule
allows us to specify the simulation run length in terms of desired widths of confidence
intervals, subject to the usual limit on CPU. time. The simulation runs for a number of
regeneration cycles, e.g., enough for 2000 memory departures, and then confidence intervals
are obtained. If the intervals do not meet the width criteria, the simulation continues for more
cycles,e,g., enough for 2000 more memory departures. Then new estimates are made arid a
new decision 1:0 terminate or continue is reached. This continues until the criteria are satisfied
or the CPU limit is reached. The groups of regeneration cycles will be referred tdas
"sampling periods."

April 3, 1982

48 CONFIDENCE INTERVAL METHODS / SEC. 5

As before, we can edit the dialogue file,

edit csmwm rq2inp
EDIT:
locate/SEQUENTIAL

SEQUENTIAL STOPPING RULE:no
delete *
EOF:
file
R; T=0.06/0.28 15:45:50

and use SETUP again:

SETUPcsmwm
MODEL IS CSMWM
CQNTINUING WITH MODEL DEFINITION ...

END

SEQUE~TIAL STOPPING RULE: yes
QUEUES TO BE CHECKED:memory cpuq

MEASURES:qt qt
ALLOWED WIDTHS: 10 10

QUEUES TO BE CHECKED:
EXTRA SAMPLING PERIODS:

SAMPLING PERIOD GUIDELINES­
SIMULATED TIME:
CYCLES:
EVENTS:
QUEUES FOR DEPARTURE COUNTS:memory

DEPARTURES: 2000
QUEUES FOR DEPARTURE COUNTS:
NODES FOR DEPARTURE COUNTS:

LIMIT - CP SECONDS:300
TRACE: no

NO FATAL ERRORS DETECTED DURING THE COMPILATION.
R; T=b.83/2.06 15:48:02

We are asked for a list of queues where we are to obtain and check confidence interval widths
at the end of a sampling period. Then we are asked what measures are to be considered: The
reply here should be aUst of codes, one code per queue just listed. The codes are a .subset of
those allowed for the "WHAT:" prompt in EVAL: "ut", "tp", "ql", "qld", "qt", "qtc;l", "tu",
"tud" , "tt" and "ttd", These correspond to the same measures as i~ EVAL (see the example
in Section 2 or Sections 12 and 13 of the Users Guide). If we want several measures to be
checked for a given queue, the queue name should be repeated in the "QUEUES TO BE
CHECKED:'.' prompt. For the distribution measures (qld, qtd, tud and ttd), each gathered
point of the measure is checked and must satisfy the width criteria. For the measures which
can only have values in the [0, 1] interval, i.e., utilization and the distribution measures, the
width specified ~s absolute width in percent, i.e., the criterion is that 200 x 8 be less than the
specified width, where the confidence interval is (p- 8, p + 8), For the other measures the
wi,jth is relative width in percent, Le., the criterion is that 200x8/p be less than the specified
width, (Where p is zero, the criteria is not satisfied.) In this and most of our examples we use
mean queueing time for our measure. In this example we use a relative width of 10%. We
are tl1en asked how many extra sampling periods are to be run with the criteria satilified. The
default is O. The simulation will continue until this number plus one of successive sampling
periods satisfy the criteria. Extra sampling periods force the simulation to run longer and thus

April 3, 1982

SEC. 5.2/ The Regenerative Method 49

can help overcome some of the small sample problems of the sequential rule, e.g., on avery
short run severe underestimates of the confidence interval width may result in the criteria
being accepted. For further discussion of this problem, and the sequential stopping rule in
general, see Lavenberg and Sauer [LA VE77].

Using EV AL again, we get

RESQ2 VERSION DATE: MARCH 11, 1982 - TIME: 20:53:25 DATE: 03/16/82
MODEL:CSMWM6

THINKTIME:10
USERS: 30
PAGEFRAMES:128
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE
SAMPLING PERIOD END: MEMORY DEPARTURE GUI.DELINE
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE
SAMPLING PERIOD END: MEMORY DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:
NUMBER OF CYCLES:

WHAT: q.tbo (memory)

5605.87500

95.89
214365

247

ELEMENT
MEMORY

MEAN QUEUEING TIME
3.40792(3.24079,3.57505) 9.8%

WHAT:
CONTINUE RUN: yes

EXTRA SAMPLING PERIODS: 1

SAMPLING PERIOD END: MEMORY DEPARTURE
SAMPLING PERIOD END: MEMORY DEPARTURE
SAMPLING PERIOD END: MEMORY DEPARTURE

SAMPLING PERIOD END: MEMORY DEPARTURE

SAMPLING PERIOD END: MEMORY DEPARTURE

SAMPLING PERIOD END: MEMORY DEPARTURE
SAMPLING PERIOD END: MEMORY DEPARTURE

NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:
NUMBER OF CYCLES:

WHAT:allbo

April 3, 1982

GUIDELINE
GUIDELINE
GUIDELINE

GUIDELINE

GUIDELINE
GUIDELINE
GUIDELINE

6521.3;3203
111 .60
249175

276

50

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ
FREEMEMORY

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY

CONFIDENCE INTERVAL METHODS / SEC. 5

UTILIZATION
0.84923(0.84019,0.85826) 1.8%

0.40042(0.39030,0.41054) 2.0%
0.30727(0.30470,0.30983) 0.5%

0.89668(0.89112,0.90224) 1.1%

0.00000(0.00000,0.00000)

THROUGHPUT
2.23528(2.21089,2.25966) 2.2%

1.81558 (1. 78307,1.84809) 3.6%

16.17137(16.05899,16.28377) 1.4%

17.98695(17.86938,1S.10452) 1.3%

2.23528(2.21089,2.25966) 2.2J

2.23528

MEAN QUEUE LENGTH
7.64376(7.32707,7.96046) 8.3%

0.59513(0.57135,0.61890) 8.0%

0.41651 (0.41199,0.42102) 2.2%

2.46919(2.42749,2.51090) 3.4%

22.35623(22.03954,22.67293) 2.8%

STANDARD DEVIATION OF QUEUE LENGTH
3.98528

0.86826

0.71621

1.37777

3.98528

MEAN QUEUEING TIME
3.41960(3.25787,3,58134) 9.5%

0.32779(0.31884,0.33673) 5.5%

0.02576(0.02558,0.02593) 1.4%

0.13728(0.13547,0.13908) 2.6%

10.00154(9.86644,10.13664) 2.7%

STANDARD DEVIATION OF QUEUEING TIME
2.42467

0.31493

0.02496

0.15238

9.90722

MEAN TOKENS IN USE
108.70111 (107.54485,109.85739) 2.1%

April 3, 1982

SEC. 5.2/ The Regenerative Method 51

ELEMENT MEAN TOTAL TOKENS IN POOL
MEMORY 127.99998(127.99998,128.00000) 0.0%

ELEMENT QUEUE LENGTH DISTRIBUTION
MEMORY 0:0.01489(0.01194,0.01783) 0.6%

1:0.03278(0.02788,0.03767) 1.0%
2:0.05154(0.04538,0.05769) 1. 2%
3:0.06642(0.06011,0.07273) 1. 3%
4:0.07467(0.06810,0.08125) 1.3%
5:0.08610(0.07853,0.09367) 1.5%
6:0.09373(0.08592,0.10154) 1.6%
7:0.08709(0.08065,0.09352) 1. 3%
8:0.08705(0.08114,0.09297) 1. 2%
9:0.D8~60(0.07667,0.09053) 1.4%

10:0.07682(0.07039,0.08324) 1. 3%
11:0.06680(0.05996,0.07363) 1.4%
12:0.05581 (0.04912,0.06250) 1.3%
13:0.04234(0.03564,0.04904) 1.3%
14:0.03165(0.02536,0.03793) 1.3%
15:0.01940(0.01449,0.02431) 1.0%

ELEMENT QUEUEING TIME. DISTRIBUTION
MEMORY 1.00E+00:0.15689(0.14283,0.17095) 2.8%

2.00E+00:0.32428(0.30169,0.34686) 4.5%
3.00E+00:0.50051 (0.47290,0.52812) 5.5%
4.DOE+00:0.65123(0.62523,0.67723) 5.2%
5.doE+00;0.77636(0.75315,0.79957) 4.6%
6.00E+00:0.86033(0.84071,0.B7995) 3.9%
7.00E+00:0.91583(0.90130,0.93035) 2.9%
8.00E+00:0.95122(0.94095,0.96150) 2.1%

ELEMENT DISTRIBUTION OF TOKENS IN USE

ELEMENT DISTRIBUTION OF TOTAL TOKENS IN POOL

ELEMENT MAXIMUM QUEUE LENGTH
MEMORY 21
FLOPPYQ 5
DISKQ 6
CPUQ 7
TERMINALSQ 30

ELEMENT MAXIMUM QUEUEING TIME
MEMORY 18.26566
FLOPPYQ 2.61646
DISKQ 0.29332
CPUQ 1 .94650
TERMINALSQ 112.28362

April 3, 1982

52 CONFIDENCE INTERVAL METHODS / SEC. 5

WHAT:
CONTINUE RUN:no

THINKTIME:

The simulation ran for a total of 6 sampling periods.

The point estimate f()r mean response time is 3.41 seconds, a little lower than what we
got in the last section, and the confidence interval estimate is (3.24, 3.58). The relative width
is 9.8%. When we specified that the run was to continue until the stopping criteria had been
satiSfied for two successive sampling periods, one more sampling period was required. There
was a slight increase in the mean response time point estimate and both ends of the interval.

We can reasonably conclude, based on either this run or the last run of Section 5.1, that
memory contention has significantly raised the mean response time above the 2.91 second
estimate for the model without memory contention.

We will indicate how the regenerative method can be applied to most of the remaining
eJ:(.amples in this document, as we discuss those examples.

5.3. The Spectral Method

The spectral method is a third method provided for confidence interval estimates for
equilibrium measures. Most methods in classical statistics for estimating confidence intervals
depend on having items of data that are "independent and identically distributed." The
method of independent replications achieves this "Li.d." property by the· protocol which
repeats the simulation. The regenerative method depends on being able to observe the Li.d.
property during the simulation run. The spectral method does not depend on the Li.d.
property. Rather, it explicitly takes into .consideration the correlation between data items in
the simulation, e.g., the dependencies between successive queueing times for a given queue.
This is done without user awareness, other than the availability of confidence intervals, so the
dialogue for simulation using the the spectral method is essentially the same as simulation
without confidence intervals. A sequential stopping rule is available with the spectral method,
a slightly different rule than the one used with the regenerative method. A significant
advantage of the spectral method over independent replications is that we can make a single
(long) simulation run instead of multiple (shorter) runs and thus we need not be as concerned
about the effects of the choice of initial state. The spectral method applies to equilibrium
behavior of all models simulated using RESQ, not just those with regenerative properties. For
statistical discussion of the spectral method, see Heidelberger and Welch [HEID81].

With model csmwm, we can edit as follows,

edit csmwm rq2inp
EDIT:
locate/CONFIDENCE/

CONFIDENCE INTERVAL METHOD:none
d,(;!l@te >I<

EOF:
file
R; T=O.06/0.21 15:34:37

and then use SETUP:

April 3, 1982

SEC. 5.3 / The Spectral Method

SETUP csmwm
MODEL IS CSMWM
CONTINUING WITH MODEL DEFINITION ...

CONFIDENCE INTERVAL METHOD:spectral
INITIAL STATE DEFINITION­
CHAIN:interactiv

NODE LIST:terminals
INIT POP:users

CHAIN:
CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:no

CONFIDENCE INTERVAL QUEUES:memory memory
MEASURES:qt qtd

CONFIDENCE INTERVAL QUEUES:
CONFIDENCE INTERVAL NODES:

RUN LIMITS­
SIMULATED TIME:

. EVENTS:
QUEUES FOR DEPARTURE COUNTS:memory

DEPARTURES: 500
QUEUES FOR DEPARTURE COUNTS:
NODES FOR DEPARTURE COUNTS:

END

LIMIT - CP SECONDS:5
TRACE: no

NO FATAL ERRORS DETECTED DURING THE COMPILATION.
Ri T=0.86/1.94 15:35:51

53

The differences from the dialogue for simulation without confidence intervals are the
SEQUENTIAL STOPPING RULE: prompt and the following section for specifying the queues
and nodes which will have confidence intervals determined and the performance measures
whichwill have confidence intervals determined. The only valid codes for the measures are
"qt" for mean queueing time and "qtd" for queueing time distribution. We will temporarily
defer disc)lssion of the sequential stopping rule.

We could then get the following RQ2PRNT file:

RESQ2 VERSION DATE: MARCH 11, 1982 - TIME: 07:43:26 DATE: 03/17/82
MODEL:CSMWM
THINKTIME:10
USERS: 30
PAGEFRAMES:128
RUN END: MEMORY DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:

WHAT:qtbo(memory)

222.28853
3.81
8669

ELEMENT
MEMORY

MEAN. QUEUEING TIME
3.58395(2.64355,4.52434) 52.5J

April 3, 1982

S4 CONFIDENCE INTERVAL METHODS / SEC. S

WHAT:
CONTINUE RUN:yes

LIMIT - MEMORY DEPARTURES: 1000

RUN END: MEMORY DEPARTURE LIMIT
RUN END: CPU LIMIT
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:

WHAT:qtbo(memory)

288.99683
5.16

11361

ELEMENT
MEMORY

MEAN QUEUEING TIME
3.68594(3.00150,4.37038) 37.1%

WHAT:nd(memory)

ELEMENT
MEMORY

WHAT.:

NUMBER OF DEPARTURES
659

CONTINUE RUN:yes

LIMIT - CP SECONDS:40

RUN END.: MEMORY DEPARTURE LIMIT
RUN END: CPU LIMIT
RUN END: MEMORY DEPARTURE LIMIT
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:

WHAT:qtbo(memory)

444.63232
7.73

16874

ELEMENT
MEMORY

MEAN QUEUEING TIME
3.11431(2.45703,3.77160) 42.2%

WHAT:
CONTINUE RUN:yes

LIMIT - MEMORY DEPARTURES:2000

RUN END: MEMORY DEPARTURE LIMIT
RUN END: CPU LIMIT
RUN END: MEMORY DEPARTURE .LIMIT
RUN END: MEMORY DEPARTURE LIMIT

April 3, 1982

SEC. 5.3 / The Spectral Method

NO ERRORS DETECTED DURING SIMULATION~

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:

888.56274
15.21
33671

WHAT:qtbo(memory}

ELEMENT
MEMORY

WHAT:allbo

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ
FREEMEMORY

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

April 3, 1982

MEAN QUEUEING TIME
3.24788(2.86123,3.63452} 23.8%

UTILIZATION
0.83603
0.40747
0.30796
0.88254
0.00000

.THROUGHPUT
2.25082
1.79503
16.02138
17 .81641
2.26095
2.25082

MEAN QUEUE LENGTH
7.32865
0.59840
0.41833
2.41700
22.67134

STANDARD DEVIATION OF QUEUE LENGTH
3.88107
0.85949
0.72055
1.41269
3.88107

MEAN QUEUEING TIME
3.24788(2.86123,3.63452} 23.8%
0.33337
0.02611
0.13563
9.91472

55

56

ELEMENT
MEMORY
FLOPPYQ
DISKQ .
CPUQ'
TERMINALSQ

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT

ELEMENT

ELEMENT
MEMORY

CONFIDENCE INTERVAL METHODS / SEC. 5

STANDARD DEVIATION OF QUEUEING TIME
2.27975
0.31128
0.02586
0.15440
9.91142

MEAN TOKENS IN USE
107.01234

MEAN TOTAL TOKENS IN POOL
128.00000

QUEUE LENGTH DISTRIBUTION
0:0.02415
1 :0.04100
2:0.05174
3:0.07241
4:0.08038
5:0.07820
6:0.08513
7:0.07596
8:0.09054
9:0.09684

10:0.08029
11:0.07770
12:0.05883
13:0.03152
14:0.02384
15:0.01460

QUEUEING TIME DISTRIBUTION
1.00E+00:0:17350(O.13270,0.21430) 8.2%
2.00E+00:0.33300(O.27786,0.38814) 11.0%
3.00E+00:0.51650(O.44371,0.58929) 14.6%
4.00E+00:0.67450(O.60723,0.74177) 13.5%
5.00E+00:0.80150(O.74831,0.85469) 10.6%
6.00E+00:0.88600(O,.85188,0.92012) 6.8%
7.00E+00:0.93800(O.91297,0.96303) 5.0%
8.00E+00:0.96600l0.94776,0.98424) 3.6%

DISTRIBUTION OF TOKENS IN USE

DISTRIBUTION OF TOTAL TOKENS IN POOL

MAXIMUM QUEUE LENGTH
21

Api'i13,1982

SEC; 5.3 / The Spectral Method

FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

WHAT:
CONTINUE RUN:no

THINKTIME:

5.
6
7

30

MAXIMUM QUEUEING TIME
13.46424
2.23200
0.29332
1.90131
76.31847

57

This run gives the same results as the last run of Section 4 but aiso provides confidence
intervals and results at other run limits. The mean response time confidence interval at toOO
departures, (2.46, 3.77), and the interval at 2000 departures, (2.86, 3.63), contain the value
for the numerically solved model without memory contention, 2.91, and are sufficiently wide
(respective relative widths of 42% and 24%) that we cannot draw conclusions about memory
contention effects.

This suggests that the initial run was much too short and that we should probably
continue the run further. We need a longer run, but how much longer? Rather than proceed
in the above manner of lengthening the run and periodically exanihiing the results, we can use
the sequential stopping rule, which automates essentially this procedure. The sequential
stopping rule . allows us to specify the simulation rUn length in . terms of desired widths of
confidence intervals, subject to the usual limit on CPU time. The simulation runs for an initial
length, e.g., 2000 memory departures, and then confidence intervals are obtained. If the
intervals do not meet the width criteria, the simulation continues with new limits· which
increase the total run length by roughly 50%. Then new estimates are made and a new
decision to terminate or continue is reached. This continues until the criteria are satisfied or
the CPU limit is reached. The parts of the run are referred to as "sampling period~."

As before, we. can edit the dialogue file,

edit csmwm rq2inp
EDIT:
locate/SEQUENTIAL

SEQUENTIAL STOPPING RULE:no

delete *
EOF:
file
R; T=0.06/0.28 15:45:50

and use SETUP again:

SETUP csmwm
MODEL IS CSMWM
CONTINUING WITH MODEL DEFINITION ...

SEQUENTIAL STOPPING RULE:yes

April 3, 1982

I

58 CONFIDENCE INTERVAL METHObS j ~mc. 5

CONFIDENCE INTERVAL QUEUES:memory memory
MEASURES:qt qtd
ALLOWED WIDTHS: 10 10

CONFIDENCE INTERVAL QUEUES:
CONFIDENCE INTERVAL NODES:
EXTRA SAMPLING PERIODS:edit

EDIT:
case m
locate/ALLOWED WIDTHS:

ALLOWED WIDTHS: 10 10
i INITIAL PORTION DISCARDED: 10 /*percent of initial period*/
file
MODEL IS CSMWM
CONTINUING WITH MODEL DEFINITION ...

END

INITIAL PERIOD LIMITS­
SIMULATED TIME:
EVENTS:
QUEUES FOR DEPARTURE COUNTS:memory

DEPARTURES: 2000
QUEUES FOR DEPARTURE COUNTS:
NODES FOR DEPARTURE COUNTS:

LIMIT - CP SECONDS:300
TRACE: no

NO FATAL ERRORS DETECTED DURING THE COMPILATION.
R; .T=0.83/2.06 15:48:02

We are asked for a list of queues where we are to obtain and check confidence interval widths
at the end of a sampling period. Then we are asked whatineasures are to be considered.
Then we are asked what widths are to be allowed. For the queueing time distribution (qtd) ,
each gathered point of the distribution is checked and must satisfy the width criteria. For the
queueing time distribution, which can only have values in the [0, 1] interval,the width
specified is absolute width in percent, i.e., the criterion is that 200x 8be less' than the
specified width, where the confidence interval is(p - 8, P + 8). For mean queueing time
(qt), the width is relative width in percent, i.e., the criterion is that 200x8/p be less than the
specified width. (Where p is zero, the criteria is not satisfied.) .

We are then asked how many extra sampling periods are to be run with the criteria
satisfied. The default is O. The simulation will continue until this number plus one of
successive sampling periods satisfy the criteria. Extra sampling periods force the simulation to
run longer and thus can help overcome some of the problems of the sequential rule, e.g., on a
very short run severe underestimates of the confidence interval width may result in the criteria
being accepted. For further discussion of this problem, and the sequential stopping rule in
general, see Heidelberg and Welch [HEID81].

Rather than giving a value to the EXTRA SAMPLING PERIODS: prompt, where we are
willi.ng to accept the zero default, we give the special reply "edit" so that we can insert an
INITIAL PORTION DISCARDED: line in the dialogue file. This portion of the first sampling
period will be discarded.

Using EVAL again, we get

RESQ2 VERSION DATE: APRIL 3, 1982 - TIME: 17:56:07 DATE: 04/03/82
MODEL:CSMWM6S

April 3, 1982

':,.;-,

SEC. 5.3 / The Spectral Method

THINKTIME:10
USERS:30
PAGEFRAMES:128
SAMPLING PERIOD END: MEMORY
SAMPLING PERIOD END: MEMORY
SAMPLING PERIOD END: MEMORY
SAMPLING PERIOD END: MEMORY
SAMPLING PERIOD END: MEMORY
SAMPLING PERIOD END: MEMORY

DEPARTURE
DEPARTURE
DEPARTURE
DEPARTURE
DEPARTURE
DEPARTURE

LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT

NO·ERRORS DETECTED DURING SIMULATION. 3786 DISCARDED EVENTS

SIMULATED TIME:
. CPU TIME:

NUMBER OF EVENTS:

WHAT:qtbo(memory)

6096.76563
107.39
232927.

ELEMENT
MEMORY

MEAN QUEUEING TIME
3.39314(3.24376,3.54253) 8.8%

WHAT:
CONTINUE RUN:yes

EXTRA SAMPLING PERIODS: 1

SAMPLING PERIOD END: MEMORY DEPARTURE
SAMPLING PERIOD END: MEMORY DEPARTURE
SAMPLING PERIOD END: MEMORY DEPARTURE
SAMPLING PERIOD END: MEMORY DEPARTURE
SAMPLING PERIOD END: MEMORY DEPARTURE

. SAMPLING PERIOD END: MEMORY DEPARTURE
SAMPLING PERIOD END: MEMORY DEPARTURE
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:

WHAT:allbo

ELEMENT UTILIZATION
MEMORY 0.84992
FLOPPYQ 0.39839
DISKQ 0.30647
CPUQ 0.89810
TERMINALSQ 0.00000

ELEMENT THROUGHPUT
MEMORY 2.22836
FLOPPYQ 1.81512
DISKQ 16.18085

April 3, 1982

LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT

3786 DISCARDED

9200.50391
160.28
351644

EVENTS

59

60

CPUQ
TERMINALSQ
FREEMEMORY

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY

FLOPPYQ

DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
. MEMORY

FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY

ELEMENT
MEMORY

ELEMENT
MEMORY

CONFIDENCE INTERVAL METHODS / SEC. 5

17.99608
2.22803
2.22836

MEAN QUEUE LENGTH
7.66801
0.59354
0.41624
2 .. 47630
22.33199

STANDARD DEVIATION OF QUEUE LENGTH
3.97375
0.87024

0.71857
1.37433
oJ.97375

MEAN QUEUEING TIME
3.43985(3.33988,3.53982) 5.8%
0.32700
0.02572
0.13760
10.01154

STANDARD DEVIATION OF QUEUEING TIME
2.42777
0.31059
0.02501
0.15214
10.01072

MEAN TOKENS IN USE
108.78951

MEAN TOTAL TOKENS IN POOL
128.00000

QUEUE LENGTH DISTRIBUTION
0:0.01557
1:0.03242
2:0.04968
3:0.06637
4:0.07511
5: 0.08407
6:0.08908
7:0.08593

April 3, 1982

SEC. 5.3 / The Spectral Method

ELEMENT
MEMORY

ELEMENT

ELEMENT

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

ELEMENT
MEMORY
FLOPPYQ
DISKQ
CPUQ
TERMINALSQ

WHAT:
CONTINUE RUN:no

THINKTIME:

8:0.09090
9:0.08693

10:0.07914
11:0.06877
12: O •. 05468
13:0.04200
14:0.03094
15:0.01930

QUEUEING TIME DISTRIBUTION
.1.00E+00:0.15520(0.14791,0.16250) 1.5%
2.00E+00:0.32216(0.30920,0.33513) 2.6%
3.00E+00:0.49410(0.47693,0.51127) 3.4%
4.00E+00:0.64569(0.62781,0.66358) 3.6%
5.00E+00:0.77144(0.75471,0.78817) 3.3%
6.00E+00:0.85875(0.84547,0.87202) 2.7%
1.00E+00:0.91494(0.90398,0.92589) 2.2%
8.00E+00:0.95137(0.94339,0.95935) 1.6%

DISTRIBUTION OF TOKENS IN USE

DISTRIBUTION OF TOTAL TOKENS IN POOL

MAXIMUM QUEUE LENGTH
21
6
6
7
30

MAXIMUM QUEUEING TIME
19.19725
2.61646
0.29332
1 .94650
112.28362

61

The simulation ran for a total of 6 sampling periods. The initial 3786 events of the first
sampling period were discarded. The point estimate for mean response time is 3.39 seconds
and the confidence interval estimate is (3.24, 3.54). The relative width is 8.8%. When we
specified that the run was to continue until the stopping criteria had been satisfied for two
successive sampling periods, one more sampling period was required. There was art increase in
the mean response point estimate and the lower end of the interval.

April 3, 1982

62 CONFIDENCE INTERVAL METHO'DS / SEC. 5

We can reasonably conclude, based on either this run or the hlst runs of Sections 5.1 and
5.2, that memory contention has significantly raised the mean response time above the 2.91
second estimate for the model without memory contention.

April 3, 1982

63

6. SOURCES AND SINKS

All . of the models we have considered so far h·ave a fixed population of jobs with no
mechanisms for external arrivals of jobs at the network or departures of jobs from the
hetwork. The mechanisms provided for these purposes are nodes called "sources" ~Uid
"sinks," respectively. As we said before, routing chains with sources and sinks are "open"
chains.

~}}-O-<]
SOURCE SINK

Figure 6.1 - Queue in Isolation

The simplest possible open queueing network is a single queue in isolation, as shown in
Figure 6.1. Let. us use RESQ to examine the classical "MIMI 1" queue, i.e., a fefs queue with
exponential arrival and service times.

MODEL:MM1

END

METHOD: numerical
QUEUE:q

TYPE:fcfs
CLASS LIST:c

SERVICE TIMES:4
CHAIN:ch

TYPE: open
SOURCE LIST:s
ARRIVAL. TIMES:5
:s->c->sink

All of the above dialogue should be familiar up to the prompt for the chain type. Aftergiving
the type as open, there is a prompt for a list of source names and then a prompt for a list of
arrival time distributions. The name "sink" is predefined as the only sink. The same sink is
shared by all open chains. It is illegal to have a routing transition with a source on the right
hand side or a sink on the left hand side.

Now we can get the results from EV AL:

RESQ2 VERSION DATE: OCTOBER 2, 1981
MODEL:MM1
NO ERRORS DETECTED DURING NUMERICAL SOLUTION.

WHAT:all

ELEMENT

Q

ELEMENT

Q

April 3, 1982

UTILIZATION

0.80000

THROUGHPUT
0.20000

64

ELEMENT

Q

ELEMENT

Q

ELEMENT
CH

ELEMENT
CH

WHAT:

MEAN QUEUE LENGTH
4.00000

MEAN QUEUEING TIME
19.99998

OPEN CHAIN POPULATION
4.00000

OPEN CHAIN RESPONSE TIME
19.99998

SOURCES AND SINKS I SEC. 6

The open chain population is the mean number of jobs in the open chain and the oPen chain
response time is the mean time spent in the chain bya job.

Though the queueing time distribution for the MIMl1 queue is known to be exponential
(see Kobayashi [KOBA78]), it is not available from the numerical solution component of
RESQ. We can use simulation to obtain estimates of the queueing time distribution, as would
be necessary if we were dealing with a system without known solution for the queueing time
distribution. The following dialogue file would be adequate:

MODEL:rnm1

END

METHOD: simulation

QUEUE:C!
TYPE:fcfs
CLASS LIST:c

SERVICE TIMES:4
CHAIN:ch

TYPE: open
SOURCE LIST:s
ARRIVAL TIMES:5

:s->c->sink
QUEUES FOR QUEUEING TIME DIST:q

VALUES: 10 20 30 40 50
CONFIDENCE INTERVAL METHOD:reg~nerative
REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:q
MEASURES:qt
ALLOWED WIDTHS: 10

SAMPLING PERIOD GUIDELINES -
QUEUES FOR DEPARTURE COUNTS:q

DEPARTURES: 10000
LIMIT- CP SECONDS: 100
TRACE: no

April 3, 1982

SEC. 6 I SOURCES AND SINKS 65

We have not given an explicit definition of the regeneration and initial states. If we do not
give an explicit definition of these states for a chain, then there will be no jobs in the chain in
these states. (Thus we must give explicit definitions for these states for closed chains,) It c~m
be shown that the empty state is the most frequently occurring state for the M/M/1 queue
and for many open networks. Thus it is reasonable as well as convenient to use the empty
state as we have done.

Though the M/M/1 queue is very simple to solve algebraically, it can require what seem
to be very long simulation runs for reasonable results. Knowing this in advance, we set the
departure limit at 10,000 departures.

Now using EVAL we get

RESQ2 VERSION DATE: OCTOBER 3, 1981
MODEL:MM1
SAMPLING
SAMPLING
SAMPLING
SAMPLING
SAMPLING
SAMPLING
NO ERRORS

WHAT:qtbo

ELEMENT
Q.

WHAT:utbo

ELEMENT

Q

WHAT:.
CONTINUE

PERIOD END: Q DEPARTURE GUIDELINE
PERIOD END: Q DEPARTURE GUIDELINE
PERIOD END: Q DEPARTURE GUIDELINE
PERIOD END: Q DEPARTURE GUIDELINE
PERIOD END: Q DEPARTURE GUIDELINE
PERIOD END: Q DEPARTURE GUIDELINE

DETECTED DURING SIMULATION.

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:
NUMBER OF CYCLES:

3.0210E+05
42.39

120132
12268

MEAN QUEUEING TIME
18,64873(17.76196 i 19.53551) 9.5%

UTILIZATION
0.79771 (0.79058,0.80484) 1.4%

RUN:yes

EXTRA SAMPLING PERIODS: 1

SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE

April 3, 1982

66 SOURCES AND SINKS / SEC. 6

NO ERRORS DETECTED DURING SIMULATION.

WHAT:qtbo

ELEMENT

Q

WHAT:allbo

ELEMENT

Q

ELEMENT

Q
S

SINK

ELEMENT

Q

ELEMENT

Q

ELEMENT

Q

ELEMENT

Q

ELEMENT

ELEMENT

j::LEMENT

ELEMENT
Q

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:
NUMBER OF CYCLES:

4.5137E+05
63.52

180320
18183

MEAN QUEUEING TIME
19.19112(18.35539,20.02684) 8.7%

UTILIZATION
0.79982 (0.79388,0.80575) 1.2%

THROUGHPUT
0.19975 (0.19869,0.20081) 1.1%
0.19975
0.19975

MEAN QUEUE LENGTH
3.83337(3.65683,4.00990) 9.2%

STANDARD DEVIATION OF QUEUE LENGTH
4.16076

MEAN QUEUEING TIME
19.19112(18.35539,20.02684) 8.7%

STANDARD DEVIATION OF QUEUEING TIME
18.49261

MEAN TOKENS IN USE

MEAN TOTAL TOKENS IN POOL

QUEUE LENGTH DISTRIBUTION

QUEUEING TIME DISTRIBUTION
1.00E+01:0.39427(0~38311,O.40542) 2.2%
2.00E+01:0.64136(0.62683,0.65589) 2.9%

April 3, 1982

SEC. 6 I SOURCES AND SINKS

ELEMENT

ELEMENT
Q

ELEMENT
Q

ELEMENT
CH

ELEMENT
CH

WHAT:
CONTINUE RUN:no

3.00E+01:0.79021 (0.77598,0.80443) 2.8%
4.00E+01:0.87709(0.86450,0.88967) 2.5%
5.00E+01:0.93015(0.91954,0.94076) 2.1%

DISTRIBUTION OF TOKENS IN USE·

DISTRIBUTION OF TOTAL TOKENS IN POOL

MAXIMUM QUEUE LENGTH
35

MAXIMUM QUEUEING TIME
151.03687

OPEN CHAIN POPULATION
3.83337(3.65683,4.00990) 9.2%

OPEN CHAIN RESPONSE TIME
19.19112(18.35538,20.02684) 8.7%

67

Arrivals from sources are events as well as service completions. Thus the initial number
of departures is 60066, which seems like a large number to obtain a 10% confidence interval
width for the mean queueing time, but this illustrates the variability of the M/M/1 queue at
moderately high utilizations. Note that open networks and queues with more variable service
times are likely to require even longer runs when utilizations are high. Note also. that even
with this seemingly long' run, the point estimate for mean queueing time is well below the true
value and the confidence interval does not contain the true value. Only when we continue the
run, requiring that the width criterion be satisfied for two successive sampling periods, do we
get a confidence interval which contains the true value. Three additional sampling periods are
required before the criterio.n is satisfied for two successive sampling Periods.

Sources and sinks are used in exactly the same manner in general networks as in this
example here. We will have more examples with sources and sinks in subsequent sections~ It
is possible to have the arrival rate of jobs from sources of a chain vary during the simulation,
as we shall see in Section 8.

With the regenerative method it is almost always most appropriate to uSe the empty state
for regeneration and initial states for open chains. Though some other state may occur more
frequently, it is usually not worth the effort of looking for such a state. If the empty state
does not occur frequently enough then it is usually not practical to use the regenerative
method.

April 3, 1982

68

7. CHAINS

All of our examples so far have had a single routing chain. Also, all pf our examples have
had at most one node of a given type per queue (the passive queues have had two nodes, an
allocate and a release). Usually we use more than one routing chain when we want to
distinguish between different types of jobs. A queue must have at least one node for each
chain which visits the queue, so more than one chain usually implies more than one node at at
least one queue. (Otherwise we would actually have disjoint subnetworks.) We may want to
have more than one node (of a given type) per queue even if we have only one routing chain
and! or we may want to have a queue with several nodes of the same type which belong to the
same chain in a model with several chains. Chains are disjoint in the sense that a node of one
chain may not belong to another chain (with the exception that all open chains share the same
sink). With models solved by the RESQ numerical component, a job at a source or class of a
given chain must be able to reach any class of the chain unless it goes to a sink first. A
similar requirement (with nodes in general other than sources and sinks replacing classes in the
above) does not hold for models to be simulated, but most models will satisfy the condition.
(In Section 8.2 we will see a model which does not satisfy this condition.)

TERMINALS

o
o

RCPU

Figure 7.1 - Single Chain Model

Before we consider models with mUltiple chains, let us consider it model with a single
chain but multiple classes at some active queues. Suppose in our original computer system
model we wished to distinguish between 'commands for editing, which represent the bulk of
commands in many systems, and other commands, e.g., for compiling and running progr~ms.
Figure 7.1 shows a possible modification for this purpose. We have separate classes for
editing and "running" at the CPU, floppy disk and hard disk queues. A job leaving the
terminals is determined to be either an editing or a running job and the distinction is preserved
until the job returns to the terminals. The following is a poSsible dialogue file for this. model:

MODEL:csmer
/*Computer System Model with Editing and "Running" users*/
METHOD: numerical
NUMERIC PARAMETERS:thinktime users
NUMERIC IDENTIFIERS: floppy time disktime ecputime rcputime

April 3, 1982

.".'

SEC. 7 / CHAINS

END

FLOPPYTIME:.22
DISKTIME:.019

-ECPUTIME: .05
RCPUTIME: .075

NUMERIC IDENTIFIERS:ecycles rcycles
ECYCLES:4
RCYCLES:60

QUEUE:floppyq
TYPE:fcfs
CLASS LIST:efloppy rfloppy

SERVICE TIMES: floppy time
QUEUE:diskq

TYPE:fcfs
CLASS LIST:edisk

SERVICE TIMES:disktime
CLASS LIST:rdisk

SERVICE TIMES:disktime
QUEUE:cpuq

TYPE:ps
CLASS LIST:ecpu rcpu

SERVICE TIMES:ecputime rcputime
QUEUE:terminalsq

TYPE:is
CLASS LIST:terminals

SERVICE TIMES:thinktime
CHAIN:interactiv

TYPE:closed
POPULATION: users
:terminals->ecpu rcpu;.95 .05
:ecpu->efloppy edisk;.1 .9
:efloppy->terminals ecpu;1/ecycles 1-1/ecycles
:edisk->terminals ecpu;1/ecycles 1-1/ecycles
:rcpu->rfloppy rdisk;.2 .8
:rfloppy~>terminals rcpu;1/rcycles 1-1/rcycles
:rdisk->~eiminals rcpu;1/rcycles 1-1/rcycles

69

The model assumes that the service times are the same for both classes at floppyq and diskq
and different at cpuq. With exact numerical solution we must assume the same exponential
distribution for all classes at fefs queues. The model also has different meannul11bers of
cycles for the editing and running subnetworks. (We dropped "cpio" from the identifiers to
keep under 11 characters.) Note that in the definition of floppyq a single service tilne value is
given for all classes in the list. In the definition ofdiskq we used tWo class lists (which could
e.ach have more than one class if there were more classes at the queue.)

Using EVAL we can get

RESQ2 VERSION DATE: MARCH 23, 1982 - TIME: 15:22:56 DATE: 04/01/82
MODEL:CSMER
THINKTIME:10
USERS:30
NO ERRORS DETECTED DURING NUMERICAL SOLUTION

WHAT:all

April 3, 1982

70 CHAINS / SEC. 7

ELEMENT UTILIZATION
FLOPPYQ 0.48863

EFLOPPY 0.18947
RFLOPPY 0.29916

DISKQ 0.25062
EDISK 0.14727
RDISK 0.10335

CPUQ 0.94055
ECPU 0.43061
RCPU 0.50993

TERMINALSQ 0.00000

ELEMENT THROUGHPUT
FLOPPYQ 2.22105

EFLOPPY 0.86122
BFLOPPY 1.35982

DISKQ 13.19032
EDISK 7.75102
RDISK 5.43930

CPUQ 15.41136
ECPU 8.61224
RCPU 6.79912

TERMINALSQ 2.26638

ELEMENT MEAN QUEUE LENGTH
FLOPPYQ 0.92724

EFLOPPY 0.35954
RFLOPPY 0.56770

DISKQ 0.33208
EDISK 0.19514
RDISK 0.13694

CPUQ 6.07688
ECPU 2.78219
RCPU 3.29469

TERMINALSQ 22.66380

ELEMENT MEAN QUEUEING TIME

FLOPPYQ 0.41748
EFLOPPY 0.41748
RFLOPPY 0.41748

DISKQ 0.02518
EDISK 0.02518
RDISK 0.02518

CPUQ 0.39431
ECPU 0.32305
RCPU 0.48458

TERMINALSQ 10.00000

WHAT:
THINKTIME:

April 3, 1982

SEC. 7 / CHAINS 71

With numerical solution, RESQ does not provide utilization estimates for Glasses at queues
with multiple servers and/or queue dependent service rates. We can estimate mean response
times as before, e.g., by Little's Rule the mean editing response time is (2.78219 + .35954 +
.19514)/(2.26638 x .95) = 1.550 seconds, the mean running response time is (3.29469 +
.56770 + .13694)/(2.26638 x .05) = 35.293 seconds and the mean overall response time is
(30 - 22.66380)/2.26638 =3.237 seconds.

ETERMINALS

RTERMINALS RCPU

Figure 7.2 - Model with Two Closed Chains

In the model with the single chain, it is unlikely that a user's successive commands will be
for 11 running. 11 Usually an editing command will follow a command for "running." Suppose
that this is not realistic, that users stay in an editing or running mode for quite a while so that
it Seems as if there are editing and running users rather than merely editing and running
commands. Then it might be more appropriate to have two chains as in Figure 7.2. (Another
possibility would be to have infrequent transitions between the chains of Figure 7.2; then the
II chains II would actually be subchains, not chains.) Suppose we want to consider .the system
when one seventh of the users are in the running mode and the rest are in the editing mode.
Then we would have the following definitions for terminalsq and the chains:

QUEUE:terminalsq
'rYPE: is
CLASS LIST:eterminals rterminals

SERVICE TIMES:thinktime
CHAIN: editing

TYPE:closed
POPULATION:users-ceil(users/7)
:eterminals->ecpu
:ecpu->efloppy edisk;.l .9
:efloppy->eterminals ecpu;l/ecycles l-l/ecycles
:edisk->eterminals ecpu;l/ecycles l-l/ecycles

CHAIN: running
TYPE:closed
POPULATION:ceil(users/7)
:rterminals->rcpu

April 3, 1982

72

END

:rcpu~>rfloppy rdisk;.2 .8
:rfloppy->rterminals rcpu;1jrc~cles 1-1/rcycles
:rdisk->rterminals rcpU;1/rcycles 1-1/rcycles

CHAINS / SEC. 7

The dialogue file before the definit'ion ofterminalsq is the same a,s before. The "ceil"
function gives the smallest integer which is at least as large as the given argument. Now we
could get the· following:

RESQ2 VERSION DATE: MARCH 23, 1982 - TIME: 16:03:15 DATE: 04/01/82
MODEL:CSMER
THINKTIME:10
USERS: 30
NO ERRORS DETECTED DURING NUMERICAL SOLUTION

WHAT:all

ELEMENT UTILIZATION
FLOPPYQ 0.50873

EFLOPPY 0.18965
RFLOPPY 0.31907

DISKQ 0.25764
EDISK 0.14741
RDISK 0.11023

CPUQ 0.97491
ECPU 0.43103
RCPU 0.54388

TERMINALSQ 0.00000
ETERMINALS 0.00000
RTERMINALS 0.00000

ELEMENT THROUGHPUT
FLOPPYQ 2.31240

EFLOPPY 0.86207
RFLOPPY 1 .45034

DISKQ 13.55993
EDISK 7.75859
RDISK 5 .. 80134

CPUQ 15.87234
ECPU 8.62066
RCPU 7.25168

TERMINALSQ 2.27603
ETERMINALS 2.15516
RTERMINALS 0.12086

ELEMENT MEAN QUEUE LENGTH
FLOPPYQ 0.97826

EFLOPPY 0.37487
RFLOPPY 0.60339

DISKQ 0.34472
EDISK 0.19748

April 3, 1982

SEC. 7 / CHAINS 73

RDISK 0.14724

CPUQ 5.91675

ECPU 2.87599

RCPU 3.04076

irERMINALSQ 22.76025

ETERMINALS 21.55165

RTERMINALS 1.20861

ELEMENT MEAN QUEUEING TIME

FLOPPYQ 0.42305

EFLOPPY 0.43485

RFLOPPY 0.41604

DISKQ 0.02542

EDISK 0.02545

RDISK 0.02538

CPUQ 0.3727"1

ECPU 0.33362

RCPU 0.41932

TERMINALSQ 10.000.00

ETERMINALS 10.00001

RTERMINALS 10.00000

WHAT:

THINKTIME:

Now the mean response time for the editing jobs would be (25 - 21.55165)/2.15516 = 1.600
seconds, the mean response time for the running jobs would be (5 - 1.20861)/.12086 =
31.370 seconds and the mean overall response time would be (30 - 22,760)/2.27603 = J.181
seconds.

With multiple closed chains, execution times may become. quite large with numerical solution
when the chain populations are substantial.

Now let us suppose that we return to our original model without distinctions between
interactive users and wish to add a batch workload to that modeL The batch jobs could be
submitted by terminal commands, for example. Figure 7.3 shows an open chain added to the
original figure to· represent the batch jobs. The following dialogue file could be used for
Figure 7.3:

April 3, 1982

74 CHAINS / SEG. 7

TERMINALS

o

o
BCPU

Figure 7.3 - Model with Open and Closed Chains

MODEL:csmib
/*Computer System Model with Interactive users .and Batch jobs*/
METHOD: numerical
NUMERIC PARAMETERS:thinktime users brate
NUMERIC IDENTIFIERS: floppy time disktime icputime bcputime

FLOPPYTIME:.22
DISKTIME: .019
ICPUTIME: .05
BCPUTIME: .075

NUMERIC IDENTIFIERS:icycles bcycles
ICYCLES:8
BCYCLES:100

QUEUE:floppyq
TYPE:fcfs
CLASS LIST:ifloppy bfloppy

SERVICE TIMES: floppy time
QUEUE:diskq

TYPE:fcfs
CLASS LIST:idisk bdisk

SERVICE TIMES:disktime
QUEUE:cpuq

TYPE:ps
CLASS LIST:icpu bcpu

SERVICETIMES:icputime bcputime
QUEUE:terminalsq

TYPE: is
CLASS LIST:terminals

SERVICE TIMES:thinktime
CHAIN: in teract.i v

TYPE:closed
POPULATION: users

April 3, 1982

SEC. 7 / CHAINS

END

:terminals->icpu
:icpu->ifloppy idisk;.1 .9

:ifloppy->terminals icpu;1/icycles 1-1/icycles
:idisk->terminals icpu;1/icycles 1-1/icycles

CHAIN:batch
TYPE: open
SOURCE LIS.T: s

ARRIVAL TIMES:1/brate
:s->bcpu

:bcpu->bflopPy pdiskl ! 2 .8
:bfloppy~>sink bcpu;i/bcycles 1-1/bcycles

:bdi~k->sink bcpu;1/bcycles 1-1/bcycles

75

With numerical solution, RESQ requires that closed chains be defined before open chains. We
assume batch jobs are submitted at rate brate. Using EV AL we can get

RESQ2 VERSION DATE: MARCH 23, 1982 - TIME: 16:20:21 DATE: 04/01/82
MODEL:CSMIB
THINKTIME:10
USERS :30
BRATE: .. 01
NO ERRORS DETECTED DURING NUMERICAL SOLUTION

WHAT:all

ELEMENT UTILIZNrION
FLOPPYQ 0.43299
. IFLOPPY 0.38899

BFLOPPY 0.04400

DISKQ 0.31755

IDISK 0.30235
BDISK 0.01520

CPUQ· 0.9.5906
ICPU 0.88406
BCPU 0.07500

TERMINALSQ 0.00000

ELEMENT THROUGHPUT
FLOPPYQ 1 .96812

IFLOPPY 1.76812
BFLOPPY 0.20000

DISKQ 16.71306

IDISK 15.91307
BDISK 0.80000

CPUQ 18.68118
ICPU 17.68118
BCPU ·0.99999

TERMINALSQ 2.21015

April 3, 1982

76 CHAINS / SEC. 7

ELEMENT MEAN QUEUE LENGTH
FLOFPYQ 0.75205

IFLOPPY 0.67496
BFLOPPY 0.07709

OISKQ 0.46135
IDISK 0.43914
BOISK 0.02221

CPUQ 7.41557
ICPU 6.78440

BCPl.J 0;63116
TERMINALSQ 22.10149

ELEMENT MEAN QUEUEING TIME
FLOPPYQ 0.38212

IFLOPPY 0.38174
BFLOPPY 0.3.8545

OISKQ 0.02760
rorSK 0.02760
BOISK 0.02777

CPUQ 0.39695
ICPU 0.38371
BCPU 0.63117

TERMINALSQ 10.00000

ELEMENT OPEN CHAIN POPULATION
BATCH 0.73047

ELEMENT· OPEN CHAIN RESPONSE TIME
BATCH 73.04666

WHAT:
THINKTIME:

Now the interactive mean response time is (30 - 22.10149)/2.21015 = 3.574 seconds. We
could obtain the overall mean response time again, but this seems uninteresting for this modeL

Open chains have negligible effect on the execution time ofRESQ numerical solutions.

April 3, 1982

77

8. JOB, CHAIN AND GLOBAL VARIABLES

Job, Chain and Global Variables are available only in simulation models. These variables
are used in the sense of programming language variables. Assignment statements for these
variables .art~ performed by set nodes. Expressions containing these variables may be used in
defining service times, arrival times; routing, priorities, numbers of tokens to be allocated, and
inmost other places where numeric expressions are allowed. (The Users Guide indicates
which expressions do not allow use of these variables. Except in those places where the
variables are explicitly prohibited, expressions may use these variables.)

8.1. Job Variables

Job variables are used to store numeric data with individual jobs during a Simulation run.
Job variables are identified by the subscripted keyword "JV~" The subscripts begin atO and
may range up .to .a maximum specified by the user. (Job variables and chain variables are
unlike. RESQ arrays in that the lower bound is 0 instead of L) The maximum subscript is
specifi~d in response to the prompt

MAX JV:

In a dialogue file, this prompt and the reply would be inserted following the identifier declara­
tions section. If no maximum is specified, only JV(O) 'and JV(1) may be used: Al1job
variables are initialized to 0 when a job is created except for job variables of jobs created by
split and fission nodes (Section 11). Job variables are represented internally as double
precision floating.point numbers.

Job variables are assigned values at "set" riodes. A set. node performs assignment
statements corresponding to assignment statements in a programming language. After queue
definitions are completed the interactive mode of SETUP will prompt for a list of set nodes
with the prompt "SET NODES:" and will then prompt for the assignment statements for those
nodes with the prompt "ASSIGNMENT LIST:". After the ASSIGNMENT LIST: prompt
there will be another SET NODES: prompt. In dialogue files the SET NODES: and ASSIGN­
MENT LIST: lines are inserted· after the queue definitions. If more than oneassignriient
statement is to be associated with a single set node, then this set node should be defined by a
separate SET NODE and ASSIGNMENT LIST section. Some examples:

SET NODES: alpha beta
ASSIGNMENT LIST:jv{lenq)=be(1,O; 1,1)jv(3)=jv(3)+1
SET NODES: gamma
ASSIGNMENT LIST:jV(stime)=user~/10
SET NODES: delta
ASSIGNMENT LIST:jv(stime)=users/10 jv(p)=jv(p)+1

Note that use 9f identifiers for subscripts can improve readability. Subscripts for job variables
may be expressions requiring simulation time evaluation, e.g., may involve other job variables;
In this example, nodes alhpa, beta and gamma would each perform a single assignment. Set
nod~ d~lta would perform two assignments. A set node may perform any number of assign­
ments,. but if a set node is to perform mote than one assignment, it must be defined by. a
separate pair of SET NODE: and ASSIGNMENT LIST: llnes. The assignments are perf()rmed
in the order listed. Assignments for job, chain and global variables may be mixed at a single
set node.

Job Variables are very useful in service time expressions, e.g.,

April 3, 1982

.18 JOB,CHAIN AND GLOBAL VARIABLES I SEC" 8

CLASS LIST:transmit

SERVICE TIMES: propagate+standard (jv (leng} ,0) ICapaci ty

"Standard" is the name ofa RESQ distribution specified by the mean and coefficient of
variation. Coefficient of variation zero results in· a constant·· value. The aiove eX/pression
would be taken as the mean of an exponential distribution if the name of a distribu.tion was
not prese.nt.

1 2 3 4.

Figure 8.1 - Series Queues with Independence Assumption

The classic application of job variables is to avoid making Kleinrock's"independence
assumption" in modeling communication networks; (This assumption was originally proposed
in Kleinrock's Ph.D. thesis. It is discussed further in [KLEI76].) Consider Figure 8.1 and
suppose that the queues represent communication links. For simplicity let us assume.the
processing between links is negligible. The transmission times for a given message at each link
will be propo:rtional to each other, with the proportionality determined by the link capacities
(rates). In order to make analytic solution of such a network feasible, Kleinrock conjectured
that one could assume the transmission times were independent and demonstrated by simula­
tion that this was a reasonable assumption for' some networks. Whether the assumption is
reasonable or not depends on a number of factors, including the traffic· intensity and the
network topology.

The series topology of Figure 8.1 is such that the independence assumption is not
appropriate. Suppose in Figure 8.1 the queues are FCFSqueues with (independent) exponen­
tial service times with mean.125 second and that the arrival times are exponential with mean
.25 second. Then each queue may be treated as an M/M/1 queue in isolation. The queueing,
times at each queue are exponential with mean .25 second. The response times from Source to
sink are the sum of four independent exponential times with mean .25 second,so they have a
four stage Erlang distribution with mean 1 second. .

.12147483647.\

JV(STIME)=
STANDARD(.125,1)

1 2

Figure 8.2 - Series Queues with Interdependence

3 4

Now suppose that we wish to test the effects of the independence assumption. Assuming
that the links have the same capacities, then a message will have the same service time at each
ofl the four queues. We can no longer treat the last three queues as MIMI 1 queues because
their arrival and service times are dependent and because the interarrival times at the last two
are not necessarily exponential. We can simulate the system using job variables. Figure 8.2
shows a passive queue and a set node added to Figure 8.1. The passive queue is used to
measure response times. It has an "infinite" number of tokens, i.e., 231 _1. A relcase'node is
not necessary; jobs holding tokens release them when they. go to a sink. The numeric
identifier msg stime is given the value 0 and used in JV subSCripts to indicate the JV is used
for service times. The set node is used to put the service time value in JV(msg_stime). The

April 3, 1982

SEC. 8.1 / Job Variables 79

standard distribution with coefficient of variation one results in an exponential distribution;
"JV(msg stime) = .125" would result in a constant, not an exponential, value. The following
dialogue file could be used: . . ,

MObEL:fourlihk
METHOD: simulation
NUMERIC U)ENTIFIERS: msg~stirile

MSG_STIME:O /*JV to be used*/
QUEUE:rtq

TYPE:passive
TOKENS:2147483647
DSPL:fcfs
ALLOCATE NODE LIST:beginrt

NUMBERS OF TOKENS TO ALLOCATE: 1
QUEUE:q1

TYPE:fcfs
CLASS LIST:c1

SERVICE TIMES:standard(jv(msg_stime) ,0)
QUEUE:q2

TY:PE:fcfs
CLASS LIST:c2

SERVICE TIMES:standard(jv(msg_stime) ,0)
QUEUE:q3

TYPE:fcfs
CLASS LIST:c3

SERVICE TIMES: standard (jv(msg_stime) ,0)
QUEUE:q4

TYPE:fcfs
CLASS LIST:c4

SERVICE TIMES:standard(jv(msg_stime) ,0)
SET NODES:set stime
ASSIGNMENT LIST:jv(msg_stime)=standard(.125,1)
CHAIN:ch

TYPE:open
SOURCE LIST:s
ARRIVAL TIMES:. 25
:s->beginrt->set_stime~>c1->c2->c3->c4->sink

QUEUES FOR QUEUEING TIME DIST:rtq
VALUES:.5 1 1.5 2 2.5

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

END

QUEUES TO BE CHECKED:rtq
MEASURES:qt
ALLOWED WIDTHS: 10

SAMPLING PERIOD GUIDELINES -
Ql)EUESFOR DEPARTURE COUNTS;rtq

DEPARTURES: 10000
LIMIT - CP SECONDS: 100
TRACE: no

EV AL will give us the following:

April 3, 1982

80 JOB, CHAIN AND GLOBAL VARIABLES / SEC.S

RESQ2 VERSION DATE: OCTOBER 9, 1981
MODEL: FOURLINK
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
NO. ERRORS DETECTED DURING SIMULATION.

WHAT::utbo

ELEMENT
RTQ
Q.1
Q2
Q3
Q4

WHAT:tpbo(rtq)

ELEMENT
RTQ

WHAT:qlbo

ELEMENT
RTQ
Q1
Q2
Q3
Q4

WHAT:qtbo

ELEMENT
RTQ
Q1
Q2
Q3
Q4

WHAT:sdqt

ELEMENT
RTQ
Q1
Q2
Q3

SIMULATED TIME:
CPU TIME:

NUMBER OF· EVENTS:
NUMBER OF CYCLES:

2512.58301
,29 .. 56
50285

806

UTILIZATION
2.2010E-09(2.1094E-09,2.2926E-09) 0.0%
0.50886(0.49823,0.51949) 2.1%
0.50886(0.49823,0.51949) 2.1%
0.50886(0.4982~,0.51949) 2.1%
0.50886(0.49823,0.51949) 2.1%

THROUGHPUT
4.00265(3.94119,4.06411) 3.1%

MEAN QUEUE LENGTH
4.72664(4.52998,4.92329) 8.3%
1.00657(0.95876,1.05437) 9.5%
1 .06901 (1 .02551 ,1 . 11251) 8. 1 %
1.25355(1.20049,1.30662) 8.5%
1.39750(1.33610,1.45890) 8.8%

MEAN QUEUEING TIME
1.18087(1.13909,1.22266) 7.1%
0.25148(0.24081,0;26214) 8.5%
0.26708(0.25784,0.27631) 6.9%
0.31318(0.30191,0.32445) 7.2%
0.34914(0.33591,0.36238) 7.6%

STANDARD DEVIATION OF QUEUEING TIME
0.72737
0.24087
0.19031
0.19855

April 3, 1982

SEC .. 8: 1··j.Job Variables

Q4

WHAT:qtdbo

ELE;MENT
RTQ

WHAT:
CONTINUE RUN:no

0.20232

QUEUEING TIME DISTRIBUTION
5.00E-Ol:0.17590(O.16287,0.18892) 2.6%
1.00E+OO:O.46107(0.43827,0~48388) 4.6%
1.50E+OO:O.71473(0.69109,0.73836) 4.7%
2AOOE+OO:O.86944(0.85158,0.88731) 3.6%
2.50E+OO:O.94094(0.92910,0.95277) 2.4%

81

Note the increasing mean queue lengths and mean queueing times as we progress from queues
1 to 4. The .response time has a mean 18% higher than with the independence assumption
and is more variable than if it had a four stage Erlang distribution. The queueing times at
queues 2, 3 and 4 are less variable than the exponential distribution.

We will have more examples of use of job variables in subsequent sections.

S.2.Chain Variables

Chain variables are analogous to job variables except that the numeric data is associated
with chains rather than individual jobs. Chain variables have only one unique function, to
control the rates of sources of the chains. Though chain variables can be used for other purposes,
it will usually be more appropriate to use global variables (Section 8.3) for these purposes.

Chain variables are identified by the subscripted keyword "CV." The subscripts begin at
o and may range up to a maximum specified by the user. Only chain variable 0 affects
sources .. The maximum subscript can be specified only in dialogue files. A line of the form

MAX CV: "max subscript"

is inserted after the corresponding job variable definition (or after the identifier definitions if
there is no corresponding job variable definition.) If no maximum is specified, only CV(O)
may be used. All chain variables are initialized to 1. Chain variables are represented
internally as double precision floating point numbers.

Chain variables are assigned values at set nodes, as with job variables. If CV(O) for an
open chain has a value other than 0, samples from the arrival time distributions are divide.d by
CV(O) to obtain actual inter arrival times. If there are pending source even.ts for an open
chain whenCV(O) is changed to a value other than 0, those events are rescheduled. The new
time until an event is obtained by multiplying the old time until an event by the old value of
CV(O) and dividing that result by the new value of CV(O). Setting CV(O) to 0 shuts off all
sources for that chain; any pending source events for the chain are deleted from the event list
and no new events will be scheduled, even if CV(O) should later become non-zero.

As an example of the use of CV(O) to change arrival rates, let us suppose we want to
look at the behavior of our hypothetical computer system as the number of users at the
terminals varies during the day. The top part of Figure 8.3 shows users arriving at the
terminals and alternating between thinking at the terminals and waiting for command. process-

April 3, 1982

82 JOB, CHAIN AND GLOBAL VARIABLES / SEC. 8

TERMINALS

9L.,
or~

CV(O)=.5

CV (0) = .25

CV (0) =1

CV (0) =.1

COMP_SYS

TIMERQ

Figure 8,3 - Arrivals Dependent on Time of Day

ing until they are finished and leave. The computer system is represeilted by a single queue
with queue dependent service rates. Queue dependent .rates are discussed in Section 15 .. The
rates we will use were obtained by standard approximation techniques assuming partitioned
memory with four partitions. For discussion of approximate. solutions, see [CHAN78b,
SAUE79, SAUE81a,LAVE82]. Let us assume the peak arrivai rate of users is from 1 to 5 in
the afternoon, that the arrival rate is one half the peak rate from 9 to 12 in the morning, that.
the arrival rate is one fourth the peak rate during the hinch hour and that the arrival rate is
one tenth the peak rate during the night. The bottom part .of Figure 8.3 shows the set nodes
that will be used for this purpose. There will be a single job alternating between set nodes
alld service times representing the above periods. EVen though this part of the network is
disjoillt from the remainder as far as the jobs are concerned, we will consider the network to
consist of only one chain. (This is the example we referred to in defining chains in Section
10.) The following dialogue file could be used.

MODEL:onedp.y
METHOD: simulation
NOMER!C PARAMETERS:peakrate
NUMERIC IDENTIFIERS:thinktime commands

THINKTIME : 1 0
COMMANDS: 200

QUEUE:terminalsq
TYPE:is
CLASS LIST:terminals

SERVICE TIMES:thinktime
QUEUE: comp_sysq

TYPE:active
SERVERS: 1
DSPL:ps

April 3, 1982

~.

SEC. 8.2 / Chain Variables

END

CLASS LIST:comp_sys
WORK DEMANDS: 1

SERVER -
RATES:1.40292 1.98614 2.25576 2.38438

QUEUE:timerq
TYPE:fcfs
CLASS LIST:time9to12 time12to1

WORK DEMANDS:standard(10800,O) standard(3600,O)
CLASS LIST:time1to5 time5to9

WORK DEMANDS:standard(14400,O) standard(57600,O)
SET NODES:set9to12 set12to1 set1to5 set5to9
ASSIGNMENT LIST:cv(0)=.5 cv(0)=.25 cv(0)=1 cv(0)=.1
CHAIN:users

TYPE: open
SOURCE LIST:s
ARRIVAL TIMES:1/peakrate
:s->terminals':">comp_sys->sink terminals;1/commands 1-1/commands
:set9t612->time9to12->set12to1->time12to1->set1to5
:set1to5->time1to5->set5to9->time5to9->set9to12

QUEUES FOR QUEUEING TIME DIST:comp_sysq
VALUES: 1 2 3 4 5 6 7 8

CONFIDENCE INTERVAL METHOD: replications
INITIAL STATE DEFINITION -
CHAIN: users

NODE LIST:set9to12
INITPOP:1

CONFIDENCE LEVEL:90
NUMBER OF REPLICATIONS:25
REPLIC LIMITS -

SIMULATED TIME:28800
LIMIT - CP SECONDS:2800
TRACE: no

83

We are exammmg transient, not equilibrium,behavior with this model. It would not be
appropriate to use the regenerative method or the spectral method to obtain . confidence
intervals with this model. This is an example of a situation where it is appropriate to use
independent replications with a large number of replicationS. For the period 9 to 5 with a
peak rate of one arrival per 100 seconds we get the following: .

RESQ2 VERSION DATE: SEPTEMBER 4, 1981
MODEL:ONEDAY
PEAKRATE: . 01
REPLICATION 1 : SIMULATED TIME LIMIT
REPLICATION 2 : SIMULATED TIME LIMIT
REPLICATION 3: SIMULATED TIME LIMIT
REPLICATION 4: SIMULATED TIME LIMIT
REPLICATION 5: SIMULATED TIME LIMIT
REPLICATION 6: SIMULATED TIME LIMIT
REPLICATION 7 : SIMULATED TIME LIMIT
REPLICATION 8: SIMULATED TIME LIMIT
REPLICATION 9: SIMULATED TIME LIMIT
REPLICATION 10: SIMULATED TIME LIMIT
REPLICATION 11 : SIMULATED TIME LIMIT

April 3, 1982

84 JOB, CHAIN AND GLOBAl-- VARIABLES / SEC. 8

REPLICATION 12: SIMULATED TIME LIMIT
REPLICATION 13: SIMULATED TIME LIMIT
REPLICATION 14: SIMULATED TIME LIMIT
REP:LIChTION 15: SIMULATED TIME LIMIT
REPLICATION 16: SIMULATED TIME LIMIT
REPLICATION 17: SIMULATED TIME LIMIT
REPLICATION 18: SIMULATED TIME LIMIT
REPLICATION 19: SIMULATED TIME LIMIT
REPLIChTION 20: SIMULATED TIME LIMIT
REPLICATION 21: SIMULATED TIME LIMIT
REPLICATION 22: SIMULATED TIME LIMIT
REPLICATION 23: SIMULATED TIME LIMIT
REPLICATION 24: SIMULATED TIME LIMIT
REPLICATION 25: SIMULATED TIME LIMIT
NO ERRORS DETECTED DURING SIMULATION.

SIMULATED .TIME PER REPLICATION:
CPU TIME:

NUMBER OF EVENTS PER REPLICATION:
NUMBER OF REPLICATIONS:

WHAT:utbo

2.8800E+04

805.65

72556

25

ELEMENT
TERMINALSQ
COMP_SYSQ
TIMERQ

UTILIZATION
0.00000(0.00000,0.00000)

0.64892(0.63425,0.66360) 2.9%

1.00000

WHAT:tpbo(terminalsq,comp_sysq,s,si.nk)

ELEMENT
TERMINf\.LSQ
COMP_SYSQ

S
SINK

THROUGHPUT
1.25608(1.21623,1.29592) 6.3%

1.2558911.21606,1.29572) 6.3%

7.2278E-03

6. 3986E-03

WHAT:qlbo(terminalsq,comp_sysq)

ELEMENT
T,ERMINALSQ
COMP_SYSQ

. MEAN QUEUE LENGTH
12.55767(12.16163,12.95370) 6.3%

2.16919(1.87909,2.45929) 26.71

WHAT.: qtbo (comp_sysq)

ELEMENT
COMP_SYSQ

WHAT:qtdbo

MEAN QUEUEING TIME
1.69493(1.53678,1.85308) 18.7%

April 3, 1982 . ,

SEC. 8.2 / Chain Variables

ELEMENT
COMP_SYSQ

WJiAT;pobo

ELEMENT
USERS

WHJI,T:rtmbo

ELEMENT
USERS

WHAT:
PEAKRATE:

QUEUEING TIME DISTRIBUTION
1.00E+00:0.52675(0.51026,0.54324) 3.3%
2.00E+00:0.74146(0.72224,0.76068) 3.8%
3.00E+OO:0.84435(0.82639,0.86230) 3.6%
4.00E+00:0.89907(0.88329,O.91486) 3.2%
5.00E+00:0.93120(O.91767,0.94473) 2.7%
6.00E+00:0.95121 (0.93976,0.96267) 2.3%
7.00E+OO:0.96450(0~95484,0,97416) 1.9%
8.00E+00:0.97365(0.96555,0.98175) 1.6%

OPEN CHAIN POPULATION
15 .. 72686(15.06218,16.39154) 8.5%

OPEN CHAIN RESPONSE TIME
2455.07861 (2374.40869,2535.74829) 6.6%

85

Note that the chain population and response time values include the timing job. If we want
themean time users spend in the system we should useLittle's Rule, i.e., 14.72686/.0063986
= 2302 seconds.

We will see another example of determining source rates with CV(O) in Section 8;3.

8.3. Global Variables

Global variables provide for storage· of values which may change during simulation ..
(Global variables can be used for values which do not vary during simulation, but it will be
more efficient and flexible to use numeric identifiers for these values.) Global variables are
used with set nodes and numerical expressions in the same manIler as numeric variables are
used in programming languages. "Global" is used in contrast to job and chain variables,
which are local to jobs and chains, respectively. Global variables may be defined to be local
to subrtlodels. (See Section 13 and Sections 3 and 10 of the Users Guide). Global variables
may be defined as scalars and as one and two dimensional arrays. Global variables are
defined and given initial values in the same manner as numeric and distribution identifiers,
following the definition of any of those. For example,

GLOBALVARIABLES:a b(3) c(3;2)
A: 3.1
B:O
C:14.1 7 13

All of the values for an array are defined on a single line (If necessary, multiple physical lines
may be concatenated to form a single logical line. See Section 2 of the Users Guide.) If fewer
values are given then the number of elements in an array, the last value given is used for the
remaining elements. In the example above, all three elements of bare initially zero. Two

April 3, 1982

86 JOB, CHAIN AND GLOBAL V ARI,ABLES / SEC.8

dimensional arrays are stored by rows, so in the example above c(1;1) is initi~Hy 14.1; c(1;2)
is initiillly 7 and theremainil1g elements are il)itially 13. . .

P=P+l. CV(O)=ARATEtMIN(P.ARB~l)+l)

L---__ ~KJ
Figure 8.4 - Population Dependent Arrivals

Suppose we wish the arrival rate in an open network to be a function of the network popula­
tion .. We wish to specify the rates up to some population and have the last rate apply to larger
populations. We can accomplish this with a global variable to keep track of the population,p,
and chain variable scaling of the arrival times. See Figure 8.4. The rates are stored in
numeric identifier arate, which has upper bound arb. Since RESQ arrays begin with subs<:;ript
l,we use arate(1) for pbpulationO, arate(2) for population 1 and so on with arate(arb) used
for population arb-l and larger populations. The min (minimum) function has exactly two
arguments in RESQ. We could use the following dialogue file:

MODEL:pda /*Population Dependent Arrivals*/
METHOD: simulation
NUMERIC PARAMETERS:atime stime
NUMERIC IDENTIFIERS:arb arate(arb)

ARB:4
ARATE:1 .8 .6 .4

GLOBAL VARIABLES:p
P:O

QUEUE:q
TYPE:fcfs
CLASS LIST:c

SERVICE TIMES:stime
SET NODES:bef
ASSIGNMENT LIsT: p=p+1 cv (0) =arate (min (p, arb-1) +1)
SET NODES.: aft
ASSIGNMENT LIST: p=p-1 cv(O)=arate(min(p,arb-l)+1)
CHAIN:ch

TYp'E:open
SOURCE LIST:s
ARRIVAL TIMES:atime
:s->bef->c->aft->sink

QUEUES FOR QUEUEING TIME DIST:q
VALUES:10 20 30 40 50

QUEUES FOR QUEUE LENGTH DIST:q
MAX VALUE: 10

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:q
MEASURES:qt
ALLOWED WIDTHS: 10

SAMPLING PERIOD GUIDELINES -

April 3, 1982

SEC. 8.3 / Global Variables

QUEUES FOR DEPARTURE COUNTS:q
DEPARTURES: 10000

LIMIT - CP SECONDS:50
TRACE: no

r~ND

We can get the following results from EVAL:

RESQ2 VERSION DATE: OCTOBER 9, 1981
MObEL:PDA
ATIME: 10
STIME: 10
WARNING -- MODEL MAY NOT BE TRULY REGENERATIVE

BECAUSE OF USE OF GLOBAL VARIABLES
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

WHAT:utbo

ELEMENT
Q

WHAT: tpho (q)

ELEMENT
Q

WHAT:qlbo

ELEMENT
Q

WHAT:qtbo

ELEMENT
Q

WHAT:qldbo

ELEMENT
Q

April 3, 1982

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:
NUMBER OF CYCLES:

UTILIZATION

1.3733E+05
24.60
20000

3889

0.71541 (0.70552,0.72530) 2.0%

THROUGHPUT
0.07282(0.07192,0.07372) 2.5%

MEAN QUEUE LENGTH
1.48025(1.43406,1.52644) 6.2%

MEAN QUEUEING TIME
20.32849(19.66095,20.99605) 6.6%

QUEUE LENGTH DISTRIBUTION
0:0~28459(0.27470,0.29448) 2.0%
1 :0.28161 (0.27473,0.28849) 1.4%
2:0.22409(0.21753,0.23065) 1.3%
3:0.13062(0.12416,0.13707) 1.3%

87

88

WHAT:mxql

ELEMENT

Q

WHAT:qtdbo

ELEMENT

Q

WHAT:
CONTINUE RUN:no

ATIME:

JOB, CHAIN AND GLOBAL VARIABLES / SEC. 8

4:0.05129(0.04658,0.05601) 0.9%
5:0.01830(0.01488,0.02172) 0.7%
6:5.6111E-03(4.1301E-03,7.0921E-03) 0.3%
7:3.0926E-03(1.4506E-03,4.7346E-03) 0.3%
8:5 .. 5150E-04(2.0370E-04,8.9931E-04) 0.1%
9:2.4575E-04(-7.3931E-05,5.6542E-04). 0.1%

MAXIMUM QUEUE LENGTH
9

QUEUEING TIME DISTRIBUTION
1.00E+01:0.35100(0.33882,0.36318) 2.4%
2.00E+01:0.59710(0.58287,0.61133) 2.8%
3.00E+01:0.77060(0.75709,0.78411) 2.7%
4.00E+01:0.87060(0.85949,0.88171) 2.2%
5.00E+01:0.93380(0.92553,0.94207) 1.7%

A model which uses global variables will not be truly regenerative unless the global variables
have the same values each time the model is in the "regeneration" state. In this model the
g~obal variable p will always have a zero value in the regeneration state. It is required that
CV(O) for open chains has value 1 in the regeneration state (Section 5.2).

This example is slightly contrived in that the use of global variables is not strictly
necessary. The ql or tq status functions (Appendix 3 of the Users Guide) could be used to
avoid the global variable p. That approach could be extended to general networks, but the
above approach is likely to be more efficient in general networks. Other examples with gtobal
variables are. found in Sections 10 and 11 and in Appendix 3 of the Users Guide.

There are a number of global variable identifiers which have special ~ean~~g to. ~
and should not be used for other purposes. These are "clock" and severalldenttflers mchidmg
the word "trace" (see Appendix 20f the Users Guide).

April 3, 1982

89

9. ROUTING

All of our examples so far have. assumed that routing decisions are made according to
probabilities. In this case the format of a routing transition is

The semi-colon (";") and probabilities are optional if the probabilities are all equal to the
inverse of the number of "to. nodes" (e.g., liN). It is entirely permissible to split the above

etc. Routing decision may also be made with predicates, i.e., expressions which represent
Boolean (true or false) values. In the above examples any or all of the probabilities could be
replaced by a predicate of the form

if ("Boolean expression") .

Assuming that all the probabilities are replaced by predicates then the destination for the
"from node" would be chosen by evaluating the predicates in the order given in the dialogue
and picking the first destination where the predicate had a true value. (The remaining
predicates would not be evaluated.) If none of the predicates had a true value, then an error.
coiJdition would exist and the simulation would be terminated. (Predicates are not allowed
with numerical solution in RESQ.) (Mixtures of probabilities and predicates for the routing
from a given node are discussed in Section 9 of the Users Guide.)

TYPically, the Boolean expression will consist of one or more relational expressions of· the
form

"numeric expression" i'relational operator" "numeric expression"

where the numeric expressions may be any legal RESQ numeric expression with a scalar value.
The relational operator may be any of the following: "=" (equal),".;.,=" (not equal), "<"
(less than), "<=" (less than or equal), ">" (greater than) and ">=" (greater than or equal).
The Boolean operators "not", "and" and "or" may be used with the usual meaning, in that
order of precedence. For example,

if(not jv(3)<10 and jv(2»3 or p=O)

would be true ifp had the value 0 or if jv(3) was greater than or equal to 10 and jv(2) was
greater than 3. To get other orders of precedence among the operators, we must enclose
Boolean expressions in parentheses preceded by "if". For example,

April 3, 1982

90 ROUTING / SEC. 9

if(not if(jv(3)<10 and if(jv(2»3 or p=O)))

would have exactly the reverse order of precedence of the operators as the previous example.

SOURCE SINK

SINK LINK SOURCE

LINK
LINK

SOURCE
LINK SINK

SINK SOURCE

Figure 9.1 - Routing Example

There are many situations where routing predicates are necessary for describing a model.
We now describe a case where predicates may be used to simplify routing description in a
model. Consider the network of Figure 9.1. Let us suppose that this is a model of a commu­
nication network (see Section 8.1). The destination for a message is determined upon .arrival
of the message. (We will assume each destination is equally likely to be picked.) Since a
message has a specified destination, the routing decision after each queUe (communication
link), whether to proceed to the next queue (message has not reached its destin3:tion) or to go
to the sink (message has reached its destination), must be deterministic. There are two ways
wecari represent this: either we have a class at each queue for each possible destination of
jobs leaving the queue or we use routing predicates. Let us examine these options in turn.
The following dialogue file could be used for the first option:

MODEL: loop
METHOD: numerical
NUMERIC IDENTIFIERS:mean_atime mean stime

MEAN ATIME: . 1
MEAN_STIME: .15

QUEUE:q1
TYPE:fcfs
CLASS LIST:c1d2 c1d3 c1d4

SERVICE TIMES:mean stime
QUEUE:q2

TYPE:fcfs
CLASS LIST:c2d3 c2d4 c2d1

April 3, 1982

SEC. 9 / ROUTING

END

SERVICE TIMES:mean_stime
QUEUE:q3

TYPE:fcfs
CLASS LIST:c3d4 c3dl c3d2

SERVICE TIMES:mean_stime
QUEUE:q4

TYPE:fcfs
CLASS LIST:c4d1 c4d2 c4d3

SERVICE TIMES:mean_stime
CHAIN:c

TYPE:open
SOURCE LIST:s
ARRIVAL TIMES:mean_atime
:s->cld2 cld3 c1d4;1/12 1/12 1/12
:c1d2->sink
:c1d3->c2d3
:c1d4->c2d4
:s->c2d3 c2d4 c2d1;1/12 1/12 1/12
:c2d3->sink
:c2d4->c3d4
:c2d1->c3dl
:s->c3d4 c3d1 c3d2;1/12 1/12 1/12
:c3d4->sink
:c3d1->c4d1
:c3d2->c4d2
:s->c4d1 c4d2 c4d3;1/12 1/12 1/12
:c4dT'-'>sink
:c4d2->cld2
:c4d3->c1d3

91

Her.e we use the name cidj for queue i jobs with destination j. Though the diagram shows
four sources and four sinks, we use only one of each. RESQ allows only one source per chain
with numerical solution. Since the arrival times for the sources are exponential, i.e., the arrival
processes are Poisson, we can combine the sources into a single source with arrival rate equal
to the sum of the arrival rates of the individual sources. Or equivalently, we make the mean
arrival time the reciprocal of the .sum of the reciprocals of the individual arrival times. The
arrival probabilities for jobs leaving the single source are the arrival rates of the individual
sources normalized so that the probabilities sum to one. In constructing the above dialogue .
file we assumed equal arrival rates for each of the sources. Thus the probability a job starts at
a given location is 1/4. RESQ only allows one sink for the entire network. EV AL gives US

the following results:

RESQ2 VERSION DATE: OCTOBER 9, 1981
MODEL:. LOOP
NO ERRORS DETECTED DURING NUMERICAL SOLUTION.

WHAT:ut

ELEMENT
Q1
Q2
Q3

April 3, 1982

UTILIZATION
0.75000
0.75000
0.75000

92

Q4

WHAT:gt

ELEMENT
Q1
Q2
Q3
Q4

WHAT: po

ELEMENT
C

WHAT:rtm

ELEMENT
C

WHAT:

0.75000

MEAN QUEUEING TIME
0.60000
0.60000
0.60000
0.60000

OPEN CHAIN POPULATION
11.99999

OPEN CHAIN RESPONSE TIME
1.20000

ROUTING / SEC. 9.

By the results of Wong [WONG78]; we know that the response time distribution in this
network has a distribution representable by the method of exponential stages. The distribution
can be represented by the branching Erlang form with three stages, ml = m2 = m3= .6, PI =
1/3 and P2 = .5. From equation (A3.2) in the Users Guide we have C = .8165 and standard
deviation .9798. (This can be seen from Wong's results and the fact that the response time
will consist of one, tW() or three queueing times with equal probability.)

We can represent this same model using job variables to. save the destination of a job .and
predicates which test the value of the job variable. Let us put the destination in JV(O). Let
us also st()re the service time in JV(1); this will give another example of the effects of
Kleinrock's independence assumption (see Section 11). Finally, let us meaSure the response

. times with a passive queue. We could use the following dialogue file:

MODEL: loop
METHOD: simulation
NUMERIC IDENTIFIERS:mean_atime mean_stime

MEAN_A TIME: . 1
MEAN_STIME:.15

NUMERIC IDENTIFIERS:msg_dest msg_stime
MSG_DEST:O /*JV to be used*/
MSG_STIME:1 /*JV to be used*/

MAX JV: 1
QUEUE:rtq

TYPE:passive
TOKENS: 2147483647
DSPL:fcfs
ALLOCATE NODE LIST:beginrt

AMOUNTS: 1
QUEUE:q1

April 3, 1982

SEC. 9 / ROUTING

TYPE:fcfs
CLASS LIST:c1

WORK DEMANDS:standard(jv(msg_stime) ,0)
QUEUE:q2

TYPE:fcfs
CLASS LIST:c2

WORK DEMANDS:standard(jv(msg_stime) ,0)
QUEUE:q3

TYPE:fcfs
CLASS LIST:c3

WORK DEMANDS: standard (jv (msg_stime) ,0)
QUEUE:q4

TYPE:fcfs
CLASS LIST:c4

WORK DEMANDS:standard(jv(msg_stime),O)
SET NODES:set_stime
ASSIGNMENT LIST:. jv (msg_stime)=standard (mean_stime, 1)
SET NODES:set~dest1
ASSIGNMENT LIST: jv (msg_dest) =discrete (2, i /3; 3,1/3; 4,1/3)
SET NODES:set dest2
ASSIGNMENT LIST: jv (msg_dest) =discrete (1,1/3; 3,1/3; 4,1/3)
SET NODES:set dest3 . -
ASSIGNMENT LIST:jv(msg_dest)=discrete(1,1/3; 2,1/3; 4,1/3)
SET NODES:set dest4
ASSIGNMENT LIST:jv(msg_dest)=discrete(1,1/3; 2,1/3; 3,1/3)
CHAIN:c

TYPE:open
SOURCE LIST:s
ARRIVAL TIMES:mean atime
:s->beginrt->set_stime->set_dest1 set_dest2 set dest3 set~dest4
:set-,-dest1 set_dest2 set_dest3 set_dest4"'->c1 c2 c3 c4
:c1->sink c2;if(jv(msiLdest)=2) if(t)
:c2->sink c3;if(jv(msg_dest)=3) if(t)
:c3->sink c4;if(jv(msg~dest)=4) if(t)
:c4->sink c1;if(jv(msg_dest)=1) if(t)

QUEUES FOR QUEUEING TIMEDIST:rtq
VALUES:.6 1.2 1.8 2.43.0 3.6

CONFIDENCE INTERVAL METHOD:regenerative
'REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL:90

END

SEQUENTIAL STOPPING RULE:yes
QUEUES TO BE CHECKED:rtq

MEASURES:qt
ALLOWED WIDTHS: 10

SAMPLING PERIOD GUIDELINES -
QUEUES FOR DEPARTURE COUNTS:rtq

DEPARTURES: 10000
LIMIT - CP SECONDS:250
TRACE: no

The line

:dest1 dest2 dest3 dest4->c1 c2 c3 c4

April 3, 1982

93

94

is. equivalent to the four lines

:destl-c>c1
:dest2->c2
: dest3.->c3
:dest4->c4

ROUTING / SEC. 9.

Such a parallel grouping of transitions is allowed when there is only one "to node" for each
"from node". The keyword "t" in the predicate "if(t)" represents the constant "true". (The
keyword "f" is available to represent the constant "false".)

We said that we were simplifying the routing, yet the above dialogue is much longer!
However, the increase in length is due to the use of simulation, to the job variable scaling to
avoid the independence assumption and to the passive queue for response times. There are
now four classes instead of twelve (though there are four new set nodes) and there are fewer
routing transitions. Though the difference is not dramatic, if there were more links (queues)
then the difference would be more pronounced. We are not saying that this second approach
with job variables and predicates is preferable in general; the RESQ user should consider both
approaches in developing a model.

We get the following from EV AL:

RESQ2 VERSION DATE: OCTOBER 9, 1981
MODEL: LOOP
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

WHAT:utbo

ELEMENT
RTQ
Q1
Q2
Q3
Q4

WHAT:tpbo(rtq)

ELEMENT
RTQ

WHAT:qlbo(rtq)

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:
NUMBER OF CYCLES:

4126.73047
121.50
123341

367

UTILIZATION
5.3685E-09(5.1027E-09,5.6343E-09) 0.0%
0.73852(0.72578,0.75126) 2.5%
0.75~53(0.74188,0.77118) 2:9%
0.75569(0.74239,0!769dO) 2.7%
0:74544(0.73237,0.75851) 2.6%

THROUGHPUT
9.95679(9.87664,10.03694) 1.6%

April 3, 1982

SEC; 9 I ROUTING

ELEMENT
RTQ

WHAT:qtbo(rtq)

ELEMENT
RTQ

WHl\T;sdqt (rtq)

~LEMENT

RTQ

WHAT:qtdbo

ELEMENT
RTQ

WHAT:

MEAN QUEUE LENGTH
11.52880(10.95804,12.09957) 9.~%

MEAN QUEUEING TIME
1.15788(1.10514,1.21063) 9.1 %

STANDARD DEVIATION OF QUEUEING TIME
0.98273

QUEUEING TIME DISTRIBUTION
6;00E-01:0.35635(0.34292,0.36978) 2.1%
1.20E+OO:O.61885(0.59957,0.63814) 3.91
1.80E+OO:O.78792(0.76920,0.80665) 3.7%
2.40E+OQ:O.88318(0.86784,0.89852) 3.1%
3.00E+OO:O.94042(0.92917,0.95167) 2.2%
3.60E+OO:O.97121 (0.96404,0.97838) 1.4%

CONTINUE RUN:/*Continue run:*/ yes

EXTRA SAMPLING PERIODS:/*Extra periods:*/

SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

WHAT:qtbo(rtq)

ELEMENT
RTQ

WHAT:nd(rtq)

ELEMENT
RTQ

April 3,1982

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:
NUMBER OF CYCLES:

5147.03516
152.82
154129

429

MEAN QUEUEING TIME
1.15198(1.10696,1.19700j 7.8%

NUMBER OF DEPARTURES
51267

95

96

WHATigtdbo

ELEMENT
RTQ

WHAT:

QUEUEING TIME DISTRIBUTION
6.00E-01:0.35526(0.34385,0.36666) 2.31
1.20E+00:0.61923(0.60268,0.635781 3.3%
1.80E+00:0.79008(0.77403,0.80613) 3.2%
2.40E+00:0.88712(0.87407,0.90017) 2.6%
3.00E+00:0.94308(0.93348,0.95268) 1.9%
3.60E+00:0.97261 (0.96650,0.97873) 1.2%

CONTINUE RUN:/*Continue run:*/ no

ROUTING / SEC. 9

This is an example where Kleinrock's independence assumption seems more appropriate; the
mean response time estimates are essentially the same, espeCially when one considers that the
observed throughput is lower than the specified arrival time. The standard deviation of
response time in the simulation is very close to the value from Wong's results.

April 3; 198.2

97

10. PASSIVE QUEUES

Our examples so far have used only part of the generality of the passive queue. We have
only used allocate nodes and release nodes, and usually there has been a single pair of allocate
ahd release nodes for a given queue. However, a passive queue may have an arbitrary nuthb~r
of nodes, as long as there is at least one allocate node, and release nodes need not be pairM
with allocate nodes if they are present at all. Many of our models using a passive queue for
measuring response times have no release nodes at all. Note that sinks, and to a lesser extent,
fusion nodes (Section 11), can be used to release tokens.

POOL OF TOKENS

~_--~--------1~~t--~""
I / \ "
I I \. "
I / \'

I \
~------~~T ~----~~----~

\

ALLOCATE
CREATE

SUBNETWORK
\

\ RELEASE
\

\OESTROY
\

JOB FLOW
TOKEN FLOW

Figure 10.1 - .Passive Queue

There are five other kinds of nodes which may be present in passive queues; AND
allocate nodes, OR allocate nodes, transfer nodes, destroy nodes and create nodes. AND
allocate, OR allocate and transfer nodes are discussed in Section 5 of the Users Guide. We
will focus on create and destroy nodes in this section.

A create node.is used to add tokens to thepobl of tokens of a passive queue. . The
nUlV-berof tokens created is specified analogously to specification of the number of tokens
requested at an allocate node. A create node behaves in the same manner whether or. not a
job holds tokens of the queue, i.e., a job need not hold tokens to create tokens. A create
node has no effect on the job going through it; the job passes through withoHt delay. The
effect on jobs waiting for tokens, if any are waiting,is the same as if the tokens becaJ:ile
available through another job releasing tokens. A destroy node is similar to a release node,in
that a job gives up all tokens it holds of the queue, if it holds any, but the tokens are de­
stroyed rather than made available to other jobs.

As an example of the use of create and destroy nodes, let tis consider printerspobling in a
simple computer system model. A potential problem with the models we have used so far is
that they ignore spooling of disk files to slower speed input/output devices.. Let us assUme
tha.t there is a 300 line per minute printer supported by the computer system and that there
are two tasks constantly present which handle the spooling. One task fills buffers from the
disk for the printer and the other dumps the buffers to the printer. There are two buffers for
the printer and each buffer contains 30 lines. Thus the transfer time for one buffer is 6 .
seconds (30/(300/60)).

April 3, 1982

98 PASSIVE QUEUES / SEC. 10

FULL BUFFERS /'~\
"..."'" // \

"..."'" / \

\
\
\

. "... /

ThW'
CPU

Figure 10.2 - Printer Spooling

To represent the printer spooling we have two chains, one for each task, and two passive
queues, one for full buffers and one for empty buffers. The passive queues will be used, in
part, to represent communication between the tasks, corresponding to the use of semaphores
and similar process communication primitives in operating systems. See Figure 10.2. The
number of tokens of each pool will fluctuate between zero and two, because of create and
d'estroy nodes, and the total number of tokens will usually be less than two.. The task which
empties the buffers acquires a token representing a full buffer, destroys it, transfers the buffer
contents to the printer and creates a token of the pool representing empty buffers. Similarly
the task which fills the buffers acquires an "empty buffer" token, destroys it, transfers from
the disk to the buffer and creates a token of the "full buffer 11 pooL The buffer emptying task
waits at the full buffer allocate node when no full buffers are available, and the buffer filling
task waits at the empty buffer allocate node when no empty buffers are available.

The following dialogue file could be used for this model.

MODEL:csmwsp
METHOD: simulation
NUMERIC IDENTIFIERS: floppy time disktime cputime dmp

FLOPPYTIME:.22
DISKTIME: .019
CPUTIME: .05
DMP:4

NUMERIC IDENTIFIERS:buffers initfulbuf

April 3, 1982

SEC. 10 / PASSIVE QUEUES

BUFFERS: 2
INITFULBUF:2

NUMERIC IDENTIFIERS:lpm /*lines/minute*/ lpb /*lines/buffer*/
LPM: 300
LPB:30

QUEUE:floppyq
TYPE:fcfs
CLASS LIST:floppy

SERVICE TIMES: floppy time
\;2U~UE:diskq

TYPE:fcfs
CLASS LIST:disk diskspool

SERVICE TIMES:disktime
QUEUE:cpuq

TYPE:ps
CLASS LIST:cpu

SERVICE TIMES:cputime
QUEUE:printerq

TYPE:fcfs
CLASS LIST:printer

SERVICE TIMES:standard(lpb/(lpm/60) ,0)
QUEUE:fullbuffer

TYPE:passive
TOKENS:initfulbuf-1
DSPL:fcfs
ALLOCATE NODE LIST:getfullbuf

NUMBERS OF TOKENS TO ALLOCATE: 1
DESTROY NODE LIST:destfulbuf
CREATE NODE LIST:genfullbuf

NUMBERS OF TOKENS TO CREATE: 1
QUEUE:empbuffer

TYPE:passive
TOKENS:buffers-initfulbuf
DSPL:fcfs
ALLOCATE NODE LIST:getempbuf

NUMBERS OF TOKENS TO ALLOCATE: 1
DESTROY NODE LIST:destempbuf
CREATE NODE LIST:genempbuf

NUMBERS OF TOKENS TO CREATE: 1
CHAIN:csm

TYPE:closed
POPULATION:dmp

. :cpu->disk floppy;. 9.1
:disk floppy->cpu

CHAIN: emptying
TYPE: closed
POPULATION: 1
:getfullbuf->destfulbuf->printer->genempbuf->getfullbuf

CHAIN: filling
TYPE: closed
POPULATION: 1
:getempbuf->destempbUf->diskspool->genfullbuf->geteIilpbuf

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION -

April 3,1982

99

100 PASSIVE QUEUES! SEC. 10

CHAIN:csm
NODE LIST:cpu
REGEN POP:dmp
INIT POP:dmp

CHAIN; emptying
NODE LIST:printer
REGEN POP: 1
INIT POP: 1

CHAIN: filling
NODE LIST:getempbuf
REGEN POP:1
INIT POP: 1

CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED.: floppyq diskq printerq
MEASURES:ut ut ut

END

ALLOWED WIDTHS: 10 10 10
SAMPLING PERIOD GUIDELINES -

QUEUES FOR DEPARTURE COUNTS:cpuq
DEPARTURES: 10000

LIMIT - CP SECONDS:250
TRACE: no

We could get the following results from EVAL.

RESQ2 VERSION DATE: OCTOBER 16, 1981
MODEL:CSMWSP
WARNING -- SOME PASSIVE QUEUE QT PROCESSES MAY

NOT BE TRULY REGENERATIVE BECAUSE OF
QUEUEING TIMES IN PROGRESS

WARNING -- MODEL MAY NOT BE TRULY REGENERATIVE
BECAUSE. OF NON-ZERO POPULATION AT CLASS
WITH DIST. OTHER THAN BRANCHING ERLANG

SAMPLING PERIOD END: CPUQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: CPUQ DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

WHAT:utbo(*)

ELEMENT
FlJtLBUFFER
EMPBUFFER
FLOPPYQ
DISKQ

DISK
DISKSPOOL

CPUQ

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:
NUMBER OF CYCLES:

UTILIZATION
0.00000

1055.25220
33.36
40350

8317

0.00000
0.41176(0.36190,0.46162) 10.0%
0.32471(0.31889,0.33053) 1.2%

0.32191(0.31611,0.32772) 1.2%
2.7956E-03(-5.6492E-04,6.1562E~03) 0.1%

0.95834(0.95279,0.96389) 1.1%

April 3, 1982

SEC. 10 I PASSIVE QUEUES

PRINTERQ

WHAT:qlbo(*)

ELEMENT
F'ULLBUFFER

~MPBUFFER
FLOPPYQ
DISKQ

DISK
DtSKSPOOL

CPUQ
PRINTERQ

WHA:T:tpbo(*)

ELEMENT
FULLBUFFER
EMPBUFFER
F'LOPPYQ
DISKQ

DISK
·DISKSPOOL

CPUQ
PRINTERQ

WHAT:

1.00000(0.99992,1.00008) 0.0%

MEAN QUEUE LENGTH
0.00000
0;995~8(0.98976,1.00080) 1.1%
0.63072(O.51490,0~74653) 36.7%
0.46227(0;44917,0.47476) 5.4%,
0.45754(0.44516~0.46993) 5.4%
4~7232E-03(-7.95a5E-04,1.0242E-02) 233.7%

2.91174(2.86889,2.95459) 2.9%
1.00000(0.99992,1.00008) 0.0%

THROUGHPUT
0.16584(0.03030,0.30138) 163.5%
0.16584(0.03030,0.30138) 163.5%
1 .93792 (1 .77106,2.10479) 17.2 %
17;18071 (16.95303,17.40837) 2.7%

17.01488(16.78821,17.24153) 2.7%
0.16584(0.03030,0.30138) 163.5%

18.95280(18.73048,19.17511) 2.3%
0.16584(0.03030,0.30138) 163.5%

CONTINUE RUN:yes

EXTRA SAMPLING PERIODS: 1

SAMPLING PERIOD END: CPUQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: CPUQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: CPUQ DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

WHAT:utbo(*)

ELEMENT
FULLBUFFER
EMPBUFFER
FLOPPYQ
DISKQ

DISK
DISKSPOOL

CPUQ

April 3, 1982

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:
NUMBER OF CYCLES:

UTILIZATION
0.00000

1585.19995
50.02
60544
12421

0.00000
0.41248(0.37124,0.45372) 8.2%
0.32650(0.32175,0.33124) 0,9%

0.32351 (0.31877,0.32824) 0.9%
2.9893E-~3(8,4241E~05,5.8944E-03) 0.6%

0.95617(0.95123,0.96111) 1.0%

101

102 PASSIVE QUEUES / SEC .. 10

PRINTERQ 1.00000(0.99993,1.00007) 0,0%

WHAT:

CONTINUE RUN:no

In this dialogue we see two warning messages about the regeneration state. The second one is
consistent with our previous discussion in Sections 5 and 8.3. Because we have a job at the
printer class in the regeneration state and because the service times at that class are. not
represented by the branching Erlang distribution, the state we have chosen is not truly a
regeneration state. In fact,this model is not truly regenerative, i.e;, there is no state which is
truly a regeneration state. However, RESQ allows us to proceed as if the model were
regenerative. (We are not especially interested in queueing times with this example, so we use
this approximation of the regenerative method to obtain confidence intervals rather than using
the spectral method.. The method of independent replications would also be a reasonable
choice.)

The first warning message has a fairly subtle explanation. Nearly all of our discussion of
regeneration states has implicitly been restricted to the queue length processes underlying the
model and the performance measures obtainable from the queue length process. Most of the
performance measures we have considered, including mean queueing time, are obtainable from
the queue length process. The warning message and the following discussion do not apply to
these measures. (Since we are not focusing on queueing times in this example, we can
comfortably ignore the warning.)

In defining a regeneration state for a queueing time process, one must be rilUch more
careful than in defining a regeneration state for a queue length process. For a detailed
discussion, see Iglehart and Shedler [IGLE80]. If we are to be rigorous, we must not aUow
queueing times in progress in our regeneration state if we wish to have defensible confidence
intervals for queueing time distribution points or standard deviations. This is one of the
reasons we used the state with all jobs at the terminals for model csmwm. With a few
exceptions, . we cannot have queueing times in progress and have those queueing times truly
regenerate. Aplomb gives the warning message whenever there are passive queues with jobs
(job copies) at allocate nodes in the specified regeneration state. (A similar warning would
usually apply to active queues as well, but there is no such warning issued because (1) a
regeneration state must have some jobs at classes, so. the warning would always appear, .and
(2) active queues are not used to measure response times the way passive queues are.) Though
it is theoretically possible in some circumstances to have jobs (job copies) at allocate nodes in
the specified regeneration state and obtain meaningful confidence intervals, this will usually
not be practical.

L==L~.~NDO~
/1 ------

// 1 -----
/ 1 ---------]/\/ --

1
1
1

Figure 10.3- Window Flow Control

April 3, 1982

REPLY

SEC.! 0 / PASSIVE QUEUES 103

Create and destroy nodes are also very important in representingcommunicatiori network
protocols. We consider an example of a window flow control mechanism.' sometimes referred
to as "pacing." The essence of the pacing mechanism is that there is a limit, called the
"window," to the number of messages which may be sent from one point in the network to
Mother before the recipient says that more messages may be sent. Usually the first messag~
of the window is marked to indicate to the recipient that a reply should be sent back' to . the
originator. Upon receipt of the reply, the originator may then send another window of
messages. Figure 10.3 depicts a pacing mechanism added to model fourlink of Section 13. The
passive queue initially has the number of tokens equal to the window size. Each message
allocates a token before it can proceed. When it gets tolhe destination,it destroys the token.
If the message was the first of a window, it turns around and goes back to the· create node at
the origin where it creates a new window of tokens. These may be allocated to any waiting
messages. A global variable, wcount, is used. to count the arriving messages' modulo the
window size. If an arriving message finds wcount to be zero, that indicates that it is the first
message of the window, and that fact is recorded by setting its JV(1) to one. The following
dialogue file could be used.

MODEL: pacing
METHOD: simulation
NUMERIC PARAMETERS:windowsize
NUMERIC IDENTIFIERS:msg_stimep_reply

MSG_STIME:O /*JV to be used*/
P~REPLY:l /*JV to be used*/

GLOBAL VARIABLE IDENTIFIERS:wcount
WCOUNT:O

MAX JV: 1
QUEUE:rtq

TYPE:passive
TOKENS:2147483647
DSPL:fcfs
ALLOCATE NODE LIST:beginrt

NUMBERS OF TOKENS TO ALLOCATE: 1
RELEASE NODE LIST:endrt

QUEUE:windowq
TYPE:passive
TOKENS:windowsize
DSPL:fcfs
ALLOCATE NODE LIST:getwindow

NUMBERS OF TOKENS TO ALLOCATE: 1
DESTROY NODE LIST:dropwindow
CREATE NODE LIST:newwindow

NUMBERS OF TOKENS TO CREATE:.windowsize
QUEUE:ql

TYPE:prty
CLASSLIST:clr ell

SERVICE TIMES:standard(jv(msg_stime) ,0) standard(.Ol,O)
PRIORITIES:2 1

QUEUE:q2
TYPE:prty
CLASS LIST:c2r c21

SERVICE TIMES:standard(jv(msg_stime) ,0) standard(.Ol,O)
PRIORITIES:2 1

. QUEUE:q3
TYPE:prty

April 3, 1982

104 PASSIVE QUEUES / SEC. 10

CLASS LIST:c3r c31
SERVICE TIMES: standard (jv (msg~stime) ,0) standard (.01 ,0) .
PRIORITIES:21

QUEUE:q4.
TYPE:prty.
CLASS LIST:c4r c41

SERVICE .TIMES: standard (jv (msg_stime) ,0) standard (. 01. ,0)
PRIORITIES:2 1

.SET NODES:set_stime
ASSIGNMENT LIST: jv (msg_stime) =standard (.125,1)
SET NODES:inccount
ASSIGNMENT LIST:wcount=(wcount+1) mod windowsize
SET NODES:setreply
ASSIGNMENT LIST:jv(p_reply)=1
CHAIN:ch

TYPE: open
SOURCE LIST:s
ARRIVAL TIMES:.25
:s->beginrt->set_stime->setreply inccount;if (wcount=O) if(t)
:setreply->inccount->getwindow->c1r
:c1r->c2r->c3r->c4r->dropwindow->endrt

END

:endrt->sink c41;if(jv(p_reply)=0) if(t)
:c41->c31->c21->c11->newwindow~>sink

QUEUES FOR QUEUEING TIME DIST:rtq
VALUES: .5 1 1. 5 2 2. 5

QUEUES FOR TOKEN USE DIST:windowq
MAX VALUE:2*windowsize-1

QUEUES FOR TOTAL TOKEN DIST:windowq
MAX VALUE:2*windowsize-1

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:rtq
MEASURES:qt
ALLOWED WIDTHS: 10

SAMPLING PERIOD GUIDELINES -
QUEUES FOR DEPARTURE COUNTS:rtq

DEPARTURES: 10000
LIMIT - CP SECONDS:250
TRACE: no

The prty (priority) queueing discpline'is used to give the pacing replies priority over the data
messages. Note that the measures of total tokens in the passive queue pool become interesting
when. create and destroy nodes are present. In this model it is possible to have up to
2 x windowsize-1 tokens in the pool. In dialogue filels, it is possible to specify that distribu­
tions of tokens in use and total tokens be gathered, as illustrated above. The syntax is
e1'sentially the same as for queue length distributions. The following can be obtained with
EVAL:

RESQ2 VERSION DATE: OCTOBER 16, 1981
MODEL: PACING
WINDOWSIZE:6

April 3, 1982

SEC. 10/ PASSIVE QUEUES

WARNING -- MODEL MAY NOT BE TRULY REGENERATIVE
BECAUSE OF USE OF GLOBAL VARIABLES

SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

WHAT :utbo (*)

ELEMENT
RTQ
WINDOWQ
Q1

C1R
C1L

Q2
C2R
C2L

Q3
C3R
C3L

Q4
C4R
C4L

WHAT:tubo

ELEMENT
RTQ
WINDOWQ

WHAT:tudbo

ELEMENT
WINDOWQ

April 3,.1982

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:
NUMBER OF CYCLES:

UTILIZATION

7568.48047
145. 11
17.0544
I'" 2149

.·.r

2. 6288E-09 (2. 5138E'-09, 2. 7437E-09) 0.0%
0.75093(0.73342,.0.76845) 3.5%
0.50775(0.50135,0.51414) 1.3%

0.50112(0.49476,0.50747) 1.3%
6.6275E-03(6.5377E-03,6.7173E-03) 0.0%

0.50775(0.50135,0.51414) 1.3%
0.50112(0.49476,0.50747) 1.3%
6.6275E-03(6.5377E-03,6.7173E-03) 0.0%

0.50775(0.50135,0.51414) 1.3%
0.50112(0.49476,0.50747) 1.3%
6.6275E-03(6.5377E-03,6.7173E-03) 0.0%

0.50775(0.50135,0.51414) 1.3%
0.50112(0.49476,0.50747) 1.31
6.6275E-03(6.5377E-03,6.7173E-03) 0.0%

MEAN TOKENS IN USE
5.64520(5.39842,5.89198) 8.7%
4.50559(4.40052,4.61067) 4.7%

DISTRIBUTION OF TOKENS IN USE
0:0.07033(0.06581,0.07486) 0.9%
1:0.09848(0.09344,0.10353) 1.0%
2:0.11277(0.10769,0.11785) 1.0%
3:0.11347(0.10904,0.11791) 0.9%
4:0.11165(0.10789,0.11540) 0.8%
5: O. 11517 (0. 11188,0. 11847) O. 7 %
6:0.13371(0.12858,0.13885) 1.0%
7:0.09138(0.08688,0.09588) 0.9%
8:0.06271 (0.05881,0.06662) 0.8%
9:0.04551 (0.04150,0.04952)0.8%
10:0.02739(0.02430~0.03047) 0.6%
11:0.01742(0.01481,0.02003) 0.5%

1.05

106

WHAT:ttbo

ELEMENT
RTQ
WINDOWQ

WHAT:ttdbo

ELEMENT

WHAT:qlbo(*)

ELEMENT
RTQ
WINDOWQ
Q1

C1R
C1L

Q2
C2R
C2L

Q3
C3R
C3L

Q4
C4R
C4L

WHAT:qtbo(*)

ELEMENT
RTQ
WJ:NDOWQ
Ql

C1R
C1L

Q2
C2R
C2L

PASSIVE QUEUES / SEC. 10

MEAN TOTAL TOKENS IN POOL
2.1475E+09(2.1474E+09,2.1476E+09) 0.0%
7.87949(7.84877,7.91022)0.8%

DISTRIBUTION OF TOTAL TOKENS IN POOL
1: 1. 1 777E-03 (8. 6775E-04, 1 . 4877E-03) 0.1 %
2:3.0013E-03(2.5671E-03,3.4356E-03) 0.1%
3:0.01040(0.00953,0.01127) 0~2%

4:0.02528(0.02398,0.02658) 0.3%
5:0.06318(0.06140,0.06496) 0.4%
6:0.17828(0.17243,0.18412) 1.2%
7:0.15969(0.15417,0.16520) 1.1%
8:0.15307 (0.14791,0.15822) 1.0%
9:0.15729(0.15191,0.16266) 1.1%

10:0.13858(0.13316,0.14399) 1.1%
11 : 0.11007 (0.10471 ,0.11543) 1.1 %

MEAN QUEUE LENGTH
5.64520(5.39842,5.89198) 8.7%
5.64520(5.39842,5.89198) 8.7%
1.16712(1.12730,1.20694) 6.8%

1.13603(1.09643,1.17563) 7.0%
0.03109(0.02952,0.03266) 10.1%

1.03166(1.00930,1.05402) 4.3%
0.99569(0.97408,1.01730) 4.3%
0.03597(0.03400,0.03794) 11.0%

1.14772(1.12481,1.17063) 4.0%
1.11837(1.09609,1.14066)4.0%
0.02935(0.02778,0.03092) 10.7%

1.26213(1.23699,1.28727) 4.0%
1.25550(1.23040,1.28061) 4.0%
6.6275E-03(6.5377E-03,6.7173E-03) 2.7%

MEAN QUEUEING TIME
1.41964(1.36345,1.47584) 7.9%
1.41964(1.36345,1.47584) 7.9%
0.25158(0.24403,0.25912) 6.0%

0.28569(0.27692,0.29446) 6.1%
0.04691 (0.04509,0.04873) 7.8%

0.22238(0.21838,0.22638) 3.6%
0.25039(0.24587,0.25492) 3,6%
0.05428(0~05209,0.05647) 8.1%

April 3, 1982

SEC. 10 / PASSIVE QUEUES

Q3
C3R
C3L

Q4
C4R
C4L

WHAT:qtdbo

. ELEMENT

RTQ

WHAT:
CONTINUE RUN:no

WINDOWSIZE:

0.24739(0.24335,0.25144) 3.3%
0.28125(0.27665,0.28584) 3.3%
0.04429(0.04254;0.04603) 7.9%

0.27206(0.26759,0.27652) 3.3%
0.31573(0.j1053,0.32093) 3.3%
0.01000

QUEUEING TIME DISTRIBUTION
5;00E-01 :0.15992 (0.15131 ,0.16854) 1.7%
1.00E+OO:O.40324(0.38651,0.41998) 3.3%
1.50E+OO:O.61713(0.59623,0.63802) 4.2%
2.00E+OO:O.76445(0.74380,0.78511) 4.1%
2.50E+OO:O.86317(0.84620,0.88014) 3.4%

107

With this pacing mechanism and the chosen parameter values, mean response is only slightly
increased (from 1.18 to 1.42) but we now know that the destination will never need more than
11 buffers (and if there were more origin destination pairs, unnecessary network congestioIi
might be avoided.)

April 3, 1982

108

U. SPLIT, FISSION AND FUSION NODES

11.1. Split Nodes

Split nodes allow a job to produce additional independent jobs. Split nodes are often
used in models of communication systems to create control messages, e.g., for acknowledge­
ments or flow control mechanisms. A split node has one entrance, an exit for the job that
entered and an additional exit for each new job to be created. The created jobs are given the
same job variable values as the creating job. The created jobs do not possess tokens, whether·
or not the creating job possessed tokens.

Figure 11.1 - Bulk Arrivals

As an abstract example of use of split nodes, suppose we wish to represent a queue with
bulk arrivals, i.e., with several jobs arriving at the same time. A single arriving job can
become several by going through a split node. See Figure 11.1. A job arriving from the
source goes to a set node where JV(O) is set to the actual number of jobs to arrive. If that
number is greater than one, the original job goes to the split node. (Note that the split node is
a separate node; i.e., another node, e.g., a class, cannot serve as a split node.) One created job
leaves the split node through the second (bottom) exit and goes on to the queue. The original
job leaves the split node through the first (top) exit. In our diagrams of split nodes we have
exactly one exit from the upper half of the triangle and one exit from the bottom half for each
job created. The original job goes to a set node to decrement JV(O). If JV(O) is still greater
than one, the original job goes to the split node again; otherwise it goes to the queue. Let the
number of arriving jobs be equally likely to be any value from one up to maxjobs. We could
use the following dialogue file:

. MODEL: bulk
METHOD: simulation
NUMERIC PARAMETERS:atime maxjobs stime
QUEUE:q

TYPE:fcfs
CLASS LIST:c

SERVICE TIMES:stime
SET NODES: setcount deccount
ASSIGNMENT LIST:jv(O)=ceil(uniform(O,maxjobs,l)) jv(O)=jv(O)-l
SPLIT NODES:splitnode
CHA~N:ch

TYPE: open
SOURCE LIST:s
ARRIVAL TIMES:atime
:s->setcount->splitnode ciif(jv(O»l) if(t)
:splitnode->deccount c;split

April 3, 1982

SEC. 11.1 / Split Nodes

. END

: deccount->splitnode c; if(jv (0»1) if (t)
:c->sink

QUEUES FOR QUEUEING TIME DIST:q
VALUES:10 20 30 40 50

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:q
~EASURES;qF
ALLOWED WIDTHS: 1 0

EXTRA SAMPLING PERIODS:O
SAMPLING PERIOD GUIDELINES -

QUEUES FOR DEPARTURE COUNTS:q
DEPARTURES: 10000

LIMIT - Cp·SECONDS:300
TR1\CE:no

109

As with other nodes, the name of a split node may be any legal RESQ name; we use
"splitnode" to help clarify the syntax for split nodes.

It is not necessary to give the name of a split node before the routing definition. Foi:
example, We could omit the line

SPLIT NODES:splitnode

from the above dialogue file and the file· would still be accepted by SETUP .. When SETlJP
sees the name of a split node in the routing, it does not know whether that name is int~nded
to be. that of a new (split) node or whether it it is a misspelling of the name of another node.
For this reason,if we omit the above line, when SETUP encounters the following line

: s->setcount->splitnode c; if (jv (0) >1) if (t)

it produces the following warning message at the terminal and in the RQ2LIST file

ERROR WNG: THE NODE "SPLITNODE " HAS BEEN IMPLICITLY DECLARED

SETUP knows that splitnode is a split node froin the routing transition with splitnode as the
from node: .

:splitnode->deccount c;split

This transition indicates that splitnode is a split node, with the job which entered the node
going to deccourtt when it leaves and with one new job going to nodec from the split node.
SETUP does not prompt interactively for names of split nodes. Fission nodes (Section 11.2)
and the dummy nodes we discuss below are treated Similarly by SETUP. . .

In general a routing transition for a split node would have the form

where from.--;node is a split nod~, the job which entered from_node would go to to_nodel'
N-1 new jobs would be created by a visit to the split node and they would go to the remain-

April 3, 1982

liO SPLIT, FISSION AND FUSION NODES / SEC. 11

ing nO.des to' the right O.f the arrO.w. As with O.ther rO.uting transitiO.ns, a nO.de name may be
used several times O.n the right hand side O.f the rO.uting transitiO.n.

NO.te that the jO.bs leaving a split node are nO.t allO.wed to' chO.O.se a destination. In the
example mO.del, the creating jO.b always gO.es to' the set nO.de and the created jO.balways gO.es
to' the class. In general, we might wish to' make rO.uting decisiO.ns for the jO.bs leaving the split
nO.de; this is a purpO.se fO.r dummy nO.des. A dummy nO.de has no. effect O.n a jO.b. We can
specify a dummy nO.de as the destinatiO.n fO.r a jO.b leaving a split nO.de. Then the usual rO.uting
decisiO.n mechanism is available fO.r jO.bs leaving the dummy nO.de. FO.r example, suppO.se that
in the bulk arrival mO.del we want the number O.f arrivals to' have a geO.metric distributiO.n
(starting at O.ne) with mean meanjO.bs. To. avO.id the warning message, we cO.uld use the
fO.llowing line after the split nO.de definitiO.n

DUMMY NODES:dummynode

Then we cO.uld use the fO.llO.wing rO.uting definitiO.n

:s~>splitnode c;1-1/meanjobs 1/meanjobs
:splitnode->dummynode c;split
:dummynode->splitnode c;1-1/meanjobs 1/meanjobs
:c->sink

The name O.f a dummy nO.de can be any legal RESQ name; we use "dummynO.de" fO.r clarity.

With mO.del bulk as first defined abO.ve the mean number O.f jO.bs arriving at O.ne time will
be (maxjO.bs+1)/2. Using EVAL we can get

RESQ2 VERSION DATE: OCTOBER 20, 1981
MODEL: BULK
ATIME:55
MAXJOBS: 10
STIME:5
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
SAMPLING PERIOD END: Q DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

WHAT:utbo

ELEMENT

Q

WH.AT:tpbo

ELEMENT

Q
SETCOUNT

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:
NUMBER OF CYCLES:

2.9918E+05
30.30
35511

2716

UTILIZATION
0.50105(0.48742,0.51468) 2.7%

THROUGHPUT
0.10030(0.09779,0.10281) 5.0%
0.01840

April 3, 1982

SEC. ILl/Split Nodes

DECCOUNT
SPLITNODE
S

SINK

WHA'l':qlbo

ELEMENT
Q

WHAT:qtbo

ELEMENT
Q

WHAT:qtdbo

ELEMENT
Q

WHAT:
CONTINUE RUN:no

ATIME:

0.08190
0.08190
0.01840
0.10030

MEAN QUEUE LENGTH
4,00728(3.75102,4.26354) 12.8%

MEAN QUEUEING TIME
39.95358(38.08224,41.82491) 9.4%

QUEUEING TIME DISTRIBUTION
1.00E+01 :0.17989(0.17171 ,0.18807) 1.6%
2.00E+01:0.34045(0.32704,0.35386) 2.7%
3.00E+01rO.48915(0.47173,0.50657) 3.5%
4.00E+01:0.60762(0.58830,0.62695) 3.9%
5.00E+01:0.70237(0.68243,0.72231) 4.0%

111

Note that split node throughput is measured in entered jobs, i.e., created jobs are. not counted.

11.2. Fission and Fusion Nodes

Fission nodes allow a job to create additional jobs dependent on the creating job. Fusion
nodes allow for the destruction of the created jobs in a coordinated manner.. Fission and
fusion nodes are usually used together in pairs. Fission and fusion nodes are useful for
representing synchronized processes (tasks) occurring in· operating systems. Similarly, fission
and fusion nodes ate useful for representing parallel physical activities representing a. single
logical activity, for example transmission of a message across a communication network as a
collection of packets.

A fission node has one entrance, an exit for the job that entered (referred to as the
"parent"), and an additional exit for each new job to be created. The created jobs are
referred to as "children." Children may themselves enter fission nodes, thus creating hierar­
chies of jobs (see Section 8 of the Users Guide). Children are given the same job variable
values as the parent. The children do not possess tokens, whether or not the patent. does.
Jobs are not allowed to go to sinks as long as they have relatiVes (parents or children). If this rule
is violated, the simulation terminates.

April 3, 1982

112 SPLIT, FISSION AND FUSION NODES / SEC. 11

In our diagrams we represent a fission node by a triangle with the entrance at one vertex
and the exits on the opposite side. This corresponds to the split node representation except
that the triangle is not divided into separate sub-triangles .for the parent and children exits. In
the dialogue syntax, fission nodes are treated exactly the same as split nodes, except that
(1) the keyword "FISSION" is used instead of the keyword "SPLIT," (2) th.ereis an
interactive prompt to optionally declare the names of fission nodes, and (3) in dialogue files,
if the names of fission nodes are declared before the routing definition they are defined after
declarations for split nodes,if any are present.

A fusion node provides a place for jobs to wait for related jobs (a parent or children).
(A fusion node acts as a dummy node for jobs without relatives, i.e., such jobs pass through a
fusion node without delay or other effect.) No more than one job of a "family" can stay at a
fusion node. If a job arrives at a fusion node and it has relatives, but none of its relatives are
at this particular fusion node, it waits at the fusion nodes. When a job arrives at a fusion
node and it has a relative at this particular fusion· node, two things can happen, depending on
the relationship between the jobs. If one is the parent and the other is a child, then· the
offspring is destroyed. If both are children, the one that was created last is destroyed. Before
a child is destroyed, any tokens it holds are released. After destruction of one job, if the other
job. has· no remaining relatives, it proceeds from the exit of the fusion node. If the other jpb
still has other relatives, it waits at the fusion node for another relative to arrive.

In our diagrams we represent fusion nodes by a triangle with the exit at one vertex and
the entrance(s) on the opposite side. Fusion nodes must be declared immediately before the
routing, e.g.,

FUSION NODES:fusionnode

Fusion nodes appear in the routing without further distinction, i.e., there is no need for a
keyword as in the case of split and fission nodes.

A natural application of fission and fusion nodes is to represent messages transmitted as
packets in a communications network. In our loop model, an alternative to full-duplex links
which might significantly improve performance would be to break long messages into packets,
to be transmitted separately. Let us assume that the maximum packet size is to be 240 bits.
If a message exceeds 240 bits, it will be broken into two or more packets. We represent this
by sending a job with JV(0»240 to a fission node. The parent leaving the fission node has
JV(O) decremented by 240 and the created job has JV(O) set to 240. (We are ignoring the
headers and/or trailers which would be necessary on each packet.) If the parent still has
JV(0»240 it goes to the fission node again. When a packet gets to its destination, it goes to
a fusion node which represents assembly of the packets into the original message. When the
parent and all of its children (if any) have made it to the fusion node, the parent leaves the
fusion node. Figure 11. 2 shows the fission and fusion nodes but not the set nodes. The
following dialogue file could be used:

April 3, 1982

SEC. 11.2 / Fission and Fusion Nodes

Figure 11.2 - Packetizing of Messages

MODEL: loop
METHOD: simulation
NUMERIC IDENTIFIERS:mean atime

MEAN ATIME: . 1
NUMERIC IDENTIFIERS:totlength capacity

TOTLENGTH: 720
CAPACITY: 4800

NUMERIC IDENT'IFIERS:msg_dest pkt_leng
MSG..c..DEST:O /*JV to be used*/
PKT LENG:l /*JV to be used*/

MAX JV: 1
QUEUE:rtq

TYPE:passive
TOKENS:2147483647
DSPL:fcfs
ALLOCATE NODE LIST:beginrt

NUMBERS OF TOKENS TO ALLOCATE: 1
QUEUE:ql

TYPE:fcfs
CLASS LIST:cl

WORK DEMANDS:standard(jv(pkt_leng)/capacity,O)
QUEUE:q2

TYPE:fcfs
CLASS LIST:c2

WORK DEMANDS:standard(jv(pkt_leng)/capacity,O)
QUEUE:q3

. April 3, 1982

113

114 SPLIT, FISSION AND Fl;JSION NODES / SEC. 11

TYPE:fcfs
CLASS LIST:c3

WORK DEMANDS:standard(jv(pkt_leng)/capacity,O)
QUEUE:q4

TYPE:fcfs
CLASS LIST:c4

WORK DEMANDS:standard(jv(pkt_leng)/capacity,O)
SET NODES:set_rnsg_l
ASSIGNMENT LIST: jv(pkt_leng)=standard(totlength,1)
SET NODES:dec_rnsg_11 dec_rnsg_12 dec_rnsg_13 dec_rnsg_14
ASSIGNMENT LIST:jv(pkt:.-leng)=jv(pkt_leng)-240
SET NODES:set-pkt_11 set-pkt_12 set-pkt_13 set-pkt_14
ASSIGNMENT LIST:jv(pkt_leng)=240
SET NODES:dest1
ASSIGNMENT LIST: jv(rnsg_dest)=discrete (2, 1/3; 3,1/3; 4,1/3)
SET NODES:dest2
ASSIGNMENT LIST:jv(rnsg_dest)=discrete(1,1/3; 3,1/3; 4,1/3)
SET NODES:dest3
ASSIGNMENT LIST:jv(rnsg_dest)=discrete(1,1/3; 2,1/3; 4,1/3)
SET NODES:dest4
ASSIGNMENT LIST: jv (rnsg_dest) =discrete(1,1/3; 2,1/3; 3,1/3)
FISSION NODES:separate1 separate2 separate3 separate4
FUSION NODES:assernble
CHAIN:c

TYPE: open·
SOURCE LIST:s
ARRIVAL TIMES:rnean atirne
:s->beginrt->set_rnsg_l->dest1 dest2 dest3 dest4
:dest1->c1 separate1;if(jv(pkt_leng)<=240) if(t)
:separate1->dec_rnsg_11 set-pkt_11;fission
: dec_rnsg~11->c 1 separate1; if (jv (pkt_leng) <=240) if (t)
:dest2->c2 separate2; if (jv(pkt_leng)<=240) if(t)
:separate2->dec_rnsg_12 set-pkt_12;fission
:dec_rnsg_12->c2 separate2;if(jv(pkt_leng)<=240) if(t)
;dest3->c3 separate3;if(jv(pkt_lengj<=240) if(t)
:separate3->dec_rnsg_13 set-pkt_13;fission
: dec_rnsg_13->c3 separate3 i if (jv (pkt_leng) <=240) if (t)
:dest4->c4 separate4;if(jv(pkt_leng)<=240) if(t)
:separate4->dec_rnsg_14 set-pkt_14ifission
:dec_rnsg_14->c4 separate4; if (jv (pkt_leng) <=240) if(t)
:set-pkt_11 set-pkt_12 set-pkt_13 set-pkt_14->c1 c2 c3 c4
:c1->assernble c2;if(jv(rnsg_dest)=2) if(t)
:c2->assernble c3;if(jv(rnsg_dest)=3) if(t)
: c3->assernble c4; if (jv (rnsg_dest) =4) if (t)
:c4->assernble c1;if(jv(rnsg_dest)=1) if(t)
:assernble->sink

QUEUES FOR QUEUEING TIME DIST:rtq
VALUES: . 6 1. 2 1. 8 2. 4 3. 0 3. 6

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION -
CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:rtq
MEASURES:qt

April 3, 1982

SEC 11.2/ Fission and Fusion Nodes

We could then get the following from EVAL:

RESQ2 VERSION DATE: OCTOBER 20, 1981
MODEL: LOOP
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
NO. ERRORS DETECTED DURING SIMULATION.

WHAT:utbo

ELEMENT
RTQ
Q1
Q2
Q3
Q4

WHAT:tpbo(rtq)

ELEMENT
RTQ

WHAT:qlbo(rtq)

ELEMENT
RTQ

WHAT:qtbo(rtq)

ELEMENT
RTQ

WHAT: sdqt (rtq)

April 3; 1982

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:
NUMBER OF CYCLES:

5085.87891
488.95
408413

1318

UTILIZATION
4.1214E-09(3.9229E-09,4.3200E-09)
0.75700(0.74489,0.76910) 2.4%
0.74786(0.73703,0.75869) 2.2%
0.74743(0.73574,0.75912) 2.3%
0.73841 (0.72680,0.75002) 2.3%

THROUGHPUT
9.96209(9.89882,10.02536) 1. 3%

MEAN QUEUE LENGTH
8.85070(8.42426,9.27715) 9.6%

MEAN QUEUEING TIME
0.88844{0.84769,0.92919) 9.2%

115

0.0%

116 SPLIT, FISSION AND FUSION NODES / SEC. 11

ELEMENT
R'I'Q

WHAT:qtdbo

ELEMENT
RTQ

WHAT:

STANDARD DEVIATION OF QUEUEING TIME
0.81473

QUEUEING TIME DISTRIBUTION
6.00E-01:0.46939(0.45398,O.48480) 3.1%
1.20E+00:0.73667(0.71883,O.75450) 3.6%
1.80E+00:0.87060(0.85549,0.88572) 3.0%
2.40E+00:0.93901 (0.92868,0.94934) 2.1%
3.00E+00:0.97377(0.96776,0.97978) 1.2%
3.60E+00:0.98899(0.98564,0.99233) 0.7%

CONTINUE RUN:/*Continue run:*/ yes

EXTRA SAMPLING PERIODS:/*Extra periods:*/

SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: RTQ DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

WHAT:qtbo(rtq)

ELEMENT
RTQ

WHAT:nd(rtq)

ELEMENT
RTQ

WHAT:qtdbo

EI,EMENT
R'VQ

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:
NUMBER OF CYCLES:

6108.71094
583.68
489485

1604

MEAN QUEUEING TIME
0.88052(0.84438,0.91665) 8.2%

NUMBER OF DEPARTURES
60777

QUEUEING TIME DISTRIBUTION
6.00E-01:0.47112(0.45714,0.48509) 2.8%
1.20E+00:0.73878(0.72295,O.75461) 3.2%
1.80E+00:0.87416(0.86082,0.88750) 2.7%
2.40E+00:0.94169(0.93257,0.95080) 1.8%
3.00E+OO:0.97524(0.96993,O.98055) 1.1%
3.60E+OO:0.98972(0.98678,0.99265) 0.6%

April 3, 1982

SEC. 11.2/ Fission and Fus.ion Nodes 117

WHA:T:

CONTINUE RUN: j*Cdntinue run: */ no

Th~ m.ean response time estimate,.88 seconds, is substantially improvecl over the estimate for
the origiitalmo~el,1 .. 16.seconds.

April 3, 1982

118

12. QUEUE TYPES

A queue type is a parameterized macro definition of a queue. Queue types are us~ally
used to create multiple instances of a frequently used type of queue. For example, if fcfs were
nbt a predefined specialRESQ queue type, we could define a corresponding queue type using
the queue type,facility.

There are two distinct operations involved in the use of queue types: the .definition' of a
queue type and the invocation of a queue type. The queue type "definition consists of the
specification of a parameterized queue template in whiGh some of the queue, type chanlcteris­
tics are given explicit values and other queue type characteristics are given parametric,values.
The explicit values become the default characteristics of the queue type. Once a queue type
has been defined, it can later be invoked to create a specific instance of a queue. As we shall
see, a set of parameter values is given as part of the invocation. A queue defirte~by an
invocationbfa queue type assumes the default characteristics of the queue, type and the
parametric characteristics given by the set of parameter values in the invocation.

A frequently used queue is a simple passive first come first served (pfefs) queue whiCh
has no create or destroy nodes, a fcfs queueing discipline and a single allocate node at which a
single token is allocated. Since such a queue is frequently used, we might want to define it as
a, special queue type. A definition of a pfcfs queue type is shown in the model below. The
following dialogue corresponds to the first version of csmwm in Section 4.

MODEL:csmwm
METHOD: simulation
NUMERIC PARAMETERS:thinktime users partition::;
NUMERIC IDENTIFIERS: floppy time disktime cputime thinktime users

FLOPPYTIME: . 22
DISKTIME:,. 019
CPUTIME:.05

NUMERIC IDENTIFIERS:cpiocycles
CPIOCYCLES:8

QUEUE TYPE:pfcfs /* passive fcfs queue template */
NUMERIC PARAMETERS:ntokens /*number of tokens in pool */
NODE PARAMETERS:alloc releas
TYPE:passive
TOKENS:ntokens
DSPL:fcfs
ALLOCATE NODE LIST:alloc

NUMBERS OF TOKENS TO ALLOCATE: 1
RELEASE NODE LIST:releas

END OF QUEUE TYPE PFCFS
QUEUE:floppyq

TYPE:fcfs
CLASS LIST:floppy

SERVICE TIMES: floppy time
QUEUE:diskq

TYPE:fcfs
CLASS LIST:disk

SERVICE TIMES:disktime
QUEUE:cpuq

TYPE:fcfs
CLASS LIST:cpu

SERVICE TIMES:cputime

April 3, J 982

. SEC. 12. / QUEUE TYPES

. QUimE:terminalsq
TYPE:is

. CLASS LIST: terminals
SERVICE T:J:MES:thinktime

QUEUE:memory 1* qefine the passive memory queue *1
TYPE:pfefs 1* by invoking the pfefs queue type *1
NTOKENS:partitions
ALLoe: getmemory
RELEAS:freememory

CHAIN:interaetiv
TYPE:elosed
POPULATIONS:users
:terminals->getmemory->epu;">floppy disk; .1 .9

119

The queue type definitions immediately precede the queue definitions. Note that with the
exception of the parameter declarations, the body of a queue type is similar to the body of a
queue definition. The parameter declarations themselves are similar to model parameter
declarations with the exception of the NODE PARAMETERS: prompt. All nodes and classes
used within the body of a queue type must be declared as a node parameter of the queue type.

In the above model, the pfefs queue type is invoked once to define the memory queue. A
queue type is invoked by giving the previously defined queue type name in response to the
TYPE prompt of a· standard queue· definition. In addition to giving· the name of the queue
type to be invoked, we must also supply values for the par(lmeters of the queue type; this is
done· immediately following the TYPE prompt. Further discussion of queue types is given in
Section 6 of the Users Guide.

April 3, 1982 .

120

13. SUBMODELS

Submodels provide a facility for macro definition of subnetworks. A submodel is a
template for a subnetwork which the user wishes to explicitly delineate (1) because this
clarifies model structure, (2) because several such subnetworks (withparameterizable
differences) appear ina model and/or (3) because this submodel is to be (may be) used in
other mogels.

When one uses ("invokes") a submodel with a set of parameter values, then a set of
queues and nodes with the specified values and relationships is added to the network, just as
invocation of an. assembly language macro causes a set of instructions to be. added tb the
program. It is important for the user to think in terms of macros rather than procedures in
properly understanding submodels and how they may be used.

Figure 13.1 - Computer System Submodel

TERMINALS

o r------.,
>-------?i HOST 1-: ---~ o L ______ .J

Figure 13;2- Network with Submodel Invocation

Many of the examples we have given are easily (and appropriately) restated using
submodels. For example, consider the computer system model csmwm. Let the entire
network except for the terminals queue be considered a submodel, as depicted in Figure 13.1.
After specifying the submodel, we can invoke it with parameters in a network corresponding
to the previous model (Figure 13.2) and in other networks. The following dialogue file
portion could define the submodel.

SUBMODEL:cssm j*Computer System SubModel*j
NUMERIC PARAMETERS:pageframes floppy time disktime cputime
CHAIN PARAMETERS:chn
NUMERIC IDENTIFIERS:cpiocycles

CPIOCYCLES:8
QUEUE: f loppyq .

April 3, 1982

SEC. 13 / SUBMODELS

TYPE:fcfs
9LASSLIST:floppy

SERVICE TIMES: floppy time
QUEUE :diskq

TYPE:fcfs
CLASS LIST:disk

·SERVICE TIMES:disktime
QUEUE:cpuq

TYPE:ps
CLASS LIST:cpu

SERVICE TIMES:cputime
QUEUE: memory

TYPE:passive
TOKENS:pageframes
DSPL:fcfs
ALLOCATE .NODE LIST:getmemory

NUMBERS OF TOKENS TO ALLOCATE: discrete (16, .25;32,.5;48, .25)
RELEASE NODE LIST:freememory

CHAIN:chn
TYPE: external
INPUT:getmemory
OUTPUT:freememory
:getmemory->cpu
:cpu->floppy disk;.1 .9
: floppy- >freememory cpu; 1/ cpiocycles ·1-'-1/ cpiocyc les
:disk->freememory cpu;1/cpiocycles 1-1/cpiocycles

END OF SUBMODEL CSSM

121

Notice that the dialogue very closely parallels the dhilogue for an entire model. We focus oh
the differences.

A submodel is only part of a network. For a network including a submodel to be
meaningful, there must be at least one chain which is partially defined inside the submodel and
partially defined outside the submodel. Such chains must be declared as chaihparameters of
the submodel. In the current example, there is only one chain. It has the name" chn" inside
the submodel and is declared as a parameter.

Additional identifiers (numeric, distribution, global variable) may be defined in a
submodel declaration. Identifiers defined outside a submodelmay be used within a submodeL
N ames of identifiers may be reused within submodels. The rules· for doing so· are exactly the.
same as in block structured programming languages suchas PL/I and PASCAL.

As We said, chains declared as chain parameters are defined partly inside a submodel and
partly outside a submodel. The type of a chain parameter is defined as "external" because the
usual type, open or closed, is not determined until the chain definition is completed outside of
the submodel.

In many situations, submodels can be used with minimal knowledge of the contents of the
submodel. To this end, it is possible to give exactly one node of each chain parameter the
synonym "input" and to give exactly one node of each chain parameter the synonym
"outpuL" When thesubmodel is invoked, and the chain definition completed, these nodes may
be referred to by these synonyms instead of the names used within the submodeL It is
intended that node input be the primary (usually the only) entry point seen by the invoking
model and that node output be the primary (usually the only) exit point seen by the invoking

April 3, 1982

122 SUBMODELS / SEC. 13

model. (The Users Guide discusses and illustrates use of node parameters for multiple entry
and exit points per chain. See Section 10 and Appendix 1 of the Users Guide.) In the
example, the allocate node and release node are used as the input and output, respectively, of
the routing chain.

The following uses submodel cssm to obtain a model definition equivalent to thecstnwm
definition of Section 6.

MODEL:csm
METHOD: simulation
NUMERIC PARAMETERS:thinktime users pageframes
NUMERIC IDENTIFIERS: floppy time disktime cputime

FLOPPYTIME:.22
DISKTIME:.019
CPUTIME: .05

NUMERIC IDENTIFIERS:cpiocycles
CPIOCYCLES:8

QUEUE:terminalsq
TYPE: is
CLASS LIST:terminals

SERVICE TIMES:thinktime
SUBMODEL:cssm /*Computer System SubModel*/

END OF SUBMODEL CSSM
INVOCATION:.host

TYPE:cssm I

PAGEFRAMES:pageframes
FLOPPYTIME:floppytime
DISKT1ME:disktime
CPUTIME:cputime
CHN:interactiv

CHAIN:interactiv
TYPE:closed
POPULATION: users
: terminals->host. input
:host.output->terminals

QUEUES FOR QUEUEING TIME DIST:host.memory
VALUES:1 2 3 4 5.6 7 8

QUEUES FOR QUEUE LENGTH DIST:host.memory
MAX VALUE:users/2

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION-·
CHAIN:interactiv

NODE LIST:terminals
REGEN POP:users
IN IT POP:users

CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE .CHECKED:host.memory
. MEASURES:qt

ALLOWED WIDTHS: 10
SAMPLING PERIOD GUIDELINES-

QUEUES FOR DEPARTURECOUNTS:host.memory
DEPARTURES: 1000

April 3, 1982

SEC. 13 / SUB MODELS

END

LIMIT - CP SECONDS:300
.TRACE:no

123

We have not repeated the full definition of the submodel here. In the actual file, it would fibt
be necessary to use the definition if the definition existed as a separate file and were logically
inserted at the appropriate point using the INCLUDE statement described in Section 2 of the
Users Guide.

An invocation is a specific instance of a submodel with its own parameter values (and its
own nodes, queues and "global" variables which were defined locally within the submodel).
The INVOCATION prompt requests a name for the invocation. This name will be needed
later for qUalification of the names of elements of the submodel. The TYPE prompt requests
the .. name of the submodel being invoked. After giving the submodel.name, the remaining
prompts of the invocation are for parameter values. For numeric and distribution parameters,
the values given must be expressions consisting of constants and previously defined identifiers
(possibly including model parameter identifiers). The value given for a chain parameter will
be the first appearance of that chain name, unless it has previously been used in an invocation
or it is a chain array (see Section 3 of the Users Guide).

Subsequent to the invocation, when it is neces~ary to refer to elements·· of the invoked
submodel, these names. are qualified by the invocation mime in the form
"invocation" "." "element". In the example, in the routing the allocate node is referred to as
"host.input" and the release node is referred to as "host.output". In the simulation specific
dialogue, the memory queue is referred to as host. memory. .

The RQ2LIST indicates the level of nesting of submodel definition in the column after
the line number:

RESQ Translator V2.04 (10/02/81) Time: 13:42:23 Date: 10/26/81

* 1* 0* MODEL:csm
* 2* 0*
* 3* 0*

* 13* 0*
* 14* 0*
* 15* 1*
* 16* 1*

* 45* 1 *
* 46* 1 *
* 47* 0*
* 48* 0*

* 80* 0* END

METHOD: simulation
NUMERICPARAMETERS:thinktime users pageframes

SERVICE TIMES:thinktime
SUBMODEL:cssm /*Computer System SubModel*/

NUMERIC PARAMETERS:pageframes floppy time disktime cputime
CHAIN PARAMETERS:chn

:disk->freememory cpu;1/cpiocycles 1-1/cpiocycles
END OF SUBMODEL CSSM
INVOCATION: host

TYPE:cssm

NO FATAL ERRORS DETECTED DURING COMPILATION.

This definition of csmwm with the submodel produces exactly the same numerical results
as the definition used at the end of Section 5.2. The output format has an extra column giving
invocation names, as we shall see shortly,

April 3, 1982

124 SUBMODELS / SEC.13

TERMINALS

o

o

,-------.,
HOST! I

'-______ J

J-------,
HOST2 I

I I --------'

Figure 13.3 - Network with Two Invocations

Having defined submodel cssm, we can now use it several times in a modeL For example,
if we wished to model a pair of computer systems sharing a common set of terminals as
pictured in Figure 133, we might use the following model definition.

MODEL:csm
.METHOD:simulation
NUMERIC PARAMETERS:thinktime users page frames
NUMERIC IDENTIFIERS: floppy time disktime cputime1 cputime2

FLOPPYTIME: .22
DISKTIME: .019
CPUTIME1:.05
CPUTIME2:.075

QUEUE:terminalsq
TYPE:is
CLASS LIST:terminals

SERVICE TIMES:thinktime
SUBMODEL:cssm /*Computer System SubModel*/

END .OF SUBMODEL CSSM
INVOCATION:hostl

TYPE:cssm
PAGEFRAMES:pageframes
FLOPPYTIME:floppytime
DISKTIME:disktime
CPUTIME:cputimel
CHN:interactiv

INVOCATION:host2
TYPE:c;:ssm
PAGEFRAMES:pageframes
FLOPPYTIME:floppytime
DISKTIME:disktime
CPUTIME:cputime2
CHN:interactiv

CHAIN:interactiv
TYPE: closed
POPULATION: users
:terminals->hostl.input host2.input
:hostl.output host2.output->terminals

QUEUES FOR QUEUEING TIME DIST:hostl.memory host2.memory
VALUES: 1 2 3 4 5 6 7 8
VALUES: 1 2 3 456 7 8

April 3, 1982

SEC. 13 / SUBMODELS

END

CONFIDENCE INTERVAL METHOD:regenerative
REGENERATION STATE DEFINITION...,
CHAIN:interactiv

NODE LIST:terminals
REGEN POP:users
INIT POP:users

CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes

QUEUES TO BE CHECKED:host1.memory host2.memory
MEASURES:qt qt
ALLOWED WIDTHS: 10 10

SAMPLING PERIOD GUIDELINES~
QUEUES FOR DEPARTURE COUNTS:terminalsq

DEPARTURES: 10000
LIMIT - CP SECONDS: 1000
TRACE: no

125

The dialogue is essentially the same as before, but there are now two invocations. Assuming
50 terminals and the other parameters we have used, we could get the following. from EVAL.

RESQ2 VERSION DATE: OCTOBER 20, 1981
MODEL:CSM
THINKTIME:10
USERS: 50
PAGEFRAMES:128
SAMPLING PERIOD END: TERMINALSQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: TERMINALSQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: TERMINALSQ DEPARTURE GUIDELINE
SAMPLING PERIOD END: TERMINALSQ DEPARTURE GUIDELINE
NO ERRORS DETECTED DURING SIMULATION.

WHAT:qtbo

INVOCATION

HOST1
HOST1
HOST1
HOST1
HOST2
HOST2
HOST2
HOST2

WHAT::utbo

April 3, 1982

SIMULATED TIME: 2.0007E+04
542.76

1102672
13

CPU TIME:
NUMBER OF EVENTS:
NUMBER OF CYCLES:

ELEMENT
TERMINALSQ
MEMORY
FLOPPYQ
DISKQ
CPUQ
MEMORY
FLOPPYQ
DISKQ
CPUQ

MEAN QUEUEING TIME
9.95654 (9.88809,10.02499) 1.4%
1. 67274 (1. 60467 ,1. 74080) 8.1 %
0.29691(O.29259iO.3012J) 2.9%
0.02387(0.0236~,0.02411) 2.0%
0.10543(0.10329,0.10756) 4.0%
9.11460(8.72290,9.50631) 8.6%
0.29479(0.28634,0.30324) 5.7%
0.02376(0.02362,0.02389) 1.1%
0.23773(0.23517~0.24029) 2.2%

126 SUBMODELS / SEC. 13

INVOCATION ELEMENT UTILIZATION
TERMINALSQ 0.00000(0.00000,0.00000)

HOST1 MEMORY 0.50065(0.48280,0.51850)
HOST1 FI:.oPPYQ 0.28473(0.27743,0.29203)
HOST1 DISKQ 0.22153(0.21569,0.22738)
HOS'!'1 CPUQ 0.64912(0.63248,0.£6577)
HOST2 MEMORY 0.90884(0.90452,0.91316)
HOST2 FLOPPYQ 0.28436(0.27804,0.29068)
HOST2 DISKQ 0.22144(0.21992,0.22297)
HOST2 CPUQ 0.97110(0.96828,0.97392)

WHAT:
CONTINUE RUN:yes

EXTRA SAMPLING PERIODS: 1

LIMIT - CP SECONDS:2000

SAMPLING
SAMPLING
SAMPLING
SAMPLING
SAMPLING
NO ERRORS

PERIOD END: TERMINALSQ DEPARTURE GUIDELINE
PERIOD END: TERMINALSQ DEPARTURE GUIDELINE
PERIOD END: TERMINALSQ DEPARTURE GUIDELINE
PERIOD END: TERMINALSQ DEPARTURE GUIDELINE
PERIOD END: TERMINALSQ DEPARTURE GUIDELINE

DETECTED DURING SIMULATION.

SIMULATED TIME:
CPU TIME:

NUMBER OF EVENTS:
NUMBER OF CYCLES:

2.4276E+04
660.72

1338170
21

WHAT:qtbo(host1.memory,host2.memory)

MEAN QUEUEING TIME

3.6%
1. 5%
1. 2%
3,3%
0.9%
1. 3%
0.3%
0.6%

INVOCATION
HOST1
HOST2

ELEMENT
MEMORY
MEMORY

1.66722 (1.61349, 1.72095) 6.4%
'9.16357(8.82434,9.50280) 7:4%

WHAT:
CONTINUE RUN:no

THINKTIME:

As we said before, the output format is essentially the same, but there is an added column to
indicate the invocation.

Submodels are used extensively in the examples in Section land Appendix 1 of the Users
Guide.

April3, 1982

127

14. PL/I EMBEDDING

Instead· of using· the BV AL command after a model has been defined with· the SETUP
command, model expansion may be embedded within a PL/I program. This may bedolle in
order. (1) to produce tables or graphs of results, (2) to coordinate solution of several separate
models in a hierarchical solution, (3) to provide a preprocessor for determining model
parameters and/or (4) to provide a postprocessor for manipulating model solutions prior to.
display. We briefly illustrate the first two of these applications. For details, see Section 14 of
the tJ sers Guide.

Several procedures are supplied with RESQ for producing low resolution graphs of model
results on a terminal, line printer or other appropriate character oriented device. Other PL/I
callable graphics packages· supplied by the user may be used in a similar manner.

Following is a complete program which could be used with model EXAMP1 in Appendix
1 of the Users Guide:

EXAMP1: PROCEDURE OPTIONS(MAIN) REORDER;
DECLARE

N FIXED BIN(31),
(T,DATA(40,3),OP(3)) FLOAT BIN(21),

FMSG CHAR (80) ,
(FLOAT,SUBSTR) BUILTIN,

/*Entrypoints for RESQ routines:*/
READMD ENTRY,
STPARM ENTRY (CHAR(10) ,FLOAT BIN(21)),
RESQ2M ENTRY(FI~ED BIN(31)),
FNLMSG ENTRY(CHAR(80)),
GTRSLT ENTRY (CHAR(*) VARYING,

~HAR(*) VARYING, (3) FLOAT BIN(21)),
/*Entry points for RESQ plotting routines:*/

RQSET ENTRY(FIXED BIN(31) ,FIXED BIN(31)),
·RQPLOT ENTRY((*,*) FLOAT BIN(21)),

RQXLBL ENTRY(CHAR(*) VARYING),
RQYLBL ENTRY(CHAR(*) VARYING),
RQVIEW ENTRY;

CALL READMD; /* Reads RQ2COMP file produced by SETUP*/
CALL STPARM('CPIOCYCLES',8.0); /*Set parameter value*/
DO N=1 TO 40;

DATA(N,.1) =FLOAT (N) /1 0.0 i
CALL STPARM('ARVL_RATE' ,FLOAT(N)/10.0); /*Set parameter value*/
CALL RESQ2M(0); /* Expands model & solves numerically*/
CALL FNLMSG(FMSG);
IF SUBSTR(FMSG,1,9),='NO ERRORS' THEN

S.TOPi
CALL GTRSLT('CPUQ', 'QL' ,OP) i /* Get result */
T=OP (1) ;

I
CALL GTRSLT ('DISKQ' , 'QL' , OP); /* Get result * /
DATA(N,2)=(T+OP(1))/(FLOAT(N)/10.0); /*Mean response time

(Little's Rule) */
CALL GTRSLT('CPUQ', 'UT' ,OP); /* Get result*/
DATA(N,3)=OP(1);

END;
CALL RQSET (40,40) i

April 3, 1982

128 PL/I EMBEDDING / SEC. 14

CALL RQPLOT(DATA) i

CALL RQXLBL(' ARRIVAL RATE');
CALL RQYLBL('MEAN RESPONSE TIME CPU UTILIZATION');
CALL RQVIEWi

END;

M

E

A

N

R

E

S'

P

o
N

S

E

T

I

M

E

C

P

U

U

I,

T +++++
I 1++++
L I
II
Z

A

T

I

o
N

I **

I *
1*

*
*

**

*

+++

+
++

++ *
++ **

++ *
**

+++ *
++++ **

*
*

**

*
**

*
**

+
+

+
+

+ **
+ *

**

*

+---- ---- ---- ---- ---- ---- ----
ARRIVAL RATE

X SCALE: 1~OOE-(j1 - 4.00E+OO
Y SCALE: 2.85E-02 - 1.17E+OO

+

+

+

+
+

*
*

*
**

*

Figure 14.1 - Example Graph of Model Results

April 3, 1982

SEC. 14/ PL/I EMBEDDING 129

After compiling this procedure, with the PLIOPT command, we could use the RPLOTEXEC;
e.g.,

rplot examp1 examp1

to get the plot shown in Figure 14,1.

The next example will illustrate a hierarchical model which passes values for the rates of a
queue dependent server from the inner model to the outer model. See the example deScribed
in Sections 4.3 and 8.3 of [LA VE82]. Figure 14.2 illustrates the outer model, which is a
closed model with two resources: (1) an infinite server representing the terminals and (2) a
queue dependent server representing the computer system. The following dial()gue file can be
used 3$ input to SETUP:

MODEL: outer

END

METHOD: numerical
NUMERIC PARAMETERS:qrates(4)
QUEUE:termq

TYPE:active
DSPL:is
CLASS LIST:terminals

WORK DEMANDS: 10
QUEUE:csq

TYPE:active
DSPL:fcfs
CLASS LIST:comsys

WORK DEMANDS: 1
SERVER -

RATES:qrates
CHAIN:c1-

TYPE: closed
POPULATION: 30
:terminals->comsys->terminals

TERMINALS

COMPUTER SYSTEM
Figure 14.2 - Outer Model

The inner model is a "central server model" (Figure 14.3). The dialogue file for this model
can be constructed as follows:

MODEL: inner
METHOD: numerical

April 3, 1982

130

END

NUMERIC PARAMETERS:deg_m-p
NUMERIC IDENTIFIERS: floppy time disktime cputime

FLOPPYTIME: .22
DISKTIME:.019
CPUTIME:.05

QUEUE:floppyq
TYPE:fcfs
CLASS LIST:floppy

SERVICE TIME: floppy time
QUEUE:diskq

TYPE:fcfs
CLASS LIST:disk

SERVICE TIME:disktime
QUEUE:cpuq

TYPE:fcfs
CLASS LIST:cpu

SERVICE TIME:cputime
CHAIN:multi_prog

TYPE: closed
POPULATION :.deg_m_p
:cpu->floppy disk;.1 .9
:floppy disk->cpu

PL/I EMBEDDING / SEC. 14

The following program can be used to solve these two models hierarchically:

INOUT: PROC OPTIONS (MAIN) REORDER;
DCL READMD ENTRY, /* DCL'S for RESQ routines. */

RESQM ENTRY (FIXED BIN (31)) ,
GTRSLT ENTRY (CHAR(*) VARYING,

CHAR(*) VARYING, (3) FLOAT BIN(21)),
STPARM ENTRY (CHAR (10) , FLOAT BIN (21)) ,
STPRMV ENTRY (CHAR(10), (*) FLOAT BIN(21));

DCL TYPEVL ENTRY;
DCL RSQ2IP FILE STREAM INPUT;
DCL (DEG_M_P) FLOAT BIN(21),

OP(3) FLOAT BIN(21),
QRATES(4) FLOAT BIN(21);

/* INNER MODEL */
CALL READMD; /* READS INNER RQ2COMP FILE FROM TRANSLATOR */
DO DEG_M_P=1 TO 4; /* MULTIPROGRAMMING LEVEL */

CALL STPARM('DEG_M_P' ,D~G_M_P); /* SETS PARAMETER DEG_M P */
CALL RESQM(O); /* EXPANDS INNER MODEL & SOLVES */
CALL GTRSLT (, CPUQ' , 'TP' ,OP) ; /* GET THROUGHPUT FOR CPU * /
QRATES(DEG_M_P)=OP(1)/8.0;

END;
CLOSE FILE (RSQ2IP);

/* OUTER MODEL */
OPEN FILE (RSQ2IP) TITLE ('OUTER') ;
CALL READMD; /* READS OUTER RQ2COMP FILE FROM TRANSLATOR */
CALL STPRMV ('QRATES' , QRATES) ; /* SETS PARAMETER QRATES * /
CALL RESQM(O); /* EXPANDS OUTER MODEL & SOLVES */
CALL TYPEVLi

END INOUTi

Apdl 3, 1982

SEC. 14/ PL/IEMBEDDING 131

FLOPPY

Figure 14.3 - Inner Model

We have two RESQ models to read, one for the inner model and one for the outer model. The
inner model contains a parameter DEG_M_P representing the multiprogramming level. The
outer model contains a parameter ORATES representing the rates for the queue depel1dent
server. The variable ORATES will be used to store the results of the inner model and will be
assigned to the parameter of the outer model. The inner model is read and is solved for
DEG M P's of one, two, three and four. The CPU throughput for each DEG M P is
divided bYs.O, the mean number of cycles, and stored in ORATES. The model definiti-;m file
from SETUP is closed so that it can be opened with a different name, enabling the outer
model to be read. The outer model parameter is assigned a value from QRATES, and the
outer model is solved. Then the results are displayed interactively.

The following shows the execution of this program (after compilation and appropriate
CMS commands):

EXECUTION BEGINS ...
NO ERRORS DETECTED DURING NUMERICAL SOLUTION.

WHAT:all

ELEMENT
TERMQ
CSQ

ELEMENT
TERMQ
CSQ

ELEMENT
TERMQ
CSQ

ELEMENT
TERMQ
CSQ

WHAT:

UTILIZATION
0.00000
0.981.58

f (, f

THR<iU~UT

2. 27~l~
2.27025

MEAIj. Qll:~JE
22."'~Bf
7.29747

10 11.1..

LENGTH

MEAN QUEUEING TIME
10.00000
3.21439

b.ri

R; T=2.26/4.40 11:08:17

A brief discussion is in order to emphasize the difference between· solving the model in.
this fashion as opposed to usingsubmodels. When submodels are used, the expansion program
produces and solves one model. With the above hierarchical approach, the inner model is
evaluated Jour times and results from it are passed to the outer model, which is solved

April 3, 1982

132 PL/I EMBEDDING / SEC. 14

separately. This is done to allow an approximate solution, as in the above example. Similar
approaches may be used with simulation, to reduce simulation run times.

April}, 1982

'\.:.

133

BIBLIOGRAPHY

CHAN78a K.M.Chandy and R.T. Yeh (Editors), Current Trends in Programming Methodolo­
gy, Volume Ill: Software Modeling and Its Impact on Performance. Prentice:-Hall,
Englewood Cliffs, New Jersey (1978).

CHAN78b K.M. Chandy and C.H. Sauer, "Approximate Methods ·for Analysis of Queueing
Network Models of Computer Systems," Computing Surveys 10, 3 pp. 263-280
(September 1978).

CRAN77 M.A. Crane and A.J. Lemoine, An Introduction to the Regenerative Method for
Simulation Analysis, Springer-Verlag, New York (1977).

HEID81 ,P. Heidelberger and P.D. Welch, "A Spectral Method for Confidence Interval

IGLE80

KLEI75
KLEI76
KOBA78

LAVE 77

LAVE82

SAUE79

SAUE81

SCHW77

WONG78

Generation and Run Length Control in Simulations," CA CM 24 (April 1981) pp.
233-245. '
D.L. Iglehart and G.S.Shedler, Regenerative Simulation of Response Times in
Networks of Queues, Springer-Verlag (1980).
L. Kleinrock, QueueingSystems Volume I: Theory, Wiley, New York (1975).
L. Kleinrock, Queueing Systems Volume II: Computer Applications~ Wiley (1976);
H. Kobayashi, Modeling and Analysis: An Introduction to System Performance
Evaluation Methodology, Addison-Wesley, Reading, Massachusetts (1978).
S.S. Lavenberg and C.H. Sauer, "Sequential Stopping Rules for the Regenerative
Method of Simulation," IBM J. of Research and Development 21, (NoV. 1977)pp.
545-558.
S.S. Lavenberg (Editor), B.A. MacNair, H.M. Markowitz, C.H.' Sauer,
P.D. Welch and G.S. Shedler, Computer Performance Modeling Handbook, to
appear, Academic Press, New York (1982). .
C.H. Sauer and K.M. Chandy, "Approximate Solution of Queueing Mbdelsof
Computer Systems," RC-7785, IBM Research, Yorktown Heights, N.Y. (July
1979). Computer 13, 4 (April 1980) pp. 25-32. .
C.H. Sauer and K.M. Chandy, Computer System Performance Modeling, Prentice­
Hall (1981).
M. Schwartz, Computer-Communication Network Design and Analysis, Prentice­
Hall (1977).
J.W. Wong, "Distribution of End-to-End Delay in Message-Switched Networks,"
Computer Networks 2, 1 (February 1978) pp. 44-49. '

April 3, 1982

134

INDEX

A

Active queues 2, 5
All reply 11
Allocate nodes 22, 97, 97

. And allocate nodes 97

B

Blanks 28
Boolean operators 89

c

Chain variables 41
Chains 6,68

Closed 7, 65
External 121
Open 7,63

Classes 5,6
Clock 88
Commas 28
Comments 18, 19
Confidence intervals 2, 23, 32, 41, 52
Confidence level 32
Create nodes 97
Cycles 41
CPU limit 23

D

Destroy nodes 97
Dialogue files 3, 14
Distributions 6

Continuous 22
Discrete 22, 28
Exponential ·6
Geometric 7

Dummy node 11 0

Edit reply 21, 22
Events 23, 41,67
Extended queueing networks 2
EVAL 9,16,24

F

Fission nodes 111
Fusion nodes 97, 111
FCFS 5,41

G

Global variables 85

H

Hierarchical solution 127
How reply 8, 11

I

Identifiers 5, 7
Numeric 8

Initial state 64, 67
Input 121
IS 6

J

Job copies 102

L

Lower case input 15

M

Model parameters 14
Models

bulk 109
csm 7, 9, 14, 19
csmer 68
csmib 73

INDEX

csmwm 19, 33, 42, 52, 102, 118, 120
csmwsp 98
fourlink 79, 103
hierarchical 129, 130
inner 129
loop 90,112

April 3, 1982

INDEX

N

mml 63
one day 82
outer 129
pacing 102
pda 86

Nodes 6,68
Numerical solution 2, 3, 5, 11,69, 89, 91

o

Or allocate nodes 97
Output 121

p

Parameters
use in queue types 119
Chain 121
Node 119
Numeric 14

Passive queues 2, 5, 19, 21, 97
Performance measures

plotting graphs of 127
Plotting performance measures 127
Population 7, 64
PLjI embedding 127
PS 6

Q

Queue length 11, 23
Queue types 5; 118
Queueing times 11, 23
Queueing times in progress 102

R

Random numbers 33
Regeneration state· 41,64, 67, 102
Regenerative method 41
Relational operators 89
Release nodes 22, 78, 97
Replications 33, 41, 52
Response time 3, 11, 18, 27,64, 78,92
Routing 68
Routing predicates 89

April 3, 1982

Routing transitions 7
Concatenated 22

Run continuation 27, 37, 47, 57
Run length 32
RQ2COMP 18
RQ2INP 14, 18
RQ2LIST 16, 18, 123
RQ2PRNT 12; 18
RQ2RPLY 18, 18

s

Semicolons 28
Service times 5
Simulation 11, 19
Simultaneous resource possession 2, 19
Sinks 7,63,97
Sources 7,63
Spectral method 52
Split nodes 108, 112
Statistical output analysis 2
Stopping rules 2
Submodels 120, 131

cssm 121
SETUP 7, 15, 19, 38, 109

Edit mode 21

T

Time units 9
Tokens in use 104
Total tokens 104
Trace 88
Transfer nodes 97

u

Upper case input 15
User interfaces 3
Utilization 11

v

Version dates 11

w

Width criteria 48, 58

135

