
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONFIGURATION OF COMPUTING SYSTEMS: AN APPROACH

USING QUEUEING NETWORK MODELS

Dy

Charles Herbert Sauer, B.A.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTm

May 1975

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONFIGURATION' OF COMPUTING SYSTEMS: AN APPROACH

USING QUEUEING NETWORK MODELS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

I would like to thank Professor K. M. Chandy for his continued

support, advice and encouragement throughout the development and completion

of this research and dissertation. I would also like to thank Professors

J. C. Browne, J. H. Howard, A. G. Pearson and T. A. Welch for their review

and suggestions concerning this dissertation. U. Herzog and L. Woo suggested

Some of the problems considered here; I am grateful for their advice and

encouragement. I must acknowledge my indebtedness to Professor A. G. Pearson

and E. R. Pearson for their encouragement throughout my graduate studies

and especially for their generous support during the initial stages of my

studies. This research was supported in part by National Science Foundation

Grant GJ-35109.

C.R. S.

February 1975

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONFIGURATION OF COMPUTING SYSTEMS: AN APPROACH

USING QUEUEING NETWORK MODELS

Publication No.

Charles Herbert Sauer, Ph.D.
The University of Texas at Austin, 1975

Supervising Professor: K. Mani Chandy

An approach to configuration design of computing systems is

presented. This approach is based on analysis and optimization of queueing

network models of computing systems. Efficient optimization of open queueing

networks with different classes of customers is considered. Efficient

nume~ical analysis techniques and inexpensive approximate analysis techniques

for a large class of central server models are presented. These techn~ques

are suitable for thorough study of a large parameter space of configurations.

The central server models considered include non-exponential distributions,

different classes of customers and scheduling disCiplines with priorities.

Simulation analysis of a very general class of queueing networks is discussed.

These techniques allow determination of confidence intervals for open, closed

and mixed queueing networks with different classes of customers and both

passive and active servers. A language for description and analysis of this

class of queueing networks is presented.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

CHAPTER

I. INTRODUCTION • • • • • • • • • • • •

1.1. Design of Computing Systems

1.2. Performance Measures •••

1.3. Workload Characterization

.

1.4. System Component Characterization

1.5. Difficulty of the Problem

1.6. Organization of Chapters .

. . . .

. . . .

II. SUMMARY OF PREVIOUS WORK, NEW RESULTS AND THE GENERAL DESIGN

APPROACH • • • • • •

2.1. Previous Work
• •

PAGE

1

1

1

3

5

6

7

8

8

2.1.1. Queueing Network Models of Computing Systems 8

2.1.2. Analysis of Queueing Network Models

2.2. Contributions of this Research • • • • • •

2.3. Parameterization of Central Server Models

2.4. An Approach to Configuration of Computing Systems

III. OPTIMIZATION OF QUEUEING NETWORKS WITH DIFFERENT CLASSES OF

CUSTOMERS

3.1. Introduction.

3.2. Convexity of Waiting Time at Individual Queues •

3.3. Convexity of Times in the Network

3.4. Optimization Problem Statements, Procedures

3.4.1. Cost Functions . • • • •

v

10

12

14

16

20

20

21

26

30

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER

IV.

3.5.

3.4.2.

3.4.3.

Convex Cost Functions (g ~ 1) • •

Concave Cost Functions (g > 1)

Application of Open Queueing Network Models •

EFFICIENT NUMERICAL SOLUTION OF QUEUEING NETWORKS • •

4.1. Introduction ••••••••..•••••

4.2. Two Exponential Queues - The General Approach •

4.3. Generalized Erlang Distributions

4.4.

4.5.

Two Queues - One GE, One Exponential

Application to Make General Models

4.5.1. Two Non-Exponential Queues

4.5.2. Multiple Identical Servers

. . . .

. . .

PAGE

31

32

33

35

35

38

39

46

51

51

55

4.5.3. Different Classes of Customers - FCFS • 61

4.5.4. Preemptive Priority Based on Customer Class • 64

4.5.5.

4.5.6.

Non-Premptive Priority Based on Customer Class

4.6.

Other Applications

Application to Computer System Modeling •

General Approaches

Single CPU vs. Two Slower CPU's.

Improvement Obtained by Multitasking

4.6.l.

4.6.2.

4.6.3.

4.6.4.

4.6.5.

Improvement Obtained by Adding or Upgrading CPU's

Summary of Model Results

V. APPROXIMATE ANALYSIS OF CENTRAL SERVER MODELS

5.1. Introduction
5.2. Local Balance ••

vi

67

71

72

72

73

78

78

81

86

86

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER PAGE

VI.

5.3. Norton 1 s Theorem Applied to Central Server Models.

5.3.1. Norton 1 s Theorem: A Discussion

5.3.2. Example • • • • •

5.3.3. Determination of Composite I/O Throughput.

5.4. FCFS Central Server Models with Non-Exponential Service

90

90

92

93

Times • • • •• • • • • • •• 96

5.4.1.

5.4.2.

5.4.3.

Overview

The Composite I/O Distribution

The Algorithm •••••

5.4.4. Example. • • •

5.5. FCFS Central Server Models with Class Dependent Service

Rates

5.5.1. Discussion . .
5.5.2. Algorithms

5.5.3. Example ••
5.6.

5.7.

Approximation for Models with Priority CPU Disciplines

Validation, Implementation and Performance

SIMULATION OF GENERALIZED QUEUEING NETWORKS • • • • • •

6.1. Introduction •••••••••••••

6.2. Confidence Intervals - The Crane-Iglehart Technique.

97

98

102

103

104

104

106

110

111

112

125

125

126

6.3. APLOMB - A Simulator for Closed Queueing Networks • • 127

6.4. Extension to Open Networks, Mixed Networks and Passive

Servers 129

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER

6.5. QUASCI

6.5.1. An Example

VII.

6.5.2. Syntax and Semantics of QUASCI

SUMMARY AND RECOMMENDATIONS

BIBLIOGRAPHY • • • • • • • • • • • •

vii:t

. .

. . . .

PAGE

130

130

134

143

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I

INTRODUCTION

1.1 Design of Computing Systems

Computing facilities are sufficiently complex that we cannot hope

to choose an optimal or near-optimal system without thorough analysis of the

many configurations available. This work presents tools for analysis of

computing systems and a coherent approach to important aspects of choice of

a particular configuration of a computing system. This approach utilizes the

tools we present along with existing techniques. Though we will primarily

consider configuration of new systems the tools and approach we present are

also appropriate to reconfiguration of eXisting systems.

In general we assume that we are given a characterization of the

workload for the proposed system and characterizations of the components

available for the proposed system. Given these characterizations, we will

want to solve one of two problems. Either we will be given constraints

on the cost of the system and required to maximize performance of the system

without violating the cost constraints, or we will be given performance con­

straints and required to minimize cost. In the case of eXisting systems, we

may wish to maximize performance without changing the hardware configuration.

1.2 Performance Measures

Many performance measures are possible, and the measures used may

be dependent on the proposed system. We will assume that the primary measure

of interest is the time required by the system to service a user request and

respond to the user. This response time measure may be refined in a variety

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of ways. We may be interested in only the mean response time, or we may

require some other estimates of the distribution of response times. We

2

may wish to differentiate between users on a political basis, an economic

basis, a basis of mode of access to the system, such as batch or interactive,

or some other basis. Consider as an example a university computation center,

with a wide variety of users and applications. The large majority of users

make very small requests on the system while a few users have applications

which place heavy demands on the system. In order to give good response to

the "average user", priority may be given to the users with small requests,

otherwise the applications with heavy demands clog the system and cause poor

response time for the average user. However, if the small requests are given

too high priority, the users with heavy demands may get very poor response.

This may not be readily apparent from response time measures which do not

distinguish between users. Such a situation will be politically unwise since

the ~sers with heavy demands provide a much larger share of the center's

support than do the users that are given priority. Some users may be willing

to pay more for. computational service in order to get priority service, or

other users may be willing to suffer poor response in order to pay at a

discounted rate. (Service for such users may be scheduled when the system is

not in demand such as late at night or on weekends.) For interactive users,

distinction may be made according to the kind of interaction. We may wish

to give virtually instantaneous response to those using text editors or

computer aided instruction, but be willing to accomodate slower response for

interactions requiring substantial computation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

A measure of secondary importance is the throughput of customers

through the system. Increasing throughput may degrade re~ponse time for some

users. We wish to maximize throughput without unduly sacrificing response time

characteristics. Measures concerned with individual components of the

system are also of importance. Measures concerned with components

exclusively held by a customer may give indications of the sensitivity of

more important measures to fluctuations in the workload. For example, if

such a component is almost always in use, then the response time may be very

sensitive to temporary increases in the workload. If such a component is

little used, it is likely that we can improve response time by increasing the

utilization of that component. We will be concerned with utilizations, queue

lengths and waiting times for exclusively held components.

We will not consider reliability of the system, though this is

clearly an ~mportant performance measure.

1.3 Workload Characterization

We will assume that the workload has been characterized at a fairly

gross level of detail. It is unlikely that the workload can be characterized

precisely until the system is operational, and precise characterization may

nQt be possible even then. Notice that since we cannot provide precise char­

acterization of the workload we can provide only estimates of the performance

of the system; some error is inevitahle and small additional error due to our

analysis must be considered acceptable.

The workload characterization ~ll be based on what we know about

the use of the proposed system. We must apply this knowledge and measure­

ments from existing systems to characterize the workload (B4,B5,J2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

More specifically, we will assume that the workload is characterized

in terms of the arrival rate(s) of user requests (we may distinguish between

users as we did for response times) and in terms of the specific nature of

the requests. Generally a user request will consist of several cycles,

each cycle consisting of a computation part and a data transfer part. During

the computation part of the cycle, a processor uses data found in input

buffers, if the program has input data, and places results in output buffers.

When input buffers become empty or when output buffers are filled the program

requests that data be transferred from secondary storage or to secondary

storage, respectively. It may be possible that, because of multiple buffering,

the program can continue computation while data transfer is taking place. In

this case the two parts of the cycle partially or completely overlap.

For the computation part of the cycle we may wish to distinguish

between different kinds of programs being executed, for example distinguishing

between execution of user programs and execution of different programs provided

by the system such as compilers, loaders and text editors. Studies of existing

systems (J2) show that these different kinds of programs have markedly

different computational characteristics. The two computational characteristics

of primary interest are the distribution of the amount of memory needed by a

program and the distribution of the length of the computation part of the

cycle. Of course the length of the computation will be strongly dependent

on the speed of the memory and processor used. We assume that we can make a

memory and processor independent characterization of the distribution of the

computational period and adjust the distribution with multiplicative factors

dependent on a given processor and a given memory. For the data transfer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

part of the cycle, we may also wish to distinguish Detween the programs

being executed. In particular, the relative frequency of access to different

data files and memory requirements will De dependent on the program which is

executing; other characteristics are less likely to exhibit strong program

dependence. The data transfer part can be characterized by the number of

files and for each file the size, relative access frequency and the

distribution of characters transferred per access. In addition to character­

izations of the parts of the cycle, we assume that we have a characterization

for the distribution of the number of cycles per request. Again, this may

De dependent on the kind of request.

1.4 System Component Characterization

We assume that the system components have been characterized in

terms of capabilities and costs. The components of primary interest are

hardware elements such as memory, central (computational) processors and

file storage (input/output) devices and the operating system, in particular

the schedulers. Software other than the operating system will impact

performance and cost, but we will not take this software into consideration.

Memory characteristics of importance are the access times, the

transfer rates, the quantity, the unit cost, the organization (we may have

several levels of executable memory or a virtual memory system) and the

memory scheduler. The important characteristics of the central processing

units are the number of units, their speeds, their costs and the scheduler.

Usually the scheduler will be a round-robin scheduler which attempts to

share the processors among the programs needing a processor. The scheduler

may give some programs priority over others. In multiple processor systems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

some of the programs may be divided into concurrently executable tasks.

The scheduler may assign these tasks to available processors.

6

For the input/output dev~.ces, a system can be characterized by the

number of devices, the types of devices (drums, disks, tapes, etc.), the

costs, the capacities, the transfer rates, the positioning times, the

rotational delays, the schedulers and organizational considerations including

channels, controllers and/or peripheral processors. These organizational

considerations may be quite complex. Several slow speed devices, such as

card readers or line printers, may be connected to a multiplexor channel which

supports simultaneous transfer to or from several devices. Disk systems are

widely used and have intricate organizations. For example, we may have a

situation where positioning of the disk requires a possession of a channel,

controller and disk to initiate the positioning, but only the disk for the

rest of the positioning operation. All three units are then required for data

transfer. Thus overlap of positioning with data transfer is possible where

multiple disks are connected to a single controller. The disk, scheduler may

attempt to minimize positioning and rotational delays in choosing which

programs to service.

1.5 Difficulty of the Problem

The problem of configuration of computing systems is very complex,

and the complexity of the problem will continue to increase. We cannot

hope for a complete solution to the problem now or in the near future. We

can hope for better understanding of the difficulties involved, and for

tools and theory which will provide guidance where our intuition is too weak.

Much progress has been made and continues to be made in this area, and this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

progress leads to better configurations and improved performance. Our

research makes a substantial contrioution to this progress.

7

Out models, in conjunction with models developed by others, can

consider most of the workload and system characteristics described above.

The primary exception is that we cannot consider general memory hierarchies

at the level of detail considered above.

1.6 Organization of Chapters

In Chapter II we discuss previous work on modeling of computing

systems as queueing networks and analysis of queueing network models, then

summarize the tools we have developed and present an approach to configuration

design using queueing network models. In Chapters III through VI we discuss

our tools in detail.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER II

SUMMARY OF PREVIOUS WORK, NEW RESULTS AND THE GENERAL DESIGN APPROACH

2.1 Previous Work

2.1.1 Queueing Network Models of Computing Systems

Computing systems have become sufficiently complex and varied that

we cannot hope to choose among configurations by actually assembling a

variety of configurations and comparing their performance. We must have

models of computing systems which reflect the possible configurations and

indicate the performance to be expected from a given configuration. Further

these models should be such that configurations can be easily defined and

performance measures can be easily obtained.

Several different authors have proposed models of computing

systems as closed networks of queues at .centra1 processing units and input/

output devices. The earliest work in this area was that of Smith (55) and

Gaver (Gl). Baskett (Bl) studied the effects of different scheduling

disciplines and service distributions in some of these models. Buzen (B6)

called these models "central server models" and used central server models

in the analysis of system bottlenecks. (See Figure 5.1) Foster (F2) has

used central server models along with simulation studies to consider file

placement in memory hierarchies.

More recently Brown (B4) has embedded a central server model

within a queueing network which includes a queue for memory. He demonstrated

that this model could obtain performance measures comparable to those obtained

from empirical studies of a general purpose interactive system. Browne et a1

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

(BS) have used extensions of these models to evaluate and improve the

performance of a large computing system. The results of (B4,BS) and the

approximate analysis techniques discussed below point to the use of approxima­

tion in model solution to avoid some of the approximation previously required

by model assumptions. If we make strong model assumptions to allow exact

solution, then we cannot use the models to study parameters and characteristics

ignored in the model. We may not be able to analyze exactly models which

consider these parameters and characteristics, but if we can get good

approximate analyses, then we will have a basis for evaluating these parameters

and characteristics. Though the performance measures obtained are not exact

for the given model, the trends and effects predicted by the approximate

analysis of these complex models give a picture of the actual system which

is impossible to obtain from simpler models. For example, we must ignore sched­

uling priorities if we wish to apply local oa1ance techniques. (Sec. 2.1.2).

If w~use a locally balanced model we cannot predict the effects of the prior-

ities, but if we approximately analyze a model which includes priorities, we

can predict the effects of different priority schemes. Clearly, more accurate

models will give better predictions than models with assumptions that are

too strong. As the need for more accurate models becomes apparent, two

questions arise: 1) What are the deficiencies in the model and how can they

be alleviated?, and 2) How much error is introduced by approximation in the

solution? These questions cannot be completely answered at this time.

Others have attempted to answer the second question by comparison with exact

or simulation results, and we use this approach also. This is not entirely

satisfactory since this validation may not expose the areas where the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

approximatLons fail. Further research into error bounds for approximations

is needed.

2.1.2 Analysis of Queueing Network Models

Though properties of isolated queues have been studied for most

of this century, analysis of networks of queues is relatively recent.

Jackson (J1) considered analysis of open networks of queues with exponential

service time distributions (D1). Informally, a network is considered to be

open if customers may arrive and depart, and closed if the same customers

remain in the network at all times. Jackson showed that the solutions for

these networks have a "product- form" • By this we mean that the Markovian

state probabilities (DI) can be expressed as a product of terms for each queue

in the network. Such a product form does not exist for arbitrary networks.

Gordon and Newell (G3) showed that similar closed form solutions exist for

closed networks with exponential servers. (See equation 5.1). Though these

product form solutions are easily expressed, direct evaluation of the solutions

for state probabilities and application of the solutions to evaluation of

performance measures is computationally expensive. Buzen (B6) developed

efficient computational techniques for obtaining state probabilities and

performance measures for closed networks with product form solutions.

Chandy (C1) developed the concept of "local balance" and showed that it

could be used to obtain product form solutions for a large class of queueing

networks including those studied by Jackson and Gordon and Newell. This

class also includes some networks with non-exponential service time distribu­

tions and some queueing disciplines other than First Come First Served.

Baskett, Chandy, Muntz and Palacios (B2) used local balance to obtain product

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

form solutions for networks with different classes of customers and customer

dependent behavior. Chandy, Herzog and Woo (C3) developed techniques for

effi.cient parametric analysis of networks in local balance akin to Norton's

Theorem for electrical circuits. They shDwed that for each queue in a general

closed network one can represent the effects of the remainder of the network

oy a ucomposite queue", and that the parameters of the queue of interest may

De varied without affecting the parameters of the composite queue. See

Figures 5.1 and 5.2. A similar result holds for open networks. Reiser and

Kooayshi CRl) extended the results of Baskett et al to more general networks

and developed computational algorithms for these models. Chandy, Howard and

Towsley (C4) developed the concept of "station balance", a sufficient

condition for local balance. They showed that for queues in station balance,

performance criteria such as utilization, queue length distributions and

mean waiting times are independent of the form of the service time distribu­

tion, as long as the service time distributions are differentiable.

Closed form solutions have been very difficult to obtain for

networks which do not have solutions obtainable by local balance techniques.

Wallace and Rosenberg (WI) have applied iterative numerical techniques to

solution of queueing networks. Herzog, Woo and Chandy (HI) have developed

recursive numerical techniques for solution of queueing networks. These

techniques are effective for small networks but require excessive computation

for large or complex networks. Several authors including Gaver eGl),

Baskett (Bl), Shedler (S4) and Curtois and Georges (C8) have applied semi­

Markov techniques to small closed networks. A variety of approximation

techniques have been applied to solution of more general queueing networks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

Gaver and Shedler (G2) and Kobayashi (K3,K4) have applied diffusion

approximations to queueing networks. Decomposition approximation techniques

based on local balance techniques and numerical techniques have been used

by Chandy, Herzog and Woo (C2), Brown (B4) , Keller and Chandy (Kl), Sauer

and Chandy (52) and Williams and Bhandiwad (W2). Simulation techniques

are still the most general; simulation techniques especially applicable to

queueing networks have been developed by Foster, McGehearty, Sauer and

Waggoner (Fl), Crane and Iglehart (C6,C7) and Lavenberg (Ll).

Optimization of queueing networks has been studied by Kleinrock

(K2) and Hogarth (H3).

2.2 Contributions of this Research

In Chapter III we extend the results of Kleinrock and Hogarth to

optimization of a general class of open queueing networks with different

classes of customers. Their results were restricted to networks with all

customers identical. This class includes networks which may be solved using

local balance techniques and some networks with priority queues. We show

that the optimization procedure used by Hogarth may be applied to this class

of networks.

In Chapter IV we apply the numerical solution techniques of Herzog,

Woo and Chandy to several closed queueing networks important in computer system

analysis. Their previous work suggested a partitioning scheme for analysis

of structured Markovian state spaces~ but applied the scheme only to a small

group of models. We show that their scheme may be applied to many general

models and give specific efficient computational algorithms for solution of

these models. These models allow two queue closed networks with general service

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

time distributions, multiple identical servers, multiple classes of customers

and priority queueing disciplines. These models are very important in

approximate solution of more general networks. We demonstrate that these

models are of interest in themselves with a study of effects of parallelism

in central processing units. Multiprocessing is becoming increasingly

common in computer architectures and these models are useful in analysis of

these arch1tectures. As measurement techniques become more refined, the need

for distinguishing between different users and different programs becomes

apparent. Different classes of customers are very useful in developing these

distinctions. The need for priorities is increasing with the complexity of

computing systems. This is especially true in networks of computers, where

each computer is responsible for communication of messages between other

computers, as well as processing of requests assigned to that computer.

These same considerations are important in models with a more

general nebwork structure than that considered in Chapter IV. The solutions

of the models of Chapter IV are used in Chapter V to obtain approximate

solutions for a general class of central server models. Exact solutions for

this class of models are not available. This class includes the characteris~

tics of the models of Chapter IV. Our techniques give exact results for a sub­

eet of this class which can be analyzed by local balance; we validate the

techniques for general models by compa~ison with the results of an extensive

group of simulations. The techniques of Chandy, Herzog and Woo may also be

applied to this class of models, but their techniques require iterative

decomposition analysis for each queue in the network. Our techniques provide

solutions for the entire model in a single step and thus are much more

economical for parametric analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

Crane and Iglehart have provided theorteica1 results showing how

the concept of regeneration pOints can De applied to determine confidence

results for simulations. In Chapter VI we show that these techniques may be

applied to simulations of general queueing networks and discuss the practical

considerations involved. We present a simulation language QUASCI, based on

the language of (F1) , which may be used to describe a large class of general­

ized ~ueueing networks. This language is designed to facilitate application of

the Crane and Iglehart techniques and prevent incorrect application of their

techniques. This language is also well suited for solution packages using

non-simulation techniques; we suggest that this language is appropriate for

description of general models of computing systems. As the need for simula­

tion studies will be with us for an indefinite period of time, we must develop

a sound theoretical basis for simulation study. This theory should help

guarantee that we are simulating the model we think we are simulating, and

give us indications of the accuracy of our results. The simulator we have

constructed and our language, QUASCI, are important early contributions in

this area.

2.3 Parameterization of Central Server Models

Though the queueing network models we consider are very useful in

analysis of computing systems, the problem of determining the parameters of

the queueing network is definitely non-trivial. We briefly consider the

problem of representing a computing system as a central server model.

We assume for ease of exposition that we are modeling an existing

system. We assume that a measurement prone exists within this system and

that we have reduced data obtained from this probe.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

As we will see in Chapter V, a central server model is characterized

by a queue for the central processing unites) (CPU) and several queues for

input/output (I/O) devices. By device we may mean a storage device proper,

a channel, a controller or whatever equipment is most representative of the

data transfer process. Each of these queues will be described in terms of a

queueing discipline, which we assume for now to be First Come First Served,

and a service time distribution. To completely specify the model, we need

also determine the number of programs in the system, and the probabilities

associated ~tn each I/O queue.

The CPU service time distribution can be characterized by the mean

and standard deviation of the time from when a program gains use of the

CPU until the program releases the CPU and makes a request for data transfer.

Notice that we are assuming no overlap of computation with data transfer;

we have already noted that this is not necessarily realistic. If significant

overlap does occur, then we must make a separate analysis of the overlap to

represent the cycle without overlap. See Towsley (Tl) for further considera­

tion of this problem.

Similarly, the I/O service time distributions may be characterized

by the mean and standard deviation of the time from when a program obtains

possession of the device until the program releases the device. Again, our

representation is much simplified and an analysis of I/O subsystems may be

necessary. We may h~ve controllers and disk organizations which allow overlap

of positioning with data transfer. See Browne et al (B5) for further

consideration of this problem.

The probabilities associated with each I/O queue may be determined

by measuring the relative frequency of access to the files located on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

dev~ce or devices represented oy that queue. Finally, we can set the number

of programs in the model to the number of programs in memory. Usually this

value will De studied parametrically, with a range from a low value to the

maximum nunffier of programs which the memory will allow. If such parametric

study is not desired, we may use the mean number of programs in memory during

the measurement period.

We have assumed fairly complete data are available, but we can use

limLted data under certain circumstances. For example, if we only know the

fraction of time the CPU is utilized, the length of the measurement period,

and the number of CPU services during the measurement period, we can estimate

the mean service time by the time the CPU is utilized divided by the number

of requests. We can estimate the form of the distribution from measurements

on other systems with similar applications.

Another area for caution, with any models we might choose, is that

our measurements may be strongly dependent on the time and day they are made.

2.4 An Approach to Configuration of Computing Systems

We propose that the techniques presented here, augmented with the

previously developed techniques mentioned above, provide a basis for a general

approach to selection of computing system configurations. The specific

approach used for a specific system will be strongly dependent on the intended

application of the system, the components available and the budgetary or

performance constraints.

As a first estimate of the configuration, we can use modified

central server models as in Figure 3.2 to study the appropriate choice of

central processing units and input/output devices. We assume memory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

limitations will not. significantly affect system performance when we use

these models. The techniques of Chapter III can be used to determine the

opttmum configuration under these assumptions.

17

Having obtained a first estimate of the appropriate configuration,

we can use more refined models similar to the first estimate and study a

parameter space of these models using the techniques of Chapters IV and V,

of Brown (B4) and of Keller and Chandy (Kl). Since the techniques of

Chapters IV and V are very inexpensive, we can afford to explore the parameter

space thoroughly. Further, our techniques are compatible with those of Brown

and of Keller and Chandy; it should be possible to combine techniques and

study a parameter space of realistic models without prohibitive computational

costs.

Finally, we can assure ourselves that the approximate results are

valid by checking our results with the more expensive iterative approximations

of Chandy, Herzog and Woo (C2) and then obtaining simulation results using

the techniques of Chapter VI. See Figure 2.1.

The language QUASCI provides a convenient vehicle for this entire

process, since it is compatible with non-simulation solution techniques.

It should be possible to implement this language so that the implementation

can have all of these techniques available and choose the solution technique

appropriate to the model or models specified. We should be able to augment

and implement QUASCI so that much of the parameter space searching process

is automated.

Provided a general approach and framework, the computer system

designer can turn attention to the problems of characterizing the workload

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

I \
configuration parameter space

\

I
subspace

\

I
subspace

\

,~

chosen configuration

\

J

Techniques of Chapter III
(heuristic)

\

Space search using techniques of
Chapter V, local balance
(Chapter IV results required)

Space search using more detailed,
more expensive approximations
(Chapter IV results required,
Chapter V techniques useful)

Simulation Study
(Chapter VI techniques)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

of the system, of determining what components are available to handle this

workload and of developing appropriate models to analyze the possible

configurations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C~T~llI

OPTIMIZATION OF QUEUEING NETWORKS WITH DIFFERENT CLASSES OF CUSTOMERS

3.1 Introduction

Queueing network models are useful in the design of communication

ne~orks (K2), computer networks (P1) and computing systems (B4,B6). It is

desirable to find optimal configurations of these models so that we may

attempt to find a near optimal configuration of the system being modeled.

Kleinrock (K2) has considered optimal design of a class of open queueing

networks with all customers having identical behavior. An open queueing

network is one in which customers arrive and depart from the network, as

opposed to a closed network in which the number of customers is constant.

Hogarth (H3) has extended the results of Kleinrock and has also considered

optimal design of closed networks with all customers having identical

behavior.

We will consider optimization of open queueing networks with

different classes of customers. Specifically, we consider minimization of

the time customers spend in the network. We allow a variety of queueing

disciplines at each server, and a general class of service time distributions.

In Section 3.2 we show convexity of waiting time at individual

queues with Poisson arrivals as a function of processing rate at that queue.

Convexity is important in efficiently solving optimization problems. In

Section 3.3 we show convexity of total time spent in an open network with Pois­

son arrivals as a function of processing rates of the queues in the network.

Section 3.4 considers the optimization problem statements and algorithms for

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

solution, and Section 3.5 discusses application of these models.

3.2 Convexity of Waiting Times at Individual Queues

The set of points S in n-dimensional Euclidean space is said to be

convex if for any points x and y in S and any p in the interval [O,l]~

px + (l-p)y is in S. A function f defined on the convex set S is said to be

convex if and only if for any x and y in S and for any p in the interval

[0,1],

f(px + (l-p)y) ~ pf(x) + (l-p)f(y) (3.1)

This is one of several equivalent definitions (W3). We will find another

characterization more useful. If the Hessian of f is defined and positive

semi-definite for all x in S, then f is convex (W3). (The Hessian of f is

the matrix of order n with i,jth element a2f(x)/a~ia~., where~. is the ith
J 1

element of x.)

We will consider six different queueing disciplines; First-Come-

First-Served (FCFS), Infinite Servers (IS), Processor Sharing CPS), Last-

Come-First-Served-Preemptive-Resume (LCFSPR), Preemptive Priority, and

Non-preemptive Priority. (PS is defined as the limiting case of a no overhead

round robin discipline as the quantum goes to zero.) We allow arbitrary class

dependent service time distributions with rational Laplace transforms and

assume Poisson arrival processes with class dependent arrival rates. These

results apply to other queueing disciplines.

Let us consider a single server queue with R classes of customers.

Customers of class r, r = 1, .•• ,R, arrive in a Poisson manner with rate A
R r

and request service with mean s •
r We define A = L Ar as the total arrival

r=l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

~ Ar-rate, and define s = [.' -X- sr as the mean service time at the queue. We
r=t

let P .. AS and p = A S be the overall utiliiation, and the utilization for r . r r

class r customers, respectively. We assume the queue is not saturated, i.e.,

p < 1. We define ~ = I as the processing rate, and ~r = s as the relative
s s

r
processing constant for class r. Customers of class r are processed with

mean rate ~~. Notice that ~ is dimensionless; we assume that if we change r r

the rate of the_server and thus change ~, ~ 'is unaffected.
r

For FCFS queueing discipline, we know from the Khintchine-Po110czek

formula (Ml) that the expected time until a customer begins service is

(3.2)

where C is the coefficient of variation of the service times (the standard

deviation divided by the mean). In our case,

Ili ~ -;2 - 82
ral A r C = ~~---------- (3.3)

i

where ~ is the second moment of the service time distribution for class r.

We assume that C is a constant independent of the rate of the server.

The mean wait time for class r customers, w , is the sum of (3.2)
r

and the mean service time for class r. So we have

w =
ps(1+C 2) + s r 2(1-p) r

=
AS2(1+c2)

+ s
2(1-As) r

A (1+C2)
+

1 (3.4) =
2~(~-A) ~r1J

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

We want to show that wr is a convex function of~. In this case we have a

single dimensional vector space and the only element of the Hessian of w
r

d2Wr is (illZ . Differentiating (3.4) we obtain

= -A(1+C2)(2p-A)
2lJ2 (lJ-A) 2 + -1

lJijT
r

and differentiating again we find

d2W
r
~

=
A (1+c2) «p-A)2 + p(2p-A»

lJ 3 (lJ-A) 3

(3.5)

2
+ ll7

r
(3.6)

1 Since p < 1, A < - = p and (3.6) is positive. Thus the Hessian is positive s

semi-definite and w is convex.
r

If we have an infinite number of servers, each with rate lJ, then

1
w

r
= s =--

r

which is clearly convex.

If the queueing discipline is PS or LCFSPR, then we know (R1)

that the mean queue length for class r, q , is
r

qr = (1 - p)

which we may rewrite as

PrP
+ qr =

(1 - p) Pr

Applying Little's Rule (L3) , we have

qr
w =-

r A r

=~ + s l-p r

(3.7)

(3.8)

(3.9)

(3.10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

'0.,1,.

24

This is equivalent to w for the FCFS case with C = 1; thus w is again
r r

convex.

Now we consider queues with priority queueing disciplines, with

priority based on customer class and highest priority given to the classes

with lowest index. Lt is well known eM1) that for preemptive priority the

waiting time is

+ 1 (3.11)

Here Ci is the coefficient of variation of the class i service time. Letting

"1 p r = pp = - , we rewrite (3.11) as
i 1 \.Ii

1
r-1

lJ (\.I - L P ')
r· i=l i

Taking derivatives, we get

r >'i (l+Ct) r-1

dw -(L lJ2)(2p - 2 L p'- p ')
i=l i=l i r -1 r i + -= r-1 r r-1 dlJ
2 (ll - L P ') 2 (lJ - L p,)2 \.I (ll- L p')2

i=l i i=l i r 1=1 i

and d2w
r

dp2 =

,:, .. ,."~.; .. ,, .. '

r-1 r
(ll - L pt)3 (\.I - L p')3

i=l i i=l i

2 +--------r

L
i=l

(3.12)

(3.13)

(3.14)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

r
Since II > A' .2!.. L pi, the value of (3.14) is positive and w is a convex

i=l r

function of ll.

Again from eM1) we know that the waiting time for non-preemptive

priority is

which we rewrite as

dw r --= djJ

dZW
r

~=

R Ai (l+C~)
-(l: jJ2

i=l i
r-1

r
r pI)

i=l i

r-1
) (211-2 l:

i=l
r

+ _1_
ll·ll r

p'-p'
i r

)

+

2(jJ - l: p')2(jJ - l: p,)2
i=l i i=l i

r-l
(jJ - l: p') 3

i=l i

2
+ 'ii3iI

r

As before we see that; is a convex function of jJ.
r

(3.15)

(3.16)

-1 (3.17) }iZil
r

(3.18)

We have shown for all six disciplines that the waiting times by

class are convex functions of the processing rate. We are also interested in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the waiting time independent of customer class. Again from well known

results (Ml) we know that the expected waiting time, W, is

26

R Ai
w = t - wi

i~l A
(3.19)

R
where A = 2 Aio Since a linear combination of convex functions is also a

i=l

convex function (W3) , w is a convex function of ~o

3.3 Convexity of Times in the Network

We can consider networks of queues of the class described above.

Let N be the number of queues in the network. Class r customers leaving queue

n arrive at queue n' in class r' with probability p() (, f)' n'=l, ••• ,N, nr , n r

r'-l, ••• ,R. Otherwise the customer leaves the network.

Those customers of class r, 1:=1, ••• ,R, which depart queue n, n=l, •.. "N,

in a non-Poisson manner must leave the network when they leave the queue •.

It is well known that the departure processes of customers leaving FCFS

queues having class independent exponential service times are Poisson, as are

the departure processes of class 1 customers leaving a queue with preemptive

priority and exponential service times for class 1 customers. From (MS) we

know that the departure processes of customers leaving IS, PS or LCFSPR queues

are Poisson. Departure processes of other queues and classes of customers we

have considered are not necessarily Poisson. We assume that all customers

arrive from a Poisson source with rate A, and that they arrive at queue n in

class r with probability Pnr'

In addition to these restrictions, we must make restrictions on

feedback of customers in the network. We allow two kinds of subnetworks,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

which we call "Poisson Feed Forward" and "Product Form", and certain inter-

connections of these networks. The Poisson Feed Forward subnetworks are

arbitrary networks as described above which do not have feedback. Figure 3.1

is an example of such a subnetwork. Product Form subnetworks may have only

FCFS queues with class independent exponential service times, IS queues, PS

queues and LCFSPR queues. We may allow arbitrary feedback of customers in

Product Form subnetworks. We call these "Product Form" subnetworks because

the solutions for these subnetworks have a product form (B2). Figure 3.2

is an example of such a subnetwork. Though the arrival processes of customers

at queues in Product Form subnetworks may not be Poisson, we know from eCl)

that the waiting times of customers in such subnetworks will be the same as

if the arrival processes were Poisson. Further, we know from eMS) that the

combined departure process of each class of customers from a Product Form

subnetwork is Poisson. We may allow the combined output of one or more

class~s of customers from a Product Form subnetwork to feed either kind of

subnetwork as long as there is no feedback of customers except within Product

Form subnetworks. We may allow any Poisson outputs from Poisson Feed Forward

networks to feed either kind of subnetwork as long as there is no feedback

of customers except within Product Form subnetworks. For example, we can

allow a network consisting of the networks of Figs. 3.1 and. 3 .. 2 as subnetworks

where the output of the network of Figure 3.2 feeds the network of Figure 3.1.

We are interested in the expected number, enr , of times a queue n is

visited by customers of class r. Following (Rl),- e is defined by NR 'linear
nr

equations of the form

N

enr = Pnr + 1:
n'=l

R

r'!l en'r' p(n'r'),(nr) (3.20)

R
eproduced w

ith perm
ission of the copyright ow

ner. F
urther reproduction prohibited w

ithout perm
ission.

PS

PS

• * 110 I

Preemptive
Priority

Class 1

Figure 3.1

FCFS

Figure 3.2

-
FCFS

P2 1 ... P3 1 , ,

N
CD

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The effective arrival rate of customers of class r at queue n is Ae • nr

29

As an example, consider the network in Figure 3.2. For simplicity,

we assume a single class of customers and omit subscripts indicating customer

class. The probabilities associated with paths not shown are assumed to be

zero. The equations defined by (3.20) are

el = 1 + e2P2,l + e3P3,l

e 2 = el Pl ,2

e 3 = e l Pl ,3

Solving these equations we determine that

e1 = 1/(1 - Pl,2P2,l - Pl,3P3,l)

e2 = P1,2/(l Pl,2P2,1 - P1,3P3,l)

e3 = Pl,3/(l - Pl ,2P2,l - P1 ,3P3,l)·

Clearly the expected total waiting time of a customer at a queue

is the expected number of visits multiplied by the expected waiting time per

visit, and the total time a customer spends in the network is the sum of the

times spent in each queue. So we have

W = r

N

2:
n=l

e w nr nr

where W is the expected total time a customer spends in the network in
r

(3.21)

class r, and w is the waiting time for class r customers at queue n. We nr

let p be the overall processing rate at queue n, and let p be the relative
n nr

processing rate for class r customers at queue n. We let m be the vector

We wish to show that W is a convex function of m.
r

Consider the Hessian of W. For n = l, ••• ,N
r

aw nr ... e --nr djJ
n

(3.22)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a2W r

.a2W ..
. nr 0 .. enr --a"';'1l""2~ ~
n

= 0 , j '" n

30

(3.23}

(3.24)

(The inequality of (3.23) follows immediately from the results of Section 3.2).

So the Hessian of W is positive semi-definite and W is a convex function
r r

of m.

We have treated the general case where customers may change class

when leaving a queue. The restricted case where customers do not change

class is also of interest. In this case we are interested in the time a

class r customer spends in the network, W'. We have
r

W
W' = ___ r_

r N
I Pnr n=l

(3.25)

which is clearly a convex function of m since Wr is'a convex function of m.

Finally, we wish to show that the expected time a customer spends

in the network, W, is a convex function of m. Bull:

R N R
W = r r e w = I w (3.26)

r=l n=l nr nr r=l r

So W is a linear combination of convex functions amd, also a convex function.

3.4 Optimization Problem Statements, Procedures

3.4.1 Cost Functions

Having shown convexity of the various want times, we are now ready

to consider optimization problem statements and s~est procedures for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

solution of the problems. The problems we formulate are instances of general

problems which have been previously solved, so we will not present the

procedures themselves, but will refer the reader to previous work.

We can consider a variety of optimization problems, depending on

the cost functions involved. We restrict attention to a class of continuous

and discrete cost functions based on Grosch's Law as discussed by Bell and

Newell (B3). They suggest that the function

g
C = k 01 (3.27)

n n n

is a good approximation to the cost of a device for queue n, where C is
n

the approximate cost, k is a constant associated with queue n, and g is a
n

constant. It has been suggested (B3) that in most cases g is in the interval

[.5,2], and usually in the interval (1,2). We will assume that g is the same

for all queues in the system, and consider two cases. In Section 3.4.2 we

consider the case where g is not greater than one and in Section 3.4.3 we

consider the case where g is greater than one. In both sections we consider

both continuous and then discrete subcases.

3.4.2 Convex Cost Punctions (g ~ 1)

When g ~ 1, it is easy to show that Cn is a convex function of ~n'

and if we assume that the total cost, C, is the sum of the costs at the

individual queues, then C is a convex function of m. So we have R+2 convex

functions, W, W , r = 1, •.• ,R, and C, defined over the convex set of processing
r R

rates, M. (M = {mlVn ~ > ALe }).
n r=l nr

We now can consider R+2 optimization problems, each one corresponding

to minimization of one of the functions W, Wr , r = 1, ••• ,R, or C over a subset

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

of M. This subset consists of the points in M such that the functions not

being minimized do not exceed some corresponding maximal values. For example,

one such problem would be:

minimize W over the set M

such that W < W , r - 1 R r- r - , ... ,

and C ~ y.

The subset of M constrained in this manner is a convex set (R2). This subset

1s clearly bounded, and so if a feasible solution exists a local minimum

of tbe objective function (W in the example) is also a global minimum.

Thus we can use standard procedures (H3,W3) for solution of these optimization

problems.

These continuous problems are not realistic representations of many

actual systems. Often the choices of processing rates of devices are not

continuous, but discrete. For example, in computer systems one usually has

a choice of a few central processing units (CPUs) of different rates, not a

continuum of choices. Thus the set M in these cases is not convex. However,

we may state the optimization problems in the same manner as before. Further,

most of the techniques for solving the discrete problem, such as branch and

bound techniques (H4), require solution of the continuous problem. So our

results are important in the solution of discrete problems.

3.4.3 Concave Cost Functions (8 > 1)

When g > 1, the cost function C as defined above is not convex, but

concave. (A function f is said to be concave if -f is convex). We may

state the problems of minimizing the times in the network as before, but we

no longer have the property that a local minimum is necessarily a global

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

minimum. This complicates the solution techniques considerably, but existing

techniques (H3) may be applied and our results are necessary for the application

of these techniques. We may solve the continuous forms of these problems

using the iterative linear approximation techniques of Hogarth (H3). To

apply these linear approximation techniques, we must be able to solve the

proBlems of Section 3.4.2 with linear cost functions (g=l). Again, we will

often need to consider discrete cost functions; the solutions of the continuous

problems may be used as input to a branch and bound algorithm.

3.5 Application of Open Queueing Network Models

Open queueing network models such as these have been applied to

design of communications networks, computer networks and computing systems.

Since general results for queueing networks with different classes of customers

have only recently been obtained, the models used have usually assumed that

all customers have identical behavior.

In modeling communication networks (K2) the service devices consider­

ed are the transmission lines. Customers have messages to be transmitted and

lines of different capacities transmit the messages at different rates. The

branching probabilities may be used to represent different routings of messages.

Different customers may require different routings, and we may represent this

by using customer classes.

Queueing network models have found wide application in modeling

computing systems since the early work of Smith (55), Gaver (Gl) and Buzen

(B6). The model in Figure 3.2 is very similar to the central server models

used by Buzen. Here queue 1 represents the CPU and queues 2 and 3 represent

input/output (1/0) devices. Programs arrive at the system, alternately

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

receive service from the CPU and an I/O device, and eventually leave the

system. Typically the CPU will have a round robin scheduling discipline which

we may represent by the PS queueing discipline. Different programs often have

markedly different CPU request distributions (J2), and we can represent this

by· class dependent service times. We let the queueing discipline at the

rIots be FCFS with class independent exponential service times, and let the

branching probabilities be class dependent. These assumptions are also based

on empirical studies (J2). This model assumes that contention for memory is

not a factor in the system, which mayor may not be correct, depending on the

individual system. Similar models (B4,D6, Chapters V, VI) can include memory

contention; it would be desirable to extend the results of this chapter to

such models. (Some of Hogarth's results (H3) are applicable to some such

models with a single class of customers; similar results for multiple-class

models and other more general models would be very useful.)

Models similar to these have also been applied to networks of

computers (PI); these applications combine the computer system models and

communication network models described above.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER IV

EFFICIENT NUMERICAL SOLUTION OF QUEUEING NETWORKS

4.1 Introduction

Queueing network models are used to effectively model the performance

of computing systems (Bl,B4,B6,F2,Gl,S4). Closed form solutions or efficient

numerical solutions for these models have been difficult to obtain except for

models which may be solved by techniques of local balance (B2,C4,Rl). We

consider a general class of continuous transition Markovian models with finite

state spaces (Dl). We will look at two queue models with characteristics of

computing systems such as First-Come-First-Served (FCFS) queueing disciplines,

priority queueing disciplines, non-exponential service time distributions,

customer dependent service distributions, and mUltiple identical servers.

These models are useful by themselves in modeling computing systems; they are

especially useful in determining approximate solutions for more general models

(see Chapter V). We present algorithms for solution of these models and

demonstrate the use of the models in computer system simulation.

Since the models considered have finite state spaces, we can determine

equilibrium state probabilities by solution of the balance equations for this

state space (Dl). If we let PCi) be the equilibrium probability of state i,

i m 1, .•• ,N, and Ai,j be the rate of transitions from state i to state j,

i,j c 1, ••• ,N, then the ith balance equation, i = 1"",N, will be

(4.1)

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In addition to these N equations we know that

pel) + ... + peN) = I (4.2)

If we substitute this equation for one of the balance equations, we can solve

the resulting set of equations for the equilibrium state probabilities. From

the equilibrium state probabilities we can determine model statistics such

as customer throughput, server utilizations, queue lengths and wait times.

In general, the state space may be very large and solutions obtained

by direct numerical techniques may require excessive memory and computation.

Iterative numerical techniques (WI) have been successfully used for models

such as these, but these techniques still require large amounts of memory

and computation. Generally, these techniques will require large amounts of

memory because all equilibrium state probabilities are determined and stored

before model statistics are determined.

Herzog, Chandy and Woo (HI) have developed a general approach to

numer~cal solution of Markovian models with structured state spaces. This

approach determines the equilibrium state probabilities of a small subset of

the state space. From these probabilities the probabilities of the other

states can be directly obtained, if those probabilities are desired. In

practice, the model statistics can be determined in terms of the probabilities

of the states of the subset while the probabilities of these states are

determined. The probabilities of most of the states are neither determined

nor stored. Thus this approach does not require a large amount of memory

compared to other techniques; this approach is also efficient in terms of

computation.

In section 4.2 we illustrate this approach for a very simple model.

In section 4.3 we consider a general representation of a large class of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

queue 1

1
mean iI

1 mean -
III

Figure 4.1

Figure 4.2

Figure 4.3

queue 2

1
mean A

'37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

service time distributions. This representation is appropriate to both the

solution approach and the models of interest. In section 4.4 we illustrate

techniques for more general models. In section 4.5 we apply the approach to

several important classes of models, and in section 4.6 we consider application

to computer system modeling.

4.2 Two Exponential Queues - The General Approach

Consider a model with two FCFS queues, a single class of customers,

and exponential service time distributions. Assume that customers completing

service at one queue always proceed to the other queue. See Figure 4.1. Let

the m~an service at queue 1 be l/~ and the mean service at queue 2 be l/A.

Assume there are N customers in the network. The state of the network can

be determined by the number of customers in the first queue. Let P(i),

i = O, ••• ,n, be the probability of state i. The state transition diagram for

N = 3 is given in Figure 4.2. Let T, U, Q, and W be the throughput, uti1iza-

tion, mean queue length and mean wait time, respectively, of queue. Let C be

the cycle time required for a customer to make a complete cycle through the

ne~ork. The following algorithm will determine P(D), C, T, U, Q, and w.

Other moments of the wait time distribution and the queue length distribution

can be determined in a similar manner. The statistics for queue 2 may be

determined in a similar manner, or derived from the statistics for queue 1.

Algorithm 4.1

1. Initialization

P(D) = 1
P(I) = A/~
s = 1 + A/~
u = A/~
Q = A/~
w = A/~

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

2. Iteration. Do step 2 for n = 2, N

P(i) = «~+~)P(n-l) - AP(n-2»/~ +(Note: this follows directly
5 = 5 + Pen) from balance equation n-l.)
U = U + Pen)
Q = Q + nP(n)
W = W + n~P(n-l)/~

Note: After each application of step 2, we may reclaim the

storage used for P(n-2).

3. Determination of statistics.

P(O) = 1/5
U = UP(O)
T = ~u
C = NIT
~ = QP(O) _

'W = WP(O)/T

Note: Many simplifications of this algorithm are possible. It

is presented in this form for the sake of clarity and so that

extension to more complex models be straightforward. In

particular, note that it will often be desirable for ~ andlor

A to be dependent on u. Note that we may alternatively

calculate W as Q/T (Little's Rule (L3». If ~ and ~ are not

state dependent, then we can easily determine solutions for

N + 1 from the values determined for N; this is significant

in parametric analysis.

4.3 Generalized Erlang Distributions

Erlang developed a distribution form consisting of a sequence of

exponential stages, each of which must be completed by a customer before

proceeding to the next. This form is less skewed then the exponential.

Cox (C5) proposed a generalization of Erlang's form which allows a customer

to bypass the remaining service stages according to a fixed probability

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dependent only on the stage about to be entered. Figure 4.3 illustrates

this form. Assuming that there are K stages, let Pi' i = O, ..• ,K be the

probability of bypassing the remaining stages after completing stage i,

where it is understood that p is the probability of bypassing all stages
o

initially, and that PK is identically 1. Let Pi = I-Pi' i = O, •.• ,K and

40

let llPi be the mean holding time of the ith stage, i = 1, ••• ,K. This form

has the Laplace transform

K
f*(s) = p + L Po

o i=l

i
Pi - l Pi n (pJ./(p j + s»

j=l
(4.3)

Cox showed that this distribution form can represent arbitrary distributions

with rational Laplace transforms, provided that K is sufficiently large and

that we allow the probabilities and holding times to be complex valued.

Though the algorithms we present can be used with this general

form, there are several difficulties:

1) When p ~ 0 the solution techniques may become more complex.
o

As we shall demonstrate, the Cox form is still quite general

when we assume that p is identically zero. We shall make
o

this assumption.

2) It is difficult to apply intuition to complex holding times,

complex probabilities and/or real probabilities outside the

interval [0,1]. Further, we do not know how to simulate non-

standard probabilities. (We will refer to real probabilities

in the interval [0,1] as "standard" probabilities.) Thus we

cannot directly compare analytic results with simulation results

when we allow non-standard probabilities. We shall show that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41
many interesting and important distributions may be represented

by the Cox form even when we only allow standard probabilities.

3. When we wish to represent distributions with small coefficient

of variation, we must use many stages when we use the Cox form

or any form consisting of a network of exponential stages. We

shall discuss what we call "pseudo-PDF' s" which may accurately

approximate distributions with arbitrarily small coefficient of

variation using as few as two exponential stages. By pseudo-PDF

we mean negative valued functions similar to probability density

functions.

We will now discuss in detail the second and then the third problem mentioned

above.

The hyper-exponential distribution (M4) is often used in modeling

service times in computer systems. See Figure 4.4. With two stages, positive

real holding times and standard probabilities, this distribution form allows

arbitrarily large coefficient of variation (the standard deviation divided by

the mean). Additional stages may be used to more accurately reflect the

higher moments of a given distribution. If there are K stages, with standard
K

probabilities qi' such that I qi = 1, and mean holding times l/~i' i=l, ••• ,K
i=l

then the Laplace transform is

K
f*(s) = L qi~i / (~i + s)

i=l
(4.4)

Theorem 4.1: For K = 2,3, a hyper-exponential distribution of the above form

may be represented by a generalized Erlang (GE) distribution

with the same number of stages, the same mean holding times

for corresponding stages, and standard probabilities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.5

1
mean -

lJ1

Figure 4.6

1
lJ 3

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

Proof: We consider the case for K = 3. A similar argument holds for K = 2.

Assume without loss of generality that ~l ~ P2 ~ P3 and that qi > 0,

i = 1,2,3. Let

Pl = ql + (q2P2 + q3P3)/Pl

q2Pl~2 + q3~1~3 - q2~~ - q3~~
P2 =

q2~l~2 + q3Pl P2 - q2P~ - q3P2~3

It is easy to show that Pl and P2. lie in the interval [0,1].

By direct substitution of these values in (4.3) one can obtain an

expression equivalent to (4.4). Thus the GE distribution with.K = 3

is equivalent to the hyper-exponential formulation.

Conjecture: The above result holds for arbitrary K ~ 2.

Many other interesting distributions can be represented by the

restricted GE distribution limited to standard probabilities. For example,

distributions with two or three modes may be represented by distributions

of the form in Figure 4.5. It is clear from the proof of Theorem 4.1 that

the form of Figure 4.5 is equivalent to a GE distribution with standard

probabilities. Of course, Erlang and hypo-exponential (Ml) forms are cases

of the restricted form. Distributions of the form in Figure 4.6 may be

represented by the restricted GE form with standard probabilities if P2 or

Otherwise, the restricted form with real probabilities may be used.

From the above results, it is plausible that arbitrary distributions consisting

of networks of exponential stages may be represented by the Cox form with

real probabilities. Since networks of exponential stages may be used to

represent arbitrary distributions with rational Laplace transforms (Cl),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

correctness of this conjecture would imply that we may restrict the Cox

form to real probabilities and holding times and still be able to represent

arbitrary distributions with rational Laplace transforms.

We now consider some surprising results obtained by using "pseudo

probability density functions" (pseudo-PDF' s). We do not fully understand

these functions or their application, but they seem potentially useful in

computer systems modeling and worthy of further study. A general problem

with any distribution form consisting of exponential stages is that the

minimum obtainable coefficient of variation is 1/1K. Thus many stages must

be used to represent distributions with little variance, and an infinite

number of stages must be used to represent a constant distribution. The

pseudo-PDF's we consider may have arbitrarily small coefficient of variation

with as few as two stages.

Consider a Cox form with K = 2, Po = 0, ~l = ~2 = 2 + 12 and

A graph of this function is shown in Figure 4.7. This function

has "mean" 1 and "variance" of O. It is clearly not a PDF because it is not

strictly non-negative. However, it is like a PDF in that its integral from

zero to infinity is 1. Using this function with algorithm 4.3 we obtained

results nearly identical to those obtained by Gaver (GI) for utilization of

a CPU with constant service times. The maximum disagreement with the results

obtained by Gaver was .004. Using the techniques of Chapter V, we used this

form to analyze more general models with constant CPU service times. The

results of this analysis were in good agreement with simulation results for

CPU utilization, mean and standard deviation of queue length and wait times.

(See Tables 5.1, 5.2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4S

Figure 4.7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

These results are exciting, but pseudo-PDF's must be used with

caution until they are better understood. It is possible to obtain physically

impossible results using the form described above. Consider a model similar

to that of section 4.2 with two customers, a pseudo-PDF for the first queue

service time, and an exponential distribution with mean l/A for the second

queue service time. For the pseudo-PDF, let ~1 = ~2 = 1 and Po = - 12.

This form has mean 2 + 12 and variance O. If A + 1/1:2, it is easily shown

(see Algorithm 4.3) that the utilization of server 1 is

(4.5)

Clearly this value will be greater than 1, a physically impossible situation,

if A is greater than 1/1:2. However disconcerting this may be, it can be

interpreted as a reasonable amount of error. For example, if A = 1, then

the value of (4.5) will be approximately 1.03. Using the analysis of (54) we

find that the correct value for a model with constant service of 2 + 1:2 is

approximately .99. We will not pursue these forms further here, but suggest

that they be further studied in the future.

4.4 Two Queues - One GE, One Exponential

We now illustrate techniques for models with one queue having the

GE form of service distribution and a second queue having an exponential

distribution; otherwise, the model is as in section 4.2. We will often omit

the subscript when referring to Pl' It is straightforward to extend the

algorithm to allow customers to feedback to the queue they are departing from

according to fixed probabilities. We also assume that K = 2; extension to

other values of K is straightforward.

Let the state of the model be represented by the ordered pair (i,n)

where there are n customers in queue 1 and the customer being served is in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

stage i of the service distribution. For notational convenience, let i - 1

when n = O. Figure 4.8 gives the state transition diagram for N = 3.

We present two algorithms; the first determines P(l,N) and P(2,N) and the

second determines P(l,O). Though the second algorithm is preferable for

this model, the techniques of both algorithms are applied to more complex

models. Determination of model statistics is not included, these may be

determined in a straightforward manner similar to Algorithm 4.1.

Figure 4.8 is partitioned into three groups of states by dashed

lines. Algorithm 4.2 "sweeps through" the state diagram according to these

partitions. Step 1 determines values for the states in the top group. Step

2 determines values for the middle group. Step 3 determines values for the

bottom group of states and uses these to determine the model solutions.

Algorithm 4.2 (assume N > 1)

Throughout most of the algorithm we represent state probabilities

as two-element column vectors; at the end of step 3 P(l,N) and P(2,N)

are determined as scalars.

1. Initialization

P(l,N) = (l,O)T
P(2,N) = (O,l)T
P(l,N-l) = (~l/A)P(l,N)
P(2,N-l) = (~2/A)P(2,N) - (p ~l/A)P(l,N)

S = P(l,N) + P(2,N) + P(l,N-1) + P(2,N-l)

2. Iteration. For n = N-2, •.• ,l do step 2.

P(l,i) = (1 + ~1/A)P(1,n+1) - (p ~l/A)P(l,n+2) - (~2/A)P(2,n+2)

P(2,i) = (1 + ~2/A)P(2,n+l) - (p ~l/A)P(l,n+l)
S = S + P(l,n) + P(2,n)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48·

Figure 4.8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Determination of P(l,N), P(2,N) as scalars

P(l,O) = (1 + 11l/X)P(l,l) - (Plll/).)P(1,2) - (1l2/X)P(2,2)

s = s + P(l,O)

D = P(2,1) - (p lll/(ll2 +)'»P(l,l)

49

Note: D is the difference of the value of P(2,l) as determined

from the balance equations for (2,2) and the value of P(2,1)

as determined from the balance equations for (2,1). Thus

the inner product of D and the vector consIsting of the

scalar values of P(l,N) and P(2,N) must be 0.

Solve [~~)x = [~) for x

P(l,N) = l;1 P(2,N) = 1',;2

where I',;i is the ith element of x.

Algorithm 4.3 (assume N > 1)

1. Initialization

P(l,O) = 1 .
P(l,l) = ()./(Pll1 + PUl 1l2/(1l2 + X»)P(l,O)

This expression is obtained from the balance equations for

state (1,0) and (2,1) as follows:

(4.6)

(U 2 +),)P(2,1) = Pll1 P(l,l) (4.7)

dividing each side of (4.7) by 112 +). and substituting into

(4.6) yields

ll2PUl
Pll1P(l,1) + P(l,l) =).P(l,O)

112+).
(4.8)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

collecting terms and dividing by P~l + P~1~2/(~2 + ~)

yields

pel,!) = ~ P(l,O)
P~l + P~l~2/(~2 + ~)

P(2,l) = P~LP(l,l)/(~2 + A)

S = P(l,O) + P(l,l) + P(2,1)

2. Iteration. Do step 2 for n = 2,N-l

50

(4.9)

P(l,n) = (~ + ~l)P(l,n-l) - AP(l,n-2) - ~2~p(2,n-l)/(~2 + A)

P~l + P~l~2/(~2 + A)

This expression is obtained from the balance eauation for

states (l,n-l) and (2,n) as follows

P~lP(l,n) + ~2P(2,n) + XP(l,n-2) = (~ + ~l)P(l,n-l)

(~2 + A)P(2,n) = P~1P(l,n) + AP(2,n-l)

P~l ~
P(2.,n) = ~2+X P(l,n) + 112+A P(2,n-l)

P~1~2 X1l 2
P~lP(l,n) + +X P(l,n) + ~ P(2,n-l) + XP(l,n-2) =

112 ~2

A+~1
P(l,n) = P(l,n-l)

Plll+P1l11l2/(1l2+X)

P(1,n-2)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P(2,n) = (P~lP(l,n) + AP(2,n-l»/(~2 + X)

s = S + P{l,n) + P(2,n)

3. Determination of P(l,O)

P(2,N) = «A + ~l)P(l,N-l) - XP(1,N-2) - XP(2,N-l»/~1

P(2,N} = (P~lP(l,N) + AP(2,N-l»/~2
S = S + P(l,N) + P(2,N)

pel,O) = lIs

4.5 Application to More General Models

51

We now present algorithms for a variety of important models. These

algorithms are not as general as possible. They are intended to illustrate

technique. We have implemented more general versions of each of these

algorithms, in Fortran for a CDC 6600. These algorithms -may' be combined to

consider models ~vith several of the features considered below.

4.5.1 Two Non-Exponential Queues

Consider a two queue network as in Figure 4.1, with N identical

customers, with FCFS disciplines at both queues, and GE distributions at both

queues. Assume that each distribution has two stages, with rates ~l and ~2

and probability PI for queue 1, and with rates Al and A2 and probability ql

for queue 2. As before-, we will often omit the subscripts on p and q. We

may define a state of this system as a triple (i,j,n), where n = O, ••• ,N is

the number of customers in queue 1, i = 1,2 is the service stage of the customer

being served at queue 1, and j = 1,2 is the service stage of the customer

being served at queue 2. For notational convenience, let i be 1 when n = 0,

and let j be 1 when n = N. Let P{i,j,n) be probability of state (i,j,n).

The state transition diagram for N = 3 is given in Figure 4.9.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

Figure 4.9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 4.4 Determination of P(l,l,O) and P(1,2,O)
(assume N > 1)

1. Initialization

P(1,I,O)

P(I,2,O)

P(l,l,l)

::: (l,O)T

= (O,I)T

P1-l l P(2,1,1) = + A P(l,l,l)
1-12 I

A2
P(I,2,1) = P(I,2,O)

P1-II + P1-l l 1-l2/(1-I 2 + A2)

qAI
--------- P(I,I,O)
P1-I l + P1-Il 1-l2/(1-I 2 + A2)

q1-l2AI --------- P(2,1,1)
P1-I l (1-I2 + A2) + P1-I11-l 2

P1-II qAI
P(2,2,1) = 1-12 + A2 P(I,2,1) + 1-12 + A2

s = P(I,I,O)+P(I,2,O)+P(I,I,I)+P(I,2,1)+P(2,1,1)+P(2,2~l)

2. Iteration. Do step 2 for n = 2,3, ••• ,N-I

53

AI+1-I I 1-I 2qA I P(l,l,n) = ---..;:;...~--- P(I,I,n-l) - ----=-....;;;.-- ..
P1-II+P1-l11-l2/(1-I2+AI) (1-I2+AI) P1-I l +P 1-1 11-l 2

1-I2A2 qAI
P(2,I,n-l) - ---~~-- P(2,2,n-l) - ----=-----

(1-1 2+AI) P1-II+P1-l1 1-12 P1-l1+P1-l11-l2/(1-I2+AI)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

P(2,1,n) =
P~l qll . 12

+1 P(l,l,n) + +A P(2,1,n-l) + +1 P(2,2,n-l)
112 1 112 1 lI2 1

P(l,2,n)
~2 + Al

P(1,2,n-l) =
PlIl + PIl11l2/(1l 2 + 1Z)

lIzqll P(2,1,n)
(liZ + 12)P~1 + PlllllZ

qll P(l,l,n-l)
P~l + Plll Il2/(lI2 + A2)

P(2,2,n)
Plll

P(1,2,n) +
qAl P (Z,l ,n) =

~2 + 12 lI2 + 12

s = S + P(l,l,n) + P(2,1,n) + P(I,2,n) + P(2,2,n)

3. Determination of P(l,l,O), P(1,2,O) as scalars

A + ~ qA I P(I,I,N) = 1 ~l I P(l,l,N-l) - III P(Z,I,N-l}

12
- - P(l Z N-2)

~ " I

q1
l - - P(1,1,N-2)

III

P~ ql A
P(2,1,N) = -.! P(l,I,N) + _1 P(Z,I,N-l) + ~ P(2,Z,N-l)

lI2 112 liZ

S = S + P(l,l,N) + P(2,I,N)

qA1
D = P(Z,I,N-l) - + 1 P(I,I,N-l)

~l 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

solve (:~] x ~ [~] for x

P(l,l,O) = ~l P(l,2,0) = ~2

Our computer implementation of this algorithm allows the number of.

stages at each queue to be 1, 2 or 3, independent of the number of stages at

the other queue. In this implementation, the rates of each stage of the

distribution for the second queue may be a function of the number of customers

in that queue; when these rates are not queue length dependent, the program

can determine results for a range of numbers of customers in the model

without redetermining intermediate results.

4.5.2 Multiple Identical Servers

We now consider models with two identical servers at queue 1. The

algorithm we present can be extended to more than two servers. We assume the

service time distribution for queue 1 is of the above form with two stages and

the second queue service distribution is exponential with mean l/A; extension

to both distributions of the Cox form is straightforward. We assume that one

server is idle when only one customer is in queue 1; very minor changes in

the algorithm are required to consider cooperation of the two servers when

there is only one customer in the queue. The state of the model can be

described as a triple (i,j,n) where there are n customers in queue 1, the

customer being served at one server is in stage i, and the customer being

served at the other server is in stage j, where i ~j. For notational

convenience, we have i identically 1 when n = 1, and i and j identically 1

when n = 0. The state transition diagram for N = 3 is given in Figure 4.10.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

Figure 4.10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 4.5 Determination of P(l,l,l) and P(I,2,1)
(assume N > 2)

1. Initialization

T P(1,l,l) = (1,0)
T P(1,2,1) = (0,1)

P~l ~2
P(I,l,O) = -X- P(l,l,l) + ~ P(I,2,1)

A + 112
P(1,2,2) = P(I,2,1)

P~l + 2Plll1l21(2~2 + A)

Plli
-----.....;;;;...---- P(l,l,l)
Plli + 2p~11l2/(2112 + A)

Plll
P(2,2,2) = 2112 + A P(1,2,2)

57

A + III
P(1,1,2) = 2 P(l,l,l)

Plll
112

- -2- P(I,2,2)
Plli

A
- -2- P(l,l,O)

Plli

S = P(l,l,l) + P(I,I,O) + P(I,2,2) + P(2,2,2) + P(I,I,2)

2. Iteration. Do step 2 for n = 3,N-I

A+lli +1l2
P(1,2,n) = P(I,2,n-l)

P~l + 2p~1~2/(2~2 + A)

2112A
---....;:;.----- P(2,2,n-l)
(2J.l2 + 'A)P~1 + 2Plll 1l2

_____ ...I.A~ ___ P(I,2,n-2)

Plll + 2Plll~2/(2112 + A)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P(2,2,n) =

P(1,I,n) =

PJJl ~
2 + ~ P(l,2,n) +

}.I 2 2}.12 + A
P(2,2,n-l)

~ + 2JJl 2 P(l,l,n-l) p1.1l
-

~
- -2- P(1,I,n-2) pJJl

1.12
-2- P(I,2,n) pJJI

s = S + P(l,2,n) + P(2,2,n) + P(l,l,n)

3. Determination of P(l,l,l) and P(l,2,1) as scalars

~+JJ +JJ
P(I,2,N) = 1 2 P(l 2 N-1) JJ ' ,

A - - P(2 2 N-l) JJ ' ,
1 1

- 2p pel, l,N-1) ~ - P(l 2 N-2)
JJ " 1

P(2,2,N)
P1.11 A

= -2 - P(l,2,N) + -2 -- P(2,2,N-l)
lJ2 lJ 2

P(I,I,N)
~ + 2JJl JJ2

= 2 P(l,I,N-l) - -2- P(1,2,N)
PJJl PJJ1

- _A_ P(l 1 N-2)
2PJJ l "

s = s + P(I,2,N) + P(2,2,N) + P(l,l,N)

~ D = P(l,l,N) - -2-- P(I,l,N-l)
JJ l

P(l,l,l) = 1;1

P(l,2,1) = 1;2

58

Our computer implementation of the above algorithm allows A to be a

function of the number of customers in queue 2. It will handle models where

both servers in queue I cooperate when a single customer is present in that

queue.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

Note that algorithm 4.5 is not defined for p = ° because of the

division by 2p~l in step 2. Of course the algorithm will be unstable when p

is near zero. Algorithm 4.5E (Erlang) will handle the case where p is zero.

It would be straightforward to develop an algorithm which determines P(l,l,N),

P(1,2,N) and P(2,2,N) and would not be sensitive to the value of p, but this

would require more memory, especially when extended to multiple classes.

We expect that Algorithm 4.SE could be modified to consider the general case,

but we have not done so. This modified algorithm would likely require memory

comparable to Algorithm 4.5.

Algorithm 4.5E Determination of P(I,l,O)
(assume p = 0, N > 2)

1. Initialization

P(l,l,O) = 1

~ P(I,2,1) = -- P(l,l,O)
~2

P(I,2,2)
~ + ~2

P(2,2,2) = 2~2 + A P(l,2,2)

P2
+ A P(I,2,2)

~l
P(l,l,l) = + A + A P(I,I,O)

~l

5 = P(l,l,O) + P(1,2,l) + P(I,2,2) + P(2,2,2) + P(l,l,l)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

2. Iteration. Do step 2 for n = 3, ••• ,N-l

P(2,2,n)

P(l,l,n-l)
112 A

= ~2-111--+~A P(1,2,n) + 2111 + A P(1,1,n-2)

s = S + P(1,2,n) + P(2,2,n) + P(l,l,n-l)

3. Determination of P(l,I,O)

A
+ 2 /(2 + A) P(2,2,N-I)

III 111112 III

III A
P(2,2,N) = -2 - P(l,2,N) + -2 - P(2,2,N-l)

112 112

112 A
= 2 + A P(1,2,N) + 2 + A P(l,1,N-2)

lli III
P(l,l,N-l)

A P(1,l,N) = -2 - P(l,l,N-l)
III

S = S + P(l,2,N) + P(2,2,N) + P(l,I,N-I) + P(l,l,N)

P(l,l,O) = lIS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

4.5.3 Different Classes of Customers - FCFS

In this section we present an algorithm for models with FCFS discip~

line at queue 1 and 2 classes of customers with class dependent service times.

In subsequent sections we consider models with priority disciplines ~t queue 1.

We assume that queue 2 is such that customers of different classes are served

in parallel. In Algorithm 4.6 we assume that the mean service time for each

class of customers is exponential with mean l/Aj , j=1,2, where j indicates

customer class. We assume that the service time at queue 1 is exponentially

distributed with mean lIP., j=1,2; extension to non-exponential distributions
J

of the Cox form is straightforward. We will assume that there is exactly 1

customer of class 1 in the model; extension to models where customers may change

class when leaving a queue so long as there is at most one class 1 customer at

any time is straightforward. Extension to models with more than one customer of

each class and more than 2 classes is possible but more difficult. Extension

to models with multiple identical servers at queue 1 is straightforward. We

represent a state of the model by an ordered pair (i,n) where n is the number

of customers in queue 1 and i is the number of class 2 customers at the head of

queue 1. When there is no class 1 customer in queue 1, i and n will have the

same value. Figure 4.11 gives the state transition diagram for a model with

4 customers.

Algorithm 4.6 Determination of P(O,O), ••• ,P(O,N-l)
(assume N > 1)

Note that this is the first algorithm we present where the number of

states to be finally determined depends on the number of customers.

The vectors we deal with have length N. We will represent a column

vector with all elements ° except the ith element 1 as ei "

1. Initialization.

P(O,O) = el P(O,l) = e2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

Figure 4.11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A + A
P(l,l) = lp 2 P(O,O)

2

PI
- lJ"P(O,I)

2

5 = P(O,O) + P(O,I) + P(l,l)

2. Iteration. Do step 2 for n = 2, ••• ,N-I

a. P(O,n) = en+l

b. Iteration. Do step 2b for i = l, ••• ,n-l

63

P(i,n) P(i-l,n-l)
A
min(2,n-i) P(i-l,n-2)

P2

c.

d. 5 = 5 + P(O,n) + ••. + P(n,n)

3. Determination of P(O,O), ••• ,P(O,N-I) as scalars

a. P(O,N)
A +p A2

= ~ 2 P(N-I,N-I) - ~ P(N-2,N-2)
I I

5 = 5 + P(O,N)

b. Iteration. Do step 3b for i = 1, ••• ,N-I

A +p . A
P(i,n) = 2 m~n(2'i) P(i-I,N-l) _ min(~,N-i) P(i-I,N-2)

2 2

Di = P(i,n) - Amin~2,N-i) P(i,N-I)
2

5 = 5 + P(i,n)

c. Solve

°
x =

For n = O, •.• ,N-l P(O,n) = ~n+l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

Our computer implementation uses a similar algorithm which solves

for states with all customers in queue 1 and allows queue 1 service distribu-

tions of the Cox form with arbitrary numbers of stages. When we allow non-

exponential distributions at queue 1, an extended version of Algorithm 4.6

will use considerably less memory and be more efficient than the algorithm we

implemented. Our implementation allm'1s Al and A2 to be dependent on the

numbers of customers of each type queue 2.

4.5.4 Preemptive Priority Based on Customer Class

Let queue 1 of the two queue models we have been considering have

a preemptive priority discipline with class 1 customers having priority over

class 2 customers. Let queue 2 have a parallel service discipline as in

section 4.5.3. We assume that there are Nl class 1 customers and N2 class

2 customers, and that all service time distributions are exponential with

means as before. Extension to more classes of customers is straightforward

and extension to non-exponential distributions is also possible. We

represent a state of the model by the ordered pair (n1 ,n2) where ni is the

number of class i customers in queue 1. Figure 4.12 gives the state

transition diagram for Nl = 3 and N2 = 2.

Algorithm 4.7 Determination of P(N1 ,O), ••• ,P(N1 ,N2)
(assume Nl > 0, N2 > 0)

Note that the vectors we deal with will have N2 + 1 elements

1. Initialization

a.

b.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

JJ 1

JJ 1

\.1 1

Figure 4.12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c. Iteration. Do step l.c for n2 = l, ••• ,N2-1

~1 + A2 ~2
P(N1-1,n2) = A p(N1 ,n

2
) - r- P (N1 ,n

2
-1)

1 1

~l A2
P(N1-1,N2) = X- P(NI ,N2) - r- P(Nl ,N2-1)

1 I
d.

Nl
e. S = I

nl=NI-l

2. Iteration. Do step 2 for n1 = N
I
-2, ••• ,O

~I + A2 ~l
A P(n1+I,O) - ~ P(nl +2,O)

1 1
a.

b. Iteration. Do step 2 for n2 = l, ••• ,N2-1

66

~l+A2 A2 1-11
A P(nl +1,n2) - r- P(nl +1,n2-l) - r- P(nl +2,n2)

1 1

c.

d.

3. Determination of P(Nl ,O), ••• ,P(N
l

,N2) as scalars

a. Iteration. Do step 3.a for n2 = 1, .•• ,N2-l

Dn = P(0,n2) -
A2 ~1

A +A + P(0,n2-1)- ~ +A + P(1,n2)
2 1 2 ~2 1 2 ~2

~2
A +A + P(O,n2+l)
1 2 112

DN = P(O,N2) -
A2 III

b. A + P (0 ,N2-l) A + . P(l,N2)
2 1 112 1 ~2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

c. Solve DT
1 °

'T x =
DN ° 2
sT 1

d. For n2 = 0, ••• ,N2 p(N1 ,n2) = 1;n +1
2

Our computer implementation of an algorithm based on 4.7 allows

three classes of customers and assumes exponential distributions. The values

of, Ai' i = 1,2,3, may be dependent on the numbers of customers of each

class in queue 2. Our algorithm decides which states to solve for on the

basis of minimizing the length of the vectors used; it solves for the states

with ni = Ni' where i is the minimum value such that ni = max(nl ,n2,n3).

4.5.5 Non-Preemptive Priority Based on Customer Class

We now consider models similar to those considered in 4.5.4, but

with non-preemptive priority at queue 1. The state of the model is represented

by an ordered triple (i,nl,nZ) where i is the class of the customer being

served at queue 1 and nl and n2 are as before. (Let i = Z when nl = nZ = 0).

Figure 4.13 gives the state transition diagram for Nl = 3 and NZ = 2.

Algorithm 4.8 Determination of P(1,Nl,O),P(1,Nl,1),P(1,N1,2), ••• ,P(1,NlN2)'

P(2,Nl ,N
Z

)

(assume Nl > 1, N2 > 0)

Note the vectors we deal with have length 2N2+l

1. Initialization.

a. P(I,N1,0) = el

For i = 1,2,

For n2 = 1, ••• ,N2,

P(i,N1 ,n2) = e2n2+i-l

R
eproduced w

ith perm
ission of the copyright ow

ner. F
urther reproduction prohibited w

ithout perm
ission.

Al

111

112 1.2 A2 1.2

Al

111

112 A2 112

Al

111

Al Al

111

).2 1.2

Al

III 111

Figure 4.13

III

1.2

III

112'

1.2

>"2

0\
0)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

b.

c. Iteration. Do step 1.c for n2 = 1,N2-1

A2+~1 . ~2
A P(1,N1 ,n2) - ~ P(2,N1 ,n2+1)

1 1

where 0 is the Kronecker o.

d.

e.

2. Iteration. Do step 2 -'for n1 = Nl -2, ••• ,1

A1+A 2+Pl P2 A P(l,n1+1,O) - r- P(2,n1+1,1)
1 1

a.

b. Iteration. Do step 2 for n2 = 1, ••• ,N2-1

Al+A2+~1 ~2
A P(l,n1+1,n2) - r- P(2,n1+1,n2+1)
1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Determination of P(1,N1 ,O), .•. ,P(2,N1 ,N2) as scalars

a. Iteration. Do step 3.a for n2 = 1, ••• ,N2-1

70

112
X +X + P(2,1,n2+l)
1 2 lJ1

b.

c. P(2,O,O)

d. Iteration. Do step 3.d for n2 = 1, .•• ,N2-1

N2

f. S = S + L P(2,O,n2)
n2"0

(1-0 1) X2 . ,n2 X P(2,1,n2-1)
1

(1-01 N)X2 , 2
X P(2,I,N2-1)

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

g. Iteration. Do step 3.g for n2 = 1, .•• ,N2-l

A2 ~2
= P(2,O,n2) - A +A + P(2,O,n2-l) - A A P(2,O

1 2 ~2 1+ 2+~2

r(\ -tl) ...

h.

1. Solve °
·T x =
D2N ° 2

1

for n2 = 1, ••• ,N2 , for i = 1,2, P(i,Nl ,n2) = ~2n2+i-l

The algorithm we implemented allows three classes of customers, and

allows queue length dependent service times for queue 2.

4.5.6 Other Applications

We have applied these techniques to two queue models with random

scheduling at queue 1 or with priority disciplines at both queues, and to

models with more than two queues, but have not implemented computer programs

for these models. Models with priority disciplines at both queues seem

limited in applicability to computer systems. Algorithms for more than two

queues will tend to have large memory requirements, but may still be of some

value.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 Application to Computer System Modeling

4.6.1 General Approaches

72

Many approximate analysis techniques for general models of computing

systems are dependent on solution of the models we have considered (C2,

Chapter V). We now consider direct use of these models in computer system

analysis. The models used here are based on those of Gaver (G1).

We can use these queueing network models to help illustrate some

of the effects of having single or mUltiple processing units, and of having

multitasking when there are multiple processing units. We will restrict

attention to a simple class of models; the analysis can be extended to much

more general models using the techniques of (B4,C2,Chapter V). We will

assume that there is a fixed number of programs in memory and that these

programs have identical behavior. The programs alternately request service

from a central processing unit (CPU) and an input/output (I/O) device. When

there. are no free CPU's, or no free I/O's, programs must wait in the

respective CPU and I/O queues, both with FCFS queueing discipline. We assume

the service times at the I/O devices are exponentially distributed with mean

L, where L is the number of I/O deVices, and that the CPU service times have

a standardized distribution (Chapter V) with mean l/~ and coefficient of

variation C.

The queueing network models we use are those of sections 4.4 and

4.5.2. We let queue 1 represent the CPU queue and let queue 2 represent the

I/O queue. For queue 2 we let A be a function of the length of queue 2,.

with Ai = min(i,L)/L, i = 1, ••• ,N, where N is the number of programs. We

use this representation so that the effective combined rate of the I/O

devices will be 1 when all devices are busy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

In Section 4.6.2 we consider the relative advantages of having a

single CPU of given speed and of having two CPU's half as fast as the single

processor, in section 4.6.3 we study the improvement in throughment obtained

by multitasking with two processors, and in section 4.6.4 we consider improve­

ments in throughput which may be obtained by adding or upgrading CPU's.

4.6.2 Single CPU vs. Two Slower CPU's

It would be reasonable to expect that a single CPU would be better

than two CPU's with half the processing rate of the single CPU, since one

of th.e slower CPU's in the two CPU case would be idle when there is only a

single program needing a CPU. Figure 4.14 shows the ratio of throughput

with one CPU to the throughput with two CPU's half as fast as a function of

p for the fast CPU. Curves for three values of C are given. The number of

customers and the number of I/O's are both held constant at 3. Notice that

there is little difference between one fast CPU and two slower CPU's when

the CPU distribution is skewed. When the distribution is so skewed, a single

CPU may be occupied for long periods by a single program; the other programs

must wait in the CPU queue while the I/O's are idle. In contrast, with

mUltiple CPU's programs with smaller requests for service can continue to

circulate through the system. As C decreases, the ratio increases because

this blocking effect decreases. The blocking effect becomes strong enough

to favor two slower CPU's when the number of programs and I/O's is raised to

5 (Figure 4.15), or when there is contention for I/O devices (Figure 4.16).

Figure 4.17 shows throughput as a function of the number of programs. Curves

are shown for 1 and 2 CPU's. L is the same as the number of programs, ~ for

the fast CPU is 1, ~ for the 2 slow CPU's is .5, and C is 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0
..-I ...
~
...
::s
~ .;;
::s
0
~

~

1.14

1.08

1.02

1 2 3

:3 Programs
:3 I/O's

= .75

C =

Processing Rate (~)

C - Coefficient of Variation

1.

C =

4

Figure 4.14 - Throughput Ratio - 1 Fast/2 Slow CPU's

74

5.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.08

0
.j,J
C\l .x:
.j,J

::J 1.03 p.
.t:: co
=' 0
$.I

e9

1.00

• 98

1 2

5 Programs
5 I/O's

c =

C

.75

1.

C = 5 .

3

Processing Rate

4

Figure 4.15 - Throughput Ratio - 1 Fast/2 SImi CPU's

75

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o
..-I
~

1.07 3 Programs
1 I/O

= 1.

~ 1.00 ~~--------------------~~~~-------------------­Q.

~
o
H

t:

• 92

= 5 •

1 2 3 4 5

Processing Rate

Figure 4.16 - Throughput Ratio - 1 Fast/2 Slow CPU's

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.7

C - 5.

- --- 1 CPU rate 1

.5

2 3 4 5 6 7 8 9 10

Number of Programs and I/O's

Figure 4.17 - Throughput with Skewed CPU Distribution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

4.6.3 Improvement Obtained by Multitasking

When a system has more than one CPU, it may be possible to improve

performance by dividing a program into tasks which may execute in parallel (H3).

Usually there will be interference between the tasks, but for the sake of

illustration we will assume that it is possible for two processors to

cooperate fully on a single program without interference. If processors

always cooperate on a single program without interference, then this is

equivalent to a single CPU with rate equal to the combined rate of the indivi~

dual CPU's. The analysis of Sec. 4.6.2 would be approximate· for-the case.

We assume that processors cooperate only when there is exactly one program

needing a CPU. Figure 4.18 shows the ratio of throughput with and without

cooperation as a function of 2p. Curves are shown for the same distributions

as before, for a system with three programs and three I/O's. Figure 4.19

gives results for a system with 5 programs and 5 I/O's. Notice that the

potential improvement is less; since there are more programs, it is less likely

that there will be only one program needing the CPU. Also notice in both

figures that maximum potential improvement exists when the system is fairly

well balanced. When the system is CPU bound, it is unlikely that only one

program will need a CPU; when the system is I/O bound, improvement in CPU

performance has little overall effect.

4.6.4 Improvement Obtained by Adding or Upgrading CPU's

In general, the rates of CPU's actually obtainable do not increase

continuously, but in discrete steps. For the sake of example, we assume

that we have a choice of four CPU's with mean processing rates (p) 1/3, 1, 3,

and 9, that a system can support at most 2 CPU's, and that CPU's of different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.13

1.03

1 2

3 Programs
3 I/O's

3

Processing Rate

= 5.

= 1.

4

Figure 4.18 - Throughput Ratio - Multi-tasking/Uni-tasking

79

= .75

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.08

1.0

1 2

5 Programs
5 I/O's

---------- C 5.

= 1.

= .75

3 4

Processing Rate

Figure 4.19 - Throughput Ratio - Mu1ti-tasking!Uni-tasking

-so

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

rates may not be used together. Thus a system with a single CPU may increase

processing power by adding a similar CPU, but a system with dual CPU's

must increase power by getting a faster CPU. We would expect that throughput

would increase monotonically as potential processing power is increased,

as in Figure 4.20. In this figure we have 3 programs, 3 I/O's, and C is 5.

Some unexpected behavior does occur under other circumstances. Figure 4.21

is for a system with five customers and one I/O. Replacing two CPU's of rate

3 with one of rate 9 actually decreases throughput; this can be explained by

the effect of the skewed distribution as with Figures 4.15 and 4.16.

Figure 4.22 is for a system with 5 customers, 5 I/O's, and C = .75. Adding a

second CPU of rate 3 or rate 9 produces negligible improvement because it is

unlikely that more than one program will need the CPU at the same time.

These anomalies are not of great significance; since the system is so I/O

bound where the anomalies occur, it is unlikely that one would try to improve

syste~ performance by increasing CPU power.

4.6.5 Summary of Model Results

These models suggest several areas of consideration in choice of

CPU's and CPU Schedulers. From section 4.6.2 we see that the choice of the

number of processors depends heavily on the coefficient of variation of the

distribution of CPU service requests. If several CPU's are used, the system

is well-balanced, the programs can be divided into non-interfering tasks, and

the coefficient of variation of the CPU service distribution is small, then

it may be advantageous to have the CPU's cooperate on a single program rather

than work on separate programs. From section 4.6.3 we see that multi-tasking

may also be desirable when only a single program needs a CPU, if the system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4J
:s

.96

~ .63
:s
o
J.I

r:S

1 1
3"

(2)

3

Processing Rate

3 Programs
3 I/O's

C = 5.

9

Figure 4.20 - Throughput Obtained by Upgrading CPU's

82

(2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.00

...
=' .66

~
o
~

eS (2)

.33

1 1
"3

3

5 Programs
1 I/O

C = 5 .

9

Proce1:ising Rate

Figure 4.21 - Throughput Obtained by Upgrading CPU's

(2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.98

.65

.33

(2)

1 1
3

3

(2)

Processing Rate

-------------- (2)

5 Programs
5 I/O's

C = .75

9

Figure 4.22 - Throughput Obtained by Upgrading CPU's

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

is well balanced and programs may be divided into non-interfering tasks.

Finally, from section 4.6.4 we find that the models of increasing CPU power

agree with intuition as long as the system is not severely" I/O bound.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER V

APPROXIMATE ANALYSIS OF CENTRAL SERVER MODELS

5.1 Introduction

Central server queueing netw·ork. models have been widely used in

the analysis of computing systems (Bl,B6,G2,L2,S4,SS). These models assume

that a fixed number of customers (programs) traverse a closed network consist~

ing of tfte central processor' (CPU·) and tB.e.. input/output (I/O) devices. A

customer alternately receives service from the CPU and one of the I/O devices.

A customer may have to wait in a queue if the server is busy. After completing

service at the CPU, a customer selects an I/O device according to probabilities

associated with that device and the given customer. These probabilities are

independent of the state of the system. The service time of a customer on a

device may depend upon the device, the customer, and the queue lengths for.

that device, but is otherwise independent of the state of the system. Figure

5.1 illustrates a central server model with three I/O devices. Central

server models have also been used as sub-models in detailed models of complex

systems (B4).

Often the models used are such that solutions for the equilibrium

behavior can be determined using the techniques of local balance (B2,Cl).

If the model is to have first come first served (FCFS) queueing diSCiplines,

and if the techniques of local balance are to be used in the solution of the

model, then it must be assumed that, at the servers with FCFS disciplines,

the service distributions are exponential and independent of the customer

being served. Local balance techniques do not allow priority queueing

disCiplines.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

CPU

I/O 3

Figure 5.1

.~ III1D~---~......,
CPU Composite I/O

Figure 5.2

I/O 3

Figure 5.3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

Empirical studies on real computing systems show that CPU service

distributions are often hyper-exponential (the standard deviation is greater

than the mean) and that I/O device service distributions may be hypo­

exponential (the standard deviation is less than the mean). Studies (J2)

have shown that mean service times and service distributions are dependent on

the customer being served. When one makes assumptions that distributions

are exponential and all customers have the same distributions, significant

inaccuracy may be introduced into the model. Clearly, distinctions must be

made between customers if priority CPU distributions are considered. Therefore,

(a) many realistic problems do not satisfy local balance and (b) customer

differentiation is often required for realistic models.

Chandy, Herzog and Woo (e2) have developed accurate approximate

iterative techniques for analysis of general queueing networks with non­

exponential service distributions and distributions dependent on customer

class. The iterative techniques of Wallace and Rosenberg (WI) may also be

used to obtain exact solutions for models with non-exponential distributions.

The techniques of Crane and Iglehart (C6,C7) may be used to obtain confidence

intervals for simulation results for these models and thus to obtain accurate

simulation results. However, these techniques are relatively expensive to

apply,. In many instances it will not be practical to survey a large variety

of models using these techniques.

We present here approximate solution techniques specifically intended

for, but not limited to, central server models of computing systems. Our

techniques are considerably less expensive to apply than the above mentioned

techniques, but are sufficiently accurate for the initial stages of computer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

system design. Our techniques complement the previous techniques in that

ours can be used to study and compare a large variety of models, and then

more accurate, more expensive techniques may be used, to study more carefully,

a small subset of the original group of models.

Section 5.2 summarizes central server models in local balance and

gives examples of inaccuracies of "local balance assumptions." Section 5.3

describes "Norton's Theorem!! on locally balanced queueing networks (C3)

as applied to central server models. Our approximations are based on the

results of Norton's Theorem. Section 5.4 presents the approximations for

models with non-exponential distributions, Section 5.5 presents techniques for

class dependent service distributions, and Section 5.6 presents techniques

for models with priority CPU disciplines based on customer class. In Section

5.7 we compare the results of our techniques with results of simulations; our

techniques are validated by comparison with over 125 different simulations.

5.2 Local Balance

A central server model will be in local balance (B2) if 1) branching

probabilities are dependent only on the device and the customer class, 2) all

queueing disciplines are FCFS, processor sharing (PS) or last come first

served preemptive resume (LCFSPR), 3) servers with FCFS discipline have

exponential distributions independent of customer class (which may depend on

queue length), and 4) servers ~Y.ith PS or LCFSPR disciplines have differentiable

service distributions (which may be dependent on customer class). In these mo­

dels the equilibrium state pro~abilities will have thellproduct form," and are

easily calculated (B2). From the state probabilities one can determine model

statistics such as throughput, server utilization, queue length distributions

and waiting time distributions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following example illustrates the inaccuracy which may be

introduced by using local balance solutions for models violating local

9'0

balance assumptions. This example is by no means a worst case, but illustrates

that results of assuming local balance are likely to be unsatisfactory.

Suppose that a system to be modeled has one I/O device and two

classes of customers, with one customer per class. Further, both service

disciplines are FCFS, all service distributions are exponential, the mean

CPU service time for class one is 2, the mean CPU service time for class two

is .2, and the mean I/O service time for both classes is 1. Suppose we are

interested in the overall throughput of customers through the CPU. This

model is small enough that exact solution of the Markov balance equations is

convenient. From the solution of these equations the throughput is .5941.

If we assume that the results for a similar model with PS CPU discipline will

be close enough, the value we get for throughput will be .84, an error of

more than 40%. If we apply the techniques of Section 5, the value we get

for throughput is .6375, an error of about 7%.

Other examples illustrating the inaccuracy introduced by local

balance assumptions are found in (C2).

5.3 Norton's Theorem Applied to Central Server Models

This section reviews earlier work on Norton's Theorem in subsection

5.3.1, in 5.3.2 a multiclass example is presented, and computational algorithms

are presented in 5.3.3.

5.3.1 Norton's Theorem: A Discussion

Norton's Theorem (C3) may be used to transform a central server

model in local balance into one with a single "composite" I/O which represents

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

the combined effects of the I/O devices in the original model at steady state.

See Figure 5.2. Values determined for equilibrium cycle times, throughputs,

server utilizations, and CPU queue length and waiting time distributions of

the two-queue model will be the same as those calculated for the original

model. The transformation is independent of the CPU parameters, so if a

variety of CPU parameters are to be studied, effort may be saved by applying

Norton's Theorem and studying the reduced model as the CPU parameters are

varied. The approximation technique presented here is also especially well

suited for parametric analysis of the cPU.

In describing Norton's Theorem we shall assume that there are J

classes of customers. The composite I/O processes all classes of customers

in parallel in the two queue, CPU-composite I/O model. The composite I/O

service rate for the first customer of any given class i at any given time

depends upon i and upon the number of customers N. of class j, j = 1, ••. ,J,
J

in the composite I/O queue at that time. These composite I/O service rates

are determined by analyzing a modified version of the original network in

which the CPU has been "shorted," Le., the mean CPU service time for all

customers is set to zero. See Figure 5.3. The composite I/O service rate for

the first customer of any given class i, when there are Nj customers of class

j, j = l, ••• ,J, in the composite I/O queue, is set equal to the throughput

of the customers in class i through the shorted CPU when there is a population

The of N
j

customers of class j, j = 1, ... ,J, in the shorted CPU model.

solutions of the two-queue, CPU-composite I/O model, with the same CPU

parameters as in the original model and these queue-dependent composite I/O

service rates, will be identical to those of the original model for the

equilibrium statistics mentioned above.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-92

5.3.2 Example

Consider the following two-class example of a locally-balanced

central-server model with a processor-shared CPU and two I/Os labeled I and

2, two non-identical customers, one of class A and the other of class B.

The class A customer uses I/O's I and 2 with equal probability, while the

class B customer uses I/O I exclusivelv. The mean service time for each I/O

is independent of customer class. The mean service times for 1/0s I and 2

are I and 2, respectively. All I/O service times have negative-exponential

distributions.

Both class A and B customers are a"ssmned to be serviced in parallel
!:.

in the composite I/O queue. The service rates for class A and class B

customers depend upon the numbers of class A and B customers in the composite

I/O queue. We next discuss the computation of these rates by analyzing the

modified version of the original network in which the CPU has been shorted

(Figure 5.3). When only the class A customer is present in the CPU-shorted

network, the throughput of the class A customer through the shorted CPU is

2/3; when only the class B customer is present the throughput is 1; and when

both are present, the throughputs for classes A and Bare 1/2 and 3/4,

respectively. The composite I/O service rates when there is one customer of

class A and none of class B in the composite I/O queue is set to 2/3 for

class A (and 0 for class B); when there is one customer of class B and none

of class A the rate is set to 1 for class B (and 0 for class A); and when

there is one customer of each class the rates are set to 1/2 for class A and

and 3/4 for class B. The solution of the CPU-coMposite-I/O model with the

same CPU parameters as in the original model and these queue-dependent composite

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

I/O servic~ rates, will be identical to the solutions of the original model

for the equilibrium statistics mentioned above.

5.3.3 Determination of Composite Ilo Throughput

In this section we review computational techniques developed by

BuZeft (B6) and extended by Chandy, Herzog and lioo (C3). We will assume an

arbitrary closed network in local balance with R single server queues

numbered from 1 to R. We assume that J, the number of customers, is 2, and

later consider arbitrary J ~1. We assume that customers cannot change

class, that the mean service rate at queue r for class j is A j' that a class . r

j customer leaving queue r joins queue r' with probability p(rj),(r'j), and

that the number of class j customers at queue r is n
rj

• We must have

We define e 0' the expected number of times a c~stomer of
rJ

class j visits queue r, by J sets of R linear equations of the form

e = rj

R

~ er'jP(r'JO),(rj)
r'=l

(5.1)

For a given j,' {erj } is uniquely determined up to a multiplicative constant.

We know from (B2) that the probability of having nrj customers of

class j at queue r, j = 1,2, r = l, ••• ,R, P(n1l,n12,n2l,n22'."'~1,nR2) is

1
G

R
n

r=l

2
n

j=l
(5.2)

Here G is a normalizing constant chosen so that the probabilities sum to 1.

Of course G is dependent on Nj' j = 1,2, so we will refer to G(Nl ,N2). So

we must have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

R
It

r=l [
n +n J 2 [e J n

rj r! r2 It X& (5.3)
rl j=l rj

The reader should be alarmed by the computation required to determine (5.2)

and (5.3); though we could determine throughput from these expressions, more

efficient algorithms are needed.

It can be shown that the throughput of class I customers through

queue r when there are N., j
J

1,2, customers in the network, Tr1 (Nl ,N2), is

Similarly,

er1G(NI -1,N2)

G(N
I

,N
2

)

So we need only find efficient algorithms for determining G(N1-l,N
2
),

G(N1 ,N2-1) and G(NI ,N2). We now consider an algorithm for determining

G(n1,n2) for n1 = O, .•• ,N1 and n2 = O, ... ,N2.

(5.4)

(5.5)

We let G be an array with first subscript ranging from 0 to N1 and

second subscript ranging from 0 to N2• We will define arrays X , r = 1, ••• ,R
r

and a "convolution" operator "*" such that

The operator n*" is associative and commutative, but for convenience we

determine G as GR, where Gr = Gr _l * X'r' r = 2, ••• ,R, and G1 = Xl' For

r - 1, ••• ,R, n1 = O, ••• ,N1 , n2 = O, ••• ,N
2

, we define

(5.6)

(5.7)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Notice that we do not have to evaluate (5.7) for each element of X. For
r

Xr (nl ,n2>
nl + n2 [~ =:

n1

95

n
1

+ n2 f~;~J = n2
(5.8)

For r = l, .•• ,R, n1 = 0, ••• ,N1 , n2 = 0, •.• ,N2

n1 n2
G (n1,n2) = ~ l Gr_1(i1,i2)Xr(n1-i1,n2-i2) (5.9)

r i =0 i =0
1 2

We now apply these algorithms to the example of Section 5.3.2. We let class

A correspond to class 1 and class B correspond to class 2. So we have

P11 = P21 = .5, P12 = 1, P22 = 0, ~11 = ~12 = 1 and P21 = ~22 = .5. We

can let erj = Prj' Then

G1 = Xl =(.; i)

[
1.1

1·1 + .5-1
1-0 + 1-1 1
1·0 + I-I + .5-0 + 1·1

= (1~5 i)
R

If we let T
j

(n1,n2) = ~ Tr .(n1 ,n2), then
n=l J

1 2
= 1.5 = "3

1
T1 (1,1) = "2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

When j ~ 1, then (5.7) and (5.9) become

xr (nl ,n2,···,n
j

) =' [n1 +n2+· .. +njJ (Prl]n
1

(Pr2jn
2

••• (:&Jn
j

" nl n2•• .nj rl r2 rj (5.10)

and

(5.11)

These algorithms also apply to networks with queue length .dependent

s'ervice rates.

Assume queue r is FCFS with queue length dependent service rates.

Let A(n) be the rate with n customers in the queue. (Queue length dependent

service rates are useful for representing mUltiple servers .at a single queue.

For example, if we have k servers each with rate }.I, we let A(n) = min(n,k)}.I.)

We can let

(5.12)

If we define X as in (5.12), then G and the throughput will be as before.
r

5.4 FCFS Central Server Models with Non-Exponential Service Times

We first discuss the overall technique generally (5.4.1), then

study composite I/O representations (5.4.2), present the detailed algorithm

(5.4.3), and finally work out an example (5.4.4).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97.

5.4.1 Overview

We now restrict our attention to central server models with all

customers identical, FCFS disciplines at all servers, and arbitrary service

distributions having rational Laplace transforms. For sake of discussion,

we will assume that the system being modeled has a single CPU. These techniques

have also been applied to models with multiple identical CPU's. Even though

this class of models is not in local balance except when all service distribu­

tions are exponential, we shall apply Norton's Theorem and show that the

composite I/O model yields solutions close to those of the original model.

(In making the composite I/O transformation we assume that the I/O devices

have exponential distributions with the same means as the actual distributions.

See example below.) Chandy, Herzog and Woo (C2) use an approximate application

of~Norton's Theorem in their iterative method. In order to compensate for

the inaccuracy introduced, we adjust .the distributions for the composite I/O

to reflect the non-exponential character of the actual distributions.

After applying Norton's Theorem and adjusting the distributions, we

have a central server model with a single composite I/O, with both service

distributions non-exponential. This model is solved by an efficient recursive

technique which is an application of the technique developed by Herzog, Woo

and Chandy (HI). Their technique assumes distributions of the generalized

Erlang form developed by Cox (CS). This generalized form includes arbitrary

distributions with rational Laplace transform. Our technique assumes that

both the CPU and the I/O distributions are of this general form. Details of

our two queue analysis are given in Chapter IV.

Our adjustment for the non-exponential nature of the I/O distribu­

ti~nS is simple and effective. More sophisticated adjustments could potentially

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

increase the accuracy of the final results. We characterize each I/O

distriBution by its mean and coefficient of variation (standard deviation

divided by the mean). For the means of the composite I/O distributions we

use the queue length dependent values as shown earlier. We assume that the

composite I/O coefficient of variation is the weighted sum of the coefficients

of variation of the individual distributions, with the weights being the I/O

branching probabilities. The composite I/O coefficient of variation is a

constant, independent of queue length. Of course, the mean and coefficient

of Variation do not completely specify the distribution. If the composite

I/O coefficient of variation is greater than one, we assume that the composite

I/O service time is a standard two stage hyper-exponential as in Figure 5.4.

If the coefficient of variation is one, we assume the service time is

exponential. If the coefficient of variation is less than one, we assume

the service time is of the generalized Erlang form with the minimum number of

stages necessary to obtain the given coefficient of variation, all stages

having the same mean, and all branching probabilities zero, with the possible

exception of the branch after the first stage, as in Figure 5.5.

5.4.2 The CompOSite I/O Distribution

We desire that the composite I/O distribution represent the aggregate

of all the individual I/O distributions. Intuitively, we expect the distribu­

tion of a given I/O to influence the composite I/O distribution more than

distributions of other I/Os, if the given I/O processes more customers than

other I/Os. We decided to restrict attention to the first two moments to keep

computation simple. The means of composite I/O service times are obtained

by aggregating individual I/O mean service times via Norton's Theorem. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

2

Figure 5.4

...
1 2 3 n-1 n

Figure 5.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

composite coefficient of variation is obtained by aggregating individual

coefficients of variation, weighting each I/O by its branching probability

since I/O branching probabilities are ~irectly proportional to I/O through-

puts. Note tnat though the mean composite service time is queue-length

dependent, the coefficient of variation is not dependent on queue length.

Note also that if all the I/Os have the same coefficient of variation, then

the composite I/O will have that coefficient of variation too.

The first two moments do not completely specify a distribution. We

decided to model composite service times using either two-stage hyper-

exponential (Figure 4.4) or generalized Erlang (Figure 4.5) random variables

since these are common ways of representing service times in computing systems.

Note that the particular forms of the hyper-exponential and generalized Erlang

random variables are such that the first two moments uniquely specify the

distributions. The selection of these particular composite I/O distributions

were made with modeling convenience and reasonability in mind; clearly other

choices could also have been made. However, note that if the original model

satisfies local balance, then our technique gives exact results, since the

composite I/O distribution obtained via our technique is the same as that

obtained via Norton's Theorem.

The Hyper-Exponential

Let k be the coefficient of variation of the composite I/O. We
c

shall use a standard hyper-exponential random variable to model composite

I/O service times if k > 1. The relationship between k and parameter p
c c

(Figure 5.4) of the hyper-exponential is shown below:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p =
2(k2 + 1) c

101

(5.13)

Note that k uniquely specifies p. The means for each stage of this hyper­
c

exponential are uniquely specified by p and the mean composite service time.

mean composite service time
Mean of stage 1 = 2p

Mean of stage 2 = mean composite service time
2 (l-p)

(5.14)

(5.15)

Generalized Erlang

Consider the generalized Erlang (Figure 5.5) with n stages,

n = 2,3,4, •••• After a customer completes the first stage, he may finish

service with probability p, or he may continue through the remaining n - 1

stages with probability l-p. All stages have the same mean time, and all

stage holding times are independent exponential random variables. By varying

p from 0 to 1 the coefficient of variation ranges from l/In to 1. We wish

to keep the number of stages small to minimize computation. Hence, we shall

use n stages if and only if, l/{n-l > kc ~ l/~. The value of n is directly

determined from kc ' nand kc together uniquely specify p. See equation (5.16)

below. The means for each stage are uniquely specified by n, k , p and the c

means of the composite 1/0 service times.

2nk2 + n-2 - {n2+4 - 4nk2
c

p = --~--------------------
2(k2 + 1) (n-l)

c

Mean of each stage mean composite service time
n - p(n-l)

(5.16)

(5.17)

In conclusion, the generalized Erlang and hyper-exponential random

variables shown in Figures 5.4 and 5.5, are completely specified by the first

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

two moments, and have a wide range of coefficients of variation. The

parameters p are independent of composite I/O mean service times and the mean

times for all stages in both distributions are directly proportional to the

composite 1./0 mean service time; this simple relationship is an advantage

in modeling queue-dependent service rates.

5.4.3 The Algorithm

We now present the algorithm after explaining some notation. Let

there be R I/O queues indexed 1, •.• ,r, ••• ,R. We shall use the subscript r

to denote the rth I/O in the original model and the subscript c to denote

the composite I/O in the CPU-composite-I/O model. Let p be the probability
r

that a customer branches to the rth I/O device after finishing CPU service.

Let k.denote the coefficient of variation: kc for the composite I/O and kr

for the rth I/O device. We shall use the subscript 0 (zero) for the CPU. Let

Ur be the utilization and tr the throughput for the rth queue, r=O,l, .•• ,R.

Let ~r be the service rate for the rth I/O device. Let q and wbe the mean

CPU queue length and wait times and let a and a be the corresponding q w

standard deviations. Let C be the cycle time; C is very important since

response time in the computer system will be dependent on C.

ALGORITHM 5.1

Step 1. Composite I/O Service Rates

Consider the given (non-locally-balanced) model. Construct the

shorted-CPU model in which all I/O service times are assumed to be independent

exponential random variables and the CPU service time is set to zero. The

shorted-CPU model satisfies local balance and can be analyzed easily.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Determine queue-dependent composite I/O service rates by analyzing the

shorted-CPU model.

Step 2. Composite I/O Coefficient of Variation

Compute k = c

R

L
r=l

k • p r r

Step 3. Determine exponential stage representations for composite I/O

service times from k and composite I/O mean service times. c

If k > 1 c use standard hyper-exponential random variable. (Fig. 5.4)

If k = 1 c use exponential random variable

If k < 1
c use generalized Erlang random variable. (Fig. 5.5)

Step 4. Solve the two queue, CPU-composite I/O model.

103

The CPU parameters in this model are set to the same values as in

the original model. The composite I/O parameters are completely and uniquely

specified by step 3. The two-queue model is completely specified. Analyze

this model to determine C, UO' to' q, 0q' w, and ow'

Step 5. I/O Utilizations

Compute t = t x p for r = l, ••• ,R r o r

Ur = t /A r r for r = 1, ••• ,R

stop.

5.4.4 Example

Consider a two I/O model with 2 customers where I/O 1 has an

exponential service time with mean 4. I/O 2 has a generalized Er1angian

service time with a coefficient of variation of .414 and mean 2 and the CPU

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

has a standard hyper-exponential service time with a coefficient of variation

of 2 and a mean of 2. Customers use each I/O with equal prooability. We

shall now follow through the five steps of the algorithm.

Step 1. The composite I/O service rates (from Section 5.3.3) when there are

j customers, j = 1,2, in the composite I/O queue are 1/3 and 3/7~ respectively.

Step 2.

Step 3.

k = (0.5 x 1.0) + (0.5 x 0.414) = 0.707
c

Since k < 1 the generalized Er1ang representation is used. c In

this case n will be 2 and p will be zero. (The rate for each stage is clearly

twice the composite I/O service rate.)

Step 4. We now have a two-queue model where the CPU service time is a two-

stage hyper-exponential and the composite I/O service time is a two-stage

Erlang. The balance equations for the resulting Markov states are solved

to obtain C = 6.99, Uo = .571, to = .286, qo = .837, Wo = 2.93

Step 5. tl = to x 0.5 = .143, t2 = to x 0.5 = .143

U1 = t l /A1 = .571, U2 = t21A2 = .286

stop.

5.5 rCFS Central Server Models with Class Dependent Service Rates

This section is divided into three subsections. In 5.5.1 we discuss

the technique generally, in 5.5.2, the algorithm is presented and an example

is worked out in 5.5.3.

5.5.1 Discussion

In this section, we restrict ourselves to models with several classes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

of customers, FCFS, all service distributions exponential, all 1/0 service

rates independent of customer class, and the CPU service rates dependent on

customer class. The assumption of class independent I/O service rates can be

justified by observing that the largest portion of most I/O services is spent

on primarily program independent operations such as acquiring channels,

positioning disk arms, and waiting for device rotation. The techniques

presented here have been extended to non-exponential CPU distributions and

can also easily be extended to non-exponential I/O distributions. They are

extended to priority disciplines in the next section, using the techniques

of the previous section. Our techniques may also be extended to other, more

general models.

Multiple classes severely complicate analysis. Even the reduced model

obtained by applying the Norton's Theorem approximation to the I/O subnetwork

is difficult to analyze. As the number of classes and/or the numbers of

customers per class attain even moderate values, e.g., 4, the analysis

becomes too complex to be of practical value.

To reduce the complexity of analysis, we transform the more general

original model to an approximately equivalent one with only two classes of

customers: a designated class with only one customer and a composite class

representing all of the other customers in the network. This further reduced

model can be analyzed relatively easily, by applying the Norton's Theorem

approximation. We designate each class in the original model and in turn

analyz~ the corresponding reduced model, thus we obtain approximate values

for the interesting statistics by each customer class in the original model.

In transforming the original model to the one with only two classes,

the customer of the designated class is given the same I/O branching

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

probabilities and CPU service distribution as in tbe original model. For

each I/O device, the composite class branching probability is determined

as a weighted sum of tbe branching probabilities of the classes co-

alescing from the original model. The weights used are the relative

106

througbputs of the corresponding customers in a model identical to the original

model, except that the CPU is processor-shared; this PS model satisfies local

balance and is easily analyzed. The CPU service distribution for the

composite class is chosen to be the standard two stage hyper-exponential

distribution with mean and second moment determined from weighted sums of the

means and second moments of the CPU service distributions of the classes

being coalesced from the original model.

After this transformation is applied, the Norton's Theorem approxima­

tion is applied. The resulting model, with the composite class and composite

I/O queue is analyzed by techniques similar to those used in Section 5.4.

5.5.2 Algorithms

In this subsection we describe two algorithms, the main program,

algorithm 5.2, is presented in 5.2.1., and a subprogram, algorithm 5.3, which

approximates an N-class problem by a two-class problem, is in 5.5.2.2.

5.5.2.1 ALGORITHM 5.2

Assume that there are N classes of customers. For purposes of

exposition, we assume (without loss of generality) that there is only one

customer in each class.

Step 1. For each class i in turn, i = 1, ••• ,N, do steps 2-i through 5-i and

thus compute the throughputs and utilizations for all queues for class i, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

also the means and variances of CPU queue lengths and wait times for class i.

The algorithm stops after all N classes have been considered.

Step 2-i. Use algorithm 5.3 to approximate the given N-class problem by a

two-class problem where the two classes are the designated class and a

"composite class" which represents all customers except those in the designated

class. We shall refer to the original central-server model as model A and

this two-class approximation as model B. Note that B and A have exactly

the same central-server network structure; only the number of classes is

changed. The parameters for the designated class are the same in A and B.

CPU service time for the composite class is assumed to be hyperexponential in

B. I/O service times are identical in A and B.

Step 3-i. Compute composite I/O service rates for the designated and composite

classes of model B in the usual manner (i.e., by computing throughputs

through the shorted CPU of model B and assuming all I/O' service times are

exponential).

Step 4-i. Consider the resulting two-queue, two-class network consisting of

the CPU and I/O queues and the designated and composite classes; we shall

refer to this network as model C. Solve Markov balance equations to determine

steady-state probabilities of model C. Determine CPU throughput t Oi '

utilization UOi ' mean and variance of CPU queue length and wait time for

designated class i from the equilibrium state probabilities of model C.

(Statistics for the composite class are not computed).

Step 5-i. Determine I/O throughputs t ri , and utilizations Uri' for each I/O

r, r = 1, ••• ,R, for the designated class i. Let Pri be the probability

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that a customer of class i branches to I/O r after CPU service. Then

and

tri = tOi x Pri

Uri = tti/1i

for r = 1, ••• ,R

for r = 1, ••• ,R

Statistics for the composite class are not computed.

Figure 5.6 shows the relationships between models A, Band C.

5.5.2.2 ALGORITHM 5.3

For determining CPU service distributions and I/O branching p

probabilities for the coalesced class.

108

Step 1. Consider a network identical to the given network (model A) except

that the CPU is processor-shared; we shall refer to this network as model D.

Model D satisfies local balance and is easily analyzab1e. (See Section 5.3.3.)

For the purposes of Algorithm 5.3 only, we shall approximate the CPU

throughputs of model A by those of model D. Compute ti' the CPU throughput

of class j in model D, for j = 1, ••• ,N.

Step 2. Compute the conditional probability Vj that a random customer who

finishes I/O service in model D is in class j given that he is not in

designated class i.

L
h~i

t'
h

for j I i

= 0 for j = i

Step 3. Compute the first two moments of the CPU service time for the

composite class.
n n Let EIS] and E[Sj] be the nth moment of the CPU service

time for the coalesced class and class j respectively, j = 1, ••• ,N. Then:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MODEL A

Given network

N classes

-.. - -- ---- _____ Transformation achieved
by algorithm 5. 3

... "
MODEL B

Given network

2 customer classes

~-------
,,[,

MODEL C

2 queue - network

2 customer classes

______ Transformation achieved via
composite I/O technique

FIGURE 5.6

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

ErS] =

Represent CPU service time for the composite class by a standard nyper-

exponential random variable (Figure 5.4) with the above first two moments.

Step 4. Approximate I/O branching probabilities for the composite class by

Stop.

5.5.3 Example

Consider a model with two I/Os and three classes of customers. The

mean service times for I/O 1 and I/O 2 are both 2 time units. The branching

probabilities for the first I/O are 1.,0, .5, for classes 1, 2 and 3,

respectively, and 0, 1., .5, for the second I/O. CPU mean times for classes

1,2,3 are 1,2,3, respectively. All service times are assumed to be indepen~

dent, exponential random variables.

ALGORITHM 5.2 - Step 1. We shall carry out steps 2-i through 5-i, for i=l.

We first call Algorithm 5.3 to obtain the 2-class approximation.

ALGORITHM 5.3 - Step 1. Analyzing model D we get

ti = .159 ti = .111

ALGORITHM 5.3 - Step 2. VI = 0, V2 = .589, V3 = .411

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

111

ALGORITHM 5.3 - Step 3. E[S] = (2 x .589) + (3 x .411) = 2.41

E[S2] = (8 x .589) + (18 x .411) = 12.12

The hyper-exponential representation for the CPU service time has parameter

p = 0.398.

ALGORITHM 5.3 - Step 4.

P = (0 x .589) + (.5 x .411) = .206 lc

P2c = (1 x .589) + (.5 x .411) = .795

We now have a two-class problem the CPU service time for the composite

class is hyper-exponential with mean 2.41 and I/O branching probabilities for

device 1 is .206 and for device 2 is .795.

ALGORITHM 5.2 - Step 3.1. The composite I/O service rates for class 1 and

the composLte class for different queue conditions are shown below.

Total Total rate
Number of Number of composite rate for for composite

class. 1 customers class customers class 1 class

1 0 .5 0

0 1 0 .5

0 2 0 .598

1 1 .415 .415

1 2 .386 .556

ALGORITHM 5.2 - Step 4.1. Model C is analyzed to obtain tOl = .173, U01=.173,

3.09.

5.6 Approximations for Models with Priority CPU Disciplines

Now we consider central server models with the same characteristics

as in the previous section, except that the CPU discipline will be a priority

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

discipline with priority based on customer class. We will restrict considera­

tion to preemptive and non-preemptive priority based on customer class, but

these techniques are directly applicable to other priority disciplines.

Again, we do not try to apply Norton's Theorem approximation

directly, but rather combine the classes of customers in the original model

to simplify the analysis. The reduced model we consider has three classes of

customers: a designated class, which we do not restrict to a single customer

as in the FCFS model, and two compQsite classes, one of a higher priority

than the designated class, and one of lower priority. The combination of

classes into these three classes is similar to the technique used in the

previous section. The coalescing is done separately for each of the two

composite classes. The CPU distribution used for each of the composite

classes is an exponential distribution with mean taken as the weighted sum of

the means of the classes coalescing into that composite class. The

weights are the relative throughputs of classes within the composite class.

In other respects, the analysis is essentially the same as that already

described.

5.7 Validation, Implementation and Performance

We have constructed a simulator which employs the confidence

interval techniques of Crane and Iglehart ~6,C7). This simulator can be used

with general queueing networks with a variety of'disciplines, hetergeneous,

classes of customers, and generalized Erlang service distributions. The

simulator determines confidence intervals during the simulation, and continues

the simulation until satisfactory intervals are obtained. Details of the

simulator are found in Chapter VI. This simulator has been used to determine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

results for the various models described below. Crane and Iglehart show how

to obtain confidence intervals for results of simulations of Markov models.

In general, the confidence intervals we obtained are as follows: For

utilization, the 90% intervals are at most .05 wide. For those cases where

queue lengths and waiting times are obtained, the, the 90% intervals for the

means are at most + 6% of the point estimates, and the 80% intervals for the

standard deviations are at most + 16% of the point estimates. In many of the

cases the intervals are considerably tighter. However, we were unable to

obtain confidence intervals for the FCFS models with 6 classes of customers.

For these models the state space is very large, and we were unable to select

a state that the system would return to frequently; this is necessary to

apply the Crane and Iglehart techniques. We used predetermined simulation

run lengths for the 6 class FCFS models, with the run lengths based on

experience with 4 class FCFS models. For the models with mUltiple CPU's

or constant service times we used simulators constructed in QSIM (F1,M2).

We have implemented our approximation techniques as a set of Fortran

programs for a CDC 6600. Over 125 models have been validated to assure a

thorough sampling of problems.

56 of the models validated are of the class described in Section 5.4,

i.e., single class, non-exponential. In general the models were fairly well

balanced, but some of the models were strongly CPU bound or I/O bound.

See Table 5.1. Error tolerances were determined in the manner used in (5)

for CPU utilizations, CPU queue lengths and CPU waiting times. Results are

said to be within a tolerance z if 1) the difference in utilization is not

more than z, 2) the differences in the means and standard deviations of queue

R
eproduced w

ith perm
ission of the copyright ow

ner. F
urther reproduction prohibited w

ithout perm
ission.

TABLE - NON-EXPONENTIAL MODEL DESCRIPTIONS

MODEL NO. CUST. NO. CPUS CPU I/O 1151 110 216' 110 3nl 110 .181 MEAN C.V. PROB MEAN C.Y. PROB MEAN C.V • PROB MEAN C.y. PROB MIA .. C.V.
1 2 2 2.000 2.ll", • 500 2.000 1.000 .250 1.000 1.000 .250 .250 1.000 2 • 2 2.000 2.1310 .500 2.000 1.000 .250 1.000 1.000 .250 .250 1.000
1 8 2 2.000 2.1310 .500 2.000 1.000 .250 1.000 1.000 .250 .250 1.000 4 12 2 2.000 2.1310 .500 2.000 1.000 .250 1.000 1.000 .250 .250 1.000 S 2 1 1.000 0.000 .500 2.000 1.000 .250 1.000 1.000 .250 .250 1.000
6 lit 1 1.000 0.000 .500 2.000 1.000 .250 1.000 1.000 .250 .250 1.000 ., 8 1 1.000 0.000 .500 2.000 1.000 .250 1.000 1.000 .250 .250 1.000 8 12 1 1.000 0.000 .500 2.000 1.000 .250 1.000 1.000 .250 .250 1.000
9 2 I 1.000 2.134 .500 2.000 1.000 .250 1.000 1.00C .250 .250 1.000

10 10 1 1.000 2.134 .500 2.000 1.000 .250 1.000 1.000 .250 .2S0 1.000
II 8 1 1.000 2.134 .500 2.000 1.000 .250 1.000 1.000 .250 .250 1.000
12 12 1 1.000 2.134 .500 2.000 1.000 .250 1.000 1.000 .250 .250 1.000 13 2 1 1.000 1.000 .SOO 2.000 .707 • .150 1.000 .707 .250 .250 .707 110 4 I 1.000 1.000 .500 2.000 .707 .250 1.000 .707 .250 .250 .707 IS 8 1 1.000 1.000 .500 2.000 .707 .250 1.000 .707 .250 .250 .707 16 12 1 1.000 1.000 .SOO 2.000 .707 .250 1.000 .707 .250 .250 .707
11 2 I 1.000 "2.134 .500 2.000 .707 .250 1.000 .707 .250 .250 .707
18 4 1 1.000 2.13 .. .500 2.000 .707 .~50 1.000 .707 .250 .2511 .707
Ii 8 1 1.000 2.13 .. .500 2.000 .707 .2S0 1.000 .707 .250 .250 .707
20 12 1 1.000 2.13 .. .500 2.000 .101 .250 1.000 .707 .250 .250 .707 21 2 1 1.000 1.000 .125 4.000 .707 .125 ".000 .707 .12~ 4.000 .707 .125 4.000 .701

.125 4.000 .101 .125 4.000 .707 .125 4.000 .707 .125 •• 000 .707
22 4 1.000 1.000 .125 4.000 .707 .125 4.000 .107 .125 4.000 .707 .125 ... 000 .101

.125 4.000 .707 .lZ5 4.000 .707 .125 4.000 .107 .IZ5 10.000 .101 23 8 1.000 1.000 .125 4.000 .107 .125 4.000 .107 .125 4.000 .707 .125 4.000 .101

.125 4.000 .707 .125 4.000 .107 .125 4.000 .707 .125 10.000 .701 2 .. 12 1.000 1.000 .1<!5 ... 000 .107 .125 4.000 .107 .125 4.000 .707 .1.?5 10.000 .707

.125 4.000 .107 .125 4.000 .707 .125 4.000 .701 .125 4.000 .701
25 2 1 1.000 ~.UOO .250 4.000 1.000 .250 4.000 1.000 .250 4.000 1.000 .250 4.000 1.000
26 4 I 1.000 5.000 .250 ".000 1.000 ;250 4.000 1.000 .250 4.000 1.000 .250 4.000 1.000 27 8 1 1.000 5.000 .l50 4.000 1.000 .250 4.000 1.000 .250 4.000 1.000 .250 ... 000 1.000
28 12 1 1.000 5.000 .250 4.000 1.000 .250 4.000 1.000 .250 4.000 1.000 .250 4.000 1.000
29 2 1 1.000 3.000 .250 1.000 1.000 .250 1.000 1.000 .2~0 1.000 1.000 .250 1.000 1.000
30 • 1 1.000 3.000 .~50 1.000 1.0"00 .2~t1 1.000 1.000 .250 1.000 1.000 .~!>O 1.000 1.000
II 8 1 1.000 3.000 .250 1.000 1.000 .2S0 1.000 1.000 .25U 1.000 1.000 .l50 1.000 1.000
32 12 I 1.000 J.OOO .250 1.000 1.000 .250 1.000 1.000 .250 1.000 1.000 .250 1.000 1.000 II 2 1 1.000 1.000 .250 8.000 1.000 .250 8.000 .701 .250 8.000 .707 .250 8.000 .577 l4 4 1 1.000 1.000 .250 8.000 1.000 .250 8.000 .701 .250 8.000 .707 .250 8.000 .!>71 35 8 1 1.000 1.000 .250 8.000 1.000 .250 8.000 .701 .250 8.000 .707 .250 8.000 .S71 3b 12 1 1.000 1.000 .250 8.000 1.000 .250 8.000 .707 .250 8.000 .701 .2S0 8.000 .S77 J7 2 1 1.000 3.000 .250 4.000 3.000 .250 4.000 3.000 .250 ".000 l.OOO .250 4.000 3.000
38 4 1 1.000 3.000 .ZSO ".000 l.OOO .250 4.000 3.000 .250 4.000 3.000 .250 4.000 3.000
39 " 8 I 1.000 3.000 .250 4.000 J.OOO .250 4.000 3.000 .2S0 4.000 3.000 .250 4.000 3.000 40 12 1 1.000 l.OOO .250 4.000 l.OOO .250 4.000 3.000 .250 4.000 3.000 .2S0 4.000 3.000
41 2 1 1.000 .sn .250 4.000 .577 .250 4.000 .577 .lSO 4.000 .577 .2~0 ... 000 .577 42 4 1 1.000 .571 .2S0 4.000 .577 .250 4.000 .571 .250 4.000 .577 .250 4.000 .;71
4l 2 1 1.000 .5n .250 4.000 3.000 .250 4.000 1.000 .250 10.000 .701 .250 4.000' .571 .,. 4 I 1.000 .sn .250 4.000 3.000 .250 4.000 1.000 .250 4.000 .707 .250 4.000 .577 .S 2 • 1.000 3.000 .250 4.000 3.000 .250 4.000 1.000 .250 4.000 .707 .250 4.000 .571
lob It 1 1.000 3.000 .250 4.000 J.OOO .250 4.000 1.000 .250 4.000 .707 .250 4.000 .577 107 8 1 1.000 3.000 .250 4.000 3.000 .250 4.000 1.000 .250 4.000 .707 .250 4.000 .571 48 12 1 1.000 3.000 .250 ".000 3.000 .250 4.000 1.000 .250 4.000 .707 .250 4.000 .S77 49 2 I 1.000 3.000 .250 8.000 1.000 .250 8.000 1.000 .250 8.000 1.000 .250 8.000 1.000
50 4 I 1.000 3.000 .250 8.000 1.000 .250 8.000 1.000 .250 8.000 1.000 .250 8.000 1.000
51 8 I 1.000 3.000 .l50 8.000 1.000 .250 a.ooo 1.000 .250 8.000 1.000 .250 8.000 1.000 52 12 1 1.000 l.OOO .250 8.000 1.000 .250 B.UOO 1.000 .250 8.000 1.000 .250 8.000 1.000
53 2 I 1.000 1.000 .250 1.000 1.000 .2S0 1.000 .701 .250 1.000 .707 .250 1.000 .517
5 .. 4 1 1.000 1.000 .250 1.000 1.000 .250 1.000 .101 .250 1.000 .701 .250 1.000 .S17 ~
5S B I 1.000 1.000 .250 1.000 1.000 .250"1.000 .707 .250 1.000 .101 .250 1.000 .517 56 12 I 1.000 1.000 .250 1.000 1.000 .250 1.000 .707 .250 1.000 .707 .250 1.000 .577

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

length are not more than z times the number of customers in the network, and

3) the differences in the means and standard deviations of the wait times are

not more than z times the cycle time. For the 56 models studied, the results

are generally within a tolerance of .05, with a maximum tolerance of.17. In

eC2) a tolerance of .05 is considered to be good, and a tolerance of .10

is considered adequate. By these standards the results are good for 47 of

the models and adequate for 51 of the 56 models. The results for similar

PS models are adequate for only 25 of the 56 models. For these models, the

computer time required per model was negligible, approximately 75 milliseconds

per model. Table 5.2 shows results for these models.

44 models of the class described in Section 5.5, i.e., FCFS with

different classes of customers, including 4 with hyper-exponential CPU

distributions, have been validated. These models include from 2 to 8

customers, with from 2 to 6 classes of customers, and 3 or 4 I/O devices.

Utilizations and throughputs, both overall and by class, were validated for

all of these models. For 8 of the models, queue lengths and wait times for

each class were also validated. See Tables 5.3 and 5.4. We did not

explicitly determine tolerances as in the single class models, but in general

the results showed good accuracy for utilization and reasonable accuracy

overall. For the 44 models, the programs required approximately 400 milli­

seconds computation per model.

36 priority models were validated, 24 preemptive and 12 non-preemptive.

These models included from 4 to 6 customers, with from 3 to 6 classes, and

3 or 4 I/O devices. Again, utilizations and throughputs were validated for

all models. CPU queue lengths and mean CPU wait times were validated for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lit
too
~
:I
VI
:II:

~
~
o
~

-" c -...
7
a.J
7
o
Q..
>C ...
• z
o
7'

116

~~O_~~~~_~~#=~~~~~#N#4M~_~O=O~~M~N_4=~~*
__ ~M#4##M#~~_NNNM~~~MM4~~~M4M4~~M~Q~_NNN
•••• e _ • • • • • • • • • • • • • • • • • • ••••••••••••••••

eC~&NN~~-~~~~~~~~~~~~~~~4~~QN~~~~N~~~.~~
~~NN~~4~M~~4~~NNM~~~~4~DM~~~~~~~~~~~~~NN

~~~#~~#~~4~4~~~~~4~~~~~mNO~#~~-4~4~~~~~~~-O=~~~4N~~~=##~~~~4~M 
.~OOOOOOOOOOOOCOCOOOOO-~~M~~~~M~~D~NNNM~~~~M~~~~M~N~~~M~~~~NNN ,., '" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............... . 
O~M~~~#~4~~4~~~~~Q#~~~~m~~~N=~-4~N=M~~~4-~-#~M#-MON~~~~N~~~.~~ 
-~OOOOOooooooooooooooO--NN~#44M#~~-NNNM~~~M#~QM~M~M#~QM~~~-NNN 

C •••••••••••••••••••••••••••••• _ • • • • • • • • • • • • • •••••••••••••••• 

~~~~_M~_4#~~ __ ~_MM~~_M~=~ON4~~N#~~=M4~=~4N~~=#~~M_~#~_OMO~-N~# 
·-_~~N~NNN __ ~~_NNN~~NN~_NM~~~4M~~~_NNNM~~mNM~~M~M~N~~~4~~~NNN~
N." ••••••••••••••••

o~~e_~~~M~~mO_~ONM~~o_mm~~NN~~_~~N~~~~~4~~~~~M4~MON~~~~N~~~~~~
~~ __ NN_NNN __ NN_N~N __ NN_~NN~~4~M~~~_NN~~~~~M4~~M~M~~~~~M~~~-NNN

.c ••••••••••••••••••••••••••••••••

~Z4~N~~004_MN~~OON_~~~~~O_~4~~ONm~~M~~~~4NN~4 __ ~~~~~~4NM~~~~~~
.~~~~m~~~~~~~m~~~~~~m~~~MM~~4~M~~~-NNN~~~~NM~~~~M~M~~~M~~~-NNN ""
O~~MN~~~M~~_O~MOO~~N_~~~~~~N~m_~~N~~~~~~_~_4~M~_MO~~~~~N~~~4~~
-~~~~~~~~~~~~~~m~~~~~~~~NN~~44M~~~-NNN~~~~~~~~~~M~M~~~M~~~-NNN

C ••••••••••••••••••••••••••••••••

~
too
:I
r~~M~~~N~M~M~O~N~~~-~~ ~ _ ~
.~M~ONM~-N~O~NM~~N~~M~- ~ ~ ~
~ &It •• • • •
• .~~~ ~~N~~~ __ N~N~~~~ ~ M

:a · 04. O~~~ONO~~~~M~~~C~
~~O_~o~_N~~_mo~~_4.

IItC
NMN~III"""--N"'N4'\1"1"'-

• ~O~_N~NNO~~~~4MN_~~~O
~~o~~~~~~_~~~~~MN4~~~~N

• \I'} • it

» NN~~-N~4-N~~-N~~-N~~~

r
~O~~4~N~-~~4N-04~M~~~~

.., n. 0 CI) N _ 0 Q U\ l,n ·n In ~ ,..., 0 In In .:I' _
Q. < ••
U NN4~~N4~_N~~~N4~_N~~_

.X~~N~~~~~~~QC~~~N~O""'~~
~-~M~~~NM~~~~~~MM~~~~~~ . .." ..
~ -N~ -NM -N4' -NM ~NM

O~~~O~-~~4~~~~~~N~~~O-~
.~~M~o~_NM~~~N~M#~~~~N~
~

-N4 -~~ _~~ _~M -~.

.%N~~O~~~N~N~~NO~~_~~NM
~-_o=o~r~~~~~~~~~~~r~a~
• tI) • • • • • • • • • • • • • .. • • • ••••
~ _N~~ -~~ -~~ _M~ ~~~

~
aO~~~~~~4-~~~~n~~_~_~N

~~_O~~~~~~~~~~~~~~~~~ ••
CL 4 • • • • • • • .. • • • ••••••••••
U -N~~ ~~~ -~~ ~~~ ~~~

~~~~oQDM~M~~~D~N-#O~~~D 
--_~~~D~~~~~D~~~~~~~~~~ ... en • fJ ••••••••••••••••••• 

:) -.... -~ 

w 
! 

~~~-_N __ ON __ ON __ ON __ O~ 
Q.. • • • • • • • • • • • • • ., • • • • • ••
M~~:~~~~~~~~M~~:M~~~~

~E~~#DO~~O~DD~-~oo~~ •• n
W~M~~MM.~NM~~MM#~NM~~M~

~ - ~ - - -u ,.
U~~~~OO~~~.~ONNO~~4D~-D
~
.. ,.., lI" t7' 4 ,., ... co fU 1"'\ In 0 ~ M an ~ N"" In a-. .., In

~ " "" - ~

W~N~~~~~~~N~~NM4~N~M~O­
U~gOOO~-~O~~NNOOOO~~N~O
Z •••••••••••••• •••••••
c
a:
W~N~~4~MMN~-~NNNN~-~~~­
~BOOOOOQOOOOOOOOOOQOOOQ o C ••••••••••••••••••••• ...
.J
1&1

M
~ ·
,.,
oD ·
N
o ·
o ·
~
:I' ·
~
0-

o
~ ·

<0 · .0

~ · ~

~

.D

o ·
o ·

N

(70

· ,.,
co
":
N

IJ'
~ · N

M
~ · N

~
~

~

· e-

~
~ · ~

0--
11'1

o
~ · N

;:: · N

ex:
~ · ~

10
~ · •

~ · N

~
N -
II!
N

~ .
o 0 · .
,., ~

o 0 · .

~Nm-N~~ =_~~o_o~~~mON~~~~O~~~~N~
~_~~~~O~ONM~~~~N~~~~_~~~M~~II'IM~~~ ·
~~=~~~~~-~--~~~~ ~4D~M4~~-_~"

~m~~~C4m~~N~~~4~D~~O~~_~~N~~ND~~
~4_~_~~MON~~C~~~~~~=~M~O~~N-M~m~ ·
~~:~.~~~~---~~~~ "~~~M~~~~~N"

~~~~~4N~~M---~-~N~"OOONm_~_~ONM~ 
~~~N~~~-oN~~4~~~-M~~n-~«N~~~~O~~ · . . . . . . . . . . . . . . . ............... . 
~N~~-N~C _____ N~~ __ - __ N~4 __ ~~_~~O - -
~M-4MM~40~#~~~~~.NO~M~-NO~.~~~O_
44N~~04M_~4~~~~N~3N~3N~MM~~N4m~~ ·
-N4~-~~O_~~~-N~~~" __ ~Nn~_~NM~N~O - -
~M~O~~~N~N--~CON~O~4N~~ __ N~O~~~~
~~=M=M~~~~m~~~~~~~~=~M~~~~~N~CMN ·
~N'" _NM -N~_N

~O~O~~~4I1'1NM~~~"'II'I~M_~N~MM.~Q~~O_~
~~O~OO~~~~~~~~4~~~~~~~M~O~~~~~_N_ ·
-~~ -~~ -~4 -~~ -N _~~

~.N~N~~No~MN~MN~OIl'l~~.~~~N~~~~~N~
~ __ ~NDM~~M~~M%~~4~M~4a~ON~~ __ ~~~ ·
-N~~N~O -N ~M -~NDO - -~~~~~4~~C4--~~~~~~O-~M~~~~O~4mc~
~OM~_~MMN~~~~O~~~~~~~ON~N~~~_~~~ ·
~N~~N~O ~~~ -~~ ~_~~~

- -
N~~~~O~O~~~-~~~~D~-~O.~.~II'I~~~~OQ
M~~~~~~O_N~4N~~~~~M~~~~~_N~~~>OO · -
-~~~NQ~O~~~O-~~~~~~ON~~~~~~=~~OO
M~~~~~~O_NM4M~~~M~M~M4~~_N~M~~OO

• ••••• it • • • • • • • • • •••••••••••••••• --
COCO~Noo~~m300QQQOCQOQCQ~~~~~NOO ·
~<ON~N.~NQ~NO~~NDQ~~~~¢N~Q.NoN~=N -- ___ N~ ~- -~--NM ~

~~~-~~-~~~~~~~~~~~~~D-~»o~m»n_o~ · . . . . . . . . . . . . . . . . . . . . . .......... 
~~4~N~~NC~-~~O~~~~~~~~~X-~N~~~~~ 

-~ _~~NN --N ____ N~_ 
~OM~~~-O~~~~~O-~~¢OOM~~O_n~~~"ao · . . . . . . . . . . . . . . . ................ 
~~~~N4~N04No~~.~n~~m~~M~_~M_N3~N -- _ ... _C\lM -- -~_~t\I,., 

~~~~-~~oo-N-~40~~~~~~mMN~O~4~"NN 
c~~~N¢~~OCOOMM~~OC004M~~~NN~OOOO · . . . . . . . . . . . . . . . ............... . -
N~~-~~~~O---~~D-n~~~N~44MN-N~~NN 
~o~--ooooooooo--ooo~oocooooooooo · . . . . . . . . . . . . . . . . . ............. . 

o _N~~~~~<o~o_NM.~~~m~o_ N ~ 4 ~~~=~O_NM~~~~<O~O_N~#~~~<O~O_N~~~~ o ~~~~~-- __ ~NN N N N NNNNNM~M~M~~M~"4~~4~~4~44~~~~~~~ 
& 

\ 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

z~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
C~~~~~~~~44~~~44~~~~~~~~4~~~~~~~~ 
W~~~~~44~~~~~~4~~~4~~~~~~~~~~~~~~ 

M % •••••••••••••••••••••••••••••••• 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 

o 
,mooeOOOCOCOOOOOOOOOOOQQQoaooooooo 
_000000000000000000000000000000000 
·~~N~~NN~4NN~~NN4~NN~~NN4~NN~~NN4~ 

0. • • • • • • • • • ••••••••••••••••••••••• 

%00000000000000000000000000000000 
cooooooeoooooooooooooooooooooooao 
WCOOOOOOOOOOQOOOOOQOOQOOOQOOOOQOO 

.... ::1: •••••••••••• " ••••••••••••••••••• 
NNNNNNNNNNNNNNNNNNNNN~NNNNNNNNNN 

o 
,~ooooooooooooooooooooooooooooooco 
~OOQOOOCOOCOOOOOOOQOQOOOOOQOOOOOOO 
«~~NN~~NN~~NN~~N~~~N~~~NN~4NN~~NN 
Q. • • • • • • • • • ••••••••••••••••••••••• 

_00000000000000000000000000000000 
>OOOOOOQOOOQO~OOOOOOOOOOOOOOOOOOO 
.OOOOOOOOOOOOQOQOO~OOOOOOOOOOOOOO 

U • • • • • • • • • • • • • • • • • • • • • • .. • • ••••••• 
~ ~-~~~~~~~~~~~~~~NNNNNNNNNNNNNNNN 
~ 
YZooooccecoccoeooooooooooocooooooo 

• 
~ 
~ 

~ ~ 

CCOO~~OOOQ~OOOO~oooo~~oeoo~oooo~o 
WO~~NNO~~~NO~~~NOO~~NNa~~~NO~~~NO 
% •••••••••••••••••••••••••••••••• 
~ ~ ~ ~~ ~ ~ ~ 

U ~~~"~~~~~_~~~~~~~~~~~~~~"_~~~ __ _ 

117 



R
eproduced w

ith perm
ission of the copyright ow

ner.  F
urther reproduction prohibited w

ithout perm
ission.

TA8L£ 4 - reFS MULTI-CLASS ~OOEL RESULTS 

MODEL CLASS CYCLE TIME CPU UTIL CPU M.O.L. S.O.O.l. CPU M.W.T. 
APP SIM Ps APP siN APP siN APP siN APP SIM 

1 6.30 7.37 5.14 .79 .80 1.67 2.16 2.6,. 3.98 
1 8.80 8.13 10.75 .57 .6J .61 .67 .,.9 .47 5.33 5."2 
2 5.29 t,.S7 4.19 .09 .07 .37 .52 .108 .50 1.97 3.5" 
3 5.90 7.17 4.62 .08 .07 .35 .50 .,.8 .50 2.09 3.60 
4 6.13 7.44 '4.34 .04 .OJ .3,. .48 .47 .50 2.09 3.53 

2 6.27 7.26 5.10 .79 .80 1.67 2.15 2.62 3.90 
1 5.27 6.«>4 3.72 .05 .010 .36 .50 .108 .50 1.89 3.30 
2 8.71 7.Q .. 10.6G .57 .62 .61 .66 .49 .107 S.32 5.26 
3 5.H 7.17 4.57 .09 .01 .36 .50 .48 .50 2.05 3.59 
4 6.23 7 ... 1 4.94 .06 .01 .35 ... 9 .46 .50 2.1b 3.b4 

3 6.12 7.ld 5.00 .76 .79 l.b5 2.13 2.52 3.87 
1 5.107 6.110 4.36 .09 .07 .36 .51 .48 .50 1.97 3.45 
2 5.19 6.57 3.66 .05 .010 .35 .49 .108 .50 1.82 3.22 
3 9.05 8.3:' 11.011 .55 .61 .59 .65 .49 .46 5.32 5.44 
It 5.96 7.bll 4.79 .Ot! .Ob .35 .48 .~8 .50 2.08 3.b7 

• 6.02 7.12 ... 94 .76 .18 1.62 2.13 2.45 3.79 
1 5.41 b.U 4.33 .09 .Ot! .36 .51 .48 .50 1.94 3.40 
2 5.31 6.b2 4.25 .09 .Ot! .36 .51 .48 .50 1.91 3.37 
3 5.39 6.118 3.!l1l .05 .04 .3" .,.8 .107 .50 1.65 3.30 
10 9."b 8.~7 11.58 .53 .60 .56 .b3 .50 .46 5.33 5.43 

5 6.60 7.59 5.110 .16 .76 1.73 2.14 2.65 4.01 
1 9.01 8.22 10.75 .S6 .5'l .61 .64 .49 .48 5.51 5.28 
2 5.52 7.13 4.19 .09 .01 .39 .52 .109 .50 2.13 3.69 
3 6.21 7.103 4.62 .08 .01 .37 .50 .48 .50 2.30 3.15 
4 6.53 7.bd 4.34 .04 .OJ .3b .48 .108 .50 2.31 3.68 

6 6.56 1.18 5.10 .76 .76 1.73 2.19 2.83 4.27 
1 5.52 7.19 3.72 .05 .OJ .37 .51 .106 .50 2.06 3.66 
2 8.92 6.26 10.60 .56 .61 .62 .66 .49 .47 :i.48 5.44 
3 6.07 7.77 4.57 .08 .00 .37 .52 .108 .50 2.25 ".03 
4 6.58 7.99 4.910 .08 .06 .37 .51 .48 .50 2.41 4.05 

7 6.40 7.61 5.00 .75 .75 1.70 2.14 2.12 ".11 
1 5.13 1.15 4.36 .09 .07 .38 .51 .48 .50 2.15 3.b5 
2 5.44 7.03 3.68 .05 .04 .31 .50 .48 .50 1.99 3.50 
J 9.27 8.63 11.08 .54 .S':I .59 .64 .49 .48 :;.50 5.48 
4 6.29 8.09 4.79 .08 .06 .37 .50 .48 .50 2.31 4.04 

e 6.JO 1 ... 2 4.94 .74 .14 1.68 2.09 2.65 3.87 
1 S.61 6.'i3 4.33 .09 .07 .37 .50 .48 .50 2.13 3.47 
2 5.56 6.dS 4.25 .09 .01 .37 .50 .48 .50 2.08 3.44 
J 5.69 7.37 3.88 .04 .OJ .36 .47 .48 .50 2.05 3.50 
4 9.69 8.d3 11.58 .52 .56 .57 .61 .50 .49 5.52 5.41 

S.O.W.T. UTIL 10 I 
APP 5114 APP SIM 

.42 .37 
4.9,. S.1l .14 .11t 
3.95 10.62 .15 .11 
4.09 It. 71 .07 .06 
4.19 4.76 .07 .05 

."5 .J9 
3.99 10.62 .23 .18 
4.9" 5.06 .09 .10 
4.08 10.67 .07 .06 
4.21 4.71 .06 .05 

.108 .40 
3.95 10.63 .22 .18 
3.87 10.58 .15 .12 
4.910 5.13 .04 .05 
4.07 10.70 .07 .05 

.49 .100 
3.87 4.61t .22 .18 
3.83 4.63 .15 .12 
3.86 4.67 .07 .05 
4.94 5.21 .04 .05 

.100 .36 
5.06 9.48 .Il .14 
6.90 8.61 .14 .12 
7.25 8.83 .Ob .05 
7.56 8.89 .Ob .05 

.43 .31 
1.02 9.45 .22 .17 
5.08 10.27" .09 .10 
1.21 9.73 .07 .05 
7.51 9.810 .06 .05 

.46 .39 
6.94 9.31 .21 .17 
6.62 9.25 .15 .ll 
5.08 10.43 .0'4 .05 
1.26 9.83 .06 .OS 

.47 .38 
6.82 8.66 .21 .17 
6.73 8.58 .14 .12 
6.87 8.82 .07 .05 
5.09 9.86 .04 .04 

10 2 
APP 51 .. 
.32 .27 
.Olt .010 
.12 .10 
.11 .10 
.05 .010 
.30 .lb 
.06 .05 
.07 .08 
.11 .09 
.05 .U" 
.31 .2b 
.06 .05 
.12 .09 
.07 .08 
.05 .010 
.33 .28 
.06 .010 
.12 .10 
.12 .09 
.03 .010 
.30 .26 
.0 ... 010 
.12 .09 
.10 .09 
.05 .010 
.28 .210 
.06 .010 
.07 .07 
.11 .08 
.05 .010 
.29 .2:; 
.06 .010 
.12 .09 
.01 .08 
.05 .0" 
.32 .2b 
.06 .05 
.12 .09 
.11 .09 
.03 .04 

10 3 
AltP 51 .. 
.60 .51 
.06 .06 
.10 .08 
.18 .15 
.26 .21 
.60 .50 
.10 .G7 
.06 .01 
.18 .15 
.26 .21 
.59 .50 
.10 .08 
.10 .08 
.12 .13 
.27 .21 
.57 .1t8 
.10 .08 
.10 .08 
.20 .15 
.17 .18 
.57 .50 
.06 .Ot. 
.10 .08 
.11 .15 
.l4 .ll 
.58 .107 
.10 .07 
.Ob .07 
.18 .1,. 
.24 .20 
.56 .108 
.09 .08 
.10 .08 
.12 .13 
.25 .20 
.54 .49 
.09 .08 
.10 .08 
.19 .15 
.11 .18 

.... .... 
()C) 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

119 

12 preemptive models and all non-preemptive models. See Tables 5.5, 5.6 and 

5.7. For the 36 models, the computation per model was approximately 400 

milliseconds. 

In addition to providing reasonable accuracy for models not in 

local balance, these programs give exact results for models in local balance 

where class coalescing is not necessary. Though the coalescing techniques 

do not necessarily give exact results for locally balanced models, the 

results are very close. In the above validation process, for all FCFS 

models requiring coalescing, the coalescing process was applied to a locally 

balanced model similar to the non-locally balanced model being studied. 

Individual class throughputs and utilizations were compared for the locally 

balanced model with and without coalescing. The differences were never more 

than 1% and usually less than that. 

These programs are more than an order of magnitude faster than 

existing implementations of other techniques. 



R
eproduced w

ith perm
ission of the copyright ow

ner.  F
urther reproduction prohibited w

ithout perm
ission.

TABLE 5 - PRIORITY MODEL DESCRIPTIONS 

MODEL CLASS· NO. CUST. CPU I/O 1 I/O l I/O 3 I/O It 
MEAN pROB ... EA'" PRGB "'EAN PROB MEA .. PRDB .. UN 

1 1 l.l)3 .)33 l.OOO .)33 1.600 .333 l.bbl 
l I .333 .333 2.000 .)3l 1.600 .3l3 2.661 
3 1 .333 .J33 2.000 .))3 1.600 .333 2.667 
It 1 .1 6 7 .)J3 2.000 .)33 1.600 .333 2.667 
5 1 .333 .J33 2.000 .)33 1.600 .333 l.667 
b 1 .333 .:133 2.000 .)33 1.600 .333 2.667 

2 1 1 .333 .333 2.000 .333 10600 .33) 2.b67 
l 1 .333 .J3) 2.000 .333 1.600 .)J3 2.661 
3 1 .33) .333 2.000 .333 1.600 .333 2.667 
It 1 3.J)) • 333 2.000 .333 l.bOO .333 2.b61 
5 1 .33) .333 2.000 .333 1.600 .333 2.667 ., 1 .333 .333 2.000 '.333 1.600 .333 2.b67 

1 1 1 l.noo .333 2.000 .333 1.600 .333 2.661 
2 1 2.000 .333 2.000 .333 1.600 .333 2.667 
3 1 .250 .J33 2.000 .333 1.600 .333 2.667 
It 1 .500 .333 2.000 .333 1.600 .333 2.667 
5 I .333 .J33 2.000 .3J3 1.600 .333 2.661 
6 1 .250 .333 2.000 .333 1.600 .333 2.661 

It I 1 .250 .333 2.000 .333 1.600 .333 2.661 
2 1 .333 .333 2.000 .333 1.600 .333 2.6&1 
3 1 .1500 .333 2.000 .333 1.600 .333 2.667 
It 1 2.000 .J33 2.uOO .333 1.600 .333 2.667 
5 1 1.000 .J33 2.000 .333 l.bOO .333 2.b67 
6 1 .2:;0 .333 2.000 .333 1.tlOO .333 2.661 

5 1 1 1.000 .~!>O 2.000 .250 1.000 .250 .500 .250 1.000 
2 1 .10·0 .250 2.000 .250 1.000 .2150 .500 .250 1.000 
1 1 .100 .250 2.000 .250 1.000 .250 .500 .250 1.000 
It 1 .100 .<:50 2.000 .250 1 •. 000 .250 .500 .250 1.000 
5 1 .100 .250 2.000 .250 1.000 .250 .500 .250 1.000 
6 1 .100 .2'0 2.000 .250 1.000 .250 .500 .250 1.000 

6 1 1 1.000 .250 2.000 .250 1.000 .<:50 .500 .250 1.000 
2 1 .6&1 .<:50 2.000 .2'0 1.000 .250 .500 .250 1.000 
3 1 .093 .<:!>O 2.000 .2S0 1.000 .250 .500 .250 1.000 
It 1 .083 .250 2.000 .250 1.000 .250 .500 .250 1.000 
5 1 .063 .250 2.000 .250 1.000 .250 .500 .250 1.000 
6 1 .067 .~50 2.000 .250 1.noo .250 .500 .250 1.000 

7 1 2 .500 .125 1.000 .125 1.000 .500 1.000 .250 2.000 
2 1 .167 .125 1.000 .125 1.000 .500 1.000 .250 2.000 
3 1 .250 .1~5 1.000 .125 1.000 .500 1.000 .250 2.000 

8 1 1 .500 .1<!5 1.000 .125 1.000 .500 1.000 .250 2.000 
2 l .1117 .125 1.000 .125 1.000 .500 1.000 .250 2.000 
3 1 .250 .125 1.000 .125 1.000 .500 1.000 .250 2.000 

9 1 1 .500 .125 1.000 .125 1.000 .500 1.000 .250 2.000 
2 1 .161 .125 1.000 .125 1.000 .500 1.000 .250 2.000 
3 2 .250 .1~5 1.000 .12S 1.000 .500 1.000 .250 2.000 

10 1 1 .500 .125 1.000 .125 1.000 .500 1.000 .250 2.000 
2 2 .167 .125 1.000 .125 1.000 .500 1.000 .250 2.000 
3 1 .250 .125 1.000 .125 1.000 .500 1.000 .250 2.000 

11 1 1 .sGO .l25 1.000 .125 1.000 .500 1.000 .250 2.000 
2 1 .lb7 .l25 1.000 .125 1.000 .500 1.000 .250 2.000 
3 2 .250 .125 1.000 .125 1.000 .500 1.000 .250 2.000 

12 1 2 .500 .ll5 1.000 .125 1.000 .500 1.000 .250 2.000 
2 1 .161 .125 1.000 .125 1.000 .500 1.000 .250 2.000 
3 1 .250 .125 1.000 .125 1.000 .500 1.000 .250 2.000 .... 

N 
0 



R
eproduced w

ith perm
ission of the copyright ow

ner.  F
urther reproduction prohibited w

ithout perm
ission.

HODEL CLASS CYCLE TIME CPU UTIl 
APP SIN PS APP SIM 

1 1.0/0 1.56 6.16 .62 .b9 
1 8.41 6.db 9.62 .40 ./09 
2 6.0) 6.110 5.12 .06 .05 
1 6.10 1.110 S.90 .05 .05 
4 1.21 8.12 6.20 .02 .02 
5 6.99 B.bZ 5.HZ .05 .04 
6 1.26 9.42 5.82 .05 .03 

2 6.22 6.14 6.03 .60 .62 
1 5.27 1t.49 5.33 .Ob .07 
2 4.81 ... !:IlI 5.17 .01 .07 
1 5.39 5.1 J 5.69 .06 .06 
10 10.66 9.'12 11021 .Jl .J3 
5 6.83 8.0b 5.73 .05 .04 
... 7.10 B.bb 5.73 .05 .010 

1 1.00 6.'1i! 6.27 .62 .bB 
1 5.91 't.bO 6.54 .17 .21 
l 1.31 6.11 7.92 .21 .30 
3 6.49 h.~O 5.58 .04 .04 
/0 8.010 8 ... 5 6.90 .06 .06 
5 1.JI 8.~1 5.75 .OS .04 
b 1.35 9.02 5.5 .. .03 .03 

It b.21 . 6.18 6.09 .60 .bO 
I 5.17 '0.:,2 5.11 .05 .06 
2 ft.78 4.bl 5.14 .01 .07 
3 5.61 5.45 6.05 .09 .09 
It 8.78 8.1/) 9'''3 .23 .Z3 
5 7.16 6.02 1.0" .ll .12 
6 7.02 8.31 5.51 .010 .03 

5 2.71 2.1i 2.62 .40 .43 
1 10.93 'o.Jl 5.28 .20 .2'0 
2 2.27 2.20 2.16 .04 .05 
3 2.04 2.15 1.')6 .05 .05 
4 2.47 2.56 2.37 .Oft .04 
5 2.95 3.24 2.83 .03 .03 
6 2.99 3.l3 2.83 .03 .03 

6 3.05 3.15 2.70 .54 .59 
1 4.91 4.02 5.43 .20 ·25 
2 3.06 2.tH 2.99 .22 .23 
3 2.35 2.35 1.89 .04 .04 
4 2.67 2.~8 2.2B .03 .03 
5 3.14 3.03 2.72 .03 .02 
6 3.15 3.79 2.b8 .02 .02 

TABLE 6 - PREEMPTIVE MODEL RESULTS 

CPU M.G.l. S.D.G.l. CPU M.w.T. 
AP:l SIN APP SIN . APP 51" 

1.68 2.23 1.91 2.81 
.40 .49 .49 .50 l.3) 3.)9 
.29 .34 .45 .,,1 1.76 2.06 
.015 .34 .104 .41 1.10 01.104 
.21 .31 .41 .46 1.53 2.54 
.25 .37 .44 .48 1.78 3.16 
.21 .38 .45 ./09 1.99 3.59 

1.16 1.31t 1.21 1.31 
.Ob .07 .210 .26 .33 .3) 
.08 .09 .21 .018 .39 .100 
.OB .09 .2B .29 .1t6 .46 
.42 .44 .49 .50 4.46 4.)b 
.25 • )1 .43 .46 1.69 2.51 
.27 .33 • It 10 .1t7 1090 2.90 

1.67 1.92 1·95 2.22 
.17 .21 .37 .101 1.00 .99 
.3') .42 .49 .109 2.810 2.80 
.25 .27 .1t3 .44 1.61t 1.76 
.28 .32 .45 .47 2.24 2.74 
.01') .J4 .45 .41 2.14 2.~1 

.29 .35 .45 .48 2.13 3.1') 
1. iJ 1.22 1.11 1.26 

.05 .06 .21 .23 .Z5 .2/) 

.OB .08 .C!7 .27 .37 .37 

.11 .12 .32 .32 .63 .65 

.31 .32 .46 .,,7 2.76 2.85 

.32 .J5 .'01 .48 2.48 l.OI 

.26 .29 .4" .45 1.83 2.44 

.7!> .99 .34 .46 

.20 .24 .40 .43 1·00 1.02 

.13 .14 .34 .35 .30 .32 

.12 .1b .32 .31 .24 .34 

.10 .15 .31 .36 .26 .39 
·10 .14 .30 .35 .28 .41 
.10 .15 .31 .36 .31 .51 

1.39 1.68 .71 .88 
'2 0 .25 .'00 .43 1. 00 1. 02 
.3!> .39 .48 .49 1.10 1.09 
.26 .27 .44 .44 .62 .610 
.21 .26 .41 .44 .56 .78 
.18 .25 .39 .43 .57 .92 
.18 .25 .38 ./03 .55 .95 

UTIL 10 I 10 2 
APP SIN APP SIN 
.58 .5/0 .4l .40 
.14 .17 .0/0 .05 
.13 .13 .11 .10 
.06 .06 .10 .09 
.06 .05 .04 .010 
.10 .08 .08 .O!) 
.09 .01 .01 .06 
.70 .73 .50 .51 
.23 .27 .06 .08 
.11 .18 .13 .110 
.07 .08 .12 .13 
.04 .04 .03 .03 
.10 .09 .08 .07 
.09 .08 .08 .06 
.61 .64 .4) .41 
.20 .26 .05 .06 
.11 .11 .09 .09 
.06 .06 .10 .10 
.05 .05 .04 .04 
.09 .08 .01 .Ob 
.09 .08 .07 .06 
.70 .71 .49 .49 
.23 .27 .O/) .07 
.17 .18 .13 .14 
.07 .07 .11 .12 
.05 .0 .. .04 .04 
.09 .08 .01 .07 
.10 .07 .08 .06 
.88 .B7 .51 .55 
.2~ .29 .03 .03 
.09 .09 .13 .14 
.10 .10 .20 .18 
.10 .11 .05 .0'0 
.17 .14 .08 .08 
.17 .14 .08 .08 
.82 .83 .50 .49 
'25 .32 .03 .03 
.07 .06 .10 .12 
.09 .08 .17 .11 
.09 .09 .05 .04 
.16 .13 .08 .06 
.16 .14 .06 .01 

10 3 
APP SIN 
.78 .71 
.06 .08 
.09 .09 
.16 .15 
.22 .20 
.Il .10 
.12 .09 
.82 .80 
.10 .11 
.11 .11 
.20' .21 
.15 .16 
.Il .11 
.13 .10 
.77 .75 
.09 .12 
.07 .08 
.16 .16 
.20 .19 
.12 .10 
.12 .09 
.8l .8,. 
.10 .12 
.11 .13 
.19 .19 
.18 .19 
.11 .10 
.13 .10 
.29 .28 
.01 .02 
.07 .07 
.10 .09 
.03 .03 
.04 .04 
.04 .04 
.25 .24 
.01 .02 
.05 .05 
.09 .08 
.02 .02 
.04 .03 
.0'0 .03 

10 It 
APP 51" 

.63 .60 

.03 .03 

.13 .110 

.05 .05 

.25 .210 

.08 .08 

.08 .08 

.5f> .52 

.03 .03 

.10 .11 

.0" .010 

.23 .21 

.08 .07 

.08 .06 

~ 
N 
~ 



R
eproduced w

ith perm
ission of the copyright ow

ner.  F
urther reproduction prohibited w

ithout perm
ission.

MODEL CLASS CYCLE TIME CPLI LlTlL 
APP SIN PS APP SIH 

1 l.ll 2.b9 i!.61 .52 .51t 
1 2.72 2.bO l.9i! .31 .39 
Z 2.57 2.bl 2.28 .0& .06 
3 2.86 3.UO 2.43 .09 .08 

8 2.51 2.5/t 2.51 .1t2 ."3 
1 2.59 2.45 2.80 .19 .21 
2 2.51 2.51 2.4Z .13 .13 
3 2.66 2.12 2.45 .09 .09 

9 2.59 2.':>1 2.S .. .45 '''6 
I 2.57 2."b .... al .19 .21 
i! 2035 2.J.1 2.30 '0 7 '07 
3 2.7) 2.11 <!.55 .18 .16 

10 3.3" 3.)1t 3.31 .47 ... a 
I 3.24 J.03 3.51 .15 .16 
Z 3010 3.12 3.10 .11 .ll 
3 3.51 3.64 3.37 .21 .21 

11 3.57 3.':> .. 3,"2 .61 .62 
1 3.44 3.28 3.81 .44 .45 
2 3.37 3,"0 2.92 .05 .05 
3 3.93 4·11 3.21 ·13 .Il 

lZ 3.43 3.44 3.33 .51 .52 
1 3.34 3.19 3.66 .30 .31 
2 3.44 3.':>0 3.21 .15 .lS 
3 3.61 J.tlS 3.15 .01 .01 

TABLE 6 - PREE"PTIVE MOOEL RESulTS 

CPU H.Q.l. S.O.O.L. CPU H.W.T. 
APi» SIH APP SIM APP SIN 
.95 .99 .65 .61 
.4& .49 .65 .67 .6i! .61t 
.21 .22 .41 .41 .55 .58 
.28 .28 .45 .45 .81 .8/t 
.68 .69 .43 .44 
.19 .21 .39 .40 .50 .51 
.21 .za .54 .55 .34 .35 
.21 .... 1 .41 .41 .57 .56 
.1/t .16 ... a ... 9 
.19 .... 1 .40 .41 .50 .51 
'1 3 ·1" .34 .35 .31 .33 
.41 .41 .64 .b5 .56 .51 
.87 .87 .48 .49 
.15 .1& .36 .J7 .50 .49 
.20 .20 .46 .46 .31 .31 
.52 .'il .80 .79 .61 .62 

1.47 I ... a .88 .87 
.63 .65 .64 .83 .13 .71 
.23 .23 .42 .42 .71 .78 
.61 .60 .11 .17 1·19 1.2" 

1.08 1.08 .62 .62 
.36 .37 .59 .59 .60 .59 
.48 .48 .81 .80 .55 .S6 
.Z4 .23 .43 .102 .88 .90 

UTll 10 1 10 i! 
APP SIN APP SIN 
.106 .1t6 .33 .32 
.37 .37 .09 .10 
.05 .05 .19 .18 
.04 .010 .0" .0" 
.34 .35 .49 ... 8 
.19 .20 .05 .06 
.10 .10 .40 .38 
.05 .05 .05 .04 
.3" .34 .35 .38 
.19 .21 .05 .05 
'05 ·oS ·21 .23 
.09 .09 .0'1 .09 
.34 .34 .41 .46 
.15 .15 .0" .04 
.08 .08 .32 .31 
.11 .11 .11 .11 
.54 .56 .32 .32 
.44 .le6 .11 .11 
.04 .04 .15 .14 
'0 6 '06 '06 .0 6 
.44 .44 .55 .55 
.30 .30 .07 .08 
.11 .11 .44 .44 
.03 .03 .03 .04 

10 3 
APP SIH 
.32 .31 
.09 .10 
.05 .04 
.17 .17 
.34 .34 
.05 .06 
.10 .10 
.19 .19 
... 1 .le6 
.05 .05 
'05 '05 
.37 .36 
.54 .54 
.04 .0 .. 
.08 .09 
.42 .41 
.40 .40 
.11 .12 
.0" .04 
.25 .25 
.32 .31 
.07 .07 
.11 .11 
.14 .13 

10 4 
APP SII4 
.71t .71t 
.37 .38 
.19 .19 
.11 .11 
.18 .78 
.19 .21 
.40 '''0 
.19 .11 
.77 .77 
.19 .20 
.21 .20 
• J 7 .37 
.90 .90 
.15 .16 
.)2 .34 
.42 .41 
.84 .83 
.4.. .45 
.15 .14 
.25 .23 
.81 .8& 
.30 .J2 
.41t •• 3 
.1 10 .13 

..... 
N 
N 



R
eproduced w

ith perm
ission of the copyright ow

ner.  F
urther reproduction prohibited w

ithout perm
ission.

MODEL CLASS CYCLE TIME CPU UTlL 
APP 51N PS APP SIH 

1 6.81 1.l1 6.16 .64 .68 
I 8.16 7.0b 9.bl .ltl .47 
2 5.91 5.'ld 5.12 .06 .U6 
3 6.49 6.71 5.90 .05 .05 
4 1.21 7.tll 6.20 .02 .02 
5 6.66 7.88 5.82 .05 .04 
6 6.81 II.JtI· 5.82 .05 .Ult 

2 6.Z6 7.07 6.03 .61t .b5 
I 5.31 5.113 5.33 .06 .06 
2 S.Z5 6.u:; 5.17 .Ob .Ob 
3 :;.119 6.112 5.69 .06 .05 
It 9."6 8 ... ~ 11.21 .35 .40 
5 6.50 7.tH 5.73 .05 .04 
6 6.66 11 ... 8 5.13 .Os .04 

3 6.69 1.05 b.27 .b6 .b6 
I 5.115 6.08 6.54 .17 .16 
l b.71 6.30 7.'12 .30 .32 
3 6.44 6.71 S.Se .04 .0 .. 
4 7.51 8.01 6.90 .01 .06 
5 6.89 1.10 5.75 .05 .0 .. 
6 b.97 8.04 5.54 .04 .03 

4 b.22 b.411 6.09 .62 .b3 
1 :i.23 S.J4 5.11 .05 .05 
2 :'.25 ; ... 0 ;.14 .06 .06 
1 b.06 6.J4 &.os .08 .08 
It 8.17 1.S6 9.43 .24 .21 
5 b.88 7.Z1 7.04 .15 .14 
6 6.b7 7.116 5.51 .04 .03 

5 2.68 2.77 2.&2 .41 ."2 
1 4.85 4.)l 5.211 .21 .23 
2 2.28 2.26 2.16 .04 .04 
J 2.02 2.11 1.'16 .os .os 
It 2.44 2.59 2.37 .04 .04 
5 2.90 l.10 2.83 .03 .03 
6 2.92 J.~O 2.83 .03 .03 

6 2.95 l.Od 2.70 .56 .bO 
I 4.7S 4.l0 5.43 .21 .24 
2 2.83 l.6) 2.99 .24 .25 
J 2.30 2.39 1.89 .04 .03 .. 2.61 c!.1l3 2.28 .03 .03 
5 3.06 3.50 2.72 .03 .02 
6 3.07 3.b3 2.68 .02 .02 

TAdlE 7 - NON-PREEMPTivE MODEL RESUlTS 

CPU N.G.l. S.D.G.L. CPU M.III.T. 
APP Sill APP 5114 APP 5111 

1.59 2.05 1.80 2.46 
."l .49 .49 .50 3.1t6 3.45 
.28 .31 .45 .1t6 1.1t4 1.83 
.23 .31 .42 .46 1.38 2.05 
.20 .29 .40 .116 1.36 2.30 
.22 .32 .42 .1t7 1.43 2.52 
.23 .33 .1t2 .47 1.56 2.80 

1.27 1.91 1.32 2.26 
·14 .Z7 .34 .45 .72 1.59 
.15 .28 .36 .45 .87 1.70 
.16 .27 .37 .45 .94 1.87 
.38 .44 .49 .,0 3.70 3.67 
.22 .32 .41 .47 1.37 2.49 
.23 .33 .42 .47 1.48 2.82 

1.57 1.82 1.75 2.14 
·23 .30 .42 .46 1.33 1.83 
.3b .39 .48 .49 2.113 2 ... 5 
.24 .26 .103 .44 1.40 1.14 
.24 .27 ."2 .4 .. 1.b8 2.ll 
·25 .31 .1010 .46 1.61 2.35 
·26' .30 .44 .46 1.73 2.43 

1.23 1.S4 1.28 1.66 
·13 .18 .33 .39 .66 .98 
·Ib .21 .3& .40 .IH 1.13 
.18 .22 .38 .42 1.07 1.42 
.29 .33 .45 .41 2.42 2.S3 
.2b .31 .44 .46 1.76 2.23 
·23 .28 .42 .45 1.49 2.22 
.72 .91 .32 ."2 
.ll .23 .41 .42 1.03 1.01 
.13 .13 .34 .34 .31 .30 
.11 .14 .32 .35 .23 .30 
.09 .13 .29 .34 .23 .34 
.08 .13 .28 .3l .24 .40 
.09 .13 .28 .34 .25 ... 3 

1.31 1.61 .64 .86 
.23 .29 .42 .1t6 1.08 1.24 
.33 .36 .47 .48 .9b .95 
.25 .27 .1t3 • It It .51 .64 
.11) .26 .39 .44 .48 .74 
.16 .21t .l7 .ltl .49 .86 
.lb .25 .36 .4] .48 .90 

UTlL 10 I 10 l 
APP SIN APP SIN 
.60 .51 ... S ."Z 
.15 .16 .04 .05 
.11t .13 .ll .11 
.06 .05 .10 .10 
.06 .05 .0" .04 
.10 .09 .08 .07 
.10 .08 .08 .Ob 
.69 .bl .49 .43 
.23 .20 .Ob .Ob 
.15 .14 .12 .11 
.07 .Ob .11 .10 
.04 .05 .03 .04 
.10 .08 .08 .07 
.10 .08 .08 .06 
.63 .63 .45 .43 
.21 .21 .05 .05 
.12 .13 .10 .11 
.06 .06 .10 .10 
.05 .06 .010 .04 
.10 .09 .08 .01 
.10 .08 .08 .06 
.69 .bS ... 9 .47 
.23 .22 .06 .0& 
.15 .14 .12 .12 
.07 .06 .11 .10 
.05 .05 .04 .04 
.10 .10 .08 .08 
.10 .08 .08 .01 
.69 .87 .58 .56 
.26 .29 .03 .03 
.09 .08 .13 .14 
.10 .09 .20 .19 
.10 .10 .05 .04 
.17 .15 .09 .Otl 
.11 .15 .09 .08 
.84 .81 .52 .51 
.26 .30 .03 .03 
.07 .07 .11 .11 
.09 .08 .17 .18 
.10 .08 .05 .0S 
.16 .15 .oe .07 
.16 .13 .08 .07 

10 J 
APP SIM 
.81 .14 
.01 .01 
.09 .09 
.16 .16 
.l2 .20 
.13 .11 
.13 .11 
.82 .71t 
.10 .09 
.10 .09 
.18 .16 
.17 .20 
.110 .11 
.13 .11 
.81 .11 
.09 .09 
.08 .08 
.17 .11 
.21 .21 
.13 .11 
.13 .11 
.84 .81 
.10 .10 
.10 .10 
.18 .17 
.20 .20 
.13 .12 
.13 .12 
.29 .29 
.01 .01 
.07 .07 
.10 .09 
.03 .03 
.04 .OS 
.0" .04 
.26 .25 
.01 .02 
.05 .06 
.09 .08 
.02 .02 
.010 .04 
.010 .04 

10 4 
APP SIN 

.63 .62 

.03 .03 

.13 .13 

.05 .05 

.26 .l4 

.09 .08 

.O~ .08 

.58 .SIt 

.03 .03 

.11 .11 

.04 .04 

.21t .22 

.08 .01 

.08 .07 

.... ..., 
w 



R
eproduced w

ith perm
ission of the copyright ow

ner.  F
urther reproduction prohibited w

ithout perm
ission.

MODEL CLASS CYCLE TIME CPU UTIL 
APP SSM PS APP SIH .. 2.68 2.6 .. 2.61 .52 .53 

1 2.78 2.D8 2.92 .36 .37 
2 2.52 2.!»6 2.28 .07 .06 
3 2.65 2.6b 2.43 .09 .10 

8 2.55 2.S5 2.51 .42 .42 
1 2.67 2.:ib 2.80 .19 .lO 
2 2.51 2.56 2.42 .ll .1J 
3 2.52 2.5/0 2.105 .10 .09 

9 2.57 2.S3 2.54 .105 .46 
1 2.66 2.~O 2.81 .19 .20 
2 2.39 2.J3 2.30 .07 .07 
3 2.63 2.66 2.55 .19 .18 

10 3.34 3.~d 3.31 .47 .48 
1 3.310 3.12 3.51 .15 .16 
2 3.16 3.12 3.10 .11 .11 
3 3.46 3,"6 3.31 .22 .22 

11 3.54 3.~3 3.42 .61 .62 
1 3.53 3.41 3.81 .43 .44 
2 3.:n 3.36 2.92 .05 .05 
J 3.66 3.83 3.21 • F- .13 

12 3.41 3,"2 3.33 .51 .52 
1 3.42 3d3 3.66 .29 .31 
2 3.40 3,"4 3.21 .15 .110 
J l.38 l.~l 3.15 .07 .07 

TABLE , - NON-PREEMPTiVE MODEL RESUL,S 

CPU M.G.l. S.D.G.l. c;tu M.w.T. 
AP;t SIH APP SIN APP 51 .. 
.92 .95 .61 .63 
.48 .50 .66 .61 .67 .68 
.20 .20 .100 .40 .50 .52 
.23 .24 .42 .43 .62 .64 
.66 .66 .42 .42 
.21 .22 .41 .42 .56 .57 
.27 .27 .53 .53 .J8 .35 
.18 .11 .36 .38 .51 .103 
.72 .74 .106 .41 
.22 .23 '41 '42 '58 .59 
.14 .15 .35 .36 .40 .35 
.35 .36 .59 .60 .52 .10 7 
.05 .87 .47 .108 
.18 .19 .38 .39 .59 .59 
.23 .23 .49 .49 .40 .36 
.4S .4S .13 .73 .57 .52 

1.41 1.44 .83 .85 
.67 .6'1 .115 .85 .19 .79 
.22 .22 .41 .42 .71 .75 
.52 .52 .72 .73 .93 1.00 

1.04 1.05 .59 .60 
.38 .40 .60 .61 .66 .67 
.45 .45 .17 .76 .52 .52 
.20 .20 .100 .40 .67 .69 

UTIL 10 1 10 2 
APP SIM APP SI" 
.46 .47 .34 .33 
.36 .38 .09 .10 
.05 .05 .20 .19 
.05 .04 .05 .04 
.34 .34 .50 .47 
.19 .19 .05 .05 
.10 .10 .40 .J9 
.05 .05 .05 .04 
.JIo .36 .J5 .35 
.19 .22 .05 .05 
.05 .05 .21 .21 
.10 .09 .10 .09 
.34 .35 .46 .101 
.15 .16 .04 .04 
.08 .09 .32 .32 
.11 .11 .11 .11 
.53 .54 .32 .33 
.43 .43 .11 • 11 
.010 .04 .15 .15 
.07 .07 .07 .07 
.44 .45 .55 .55 
.29 .30 .07 .08 
.11 .11 .44 .44 
.Olt .04 .Olt .03 

10 3 
APP SIN 
.33 .33 
.09 .09 
.05 .05 
.19 .19 
.J4 .J4 
.05 .05 
.10 .lD 
.20 .19 
.48 ~48 
.05 .05 
.05 .06 
.38 .38 
.55 .56 
.04 .04 
.08 .08 
.103 .44 
.42 .102 
.11 .11 
.04 .04 
.27 .27 
.JJ .J2 
.01 .07 
.11 .11 
.15 .14 

10 .. 
APP 51 .. 
.75 .73 
.36 .36 
.20 .19 
.19 .18 
.78 .79 
.19 .19 
.40 ."0 
.20 .20 
.78.lf.. 
.19 .1S 
.21 .20 
.38 .38 
.90 .90 
.IS .15 
.32 .32 
.103 .43 
.85 .84 
.43 ..... 
.15 .14 
.27 .26 
.88 .89 
.29 .30 
.44 .45 
.IS .llt 

... 
N 
~ 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER VI 

SIMULATION OF GENERALIZED QUEUEING NETWORKS 

6.1 Introduction 

Queueing network models can be used to analyze characteristics of 

computing systems such as scheduling disciplines with priority and/or pre­

emption, non-exponential service time distributions, customer dependent 

behavior and contention for memory, channels and other resources (B2,B4,Fl, 

KI, Chapter V). Though much progress has been made in using algebraic or 

numerical techniques to find solutions or approximate solutions for these 

complex models (B2,B4,C2,Kl,Chapter V), simulation is more general than 

other solution techniques. Confidence intervals for simulation results are 

very important. Confidence intervals for simulation results for a very large 

class of queueing network models can be determined using the techniques of 

Crane and Iglehart (C6,C7). We have developed a versatile simulator incorporat­

ing confidence interval analysis; this simulator and the extensions proposed 

here provide the computer system designer/analyst with powerful new tools. 

In section 6.2 we review the techniques of Crane and Iglehart, in 

Section 6.3 we present a description of the simulator we have implemented, 

and in section 6.4 we discuss the extension of the existing simulator to the 

general models described above. In section 6.5 we present a language, QUASCI 

(~eueing Analysis by !imulation with Confidence Intervals), based on the 

language QAL (Fl,M2). Only models for which the confidence interval techniques 

are valid may be expressed in QUASCI; the language is designed to prevent 

incorrect application of the confidence interval techniques. QUASCI is also 

125 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

126 

appropriate for model descript~on for solution packages using nonsimulation 

techniques. This is significant in the application of queueing network 

models to computer system analysis. 

6.2 Confidence Intervals -- The Crane-Iglehart Technique 

Confidence intervals (M3) may be used to indicate the accuracy of 

simulation results. We can say with a certain level of confidence, say 90%, 

that the result of a simulation will lie within an interval, say (a,b). In 

other words, if we run many simulations, the results of 90% of the simulations 

will be in the interval (a,b). 

Crane and Iglehart have developed confidence interval techniques for 

simulations of Markovian models with a single chain. We will assume for 

now that the state space of the model is finite or countab1y infinite; these 

techniques may also be applied to other models (C7,Ll). The techniques are 

based on many replications of "tours", a tour being defined as the period 

between two successive returns to a designated state. The simulation need 

not simulate the Markov process directly, but it must be able to determine 

when the system returns to the designated state. Crane and Iglehart show 

that the expected length of the confidence intervals, given a fixed simulation 

run length, is independent of the state chosen to define the tours. However, 

if the state chosen is such that the tours are very long relative to the total 

simulation run length, then few tours will be replicated and the confidence 

interval analysis will not be valid. So we should attempt to choose a 

frequently entered state to define the tours. We should also choose states 

that are simply defined so that overhead of testing for the state is not too 

great. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

1'27 

We illustrate application of the techniques in determining confidence 

intervals for server utilization. Application to other model statistics is 

similar. Server utilization can be determined by dividing the simulated time 

during which the server is busy by the total simulated time. Equivalently, 

we can determine utilization as BIT, where Bi is the time the server is busy 

during tour i, and Ti is the length of tour i. For g in the interval (0,1) 

we can determine 

utilization (C6) 

100(1 - g) per~ent 

Ii> iff - kS 12 + 
an approximate 

as: [ lIT - kS 12 
-2 T - ks 22 

and D are defined as follows: 

confidence interval for 

ID] , where k, s12' 

Let 41(z) 1 I~O) -n2/2 dn ell-I (x) and let n be the number =-- e z = 
& x 

of tours, then k = 
zi-g/2 n (E[BT] - BT). n (E[T2] - F). s12 =-- s22 = --n n-l n-l 

n 2 n2. - 2 -2 -2 Let sll = n-l (E[B 1 - B ), then D = (BT - ks12) - (B - ksll)(T -ks22). 

6.3 APLOMB - A Simulator for Closed Queueing Networks 

We have constructed a queueing network simulator employing the 

Crane-Iglehart techniques. This simulator exists as a set of Fortran sub-

routines. The user provides the routines with a definition of the model, 

criteria for acceptable confidence intervals, and a short routine which is 

called to determine whether the simulated system is in the tour defining 

state. 

The networks simulated by APLOMB may have several different classes 

of customers. Each queue may have one of a variety of queueing disciplines, 

including FCFS and priority disciplines. The existing simulator assumes a 

single server at each queue, but may be easily extended to allow multiple 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

128 

identical servers. Service distributions of generalized Er1ang form 

(Figure 6.1) proposed by Cox (CS, Chapter IV, Chapter V) are assumed; the 

service times may be class dependent. Customers leaving a queue may be routed 

~i - rate of exponential stage i 

Pi - probability of bypassing stages after stagei 

Figure 6.1 

to any queue in the network according to fixed probabilities. These 

probabilities may be dependent on the customer class and the queue being left. 

The state of the system is determined by the number of customers of each class 

in each queue, the ordering of customers in each queue, and the current 

distribution stage for each customer. This system will have a finite state 

space. 

The simulator structure is driven by an event list. An event 

occurs each time a customer completes a stage of its service distribution. 

After each event the user supplied routine is called to determine whether 

the system is in the tour defining state or not. If the system is not in 

the tour defining state, the simulation continues. If the system is in the 

tour defining state, the accumulators used in the confidence interval analysis 

are updated. If a sufficient number of tours have been replicated, confidence 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

129 

intervals are determined. If the confidence intervals are satisfactory, the 

simulation is terminated, otherwise additional replications are made until 

satisfactory intervals are obtained. 

This simulator has been used to determine results for over 125 

computer system models (Chapter V). The results of these simulations are 

in agreement with those obtained by analytic approximation techniques. 

6.4 Extension to Open Networks, Mixed Networks and Passive Servers 

The existing simulator may be easily extended to include open and 

mixed networks. Open networks have sources which emit customers and sinks 

which absorb customers leaving the network. Hixed net~vorks are open for some 

classes of customers and closed for other classes. If we represent the time 

between arrivals from a source by a distribution of the Cox form (Figure 6.1) 

and make other restrictions as with closed networks, then the system will have 

a countab1y infinite state space. The state of the system is determined by 

the distribution stage of each source, and the same conditions which determine 

the state of the closed network. In addition to events occurring after 

customers complete service stages, events must occur when a source"" distribution 

stage is completed. 

Passive servers are a construction which has been included in 

queueing network models to consider the effects of blocking in computer 

systems for resources such as memory, channels and peripheral processors. 

Customers must acquire units of the server before they may traverse certain 

parts of the network. If the units are not available, the customer must wait 

in a queue. When a customer leaves the restricted portion of the network, 

all units of the passive server are released by the possessing customer and a 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

130 

queued customer may acquire these units. We assume that the number of units 

required oy a customer is described by a finite probability mass function, and 

dependent only on the server and the customer class. The state of a system 

will be determined by the above mentioned conditions, by the allocations of 

passive servers to each customer, the number of customers of each class in 

each queue for a passive server, and the ordering of customers in these 

queues. The state space will be at most countably infinite. Since passive 

servers will only be affected when customers leave a source or an active 

server, the same event definitions described above can be used. 

6.5 QUASCI 

QUASCI is a high level language very similar to the language 

QAL (Fl,M2)~ We have restricted the features of QAL to allow only models 

which are compatible with the confidence interval techniques, and have added 

new features to facilitate use of the confidence interval techniques. First 

we present an example illustrating some of the features of the language, 

then informally present the syntax and semantics of the language. 

6.5.1 An Example 

Figure 6.2 illustrates a simple model of a computing system. 

Customers arriving at the system must wait in a queue until allocated space 

in memory. After receiving memory, the customers alternately request service 

from the central processing unit (CPU) and from an input/output (I/O) device. 

After several cycles of CPU and I/O services, the customers release their 

portion of memory and leave the system. Figure 6.3 gives a QUASCI description 

of this model. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

N 
o 
H 

131--. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

NETWORK 

END 

1 (1.) 
2 

(ALLOCATE, MmI0RY) 
(1.) (CPU) 
3 (.4) (101) 
3 (.6) .(102) 

4 (.5) (GO, 2) 
4 (.5) (RELEASE, MEMORY) 

5 (1.) (SINK) 

SERVERS 

END 

MEMORY, PASSIVE = 4, REQUEST = 1 $ 
CPU, DISTRIBUTION = STANDARD(1.,5.), DISCIPLINE = PS, 

TOLERANCE = (1.,.05,.2,.2) $ 
101, DISTRIBUTION = STANDARD(2.,.5) $ 
102, DISTRIBUTION = STANDARD(3.,.5) $ 

SOURCES 
INPUT, DISTRIBUTION = STANDARD(lO.,l.), ENTRY POINT = MEMORY $ 

END 

CUSTOMERS 

END 

TOURS 

END 

CPU = (2) $ 

MEMORY, LENGTH = 0 $ CPU, LENGTH = (2) $ 
101, LENGTH = 0 $ 102, LENGTH = 0 $ 

SIMULATE 
BATCH, CONFIDENCE = 95 

END 

Figure 6.3 

132 

The NETWORK statement describes the interconnections of the model 

elements. This statement consists of several "levels". Each level consists 

of a level number, a traversal probability, and either a network element or a 

"GO" element. Customers leaving a network element proceed to a level with 

the next higher level number, unless directed to a specific level or element 

by a "GO lI
• When there are several levels to choose from, the choice is 

determined by the associated traversal probabilities. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

133 

The SERVERS statement gives the characteristics of each of the 

servers in the model and their associated queues. Several characteristics are 

not specified; default values are assumed. MEMORY is a passive server with a 

total of four units available; customers always request 1 unit. The queueing 

discipline is FCFS by default, and no criteria are specified for the 

confidence intervals for the statistics associated with MEMORY. The CPU is 

an active server (as opposed to a passive server -- the CPU is a server in 

the traditional sense). The distribution of service requests is a standardized 

form (Chapter V) with mean of 1 and coefficient of variation 5. The queueing 

discipline is Processor Sharing (PS), the limiting case of a no overhead 

round-robin discipline as the quantum approaches zero. TOLERANCE specifies 

max~um lengths for the confidence intervals for throughput, utilization, queue 

length and wait time, respectively, at the CPU. 

The SOURCES statement specifies the name of the source, INPUT, the 

distribution for interarriva1 times from the source, and the place where 

customers enter the network. Customers arriving from the source are of 

class 0, by default. 

The CUSTOMERS statement specifies that there are to be two class 0 

customers at the CPU when simulation begins. 

The TOURS statement specifies the conditions which determine the 

tour defining state. In this example, all queues are empty in the tour 

defining state, except for the CPU queue, which must have 2 customers. Both 

customers at the CPU must be in the first stage of their service distribution, 

by default. Also by default, the source must be in the first stage of its 

distribution. Notice that the system is in the tour defining state initially_ 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

134 

The SIMULATE statement specifies that simulation is to be initiated, 

and the confidence level is to be 95%. 

6.5.2 Syntax and Semantics of gUASCI 

QUASCI, like gAL, is intended to be embedded in a high level 

algorithmic language such as FORTRAN, PASCAL or PL/l. QUASCI programs may 

take advantage of host language facilities for communicating with the operating 

system, for iteration, for computing values of variables, etc. The interaction 

of QUASCI with the host language is more restricted than that of QAL. The 

primary difference is that host language expressions within QUASCI statements 

are not evaluated repeatedly during the simulation, but rather evaluated when 

the QUASCI statement is executed. This is necessary, otherwise, we could not 

easily guarantee that the Markov process for the simulated system is properly 

defined. This restriction also removes one of the primary implementation 

difficulties of QAL. 

There are seven statements in the language, SIMULATE, NETI~ORK, 

. SERVERS, TOURS, CUSTOMERS, SOURCES and SINKS. All programs must include the 

first three and either CUSTOMERS or SOURCES or both. TOURS must be included 

unless the system is an open network. We will now discuss these statements 

in the above order, but first describe notation. Braces { } enclose required 

items, and brackets [ ] enclose optional items. When there are several lines 

within braces or brackets, anyone line may be used for the required or option­

al item. Underlined values are used as default values where no item is 

specified. Capitalized words denote keywords. t~ere several orderings of 

keyword items are possible, all orderings are equivalent. An ellipsis ( ••• ) 

represents repetition of the preceeding form. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

135 

Figure 6.4 describes the SIMULATE statement. The <name> is used 

to identify the entire simulation, and must be a valid identifier in the host 

SIMULATE <name> [,CONFIDENCE= 90 ] 
<expr> 

,TOUR LIMIT= (25 25 ] 
. . ~expr> ' <expr» 

END 

Figure 6.4 

language. CONFIDENCE sets the level of confidence for the simulation 

statistics. The item <expr> denotes a scalar expression in the host language. 

The first value in parentheses for the TOUR LIMIT sets the minimum number of 

tours considered necessary for valid confidence intervals. The second 

parenthesized value sets the number of tours to be replicated before rechecking 

the confidence intervals. 

Figure 6.5 describes the NETWORK statement. The item <level 0> 

NETWORK 

flevel il>} 

END 

~expr> \1 
~<expr>[,<expr>] ••• )IJ 

Figure 6.5 

(ALLOCATE, <name» 
(RELEASE, <name> ) 
([SERVER,] <name» 
(SINK [, <name> ] ) 

(GO, t~::~ II>}) 
(BRANCH, <name» 
(CLASS,<expr> ) 

must be an unsigned integer. The parenthesized expresSions in the second 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

136 

part of the level give traversal probabilities. The singly nested form give~ 

class independent probabilities, while the doubly nested form gives probabilities 

for each class from class 0 through the highest class number occurring in 

this model. (QUASCI allows only single digit class numbers for clarity in 

the TOURS statement. From experience with APLOMB, it is doubtful that 

simulation analysis of models with more than ten classes would be tractable.) 

The items allowed for the third part of the level are generally self explanatory. 

The BRANCH item is intended as a labeled "dummy" node for convenience in 

describing complex routings. The CLASS item changes the class of a customer 

to the value given in the expression. 

Syntax of the SERVERS statement is shown in Figure 6.6. 

SERVERS 

<name> 

~( 1 ~ [ ,ACTIVE= 1], DISTRIBUTION= { . 
<exPr> <expr> <dist> 

«dist> [,<dist>] 

,PASSIVE=<expr> ,REQUEST= {<fPmf> J 
«fpmf> [, <fpmf>] ••• ) 

,DISCIPLINE= FCFS 
PRIORITY «expr» 
PS 
LCFSPR 
FF 

r ex> ex> ell Q) 1 
L,TOLERANCE= «expr>,<expr>,<expr>,<expr»J 

[

, STATISTICS= GENERAL] 
NONE 
FULL 

$ 

END 
Figure 6.6 

.J 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

137 

This figure shows the description possibilities for one server or set of 

identical servers. Several descriptions may be included in a single statement, 

with each description terminated by a dollar sign. The first line in the 

major braces is for active servers, the second for passive servers. 

For active servers, the expression in parentheses gives the number 

of identical servers. The expression after ACTIVE= gives the rate of each 

server. In the distribution description for the server, we specify whether 

the distribution is class independent or class dependent. The form with a 

single expression is for class independent distributions. The parenthesized 

form is for class dependent distributions. There are several options for 

<dist>. The primary two are a standardized version of the Cox form (Chapter V), 

STANDARD«expr>,<expr», where the first expression is the mean and the 
r~~~p'lr~ 

second is the coefficient of variation, and the general Cox form, COX«expr>, 

<rates>,<prob», where the expression gives the number of exponential 

stages, <rates> is a vector of rates for the stages, and <prob> is a vector 

of bypassing probabilities for the stages. We may allow other distributions 

consisting of networks of exponential stages. However, this complicates 

implementation and adds little generality (Chapter IV). Including distribu-

tions which are not representable by a .finite number of exponential stages, for 

example the uniform distribution, does add considerable generality, but also 

requires restrictions in the tour definitions. If we have such distributions, 

then the state space will not be countable. In choosing states for tour 

definition, we are restricted to those states which have tour lengths with 

finite first and second moments (C7,L1). 

With passive servers, the expression after PASSIVE= gives the total 

number of units available. We specify the number of units for each request 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

138 

after PASSIVE=. This may be class independent or dependent as with active 

server distributions. The item <fpmf> may either be an expression, in which 

case the number of units requested is a constant, or a finite probability 

mass function expressed as PMF«<expr>,<expr»,«expr>,<expr», ••• ), where 

the first expression of the pair is the probability of the value of the 

second expression. 

Several options are shown for the queueing discipline. The default 

discipline, first come first served (FCFS) is appropriate for either active 

or passive servers. The expression after the PRIORITY discipline gives the 

preemption distance (H2). This discipline is appropriate for passive 

servers only if it is non-preemptive. PS is appropriate only for active 

servers as is Last Come First Served Preemptive Resume (LCFSPR). First Fit 

(FF) is appropriate only for passive servers. FF is similar to FCFS, but 

when the first customer in the queue requests more units than are available, 

other. customers with smaller requests may be allocated units. Other 

disciplines may also be added to the language. 

As previously mentioned, the expressions in the TOLERANCE description 

are maximum lengths for the confidence intervals for throughput, utilization, 

mean queue length and mean wait time, respectively. These lengths are for 

class independent statistics. Three options are allowed for the statistics 

gathered; class independent statistics (GENERAL), no statistics (NONE) and 

class dependent as well as class independent statistics (FULL). 

Figure 6.7 shows the form of the TOURS statement. Tour descriptions 

are 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

TOURS 
<name> 

$ 

END 

[
,LENGTH= 0 1 

«expr> [, <expr> 1 •• '.) J 

[
, QUEUE= {[I ] r ~ L~<digit>[<digit>] ••• ) <digit> (STAGE= 1 ) 

<expr> 

[
. «name>= .Q. )11 

<expr> J 

[
, STAGE= 1 "1 

<expr> J ... J .. J 

Figure 6.7 

appropriate only to servers and sources. The LENGTH and QUEUE keywords are 

appropriate only to servers, while the STAGE keyword outside of the QUEUE 

section is appropriate only to sources. Where the total queue length is non-

zero, lengths for each class must be specified. If more than one class of 

customers is present in the queue, and the discipline is not PS or PRIORITY 

with preemption distance 1, then the ordering of customers in the queue must 

be specified with the QUEUE section. The customers are specified in order 

from first to last. The number in parentheses is the number of customers of 

the class specified by the digit following the parentheses. The STAGE keyword 

in parentheses is for the current distribution stage of those customers. 

The <name> in parentheses is the name of a passive server, and the expression 

gives the number of units of the server that are held. The STAGE keyword for 

sources is for the current distribution stage for that source. Note that 

the syntax does not prevent the user from defining a model with mUltiple 

chains or using a transient state for tour definition. These are 

.- ...... 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

140 

cons~dered semantic errors and an implementation of the language should attempt 

to check for such errors before simulation is initiated. For example, if the 

network is such that customers may initially be in a queue to which they 

cannot return, if deadlocks may occur, or if customers may change from one 

class to another but not reverse the class change, then transient states can 

exist. 

The CUSTOMERS, SOURCES and SINKS statement are described in Figures 

6.8 1 6.9, and 6.10. The CUSTOMERS statement may be used to place 

CUSTOMERS 

<name> = «expr> [,<expr>] ••• ) $ 

END 

Figure 6.8 

SOURCES 

<name> {,DISTRIBUTION= <dist>} 

$ 

END 

SINKS 

<name> 

$ 

END 

. ,ENTRY POINT= <name> } 
r <level #> 

,CLASS= Q ] 
<expr> 

[
,STATISTICS= GENERAL] 

NONE 

Figure 6.9· 

(

,STATISTICS= GENERAL] 
NONE 
FULL 

Figure 6.10 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

141 

customers initially at different servers in the network. This is necessary 

for closed networks and useful in open networks. The distribution options for 

sources are similar to those for servers, Qut,are restricted to forms with a 

finite number of exponential stages. 

Finally, we summarize the differences between QUASCI and QAL. We 

ignore minor differences, such as substitution of one keyword for another. 

First, the language QUASCI is more restricted than QAL, both in 

terms of features allowed and in terms of semantics. The restrictions are 

generally necessary to guarantee that the confidence interval techniques may 

be applied. Expressions in QUASCI statements may not change value during 

simulation, as may those in QAL. QUASCI cannot allow source distributions 

which are not representable by finite networks of exponential stages. Control 

of routing in the network is limited to fixed probabilities in QUASCI, while 

QAL allows very general predicates to control routing and allows the predicates 

to change during simulation. QUASCI does not allow customers to create 

subtasks, as does QAL. QUASCI does not separate queues from servers as does 

QAL,.nor does QUASCI allow the flexibility of server definition that QAL allows. 

QUASCI does not allow passive servers to be consumed or created. QAL permits 

user definition of queueing disciplines and other simulation constructs, but 

QUASCI does not. 

Second, QUASCI includes features not found in QAL, such as tour 

definition, which enable convenient use of confidence interval analysis. As 

another extension, QUASCI distinguishes between customer classes by digits 

instead of names and includes class distinctions as an integral part of the 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

142 

syntax of the language; QAt requires more user effort in the specification 

of class dependent behavior. Liu ~4) has extended the syntax of QAL in a 

similar manner. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER VII 

SUMMARY AND RECOMMENDATIONS 

We have presented an approach to configuration design of computing 

systems. We have also presented techniques useful in the implementation of 

tfds approach. 

We have shown that efficient optimization procedures may be applied 

to a large class of open queueing networks with different classes of customers. 

In many situations these open queueing networks may be used as models of 

computing systems, communication networks and computer networks. We recommend 

that an existing computer program, such as Hogarth's (H3) , be extended to 

include this class of networks. Extension of oui results to closed networks 

would be very useful, though this appears to be a difficult problem. 

Our algorithms for numerical solution of closed queueing networks 

enable inexpensive parametric analysis of realistic models of computing 

systems. These algorithms are also valuable in the approximate analysis of 

more complex models; our approximate analysis techniques for central server 

models are economical and suitable for analysis of large parameter spaces of 

configurations. We thoroughly validated our approximations with simulation 

results for over 125 models. These nu~erical and approximation techniques 

are compatible with the techniques for models with passive resources such as 

memory (B4,Kl); computer programs combining our techniques with these 

previous techniques would be very valuable to the computer system designer. 

The characteristics of the models we analyze correspond to develop­

ments in computer systems and results of measurement studies. Measurement 

143 . 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

has shown that service time distributions are often non-exponential; our 

models allow a general class of service time distributions. Our models 

144 

allow multiple identical processors; there is a trend toward architectures 

with multiprocessing and our models are appropriate for analysis of these 

models. Empirical studies show that different programs have different service 

characteristics. Our models represent program dependent behvaior by using 

different classes of programs. Priority scheduling is widely used in computer 

systems and computer networks; our models allow preemptive and non-preemptive 

priorities. 

Simulation studies continue to be important in computer system 

evaluation. Simulation techniques have been used casually in the past and 

simulation results have been viewed with skepticism for this reason. Our 

work has helped to formalize simulation technique and provide tools and 

theory which allow confidence in simulation results. 

We have shown that the confidence interval simulation techniques 

of Crane and Iglehart (C6,C7) may be applied to a very large class of general 

models of computing systems. We have presented a language, QUASCI, designed 

to facilitate correct application of these simulation techniques. A simula­

tion implementation of this language would also be extremely valuable to 

computer system designers. 

QUASCI may also be used to represent models soluble by non­

simulation techniques. We suggest that this language be used as a general 

modeling language. It should be possible to implement this language so that 

the user need not specify the solution technique to be used. In such an 

implementation, the user would specify the model and the results required; 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

the implementation itself would then determine which solution technique 

would be appropriate to these user specifications. 

145 

Since the computer sys'tem designer will usuallr- be interested in a 

parameter space of models, we would recommend research to extend and implement 

our language to allow the user to specify a parameter space of models and 

criteria for selection of optimal models. This extended language implementa­

tion would De responsible for searching the parameter space and reporting 

to the us'er the optimal model or models. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIBLIOGRAPHY 

Bl Baskett, F. Mathematical Models'of Multiprogrammed Computer Systems. 
TSM-17, Computation Center, The University of Texas at Austin, (1971). 

B2 Baskett, F., Chandy, K. M., Muntz, R. R., and Palacios-Gomez, F. "Open, 
Closed and Mixed Networks of Queues with. Different Classes of Customers ll

, 

·to appear JACM (1975). 

B3 Bell, C. G. and Newell, A. Computer Structures: Readings and Examples. 
McGraw-Hill Book Company, 1971. 

B4 Brown, R. M. An Analytic Model of a Large Scale Interactive System 
Including the Effects of Finite Main Memory. M. A. Thesis, Department 
of Computer Sciences, University of Texas at Austin, (1974). 

B5 Browne, J. C., Chandy, K. M., Brown, R. M., Keller, T. K., Towsley, D. 
and Dissly, C. W. "Hierarchical Techniques for Development of Realistic 
Models of Complex Computer Systems", to appear I~EE Transactions on 
Computers, (1975). 

B6 Buzen, J. Queueing Network Models of Multiprogramming. Ph.D. Disserta­
tion, Division of Engineering and Applied Physics, Harvard University, 
(1971). 

Cl Chandy, K. M. "The Analysis and Solutions for General Queueing Networks", 
Proceedings Sixth Annual Princeton Conference on Information Sciences, 
Princeton, University, (1972). 

C2 Chandy, K. M., Herzog, U., and Woo, L. "Approximate Analysis of General 
Queueing Networks", IBM Journal of Research and Development, (January, 
1975). 

C3 Chandy, K. M., Herzog, U., and Woo, L. "Parametric Analysis of Queueing 
Network Models", IBM Journal of Research and Development, (January 
1975) . 

C4 Chandy, K. M., Howard, J. H. and Towsley, D. F. "Station Balance", 
submitted, JACM (1975). 

C5 Cox, D. R. "A Use of Complex Probabilities in the Theory of Stochastic 
Processes", Proceedings Cambridge Philosophical Society 51 (1955), 
pp. 313-319. 

C6 Crane, M. A. and Iglehart, D. 1. "Simulation of Stable Stochastic 
Systems I: General Multiserver Queues", JACM 21, 1 (1974) pp. 103-113. 

C7 Crane, M. A. and Iglehart, D. 1. "Simulation of Stable Stochastic 
Systems II: Markov Chains", JACM 21, 1 (1974), pp. 114-123. 

146 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

147 

C8 Courtois, P. J. and Georges, J. "On a Single Server Finite Queueing 
Model with State Dependent Arrival and Service Processes", Operations 
Research, (1971) pp. 424-434. 

D1 Drake, A. W. Fundamentals of Applied Probability Theory. McGraw-Hill 
Book Company, 1967. 

Fl Foster, D. V., McGehearty, P. F., Sauer, C. H. and Waggoner, C. N. 
uA Language for Analysis of Queueing Models", ProceedingH Fifth 
Annual Pittsburgh Modeling and Simulation Conference, University of 
Pittsburgh, (1974). 

12 Foster, D. V. File Assignment in Memory Hierarchies, Ph.D. Dissertation, 
Department of Comruter Sciences, University of Texas at Austin, (1975). 

G1 Gaver, D. P. "Probability Models for MUltiprogrammed Computer Systems", 
JACM 14, 3 (1967) pp. 423-438. 

G2 Gaver, D. P. and Shed1er, G. S. "Approximate Models for Processor 
Utilization in Multiprogrammed Computer Systems", SIAM Journal of 
Computing 2, 3 (1973) pp. 183-192. 

G3 Gordon, W. J. and Newell, G. F. "Closed Queueing Systems with Exponential 
Servers", Operations Research 15, (1967) pp. 254-265. 

HI Herzog, U., Woo, L. and Chandy, K. M. "Solution of Queueing Problems 
by a Recursive Technique", to appear IBM Journal of Research and 
Development. 

H2 Herzog, U. "Efficient Priority Strategies for Switching Centers in 
Communication Networks", Proceedings Second Texas Conference on Computing 
Systems, University of Texas at Austin, (1973). 

H3 Hogarth, J. Optimization and Analysis of Queueing Networks. Ph.D. 
Dissertation, Department of Computer Sciences, University of Texas at 
Austin, (1975). 

H4 Hu, T. C. Integer Programming and Network Flows. Addison-Wesley, 1969. 

II Irani, K. B. and Wallace, V. L. "On Network Linguistics and the 
Conversational Design of Queueing Networks", JACM 18, 4 (1971) pp. 616-
629. 

J1 Jackson, J. R. '1Jobshop-like Queueing Systems" ~ ~anagement Science 10, 
1 (1963) pp. 131-142. 

J2 Johnson, D. S. A Process-Oriented Model of Resource Demands in Large, 
Multiprocessing Computer Utilities. TSN-29, Computation Center, The 
University of Texas at Austin, (1972). 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

148 

Kl Keller, T. W. and Chandy, K. M. ttComputer Models with. Constrained 
Parallel Processors", Proceedings 1974 Sagamore Conference on Parallel 
Processing. 

K2 Kleinrock, L. Communication Nets. McGraw-Hill Book Company, 1964. 

10 Kobayashi, H. "Applications of the Diffusion Approximation to Queueing 
Networks I: Equilibrium Queue Distributions", JACM 21, 2 (1974) 
pp. 316-328. 

K4 Kobayashi, H. "Applications ,'ol the Diffusion Approximation to Queueing 
Networks II: Nonequi1ibrium Distributions and Applications to Computer 
Modeling", JACM 21, 3 (1974) pp. 459-469. 

Ll Lavenberg, s. s. Efficient Estimation Via Simulation of Work-Rates in 
Closed Queueing Networks. RJ 1390, IBM Research Laboratory, San Jose, 
California, (1974). 

L2 Lee, C. C. Queueing Models of Device Utilization in Multiprogrammed 
Computer Sys tems , TR-7, Department of Computer Sciences, The University 
of Texas at Aus tin, (December 1972). 

L3 Little, J. D. c. "A Proof for the Queueing Formula L = AUl", 
Operations Research 9 (1966) pp. 383-387. 

L4 Liu, C. A. forthcoming M.A. Thesis, Cepartment of Computer Sciences, 
University of Texas at Austin. 

Ml Martin, J. Design of Real-Time Computer Systems. Prentice-Hall, 1967. 

M2 McGehearty, P. F. QSIM, An Implementation of a Language for Analysis 
of Queueing Models. M. A. Thesis, Department of Computer Sciences, 
University of Texas at Austin, (1974). 

M3 Mood, A. 'M. and Graybill, F. A. Introduction to the Theory of Statistics. 
McGraw-Hill Book Company, 1963. 

M4 Morse, P. M. queues, Inventories and Maintenance. John Wiley and Sons, 
1958. 

M5 Muntz, R. R. 
IBM Research 

and Queuein Networks, 

Pl Peebles, R. W. "A Homogeneous Network of Computers for Data Sharing", 
Lecture presented Department of Computer Sciences, University of Texas 
at Austin, October 16, 1974. 

Rl Reiser, M. and Kobayashi, H. "Queueing Networks with Several Closed 
Sub chains : Theory and Computational Algorithms", to appear IBM Journal 
of Research and Development. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

149 

R2 Rockafellar, R. T. Convex Analysis. Princeton University Press, 1970. 

Sl Sauer, C. H. and Chandy, K. M. "Approximate Analysis of Central Server 
Models", to appear IBM Journal of Research and Development, (1975). 

S2 Sauer, C. H. "Simulation Analysis of Generalized Queueing Networks", 
to appear Proceedings Summer Computer Simulation Conference, (1975). 

S3 Shedler, G. S. A Cyclic Queue Model of A Paging Machine. IBM Research 
Report, RC 2814, Yorktown Heights, New York. (March 1970). 

S4 Smith, J. L. "An··Analysis- of Time Sharing Computer Systems Using 
Markov Models", Proceedings Spring Joint Computer Conference, (1966). 

Tl Towsley, D. F. Queueing Networks with State Dependent Branching 
·Probabilities. Forthcoming Ph.D. Dissertation, Department of Computer 
Sciences, University of Texas at Austin. 

WI Wallace, V. L. and Rosenberg, R. S. '~arkovian Models and Numerical 
Analysis of Computer System Behavior", Proceedings Spring Joint 
Computer Conference, (1966). 

W2 Williams, A. C. and Bhandiwad, R. Private communication. 

W3 Wolfe, P. "Methods of Nonlinear Programming", in Abadie, J., editor, 
Nonlinear Programming. John Wiley and Sons, 1967. 

W4 Wyszewianski, R. J. Feedback Queues in the Modeling of Computer 
Systems: A Survey. TR 74-1, Department of Industrial and Operations 
Engineering, University of Michigan, (1974). 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

VITA 

Charles Herbert Sauer was born in Betheseda, Maryland on August 14, 1947, 

the son of Doris Johnson Sauer and Herbert Irvin Sauer. After graduation 

from Hickman High School, Columbia, Missouri, in 1965, he entered Carleton 

College, Northfield, Minnesota. He continued his studies at the University 

of Missouri, Columbia, Missouri, in 1966 and at San Francisco State College, 

San Francisco, California, in 1967-68. After an interruption to pursue 

musical interests, he continued studies at the University of Texas at Austin, 

Austin, Texas, in 1969, receiving the degree of Bachelor of Arts with a major 

in mathematics from the University of Texas at Austin in December 1970. In 

September 1971 he entered the Graduate School of the University of Texas at 

Austin. 

Permanent address: 1635 Highridge Circle 
Columbia, Missouri 65201 

. This dissertation was typed by Ann M. Patterson. 


