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An approach to configuration design of computing systems is 

presented. This approach is based on analysis and optimization of queueing 

network models of computing systems. Efficient optimization of open queueing 

networks with different classes of customers is considered. Efficient 

nume~ical analysis techniques and inexpensive approximate analysis techniques 

for a large class of central server models are presented. These techn~ques 

are suitable for thorough study of a large parameter space of configurations. 

The central server models considered include non-exponential distributions, 

different classes of customers and scheduling disCiplines with priorities. 

Simulation analysis of a very general class of queueing networks is discussed. 

These techniques allow determination of confidence intervals for open, closed 

and mixed queueing networks with different classes of customers and both 

passive and active servers. A language for description and analysis of this 

class of queueing networks is presented. 
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CHAPTER I 

INTRODUCTION 

1.1 Design of Computing Systems 

Computing facilities are sufficiently complex that we cannot hope 

to choose an optimal or near-optimal system without thorough analysis of the 

many configurations available. This work presents tools for analysis of 

computing systems and a coherent approach to important aspects of choice of 

a particular configuration of a computing system. This approach utilizes the 

tools we present along with existing techniques. Though we will primarily 

consider configuration of new systems the tools and approach we present are 

also appropriate to reconfiguration of eXisting systems. 

In general we assume that we are given a characterization of the 

workload for the proposed system and characterizations of the components 

available for the proposed system. Given these characterizations, we will 

want to solve one of two problems. Either we will be given constraints 

on the cost of the system and required to maximize performance of the system 

without violating the cost constraints, or we will be given performance con­

straints and required to minimize cost. In the case of eXisting systems, we 

may wish to maximize performance without changing the hardware configuration. 

1.2 Performance Measures 

Many performance measures are possible, and the measures used may 

be dependent on the proposed system. We will assume that the primary measure 

of interest is the time required by the system to service a user request and 

respond to the user. This response time measure may be refined in a variety 

1 
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of ways. We may be interested in only the mean response time, or we may 

require some other estimates of the distribution of response times. We 

2 

may wish to differentiate between users on a political basis, an economic 

basis, a basis of mode of access to the system, such as batch or interactive, 

or some other basis. Consider as an example a university computation center, 

with a wide variety of users and applications. The large majority of users 

make very small requests on the system while a few users have applications 

which place heavy demands on the system. In order to give good response to 

the "average user", priority may be given to the users with small requests, 

otherwise the applications with heavy demands clog the system and cause poor 

response time for the average user. However, if the small requests are given 

too high priority, the users with heavy demands may get very poor response. 

This may not be readily apparent from response time measures which do not 

distinguish between users. Such a situation will be politically unwise since 

the ~sers with heavy demands provide a much larger share of the center's 

support than do the users that are given priority. Some users may be willing 

to pay more for. computational service in order to get priority service, or 

other users may be willing to suffer poor response in order to pay at a 

discounted rate. (Service for such users may be scheduled when the system is 

not in demand such as late at night or on weekends.) For interactive users, 

distinction may be made according to the kind of interaction. We may wish 

to give virtually instantaneous response to those using text editors or 

computer aided instruction, but be willing to accomodate slower response for 

interactions requiring substantial computation. 
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A measure of secondary importance is the throughput of customers 

through the system. Increasing throughput may degrade re~ponse time for some 

users. We wish to maximize throughput without unduly sacrificing response time 

characteristics. Measures concerned with individual components of the 

system are also of importance. Measures concerned with components 

exclusively held by a customer may give indications of the sensitivity of 

more important measures to fluctuations in the workload. For example, if 

such a component is almost always in use, then the response time may be very 

sensitive to temporary increases in the workload. If such a component is 

little used, it is likely that we can improve response time by increasing the 

utilization of that component. We will be concerned with utilizations, queue 

lengths and waiting times for exclusively held components. 

We will not consider reliability of the system, though this is 

clearly an ~mportant performance measure. 

1.3 Workload Characterization 

We will assume that the workload has been characterized at a fairly 

gross level of detail. It is unlikely that the workload can be characterized 

precisely until the system is operational, and precise characterization may 

nQt be possible even then. Notice that since we cannot provide precise char­

acterization of the workload we can provide only estimates of the performance 

of the system; some error is inevitahle and small additional error due to our 

analysis must be considered acceptable. 

The workload characterization ~ll be based on what we know about 

the use of the proposed system. We must apply this knowledge and measure­

ments from existing systems to characterize the workload (B4,B5,J2). 
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More specifically, we will assume that the workload is characterized 

in terms of the arrival rate(s) of user requests (we may distinguish between 

users as we did for response times) and in terms of the specific nature of 

the requests. Generally a user request will consist of several cycles, 

each cycle consisting of a computation part and a data transfer part. During 

the computation part of the cycle, a processor uses data found in input 

buffers, if the program has input data, and places results in output buffers. 

When input buffers become empty or when output buffers are filled the program 

requests that data be transferred from secondary storage or to secondary 

storage, respectively. It may be possible that, because of multiple buffering, 

the program can continue computation while data transfer is taking place. In 

this case the two parts of the cycle partially or completely overlap. 

For the computation part of the cycle we may wish to distinguish 

between different kinds of programs being executed, for example distinguishing 

between execution of user programs and execution of different programs provided 

by the system such as compilers, loaders and text editors. Studies of existing 

systems (J2) show that these different kinds of programs have markedly 

different computational characteristics. The two computational characteristics 

of primary interest are the distribution of the amount of memory needed by a 

program and the distribution of the length of the computation part of the 

cycle. Of course the length of the computation will be strongly dependent 

on the speed of the memory and processor used. We assume that we can make a 

memory and processor independent characterization of the distribution of the 

computational period and adjust the distribution with multiplicative factors 

dependent on a given processor and a given memory. For the data transfer 
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part of the cycle, we may also wish to distinguish Detween the programs 

being executed. In particular, the relative frequency of access to different 

data files and memory requirements will De dependent on the program which is 

executing; other characteristics are less likely to exhibit strong program 

dependence. The data transfer part can be characterized by the number of 

files and for each file the size, relative access frequency and the 

distribution of characters transferred per access. In addition to character­

izations of the parts of the cycle, we assume that we have a characterization 

for the distribution of the number of cycles per request. Again, this may 

De dependent on the kind of request. 

1.4 System Component Characterization 

We assume that the system components have been characterized in 

terms of capabilities and costs. The components of primary interest are 

hardware elements such as memory, central (computational) processors and 

file storage (input/output) devices and the operating system, in particular 

the schedulers. Software other than the operating system will impact 

performance and cost, but we will not take this software into consideration. 

Memory characteristics of importance are the access times, the 

transfer rates, the quantity, the unit cost, the organization (we may have 

several levels of executable memory or a virtual memory system) and the 

memory scheduler. The important characteristics of the central processing 

units are the number of units, their speeds, their costs and the scheduler. 

Usually the scheduler will be a round-robin scheduler which attempts to 

share the processors among the programs needing a processor. The scheduler 

may give some programs priority over others. In multiple processor systems 
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some of the programs may be divided into concurrently executable tasks. 

The scheduler may assign these tasks to available processors. 

6 

For the input/output dev~.ces, a system can be characterized by the 

number of devices, the types of devices (drums, disks, tapes, etc.), the 

costs, the capacities, the transfer rates, the positioning times, the 

rotational delays, the schedulers and organizational considerations including 

channels, controllers and/or peripheral processors. These organizational 

considerations may be quite complex. Several slow speed devices, such as 

card readers or line printers, may be connected to a multiplexor channel which 

supports simultaneous transfer to or from several devices. Disk systems are 

widely used and have intricate organizations. For example, we may have a 

situation where positioning of the disk requires a possession of a channel, 

controller and disk to initiate the positioning, but only the disk for the 

rest of the positioning operation. All three units are then required for data 

transfer. Thus overlap of positioning with data transfer is possible where 

multiple disks are connected to a single controller. The disk, scheduler may 

attempt to minimize positioning and rotational delays in choosing which 

programs to service. 

1.5 Difficulty of the Problem 

The problem of configuration of computing systems is very complex, 

and the complexity of the problem will continue to increase. We cannot 

hope for a complete solution to the problem now or in the near future. We 

can hope for better understanding of the difficulties involved, and for 

tools and theory which will provide guidance where our intuition is too weak. 

Much progress has been made and continues to be made in this area, and this 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

progress leads to better configurations and improved performance. Our 

research makes a substantial contrioution to this progress. 

7 

Out models, in conjunction with models developed by others, can 

consider most of the workload and system characteristics described above. 

The primary exception is that we cannot consider general memory hierarchies 

at the level of detail considered above. 

1.6 Organization of Chapters 

In Chapter II we discuss previous work on modeling of computing 

systems as queueing networks and analysis of queueing network models, then 

summarize the tools we have developed and present an approach to configuration 

design using queueing network models. In Chapters III through VI we discuss 

our tools in detail. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER II 

SUMMARY OF PREVIOUS WORK, NEW RESULTS AND THE GENERAL DESIGN APPROACH 

2.1 Previous Work 

2.1.1 Queueing Network Models of Computing Systems 

Computing systems have become sufficiently complex and varied that 

we cannot hope to choose among configurations by actually assembling a 

variety of configurations and comparing their performance. We must have 

models of computing systems which reflect the possible configurations and 

indicate the performance to be expected from a given configuration. Further 

these models should be such that configurations can be easily defined and 

performance measures can be easily obtained. 

Several different authors have proposed models of computing 

systems as closed networks of queues at .centra1 processing units and input/ 

output devices. The earliest work in this area was that of Smith (55) and 

Gaver (Gl). Baskett (Bl) studied the effects of different scheduling 

disciplines and service distributions in some of these models. Buzen (B6) 

called these models "central server models" and used central server models 

in the analysis of system bottlenecks. (See Figure 5.1) Foster (F2) has 

used central server models along with simulation studies to consider file 

placement in memory hierarchies. 

More recently Brown (B4) has embedded a central server model 

within a queueing network which includes a queue for memory. He demonstrated 

that this model could obtain performance measures comparable to those obtained 

from empirical studies of a general purpose interactive system. Browne et a1 

8 
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(BS) have used extensions of these models to evaluate and improve the 

performance of a large computing system. The results of (B4,BS) and the 

approximate analysis techniques discussed below point to the use of approxima­

tion in model solution to avoid some of the approximation previously required 

by model assumptions. If we make strong model assumptions to allow exact 

solution, then we cannot use the models to study parameters and characteristics 

ignored in the model. We may not be able to analyze exactly models which 

consider these parameters and characteristics, but if we can get good 

approximate analyses, then we will have a basis for evaluating these parameters 

and characteristics. Though the performance measures obtained are not exact 

for the given model, the trends and effects predicted by the approximate 

analysis of these complex models give a picture of the actual system which 

is impossible to obtain from simpler models. For example, we must ignore sched­

uling priorities if we wish to apply local oa1ance techniques. (Sec. 2.1.2). 

If w~use a locally balanced model we cannot predict the effects of the prior-

ities, but if we approximately analyze a model which includes priorities, we 

can predict the effects of different priority schemes. Clearly, more accurate 

models will give better predictions than models with assumptions that are 

too strong. As the need for more accurate models becomes apparent, two 

questions arise: 1) What are the deficiencies in the model and how can they 

be alleviated?, and 2) How much error is introduced by approximation in the 

solution? These questions cannot be completely answered at this time. 

Others have attempted to answer the second question by comparison with exact 

or simulation results, and we use this approach also. This is not entirely 

satisfactory since this validation may not expose the areas where the 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

10 

approximatLons fail. Further research into error bounds for approximations 

is needed. 

2.1.2 Analysis of Queueing Network Models 

Though properties of isolated queues have been studied for most 

of this century, analysis of networks of queues is relatively recent. 

Jackson (J1) considered analysis of open networks of queues with exponential 

service time distributions (D1). Informally, a network is considered to be 

open if customers may arrive and depart, and closed if the same customers 

remain in the network at all times. Jackson showed that the solutions for 

these networks have a "product- form" • By this we mean that the Markovian 

state probabilities (DI) can be expressed as a product of terms for each queue 

in the network. Such a product form does not exist for arbitrary networks. 

Gordon and Newell (G3) showed that similar closed form solutions exist for 

closed networks with exponential servers. (See equation 5.1). Though these 

product form solutions are easily expressed, direct evaluation of the solutions 

for state probabilities and application of the solutions to evaluation of 

performance measures is computationally expensive. Buzen (B6) developed 

efficient computational techniques for obtaining state probabilities and 

performance measures for closed networks with product form solutions. 

Chandy (C1) developed the concept of "local balance" and showed that it 

could be used to obtain product form solutions for a large class of queueing 

networks including those studied by Jackson and Gordon and Newell. This 

class also includes some networks with non-exponential service time distribu­

tions and some queueing disciplines other than First Come First Served. 

Baskett, Chandy, Muntz and Palacios (B2) used local balance to obtain product 
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form solutions for networks with different classes of customers and customer 

dependent behavior. Chandy, Herzog and Woo (C3) developed techniques for 

effi.cient parametric analysis of networks in local balance akin to Norton's 

Theorem for electrical circuits. They shDwed that for each queue in a general 

closed network one can represent the effects of the remainder of the network 

oy a ucomposite queue", and that the parameters of the queue of interest may 

De varied without affecting the parameters of the composite queue. See 

Figures 5.1 and 5.2. A similar result holds for open networks. Reiser and 

Kooayshi CRl) extended the results of Baskett et al to more general networks 

and developed computational algorithms for these models. Chandy, Howard and 

Towsley (C4) developed the concept of "station balance", a sufficient 

condition for local balance. They showed that for queues in station balance, 

performance criteria such as utilization, queue length distributions and 

mean waiting times are independent of the form of the service time distribu­

tion, as long as the service time distributions are differentiable. 

Closed form solutions have been very difficult to obtain for 

networks which do not have solutions obtainable by local balance techniques. 

Wallace and Rosenberg (WI) have applied iterative numerical techniques to 

solution of queueing networks. Herzog, Woo and Chandy (HI) have developed 

recursive numerical techniques for solution of queueing networks. These 

techniques are effective for small networks but require excessive computation 

for large or complex networks. Several authors including Gaver eGl), 

Baskett (Bl), Shedler (S4) and Curtois and Georges (C8) have applied semi­

Markov techniques to small closed networks. A variety of approximation 

techniques have been applied to solution of more general queueing networks. 
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Gaver and Shedler (G2) and Kobayashi (K3,K4) have applied diffusion 

approximations to queueing networks. Decomposition approximation techniques 

based on local balance techniques and numerical techniques have been used 

by Chandy, Herzog and Woo (C2), Brown (B4) , Keller and Chandy (Kl), Sauer 

and Chandy (52) and Williams and Bhandiwad (W2). Simulation techniques 

are still the most general; simulation techniques especially applicable to 

queueing networks have been developed by Foster, McGehearty, Sauer and 

Waggoner (Fl), Crane and Iglehart (C6,C7) and Lavenberg (Ll). 

Optimization of queueing networks has been studied by Kleinrock 

(K2) and Hogarth (H3). 

2.2 Contributions of this Research 

In Chapter III we extend the results of Kleinrock and Hogarth to 

optimization of a general class of open queueing networks with different 

classes of customers. Their results were restricted to networks with all 

customers identical. This class includes networks which may be solved using 

local balance techniques and some networks with priority queues. We show 

that the optimization procedure used by Hogarth may be applied to this class 

of networks. 

In Chapter IV we apply the numerical solution techniques of Herzog, 

Woo and Chandy to several closed queueing networks important in computer system 

analysis. Their previous work suggested a partitioning scheme for analysis 

of structured Markovian state spaces~ but applied the scheme only to a small 

group of models. We show that their scheme may be applied to many general 

models and give specific efficient computational algorithms for solution of 

these models. These models allow two queue closed networks with general service 
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time distributions, multiple identical servers, multiple classes of customers 

and priority queueing disciplines. These models are very important in 

approximate solution of more general networks. We demonstrate that these 

models are of interest in themselves with a study of effects of parallelism 

in central processing units. Multiprocessing is becoming increasingly 

common in computer architectures and these models are useful in analysis of 

these arch1tectures. As measurement techniques become more refined, the need 

for distinguishing between different users and different programs becomes 

apparent. Different classes of customers are very useful in developing these 

distinctions. The need for priorities is increasing with the complexity of 

computing systems. This is especially true in networks of computers, where 

each computer is responsible for communication of messages between other 

computers, as well as processing of requests assigned to that computer. 

These same considerations are important in models with a more 

general nebwork structure than that considered in Chapter IV. The solutions 

of the models of Chapter IV are used in Chapter V to obtain approximate 

solutions for a general class of central server models. Exact solutions for 

this class of models are not available. This class includes the characteris~ 

tics of the models of Chapter IV. Our techniques give exact results for a sub­

eet of this class which can be analyzed by local balance; we validate the 

techniques for general models by compa~ison with the results of an extensive 

group of simulations. The techniques of Chandy, Herzog and Woo may also be 

applied to this class of models, but their techniques require iterative 

decomposition analysis for each queue in the network. Our techniques provide 

solutions for the entire model in a single step and thus are much more 

economical for parametric analysis. 
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Crane and Iglehart have provided theorteica1 results showing how 

the concept of regeneration pOints can De applied to determine confidence 

results for simulations. In Chapter VI we show that these techniques may be 

applied to simulations of general queueing networks and discuss the practical 

considerations involved. We present a simulation language QUASCI, based on 

the language of (F1) , which may be used to describe a large class of general­

ized ~ueueing networks. This language is designed to facilitate application of 

the Crane and Iglehart techniques and prevent incorrect application of their 

techniques. This language is also well suited for solution packages using 

non-simulation techniques; we suggest that this language is appropriate for 

description of general models of computing systems. As the need for simula­

tion studies will be with us for an indefinite period of time, we must develop 

a sound theoretical basis for simulation study. This theory should help 

guarantee that we are simulating the model we think we are simulating, and 

give us indications of the accuracy of our results. The simulator we have 

constructed and our language, QUASCI, are important early contributions in 

this area. 

2.3 Parameterization of Central Server Models 

Though the queueing network models we consider are very useful in 

analysis of computing systems, the problem of determining the parameters of 

the queueing network is definitely non-trivial. We briefly consider the 

problem of representing a computing system as a central server model. 

We assume for ease of exposition that we are modeling an existing 

system. We assume that a measurement prone exists within this system and 

that we have reduced data obtained from this probe. 
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As we will see in Chapter V, a central server model is characterized 

by a queue for the central processing unites) (CPU) and several queues for 

input/output (I/O) devices. By device we may mean a storage device proper, 

a channel, a controller or whatever equipment is most representative of the 

data transfer process. Each of these queues will be described in terms of a 

queueing discipline, which we assume for now to be First Come First Served, 

and a service time distribution. To completely specify the model, we need 

also determine the number of programs in the system, and the probabilities 

associated ~tn each I/O queue. 

The CPU service time distribution can be characterized by the mean 

and standard deviation of the time from when a program gains use of the 

CPU until the program releases the CPU and makes a request for data transfer. 

Notice that we are assuming no overlap of computation with data transfer; 

we have already noted that this is not necessarily realistic. If significant 

overlap does occur, then we must make a separate analysis of the overlap to 

represent the cycle without overlap. See Towsley (Tl) for further considera­

tion of this problem. 

Similarly, the I/O service time distributions may be characterized 

by the mean and standard deviation of the time from when a program obtains 

possession of the device until the program releases the device. Again, our 

representation is much simplified and an analysis of I/O subsystems may be 

necessary. We may h~ve controllers and disk organizations which allow overlap 

of positioning with data transfer. See Browne et al (B5) for further 

consideration of this problem. 

The probabilities associated with each I/O queue may be determined 

by measuring the relative frequency of access to the files located on the 
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dev~ce or devices represented oy that queue. Finally, we can set the number 

of programs in the model to the number of programs in memory. Usually this 

value will De studied parametrically, with a range from a low value to the 

maximum nunffier of programs which the memory will allow. If such parametric 

study is not desired, we may use the mean number of programs in memory during 

the measurement period. 

We have assumed fairly complete data are available, but we can use 

limLted data under certain circumstances. For example, if we only know the 

fraction of time the CPU is utilized, the length of the measurement period, 

and the number of CPU services during the measurement period, we can estimate 

the mean service time by the time the CPU is utilized divided by the number 

of requests. We can estimate the form of the distribution from measurements 

on other systems with similar applications. 

Another area for caution, with any models we might choose, is that 

our measurements may be strongly dependent on the time and day they are made. 

2.4 An Approach to Configuration of Computing Systems 

We propose that the techniques presented here, augmented with the 

previously developed techniques mentioned above, provide a basis for a general 

approach to selection of computing system configurations. The specific 

approach used for a specific system will be strongly dependent on the intended 

application of the system, the components available and the budgetary or 

performance constraints. 

As a first estimate of the configuration, we can use modified 

central server models as in Figure 3.2 to study the appropriate choice of 

central processing units and input/output devices. We assume memory 
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limitations will not. significantly affect system performance when we use 

these models. The techniques of Chapter III can be used to determine the 

opttmum configuration under these assumptions. 

17 

Having obtained a first estimate of the appropriate configuration, 

we can use more refined models similar to the first estimate and study a 

parameter space of these models using the techniques of Chapters IV and V, 

of Brown (B4) and of Keller and Chandy (Kl). Since the techniques of 

Chapters IV and V are very inexpensive, we can afford to explore the parameter 

space thoroughly. Further, our techniques are compatible with those of Brown 

and of Keller and Chandy; it should be possible to combine techniques and 

study a parameter space of realistic models without prohibitive computational 

costs. 

Finally, we can assure ourselves that the approximate results are 

valid by checking our results with the more expensive iterative approximations 

of Chandy, Herzog and Woo (C2) and then obtaining simulation results using 

the techniques of Chapter VI. See Figure 2.1. 

The language QUASCI provides a convenient vehicle for this entire 

process, since it is compatible with non-simulation solution techniques. 

It should be possible to implement this language so that the implementation 

can have all of these techniques available and choose the solution technique 

appropriate to the model or models specified. We should be able to augment 

and implement QUASCI so that much of the parameter space searching process 

is automated. 

Provided a general approach and framework, the computer system 

designer can turn attention to the problems of characterizing the workload 
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of the system, of determining what components are available to handle this 

workload and of developing appropriate models to analyze the possible 

configurations. 
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C~T~llI 

OPTIMIZATION OF QUEUEING NETWORKS WITH DIFFERENT CLASSES OF CUSTOMERS 

3.1 Introduction 

Queueing network models are useful in the design of communication 

ne~orks (K2), computer networks (P1) and computing systems (B4,B6). It is 

desirable to find optimal configurations of these models so that we may 

attempt to find a near optimal configuration of the system being modeled. 

Kleinrock (K2) has considered optimal design of a class of open queueing 

networks with all customers having identical behavior. An open queueing 

network is one in which customers arrive and depart from the network, as 

opposed to a closed network in which the number of customers is constant. 

Hogarth (H3) has extended the results of Kleinrock and has also considered 

optimal design of closed networks with all customers having identical 

behavior. 

We will consider optimization of open queueing networks with 

different classes of customers. Specifically, we consider minimization of 

the time customers spend in the network. We allow a variety of queueing 

disciplines at each server, and a general class of service time distributions. 

In Section 3.2 we show convexity of waiting time at individual 

queues with Poisson arrivals as a function of processing rate at that queue. 

Convexity is important in efficiently solving optimization problems. In 

Section 3.3 we show convexity of total time spent in an open network with Pois­

son arrivals as a function of processing rates of the queues in the network. 

Section 3.4 considers the optimization problem statements and algorithms for 

20 
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solution, and Section 3.5 discusses application of these models. 

3.2 Convexity of Waiting Times at Individual Queues 

The set of points S in n-dimensional Euclidean space is said to be 

convex if for any points x and y in S and any p in the interval [O,l]~ 

px + (l-p)y is in S. A function f defined on the convex set S is said to be 

convex if and only if for any x and y in S and for any p in the interval 

[0,1], 

f(px + (l-p)y) ~ pf(x) + (l-p)f(y) (3.1) 

This is one of several equivalent definitions (W3). We will find another 

characterization more useful. If the Hessian of f is defined and positive 

semi-definite for all x in S, then f is convex (W3). (The Hessian of f is 

the matrix of order n with i,jth element a2f(x)/a~ia~., where~. is the ith 
J 1 

element of x.) 

We will consider six different queueing disciplines; First-Come-

First-Served (FCFS), Infinite Servers (IS), Processor Sharing CPS), Last-

Come-First-Served-Preemptive-Resume (LCFSPR), Preemptive Priority, and 

Non-preemptive Priority. (PS is defined as the limiting case of a no overhead 

round robin discipline as the quantum goes to zero.) We allow arbitrary class 

dependent service time distributions with rational Laplace transforms and 

assume Poisson arrival processes with class dependent arrival rates. These 

results apply to other queueing disciplines. 

Let us consider a single server queue with R classes of customers. 

Customers of class r, r = 1, .•• ,R, arrive in a Poisson manner with rate A 
R r 

and request service with mean s • 
r We define A = L Ar as the total arrival 

r=l 
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~ Ar-rate, and define s = [.' -X- sr as the mean service time at the queue. We 
r=t 

let P .. AS and p = A S be the overall utiliiation, and the utilization for r . r r 

class r customers, respectively. We assume the queue is not saturated, i.e., 

p < 1. We define ~ = I as the processing rate, and ~r = s as the relative 
s s 

r 
processing constant for class r. Customers of class r are processed with 

mean rate ~~. Notice that ~ is dimensionless; we assume that if we change r r 

the rate of the_server and thus change ~, ~ 'is unaffected. 
r 

For FCFS queueing discipline, we know from the Khintchine-Po110czek 

formula (Ml) that the expected time until a customer begins service is 

(3.2) 

where C is the coefficient of variation of the service times (the standard 

deviation divided by the mean). In our case, 

Ili ~ -;2 - 82 
ral A r C = ~~---------- (3.3) 

i 

where ~ is the second moment of the service time distribution for class r. 

We assume that C is a constant independent of the rate of the server. 

The mean wait time for class r customers, w , is the sum of (3.2) 
r 

and the mean service time for class r. So we have 

w = 
ps(1+C 2) + s r 2(1-p) r 

= 
AS2(1+c2 ) 

+ s 
2(1-As) r 

A (1+C2) 
+ 

1 (3.4) = 
2~(~-A) ~r1J 
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We want to show that wr is a convex function of~. In this case we have a 

single dimensional vector space and the only element of the Hessian of w 
r 

d2Wr is (illZ . Differentiating (3.4) we obtain 

= -A(1+C2)(2p-A) 
2lJ2 (lJ-A) 2 + -1 

lJijT 
r 

and differentiating again we find 

d2W 
r 
~ 

= 
A (1+c2) «p-A)2 + p(2p-A» 

lJ 3 (lJ-A) 3 

(3.5) 

2 
+ ll7 

r 
(3.6) 

1 Since p < 1, A < - = p and (3.6) is positive. Thus the Hessian is positive s 

semi-definite and w is convex. 
r 

If we have an infinite number of servers, each with rate lJ, then 

1 
w 

r 
= s =--

r 

which is clearly convex. 

If the queueing discipline is PS or LCFSPR, then we know (R1) 

that the mean queue length for class r, q , is 
r 

qr = (1 - p) 

which we may rewrite as 

PrP 
+ qr = 

(1 - p) Pr 

Applying Little's Rule (L3) , we have 

qr 
w =-

r A r 

=~ + s l-p r 

(3.7) 

(3.8) 

(3.9) 

(3.10) 
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This is equivalent to w for the FCFS case with C = 1; thus w is again 
r r 

convex. 

Now we consider queues with priority queueing disciplines, with 

priority based on customer class and highest priority given to the classes 

with lowest index. Lt is well known eM1) that for preemptive priority the 

waiting time is 

+ 1 (3.11) 

Here Ci is the coefficient of variation of the class i service time. Letting 

"1 p r = pp = - , we rewrite (3.11) as 
i 1 \.Ii 

1 
r-1 

lJ (\.I - L P ') 
r· i=l i 

Taking derivatives, we get 

r >'i (l+Ct) r-1 

dw -( L lJ2 )(2p - 2 L p'- p ') 
i=l i=l i r -1 r i + -= r-1 r r-1 dlJ 
2 (ll - L P ') 2 (lJ - L p,)2 \.I (ll- L p')2 

i=l i i=l i r 1=1 i 

and d2w 
r 

dp2 = 

,:, .. ,."~.; .. ,, .. ' 

r-1 r 
(ll - L pt)3 (\.I - L p')3 

i=l i i=l i 

2 +--------r 

L 
i=l 

(3.12) 

(3.13) 

(3.14) 
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r 
Since II > A' .2!.. L pi, the value of (3.14) is positive and w is a convex 

i=l r 

function of ll. 

Again from eM1) we know that the waiting time for non-preemptive 

priority is 

which we rewrite as 

dw r --= djJ 

dZW 
r 

~= 

R Ai (l+C~) 
-( l: jJ2 

i=l i 
r-1 

r 
r pI) 

i=l i 

r-1 
) (211-2 l: 

i=l 
r 

+ _1_ 
ll·ll r 

p'-p' 
i r 

) 

+ 

2(jJ - l: p')2(jJ - l: p,)2 
i=l i i=l i 

r-l 
(jJ - l: p') 3 

i=l i 

2 
+ 'ii3iI 

r 

As before we see that; is a convex function of jJ. 
r 

(3.15) 

(3.16) 

-1 (3.17) }iZil 
r 

(3.18) 

We have shown for all six disciplines that the waiting times by 

class are convex functions of the processing rate. We are also interested in 
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the waiting time independent of customer class. Again from well known 

results (Ml) we know that the expected waiting time, W, is 
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R Ai 
w = t - wi 

i~l A 
(3.19) 

R 
where A = 2 Aio Since a linear combination of convex functions is also a 

i=l 

convex function (W3) , w is a convex function of ~o 

3.3 Convexity of Times in the Network 

We can consider networks of queues of the class described above. 

Let N be the number of queues in the network. Class r customers leaving queue 

n arrive at queue n' in class r' with probability p( ) ( , f)' n'=l, ••• ,N, nr , n r 

r'-l, ••• ,R. Otherwise the customer leaves the network. 

Those customers of class r, 1:=1, ••• ,R, which depart queue n, n=l, •.. "N, 

in a non-Poisson manner must leave the network when they leave the queue •. 

It is well known that the departure processes of customers leaving FCFS 

queues having class independent exponential service times are Poisson, as are 

the departure processes of class 1 customers leaving a queue with preemptive 

priority and exponential service times for class 1 customers. From (MS) we 

know that the departure processes of customers leaving IS, PS or LCFSPR queues 

are Poisson. Departure processes of other queues and classes of customers we 

have considered are not necessarily Poisson. We assume that all customers 

arrive from a Poisson source with rate A, and that they arrive at queue n in 

class r with probability Pnr' 

In addition to these restrictions, we must make restrictions on 

feedback of customers in the network. We allow two kinds of subnetworks, 
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which we call "Poisson Feed Forward" and "Product Form", and certain inter-

connections of these networks. The Poisson Feed Forward subnetworks are 

arbitrary networks as described above which do not have feedback. Figure 3.1 

is an example of such a subnetwork. Product Form subnetworks may have only 

FCFS queues with class independent exponential service times, IS queues, PS 

queues and LCFSPR queues. We may allow arbitrary feedback of customers in 

Product Form subnetworks. We call these "Product Form" subnetworks because 

the solutions for these subnetworks have a product form (B2). Figure 3.2 

is an example of such a subnetwork. Though the arrival processes of customers 

at queues in Product Form subnetworks may not be Poisson, we know from eCl) 

that the waiting times of customers in such subnetworks will be the same as 

if the arrival processes were Poisson. Further, we know from eMS) that the 

combined departure process of each class of customers from a Product Form 

subnetwork is Poisson. We may allow the combined output of one or more 

class~s of customers from a Product Form subnetwork to feed either kind of 

subnetwork as long as there is no feedback of customers except within Product 

Form subnetworks. We may allow any Poisson outputs from Poisson Feed Forward 

networks to feed either kind of subnetwork as long as there is no feedback 

of customers except within Product Form subnetworks. For example, we can 

allow a network consisting of the networks of Figs. 3.1 and. 3 .. 2 as subnetworks 

where the output of the network of Figure 3.2 feeds the network of Figure 3.1. 

We are interested in the expected number, enr , of times a queue n is 

visited by customers of class r. Following (Rl),- e is defined by NR 'linear 
nr 

equations of the form 

N 

enr = Pnr + 1: 
n'=l 

R 

r'!l en'r' p(n'r'),(nr) (3.20) 
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The effective arrival rate of customers of class r at queue n is Ae • nr 
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As an example, consider the network in Figure 3.2. For simplicity, 

we assume a single class of customers and omit subscripts indicating customer 

class. The probabilities associated with paths not shown are assumed to be 

zero. The equations defined by (3.20) are 

el = 1 + e2P2,l + e3P3,l 

e 2 = el Pl ,2 

e 3 = e l Pl ,3 

Solving these equations we determine that 

e1 = 1/(1 - Pl,2P2,l - Pl,3P3,l) 

e2 = P1,2/(l Pl,2P2,1 - P1,3P3,l) 

e3 = Pl,3/(l - Pl ,2P2,l - P1 ,3P3,l)· 

Clearly the expected total waiting time of a customer at a queue 

is the expected number of visits multiplied by the expected waiting time per 

visit, and the total time a customer spends in the network is the sum of the 

times spent in each queue. So we have 

W = r 

N 

2: 
n=l 

e w nr nr 

where W is the expected total time a customer spends in the network in 
r 

(3.21) 

class r, and w is the waiting time for class r customers at queue n. We nr 

let p be the overall processing rate at queue n, and let p be the relative 
n nr 

processing rate for class r customers at queue n. We let m be the vector 

We wish to show that W is a convex function of m. 
r 

Consider the Hessian of W. For n = l, ••• ,N 
r 

aw nr ... e --nr djJ 
n 

(3.22) 
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(3.23} 

(3.24) 

(The inequality of (3.23) follows immediately from the results of Section 3.2). 

So the Hessian of W is positive semi-definite and W is a convex function 
r r 

of m. 

We have treated the general case where customers may change class 

when leaving a queue. The restricted case where customers do not change 

class is also of interest. In this case we are interested in the time a 

class r customer spends in the network, W'. We have 
r 

W 
W' = ___ r_ 

r N 
I Pnr n=l 

(3.25) 

which is clearly a convex function of m since Wr is'a convex function of m. 

Finally, we wish to show that the expected time a customer spends 

in the network, W, is a convex function of m. Bull: 

R N R 
W = r r e w = I w (3.26) 

r=l n=l nr nr r=l r 

So W is a linear combination of convex functions amd, also a convex function. 

3.4 Optimization Problem Statements, Procedures 

3.4.1 Cost Functions 

Having shown convexity of the various want times, we are now ready 

to consider optimization problem statements and s~est procedures for 
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solution of the problems. The problems we formulate are instances of general 

problems which have been previously solved, so we will not present the 

procedures themselves, but will refer the reader to previous work. 

We can consider a variety of optimization problems, depending on 

the cost functions involved. We restrict attention to a class of continuous 

and discrete cost functions based on Grosch's Law as discussed by Bell and 

Newell (B3). They suggest that the function 

g 
C = k 01 (3.27) 

n n n 

is a good approximation to the cost of a device for queue n, where C is 
n 

the approximate cost, k is a constant associated with queue n, and g is a 
n 

constant. It has been suggested (B3) that in most cases g is in the interval 

[.5,2], and usually in the interval (1,2). We will assume that g is the same 

for all queues in the system, and consider two cases. In Section 3.4.2 we 

consider the case where g is not greater than one and in Section 3.4.3 we 

consider the case where g is greater than one. In both sections we consider 

both continuous and then discrete subcases. 

3.4.2 Convex Cost Punctions (g ~ 1) 

When g ~ 1, it is easy to show that Cn is a convex function of ~n' 

and if we assume that the total cost, C, is the sum of the costs at the 

individual queues, then C is a convex function of m. So we have R+2 convex 

functions, W, W , r = 1, •.• ,R, and C, defined over the convex set of processing 
r R 

rates, M. (M = {mlVn ~ > ALe }). 
n r=l nr 

We now can consider R+2 optimization problems, each one corresponding 

to minimization of one of the functions W, Wr , r = 1, ••• ,R, or C over a subset 
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of M. This subset consists of the points in M such that the functions not 

being minimized do not exceed some corresponding maximal values. For example, 

one such problem would be: 

minimize W over the set M 

such that W < W , r - 1 R r- r - , ... , 

and C ~ y. 

The subset of M constrained in this manner is a convex set (R2). This subset 

1s clearly bounded, and so if a feasible solution exists a local minimum 

of tbe objective function (W in the example) is also a global minimum. 

Thus we can use standard procedures (H3,W3) for solution of these optimization 

problems. 

These continuous problems are not realistic representations of many 

actual systems. Often the choices of processing rates of devices are not 

continuous, but discrete. For example, in computer systems one usually has 

a choice of a few central processing units (CPUs) of different rates, not a 

continuum of choices. Thus the set M in these cases is not convex. However, 

we may state the optimization problems in the same manner as before. Further, 

most of the techniques for solving the discrete problem, such as branch and 

bound techniques (H4), require solution of the continuous problem. So our 

results are important in the solution of discrete problems. 

3.4.3 Concave Cost Functions (8 > 1) 

When g > 1, the cost function C as defined above is not convex, but 

concave. (A function f is said to be concave if -f is convex). We may 

state the problems of minimizing the times in the network as before, but we 

no longer have the property that a local minimum is necessarily a global 
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minimum. This complicates the solution techniques considerably, but existing 

techniques (H3) may be applied and our results are necessary for the application 

of these techniques. We may solve the continuous forms of these problems 

using the iterative linear approximation techniques of Hogarth (H3). To 

apply these linear approximation techniques, we must be able to solve the 

proBlems of Section 3.4.2 with linear cost functions (g=l). Again, we will 

often need to consider discrete cost functions; the solutions of the continuous 

problems may be used as input to a branch and bound algorithm. 

3.5 Application of Open Queueing Network Models 

Open queueing network models such as these have been applied to 

design of communications networks, computer networks and computing systems. 

Since general results for queueing networks with different classes of customers 

have only recently been obtained, the models used have usually assumed that 

all customers have identical behavior. 

In modeling communication networks (K2) the service devices consider­

ed are the transmission lines. Customers have messages to be transmitted and 

lines of different capacities transmit the messages at different rates. The 

branching probabilities may be used to represent different routings of messages. 

Different customers may require different routings, and we may represent this 

by using customer classes. 

Queueing network models have found wide application in modeling 

computing systems since the early work of Smith (55), Gaver (Gl) and Buzen 

(B6). The model in Figure 3.2 is very similar to the central server models 

used by Buzen. Here queue 1 represents the CPU and queues 2 and 3 represent 

input/output (1/0) devices. Programs arrive at the system, alternately 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

34 

receive service from the CPU and an I/O device, and eventually leave the 

system. Typically the CPU will have a round robin scheduling discipline which 

we may represent by the PS queueing discipline. Different programs often have 

markedly different CPU request distributions (J2), and we can represent this 

by· class dependent service times. We let the queueing discipline at the 

rIots be FCFS with class independent exponential service times, and let the 

branching probabilities be class dependent. These assumptions are also based 

on empirical studies (J2). This model assumes that contention for memory is 

not a factor in the system, which mayor may not be correct, depending on the 

individual system. Similar models (B4,D6, Chapters V, VI) can include memory 

contention; it would be desirable to extend the results of this chapter to 

such models. (Some of Hogarth's results (H3) are applicable to some such 

models with a single class of customers; similar results for multiple-class 

models and other more general models would be very useful.) 

Models similar to these have also been applied to networks of 

computers (PI); these applications combine the computer system models and 

communication network models described above. 
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CHAPTER IV 

EFFICIENT NUMERICAL SOLUTION OF QUEUEING NETWORKS 

4.1 Introduction 

Queueing network models are used to effectively model the performance 

of computing systems (Bl,B4,B6,F2,Gl,S4). Closed form solutions or efficient 

numerical solutions for these models have been difficult to obtain except for 

models which may be solved by techniques of local balance (B2,C4,Rl). We 

consider a general class of continuous transition Markovian models with finite 

state spaces (Dl). We will look at two queue models with characteristics of 

computing systems such as First-Come-First-Served (FCFS) queueing disciplines, 

priority queueing disciplines, non-exponential service time distributions, 

customer dependent service distributions, and mUltiple identical servers. 

These models are useful by themselves in modeling computing systems; they are 

especially useful in determining approximate solutions for more general models 

(see Chapter V). We present algorithms for solution of these models and 

demonstrate the use of the models in computer system simulation. 

Since the models considered have finite state spaces, we can determine 

equilibrium state probabilities by solution of the balance equations for this 

state space (Dl). If we let PCi) be the equilibrium probability of state i, 

i m 1, .•• ,N, and Ai,j be the rate of transitions from state i to state j, 

i,j c 1, ••• ,N, then the ith balance equation, i = 1"",N, will be 

(4.1) 

35 
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In addition to these N equations we know that 

pel) + ... + peN) = I (4.2) 

If we substitute this equation for one of the balance equations, we can solve 

the resulting set of equations for the equilibrium state probabilities. From 

the equilibrium state probabilities we can determine model statistics such 

as customer throughput, server utilizations, queue lengths and wait times. 

In general, the state space may be very large and solutions obtained 

by direct numerical techniques may require excessive memory and computation. 

Iterative numerical techniques (WI) have been successfully used for models 

such as these, but these techniques still require large amounts of memory 

and computation. Generally, these techniques will require large amounts of 

memory because all equilibrium state probabilities are determined and stored 

before model statistics are determined. 

Herzog, Chandy and Woo (HI) have developed a general approach to 

numer~cal solution of Markovian models with structured state spaces. This 

approach determines the equilibrium state probabilities of a small subset of 

the state space. From these probabilities the probabilities of the other 

states can be directly obtained, if those probabilities are desired. In 

practice, the model statistics can be determined in terms of the probabilities 

of the states of the subset while the probabilities of these states are 

determined. The probabilities of most of the states are neither determined 

nor stored. Thus this approach does not require a large amount of memory 

compared to other techniques; this approach is also efficient in terms of 

computation. 

In section 4.2 we illustrate this approach for a very simple model. 

In section 4.3 we consider a general representation of a large class of 
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service time distributions. This representation is appropriate to both the 

solution approach and the models of interest. In section 4.4 we illustrate 

techniques for more general models. In section 4.5 we apply the approach to 

several important classes of models, and in section 4.6 we consider application 

to computer system modeling. 

4.2 Two Exponential Queues - The General Approach 

Consider a model with two FCFS queues, a single class of customers, 

and exponential service time distributions. Assume that customers completing 

service at one queue always proceed to the other queue. See Figure 4.1. Let 

the m~an service at queue 1 be l/~ and the mean service at queue 2 be l/A. 

Assume there are N customers in the network. The state of the network can 

be determined by the number of customers in the first queue. Let P(i), 

i = O, ••• ,n, be the probability of state i. The state transition diagram for 

N = 3 is given in Figure 4.2. Let T, U, Q, and W be the throughput, uti1iza-

tion, mean queue length and mean wait time, respectively, of queue. Let C be 

the cycle time required for a customer to make a complete cycle through the 

ne~ork. The following algorithm will determine P(D), C, T, U, Q, and w. 

Other moments of the wait time distribution and the queue length distribution 

can be determined in a similar manner. The statistics for queue 2 may be 

determined in a similar manner, or derived from the statistics for queue 1. 

Algorithm 4.1 

1. Initialization 

P(D) = 1 
P(I) = A/~ 
s = 1 + A/~ 
u = A/~ 
Q = A/~ 
w = A/~ 
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2. Iteration. Do step 2 for n = 2, N 

P(i) = «~+~)P(n-l) - AP(n-2»/~ +(Note: this follows directly 
5 = 5 + Pen) from balance equation n-l.) 
U = U + Pen) 
Q = Q + nP(n) 
W = W + n~P(n-l)/~ 

Note: After each application of step 2, we may reclaim the 

storage used for P(n-2). 

3. Determination of statistics. 

P(O) = 1/5 
U = UP(O) 
T = ~u 
C = NIT 
~ = QP(O) _ 

'W = WP(O)/T 

Note: Many simplifications of this algorithm are possible. It 

is presented in this form for the sake of clarity and so that 

extension to more complex models be straightforward. In 

particular, note that it will often be desirable for ~ andlor 

A to be dependent on u. Note that we may alternatively 

calculate W as Q/T (Little's Rule (L3». If ~ and ~ are not 

state dependent, then we can easily determine solutions for 

N + 1 from the values determined for N; this is significant 

in parametric analysis. 

4.3 Generalized Erlang Distributions 

Erlang developed a distribution form consisting of a sequence of 

exponential stages, each of which must be completed by a customer before 

proceeding to the next. This form is less skewed then the exponential. 

Cox (C5) proposed a generalization of Erlang's form which allows a customer 

to bypass the remaining service stages according to a fixed probability 
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dependent only on the stage about to be entered. Figure 4.3 illustrates 

this form. Assuming that there are K stages, let Pi' i = O, ..• ,K be the 

probability of bypassing the remaining stages after completing stage i, 

where it is understood that p is the probability of bypassing all stages 
o 

initially, and that PK is identically 1. Let Pi = I-Pi' i = O, •.• ,K and 
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let llPi be the mean holding time of the ith stage, i = 1, ••• ,K. This form 

has the Laplace transform 

K 
f*(s) = p + L Po 

o i=l 

i 
Pi - l Pi n (pJ./(p j + s» 

j=l 
(4.3) 

Cox showed that this distribution form can represent arbitrary distributions 

with rational Laplace transforms, provided that K is sufficiently large and 

that we allow the probabilities and holding times to be complex valued. 

Though the algorithms we present can be used with this general 

form, there are several difficulties: 

1) When p ~ 0 the solution techniques may become more complex. 
o 

As we shall demonstrate, the Cox form is still quite general 

when we assume that p is identically zero. We shall make 
o 

this assumption. 

2) It is difficult to apply intuition to complex holding times, 

complex probabilities and/or real probabilities outside the 

interval [0,1]. Further, we do not know how to simulate non-

standard probabilities. (We will refer to real probabilities 

in the interval [0,1] as "standard" probabilities.) Thus we 

cannot directly compare analytic results with simulation results 

when we allow non-standard probabilities. We shall show that 
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many interesting and important distributions may be represented 

by the Cox form even when we only allow standard probabilities. 

3. When we wish to represent distributions with small coefficient 

of variation, we must use many stages when we use the Cox form 

or any form consisting of a network of exponential stages. We 

shall discuss what we call "pseudo-PDF' s" which may accurately 

approximate distributions with arbitrarily small coefficient of 

variation using as few as two exponential stages. By pseudo-PDF 

we mean negative valued functions similar to probability density 

functions. 

We will now discuss in detail the second and then the third problem mentioned 

above. 

The hyper-exponential distribution (M4) is often used in modeling 

service times in computer systems. See Figure 4.4. With two stages, positive 

real holding times and standard probabilities, this distribution form allows 

arbitrarily large coefficient of variation (the standard deviation divided by 

the mean). Additional stages may be used to more accurately reflect the 

higher moments of a given distribution. If there are K stages, with standard 
K 

probabilities qi' such that I qi = 1, and mean holding times l/~i' i=l, ••• ,K 
i=l 

then the Laplace transform is 

K 
f*(s) = L qi~i / (~i + s) 

i=l 
(4.4) 

Theorem 4.1: For K = 2,3, a hyper-exponential distribution of the above form 

may be represented by a generalized Erlang (GE) distribution 

with the same number of stages, the same mean holding times 

for corresponding stages, and standard probabilities. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Figure 4.5 

1 
mean -

lJ1 

Figure 4.6 

1 
lJ 3 

42 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

43 

Proof: We consider the case for K = 3. A similar argument holds for K = 2. 

Assume without loss of generality that ~l ~ P2 ~ P3 and that qi > 0, 

i = 1,2,3. Let 

Pl = ql + (q2P2 + q3P3)/Pl 

q2Pl~2 + q3~1~3 - q2~~ - q3~~ 
P2 = 

q2~l~2 + q3Pl P2 - q2P~ - q3P2~3 

It is easy to show that Pl and P2. lie in the interval [0,1]. 

By direct substitution of these values in (4.3) one can obtain an 

expression equivalent to (4.4). Thus the GE distribution with.K = 3 

is equivalent to the hyper-exponential formulation. 

Conjecture: The above result holds for arbitrary K ~ 2. 

Many other interesting distributions can be represented by the 

restricted GE distribution limited to standard probabilities. For example, 

distributions with two or three modes may be represented by distributions 

of the form in Figure 4.5. It is clear from the proof of Theorem 4.1 that 

the form of Figure 4.5 is equivalent to a GE distribution with standard 

probabilities. Of course, Erlang and hypo-exponential (Ml) forms are cases 

of the restricted form. Distributions of the form in Figure 4.6 may be 

represented by the restricted GE form with standard probabilities if P2 or 

Otherwise, the restricted form with real probabilities may be used. 

From the above results, it is plausible that arbitrary distributions consisting 

of networks of exponential stages may be represented by the Cox form with 

real probabilities. Since networks of exponential stages may be used to 

represent arbitrary distributions with rational Laplace transforms (Cl), 
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correctness of this conjecture would imply that we may restrict the Cox 

form to real probabilities and holding times and still be able to represent 

arbitrary distributions with rational Laplace transforms. 

We now consider some surprising results obtained by using "pseudo 

probability density functions" (pseudo-PDF' s). We do not fully understand 

these functions or their application, but they seem potentially useful in 

computer systems modeling and worthy of further study. A general problem 

with any distribution form consisting of exponential stages is that the 

minimum obtainable coefficient of variation is 1/1K. Thus many stages must 

be used to represent distributions with little variance, and an infinite 

number of stages must be used to represent a constant distribution. The 

pseudo-PDF's we consider may have arbitrarily small coefficient of variation 

with as few as two stages. 

Consider a Cox form with K = 2, Po = 0, ~l = ~2 = 2 + 12 and 

A graph of this function is shown in Figure 4.7. This function 

has "mean" 1 and "variance" of O. It is clearly not a PDF because it is not 

strictly non-negative. However, it is like a PDF in that its integral from 

zero to infinity is 1. Using this function with algorithm 4.3 we obtained 

results nearly identical to those obtained by Gaver (GI) for utilization of 

a CPU with constant service times. The maximum disagreement with the results 

obtained by Gaver was .004. Using the techniques of Chapter V, we used this 

form to analyze more general models with constant CPU service times. The 

results of this analysis were in good agreement with simulation results for 

CPU utilization, mean and standard deviation of queue length and wait times. 

(See Tables 5.1, 5.2). 
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These results are exciting, but pseudo-PDF's must be used with 

caution until they are better understood. It is possible to obtain physically 

impossible results using the form described above. Consider a model similar 

to that of section 4.2 with two customers, a pseudo-PDF for the first queue 

service time, and an exponential distribution with mean l/A for the second 

queue service time. For the pseudo-PDF, let ~1 = ~2 = 1 and Po = - 12. 

This form has mean 2 + 12 and variance O. If A + 1/1:2, it is easily shown 

(see Algorithm 4.3) that the utilization of server 1 is 

(4.5) 

Clearly this value will be greater than 1, a physically impossible situation, 

if A is greater than 1/1:2. However disconcerting this may be, it can be 

interpreted as a reasonable amount of error. For example, if A = 1, then 

the value of (4.5) will be approximately 1.03. Using the analysis of (54) we 

find that the correct value for a model with constant service of 2 + 1:2 is 

approximately .99. We will not pursue these forms further here, but suggest 

that they be further studied in the future. 

4.4 Two Queues - One GE, One Exponential 

We now illustrate techniques for models with one queue having the 

GE form of service distribution and a second queue having an exponential 

distribution; otherwise, the model is as in section 4.2. We will often omit 

the subscript when referring to Pl' It is straightforward to extend the 

algorithm to allow customers to feedback to the queue they are departing from 

according to fixed probabilities. We also assume that K = 2; extension to 

other values of K is straightforward. 

Let the state of the model be represented by the ordered pair (i,n) 

where there are n customers in queue 1 and the customer being served is in 
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stage i of the service distribution. For notational convenience, let i - 1 

when n = O. Figure 4.8 gives the state transition diagram for N = 3. 

We present two algorithms; the first determines P(l,N) and P(2,N) and the 

second determines P(l,O). Though the second algorithm is preferable for 

this model, the techniques of both algorithms are applied to more complex 

models. Determination of model statistics is not included, these may be 

determined in a straightforward manner similar to Algorithm 4.1. 

Figure 4.8 is partitioned into three groups of states by dashed 

lines. Algorithm 4.2 "sweeps through" the state diagram according to these 

partitions. Step 1 determines values for the states in the top group. Step 

2 determines values for the middle group. Step 3 determines values for the 

bottom group of states and uses these to determine the model solutions. 

Algorithm 4.2 (assume N > 1) 

Throughout most of the algorithm we represent state probabilities 

as two-element column vectors; at the end of step 3 P(l,N) and P(2,N) 

are determined as scalars. 

1. Initialization 

P(l,N) = (l,O)T 
P(2,N) = (O,l)T 
P(l,N-l) = (~l/A)P(l,N) 
P(2,N-l) = (~2/A)P(2,N) - (p ~l/A)P(l,N) 

S = P(l,N) + P(2,N) + P(l,N-1) + P(2,N-l) 

2. Iteration. For n = N-2, •.• ,l do step 2. 

P(l,i) = (1 + ~1/A)P(1,n+1) - (p ~l/A)P(l,n+2) - (~2/A)P(2,n+2) 

P(2,i) = (1 + ~2/A)P(2,n+l) - (p ~l/A)P(l,n+l) 
S = S + P(l,n) + P(2,n) 
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3. Determination of P(l,N), P(2,N) as scalars 

P(l,O) = (1 + 11l/X)P(l,l) - (Plll/).)P(1,2) - (1l2/X)P(2,2) 

s = s + P(l,O) 

D = P(2,1) - (p lll/(ll2 + )'»P(l,l) 
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Note: D is the difference of the value of P(2,l) as determined 

from the balance equations for (2,2) and the value of P(2,1) 

as determined from the balance equations for (2,1). Thus 

the inner product of D and the vector consIsting of the 

scalar values of P(l,N) and P(2,N) must be 0. 

Solve [ ~~ )x = [ ~ ) for x 

P(l,N) = l;1 P(2,N) = 1',;2 

where I',;i is the ith element of x. 

Algorithm 4.3 (assume N > 1) 

1. Initialization 

P(l,O) = 1 . 
P(l,l) = ()./(Pll1 + PUl 1l2/(1l2 + X»)P(l,O) 

This expression is obtained from the balance equations for 

state (1,0) and (2,1) as follows: 

(4.6) 

(U 2 + ),)P(2,1) = Pll1 P(l,l) (4.7) 

dividing each side of (4.7) by 112 + ). and substituting into 

(4.6) yields 

ll2PUl 
Pll1P(l,1) + P(l,l) = ).P(l,O) 

112+). 
(4.8) 
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collecting terms and dividing by P~l + P~1~2/(~2 + ~) 

yields 

pel,!) = ~ P(l,O) 
P~l + P~l~2/(~2 + ~) 

P(2,l) = P~LP(l,l)/(~2 + A) 

S = P(l,O) + P(l,l) + P(2,1) 

2. Iteration. Do step 2 for n = 2,N-l 
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(4.9) 

P(l,n) = (~ + ~l)P(l,n-l) - AP(l,n-2) - ~2~p(2,n-l)/(~2 + A) 

P~l + P~l~2/(~2 + A) 

This expression is obtained from the balance eauation for 

states (l,n-l) and (2,n) as follows 

P~lP(l,n) + ~2P(2,n) + XP(l,n-2) = (~ + ~l)P(l,n-l) 

(~2 + A)P(2,n) = P~1P(l,n) + AP(2,n-l) 

P~l ~ 
P(2.,n) = ~2+X P(l,n) + 112+A P(2,n-l) 

P~1~2 X1l 2 
P~lP(l,n) + +X P(l,n) + ~ P(2,n-l) + XP(l,n-2) = 

112 ~2 

A+~1 
P(l,n) = P(l,n-l) 

Plll+P1l11l2/(1l2+X) 

P(1,n-2) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 
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P(2,n) = (P~lP(l,n) + AP(2,n-l»/(~2 + X) 

s = S + P{l,n) + P(2,n) 

3. Determination of P(l,O) 

P(2,N) = «A + ~l)P(l,N-l) - XP(1,N-2) - XP(2,N-l»/~1 

P(2,N} = (P~lP(l,N) + AP(2,N-l»/~2 
S = S + P(l,N) + P(2,N) 

pel,O) = lIs 

4.5 Application to More General Models 

51 

We now present algorithms for a variety of important models. These 

algorithms are not as general as possible. They are intended to illustrate 

technique. We have implemented more general versions of each of these 

algorithms, in Fortran for a CDC 6600. These algorithms -may' be combined to 

consider models ~vith several of the features considered below. 

4.5.1 Two Non-Exponential Queues 

Consider a two queue network as in Figure 4.1, with N identical 

customers, with FCFS disciplines at both queues, and GE distributions at both 

queues. Assume that each distribution has two stages, with rates ~l and ~2 

and probability PI for queue 1, and with rates Al and A2 and probability ql 

for queue 2. As before-, we will often omit the subscripts on p and q. We 

may define a state of this system as a triple (i,j,n), where n = O, ••• ,N is 

the number of customers in queue 1, i = 1,2 is the service stage of the customer 

being served at queue 1, and j = 1,2 is the service stage of the customer 

being served at queue 2. For notational convenience, let i be 1 when n = 0, 

and let j be 1 when n = N. Let P{i,j,n) be probability of state (i,j,n). 

The state transition diagram for N = 3 is given in Figure 4.9. 
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Figure 4.9 
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Algorithm 4.4 Determination of P(l,l,O) and P(1,2,O) 
(assume N > 1) 

1. Initialization 

P(1,I,O) 

P(I,2,O) 

P(l,l,l) 

::: (l,O)T 

= (O,I)T 

P1-l l P(2,1,1) = + A P(l,l,l) 
1-12 I 

A2 
P(I,2,1) = P(I,2,O) 

P1-II + P1-l l 1-l2/(1-I 2 + A2) 

qAI 
--------- P(I,I,O) 
P1-I l + P1-Il 1-l2/(1-I 2 + A2) 

q1-l2AI --------- P(2,1,1) 
P1-I l (1-I2 + A2) + P1-I11-l 2 

P1-II qAI 
P(2,2,1) = 1-12 + A2 P(I,2,1) + 1-12 + A2 

s = P(I,I,O)+P(I,2,O)+P(I,I,I)+P(I,2,1)+P(2,1,1)+P(2,2~l) 

2. Iteration. Do step 2 for n = 2,3, ••• ,N-I 
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AI+1-I I 1-I 2qA I P(l,l,n) = ---..;:;...~--- P(I,I,n-l) - ----=-....;;;.-- .. 
P1-II+P1-l11-l2/(1-I2+AI) (1-I2+AI ) P1-I l +P 1-1 11-l 2 

1-I2A2 qAI 
P(2,I,n-l) - ---~~-- P(2,2,n-l) - ----=-----

(1-1 2+AI) P1-II+P1-l1 1-12 P1-l1+P1-l11-l2/(1-I2+AI) 
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P(2,1,n) = 
P~l qll . 12 

+1 P(l,l,n) + +A P(2,1,n-l) + +1 P(2,2,n-l) 
112 1 112 1 lI2 1 

P(l,2,n) 
~2 + Al 

P(1,2,n-l) = 
PlIl + PIl11l2/(1l 2 + 1Z) 

lIzqll P(2,1,n) 
(liZ + 12)P~1 + PlllllZ 

qll P(l,l,n-l) 
P~l + Plll Il2/(lI2 + A2) 

P(2,2,n) 
Plll 

P(1,2,n) + 
qAl P (Z,l ,n) = 

~2 + 12 lI2 + 12 

s = S + P(l,l,n) + P(2,1,n) + P(I,2,n) + P(2,2,n) 

3. Determination of P(l,l,O), P(1,2,O) as scalars 

A + ~ qA I P(I,I,N) = 1 ~l I P(l,l,N-l) - III P(Z,I,N-l} 

12 
- - P(l Z N-2) 

~ " I 

q1
l - - P(1,1,N-2) 

III 

P~ ql A 
P(2,1,N) = -.! P(l,I,N) + _1 P(Z,I,N-l) + ~ P(2,Z,N-l) 

lI2 112 liZ 

S = S + P(l,l,N) + P(2,I,N) 

qA1 
D = P(Z,I,N-l) - + 1 P(I,I,N-l) 

~l 2 
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solve ( :~ ] x ~ [ ~ ] for x 

P(l,l,O) = ~l P(l,2,0) = ~2 

Our computer implementation of this algorithm allows the number of. 

stages at each queue to be 1, 2 or 3, independent of the number of stages at 

the other queue. In this implementation, the rates of each stage of the 

distribution for the second queue may be a function of the number of customers 

in that queue; when these rates are not queue length dependent, the program 

can determine results for a range of numbers of customers in the model 

without redetermining intermediate results. 

4.5.2 Multiple Identical Servers 

We now consider models with two identical servers at queue 1. The 

algorithm we present can be extended to more than two servers. We assume the 

service time distribution for queue 1 is of the above form with two stages and 

the second queue service distribution is exponential with mean l/A; extension 

to both distributions of the Cox form is straightforward. We assume that one 

server is idle when only one customer is in queue 1; very minor changes in 

the algorithm are required to consider cooperation of the two servers when 

there is only one customer in the queue. The state of the model can be 

described as a triple (i,j,n) where there are n customers in queue 1, the 

customer being served at one server is in stage i, and the customer being 

served at the other server is in stage j, where i ~j. For notational 

convenience, we have i identically 1 when n = 1, and i and j identically 1 

when n = 0. The state transition diagram for N = 3 is given in Figure 4.10. 
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Figure 4.10 
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Algorithm 4.5 Determination of P(l,l,l) and P(I,2,1) 
(assume N > 2) 

1. Initialization 

T P(1,l,l) = (1,0) 
T P(1,2,1) = (0,1) 

P~l ~2 
P(I,l,O) = -X- P(l,l,l) + ~ P(I,2,1) 

A + 112 
P(1,2,2) = P(I,2,1) 

P~l + 2Plll1l21(2~2 + A) 

Plli 
-----.....;;;;...---- P(l,l,l) 
Plli + 2p~11l2/(2112 + A) 

Plll 
P(2,2,2) = 2112 + A P(1,2,2) 
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A + III 
P(1,1,2) = 2 P(l,l,l) 

Plll 
112 

- -2- P(I,2,2) 
Plli 

A 
- -2- P(l,l,O) 

Plli 

S = P(l,l,l) + P(I,I,O) + P(I,2,2) + P(2,2,2) + P(I,I,2) 

2. Iteration. Do step 2 for n = 3,N-I 

A+lli +1l2 
P(1,2,n) = P(I,2,n-l) 

P~l + 2p~1~2/(2~2 + A) 

2112A 
---....;:;.----- P(2,2,n-l) 
(2J.l2 + 'A)P~1 + 2Plll 1l2 

_____ ...I.A~ ___ P(I,2,n-2) 

Plll + 2Plll~2/(2112 + A) 
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P(2,2,n) = 

P(1,I,n) = 

PJJl ~ 
2 + ~ P(l,2,n) + 

}.I 2 2}.12 + A 
P(2,2,n-l) 

~ + 2JJl 2 P(l,l,n-l) p1.1l 
-

~ 
- -2- P(1,I,n-2) pJJl 

1.12 
-2- P(I,2,n) pJJI 

s = S + P(l,2,n) + P(2,2,n) + P(l,l,n) 

3. Determination of P(l,l,l) and P(l,2,1) as scalars 

~+JJ +JJ 
P(I,2,N) = 1 2 P(l 2 N-1) JJ ' , 

A - - P(2 2 N-l) JJ ' , 
1 1 

- 2p pel, l,N-1) ~ - P(l 2 N-2) 
JJ " 1 

P(2,2,N) 
P1.11 A 

= -2 - P(l,2,N) + -2 -- P(2,2,N-l) 
lJ2 lJ 2 

P(I,I,N) 
~ + 2JJl JJ2 

= 2 P(l,I,N-l) - -2- P(1,2,N) 
PJJl PJJ1 

- _A_ P(l 1 N-2) 
2PJJ l " 

s = s + P(I,2,N) + P(2,2,N) + P(l,l,N) 

~ D = P(l,l,N) - -2-- P(I,l,N-l) 
JJ l 

P(l,l,l) = 1;1 

P(l,2,1) = 1;2 
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Our computer implementation of the above algorithm allows A to be a 

function of the number of customers in queue 2. It will handle models where 

both servers in queue I cooperate when a single customer is present in that 

queue. 
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Note that algorithm 4.5 is not defined for p = ° because of the 

division by 2p~l in step 2. Of course the algorithm will be unstable when p 

is near zero. Algorithm 4.5E (Erlang) will handle the case where p is zero. 

It would be straightforward to develop an algorithm which determines P(l,l,N), 

P(1,2,N) and P(2,2,N) and would not be sensitive to the value of p, but this 

would require more memory, especially when extended to multiple classes. 

We expect that Algorithm 4.SE could be modified to consider the general case, 

but we have not done so. This modified algorithm would likely require memory 

comparable to Algorithm 4.5. 

Algorithm 4.5E Determination of P(I,l,O) 
(assume p = 0, N > 2) 

1. Initialization 

P(l,l,O) = 1 

~ P(I,2,1) = -- P(l,l,O) 
~2 

P(I,2,2) 
~ + ~2 

P(2,2,2) = 2~2 + A P(l,2,2) 

P2 
+ A P(I,2,2) 

~l 
P(l,l,l) = + A + A P(I,I,O) 

~l 

5 = P(l,l,O) + P(1,2,l) + P(I,2,2) + P(2,2,2) + P(l,l,l) 
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2. Iteration. Do step 2 for n = 3, ••• ,N-l 

P(2,2,n) 

P(l,l,n-l) 
112 A 

= ~2-111--+~A P(1,2,n) + 2111 + A P(1,1,n-2) 

s = S + P(1,2,n) + P(2,2,n) + P(l,l,n-l) 

3. Determination of P(l,I,O) 

A 
+ 2 /(2 + A) P(2,2,N-I) 

III 111112 III 

III A 
P(2,2,N) = -2 - P(l,2,N) + -2 - P(2,2,N-l) 

112 112 

112 A 
= 2 + A P(1,2,N) + 2 + A P(l,1,N-2) 

lli III 
P(l,l,N-l) 

A P(1,l,N) = -2 - P(l,l,N-l) 
III 

S = S + P(l,2,N) + P(2,2,N) + P(l,I,N-I) + P(l,l,N) 

P(l,l,O) = lIS 
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4.5.3 Different Classes of Customers - FCFS 

In this section we present an algorithm for models with FCFS discip~ 

line at queue 1 and 2 classes of customers with class dependent service times. 

In subsequent sections we consider models with priority disciplines ~t queue 1. 

We assume that queue 2 is such that customers of different classes are served 

in parallel. In Algorithm 4.6 we assume that the mean service time for each 

class of customers is exponential with mean l/Aj , j=1,2, where j indicates 

customer class. We assume that the service time at queue 1 is exponentially 

distributed with mean lIP., j=1,2; extension to non-exponential distributions 
J 

of the Cox form is straightforward. We will assume that there is exactly 1 

customer of class 1 in the model; extension to models where customers may change 

class when leaving a queue so long as there is at most one class 1 customer at 

any time is straightforward. Extension to models with more than one customer of 

each class and more than 2 classes is possible but more difficult. Extension 

to models with multiple identical servers at queue 1 is straightforward. We 

represent a state of the model by an ordered pair (i,n) where n is the number 

of customers in queue 1 and i is the number of class 2 customers at the head of 

queue 1. When there is no class 1 customer in queue 1, i and n will have the 

same value. Figure 4.11 gives the state transition diagram for a model with 

4 customers. 

Algorithm 4.6 Determination of P(O,O), ••• ,P(O,N-l) 
(assume N > 1) 

Note that this is the first algorithm we present where the number of 

states to be finally determined depends on the number of customers. 

The vectors we deal with have length N. We will represent a column 

vector with all elements ° except the ith element 1 as ei " 

1. Initialization. 

P(O,O) = el P(O,l) = e2 
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Figure 4.11 
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A + A 
P(l,l) = lp 2 P(O,O) 

2 

PI 
- lJ"P(O,I) 

2 

5 = P(O,O) + P(O,I) + P(l,l) 

2. Iteration. Do step 2 for n = 2, ••• ,N-I 

a. P(O,n) = en+l 

b. Iteration. Do step 2b for i = l, ••• ,n-l 

63 

P(i,n) P(i-l,n-l) 
A 
min(2,n-i) P(i-l,n-2) 

P2 

c. 

d. 5 = 5 + P(O,n) + ••. + P(n,n) 

3. Determination of P(O,O), ••• ,P(O,N-I) as scalars 

a. P(O,N) 
A +p A2 

= ~ 2 P(N-I,N-I) - ~ P(N-2,N-2) 
I I 

5 = 5 + P(O,N) 

b. Iteration. Do step 3b for i = 1, ••• ,N-I 

A +p . A 
P(i,n) = 2 m~n(2'i) P(i-I,N-l) _ min(~,N-i) P(i-I,N-2) 

2 2 

Di = P(i,n) - Amin~2,N-i) P(i,N-I) 
2 

5 = 5 + P(i,n) 

c. Solve 

° 
x = 

For n = O, •.• ,N-l P(O,n) = ~n+l 
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Our computer implementation uses a similar algorithm which solves 

for states with all customers in queue 1 and allows queue 1 service distribu-

tions of the Cox form with arbitrary numbers of stages. When we allow non-

exponential distributions at queue 1, an extended version of Algorithm 4.6 

will use considerably less memory and be more efficient than the algorithm we 

implemented. Our implementation allm'1s Al and A2 to be dependent on the 

numbers of customers of each type queue 2. 

4.5.4 Preemptive Priority Based on Customer Class 

Let queue 1 of the two queue models we have been considering have 

a preemptive priority discipline with class 1 customers having priority over 

class 2 customers. Let queue 2 have a parallel service discipline as in 

section 4.5.3. We assume that there are Nl class 1 customers and N2 class 

2 customers, and that all service time distributions are exponential with 

means as before. Extension to more classes of customers is straightforward 

and extension to non-exponential distributions is also possible. We 

represent a state of the model by the ordered pair (n1 ,n2) where ni is the 

number of class i customers in queue 1. Figure 4.12 gives the state 

transition diagram for Nl = 3 and N2 = 2. 

Algorithm 4.7 Determination of P(N1 ,O), ••• ,P(N1 ,N2) 
(assume Nl > 0, N2 > 0) 

Note that the vectors we deal with will have N2 + 1 elements 

1. Initialization 

a. 

b. 
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JJ 1 

JJ 1 

\.1 1 

Figure 4.12 
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c. Iteration. Do step l.c for n2 = l, ••• ,N2-1 

~1 + A2 ~2 
P(N1-1,n2) = A p(N1 ,n

2
) - r- P (N1 ,n

2
-1) 

1 1 

~l A2 
P(N1-1,N2) = X- P(NI ,N2) - r- P(Nl ,N2-1) 

1 I 
d. 

Nl 
e. S = I 

nl=NI-l 

2. Iteration. Do step 2 for n1 = N
I
-2, ••• ,O 

~I + A2 ~l 
A P(n1+I,O) - ~ P(nl +2,O) 

1 1 
a. 

b. Iteration. Do step 2 for n2 = l, ••• ,N2-1 

66 

~l+A2 A2 1-11 
A P(nl +1,n2) - r- P(nl +1,n2-l) - r- P(nl +2,n2) 

1 1 

c. 

d. 

3. Determination of P(Nl ,O), ••• ,P(N
l

,N2) as scalars 

a. Iteration. Do step 3.a for n2 = 1, .•• ,N2-l 

Dn = P(0,n2) -
A2 ~1 

A +A + P(0,n2-1)- ~ +A + P(1,n2) 
2 1 2 ~2 1 2 ~2 

~2 
A +A + P(O,n2+l) 
1 2 112 

DN = P(O,N2) -
A2 III 

b. A + P (0 ,N2-l) A + . P(l,N2) 
2 1 112 1 ~2 
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c. Solve DT 
1 ° 

'T x = 
DN ° 2 
sT 1 

d. For n2 = 0, ••• ,N2 p(N1 ,n2) = 1;n +1 
2 

Our computer implementation of an algorithm based on 4.7 allows 

three classes of customers and assumes exponential distributions. The values 

of, Ai' i = 1,2,3, may be dependent on the numbers of customers of each 

class in queue 2. Our algorithm decides which states to solve for on the 

basis of minimizing the length of the vectors used; it solves for the states 

with ni = Ni' where i is the minimum value such that ni = max(nl ,n2,n3). 

4.5.5 Non-Preemptive Priority Based on Customer Class 

We now consider models similar to those considered in 4.5.4, but 

with non-preemptive priority at queue 1. The state of the model is represented 

by an ordered triple (i,nl,nZ) where i is the class of the customer being 

served at queue 1 and nl and n2 are as before. (Let i = Z when nl = nZ = 0). 

Figure 4.13 gives the state transition diagram for Nl = 3 and NZ = 2. 

Algorithm 4.8 Determination of P(1,Nl,O),P(1,Nl,1),P(1,N1,2), ••• ,P(1,NlN2)' 

P(2,Nl ,N
Z

) 

(assume Nl > 1, N2 > 0) 

Note the vectors we deal with have length 2N2+l 

1. Initialization. 

a. P(I,N1,0) = el 

For i = 1,2, 

For n2 = 1, ••• ,N2, 

P(i,N1 ,n2) = e2n2+i-l 
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b. 

c. Iteration. Do step 1.c for n2 = 1,N2-1 

A2+~1 . ~2 
A P(1,N1 ,n2) - ~ P(2,N1 ,n2+1) 

1 1 

where 0 is the Kronecker o. 

d. 

e. 

2. Iteration. Do step 2 -'for n1 = Nl -2, ••• ,1 

A1+A 2+Pl P2 A P(l,n1+1,O) - r- P(2,n1+1,1) 
1 1 

a. 

b. Iteration. Do step 2 for n2 = 1, ••• ,N2-1 

Al+A2+~1 ~2 
A P(l,n1+1,n2) - r- P(2,n1+1,n2+1) 
1 1 
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3. Determination of P(1,N1 ,O), .•. ,P(2,N1 ,N2) as scalars 

a. Iteration. Do step 3.a for n2 = 1, ••• ,N2-1 

70 

112 
X +X + P(2,1,n2+l) 
1 2 lJ1 

b. 

c. P(2,O,O) 

d. Iteration. Do step 3.d for n2 = 1, .•• ,N2-1 

N2 

f. S = S + L P(2,O,n2) 
n2"0 

(1-0 1 ) X2 . ,n2 X P(2,1,n2-1) 
1 

(1-01 N )X2 , 2 
X P(2,I,N2-1) 

1 
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g. Iteration. Do step 3.g for n2 = 1, .•• ,N2-l 

A2 ~2 
= P(2,O,n2) - A +A + P(2,O,n2-l) - A A P(2,O 

1 2 ~2 1+ 2+~2 

r(\ -tl) ... 

h. 

1. Solve ° 
·T x = 
D2N ° 2 

1 

for n2 = 1, ••• ,N2 , for i = 1,2, P(i,Nl ,n2) = ~2n2+i-l 

The algorithm we implemented allows three classes of customers, and 

allows queue length dependent service times for queue 2. 

4.5.6 Other Applications 

We have applied these techniques to two queue models with random 

scheduling at queue 1 or with priority disciplines at both queues, and to 

models with more than two queues, but have not implemented computer programs 

for these models. Models with priority disciplines at both queues seem 

limited in applicability to computer systems. Algorithms for more than two 

queues will tend to have large memory requirements, but may still be of some 

value. 
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4.6 Application to Computer System Modeling 

4.6.1 General Approaches 

72 

Many approximate analysis techniques for general models of computing 

systems are dependent on solution of the models we have considered (C2, 

Chapter V). We now consider direct use of these models in computer system 

analysis. The models used here are based on those of Gaver (G1). 

We can use these queueing network models to help illustrate some 

of the effects of having single or mUltiple processing units, and of having 

multitasking when there are multiple processing units. We will restrict 

attention to a simple class of models; the analysis can be extended to much 

more general models using the techniques of (B4,C2,Chapter V). We will 

assume that there is a fixed number of programs in memory and that these 

programs have identical behavior. The programs alternately request service 

from a central processing unit (CPU) and an input/output (I/O) device. When 

there. are no free CPU's, or no free I/O's, programs must wait in the 

respective CPU and I/O queues, both with FCFS queueing discipline. We assume 

the service times at the I/O devices are exponentially distributed with mean 

L, where L is the number of I/O deVices, and that the CPU service times have 

a standardized distribution (Chapter V) with mean l/~ and coefficient of 

variation C. 

The queueing network models we use are those of sections 4.4 and 

4.5.2. We let queue 1 represent the CPU queue and let queue 2 represent the 

I/O queue. For queue 2 we let A be a function of the length of queue 2,. 

with Ai = min(i,L)/L, i = 1, ••• ,N, where N is the number of programs. We 

use this representation so that the effective combined rate of the I/O 

devices will be 1 when all devices are busy. 
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In Section 4.6.2 we consider the relative advantages of having a 

single CPU of given speed and of having two CPU's half as fast as the single 

processor, in section 4.6.3 we study the improvement in throughment obtained 

by multitasking with two processors, and in section 4.6.4 we consider improve­

ments in throughput which may be obtained by adding or upgrading CPU's. 

4.6.2 Single CPU vs. Two Slower CPU's 

It would be reasonable to expect that a single CPU would be better 

than two CPU's with half the processing rate of the single CPU, since one 

of th.e slower CPU's in the two CPU case would be idle when there is only a 

single program needing a CPU. Figure 4.14 shows the ratio of throughput 

with one CPU to the throughput with two CPU's half as fast as a function of 

p for the fast CPU. Curves for three values of C are given. The number of 

customers and the number of I/O's are both held constant at 3. Notice that 

there is little difference between one fast CPU and two slower CPU's when 

the CPU distribution is skewed. When the distribution is so skewed, a single 

CPU may be occupied for long periods by a single program; the other programs 

must wait in the CPU queue while the I/O's are idle. In contrast, with 

mUltiple CPU's programs with smaller requests for service can continue to 

circulate through the system. As C decreases, the ratio increases because 

this blocking effect decreases. The blocking effect becomes strong enough 

to favor two slower CPU's when the number of programs and I/O's is raised to 

5 (Figure 4.15), or when there is contention for I/O devices (Figure 4.16). 

Figure 4.17 shows throughput as a function of the number of programs. Curves 

are shown for 1 and 2 CPU's. L is the same as the number of programs, ~ for 

the fast CPU is 1, ~ for the 2 slow CPU's is .5, and C is 5. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

0 
..-I ... 
~ 
... 
::s 
~ .;; 
::s 
0 
~ 

~ 

1.14 

1.08 

1.02 

1 2 3 

:3 Programs 
:3 I/O's 

= .75 

C = 

Processing Rate (~) 

C - Coefficient of Variation 

1. 

C = 

4 

Figure 4.14 - Throughput Ratio - 1 Fast/2 Slow CPU's 

74 

5. 

5 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

1.08 

0 .... 
.j,J 
C\l .x: 
.j,J 

::J 1.03 p. 
.t:: co 
=' 0 
$.I 

e9 

1.00 

• 98 

1 2 

5 Programs 
5 I/O's 

c = 

C 

.75 

1. 

C = 5 . 

3 

Processing Rate 

4 

Figure 4.15 - Throughput Ratio - 1 Fast/2 SImi CPU's 

75 

5 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

o 
..-I ..... 
~ 

1.07 3 Programs 
1 I/O 

= 1. 

~ 1.00 ~~--------------------~~~~-------------------­Q. 

~ 
o 
H 

t: 

• 92 

= 5 • 

1 2 3 4 5 

Processing Rate 

Figure 4.16 - Throughput Ratio - 1 Fast/2 Slow CPU's 

76 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

.7 

C - 5. 

- --- 1 CPU rate 1 

.5 

2 3 4 5 6 7 8 9 10 

Number of Programs and I/O's 

Figure 4.17 - Throughput with Skewed CPU Distribution 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

78 

4.6.3 Improvement Obtained by Multitasking 

When a system has more than one CPU, it may be possible to improve 

performance by dividing a program into tasks which may execute in parallel (H3). 

Usually there will be interference between the tasks, but for the sake of 

illustration we will assume that it is possible for two processors to 

cooperate fully on a single program without interference. If processors 

always cooperate on a single program without interference, then this is 

equivalent to a single CPU with rate equal to the combined rate of the indivi~ 

dual CPU's. The analysis of Sec. 4.6.2 would be approximate· for-the case. 

We assume that processors cooperate only when there is exactly one program 

needing a CPU. Figure 4.18 shows the ratio of throughput with and without 

cooperation as a function of 2p. Curves are shown for the same distributions 

as before, for a system with three programs and three I/O's. Figure 4.19 

gives results for a system with 5 programs and 5 I/O's. Notice that the 

potential improvement is less; since there are more programs, it is less likely 

that there will be only one program needing the CPU. Also notice in both 

figures that maximum potential improvement exists when the system is fairly 

well balanced. When the system is CPU bound, it is unlikely that only one 

program will need a CPU; when the system is I/O bound, improvement in CPU 

performance has little overall effect. 

4.6.4 Improvement Obtained by Adding or Upgrading CPU's 

In general, the rates of CPU's actually obtainable do not increase 

continuously, but in discrete steps. For the sake of example, we assume 

that we have a choice of four CPU's with mean processing rates (p) 1/3, 1, 3, 

and 9, that a system can support at most 2 CPU's, and that CPU's of different 
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rates may not be used together. Thus a system with a single CPU may increase 

processing power by adding a similar CPU, but a system with dual CPU's 

must increase power by getting a faster CPU. We would expect that throughput 

would increase monotonically as potential processing power is increased, 

as in Figure 4.20. In this figure we have 3 programs, 3 I/O's, and C is 5. 

Some unexpected behavior does occur under other circumstances. Figure 4.21 

is for a system with five customers and one I/O. Replacing two CPU's of rate 

3 with one of rate 9 actually decreases throughput; this can be explained by 

the effect of the skewed distribution as with Figures 4.15 and 4.16. 

Figure 4.22 is for a system with 5 customers, 5 I/O's, and C = .75. Adding a 

second CPU of rate 3 or rate 9 produces negligible improvement because it is 

unlikely that more than one program will need the CPU at the same time. 

These anomalies are not of great significance; since the system is so I/O 

bound where the anomalies occur, it is unlikely that one would try to improve 

syste~ performance by increasing CPU power. 

4.6.5 Summary of Model Results 

These models suggest several areas of consideration in choice of 

CPU's and CPU Schedulers. From section 4.6.2 we see that the choice of the 

number of processors depends heavily on the coefficient of variation of the 

distribution of CPU service requests. If several CPU's are used, the system 

is well-balanced, the programs can be divided into non-interfering tasks, and 

the coefficient of variation of the CPU service distribution is small, then 

it may be advantageous to have the CPU's cooperate on a single program rather 

than work on separate programs. From section 4.6.3 we see that multi-tasking 

may also be desirable when only a single program needs a CPU, if the system 
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is well balanced and programs may be divided into non-interfering tasks. 

Finally, from section 4.6.4 we find that the models of increasing CPU power 

agree with intuition as long as the system is not severely" I/O bound. 
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CHAPTER V 

APPROXIMATE ANALYSIS OF CENTRAL SERVER MODELS 

5.1 Introduction 

Central server queueing netw·ork. models have been widely used in 

the analysis of computing systems (Bl,B6,G2,L2,S4,SS). These models assume 

that a fixed number of customers (programs) traverse a closed network consist~ 

ing of tfte central processor' (CPU·) and tB.e.. input/output (I/O) devices. A 

customer alternately receives service from the CPU and one of the I/O devices. 

A customer may have to wait in a queue if the server is busy. After completing 

service at the CPU, a customer selects an I/O device according to probabilities 

associated with that device and the given customer. These probabilities are 

independent of the state of the system. The service time of a customer on a 

device may depend upon the device, the customer, and the queue lengths for. 

that device, but is otherwise independent of the state of the system. Figure 

5.1 illustrates a central server model with three I/O devices. Central 

server models have also been used as sub-models in detailed models of complex 

systems (B4). 

Often the models used are such that solutions for the equilibrium 

behavior can be determined using the techniques of local balance (B2,Cl). 

If the model is to have first come first served (FCFS) queueing diSCiplines, 

and if the techniques of local balance are to be used in the solution of the 

model, then it must be assumed that, at the servers with FCFS disciplines, 

the service distributions are exponential and independent of the customer 

being served. Local balance techniques do not allow priority queueing 

disCiplines. 

86 
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Empirical studies on real computing systems show that CPU service 

distributions are often hyper-exponential (the standard deviation is greater 

than the mean) and that I/O device service distributions may be hypo­

exponential (the standard deviation is less than the mean). Studies (J2) 

have shown that mean service times and service distributions are dependent on 

the customer being served. When one makes assumptions that distributions 

are exponential and all customers have the same distributions, significant 

inaccuracy may be introduced into the model. Clearly, distinctions must be 

made between customers if priority CPU distributions are considered. Therefore, 

(a) many realistic problems do not satisfy local balance and (b) customer 

differentiation is often required for realistic models. 

Chandy, Herzog and Woo (e2) have developed accurate approximate 

iterative techniques for analysis of general queueing networks with non­

exponential service distributions and distributions dependent on customer 

class. The iterative techniques of Wallace and Rosenberg (WI) may also be 

used to obtain exact solutions for models with non-exponential distributions. 

The techniques of Crane and Iglehart (C6,C7) may be used to obtain confidence 

intervals for simulation results for these models and thus to obtain accurate 

simulation results. However, these techniques are relatively expensive to 

apply,. In many instances it will not be practical to survey a large variety 

of models using these techniques. 

We present here approximate solution techniques specifically intended 

for, but not limited to, central server models of computing systems. Our 

techniques are considerably less expensive to apply than the above mentioned 

techniques, but are sufficiently accurate for the initial stages of computer 
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system design. Our techniques complement the previous techniques in that 

ours can be used to study and compare a large variety of models, and then 

more accurate, more expensive techniques may be used, to study more carefully, 

a small subset of the original group of models. 

Section 5.2 summarizes central server models in local balance and 

gives examples of inaccuracies of "local balance assumptions." Section 5.3 

describes "Norton's Theorem!! on locally balanced queueing networks (C3) 

as applied to central server models. Our approximations are based on the 

results of Norton's Theorem. Section 5.4 presents the approximations for 

models with non-exponential distributions, Section 5.5 presents techniques for 

class dependent service distributions, and Section 5.6 presents techniques 

for models with priority CPU disciplines based on customer class. In Section 

5.7 we compare the results of our techniques with results of simulations; our 

techniques are validated by comparison with over 125 different simulations. 

5.2 Local Balance 

A central server model will be in local balance (B2) if 1) branching 

probabilities are dependent only on the device and the customer class, 2) all 

queueing disciplines are FCFS, processor sharing (PS) or last come first 

served preemptive resume (LCFSPR), 3) servers with FCFS discipline have 

exponential distributions independent of customer class (which may depend on 

queue length), and 4) servers ~Y.ith PS or LCFSPR disciplines have differentiable 

service distributions (which may be dependent on customer class). In these mo­

dels the equilibrium state pro~abilities will have thellproduct form," and are 

easily calculated (B2). From the state probabilities one can determine model 

statistics such as throughput, server utilization, queue length distributions 

and waiting time distributions. 
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The following example illustrates the inaccuracy which may be 

introduced by using local balance solutions for models violating local 

9'0 

balance assumptions. This example is by no means a worst case, but illustrates 

that results of assuming local balance are likely to be unsatisfactory. 

Suppose that a system to be modeled has one I/O device and two 

classes of customers, with one customer per class. Further, both service 

disciplines are FCFS, all service distributions are exponential, the mean 

CPU service time for class one is 2, the mean CPU service time for class two 

is .2, and the mean I/O service time for both classes is 1. Suppose we are 

interested in the overall throughput of customers through the CPU. This 

model is small enough that exact solution of the Markov balance equations is 

convenient. From the solution of these equations the throughput is .5941. 

If we assume that the results for a similar model with PS CPU discipline will 

be close enough, the value we get for throughput will be .84, an error of 

more than 40%. If we apply the techniques of Section 5, the value we get 

for throughput is .6375, an error of about 7%. 

Other examples illustrating the inaccuracy introduced by local 

balance assumptions are found in (C2). 

5.3 Norton's Theorem Applied to Central Server Models 

This section reviews earlier work on Norton's Theorem in subsection 

5.3.1, in 5.3.2 a multiclass example is presented, and computational algorithms 

are presented in 5.3.3. 

5.3.1 Norton's Theorem: A Discussion 

Norton's Theorem (C3) may be used to transform a central server 

model in local balance into one with a single "composite" I/O which represents 
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the combined effects of the I/O devices in the original model at steady state. 

See Figure 5.2. Values determined for equilibrium cycle times, throughputs, 

server utilizations, and CPU queue length and waiting time distributions of 

the two-queue model will be the same as those calculated for the original 

model. The transformation is independent of the CPU parameters, so if a 

variety of CPU parameters are to be studied, effort may be saved by applying 

Norton's Theorem and studying the reduced model as the CPU parameters are 

varied. The approximation technique presented here is also especially well 

suited for parametric analysis of the cPU. 

In describing Norton's Theorem we shall assume that there are J 

classes of customers. The composite I/O processes all classes of customers 

in parallel in the two queue, CPU-composite I/O model. The composite I/O 

service rate for the first customer of any given class i at any given time 

depends upon i and upon the number of customers N. of class j, j = 1, ••. ,J, 
J 

in the composite I/O queue at that time. These composite I/O service rates 

are determined by analyzing a modified version of the original network in 

which the CPU has been "shorted," Le., the mean CPU service time for all 

customers is set to zero. See Figure 5.3. The composite I/O service rate for 

the first customer of any given class i, when there are Nj customers of class 

j, j = l, ••• ,J, in the composite I/O queue, is set equal to the throughput 

of the customers in class i through the shorted CPU when there is a population 

The of N
j 

customers of class j, j = 1, ... ,J, in the shorted CPU model. 

solutions of the two-queue, CPU-composite I/O model, with the same CPU 

parameters as in the original model and these queue-dependent composite I/O 

service rates, will be identical to those of the original model for the 

equilibrium statistics mentioned above. 
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5.3.2 Example 

Consider the following two-class example of a locally-balanced 

central-server model with a processor-shared CPU and two I/Os labeled I and 

2, two non-identical customers, one of class A and the other of class B. 

The class A customer uses I/O's I and 2 with equal probability, while the 

class B customer uses I/O I exclusivelv. The mean service time for each I/O 

is independent of customer class. The mean service times for 1/0s I and 2 

are I and 2, respectively. All I/O service times have negative-exponential 

distributions. 

Both class A and B customers are a"ssmned to be serviced in parallel 
!:. 

in the composite I/O queue. The service rates for class A and class B 

customers depend upon the numbers of class A and B customers in the composite 

I/O queue. We next discuss the computation of these rates by analyzing the 

modified version of the original network in which the CPU has been shorted 

(Figure 5.3). When only the class A customer is present in the CPU-shorted 

network, the throughput of the class A customer through the shorted CPU is 

2/3; when only the class B customer is present the throughput is 1; and when 

both are present, the throughputs for classes A and Bare 1/2 and 3/4, 

respectively. The composite I/O service rates when there is one customer of 

class A and none of class B in the composite I/O queue is set to 2/3 for 

class A (and 0 for class B); when there is one customer of class B and none 

of class A the rate is set to 1 for class B (and 0 for class A); and when 

there is one customer of each class the rates are set to 1/2 for class A and 

and 3/4 for class B. The solution of the CPU-coMposite-I/O model with the 

same CPU parameters as in the original model and these queue-dependent composite 
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I/O servic~ rates, will be identical to the solutions of the original model 

for the equilibrium statistics mentioned above. 

5.3.3 Determination of Composite Ilo Throughput 

In this section we review computational techniques developed by 

BuZeft (B6) and extended by Chandy, Herzog and lioo (C3). We will assume an 

arbitrary closed network in local balance with R single server queues 

numbered from 1 to R. We assume that J, the number of customers, is 2, and 

later consider arbitrary J ~1. We assume that customers cannot change 

class, that the mean service rate at queue r for class j is A j' that a class . r 

j customer leaving queue r joins queue r' with probability p(rj),(r'j), and 

that the number of class j customers at queue r is n
rj

• We must have 

We define e 0' the expected number of times a c~stomer of 
rJ 

class j visits queue r, by J sets of R linear equations of the form 

e = rj 

R 

~ er'jP(r'JO),(rj) 
r'=l 

(5.1) 

For a given j,' {erj } is uniquely determined up to a multiplicative constant. 

We know from (B2) that the probability of having nrj customers of 

class j at queue r, j = 1,2, r = l, ••• ,R, P(n1l,n12,n2l,n22'."'~1,nR2) is 

1 
G 

R 
n 

r=l 

2 
n 

j=l 
(5.2) 

Here G is a normalizing constant chosen so that the probabilities sum to 1. 

Of course G is dependent on Nj' j = 1,2, so we will refer to G(Nl ,N2). So 

we must have 
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R 
It 

r=l [
n +n J 2 [e J n

rj r! r2 It X& (5.3) 
rl j=l rj 

The reader should be alarmed by the computation required to determine (5.2) 

and (5.3); though we could determine throughput from these expressions, more 

efficient algorithms are needed. 

It can be shown that the throughput of class I customers through 

queue r when there are N., j 
J 

1,2, customers in the network, Tr1 (Nl ,N2), is 

Similarly, 

er1G(NI -1,N2) 

G(N
I

,N
2

) 

So we need only find efficient algorithms for determining G(N1-l,N
2
), 

G(N1 ,N2-1) and G(NI ,N2). We now consider an algorithm for determining 

G(n1,n2) for n1 = O, .•• ,N1 and n2 = O, ... ,N2. 

(5.4) 

(5.5) 

We let G be an array with first subscript ranging from 0 to N1 and 

second subscript ranging from 0 to N2• We will define arrays X , r = 1, ••• ,R 
r 

and a "convolution" operator "*" such that 

The operator n*" is associative and commutative, but for convenience we 

determine G as GR, where Gr = Gr _l * X'r' r = 2, ••• ,R, and G1 = Xl' For 

r - 1, ••• ,R, n1 = O, ••• ,N1 , n2 = O, ••• ,N
2

, we define 

(5.6) 

(5.7) 
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r 

Xr (nl ,n2> 
nl + n2 [~ =: 

n1 
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n
1 

+ n2 f~;~J = n2 
(5.8) 

For r = l, .•• ,R, n1 = 0, ••• ,N1 , n2 = 0, •.• ,N2 

n1 n2 
G (n1,n2) = ~ l Gr_1(i1,i2)Xr(n1-i1,n2-i2) (5.9) 

r i =0 i =0 
1 2 

We now apply these algorithms to the example of Section 5.3.2. We let class 

A correspond to class 1 and class B correspond to class 2. So we have 

P11 = P21 = .5, P12 = 1, P22 = 0, ~11 = ~12 = 1 and P21 = ~22 = .5. We 

can let erj = Prj' Then 

G1 = Xl =(.; i) 

[
1.1 

1·1 + .5-1 
1-0 + 1-1 1 
1·0 + I-I + .5-0 + 1·1 

= (1~5 i) 
R 

If we let T
j

(n1,n2) = ~ Tr .(n1 ,n2), then 
n=l J 

1 2 
= 1.5 = "3 

1 
T1 (1,1) = "2 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

96 

When j ~ 1, then (5.7) and (5.9) become 

xr (nl ,n2,···,n
j

) =' [n1 +n2+· .. +njJ (Prl]n
1

(Pr2jn
2 

••• (:&Jn
j 

" nl n2•• .nj rl r2 rj (5.10) 

and 

(5.11) 

These algorithms also apply to networks with queue length .dependent 

s'ervice rates. 

Assume queue r is FCFS with queue length dependent service rates. 

Let A(n) be the rate with n customers in the queue. (Queue length dependent 

service rates are useful for representing mUltiple servers .at a single queue. 

For example, if we have k servers each with rate }.I, we let A(n) = min(n,k)}.I.) 

We can let 

(5.12) 

If we define X as in (5.12), then G and the throughput will be as before. 
r 

5.4 FCFS Central Server Models with Non-Exponential Service Times 

We first discuss the overall technique generally (5.4.1), then 

study composite I/O representations (5.4.2), present the detailed algorithm 

(5.4.3), and finally work out an example (5.4.4). 
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5.4.1 Overview 

We now restrict our attention to central server models with all 

customers identical, FCFS disciplines at all servers, and arbitrary service 

distributions having rational Laplace transforms. For sake of discussion, 

we will assume that the system being modeled has a single CPU. These techniques 

have also been applied to models with multiple identical CPU's. Even though 

this class of models is not in local balance except when all service distribu­

tions are exponential, we shall apply Norton's Theorem and show that the 

composite I/O model yields solutions close to those of the original model. 

(In making the composite I/O transformation we assume that the I/O devices 

have exponential distributions with the same means as the actual distributions. 

See example below.) Chandy, Herzog and Woo (C2) use an approximate application 

of~Norton's Theorem in their iterative method. In order to compensate for 

the inaccuracy introduced, we adjust .the distributions for the composite I/O 

to reflect the non-exponential character of the actual distributions. 

After applying Norton's Theorem and adjusting the distributions, we 

have a central server model with a single composite I/O, with both service 

distributions non-exponential. This model is solved by an efficient recursive 

technique which is an application of the technique developed by Herzog, Woo 

and Chandy (HI). Their technique assumes distributions of the generalized 

Erlang form developed by Cox (CS). This generalized form includes arbitrary 

distributions with rational Laplace transform. Our technique assumes that 

both the CPU and the I/O distributions are of this general form. Details of 

our two queue analysis are given in Chapter IV. 

Our adjustment for the non-exponential nature of the I/O distribu­

ti~nS is simple and effective. More sophisticated adjustments could potentially 
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increase the accuracy of the final results. We characterize each I/O 

distriBution by its mean and coefficient of variation (standard deviation 

divided by the mean). For the means of the composite I/O distributions we 

use the queue length dependent values as shown earlier. We assume that the 

composite I/O coefficient of variation is the weighted sum of the coefficients 

of variation of the individual distributions, with the weights being the I/O 

branching probabilities. The composite I/O coefficient of variation is a 

constant, independent of queue length. Of course, the mean and coefficient 

of Variation do not completely specify the distribution. If the composite 

I/O coefficient of variation is greater than one, we assume that the composite 

I/O service time is a standard two stage hyper-exponential as in Figure 5.4. 

If the coefficient of variation is one, we assume the service time is 

exponential. If the coefficient of variation is less than one, we assume 

the service time is of the generalized Erlang form with the minimum number of 

stages necessary to obtain the given coefficient of variation, all stages 

having the same mean, and all branching probabilities zero, with the possible 

exception of the branch after the first stage, as in Figure 5.5. 

5.4.2 The CompOSite I/O Distribution 

We desire that the composite I/O distribution represent the aggregate 

of all the individual I/O distributions. Intuitively, we expect the distribu­

tion of a given I/O to influence the composite I/O distribution more than 

distributions of other I/Os, if the given I/O processes more customers than 

other I/Os. We decided to restrict attention to the first two moments to keep 

computation simple. The means of composite I/O service times are obtained 

by aggregating individual I/O mean service times via Norton's Theorem. The 
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Figure 5.5 
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composite coefficient of variation is obtained by aggregating individual 

coefficients of variation, weighting each I/O by its branching probability 

since I/O branching probabilities are ~irectly proportional to I/O through-

puts. Note tnat though the mean composite service time is queue-length 

dependent, the coefficient of variation is not dependent on queue length. 

Note also that if all the I/Os have the same coefficient of variation, then 

the composite I/O will have that coefficient of variation too. 

The first two moments do not completely specify a distribution. We 

decided to model composite service times using either two-stage hyper-

exponential (Figure 4.4) or generalized Erlang (Figure 4.5) random variables 

since these are common ways of representing service times in computing systems. 

Note that the particular forms of the hyper-exponential and generalized Erlang 

random variables are such that the first two moments uniquely specify the 

distributions. The selection of these particular composite I/O distributions 

were made with modeling convenience and reasonability in mind; clearly other 

choices could also have been made. However, note that if the original model 

satisfies local balance, then our technique gives exact results, since the 

composite I/O distribution obtained via our technique is the same as that 

obtained via Norton's Theorem. 

The Hyper-Exponential 

Let k be the coefficient of variation of the composite I/O. We 
c 

shall use a standard hyper-exponential random variable to model composite 

I/O service times if k > 1. The relationship between k and parameter p 
c c 

(Figure 5.4) of the hyper-exponential is shown below: 
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(5.13) 

Note that k uniquely specifies p. The means for each stage of this hyper­
c 

exponential are uniquely specified by p and the mean composite service time. 

mean composite service time 
Mean of stage 1 = 2p 

Mean of stage 2 = mean composite service time 
2 (l-p) 

(5.14) 

(5.15) 

Generalized Erlang 

Consider the generalized Erlang (Figure 5.5) with n stages, 

n = 2,3,4, •••• After a customer completes the first stage, he may finish 

service with probability p, or he may continue through the remaining n - 1 

stages with probability l-p. All stages have the same mean time, and all 

stage holding times are independent exponential random variables. By varying 

p from 0 to 1 the coefficient of variation ranges from l/In to 1. We wish 

to keep the number of stages small to minimize computation. Hence, we shall 

use n stages if and only if, l/{n-l > kc ~ l/~. The value of n is directly 

determined from kc ' nand kc together uniquely specify p. See equation (5.16) 

below. The means for each stage are uniquely specified by n, k , p and the c 

means of the composite 1/0 service times. 

2nk2 + n-2 - {n2+4 - 4nk2 
c 

p = --~--------------------
2(k2 + 1) (n-l) 

c 

Mean of each stage mean composite service time 
n - p(n-l) 

(5.16) 

(5.17) 

In conclusion, the generalized Erlang and hyper-exponential random 

variables shown in Figures 5.4 and 5.5, are completely specified by the first 
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two moments, and have a wide range of coefficients of variation. The 

parameters p are independent of composite I/O mean service times and the mean 

times for all stages in both distributions are directly proportional to the 

composite 1./0 mean service time; this simple relationship is an advantage 

in modeling queue-dependent service rates. 

5.4.3 The Algorithm 

We now present the algorithm after explaining some notation. Let 

there be R I/O queues indexed 1, •.• ,r, ••• ,R. We shall use the subscript r 

to denote the rth I/O in the original model and the subscript c to denote 

the composite I/O in the CPU-composite-I/O model. Let p be the probability 
r 

that a customer branches to the rth I/O device after finishing CPU service. 

Let k.denote the coefficient of variation: kc for the composite I/O and kr 

for the rth I/O device. We shall use the subscript 0 (zero) for the CPU. Let 

Ur be the utilization and tr the throughput for the rth queue, r=O,l, .•• ,R. 

Let ~r be the service rate for the rth I/O device. Let q and wbe the mean 

CPU queue length and wait times and let a and a be the corresponding q w 

standard deviations. Let C be the cycle time; C is very important since 

response time in the computer system will be dependent on C. 

ALGORITHM 5.1 

Step 1. Composite I/O Service Rates 

Consider the given (non-locally-balanced) model. Construct the 

shorted-CPU model in which all I/O service times are assumed to be independent 

exponential random variables and the CPU service time is set to zero. The 

shorted-CPU model satisfies local balance and can be analyzed easily. 
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Determine queue-dependent composite I/O service rates by analyzing the 

shorted-CPU model. 

Step 2. Composite I/O Coefficient of Variation 

Compute k = c 

R 

L 
r=l 

k • p r r 

Step 3. Determine exponential stage representations for composite I/O 

service times from k and composite I/O mean service times. c 

If k > 1 c use standard hyper-exponential random variable. (Fig. 5.4) 

If k = 1 c use exponential random variable 

If k < 1 
c use generalized Erlang random variable. (Fig. 5.5) 

Step 4. Solve the two queue, CPU-composite I/O model. 

103 

The CPU parameters in this model are set to the same values as in 

the original model. The composite I/O parameters are completely and uniquely 

specified by step 3. The two-queue model is completely specified. Analyze 

this model to determine C, UO' to' q, 0q' w, and ow' 

Step 5. I/O Utilizations 

Compute t = t x p for r = l, ••• ,R r o r 

Ur = t /A r r for r = 1, ••• ,R 

stop. 

5.4.4 Example 

Consider a two I/O model with 2 customers where I/O 1 has an 

exponential service time with mean 4. I/O 2 has a generalized Er1angian 

service time with a coefficient of variation of .414 and mean 2 and the CPU 
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has a standard hyper-exponential service time with a coefficient of variation 

of 2 and a mean of 2. Customers use each I/O with equal prooability. We 

shall now follow through the five steps of the algorithm. 

Step 1. The composite I/O service rates (from Section 5.3.3) when there are 

j customers, j = 1,2, in the composite I/O queue are 1/3 and 3/7~ respectively. 

Step 2. 

Step 3. 

k = (0.5 x 1.0) + (0.5 x 0.414) = 0.707 
c 

Since k < 1 the generalized Er1ang representation is used. c In 

this case n will be 2 and p will be zero. (The rate for each stage is clearly 

twice the composite I/O service rate.) 

Step 4. We now have a two-queue model where the CPU service time is a two-

stage hyper-exponential and the composite I/O service time is a two-stage 

Erlang. The balance equations for the resulting Markov states are solved 

to obtain C = 6.99, Uo = .571, to = .286, qo = .837, Wo = 2.93 

Step 5. tl = to x 0.5 = .143, t2 = to x 0.5 = .143 

U1 = t l /A1 = .571, U2 = t21A2 = .286 

stop. 

5.5 rCFS Central Server Models with Class Dependent Service Rates 

This section is divided into three subsections. In 5.5.1 we discuss 

the technique generally, in 5.5.2, the algorithm is presented and an example 

is worked out in 5.5.3. 

5.5.1 Discussion 

In this section, we restrict ourselves to models with several classes 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

105 

of customers, FCFS, all service distributions exponential, all 1/0 service 

rates independent of customer class, and the CPU service rates dependent on 

customer class. The assumption of class independent I/O service rates can be 

justified by observing that the largest portion of most I/O services is spent 

on primarily program independent operations such as acquiring channels, 

positioning disk arms, and waiting for device rotation. The techniques 

presented here have been extended to non-exponential CPU distributions and 

can also easily be extended to non-exponential I/O distributions. They are 

extended to priority disciplines in the next section, using the techniques 

of the previous section. Our techniques may also be extended to other, more 

general models. 

Multiple classes severely complicate analysis. Even the reduced model 

obtained by applying the Norton's Theorem approximation to the I/O subnetwork 

is difficult to analyze. As the number of classes and/or the numbers of 

customers per class attain even moderate values, e.g., 4, the analysis 

becomes too complex to be of practical value. 

To reduce the complexity of analysis, we transform the more general 

original model to an approximately equivalent one with only two classes of 

customers: a designated class with only one customer and a composite class 

representing all of the other customers in the network. This further reduced 

model can be analyzed relatively easily, by applying the Norton's Theorem 

approximation. We designate each class in the original model and in turn 

analyz~ the corresponding reduced model, thus we obtain approximate values 

for the interesting statistics by each customer class in the original model. 

In transforming the original model to the one with only two classes, 

the customer of the designated class is given the same I/O branching 
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each I/O device, the composite class branching probability is determined 

as a weighted sum of tbe branching probabilities of the classes co-

alescing from the original model. The weights used are the relative 

106 

througbputs of the corresponding customers in a model identical to the original 

model, except that the CPU is processor-shared; this PS model satisfies local 

balance and is easily analyzed. The CPU service distribution for the 

composite class is chosen to be the standard two stage hyper-exponential 

distribution with mean and second moment determined from weighted sums of the 

means and second moments of the CPU service distributions of the classes 

being coalesced from the original model. 

After this transformation is applied, the Norton's Theorem approxima­

tion is applied. The resulting model, with the composite class and composite 

I/O queue is analyzed by techniques similar to those used in Section 5.4. 

5.5.2 Algorithms 

In this subsection we describe two algorithms, the main program, 

algorithm 5.2, is presented in 5.2.1., and a subprogram, algorithm 5.3, which 

approximates an N-class problem by a two-class problem, is in 5.5.2.2. 

5.5.2.1 ALGORITHM 5.2 

Assume that there are N classes of customers. For purposes of 

exposition, we assume (without loss of generality) that there is only one 

customer in each class. 

Step 1. For each class i in turn, i = 1, ••• ,N, do steps 2-i through 5-i and 

thus compute the throughputs and utilizations for all queues for class i, and 
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also the means and variances of CPU queue lengths and wait times for class i. 

The algorithm stops after all N classes have been considered. 

Step 2-i. Use algorithm 5.3 to approximate the given N-class problem by a 

two-class problem where the two classes are the designated class and a 

"composite class" which represents all customers except those in the designated 

class. We shall refer to the original central-server model as model A and 

this two-class approximation as model B. Note that B and A have exactly 

the same central-server network structure; only the number of classes is 

changed. The parameters for the designated class are the same in A and B. 

CPU service time for the composite class is assumed to be hyperexponential in 

B. I/O service times are identical in A and B. 

Step 3-i. Compute composite I/O service rates for the designated and composite 

classes of model B in the usual manner (i.e., by computing throughputs 

through the shorted CPU of model B and assuming all I/O' service times are 

exponential). 

Step 4-i. Consider the resulting two-queue, two-class network consisting of 

the CPU and I/O queues and the designated and composite classes; we shall 

refer to this network as model C. Solve Markov balance equations to determine 

steady-state probabilities of model C. Determine CPU throughput t Oi ' 

utilization UOi ' mean and variance of CPU queue length and wait time for 

designated class i from the equilibrium state probabilities of model C. 

(Statistics for the composite class are not computed). 

Step 5-i. Determine I/O throughputs t ri , and utilizations Uri' for each I/O 

r, r = 1, ••• ,R, for the designated class i. Let Pri be the probability 
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that a customer of class i branches to I/O r after CPU service. Then 

and 

tri = tOi x Pri 

Uri = tti/1i 

for r = 1, ••• ,R 

for r = 1, ••• ,R 

Statistics for the composite class are not computed. 

Figure 5.6 shows the relationships between models A, Band C. 

5.5.2.2 ALGORITHM 5.3 

For determining CPU service distributions and I/O branching p 

probabilities for the coalesced class. 

108 

Step 1. Consider a network identical to the given network (model A) except 

that the CPU is processor-shared; we shall refer to this network as model D. 

Model D satisfies local balance and is easily analyzab1e. (See Section 5.3.3.) 

For the purposes of Algorithm 5.3 only, we shall approximate the CPU 

throughputs of model A by those of model D. Compute ti' the CPU throughput 

of class j in model D, for j = 1, ••• ,N. 

Step 2. Compute the conditional probability Vj that a random customer who 

finishes I/O service in model D is in class j given that he is not in 

designated class i. 

L 
h~i 

t' 
h 

for j I i 

= 0 for j = i 

Step 3. Compute the first two moments of the CPU service time for the 

composite class. 
n n Let EIS ] and E[Sj] be the nth moment of the CPU service 

time for the coalesced class and class j respectively, j = 1, ••• ,N. Then: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

MODEL A 

Given network 

N classes 

-.. - -- ---- _____ Transformation achieved 
by algorithm 5. 3 

... " 
MODEL B 

Given network 

2 customer classes 

~-------
,,[, 

MODEL C 

2 queue - network 

2 customer classes 

______ Transformation achieved via 
composite I/O technique 

FIGURE 5.6 
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ErS] = 

Represent CPU service time for the composite class by a standard nyper-

exponential random variable (Figure 5.4) with the above first two moments. 

Step 4. Approximate I/O branching probabilities for the composite class by 

Stop. 

5.5.3 Example 

Consider a model with two I/Os and three classes of customers. The 

mean service times for I/O 1 and I/O 2 are both 2 time units. The branching 

probabilities for the first I/O are 1.,0, .5, for classes 1, 2 and 3, 

respectively, and 0, 1., .5, for the second I/O. CPU mean times for classes 

1,2,3 are 1,2,3, respectively. All service times are assumed to be indepen~ 

dent, exponential random variables. 

ALGORITHM 5.2 - Step 1. We shall carry out steps 2-i through 5-i, for i=l. 

We first call Algorithm 5.3 to obtain the 2-class approximation. 

ALGORITHM 5.3 - Step 1. Analyzing model D we get 

ti = .159 ti = .111 

ALGORITHM 5.3 - Step 2. VI = 0, V2 = .589, V3 = .411 
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ALGORITHM 5.3 - Step 3. E[S] = (2 x .589) + (3 x .411) = 2.41 

E[S2] = (8 x .589) + (18 x .411) = 12.12 

The hyper-exponential representation for the CPU service time has parameter 

p = 0.398. 

ALGORITHM 5.3 - Step 4. 

P = (0 x .589) + (.5 x .411) = .206 lc 

P2c = (1 x .589) + (.5 x .411) = .795 

We now have a two-class problem the CPU service time for the composite 

class is hyper-exponential with mean 2.41 and I/O branching probabilities for 

device 1 is .206 and for device 2 is .795. 

ALGORITHM 5.2 - Step 3.1. The composite I/O service rates for class 1 and 

the composLte class for different queue conditions are shown below. 

Total Total rate 
Number of Number of composite rate for for composite 

class. 1 customers class customers class 1 class 

1 0 .5 0 

0 1 0 .5 

0 2 0 .598 

1 1 .415 .415 

1 2 .386 .556 

ALGORITHM 5.2 - Step 4.1. Model C is analyzed to obtain tOl = .173, U01=.173, 

3.09. 

5.6 Approximations for Models with Priority CPU Disciplines 

Now we consider central server models with the same characteristics 

as in the previous section, except that the CPU discipline will be a priority 
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discipline with priority based on customer class. We will restrict considera­

tion to preemptive and non-preemptive priority based on customer class, but 

these techniques are directly applicable to other priority disciplines. 

Again, we do not try to apply Norton's Theorem approximation 

directly, but rather combine the classes of customers in the original model 

to simplify the analysis. The reduced model we consider has three classes of 

customers: a designated class, which we do not restrict to a single customer 

as in the FCFS model, and two compQsite classes, one of a higher priority 

than the designated class, and one of lower priority. The combination of 

classes into these three classes is similar to the technique used in the 

previous section. The coalescing is done separately for each of the two 

composite classes. The CPU distribution used for each of the composite 

classes is an exponential distribution with mean taken as the weighted sum of 

the means of the classes coalescing into that composite class. The 

weights are the relative throughputs of classes within the composite class. 

In other respects, the analysis is essentially the same as that already 

described. 

5.7 Validation, Implementation and Performance 

We have constructed a simulator which employs the confidence 

interval techniques of Crane and Iglehart ~6,C7). This simulator can be used 

with general queueing networks with a variety of'disciplines, hetergeneous, 

classes of customers, and generalized Erlang service distributions. The 

simulator determines confidence intervals during the simulation, and continues 

the simulation until satisfactory intervals are obtained. Details of the 

simulator are found in Chapter VI. This simulator has been used to determine 
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results for the various models described below. Crane and Iglehart show how 

to obtain confidence intervals for results of simulations of Markov models. 

In general, the confidence intervals we obtained are as follows: For 

utilization, the 90% intervals are at most .05 wide. For those cases where 

queue lengths and waiting times are obtained, the, the 90% intervals for the 

means are at most + 6% of the point estimates, and the 80% intervals for the 

standard deviations are at most + 16% of the point estimates. In many of the 

cases the intervals are considerably tighter. However, we were unable to 

obtain confidence intervals for the FCFS models with 6 classes of customers. 

For these models the state space is very large, and we were unable to select 

a state that the system would return to frequently; this is necessary to 

apply the Crane and Iglehart techniques. We used predetermined simulation 

run lengths for the 6 class FCFS models, with the run lengths based on 

experience with 4 class FCFS models. For the models with mUltiple CPU's 

or constant service times we used simulators constructed in QSIM (F1,M2). 

We have implemented our approximation techniques as a set of Fortran 

programs for a CDC 6600. Over 125 models have been validated to assure a 

thorough sampling of problems. 

56 of the models validated are of the class described in Section 5.4, 

i.e., single class, non-exponential. In general the models were fairly well 

balanced, but some of the models were strongly CPU bound or I/O bound. 

See Table 5.1. Error tolerances were determined in the manner used in (5) 

for CPU utilizations, CPU queue lengths and CPU waiting times. Results are 

said to be within a tolerance z if 1) the difference in utilization is not 

more than z, 2) the differences in the means and standard deviations of queue 
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TABLE - NON-EXPONENTIAL MODEL DESCRIPTIONS 

MODEL NO. CUST. NO. CPUS CPU I/O 1151 110 216' 110 3nl 110 .181 MEAN C.V. PROB MEAN C.Y. PROB MEAN C.V • PROB MEAN C.y. PROB MIA .. C.V. 
1 2 2 2.000 2.ll", • 500 2.000 1.000 .250 1.000 1.000 .250 .250 1.000 2 • 2 2.000 2.1310 .500 2.000 1.000 .250 1.000 1.000 .250 .250 1.000 
1 8 2 2.000 2.1310 .500 2.000 1.000 .250 1.000 1.000 .250 .250 1.000 4 12 2 2.000 2.1310 .500 2.000 1.000 .250 1.000 1.000 .250 .250 1.000 S 2 1 1.000 0.000 .500 2.000 1.000 .250 1.000 1.000 .250 .250 1.000 
6 lit 1 1.000 0.000 .500 2.000 1.000 .250 1.000 1.000 .250 .250 1.000 ., 8 1 1.000 0.000 .500 2.000 1.000 .250 1.000 1.000 .250 .250 1.000 8 12 1 1.000 0.000 .500 2.000 1.000 .250 1.000 1.000 .250 .250 1.000 
9 2 I 1.000 2.134 .500 2.000 1.000 .250 1.000 1.00C .250 .250 1.000 

10 10 1 1.000 2.134 .500 2.000 1.000 .250 1.000 1.000 .250 .2S0 1.000 
II 8 1 1.000 2.134 .500 2.000 1.000 .250 1.000 1.000 .250 .250 1.000 
12 12 1 1.000 2.134 .500 2.000 1.000 .250 1.000 1.000 .250 .250 1.000 13 2 1 1.000 1.000 .SOO 2.000 .707 • .150 1.000 .707 .250 .250 .707 110 4 I 1.000 1.000 .500 2.000 .707 .250 1.000 .707 .250 .250 .707 IS 8 1 1.000 1.000 .500 2.000 .707 .250 1.000 .707 .250 .250 .707 16 12 1 1.000 1.000 .SOO 2.000 .707 .250 1.000 .707 .250 .250 .707 
11 2 I 1.000 "2.134 .500 2.000 .707 .250 1.000 .707 .250 .250 .707 
18 4 1 1.000 2.13 .. .500 2.000 .707 .~50 1.000 .707 .250 .2511 .707 
Ii 8 1 1.000 2.13 .. .500 2.000 .707 .2S0 1.000 .707 .250 .250 .707 
20 12 1 1.000 2.13 .. .500 2.000 .101 .250 1.000 .707 .250 .250 .707 21 2 1 1.000 1.000 .125 4.000 .707 .125 ".000 .707 .12~ 4.000 .707 .125 4.000 .701 

.125 4.000 .101 .125 4.000 .707 .125 4.000 .707 .125 •• 000 .707 
22 4 1.000 1.000 .125 4.000 .707 .125 4.000 .107 .125 4.000 .707 .125 ... 000 .101 

.125 4.000 .707 .lZ5 4.000 .707 .125 4.000 .107 .IZ5 10.000 .101 23 8 1.000 1.000 .125 4.000 .107 .125 4.000 .107 .125 4.000 .707 .125 4.000 .101 

.125 4.000 .707 .125 4.000 .107 .125 4.000 .707 .125 10.000 .701 2 .. 12 1.000 1.000 .1<!5 ... 000 .107 .125 4.000 .107 .125 4.000 .707 .1.?5 10.000 .707 

.125 4.000 .107 .125 4.000 .707 .125 4.000 .701 .125 4.000 .701 
25 2 1 1.000 ~.UOO .250 4.000 1.000 .250 4.000 1.000 .250 4.000 1.000 .250 4.000 1.000 
26 4 I 1.000 5.000 .250 ".000 1.000 ;250 4.000 1.000 .250 4.000 1.000 .250 4.000 1.000 27 8 1 1.000 5.000 .l50 4.000 1.000 .250 4.000 1.000 .250 4.000 1.000 .250 ... 000 1.000 
28 12 1 1.000 5.000 .250 4.000 1.000 .250 4.000 1.000 .250 4.000 1.000 .250 4.000 1.000 
29 2 1 1.000 3.000 .250 1.000 1.000 .250 1.000 1.000 .2~0 1.000 1.000 .250 1.000 1.000 
30 • 1 1.000 3.000 .~50 1.000 1.0"00 .2~t1 1.000 1.000 .250 1.000 1.000 .~!>O 1.000 1.000 
II 8 1 1.000 3.000 .250 1.000 1.000 .2S0 1.000 1.000 .25U 1.000 1.000 .l50 1.000 1.000 
32 12 I 1.000 J.OOO .250 1.000 1.000 .250 1.000 1.000 .250 1.000 1.000 .250 1.000 1.000 II 2 1 1.000 1.000 .250 8.000 1.000 .250 8.000 .701 .250 8.000 .707 .250 8.000 .577 l4 4 1 1.000 1.000 .250 8.000 1.000 .250 8.000 .701 .250 8.000 .707 .250 8.000 .!>71 35 8 1 1.000 1.000 .250 8.000 1.000 .250 8.000 .701 .250 8.000 .707 .250 8.000 .S71 3b 12 1 1.000 1.000 .250 8.000 1.000 .250 8.000 .707 .250 8.000 .701 .2S0 8.000 .S77 J7 2 1 1.000 3.000 .250 4.000 3.000 .250 4.000 3.000 .250 ".000 l.OOO .250 4.000 3.000 
38 4 1 1.000 3.000 .ZSO ".000 l.OOO .250 4.000 3.000 .250 4.000 3.000 .250 4.000 3.000 
39 " 8 I 1.000 3.000 .250 4.000 J.OOO .250 4.000 3.000 .2S0 4.000 3.000 .250 4.000 3.000 40 12 1 1.000 l.OOO .250 4.000 l.OOO .250 4.000 3.000 .250 4.000 3.000 .2S0 4.000 3.000 
41 2 1 1.000 .sn .250 4.000 .577 .250 4.000 .577 .lSO 4.000 .577 .2~0 ... 000 .577 42 4 1 1.000 .571 .2S0 4.000 .577 .250 4.000 .571 .250 4.000 .577 .250 4.000 .;71 
4l 2 1 1.000 .5n .250 4.000 3.000 .250 4.000 1.000 .250 10.000 .701 .250 4.000' .571 .,. 4 I 1.000 .sn .250 4.000 3.000 .250 4.000 1.000 .250 4.000 .707 .250 4.000 .577 .S 2 • 1.000 3.000 .250 4.000 3.000 .250 4.000 1.000 .250 4.000 .707 .250 4.000 .571 
lob It 1 1.000 3.000 .250 4.000 J.OOO .250 4.000 1.000 .250 4.000 .707 .250 4.000 .577 107 8 1 1.000 3.000 .250 4.000 3.000 .250 4.000 1.000 .250 4.000 .707 .250 4.000 .571 48 12 1 1.000 3.000 .250 ".000 3.000 .250 4.000 1.000 .250 4.000 .707 .250 4.000 .S77 49 2 I 1.000 3.000 .250 8.000 1.000 .250 8.000 1.000 .250 8.000 1.000 .250 8.000 1.000 
50 4 I 1.000 3.000 .250 8.000 1.000 .250 8.000 1.000 .250 8.000 1.000 .250 8.000 1.000 
51 8 I 1.000 3.000 .l50 8.000 1.000 .250 a.ooo 1.000 .250 8.000 1.000 .250 8.000 1.000 52 12 1 1.000 l.OOO .250 8.000 1.000 .250 B.UOO 1.000 .250 8.000 1.000 .250 8.000 1.000 .... 
53 2 I 1.000 1.000 .250 1.000 1.000 .2S0 1.000 .701 .250 1.000 .707 .250 1.000 .517 .... 
5 .. 4 1 1.000 1.000 .250 1.000 1.000 .250 1.000 .101 .250 1.000 .701 .250 1.000 .S17 ~ 
5S B I 1.000 1.000 .250 1.000 1.000 .250"1.000 .707 .250 1.000 .101 .250 1.000 .517 56 12 I 1.000 1.000 .250 1.000 1.000 .250 1.000 .707 .250 1.000 .707 .250 1.000 .577 
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length are not more than z times the number of customers in the network, and 

3) the differences in the means and standard deviations of the wait times are 

not more than z times the cycle time. For the 56 models studied, the results 

are generally within a tolerance of .05, with a maximum tolerance of.17. In 

eC2) a tolerance of .05 is considered to be good, and a tolerance of .10 

is considered adequate. By these standards the results are good for 47 of 

the models and adequate for 51 of the 56 models. The results for similar 

PS models are adequate for only 25 of the 56 models. For these models, the 

computer time required per model was negligible, approximately 75 milliseconds 

per model. Table 5.2 shows results for these models. 

44 models of the class described in Section 5.5, i.e., FCFS with 

different classes of customers, including 4 with hyper-exponential CPU 

distributions, have been validated. These models include from 2 to 8 

customers, with from 2 to 6 classes of customers, and 3 or 4 I/O devices. 

Utilizations and throughputs, both overall and by class, were validated for 

all of these models. For 8 of the models, queue lengths and wait times for 

each class were also validated. See Tables 5.3 and 5.4. We did not 

explicitly determine tolerances as in the single class models, but in general 

the results showed good accuracy for utilization and reasonable accuracy 

overall. For the 44 models, the programs required approximately 400 milli­

seconds computation per model. 

36 priority models were validated, 24 preemptive and 12 non-preemptive. 

These models included from 4 to 6 customers, with from 3 to 6 classes, and 

3 or 4 I/O devices. Again, utilizations and throughputs were validated for 

all models. CPU queue lengths and mean CPU wait times were validated for 
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TA8L£ 4 - reFS MULTI-CLASS ~OOEL RESULTS 

MODEL CLASS CYCLE TIME CPU UTIL CPU M.O.L. S.O.O.l. CPU M.W.T. 
APP SIM Ps APP siN APP siN APP siN APP SIM 

1 6.30 7.37 5.14 .79 .80 1.67 2.16 2.6,. 3.98 
1 8.80 8.13 10.75 .57 .6J .61 .67 .,.9 .47 5.33 5."2 
2 5.29 t,.S7 4.19 .09 .07 .37 .52 .108 .50 1.97 3.5" 
3 5.90 7.17 4.62 .08 .07 .35 .50 .,.8 .50 2.09 3.60 
4 6.13 7.44 '4.34 .04 .OJ .3,. .48 .47 .50 2.09 3.53 

2 6.27 7.26 5.10 .79 .80 1.67 2.15 2.62 3.90 
1 5.27 6.«>4 3.72 .05 .010 .36 .50 .108 .50 1.89 3.30 
2 8.71 7.Q .. 10.6G .57 .62 .61 .66 .49 .107 S.32 5.26 
3 5.H 7.17 4.57 .09 .01 .36 .50 .48 .50 2.05 3.59 
4 6.23 7 ... 1 4.94 .06 .01 .35 ... 9 .46 .50 2.1b 3.b4 

3 6.12 7.ld 5.00 .76 .79 l.b5 2.13 2.52 3.87 
1 5.107 6.110 4.36 .09 .07 .36 .51 .48 .50 1.97 3.45 
2 5.19 6.57 3.66 .05 .010 .35 .49 .108 .50 1.82 3.22 
3 9.05 8.3:' 11.011 .55 .61 .59 .65 .49 .46 5.32 5.44 
It 5.96 7.bll 4.79 .Ot! .Ob .35 .48 .~8 .50 2.08 3.b7 

• 6.02 7.12 ... 94 .76 .18 1.62 2.13 2.45 3.79 
1 5.41 b.U 4.33 .09 .Ot! .36 .51 .48 .50 1.94 3.40 
2 5.31 6.b2 4.25 .09 .Ot! .36 .51 .48 .50 1.91 3.37 
3 5.39 6.118 3.!l1l .05 .04 .3" .,.8 .107 .50 1.65 3.30 
10 9."b 8.~7 11.58 .53 .60 .56 .b3 .50 .46 5.33 5.43 

5 6.60 7.59 5.110 .16 .76 1.73 2.14 2.65 4.01 
1 9.01 8.22 10.75 .S6 .5'l .61 .64 .49 .48 5.51 5.28 
2 5.52 7.13 4.19 .09 .01 .39 .52 .109 .50 2.13 3.69 
3 6.21 7.103 4.62 .08 .01 .37 .50 .48 .50 2.30 3.15 
4 6.53 7.bd 4.34 .04 .OJ .3b .48 .108 .50 2.31 3.68 

6 6.56 1.18 5.10 .76 .76 1.73 2.19 2.83 4.27 
1 5.52 7.19 3.72 .05 .OJ .37 .51 .106 .50 2.06 3.66 
2 8.92 6.26 10.60 .56 .61 .62 .66 .49 .47 :i.48 5.44 
3 6.07 7.77 4.57 .08 .00 .37 .52 .108 .50 2.25 ".03 
4 6.58 7.99 4.910 .08 .06 .37 .51 .48 .50 2.41 4.05 

7 6.40 7.61 5.00 .75 .75 1.70 2.14 2.12 ".11 
1 5.13 1.15 4.36 .09 .07 .38 .51 .48 .50 2.15 3.b5 
2 5.44 7.03 3.68 .05 .04 .31 .50 .48 .50 1.99 3.50 
J 9.27 8.63 11.08 .54 .S':I .59 .64 .49 .48 :;.50 5.48 
4 6.29 8.09 4.79 .08 .06 .37 .50 .48 .50 2.31 4.04 

e 6.JO 1 ... 2 4.94 .74 .14 1.68 2.09 2.65 3.87 
1 S.61 6.'i3 4.33 .09 .07 .37 .50 .48 .50 2.13 3.47 
2 5.56 6.dS 4.25 .09 .01 .37 .50 .48 .50 2.08 3.44 
J 5.69 7.37 3.88 .04 .OJ .36 .47 .48 .50 2.05 3.50 
4 9.69 8.d3 11.58 .52 .56 .57 .61 .50 .49 5.52 5.41 

S.O.W.T. UTIL 10 I 
APP 5114 APP SIM 

.42 .37 
4.9,. S.1l .14 .11t 
3.95 10.62 .15 .11 
4.09 It. 71 .07 .06 
4.19 4.76 .07 .05 

."5 .J9 
3.99 10.62 .23 .18 
4.9" 5.06 .09 .10 
4.08 10.67 .07 .06 
4.21 4.71 .06 .05 

.108 .40 
3.95 10.63 .22 .18 
3.87 10.58 .15 .12 
4.910 5.13 .04 .05 
4.07 10.70 .07 .05 

.49 .100 
3.87 4.61t .22 .18 
3.83 4.63 .15 .12 
3.86 4.67 .07 .05 
4.94 5.21 .04 .05 

.100 .36 
5.06 9.48 .Il .14 
6.90 8.61 .14 .12 
7.25 8.83 .Ob .05 
7.56 8.89 .Ob .05 

.43 .31 
1.02 9.45 .22 .17 
5.08 10.27" .09 .10 
1.21 9.73 .07 .05 
7.51 9.810 .06 .05 

.46 .39 
6.94 9.31 .21 .17 
6.62 9.25 .15 .ll 
5.08 10.43 .0'4 .05 
1.26 9.83 .06 .OS 

.47 .38 
6.82 8.66 .21 .17 
6.73 8.58 .14 .12 
6.87 8.82 .07 .05 
5.09 9.86 .04 .04 

10 2 
APP 51 .. 
.32 .27 
.Olt .010 
.12 .10 
.11 .10 
.05 .010 
.30 .lb 
.06 .05 
.07 .08 
.11 .09 
.05 .U" 
.31 .2b 
.06 .05 
.12 .09 
.07 .08 
.05 .010 
.33 .28 
.06 .010 
.12 .10 
.12 .09 
.03 .010 
.30 .26 
.0 ... 010 
.12 .09 
.10 .09 
.05 .010 
.28 .210 
.06 .010 
.07 .07 
.11 .08 
.05 .010 
.29 .2:; 
.06 .010 
.12 .09 
.01 .08 
.05 .0" 
.32 .2b 
.06 .05 
.12 .09 
.11 .09 
.03 .04 

10 3 
AltP 51 .. 
.60 .51 
.06 .06 
.10 .08 
.18 .15 
.26 .21 
.60 .50 
.10 .G7 
.06 .01 
.18 .15 
.26 .21 
.59 .50 
.10 .08 
.10 .08 
.12 .13 
.27 .21 
.57 .1t8 
.10 .08 
.10 .08 
.20 .15 
.17 .18 
.57 .50 
.06 .Ot. 
.10 .08 
.11 .15 
.l4 .ll 
.58 .107 
.10 .07 
.Ob .07 
.18 .1,. 
.24 .20 
.56 .108 
.09 .08 
.10 .08 
.12 .13 
.25 .20 
.54 .49 
.09 .08 
.10 .08 
.19 .15 
.11 .18 

.... .... 
()C) 
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12 preemptive models and all non-preemptive models. See Tables 5.5, 5.6 and 

5.7. For the 36 models, the computation per model was approximately 400 

milliseconds. 

In addition to providing reasonable accuracy for models not in 

local balance, these programs give exact results for models in local balance 

where class coalescing is not necessary. Though the coalescing techniques 

do not necessarily give exact results for locally balanced models, the 

results are very close. In the above validation process, for all FCFS 

models requiring coalescing, the coalescing process was applied to a locally 

balanced model similar to the non-locally balanced model being studied. 

Individual class throughputs and utilizations were compared for the locally 

balanced model with and without coalescing. The differences were never more 

than 1% and usually less than that. 

These programs are more than an order of magnitude faster than 

existing implementations of other techniques. 
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TABLE 5 - PRIORITY MODEL DESCRIPTIONS 

MODEL CLASS· NO. CUST. CPU I/O 1 I/O l I/O 3 I/O It 
MEAN pROB ... EA'" PRGB "'EAN PROB MEA .. PRDB .. UN 

1 1 l.l)3 .)33 l.OOO .)33 1.600 .333 l.bbl 
l I .333 .333 2.000 .)3l 1.600 .3l3 2.661 
3 1 .333 .J33 2.000 .))3 1.600 .333 2.667 
It 1 .1 6 7 .)J3 2.000 .)33 1.600 .333 2.667 
5 1 .333 .J33 2.000 .)33 1.600 .333 l.667 
b 1 .333 .:133 2.000 .)33 1.600 .333 2.667 

2 1 1 .333 .333 2.000 .333 10600 .33) 2.b67 
l 1 .333 .J3) 2.000 .333 1.600 .)J3 2.661 
3 1 .33) .333 2.000 .333 1.600 .333 2.667 
It 1 3.J)) • 333 2.000 .333 l.bOO .333 2.b61 
5 1 .33) .333 2.000 .333 1.600 .333 2.667 ., 1 .333 .333 2.000 '.333 1.600 .333 2.b67 

1 1 1 l.noo .333 2.000 .333 1.600 .333 2.661 
2 1 2.000 .333 2.000 .333 1.600 .333 2.667 
3 1 .250 .J33 2.000 .333 1.600 .333 2.667 
It 1 .500 .333 2.000 .333 1.600 .333 2.667 
5 I .333 .J33 2.000 .3J3 1.600 .333 2.661 
6 1 .250 .333 2.000 .333 1.600 .333 2.661 

It I 1 .250 .333 2.000 .333 1.600 .333 2.661 
2 1 .333 .333 2.000 .333 1.600 .333 2.6&1 
3 1 .1500 .333 2.000 .333 1.600 .333 2.667 
It 1 2.000 .J33 2.uOO .333 1.600 .333 2.667 
5 1 1.000 .J33 2.000 .333 l.bOO .333 2.b67 
6 1 .2:;0 .333 2.000 .333 1.tlOO .333 2.661 

5 1 1 1.000 .~!>O 2.000 .250 1.000 .250 .500 .250 1.000 
2 1 .10·0 .250 2.000 .250 1.000 .2150 .500 .250 1.000 
1 1 .100 .250 2.000 .250 1.000 .250 .500 .250 1.000 
It 1 .100 .<:50 2.000 .250 1 •. 000 .250 .500 .250 1.000 
5 1 .100 .250 2.000 .250 1.000 .250 .500 .250 1.000 
6 1 .100 .2'0 2.000 .250 1.000 .250 .500 .250 1.000 

6 1 1 1.000 .250 2.000 .250 1.000 .<:50 .500 .250 1.000 
2 1 .6&1 .<:50 2.000 .2'0 1.000 .250 .500 .250 1.000 
3 1 .093 .<:!>O 2.000 .2S0 1.000 .250 .500 .250 1.000 
It 1 .083 .250 2.000 .250 1.000 .250 .500 .250 1.000 
5 1 .063 .250 2.000 .250 1.000 .250 .500 .250 1.000 
6 1 .067 .~50 2.000 .250 1.noo .250 .500 .250 1.000 

7 1 2 .500 .125 1.000 .125 1.000 .500 1.000 .250 2.000 
2 1 .167 .125 1.000 .125 1.000 .500 1.000 .250 2.000 
3 1 .250 .1~5 1.000 .125 1.000 .500 1.000 .250 2.000 

8 1 1 .500 .1<!5 1.000 .125 1.000 .500 1.000 .250 2.000 
2 l .1117 .125 1.000 .125 1.000 .500 1.000 .250 2.000 
3 1 .250 .125 1.000 .125 1.000 .500 1.000 .250 2.000 

9 1 1 .500 .125 1.000 .125 1.000 .500 1.000 .250 2.000 
2 1 .161 .125 1.000 .125 1.000 .500 1.000 .250 2.000 
3 2 .250 .1~5 1.000 .12S 1.000 .500 1.000 .250 2.000 

10 1 1 .500 .125 1.000 .125 1.000 .500 1.000 .250 2.000 
2 2 .167 .125 1.000 .125 1.000 .500 1.000 .250 2.000 
3 1 .250 .125 1.000 .125 1.000 .500 1.000 .250 2.000 

11 1 1 .sGO .l25 1.000 .125 1.000 .500 1.000 .250 2.000 
2 1 .lb7 .l25 1.000 .125 1.000 .500 1.000 .250 2.000 
3 2 .250 .125 1.000 .125 1.000 .500 1.000 .250 2.000 

12 1 2 .500 .ll5 1.000 .125 1.000 .500 1.000 .250 2.000 
2 1 .161 .125 1.000 .125 1.000 .500 1.000 .250 2.000 
3 1 .250 .125 1.000 .125 1.000 .500 1.000 .250 2.000 .... 

N 
0 
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HODEL CLASS CYCLE TIME CPU UTIl 
APP SIN PS APP SIM 

1 1.0/0 1.56 6.16 .62 .b9 
1 8.41 6.db 9.62 .40 ./09 
2 6.0) 6.110 5.12 .06 .05 
1 6.10 1.110 S.90 .05 .05 
4 1.21 8.12 6.20 .02 .02 
5 6.99 B.bZ 5.HZ .05 .04 
6 1.26 9.42 5.82 .05 .03 

2 6.22 6.14 6.03 .60 .62 
1 5.27 1t.49 5.33 .Ob .07 
2 4.81 ... !:IlI 5.17 .01 .07 
1 5.39 5.1 J 5.69 .06 .06 
10 10.66 9.'12 11021 .Jl .J3 
5 6.83 8.0b 5.73 .05 .04 
... 7.10 B.bb 5.73 .05 .010 

1 1.00 6.'1i! 6.27 .62 .bB 
1 5.91 't.bO 6.54 .17 .21 
l 1.31 6.11 7.92 .21 .30 
3 6.49 h.~O 5.58 .04 .04 
/0 8.010 8 ... 5 6.90 .06 .06 
5 1.JI 8.~1 5.75 .OS .04 
b 1.35 9.02 5.5 .. .03 .03 

It b.21 . 6.18 6.09 .60 .bO 
I 5.17 '0.:,2 5.11 .05 .06 
2 ft.78 4.bl 5.14 .01 .07 
3 5.61 5.45 6.05 .09 .09 
It 8.78 8.1/) 9'''3 .23 .Z3 
5 7.16 6.02 1.0" .ll .12 
6 7.02 8.31 5.51 .010 .03 

5 2.71 2.1i 2.62 .40 .43 
1 10.93 'o.Jl 5.28 .20 .2'0 
2 2.27 2.20 2.16 .04 .05 
3 2.04 2.15 1.')6 .05 .05 
4 2.47 2.56 2.37 .Oft .04 
5 2.95 3.24 2.83 .03 .03 
6 2.99 3.l3 2.83 .03 .03 

6 3.05 3.15 2.70 .54 .59 
1 4.91 4.02 5.43 .20 ·25 
2 3.06 2.tH 2.99 .22 .23 
3 2.35 2.35 1.89 .04 .04 
4 2.67 2.~8 2.2B .03 .03 
5 3.14 3.03 2.72 .03 .02 
6 3.15 3.79 2.b8 .02 .02 

TABLE 6 - PREEMPTIVE MODEL RESULTS 

CPU M.G.l. S.D.G.l. CPU M.w.T. 
AP:l SIN APP SIN . APP 51" 

1.68 2.23 1.91 2.81 
.40 .49 .49 .50 l.3) 3.)9 
.29 .34 .45 .,,1 1.76 2.06 
.015 .34 .104 .41 1.10 01.104 
.21 .31 .41 .46 1.53 2.54 
.25 .37 .44 .48 1.78 3.16 
.21 .38 .45 ./09 1.99 3.59 

1.16 1.31t 1.21 1.31 
.Ob .07 .210 .26 .33 .3) 
.08 .09 .21 .018 .39 .100 
.OB .09 .2B .29 .1t6 .46 
.42 .44 .49 .50 4.46 4.)b 
.25 • )1 .43 .46 1.69 2.51 
.27 .33 • It 10 .1t7 1090 2.90 

1.67 1.92 1·95 2.22 
.17 .21 .37 .101 1.00 .99 
.3') .42 .49 .109 2.810 2.80 
.25 .27 .1t3 .44 1.61t 1.76 
.28 .32 .45 .47 2.24 2.74 
.01') .J4 .45 .41 2.14 2.~1 

.29 .35 .45 .48 2.13 3.1') 
1. iJ 1.22 1.11 1.26 

.05 .06 .21 .23 .Z5 .2/) 

.OB .08 .C!7 .27 .37 .37 

.11 .12 .32 .32 .63 .65 

.31 .32 .46 .,,7 2.76 2.85 

.32 .J5 .'01 .48 2.48 l.OI 

.26 .29 .4" .45 1.83 2.44 

.7!> .99 .34 .46 

.20 .24 .40 .43 1·00 1.02 

.13 .14 .34 .35 .30 .32 

.12 .1b .32 .31 .24 .34 

.10 .15 .31 .36 .26 .39 
·10 .14 .30 .35 .28 .41 
.10 .15 .31 .36 .31 .51 

1.39 1.68 .71 .88 
'2 0 .25 .'00 .43 1. 00 1. 02 
.3!> .39 .48 .49 1.10 1.09 
.26 .27 .44 .44 .62 .610 
.21 .26 .41 .44 .56 .78 
.18 .25 .39 .43 .57 .92 
.18 .25 .38 ./03 .55 .95 

UTIL 10 I 10 2 
APP SIN APP SIN 
.58 .5/0 .4l .40 
.14 .17 .0/0 .05 
.13 .13 .11 .10 
.06 .06 .10 .09 
.06 .05 .04 .010 
.10 .08 .08 .O!) 
.09 .01 .01 .06 
.70 .73 .50 .51 
.23 .27 .06 .08 
.11 .18 .13 .110 
.07 .08 .12 .13 
.04 .04 .03 .03 
.10 .09 .08 .07 
.09 .08 .08 .06 
.61 .64 .4) .41 
.20 .26 .05 .06 
.11 .11 .09 .09 
.06 .06 .10 .10 
.05 .05 .04 .04 
.09 .08 .01 .Ob 
.09 .08 .07 .06 
.70 .71 .49 .49 
.23 .27 .O/) .07 
.17 .18 .13 .14 
.07 .07 .11 .12 
.05 .0 .. .04 .04 
.09 .08 .01 .07 
.10 .07 .08 .06 
.88 .B7 .51 .55 
.2~ .29 .03 .03 
.09 .09 .13 .14 
.10 .10 .20 .18 
.10 .11 .05 .0'0 
.17 .14 .08 .08 
.17 .14 .08 .08 
.82 .83 .50 .49 
'25 .32 .03 .03 
.07 .06 .10 .12 
.09 .08 .17 .11 
.09 .09 .05 .04 
.16 .13 .08 .06 
.16 .14 .06 .01 

10 3 
APP SIN 
.78 .71 
.06 .08 
.09 .09 
.16 .15 
.22 .20 
.Il .10 
.12 .09 
.82 .80 
.10 .11 
.11 .11 
.20' .21 
.15 .16 
.Il .11 
.13 .10 
.77 .75 
.09 .12 
.07 .08 
.16 .16 
.20 .19 
.12 .10 
.12 .09 
.8l .8,. 
.10 .12 
.11 .13 
.19 .19 
.18 .19 
.11 .10 
.13 .10 
.29 .28 
.01 .02 
.07 .07 
.10 .09 
.03 .03 
.04 .04 
.04 .04 
.25 .24 
.01 .02 
.05 .05 
.09 .08 
.02 .02 
.04 .03 
.0'0 .03 

10 It 
APP 51" 

.63 .60 

.03 .03 

.13 .110 

.05 .05 

.25 .210 

.08 .08 

.08 .08 

.5f> .52 

.03 .03 

.10 .11 

.0" .010 

.23 .21 

.08 .07 

.08 .06 

~ 
N 
~ 
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MODEL CLASS CYCLE TIME CPLI LlTlL 
APP SIN PS APP SIH 

1 l.ll 2.b9 i!.61 .52 .51t 
1 2.72 2.bO l.9i! .31 .39 
Z 2.57 2.bl 2.28 .0& .06 
3 2.86 3.UO 2.43 .09 .08 

8 2.51 2.5/t 2.51 .1t2 ."3 
1 2.59 2.45 2.80 .19 .21 
2 2.51 2.51 2.4Z .13 .13 
3 2.66 2.12 2.45 .09 .09 

9 2.59 2.':>1 2.S .. .45 '''6 
I 2.57 2."b .... al .19 .21 
i! 2035 2.J.1 2.30 '0 7 '07 
3 2.7) 2.11 <!.55 .18 .16 

10 3.3" 3.)1t 3.31 .47 ... a 
I 3.24 J.03 3.51 .15 .16 
Z 3010 3.12 3.10 .11 .ll 
3 3.51 3.64 3.37 .21 .21 

11 3.57 3.':> .. 3,"2 .61 .62 
1 3.44 3.28 3.81 .44 .45 
2 3.37 3,"0 2.92 .05 .05 
3 3.93 4·11 3.21 ·13 .Il 

lZ 3.43 3.44 3.33 .51 .52 
1 3.34 3.19 3.66 .30 .31 
2 3.44 3.':>0 3.21 .15 .lS 
3 3.61 J.tlS 3.15 .01 .01 

TABLE 6 - PREE"PTIVE MOOEL RESulTS 

CPU H.Q.l. S.O.O.L. CPU H.W.T. 
APi» SIH APP SIM APP SIN 
.95 .99 .65 .61 
.4& .49 .65 .67 .6i! .61t 
.21 .22 .41 .41 .55 .58 
.28 .28 .45 .45 .81 .8/t 
.68 .69 .43 .44 
.19 .21 .39 .40 .50 .51 
.21 .za .54 .55 .34 .35 
.21 .... 1 .41 .41 .57 .56 
.1/t .16 ... a ... 9 
.19 .... 1 .40 .41 .50 .51 
'1 3 ·1" .34 .35 .31 .33 
.41 .41 .64 .b5 .56 .51 
.87 .87 .48 .49 
.15 .1& .36 .J7 .50 .49 
.20 .20 .46 .46 .31 .31 
.52 .'il .80 .79 .61 .62 

1.47 I ... a .88 .87 
.63 .65 .64 .83 .13 .71 
.23 .23 .42 .42 .71 .78 
.61 .60 .11 .17 1·19 1.2" 

1.08 1.08 .62 .62 
.36 .37 .59 .59 .60 .59 
.48 .48 .81 .80 .55 .S6 
.Z4 .23 .43 .102 .88 .90 

UTll 10 1 10 i! 
APP SIN APP SIN 
.106 .1t6 .33 .32 
.37 .37 .09 .10 
.05 .05 .19 .18 
.04 .010 .0" .0" 
.34 .35 .49 ... 8 
.19 .20 .05 .06 
.10 .10 .40 .38 
.05 .05 .05 .04 
.3" .34 .35 .38 
.19 .21 .05 .05 
'05 ·oS ·21 .23 
.09 .09 .0'1 .09 
.34 .34 .41 .46 
.15 .15 .0" .04 
.08 .08 .32 .31 
.11 .11 .11 .11 
.54 .56 .32 .32 
.44 .le6 .11 .11 
.04 .04 .15 .14 
'0 6 '06 '06 .0 6 
.44 .44 .55 .55 
.30 .30 .07 .08 
.11 .11 .44 .44 
.03 .03 .03 .04 

10 3 
APP SIH 
.32 .31 
.09 .10 
.05 .04 
.17 .17 
.34 .34 
.05 .06 
.10 .10 
.19 .19 
... 1 .le6 
.05 .05 
'05 '05 
.37 .36 
.54 .54 
.04 .0 .. 
.08 .09 
.42 .41 
.40 .40 
.11 .12 
.0" .04 
.25 .25 
.32 .31 
.07 .07 
.11 .11 
.14 .13 

10 4 
APP SII4 
.71t .71t 
.37 .38 
.19 .19 
.11 .11 
.18 .78 
.19 .21 
.40 '''0 
.19 .11 
.77 .77 
.19 .20 
.21 .20 
• J 7 .37 
.90 .90 
.15 .16 
.)2 .34 
.42 .41 
.84 .83 
.4.. .45 
.15 .14 
.25 .23 
.81 .8& 
.30 .J2 
.41t •• 3 
.1 10 .13 

..... 
N 
N 
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MODEL CLASS CYCLE TIME CPU UTlL 
APP 51N PS APP SIH 

1 6.81 1.l1 6.16 .64 .68 
I 8.16 7.0b 9.bl .ltl .47 
2 5.91 5.'ld 5.12 .06 .U6 
3 6.49 6.71 5.90 .05 .05 
4 1.21 7.tll 6.20 .02 .02 
5 6.66 7.88 5.82 .05 .04 
6 6.81 II.JtI· 5.82 .05 .Ult 

2 6.Z6 7.07 6.03 .61t .b5 
I 5.31 5.113 5.33 .06 .06 
2 S.Z5 6.u:; 5.17 .Ob .Ob 
3 :;.119 6.112 5.69 .06 .05 
It 9."6 8 ... ~ 11.21 .35 .40 
5 6.50 7.tH 5.73 .05 .04 
6 6.66 11 ... 8 5.13 .Os .04 

3 6.69 1.05 b.27 .b6 .b6 
I 5.115 6.08 6.54 .17 .16 
l b.71 6.30 7.'12 .30 .32 
3 6.44 6.71 S.Se .04 .0 .. 
4 7.51 8.01 6.90 .01 .06 
5 6.89 1.10 5.75 .05 .0 .. 
6 b.97 8.04 5.54 .04 .03 

4 b.22 b.411 6.09 .62 .b3 
1 :i.23 S.J4 5.11 .05 .05 
2 :'.25 ; ... 0 ;.14 .06 .06 
1 b.06 6.J4 &.os .08 .08 
It 8.17 1.S6 9.43 .24 .21 
5 b.88 7.Z1 7.04 .15 .14 
6 6.b7 7.116 5.51 .04 .03 

5 2.68 2.77 2.&2 .41 ."2 
1 4.85 4.)l 5.211 .21 .23 
2 2.28 2.26 2.16 .04 .04 
J 2.02 2.11 1.'16 .os .os 
It 2.44 2.59 2.37 .04 .04 
5 2.90 l.10 2.83 .03 .03 
6 2.92 J.~O 2.83 .03 .03 

6 2.95 l.Od 2.70 .56 .bO 
I 4.7S 4.l0 5.43 .21 .24 
2 2.83 l.6) 2.99 .24 .25 
J 2.30 2.39 1.89 .04 .03 .. 2.61 c!.1l3 2.28 .03 .03 
5 3.06 3.50 2.72 .03 .02 
6 3.07 3.b3 2.68 .02 .02 

TAdlE 7 - NON-PREEMPTivE MODEL RESUlTS 

CPU N.G.l. S.D.G.L. CPU M.III.T. 
APP Sill APP 5114 APP 5111 

1.59 2.05 1.80 2.46 
."l .49 .49 .50 3.1t6 3.45 
.28 .31 .45 .1t6 1.1t4 1.83 
.23 .31 .42 .46 1.38 2.05 
.20 .29 .40 .116 1.36 2.30 
.22 .32 .42 .1t7 1.43 2.52 
.23 .33 .1t2 .47 1.56 2.80 

1.27 1.91 1.32 2.26 
·14 .Z7 .34 .45 .72 1.59 
.15 .28 .36 .45 .87 1.70 
.16 .27 .37 .45 .94 1.87 
.38 .44 .49 .,0 3.70 3.67 
.22 .32 .41 .47 1.37 2.49 
.23 .33 .42 .47 1.48 2.82 

1.57 1.82 1.75 2.14 
·23 .30 .42 .46 1.33 1.83 
.3b .39 .48 .49 2.113 2 ... 5 
.24 .26 .103 .44 1.40 1.14 
.24 .27 ."2 .4 .. 1.b8 2.ll 
·25 .31 .1010 .46 1.61 2.35 
·26' .30 .44 .46 1.73 2.43 

1.23 1.S4 1.28 1.66 
·13 .18 .33 .39 .66 .98 
·Ib .21 .3& .40 .IH 1.13 
.18 .22 .38 .42 1.07 1.42 
.29 .33 .45 .41 2.42 2.S3 
.2b .31 .44 .46 1.76 2.23 
·23 .28 .42 .45 1.49 2.22 
.72 .91 .32 ."2 
.ll .23 .41 .42 1.03 1.01 
.13 .13 .34 .34 .31 .30 
.11 .14 .32 .35 .23 .30 
.09 .13 .29 .34 .23 .34 
.08 .13 .28 .3l .24 .40 
.09 .13 .28 .34 .25 ... 3 

1.31 1.61 .64 .86 
.23 .29 .42 .1t6 1.08 1.24 
.33 .36 .47 .48 .9b .95 
.25 .27 .1t3 • It It .51 .64 
.11) .26 .39 .44 .48 .74 
.16 .21t .l7 .ltl .49 .86 
.lb .25 .36 .4] .48 .90 

UTlL 10 I 10 l 
APP SIN APP SIN 
.60 .51 ... S ."Z 
.15 .16 .04 .05 
.11t .13 .ll .11 
.06 .05 .10 .10 
.06 .05 .0" .04 
.10 .09 .08 .07 
.10 .08 .08 .Ob 
.69 .bl .49 .43 
.23 .20 .Ob .Ob 
.15 .14 .12 .11 
.07 .Ob .11 .10 
.04 .05 .03 .04 
.10 .08 .08 .07 
.10 .08 .08 .06 
.63 .63 .45 .43 
.21 .21 .05 .05 
.12 .13 .10 .11 
.06 .06 .10 .10 
.05 .06 .010 .04 
.10 .09 .08 .01 
.10 .08 .08 .06 
.69 .bS ... 9 .47 
.23 .22 .06 .0& 
.15 .14 .12 .12 
.07 .06 .11 .10 
.05 .05 .04 .04 
.10 .10 .08 .08 
.10 .08 .08 .01 
.69 .87 .58 .56 
.26 .29 .03 .03 
.09 .08 .13 .14 
.10 .09 .20 .19 
.10 .10 .05 .04 
.17 .15 .09 .Otl 
.11 .15 .09 .08 
.84 .81 .52 .51 
.26 .30 .03 .03 
.07 .07 .11 .11 
.09 .08 .17 .18 
.10 .08 .05 .0S 
.16 .15 .oe .07 
.16 .13 .08 .07 

10 J 
APP SIM 
.81 .14 
.01 .01 
.09 .09 
.16 .16 
.l2 .20 
.13 .11 
.13 .11 
.82 .71t 
.10 .09 
.10 .09 
.18 .16 
.17 .20 
.110 .11 
.13 .11 
.81 .11 
.09 .09 
.08 .08 
.17 .11 
.21 .21 
.13 .11 
.13 .11 
.84 .81 
.10 .10 
.10 .10 
.18 .17 
.20 .20 
.13 .12 
.13 .12 
.29 .29 
.01 .01 
.07 .07 
.10 .09 
.03 .03 
.04 .OS 
.0" .04 
.26 .25 
.01 .02 
.05 .06 
.09 .08 
.02 .02 
.010 .04 
.010 .04 

10 4 
APP SIN 

.63 .62 

.03 .03 

.13 .13 

.05 .05 

.26 .l4 

.09 .08 

.O~ .08 

.58 .SIt 

.03 .03 

.11 .11 

.04 .04 

.21t .22 

.08 .01 

.08 .07 

.... ..., 
w 
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MODEL CLASS CYCLE TIME CPU UTIL 
APP SSM PS APP SIH .. 2.68 2.6 .. 2.61 .52 .53 

1 2.78 2.D8 2.92 .36 .37 
2 2.52 2.!»6 2.28 .07 .06 
3 2.65 2.6b 2.43 .09 .10 

8 2.55 2.S5 2.51 .42 .42 
1 2.67 2.:ib 2.80 .19 .lO 
2 2.51 2.56 2.42 .ll .1J 
3 2.52 2.5/0 2.105 .10 .09 

9 2.57 2.S3 2.54 .105 .46 
1 2.66 2.~O 2.81 .19 .20 
2 2.39 2.J3 2.30 .07 .07 
3 2.63 2.66 2.55 .19 .18 

10 3.34 3.~d 3.31 .47 .48 
1 3.310 3.12 3.51 .15 .16 
2 3.16 3.12 3.10 .11 .11 
3 3.46 3,"6 3.31 .22 .22 

11 3.54 3.~3 3.42 .61 .62 
1 3.53 3.41 3.81 .43 .44 
2 3.:n 3.36 2.92 .05 .05 
J 3.66 3.83 3.21 • F- .13 

12 3.41 3,"2 3.33 .51 .52 
1 3.42 3d3 3.66 .29 .31 
2 3.40 3,"4 3.21 .15 .110 
J l.38 l.~l 3.15 .07 .07 

TABLE , - NON-PREEMPTiVE MODEL RESUL,S 

CPU M.G.l. S.D.G.l. c;tu M.w.T. 
AP;t SIH APP SIN APP 51 .. 
.92 .95 .61 .63 
.48 .50 .66 .61 .67 .68 
.20 .20 .100 .40 .50 .52 
.23 .24 .42 .43 .62 .64 
.66 .66 .42 .42 
.21 .22 .41 .42 .56 .57 
.27 .27 .53 .53 .J8 .35 
.18 .11 .36 .38 .51 .103 
.72 .74 .106 .41 
.22 .23 '41 '42 '58 .59 
.14 .15 .35 .36 .40 .35 
.35 .36 .59 .60 .52 .10 7 
.05 .87 .47 .108 
.18 .19 .38 .39 .59 .59 
.23 .23 .49 .49 .40 .36 
.4S .4S .13 .73 .57 .52 

1.41 1.44 .83 .85 
.67 .6'1 .115 .85 .19 .79 
.22 .22 .41 .42 .71 .75 
.52 .52 .72 .73 .93 1.00 

1.04 1.05 .59 .60 
.38 .40 .60 .61 .66 .67 
.45 .45 .17 .76 .52 .52 
.20 .20 .100 .40 .67 .69 

UTIL 10 1 10 2 
APP SIM APP SI" 
.46 .47 .34 .33 
.36 .38 .09 .10 
.05 .05 .20 .19 
.05 .04 .05 .04 
.34 .34 .50 .47 
.19 .19 .05 .05 
.10 .10 .40 .J9 
.05 .05 .05 .04 
.JIo .36 .J5 .35 
.19 .22 .05 .05 
.05 .05 .21 .21 
.10 .09 .10 .09 
.34 .35 .46 .101 
.15 .16 .04 .04 
.08 .09 .32 .32 
.11 .11 .11 .11 
.53 .54 .32 .33 
.43 .43 .11 • 11 
.010 .04 .15 .15 
.07 .07 .07 .07 
.44 .45 .55 .55 
.29 .30 .07 .08 
.11 .11 .44 .44 
.Olt .04 .Olt .03 

10 3 
APP SIN 
.33 .33 
.09 .09 
.05 .05 
.19 .19 
.J4 .J4 
.05 .05 
.10 .lD 
.20 .19 
.48 ~48 
.05 .05 
.05 .06 
.38 .38 
.55 .56 
.04 .04 
.08 .08 
.103 .44 
.42 .102 
.11 .11 
.04 .04 
.27 .27 
.JJ .J2 
.01 .07 
.11 .11 
.15 .14 

10 .. 
APP 51 .. 
.75 .73 
.36 .36 
.20 .19 
.19 .18 
.78 .79 
.19 .19 
.40 ."0 
.20 .20 
.78.lf.. 
.19 .1S 
.21 .20 
.38 .38 
.90 .90 
.IS .15 
.32 .32 
.103 .43 
.85 .84 
.43 ..... 
.15 .14 
.27 .26 
.88 .89 
.29 .30 
.44 .45 
.IS .llt 

... 
N 
~ 
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CHAPTER VI 

SIMULATION OF GENERALIZED QUEUEING NETWORKS 

6.1 Introduction 

Queueing network models can be used to analyze characteristics of 

computing systems such as scheduling disciplines with priority and/or pre­

emption, non-exponential service time distributions, customer dependent 

behavior and contention for memory, channels and other resources (B2,B4,Fl, 

KI, Chapter V). Though much progress has been made in using algebraic or 

numerical techniques to find solutions or approximate solutions for these 

complex models (B2,B4,C2,Kl,Chapter V), simulation is more general than 

other solution techniques. Confidence intervals for simulation results are 

very important. Confidence intervals for simulation results for a very large 

class of queueing network models can be determined using the techniques of 

Crane and Iglehart (C6,C7). We have developed a versatile simulator incorporat­

ing confidence interval analysis; this simulator and the extensions proposed 

here provide the computer system designer/analyst with powerful new tools. 

In section 6.2 we review the techniques of Crane and Iglehart, in 

Section 6.3 we present a description of the simulator we have implemented, 

and in section 6.4 we discuss the extension of the existing simulator to the 

general models described above. In section 6.5 we present a language, QUASCI 

(~eueing Analysis by !imulation with Confidence Intervals), based on the 

language QAL (Fl,M2). Only models for which the confidence interval techniques 

are valid may be expressed in QUASCI; the language is designed to prevent 

incorrect application of the confidence interval techniques. QUASCI is also 

125 
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appropriate for model descript~on for solution packages using nonsimulation 

techniques. This is significant in the application of queueing network 

models to computer system analysis. 

6.2 Confidence Intervals -- The Crane-Iglehart Technique 

Confidence intervals (M3) may be used to indicate the accuracy of 

simulation results. We can say with a certain level of confidence, say 90%, 

that the result of a simulation will lie within an interval, say (a,b). In 

other words, if we run many simulations, the results of 90% of the simulations 

will be in the interval (a,b). 

Crane and Iglehart have developed confidence interval techniques for 

simulations of Markovian models with a single chain. We will assume for 

now that the state space of the model is finite or countab1y infinite; these 

techniques may also be applied to other models (C7,Ll). The techniques are 

based on many replications of "tours", a tour being defined as the period 

between two successive returns to a designated state. The simulation need 

not simulate the Markov process directly, but it must be able to determine 

when the system returns to the designated state. Crane and Iglehart show 

that the expected length of the confidence intervals, given a fixed simulation 

run length, is independent of the state chosen to define the tours. However, 

if the state chosen is such that the tours are very long relative to the total 

simulation run length, then few tours will be replicated and the confidence 

interval analysis will not be valid. So we should attempt to choose a 

frequently entered state to define the tours. We should also choose states 

that are simply defined so that overhead of testing for the state is not too 

great. 
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We illustrate application of the techniques in determining confidence 

intervals for server utilization. Application to other model statistics is 

similar. Server utilization can be determined by dividing the simulated time 

during which the server is busy by the total simulated time. Equivalently, 

we can determine utilization as BIT, where Bi is the time the server is busy 

during tour i, and Ti is the length of tour i. For g in the interval (0,1) 

we can determine 

utilization (C6) 

100(1 - g) per~ent 

Ii> iff - kS 12 + 
an approximate 

as: [ lIT - kS 12 
-2 T - ks 22 

and D are defined as follows: 

confidence interval for 

ID] , where k, s12' 

Let 41(z) 1 I~O) -n2/2 dn ell-I (x) and let n be the number =-- e z = 
& x 

of tours, then k = 
zi-g/2 n (E[BT] - BT). n (E[T2] - F). s12 =-- s22 = --n n-l n-l 

n 2 n2. - 2 -2 -2 Let sll = n-l (E[B 1 - B ), then D = (BT - ks12) - (B - ksll)(T -ks22). 

6.3 APLOMB - A Simulator for Closed Queueing Networks 

We have constructed a queueing network simulator employing the 

Crane-Iglehart techniques. This simulator exists as a set of Fortran sub-

routines. The user provides the routines with a definition of the model, 

criteria for acceptable confidence intervals, and a short routine which is 

called to determine whether the simulated system is in the tour defining 

state. 

The networks simulated by APLOMB may have several different classes 

of customers. Each queue may have one of a variety of queueing disciplines, 

including FCFS and priority disciplines. The existing simulator assumes a 

single server at each queue, but may be easily extended to allow multiple 
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identical servers. Service distributions of generalized Er1ang form 

(Figure 6.1) proposed by Cox (CS, Chapter IV, Chapter V) are assumed; the 

service times may be class dependent. Customers leaving a queue may be routed 

~i - rate of exponential stage i 

Pi - probability of bypassing stages after stagei 

Figure 6.1 

to any queue in the network according to fixed probabilities. These 

probabilities may be dependent on the customer class and the queue being left. 

The state of the system is determined by the number of customers of each class 

in each queue, the ordering of customers in each queue, and the current 

distribution stage for each customer. This system will have a finite state 

space. 

The simulator structure is driven by an event list. An event 

occurs each time a customer completes a stage of its service distribution. 

After each event the user supplied routine is called to determine whether 

the system is in the tour defining state or not. If the system is not in 

the tour defining state, the simulation continues. If the system is in the 

tour defining state, the accumulators used in the confidence interval analysis 

are updated. If a sufficient number of tours have been replicated, confidence 
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intervals are determined. If the confidence intervals are satisfactory, the 

simulation is terminated, otherwise additional replications are made until 

satisfactory intervals are obtained. 

This simulator has been used to determine results for over 125 

computer system models (Chapter V). The results of these simulations are 

in agreement with those obtained by analytic approximation techniques. 

6.4 Extension to Open Networks, Mixed Networks and Passive Servers 

The existing simulator may be easily extended to include open and 

mixed networks. Open networks have sources which emit customers and sinks 

which absorb customers leaving the network. Hixed net~vorks are open for some 

classes of customers and closed for other classes. If we represent the time 

between arrivals from a source by a distribution of the Cox form (Figure 6.1) 

and make other restrictions as with closed networks, then the system will have 

a countab1y infinite state space. The state of the system is determined by 

the distribution stage of each source, and the same conditions which determine 

the state of the closed network. In addition to events occurring after 

customers complete service stages, events must occur when a source"" distribution 

stage is completed. 

Passive servers are a construction which has been included in 

queueing network models to consider the effects of blocking in computer 

systems for resources such as memory, channels and peripheral processors. 

Customers must acquire units of the server before they may traverse certain 

parts of the network. If the units are not available, the customer must wait 

in a queue. When a customer leaves the restricted portion of the network, 

all units of the passive server are released by the possessing customer and a 
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queued customer may acquire these units. We assume that the number of units 

required oy a customer is described by a finite probability mass function, and 

dependent only on the server and the customer class. The state of a system 

will be determined by the above mentioned conditions, by the allocations of 

passive servers to each customer, the number of customers of each class in 

each queue for a passive server, and the ordering of customers in these 

queues. The state space will be at most countably infinite. Since passive 

servers will only be affected when customers leave a source or an active 

server, the same event definitions described above can be used. 

6.5 QUASCI 

QUASCI is a high level language very similar to the language 

QAL (Fl,M2)~ We have restricted the features of QAL to allow only models 

which are compatible with the confidence interval techniques, and have added 

new features to facilitate use of the confidence interval techniques. First 

we present an example illustrating some of the features of the language, 

then informally present the syntax and semantics of the language. 

6.5.1 An Example 

Figure 6.2 illustrates a simple model of a computing system. 

Customers arriving at the system must wait in a queue until allocated space 

in memory. After receiving memory, the customers alternately request service 

from the central processing unit (CPU) and from an input/output (I/O) device. 

After several cycles of CPU and I/O services, the customers release their 

portion of memory and leave the system. Figure 6.3 gives a QUASCI description 

of this model. 
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NETWORK 

END 

1 (1.) 
2 

(ALLOCATE, MmI0RY) 
(1.) (CPU) 
3 (.4) (101) 
3 (.6) .(102) 

4 (.5) (GO, 2) 
4 (.5) (RELEASE, MEMORY) 

5 (1.) (SINK) 

SERVERS 

END 

MEMORY, PASSIVE = 4, REQUEST = 1 $ 
CPU, DISTRIBUTION = STANDARD(1.,5.), DISCIPLINE = PS, 

TOLERANCE = (1.,.05,.2,.2) $ 
101, DISTRIBUTION = STANDARD(2.,.5) $ 
102, DISTRIBUTION = STANDARD(3.,.5) $ 

SOURCES 
INPUT, DISTRIBUTION = STANDARD(lO.,l.), ENTRY POINT = MEMORY $ 

END 

CUSTOMERS 

END 

TOURS 

END 

CPU = (2) $ 

MEMORY, LENGTH = 0 $ CPU, LENGTH = (2) $ 
101, LENGTH = 0 $ 102, LENGTH = 0 $ 

SIMULATE 
BATCH, CONFIDENCE = 95 

END 

Figure 6.3 

132 

The NETWORK statement describes the interconnections of the model 

elements. This statement consists of several "levels". Each level consists 

of a level number, a traversal probability, and either a network element or a 

"GO" element. Customers leaving a network element proceed to a level with 

the next higher level number, unless directed to a specific level or element 

by a "GO lI
• When there are several levels to choose from, the choice is 

determined by the associated traversal probabilities. 
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The SERVERS statement gives the characteristics of each of the 

servers in the model and their associated queues. Several characteristics are 

not specified; default values are assumed. MEMORY is a passive server with a 

total of four units available; customers always request 1 unit. The queueing 

discipline is FCFS by default, and no criteria are specified for the 

confidence intervals for the statistics associated with MEMORY. The CPU is 

an active server (as opposed to a passive server -- the CPU is a server in 

the traditional sense). The distribution of service requests is a standardized 

form (Chapter V) with mean of 1 and coefficient of variation 5. The queueing 

discipline is Processor Sharing (PS), the limiting case of a no overhead 

round-robin discipline as the quantum approaches zero. TOLERANCE specifies 

max~um lengths for the confidence intervals for throughput, utilization, queue 

length and wait time, respectively, at the CPU. 

The SOURCES statement specifies the name of the source, INPUT, the 

distribution for interarriva1 times from the source, and the place where 

customers enter the network. Customers arriving from the source are of 

class 0, by default. 

The CUSTOMERS statement specifies that there are to be two class 0 

customers at the CPU when simulation begins. 

The TOURS statement specifies the conditions which determine the 

tour defining state. In this example, all queues are empty in the tour 

defining state, except for the CPU queue, which must have 2 customers. Both 

customers at the CPU must be in the first stage of their service distribution, 

by default. Also by default, the source must be in the first stage of its 

distribution. Notice that the system is in the tour defining state initially_ 
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The SIMULATE statement specifies that simulation is to be initiated, 

and the confidence level is to be 95%. 

6.5.2 Syntax and Semantics of gUASCI 

QUASCI, like gAL, is intended to be embedded in a high level 

algorithmic language such as FORTRAN, PASCAL or PL/l. QUASCI programs may 

take advantage of host language facilities for communicating with the operating 

system, for iteration, for computing values of variables, etc. The interaction 

of QUASCI with the host language is more restricted than that of QAL. The 

primary difference is that host language expressions within QUASCI statements 

are not evaluated repeatedly during the simulation, but rather evaluated when 

the QUASCI statement is executed. This is necessary, otherwise, we could not 

easily guarantee that the Markov process for the simulated system is properly 

defined. This restriction also removes one of the primary implementation 

difficulties of QAL. 

There are seven statements in the language, SIMULATE, NETI~ORK, 

. SERVERS, TOURS, CUSTOMERS, SOURCES and SINKS. All programs must include the 

first three and either CUSTOMERS or SOURCES or both. TOURS must be included 

unless the system is an open network. We will now discuss these statements 

in the above order, but first describe notation. Braces { } enclose required 

items, and brackets [ ] enclose optional items. When there are several lines 

within braces or brackets, anyone line may be used for the required or option­

al item. Underlined values are used as default values where no item is 

specified. Capitalized words denote keywords. t~ere several orderings of 

keyword items are possible, all orderings are equivalent. An ellipsis ( ••• ) 

represents repetition of the preceeding form. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

135 

Figure 6.4 describes the SIMULATE statement. The <name> is used 

to identify the entire simulation, and must be a valid identifier in the host 

SIMULATE <name> [,CONFIDENCE= 90 ] 
<expr> 

,TOUR LIMIT= (25 25 ] 
. . ~expr> ' <expr» 

END 

Figure 6.4 

language. CONFIDENCE sets the level of confidence for the simulation 

statistics. The item <expr> denotes a scalar expression in the host language. 

The first value in parentheses for the TOUR LIMIT sets the minimum number of 

tours considered necessary for valid confidence intervals. The second 

parenthesized value sets the number of tours to be replicated before rechecking 

the confidence intervals. 

Figure 6.5 describes the NETWORK statement. The item <level 0> 

NETWORK 

flevel il>} 

END 

~expr> \1 
~<expr>[,<expr>] ••• )IJ 

Figure 6.5 

(ALLOCATE, <name» 
(RELEASE, <name> ) 
([SERVER,] <name» 
(SINK [, <name> ] ) 

(GO, t~::~ II>}) 
(BRANCH, <name» 
(CLASS,<expr> ) 

must be an unsigned integer. The parenthesized expresSions in the second 
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part of the level give traversal probabilities. The singly nested form give~ 

class independent probabilities, while the doubly nested form gives probabilities 

for each class from class 0 through the highest class number occurring in 

this model. (QUASCI allows only single digit class numbers for clarity in 

the TOURS statement. From experience with APLOMB, it is doubtful that 

simulation analysis of models with more than ten classes would be tractable.) 

The items allowed for the third part of the level are generally self explanatory. 

The BRANCH item is intended as a labeled "dummy" node for convenience in 

describing complex routings. The CLASS item changes the class of a customer 

to the value given in the expression. 

Syntax of the SERVERS statement is shown in Figure 6.6. 

SERVERS 

<name> 

~( 1 ~ [ ,ACTIVE= 1], DISTRIBUTION= { . 
<exPr> <expr> <dist> 

«dist> [,<dist>] 

,PASSIVE=<expr> ,REQUEST= {<fPmf> J 
«fpmf> [, <fpmf>] ••• ) 

,DISCIPLINE= FCFS 
PRIORITY «expr» 
PS 
LCFSPR 
FF 

r ex> ex> ell Q) 1 
L,TOLERANCE= «expr>,<expr>,<expr>,<expr»J 

[

, STATISTICS= GENERAL] 
NONE 
FULL 

$ 

END 
Figure 6.6 

.J 
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This figure shows the description possibilities for one server or set of 

identical servers. Several descriptions may be included in a single statement, 

with each description terminated by a dollar sign. The first line in the 

major braces is for active servers, the second for passive servers. 

For active servers, the expression in parentheses gives the number 

of identical servers. The expression after ACTIVE= gives the rate of each 

server. In the distribution description for the server, we specify whether 

the distribution is class independent or class dependent. The form with a 

single expression is for class independent distributions. The parenthesized 

form is for class dependent distributions. There are several options for 

<dist>. The primary two are a standardized version of the Cox form (Chapter V), 

STANDARD«expr>,<expr», where the first expression is the mean and the 
r~~~p'lr~ 

second is the coefficient of variation, and the general Cox form, COX«expr>, 

<rates>,<prob», where the expression gives the number of exponential 

stages, <rates> is a vector of rates for the stages, and <prob> is a vector 

of bypassing probabilities for the stages. We may allow other distributions 

consisting of networks of exponential stages. However, this complicates 

implementation and adds little generality (Chapter IV). Including distribu-

tions which are not representable by a .finite number of exponential stages, for 

example the uniform distribution, does add considerable generality, but also 

requires restrictions in the tour definitions. If we have such distributions, 

then the state space will not be countable. In choosing states for tour 

definition, we are restricted to those states which have tour lengths with 

finite first and second moments (C7,L1). 

With passive servers, the expression after PASSIVE= gives the total 

number of units available. We specify the number of units for each request 
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after PASSIVE=. This may be class independent or dependent as with active 

server distributions. The item <fpmf> may either be an expression, in which 

case the number of units requested is a constant, or a finite probability 

mass function expressed as PMF«<expr>,<expr»,«expr>,<expr», ••• ), where 

the first expression of the pair is the probability of the value of the 

second expression. 

Several options are shown for the queueing discipline. The default 

discipline, first come first served (FCFS) is appropriate for either active 

or passive servers. The expression after the PRIORITY discipline gives the 

preemption distance (H2). This discipline is appropriate for passive 

servers only if it is non-preemptive. PS is appropriate only for active 

servers as is Last Come First Served Preemptive Resume (LCFSPR). First Fit 

(FF) is appropriate only for passive servers. FF is similar to FCFS, but 

when the first customer in the queue requests more units than are available, 

other. customers with smaller requests may be allocated units. Other 

disciplines may also be added to the language. 

As previously mentioned, the expressions in the TOLERANCE description 

are maximum lengths for the confidence intervals for throughput, utilization, 

mean queue length and mean wait time, respectively. These lengths are for 

class independent statistics. Three options are allowed for the statistics 

gathered; class independent statistics (GENERAL), no statistics (NONE) and 

class dependent as well as class independent statistics (FULL). 

Figure 6.7 shows the form of the TOURS statement. Tour descriptions 

are 
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TOURS 
<name> 

$ 

END 

[
,LENGTH= 0 1 

«expr> [, <expr> 1 •• '.) J 

[
, QUEUE= {[I ] r ~ L~<digit>[<digit>] ••• ) <digit> (STAGE= 1 ) 

<expr> 

[
. «name>= .Q. )11 

<expr> J 

[
, STAGE= 1 "1 

<expr> J ... J .. J 

Figure 6.7 

appropriate only to servers and sources. The LENGTH and QUEUE keywords are 

appropriate only to servers, while the STAGE keyword outside of the QUEUE 

section is appropriate only to sources. Where the total queue length is non-

zero, lengths for each class must be specified. If more than one class of 

customers is present in the queue, and the discipline is not PS or PRIORITY 

with preemption distance 1, then the ordering of customers in the queue must 

be specified with the QUEUE section. The customers are specified in order 

from first to last. The number in parentheses is the number of customers of 

the class specified by the digit following the parentheses. The STAGE keyword 

in parentheses is for the current distribution stage of those customers. 

The <name> in parentheses is the name of a passive server, and the expression 

gives the number of units of the server that are held. The STAGE keyword for 

sources is for the current distribution stage for that source. Note that 

the syntax does not prevent the user from defining a model with mUltiple 

chains or using a transient state for tour definition. These are 

.- ...... 
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cons~dered semantic errors and an implementation of the language should attempt 

to check for such errors before simulation is initiated. For example, if the 

network is such that customers may initially be in a queue to which they 

cannot return, if deadlocks may occur, or if customers may change from one 

class to another but not reverse the class change, then transient states can 

exist. 

The CUSTOMERS, SOURCES and SINKS statement are described in Figures 

6.8 1 6.9, and 6.10. The CUSTOMERS statement may be used to place 

CUSTOMERS 

<name> = «expr> [,<expr>] ••• ) $ 

END 

Figure 6.8 

SOURCES 

<name> {,DISTRIBUTION= <dist>} 

$ 

END 

SINKS 

<name> 

$ 

END 

. ,ENTRY POINT= <name> } 
r <level #> 

,CLASS= Q ] 
<expr> 

[
,STATISTICS= GENERAL] 

NONE 

Figure 6.9· 

(

,STATISTICS= GENERAL] 
NONE 
FULL 

Figure 6.10 
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customers initially at different servers in the network. This is necessary 

for closed networks and useful in open networks. The distribution options for 

sources are similar to those for servers, Qut,are restricted to forms with a 

finite number of exponential stages. 

Finally, we summarize the differences between QUASCI and QAL. We 

ignore minor differences, such as substitution of one keyword for another. 

First, the language QUASCI is more restricted than QAL, both in 

terms of features allowed and in terms of semantics. The restrictions are 

generally necessary to guarantee that the confidence interval techniques may 

be applied. Expressions in QUASCI statements may not change value during 

simulation, as may those in QAL. QUASCI cannot allow source distributions 

which are not representable by finite networks of exponential stages. Control 

of routing in the network is limited to fixed probabilities in QUASCI, while 

QAL allows very general predicates to control routing and allows the predicates 

to change during simulation. QUASCI does not allow customers to create 

subtasks, as does QAL. QUASCI does not separate queues from servers as does 

QAL,.nor does QUASCI allow the flexibility of server definition that QAL allows. 

QUASCI does not allow passive servers to be consumed or created. QAL permits 

user definition of queueing disciplines and other simulation constructs, but 

QUASCI does not. 

Second, QUASCI includes features not found in QAL, such as tour 

definition, which enable convenient use of confidence interval analysis. As 

another extension, QUASCI distinguishes between customer classes by digits 

instead of names and includes class distinctions as an integral part of the 
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syntax of the language; QAt requires more user effort in the specification 

of class dependent behavior. Liu ~4) has extended the syntax of QAL in a 

similar manner. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER VII 

SUMMARY AND RECOMMENDATIONS 

We have presented an approach to configuration design of computing 

systems. We have also presented techniques useful in the implementation of 

tfds approach. 

We have shown that efficient optimization procedures may be applied 

to a large class of open queueing networks with different classes of customers. 

In many situations these open queueing networks may be used as models of 

computing systems, communication networks and computer networks. We recommend 

that an existing computer program, such as Hogarth's (H3) , be extended to 

include this class of networks. Extension of oui results to closed networks 

would be very useful, though this appears to be a difficult problem. 

Our algorithms for numerical solution of closed queueing networks 

enable inexpensive parametric analysis of realistic models of computing 

systems. These algorithms are also valuable in the approximate analysis of 

more complex models; our approximate analysis techniques for central server 

models are economical and suitable for analysis of large parameter spaces of 

configurations. We thoroughly validated our approximations with simulation 

results for over 125 models. These nu~erical and approximation techniques 

are compatible with the techniques for models with passive resources such as 

memory (B4,Kl); computer programs combining our techniques with these 

previous techniques would be very valuable to the computer system designer. 

The characteristics of the models we analyze correspond to develop­

ments in computer systems and results of measurement studies. Measurement 

143 . 
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has shown that service time distributions are often non-exponential; our 

models allow a general class of service time distributions. Our models 
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allow multiple identical processors; there is a trend toward architectures 

with multiprocessing and our models are appropriate for analysis of these 

models. Empirical studies show that different programs have different service 

characteristics. Our models represent program dependent behvaior by using 

different classes of programs. Priority scheduling is widely used in computer 

systems and computer networks; our models allow preemptive and non-preemptive 

priorities. 

Simulation studies continue to be important in computer system 

evaluation. Simulation techniques have been used casually in the past and 

simulation results have been viewed with skepticism for this reason. Our 

work has helped to formalize simulation technique and provide tools and 

theory which allow confidence in simulation results. 

We have shown that the confidence interval simulation techniques 

of Crane and Iglehart (C6,C7) may be applied to a very large class of general 

models of computing systems. We have presented a language, QUASCI, designed 

to facilitate correct application of these simulation techniques. A simula­

tion implementation of this language would also be extremely valuable to 

computer system designers. 

QUASCI may also be used to represent models soluble by non­

simulation techniques. We suggest that this language be used as a general 

modeling language. It should be possible to implement this language so that 

the user need not specify the solution technique to be used. In such an 

implementation, the user would specify the model and the results required; 
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the implementation itself would then determine which solution technique 

would be appropriate to these user specifications. 
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Since the computer sys'tem designer will usuallr- be interested in a 

parameter space of models, we would recommend research to extend and implement 

our language to allow the user to specify a parameter space of models and 

criteria for selection of optimal models. This extended language implementa­

tion would De responsible for searching the parameter space and reporting 

to the us'er the optimal model or models. 
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