CONFIGURATION OF COMPUTING SYSTEMS: AN APPROACH

USING QUEUEING NETWORK MODELS

by

Charles Herbert Sauer, B.A.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 1975

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CONFIGURATION OF COMPUTING SYSTEMS: AN APPROACH

USING QUEUEING NETWORK MODELS

APPROVED BY SUPERVISORY COMMITTEE:

KM %wé

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWL EDGEMENTS

I would like to thank Professor K. M. Chandy for his continued
support, advice and encouragement throughout the development and completion
of this research and dissertation. I would also like to thank Professors
J. C. Browne, J. H. Howard, A. G. Pearson and T. A. Welch for their review
and suggestions concerning this dissertation. U. Herzog and L. Woo suggested
gome of the problems considered here; I am grateful for their advice and
encouragement. I must acknowledge my indebtedness to Professor A. G. Pearson
and E. H. Pearson for their encouragement throughout my graduate studies
and especially for their generous support during the initial stages of my
studies. This research was supported in part by National Science Foundatiomn

Grant GJ-35109.

C.H.S.

February 1975

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CONFIGURATION OF COMPUTING SYSTEMS: AN APPROACH

USING QUEUEING NETWORK MODELS
Publication No.

Charles Herbert Sauer, Ph.D.
The University of Texas at Austin, 1975

Supervising Professor: K. Mani Chandy

An approach to configuration design of computing systems is
presented. This approach is based on analysis and optimization of queueing
network models of computing systems. Efficient optimization of open queueing
networks with different classes of customers is considered. Efficient
nume;ical analysis techniques and inexpensive approximate analysis techniques
for a large class of central server models are presented. These techniques
are suitable for thorough study of a large paraﬁeter space of configurations.
The central server models considered include non-exponential distributions,
different classes of customers and scheduling disciplines with priorities.
Simulation analysis of a very general class of queueing networks is discussed.
These techniques allow determination of confidence intervals for open, closed
and mixed queueing networks with different classes of customers and both
passive and active servers. A language for description and analysis of this

class of queueing networks is presented.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

CHAPTER PAGE

I, INTRODUCTION + « v « o « o o o o o s o o o s s o o« o s « « « « X

1.1, Design of Computing Systems . . .« « &« o « « o o o o » &« 1

1.2. Performance Measures . « « « + s s o o o o « ¢ o o o o o 1
1.3. Workload Characterization . . . « « « « ¢ &+ s ¢ o o o o 3
1.4, System Component Characterization . . . . . . « « « ¢« & 5

6

1.5, Difficulty of the Problem . . . ¢ ¢« ¢« ¢« ¢ ¢ « ¢ ¢ o o &
1.6. Organization of Chapters . .« « ¢« « o « « « ¢ = s « o s & 7
II. SUMMARY OF PREVIOUS WORK, NEW RESULTS AND THE GENERAL DESIGN

APPROACH « ¢ o« o o « o« o o+ o o o o o o s s o o o o o s o & & 8
2.1, Previous Work . . ¢ ¢ ¢ ¢ ¢ 4 ¢« ¢ o o s o o o o o o o s 8
2.1.1. AQueueing Network Models of Computing Systems . . 8

2.1.2. Analysis of Queueing Network Models . . . . . . 10

2.2. Contributions of this Research . « « + o o o « « o « o « 12

2.3. Parameterization of Central Server Models . . . .. . . 14

2.4, An Approach to Configuration of Computing Systems 16

IXI. OPTIMIZATION OF QUEUEING NETWORKS WITH DIFFERENT CLASSES OF
CUSTOMERS « &« & & ¢ o o o o o o ¢ s s o 8 o o s s o o a o 20
3.1. Introduction . . o+ + ¢ o ¢ ¢ ¢ ¢ ¢ o o s s o s s s s s« 20
3.2. Convexity of Waiting Time at Individual Queues . . . . . 21
3.3. Convexity of Times in the Network . . . . . « « &« « &« « 26
3.4. Optimization Problem Statements, Procedures . . . . . . 30

3.4.1. Cost Functions . . ¢ ¢ ¢ ¢ ¢ ¢ « o« o o s o o o 30.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER

3.5.

3.4.2. Convex Cost Functions (g <1) . . . .
3.4.3. Concave Cost Functions (g > 1) . . .

Application of Open Queueing Network Models .

IV. EFFICIENT NUMERICAL SOLUTION OF QUEUEING NETWORKS .,

4.1.
4.2,
4.3.
4.4,
4.5.

4.6.

INtroduCtion o « o o o o 4 4 4w e e e e e
Two Exponential Queues - The General Approach
Generalized Erlang Distributions . . . . . .
Two Queues - One GE, One Exponential . . . .
Application to Make General Models . . . . .

4.5.1. Two Non-Exponential Queues . . . . .

4.5.2. Multiple Identical Servers . . . . .

4.5.3. Different Classes of Customers - FCFS

4.5.4, Preemptive Priority Based on Customer

Class

4.5.5. Non-Premptive Priority Based on Customer Class .

4.5.6. Other Applications . . « + & o o '« o
Application to Computer System Modeling . . .
4.6.1. General Approaches . . ¢« ¢« ¢ ¢ « o =
4.6.2. Single CPU vs. Two Slower CPU's . . .

4.6.3. Improvement Obtained by Multitasking

4.6.4., Improvement Obtained by Adding or Upgrading

4.6.5. Summary of Model Results . . . . . .

V. APPROXIMATE ANALYSIS OF CENTRAL SERVER MODELS . . .

5.1.
5'2.

Introduction L L] - L[] L] L] L] * Ld L . . L] L] L ] * . L] *

Local Balance .« « ¢ « ¢« o« o o s o o s o s o @

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PAGE

31
32
33
35
35
38
39
46
51
51
55
61
64
67
71
72
72
73
78
78
81
86
86

89



CHAPTER

5.3.

5.4.

5.5.

5.6.
5.7.

VI. SIMULATION OF GENERALIZED QUEUEING NETWORKS . . . « « « « « &

6.1.
6.2,
6.3.
6.4.

Norton‘s Theorem Applied to Central Server Models . . .
5.3.1. Norton's Théorem: A Discussion . « + « + . . .
5.3.2. Example . . . ¢ ¢ 4 ¢ ¢ s o 2 o 4 s s e 4 s e
5.3.3. Determination of Composite I/C Throughput . . .
FCFS Central Server Models with Non-Exponential Service
Times .« ¢ ¢« ¢ ¢ ¢ ¢ ¢ o ¢ o o s o o o 6 s s s o o o @
5.4.1. Overview . . . & v ¢ ¢ ¢t e e ¢ s o s s s s
5.4.2. The Composite I/0 Distribution . . . . . « o «
5.4.3. The Algorithm . . « . & & ¢ ¢ & ¢« ¢ ¢ ¢ o o o
5.4.4. Example . . ¢ 2 o« « o « o ¢ o o s o s o s o o o
FCFS Central Server Models with Class Dependent Service
Rates « ¢« & & ¢ ¢ ¢ o ¢ ¢ o o o o & o s o s o = a s
5.5.1. Discussion . . . ¢ ¢ ¢ ¢ v ¢ v e 4 s s e w0 e e
5.5.2., Algorithms . « ¢ ¢ ¢ o« ¢ o o o o o o o o o « o
5.5.3. Example .« « 4« « &+ ¢ o o ¢ ¢ s ¢ o o o o o o & @
Approximation for Models with Priority CPU Disciplines

Validation, Implementation and Performance . . . . . .

Introduction . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢t ¢ o e e 4 e .
Confidence Intervals - The Crane-Iglehart Technique . .
APLOMB - A Simulator for Closed Queueing Networks . . .
Extension to Open Networks, Mixed Networks and Passive

SEIVEYS . « ¢« + o+ o o o o o ¢« o s o o o & o o o s a a

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PAGE

90
90
92
93

96
97
98
102

103

104
104
106
110
111
112
125
125
126

127

129



CHAPTER

6. 5. QUASCI 1 L] L] L] L] LI . < L] L] L L] - L] L] L] L] L I‘ L]
605-1' An Exa.mple . . . . . . [ [ ] . . [} L] . [
6.5.2. Syntax and Semantics of QUASCI . . . . .

VY1. SUMMARY AND RECOMMENDATIONS &+ &+ « o « o o o o o o o o

BIBLIO GR-AP}IY . . . . [ . 3 . L] - . e e o . . . - e e . }

viit

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PAGE

130
130
;34
143
146



CHAPTER 1

INTRODUCTION

1.1 Design of Computing Systems

Computing facilities are sufficiently complex that we cannot hope
to choose an optimal or near-optimal system without thorough analysis of the
many configurations available. This work presents tools for analysis of
computing systems and a coherent approach to important aspécts of choice of
a particular configuration of a computing system. This approach utilizes the
tools we present along with existing techniques. Though we will primarily
consider configuration of new systems the toocls and approach we present are
also appropriate to reconfiguration of existing systems.

In general we assume that we are given a characterization of the
workload for the proposed system and characterizations of the components
available for the proposed system. Given these characterizations, we will
want to solve one of two problems. Either we will be given constraints
on the cost of the system and required to maximize performance of the system
without violating the cost constraints, or we will be given performance con-
straints and required to minimize cost. In the case of existing systems, we

may wish to maximize performance without changing the hardware configuration.

1.2 Performance Measures

Many performance measures are possible, and the measures used may
be dependent on the proposed system. We will assume that the primary measure
of interest is the time required by the system to service a user request and

respond to the user. This response time measure may be refined in a variety

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of ways. We may be interested in only the mean response time, or we may
require some other estimates of the distribution of response times. We

may wish to differentiate between users on a political basis, an economic
basis, a basis of mode of access to the system, such as batch or interactive,
or some other basis. Consider as an example a university computation center,
with a wide variety of users and applications. The large majority of users
make very small requests on the system while a few users have applications
which place heavy demands on the system. 1In order to give good response to
the "average user", priority may be given to the users with small requests,
otherwise the applications with heavy demands clog the system and cause poor
response time for the average user. However, if the small requests are given
too high priority, the users with heavy demands may get very poor response.
This may not be readily apparent from response time measures which do not
distinguish between users. Such a situation will be politically unwise since
the users with heavy demands provide a much larger share of the center's
support than do the users that are given priority. Some users may be willing
to pay more for computational service in order to get priority service, or
other users may be willing to suffer poor response in order to pay at a
discounted rate. (Service for such users may be scheduled when the system is
not in demand such as late at night or on weekends.) For interactive users,
distinction may be made according to the kind of interaction. We may wish

to give virtually instantaneous response to those using text editors or
computer aided instruction, but be willing to accomodate slower response for

interactions requiring substantial computation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A measure of secondary importance is the throughput of customers
through the system. Increasing throughput mav degrade response time for some
users. We wish to maximize throughput without un&uly sacrificing response time
characteristics. Measures concerned with individual components of the
system are also of importance. Measures concerned with components
exclusively held by a customer may give indications of the sensitivity of
more important measures to fluctuations in the workload. For example, if
such a component is almost always in use, then the response time may be very
sensitive to temporary increases in the workload. If such a component is
little used, it is likely that we can improve response time by increasing the
utilization of that component. We will be concerned with utilizations, queue
lengths and waiting times for exclusively held components.

We will not consider reliability of the system, though this is

clearly an <important performance measure.

1.3 'Workload Characterization

We will assume that the workload has been characterized at a fairly
gross level of detail. It is unlikely that the workload can be characterized
precisely until the system is operational, and precise characterization may
not be possible even then. Notice that since we cannot provide precise char-
acterization of the workload we can provide only estimates of the performance
of the system; some error is inevitable and small additional error due to our
analysis must be considered acceptable.

The workload characterization will be based on what we know about
the use of the proposed system. We must apply this knowledge and measure-

ments from existing systems to characterize the workload (B4,B5,J2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



More specifically, we will assume that the workload is characterized
in terms of the arrival rate(s) of.user requests (we may distinguish between
users as we did for response times) and in terms of the specific nature of
the requests. Generally a user request will consist of several cycles,
each cycle consisting of a computation part and a data transfer part. During
the computation part of the cycle, a processor uses data found in input
buffers, if the program has input data, and places results in output buffers.
When iInput buffers become empty or when output buffers are filled the program
requests that data be transferred from secondary storage or to secondary
storage, respectively. It may be possible that, because of multiple buffering,
the program can continue computation while data transfer is taking place. 1In
this case the two parts of the cycle partially or completely overlap.

For - the computation part of the cycle we may wish to distinguish
between different kinds of programs being executed, for example distinguishing
between execution of user programs and execution of different programs provided
by the system such as compilers, loaders and text editors. Studies of existing
systems (J2) show that these different kinds of programs have markedly
different computational characteristics. The two computational characteristics
of primary interest are the distribution of the amount of memory needed by a
program and the distribution of the length of the computation part of the
cycle. Of course the length of the computation will be strongly dependent
on the speed of the memory and processor used. We assume that we can make a
memory and processor independent characterization of the distribution of the
computational period and adjust the distribution with multiplicative factors

dependent on a given processor and a given memory. For the data transfer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



part of the cycle, we may also wish to distinguish between the programs
being executed. In particular, the relative frequency of access to different
data files and memory requirements will be dependent on the program which is
executing; other characteristics are less likely to exhibit strong program
dependence. The data transfer part can be characterized by the number of
files and for each file the size, relative access frequency and the
distribution of characters transferred per access. In addition to character-
izations of the parts of the cycle, we assume that we have a characterization
for the distribution of the number of cycles per request. Again, this may

be dependent on the kind of request.

l.4 System Component Characterization

We assume that the system components have been characterized in
terms of capabilities and costs. The components of primary interest are
hardware elements such as memory, central (computational) processors and
file'storage (input/output) devices and the operating system, in particular
the schedulers. Software other than the operating system will impact
performance and cost, but we will not take this software into consideration.

Memory characteristics of importance are the access times, the
transfer rates, the quantity, the unit cost, the organization (we may have
several levels of executable memory or a virtual memory system) and the
memory scheduler. The important characteristics of the central processing
units are the number of units, their speeds, their costs and the scheduler.
Usually the scheduler will be a round-robin scheduler which attempts to
share the processors among the programs needing a processor. The sgheduler

may give some programs priority over others. In multiple processor systems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



gsome of the programs may be divided into concurrently executable tasks.
The scheduler may assign these tasks to available processors.

For the input/output dev{;es, a system can be characterized by the
number of devices, the types of devices (drums, disks, tapes, etc.), the
costs, the capacities, the transfer rates, the positioning times, the
rotational delays, the schedulers and organizational considerations including
channels, controllers and/or peripheral processors. These organizational
considerations may be quite complex. Several slow speed devices, such as
card readers or line printers, may be connected to a multiplexor channel which
supports simultaneous transfer to or from several devices. Disk systems are
widely used and have intricate organizations. For example, we may have a
situation where positioning of the disk requires a possession of a chanmel,
controller and disk to initiate the positioning, but only the disk for the
rest of the positioning operation. All three units are then required for data
transfer. Thus overlap of positioning with data transfer is possible where
multiple disks are connected to a single controller. The disk, scheduler may
attempt to minimize positioning and rotational delays in choosing which

programs to service.

1.5 Difficulty of the Problem

The problem of configuration of computing systems is very complex,
and the complexity of the problem will continue to increase. We cannot
hope for a complete solution to the problem now or in the near future. We
can hope for better understanding of the difficulties inﬁolved, and for
tools and theory which will provide guidance where our intuition is too weak.

Much progress has been made and continues to be made in this area, and this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



progress leads to better configurations and improved performance. Our
research makes a substantial contribution to this progress.

Out models, in conjunction with models developed by others, can
consider most of the workload and system characteristics described above.
The primary exception is that we cannot consider general memory hierarchies

at the level of detail considered above.

1.6 Organization of Chapters

In Chapter II we discuss previous work on modeling of computing
systems as queueing networks and analysis of queueing network models, then
summarize the tools we have developed and present an approach to configuration
design using queueing network models. In Chapters III through VI we discuss

our tools in detail.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER IIL
SUMMARY OF PREVIOUS WORK, NEW RESULTS AND THE GENERAL DESIGN APPROACH

2.1 Previous Work

2.1.1 Queueing Network Models of Computing Systems

Computing systems have become sufficiently complex and varied that
we cannot hope to choose among configurations by actually assembling a
variety of configurations and comparing their performance. We must have
models of computing systems which reflect the possible configurations and
indicate the performance to be expected from a given configuration. Further
these models should be such that configurations can be easily defined and
performance measures can be easily obtained.

Several different authors have proposed models of computing
systems as closed networks of queues at central processing units and input/
output devices. The earliest work in this area was that of Smith (S5) and
Gaver (Gl). Baskett (Bl) studied the effects of different scheduling
disciplines and service distributions in some of these models. Buzen (B6)
called these models '"central server models" and used central server models
in the analysis of system bottlenecks. (See Figure 5.1) Foster (F2) has
used central server models along with simulation studies to consider file
placement in memory hierarchies.

More recently Brown (B4) has embedded a central server model
within a queueing network which includes a queue for memory. He demonstrated
that this model could obtain performance measures comparable to those obtained

from empirical studies of a general purpose interactive system. Browne et al

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(B5) have used extensions of these models to evaluate and improve the
performance of a large computing system. The results of (B4,B5) and the
approximate analysis techniques discussed below point to the use of approxima-
tion in model solution to avoid some of the approximation previously required
by model assumptions. If we make strong model assumptions to allow exact
solution, then we cannot use the models to study parameters and characteristics
ignored in the model. We may not be able to analyze exactly models which
consider these parameters and characteristics, but if we caﬁ get good
approximate analyses, then we will have a basis for evaluating these parameters
and characteristics. Though the performance measures obtained are not exact
for the given model, the trends and effects predicted by the approximate
analysis of these complex models give a picture of the actual system which

is impossible to obtain from simpler models. For example, we must ignore sched-

ulirig priorities if we wish to apply local balance techniques. (Sec. 2.1.2).

If we use a locally balanced model we cannot predict the effects of the prior;
ities, but if we approximately analyze a model which includes priorities, we

can predict the effects of different priority schemes. Clearly, more accurate

models will give better predictions than models with assumptions that are
too strong. As the need for more accurate models becomes apparent, two
questions arise: 1) What are the deficiencies in the model and how can they
be alleviated?, and 2) How much error is introduced by approximation in the
solution? These questions cannot be completely answered at this time.
Others have attempted to answer the second question by comparison with exact
or simulation results, and we use this approach also. This is not entirely

satisfactory since this validation may not expose the areas where the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

approximations fail. Further research into error bounds for approximations

is needed.

2.1.2 Analysis of Queueing Network Models

Though properties of isolated queues have been studied for most
- of this century, analysis of networks of queues is relatively recent.

Jackson (J1) considered analysis of open networks of queues with exponential
service time distributions (D1). Informally, a network is considered to be
open if customers may arrive and depart, and closed if the same customers
remain in the network at all times. Jackson showed that the solutions for
these networks have a "product-form'. By this we mean that the Markcvian
state probabilities (D1) can be expressed as a product of terms for each queue
in the network. Such a product form does not exist for arbitrary networks.
Gordon and Newell (G3) showed that similar closed form solutions exist for
closed networks with exponential servers. (See equation 5.1). Though these
prodﬁct form solutions are easily expressed, direct evaluation of the solutions
for state probabilities and application of the solutions to evaluation of
performance measures is computationally expensive. Buzen (B6) developed
efficient computational techniques for obtaining state probabilities and
performance measures for closed networks with product form solutions.
Chandy (Cl) developed the concept of "local balance" and showed that it
could be used to obtain product form solutions for a large class of queueing
networks including those studied by Jackson and Gordon and Newell. This
class also includes some networks with non-exponential service time distribu-
tions and some queueing disciplines other than First Come First Served.

Baskett, Chandy, Muntz and Palacios (B2) used local balance to obtain product

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

form solutions for networks with different classes of customers and customer
dependent behavior. Chandy, Herzog and Woo (C3) developed techniques for
efficient parametric analysis of networks in local balance akin to Norton's
Theorem for electrical circuits. They showed that for each queue in a general
closed network one can represent the effects of the remainder of the network
By a "composite queue", and that the parameters of the queue of interest may
be varfed without affecting the parameters of the composite queue. See
Figures 5.1 and 5.2. A similar result holds for open networks. Reiser and
Kobayshi (R1) extended the results of Baskett et al to more general networks
and developed computational algorithms for these models. Chandy, Howard and
Towsley (C4) developed the concept of "station balance", a sufficient
condition for local balance. They showed that for queues in station balance,
performance criteria such as utilization, queue length distributions and
mean waiting times are independent of the form of the service time distribu-
tion, as long as the service time distributions are differentiable.

Closed form solutions have been very difficult to obtain for
networks which do not have solutions obtainable by local balance techniques.
Wallace and Rosenberg (W1) have applied iterative numerical techniques to
solution of queueing networks. Herzog, Woo and Chandy (H1l) have developed
recursive numerical techniques for solution of queueing networks. These
techniques are effective for small networks but require excessive computation
for large or complex networks. Several authors including Gaver (Gl),

Baskett (Bl), Shedler (S4) and Curtois and Georges (C8) have applied semi-
Markov techniques to small closed networks. A variety of approximation

techniques have been applied to solution of more general queueing networks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

Gaver and Shedler (G2) and Kobayashi (K3,K4) have applied diffusion
approximations to queueing networks. Decomposition approximation techniques
based on local balance techniques and numerical techniques have been used
by Chandy, Herzog and Woo (C2), Brown (B4), Keller and Chandy (K1), Sauer
and Chandy (S2) and Williams and Bhandiwad (W2). Simulation techniques
are still the most general; simulation techniques especially applicable to
queueing networks have been developed by Foster, McGehearty, Sauer and
Waggoner (Fl), Crane and Iglehart (C6,C7) and Lavenberg (L1).

Optimization of queueing networks has been studied by Kleinrock

(K2) and Hogarth (H3).

2.2 Contributions of this Research
In Chapter III we extend the results of Kleinrock and Hogarth to
optimization of a general class of open queueing networks with different

classes of customers. Their results were restricted to networks with all

custoﬁers identical. This class includes networks which may be solved using
local balance techniques and some networks with priority queues. We show
that the optimization procedure used by Hogarth may be applied to this class
of networks.

In Chapter IV we apply the numerical solution techniques of Herzog,
Woo and Chandy to several closed queuveing networks important in computer system
analysis. Their previous work suggested a partitioning scheme for analysis
of structured Markovian state spaces, but applied the scheme only to a small
group of models. We show that theilr scheme may be applied to many general
models and give specific efficient computational algorithms for solution of

these models. These models allow two queue closed networks with general service

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

time distributions, multiple identical servers, multiple classes of customers
and priority queueing disciplines. These models are very important in
approximate solution of more general networks. We demonstrate that these
models are of interest in themselves with a study of effects of parallelism
in central processing units. Multiprocessing is becoming increasingly

common in computer architectures and these models are useful in analysis of
these architectures. As measurement techniques become more refined, the need
for distinguishing between different users and different programs becomes
apparent. Different classes of customers are very useful in developing these
distinctions. The need for priofities is increasing with the complexity of
computing systems. This is especially true in networks of computers, where
each computer is responsible for communication of messages between other
computers, as well as processing of requests assigned to that computer.

These same considerations are important in models with a more
general network structure than that considered in Chapter IV. The solutions
of the models of Chapter IV are used in Chapter V to obtain approximate
solutions for a general class of central server models. Exact solutions for
this class of models are not available. This class includes the characteris-
tics of the models of Chapter IV. Our techniques give exact results for a sub-
set of this class which can be analyzed by local balance; we validate the
techniques for general models by comparison with the results of an extensive
group of simulations. The techniques of Chandy, Herzog and Woo may also be
applied to this class of models, but their techniques require iterative
decomposition analysis for each queue in the network. Our techniques provide
solutions for the entire model in a single step and thus are much more

economical for parametric analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

Crane and Iglehart have provided theorteical results showing how
the concept of regeneration points can be applied to determine confidence
results for simulations. In Chapter VI we show that these techniques may be
applied to simulations of general queueing networks and discuss the practical
considerations involved. We present a simulation language QUASCI, based on
the language of (Fl), which may be used to describe a large class of general-
ized queueing networks. This language is designed to facilitate application of
the Crane and Iglehart techniques and prevent incorrect application of their
techniques. This language is also well suited for solution packages using
non-gimulation techniques; we suggest that this language is appropriate for
description of general models of computing systems. As the need for simula-
tion studies will be with us for an indefinite period of time, we must develop
a sound theoretical basis for simulation study. This theory should help
guarantee that we are simulating the model we think we are simulating, and
give us indications of the accuracy of our results. The simulator we have

constructed and our language, QUASCI, are important early contributions in

this area.

2.3 Parameterization of Central Server Models

‘Though the queueing network models we consider are very useful in
analysis of computing systems, the problem of determining the parameters of
the queueing network is definitely non-trivial. We briefly consider the -

problem of representing a computing system as a central server model.

We assume for ease of exposition that we are modeling an existing
system. We assume that a measurement probe exists within this system and

that we have reduced data obtained from this probe.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

As we will see in Chapter V, a central server model is characterized
by a queue for the central processing unit(s) (CPU) and several queues for
input/output (I/0) devices. By device we may mean a storage device proper,

a channel, a controller or whatever equipment is most representative of the
data transfer process. Each of these queues will be described in terms of a
queueing discipline, which we assume for now to be First Come First Served,
and a service time distribution. To completely specify the model, we need
also determine the number of programs in the system, and the probabilities
associated with each I/0 queue.

The CPU service time distribution can be characterized by the mean
and standard deviation of the time from when a program gains use of the
CPU until the program releases the CPU and makes a request for data transfer.
Notice that we are assuming no overlap of computation with data transfer;
we have already noted that this is not necessarily realistic. If significant
overlap does occur, then we must make a separate analysis of the overlap to
represent the cycle without overlap. See Towsley (Tl) for further considera-
tion of this problem.

Similarly, the I/0 service time distributions may be characterized
by the mean and standard deviation of the time from when a program obtains
possession of the device until the program releases the device. Again, our
representation is much simplified and an analysis of I/0 subsystems may be
necessary. We may have controllers and disk organizations which allow overlap
of positioning with data transfer. See Browne et al (B5) for further
congideration of this problem.

The probabilities associated with each I/0 queue may be determined

by measuring the relative frequency of access to the files located on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

device or devices represented by that queue. Finally, we can set the number
of programs in the model to the number of programs in memory. Usually this
value will be siudied parametrically, with a range from a low value to the
maximum number of programs which the memory will allow. If such parametric
study is not desired, we may use the mean number of programs in memory during
the measurement period.

We have assumed fairly complete data are availablg, but we can use
limited data under certain circumstances. For example, if we only know the
fraction of time the CPU is utilized, the length of the measurement period,
and the number of CPU services during the measurement period, we can estimate
the mean service time by the time the CPU is utilized divided by the number
of requests. We can estimate the form of the distribution from measurements
on other systems with similar applications.

Another area for caution, with any models we might choose, is that

our measurements may be strongly dependent on the time and day they are made.

2.4 An Approach to Configuration of Computing Systems

We propose that the techniques presented here, augmented with the
previously developed techniques mentioned above, provide a basis for a general
approach to selection of computing system configurations. The specific
approach uséd for a specific system will be strongly dependent on the intended
application of the system, the components available and the budgetary or
performance constraints.

As a first estimate of the configuration, we can use modified
central server models as in Figure 3.2 to study the appropriate choice of

central processing units and input/output devices. We assume memory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

limitations will not. significantly affect system performance when we use
these models. The techniques of Chapter IIIL can be used to determine the
optimum configuration under these assumptions.

Having obtained a first estimate of the appropriate configuration,
we can use more refined models similar to the first estimate and study a
parameter space of these models using the techniques of Chapters IV and V,
of Brown (B4) and of Keller and Chandy (K1). Since the techniqueé of
Chapters IV and V are very inexpensive, we can afford to explore the parameter
space thoroughly. Further, our techniques are compatible with thosé of Brown
and of Keller and Chandy; it should be possible to combine techniques and
study a parameter space of realistic models without prohibitive computational
costs.

Finally, we can assure ourselves that the approximate results are
valid by checking our results with the more expensive iterative approximations
of Chandy, Herzog and Woo (C2) and then obtaining simulation results using
the techniques of Chapter VI. See Figure 2.1.

The language QUASCI provides a convenient vehicle for this entire

process, since it is compatible with non-simulation solution techniques.
It should be possible to implement this language so that the implementation
can have all of these techniques available and choose the solution technique
appropriate to the model or models specified. We should be able to augment
and implement QUASCI so that much of the parameter space searching process
is automated.

Provided a general approach and framework, the computer system

designer can turn attention to the problems of characterizing the workload

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

configuration parameter space

Techniques of Chapter III
(heuristic) -

subspace

Space search using techniques of
Chapter V, local balance
(Chapter IV results required)

subspace

Space search using more detailed,

more expensive approximations
(Chapter IV results required,
Chapter V techniques useful)

%
chosen configuration

Simulation Study
(Chapter VI techniques)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

of the system, of determining what components are available to handle this
workload and of developing appropriate models to analyze the possible

configurations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER IIT
OPTIMIZATION OF QUEUEING NETWORKS WLTH DIFFERENT CLASSES OF CUSTOMERS

3.1 Introduction

Queueing network models are useful in the design of communication
networks (K2), computer networks (Pl) and computing systems (B4,B6). It is
desirable to find optimal configurations of these models so that we may
attempt to find a near optimal configuration of the system being modeled.
Kleinrock (K2) has considered optimal design of a class of open queueing
networks with all customers having identical behavior. An open queueing
network is one in which customers arrive and depart from the network, as
opposed to a closed network in which the number of customers is constant.
Hogarth (H3) has extended the results of Kleinrock and has also considered
optimal design of closed networks with all customers having identical
behavior.

We will consider optimization of open queueing networks with
different classes of customers. Specifically, we consider minimization of
the time customers spend in the network. We allow a variety of queueing
disciplines at each server, and a general class of service time distributions.

In Section 3.2 we show convexity of waiting time at individual
queues with Poisson arrivals as a function of processing rate at that queue.
Convexity is important in efficiently solving optimization problems. 1In
Section 3.3 we show convexity of total time spent in an open network with Pois~
son arrivals as a function of processing rates of the queues in the network.

Section 3.4 considers the optimization problem statements and algorithms for

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21

solution, and Section 3.5 discusses application of these models.

3.2 Convexity of Waiting Times aﬁ Individual'Queues

The set of points S in n-dimensional Euclidean space is said to be
convex if for any points x and y in S and any p in the interval [0,1],
px + (1-p)y is in S. A function f defined on the convex set S is said to be
convex if and only if for any x and y in S and for any p in the interval
fo,1],

f£(px + (1-p)y) < pf(x) + (L-p)f(y) (3.1)
This is one of several equivalent definitions (W3). We will find another
characterization more useful. If the Hessian of f is defined and positive
semi-definite for all x in S, then f is convex (W3). (The Hessian of f is
the matrix of order n with i,jth element a2f(x)/a;ia;j, where ci is the ith
element of x;)

We will consider six different queueing disciplines; First-Come-
First;Sefved (FCFS), Infinite Servers (IS), Processor Sharing (PS), Last-
Come~First-Served-Preemptive-~Resume (LCFSPR), Preemptive Priority, and
Non~preemptive Priority. (PS is defined as the limiting case of a no overhead
round robin discipline as the quantum goes to zero.) We allow arbitrary class
dependent service time distributions with rational Laplace transforms and
assume Poisson arrival processes with class dependent arrival rates. These
results apply to other queueing disciplines.

Let us consider a single server queue with R classes of customers.

Customers of class r, r = 1,...,R, arrive in a Poisson manner with rate Ar

R
and request service with mean S .. We define A = 2 Ar as the total arrival
r=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

R

_ Ar —

rate, and define s = 2 ’TE-sr as the mean service time at the queue. We
r=1

let p = As and p_ =vlr;; be the overall utilization, and the utilization for

class r customers, respectively. We assume the queue is notlsaturated, i.e.,

p < 1l. We define u =;é as the processing rate, and p_ = ff-as the relative

] S
T

processing constant for class r. Customers of class r are processed with

mean rate uur. Notice that ur is dimensionless; we assume that if we change

the rate of the server and thus change u, ur‘is unaffected.

For FCFS queueing discipline, we know from the Khintchine-Polloczek
formula (M1) that the expected time until a customer begins service is

ps (14C2)
2(1-p) :2)

where C is the coefficient of variation of the service times (the standard

deviation divided by the mean). In our case,

) N—
1 o T2 a2
- g% -8
c = r=1l A - T (3.3)
s

where 33' is the second moment of the service time distribution for class r.
We assume that C is a constant independent of the rate of the server.

The mean wait time for class r customers, G;, is the sum of (3.2)
and the mean service time for class r. So we have

= . ps(1+C2) —

r 2(1-p) +t s,

- Agziligil.+ s

2(1-28) r
A(1+C2) 1 (3.4)

+
2u(u-2) B M

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23

We want to show that ;; is a convex function of u. In this case we have a

single dimensional vector space and the only element of the Hessian of V.

a%w

is —Eﬁg- . Differentiating (3.4) we obtain

dw. 2
r =A(14C%) (2p-1) -1
= k : + — .

du 2ut(u-A)* U H 3.5)
and differentiating again we find

dz;jr = l(l"'Cz)((u—Uz + U(ZU"A)) + 2 3 (3 6)

du u3(u-1)3 MM
Since p < 1, A < §-= ¢ and (3.6) is positive. Thus the Hessian is positive

gemi-definite and 5; is convex.

If we have an infinite number of servers, each with rate u, then
T =3 =
w8, =T 3.7)
T
which is clearly convex.

If the queueing discipline is PS or LCFSPR, then we know (R1l)

that the mean queue length for class r, E}, is

- Pr
YW =T-0 | (3.8)

which we may rewrite as
— PP

qr =m— + p i (3-9)

r

Applying Littlels Rule (L3), we have

- 4q,
Y T %
r
_s_ ., -
1-p + s (3.10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

This is equivalent to ;r for the FCFS case with C = 1; thus ;r is again
convex.

Now we consider queues with priority queueing disciplines, with
priority based on customer class and highest priority given to the classes
with lowest index. It is well known (M1) that for preemptive priority the

waiting time is

r a1+ C2)
__.__.2___
g oz T G + L (3.11)
r r-1 :
2Q1 - Z p,)(1 - Z py) w (L=} )
i=1 i=1
Here Ci is the coefficient of variation of the class i service time. Letting
A
p; = upy = -u—i‘ , we rewrite (3.11) as
i

2
r )«i(l + Ci)

i=1 vy 1
T r-1 + -1 (3.12)

2(u - Z o) - Z p})  u (u - 121 3

€|
"

Taking derivatives, we get

r Ai(l+C2) r-1
o _(z ——T—)(zu-zz p; = 1) (3.13)
r_ + =1
dy | rgl y2 ¢ Z y2 ( rgl )2
2(p - M uo- P4 wlu- ) ey
=1 1 =1 1 rhya t
r A 1(1-!43:%) r-1 o=l
- R e AP EHE P NI 2 et 2 L2
T
;;;; » (3 TR PR ol p') (u - p‘)
| AN o 8 z 1 21 i
+ 2 (3.14)

r
wl- § o3
¥ g=1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

r
Since u > A' > z pi, the value of (3.14) is positive and w is a convex
i=1

function of u.

Again from (M1) we know that the waiting time for non-preemptive

priority is
2
R ki(l + Ci)

T (een)?
G; = ir—l - + U'i (3.15)
2(1-2pi>(1-2p;> :
which we rewrite as
2
R A, (L +cd)
- i=1 Yy 1
wr = r__l r + u.ur (3'16)
2 -} ey ) - T pP) |
i=1 i=1
R A (1+c§) r-1
-  -(3 -——-1r*——- Y(2u-2 ¥ p -p )
dw L u i
r _ i=1 1 i=1 . =L (3.17)
dp r-1 T .
2 - ] P2 - Xp;)z r
i=1 i=1
R Ai(1+c§) r-1 r-1
% (L] ppz+<u- 10 - 2 p )+ (u- X e ?)
x i=1 Y4 i=1 =1 i=1 =
du¢ 21 X Z ]
- p!l ) (u - pl! )
g=1 1 g=1 *
+ 2 (3.18)
u-d

As before we see that ;; is a convex function of yu.
We have shown for all six disciplines that the waiting times by

class are convex functions of the processing rate. We are also interested in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

the waiting time independent of customer class. Again from well known

results (Ml) we know that the expected waiting time, Eﬂ is

S R
w = T W (3-19)
1=1 A i
R
where A = ) Ai. Since a linear combination of convex functions is also a
i=1

convex function (W3), w is a convex function of u.

3.3 Convexity of Times in the Network

We can consider networks of queues of the c¢lass described above.
Let N be the number of queues in the network. Class r customers leaving queue
n arrive at queue n' in class r' with probability P(nr),(n’r')’ n'=1l,...,N,
r'=1,...,R. Otherwise the customer leaves the network.

Those customers of class r, r=1,...,R, which depart queue n, n=l,...N,
in a non-Poisson manner must leave the network when they leave the queue.
It is well known that the departure processes of customers leaving FCFS
queues having class independent exponential service times are Poisson, as are
the departure processes of class 1 customers leaving a queue with preemptive
priority and exponential service times for class 1 customers. From (M5) we
know that the departure processes of customers leaving IS, PS or LCFSPR queues
are Poisson. Departure processes of other queues and classes of customers we
have considered are not necessarily Poisson. We assume that all customers
arrive from a Poisson source with rate A, and that they arrive at queue n in
class r with probability Por*

In addition to these restrictions, we must make restrictioné on

feedback of customers in the network. We allow two kinds of subnetworks,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

which we call "Poisson Feed Forward" and "Product Form", and certain inter-
connections of these networks. The Poisson Feed Forward subnetworks are
arbitrary networks as described above which do not have feedback. Figure 3.1
is an example of such a subnetwork. Product Form subnetworks may have only
FCFS queues with class independent exponential service times, IS queues, PS
queues and LCFSPR queues. We may allow arbitrary feedback of customers in
Product Form subnetworks. We call these 'Product Form" subnetworks because
the solutions for these subnetworks have a product form (BZ). Figure 3.2
is an example of such a subnetwork. Though the arrival processes of customers
at queues in Product Form subnetworks may not be Poisson, we know from (C3)
that the waiting times of customers in such subnetworks will be the same as
if the arrival processes were Poisson. Further, we know from (M5) that the
combined departure process of each class of customers from a Product Form
subnetwork is Poisson. We may allow the combined output of one or more
classes of customers from a Product Form subnetwork to feed either kind of
subnetwork as long as there is no feedback of customers except within Product
Form subnetworks. We may allow any Poisson outputs from Poisson Feed Forward
networks to feed either kind of subnetwork as long as there is no feedback
of customers except within Product Form subnmetworks. For example, we can
allow a network consisting of the networks of Figs. 3.1 and.3.2 2s subnetworks
where the output of the network of Figure 3.2 feeds the network of Figure 3.1.
We are interested in the expected number, e of times a queue n is
visited by customers of class r. Following (R1l), e r is defined by NR l1linear

equations of the form

N R

= -+ .
enr pnr n'Zl r'zl en'r' p(n'r')s(nr)

(3.20)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

FCFS

FCFS

Priority

Class 1
Figure 3.1 ,
P2,1 7 P31
P12
FCFS

Preemptive

P13

D
PS

PS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.2



29

The effective arrival rate of customers of class r at queue n is Aenr.
As an example, consider the network in Figure 3.2. For simplicity,
we assume a single class of customers and omit subscripts indicating customer

class. The probabilities associated with paths not shown are assumed to be

zero. The equations defined by (3.20) are

ep = 1+empy  tegpy,
€2 % ©1P1,2
€3 © €1Py.3

Solving these equations we determine that

/(1 -

© Py,2P2,1 ~ P1,3p3,1)

ey = Py,o/ (1 = Py 2Py 3 Py 3P3 5)
e3 = Py 3/ (1 =Py 5Py 1 = Py,3P3,1)"

Clearly the expected total waiting time of a customer at a queue
is the expected number of visits multiplied by the expected waiting time per

visit, and the total time a customer spends in the network is the sum of the

times spent in each queue. So we have

W= 1 e w (3.21)
n=1

where ﬁ; is the expected total time a customer spends in the network in

class r, and G;r is the waiting time for class r customers at queue n. We
let LN be the overall processing rate at queue n, and let unr be the relative
processing rate for class r customers at queue n. We let m be the vector
(ul?uz,...,uN)T. We wish to show that ﬁ; is a convex function of m.

Consider the Hessian of ﬁ;. For n = 1,...,N

BWr Bwnr
5w Cnr B (3.22)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

,aZwr _ ,.az’v?nr

31"‘ = e.nr —:;u-'z“?_ 0 (3.23)
pn n

a%'r'r .

Bunauj

(The inequality of (3.23) follows immediately from the results of Section 3.2).

So the Hessian of ﬁr is positive semi-definite and ﬁr is a convex function

of m.

We have treated the general case where customers may change class
when leaving a queue. The restricted case where customers do not change
class is also of interest. In this case we are interested in the time a

class r customer spends in the network, ﬁ;_ We have

oo (3.25)

which is clearly a convex function of m since ﬁr is a convex function of m.

Finally, we wish to show that the expected time a customer spends

in the network, W, is a convex function of m. But:
Ta 1 1 eig= LW
W= e W _ = W (3.26)
r=1 n=1 "TPF . T

So W is a linear combination of convex functions amd also a convex function.

3.4 Optimization Problem Statements, Procedures

3.4.1 Cost Functions

Having shown convexity of the various waiit' times, we are now ready

to consider optimization problem statements and supgest procedures for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

solution of the problems. The problems we formulate are instances of general
problems which have been previously solved, so we will not present the
procedures themselves, but will refer the reader to previous work.

We can consider a variety of optimization problems, depending on
the cost functions involved. We restrict attention to a class of continuous
and discrete cost functions based on Grosch's Law as discussed by Bell and

Newell (B3). They suggest that the function

g
C =k v/ (3.27)

n n n
is a good approximation to the cost of a device for queue n, where Cn is
the approximate cost, kn is a constant associated with queue n, and g is a
conetant. It has been suggested (B3) that in most cases g is in the interval
[.5,2], and usually in the interval (1,2). We will assume that g is the same
for all queues in the system, and consider two cases. In Section 3.4.2 we
consider the case where g is not greater than one and in Section 3.4.3 we
consider the case where g is greater than one. In both sections we consider

both continuous and then discrete subcases.

3.4.2 Convex Cost Functions (g < 1)

When g < 1, it is easy to show that Cn is a convex function of nn,
and if we assume that the total cost, C, is the sum of the costs at the

individual queues, then C is a convex function of m. So we have R+2 convex

functions, W, Wr’ r=1,...,R, and C, defined over the convex set of processing

R
rates, M. (M = {m|¥n Wo> A ) e 1.
r=1

We now can consider R+2 optimization problems, each one corresponding

to minimization of one of the functions ﬁ; ﬁ;, r=1,...,R, or C over a subset

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

of M. This subset consists of the points in M such that the functions not
being minimized do not exceed some corresponding maximal values. For example,
one such problem would be:

minimize.ﬁ'over the set M

such that ﬁ; S0, T=1,...,R

and C £ v.

The subset of M constrained in this manner is a convex set (R2). This subset
is clearly bounded, and so if a feasible solution exists a local minimum
of the objective function (W in the example) is also a global minimum.
Thus we can use standard procedures (H3,W3) for solution of these optimization
problems.

These continuous problems are not realistic representations of many
actual systems. Often the choices of processing rates of devices are not
continuous, but discrete. For example, in computer systems one usually has
a choice of a few central processing units (CPUs) of different rates, not a
continuum of choices. Thus the set M in these cases is not convex. However,
we may state the optimization problems in the same manner as before. Further,
most of the techniques for solving the discrete problem, such as branch and
bound techniques (H4), require solution of the continuous problem. So our

results are important in the solution of discrete problems.

3.4.3 Concave Cost Functions (g > 1)

When g > 1, the cost function C as defined above is not convex, but
concave. (A function f is said to be concave if -f is convex). We may
state the problems of minimizing the times in the network as before, but we

no longer have the property that a local minimum is necessarily a global

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

minimum. This complicates the solution techniques considerably, but existing
techniques (H3) may be applied and our results are necessary for the application
of these techniques. We may solve the continuous forms of these problems

using the iterative linear approximation techniques of Hogarth (H3). To

apply these linear approximation techniques, we must be able to solve the
problems of Section 3.4.2 with linear cost functions (g=1). Again, we will
often need to consider discrete cost functions; the solutions of the continuous

problems may be used as input to a branch and bound algorithm.

3.5 Application of Open Queueing Network Models

Open queueing network models such as these have been applied to-
design of communications networks, computer networks and computing systems.
Since general results for queueing networks with different classes of customers
have only recently been obtained, the models used have usually assumed that
all customers have identical behavior.

In modeling communication networks (K2) the service devices consider-
ed are the transmission lines. Customers have messages to be transmitted and
lines of different capacities transmit the messages at different rates. The
branching probabilities may be used to represent different routings of messages.
Different customers may require different routings, and we may represent this
by using customer classes.

Queueing network models have found wide application in modeling
computing systems since the early work of Smith (S5), Gaver (Gl) and Buzen
(B6). The model in Figure 3.2 is very similar to the central server models
used by Buzen. Here queue 1 represents the CPU and queues 2 and 3 represent

input/output (I/0) devices. Programs arrive at the system, alternately

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

receive service from the CPU and an I/0O device, and eventually leave the
system. Typically the CPU will have a round robin scheduling discipline which
we nmay represent by the PS queueing discipline. Different programs often have
markedly different CPU request distributions (J2), and we can represent this
by class dependent service times. We let the queueing discipline at the
I/0's be FCFS with class independent exponential service times, and let the
branching probabilities be class dependent. These assumptions are also based
on empirical studies (J2). This model assumes that contention for memory is
not a factor in the system, which may or may not be correct, depending on the
individual system. Similar models (B4,D6, Chapters V, VI) can include memory
contention; it would be desirable to extend the results of this chapter to
such models. (Some of Hogarth's results (H3) are applicable to some such
models with a single class of customers; similar results for multiple-class
models and other more general models would be very useful.)

Models similar to these have also been applied to networks of
computers (Pl); these applications combine the computer system models and

communication network models described above.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER IV
EFFICIENT NUMERICAL SOLUTION OF QUEUEING NETIWORKS

4.1 Introduction

Queueing network models are used to effectively model the performance
of computing systems (B1l,B4,B6,F2,G1,54). Closed form solutions.or efficient
numerical solutions for these models have been difficult to obtain except for
models which may be solved by techniques of local balance (B2,C4,Rl1). We
consider a gene;al class of continuous transition Markovian models with finite
state spaces (D1). We will look at two queue models with characteristics of
computing systems such as First-Come-First-Served (FCFS) queueing disciplines,
priority queueing disciplines, non-exponential service time distributioms,
customer dependent service distributions, and multiple identical servers.

These models are useful by themselves in modeling computing systems; they are
especially useful in determining approximate solutions for more general models
(see Chapter V). We present algorithms for solution of these models and
demonstrate the use of the models in computer system simulation.

Since the models considered have finite state spaces, we can determine
equilibrium state probabilities by solution of the balance equations for this
state space (D1). 1If we let P(i) be the equilibrium probability of state i,
i=1,...,N, and A be the rate of transitions from state i to state j,

i,j
i,j=1,...,N, then the ith balance equation, i = 1,...,N, will be

A g PQ) + e by (RGRD) - jzi A P+ AL, (P(IHD)
+oae g PO = 0 (4.1)

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

In addition to these N equations we know that

P(A) + ... +P(N) =1 (4.2)
If we substitute this equation for one of the balance equations, we can solve
the resulting set of equations for the equilibrium state probabilities. From
the equilibrium state probabilities we can determine model statistics such
as customer throughput, server utilizations, queue lengths and wait times.

In general, the state space may be very large and solutions obtained
by direct numerical techniques may require excessive memory and computation.
Iterative numerical techniques (Wl) have been successfully used for models
such as these, but these techniques still require large amounts of memory
and computation. Generally, these techniques will require large amounts of
memory because all equilibrium state probabilities are determined and stored
before model statistics are determined.

Herzog, Chandy and Woo (Hl) have developed a general approach to
numerical solution of Markovian models with structured state spaces. This
approach determines the equilibrium state probabilities of a small subset of
the state space. From these probabilities the probabilities of the other
states can be directly obtained, if those probabilities are desired. 1In
practice, the model statistics can be determined in terms of the probabilities
of the states of the subset while the probabilities of these states are
determined. The probabilities of most of the states are neither determined
nor stored. Thus this approach does not require a large amount of memory
compared to other techniques; this approach is also efficient in terms of
computation.

In section 4.2 we illustrate this approach for a very simple model.

In section 4.3 we consider a general representation of a large class of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



‘37

queue 1 queue 2 )
I:::::::::::>
1 1
mean i mean
Figure 4.1
A A A
Figure 4.2
// pé pk
1 1 1
mean — - -
M H2 Mk
Figure 4.3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38

gservice time distributions. This representation is appropriate to both the
solution approach and the models of interest. In section 4.4 we illustrate
techniques for more general models. In section 4.5 we apply the approach to
several important classes of models, and in section 4.6 we consider application

to computer system modeling.

4.2 Two Exponential Queues - The General Approach

Consider a model with two FCFS queues, a single class of customers,
and exponential service time distributions. Assume that customers completing
service at one queue always proceed to the other queue. See Figure 4.1. Let
the mean service at queue 1 be 1/p and the mean service at queue 2 be 1/X.
Assume there are N customers in the network. The state of the network can
be determined by the number of customers in the first queue. Let P(i),
i=0,...,n, be the probability of state i. The state transition diagram for

N = 3 is given in Figure 4.2. Let T, U, 6; and W be the throughput, utiliza-

tion,‘mean queue length and mean wait time, respectively, of queue. Let C be
the cycle time required for a customer to make a complete cycle through the

Vnetwork. The following algorithm will determine P(0), C, T, U, Q, and W.
Other moments of the wait time distribution and the queue length distribution
can be determined in a similar manner. The statistics for queue 2 may be

determined in a similar manner, or derived from the statistics for queue 1.

Algorithm 4.1

1. Initialization

P(O) =1

P(1) = A/u

S =1+ A/pu
U = Ay

Q = Alu

W = Ay

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

2. Iteration. Do step 2 for n = 2, N

P(1i) = ((A+u)P(n-1) - AP(n-2))/u «(Note: this follows directly

] =S + P(n) from balance equation n-1l.)
U = U+ P(n)

Q = Q + nP(n)

W =W+ nAP(n-1)/u

Note: After each application of step 2, we may reclaim the
storage used for P(n-2).
3. Determination of statisties.

1/s
UP(0)
wu_

N/T
QP(0) _
WP(0) /T

~
(=)
g

=lololH|d|v

Note: Many simplifications of this algorithm are possible. It
is presented in this form for the sake of clarity and so that
extension to more complex models be straightforward. 1In
particular, note that it will often be desirable for u and/or
A to be dependent on n. Note that we may alternatively
calculate W as GYTICLittle's Rule (L3)). If u and A are not
state dependent, then we can easily determine solutioms for
N + 1 from the values determined for N; this is significant

in parametric analysis.

4.3 Generalized Erlang Distributions

Erlang developed a distribution form comsisting of a sequence of
exponential stages, each of which must be completed by a customer before
proceeding to the next. This form is less skewed then the exponential.
Cox (C5) proposed a generalization of Erlang's form which allows a customer

to bypass the remaining service stages according to a fixed probability

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

dependent only on the stage about to be entered. Figure 4.3 illustrates
this form. Assuming that there are K stages, let P> i=0,...,Kbe the
probability of bypassing the remaining stages after completing stage i,
where it is understood that P, is the probability of bypassing all stages
initially, and that p, is identically 1. Let'Si = 1-p;, 1 = 0,...,K and
let 1/ui be the mean holding time of the ith stage, i = 1,...,K. This form
has the Laplace transform

K i

* = D Py
£x(s) = p, + 121 Py +++ Pyq Py jf=ll

(uj/(uj + s)) (4.3)
Cox showed that this distribution form can represent arbitrary distributions
with rational Laplace transforms, provided that K is sufficiently large and
that we allow the probabilities and holding times to be complex valued.

Though the algorithms we present can be used with this general

form, there are several difficulties:

1) Vhen P, # 0 the solution techniques may become more complex.
As we shall demonstrate, the Cox form is still quite general
when we assume that P, is identically zero. We shall make
this assumption.

2) It is difficult to apply intuition to complex holding times,
complex probabilities and/or real probabilities outside the
interval [0,1]. Further, we do not know how to simulate non-
standard probabilities. (We will refer to real probabilities
in the interval [0,1] as "standard" probabilities.) Thus we

cannot directly compare analytic results with simulation results

when we allow non-standard probabilities. We shall show that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

many interesting and important distributions may be represented
by the Cox form even when we only allow standard probabilities.

3. When we wish to represent distributions with small coéfficient

of variation, we must use many stages when we use the Cox form
or any form consisting of a network of exponential-stages. We
shall discuss what we call "pseudo-PDF's" which may accurately
approximate distributions with arbitrarily small coefficient of
variation using as few as two exponential stages. By pseudo-PDF
we mean negative valued functions similar to probability density
functions.

We will now discuss in detail the second and then the third problem mentioned

above.

The hyper—expénential distribution (M4) is often used in modeling
service times in computer systems. See Figure 4.4. With two stages, positive
real holding times and standard probabilities, this distribution form allows
arbitrarily large coefficient of variation (the standard deviation divided by
the mean). Additional stages may be used to more accurately reflect the
higher moments of a given distribution. If there are K stages, with standard
probabilities > such that % q = 1, and mean holding times 1/ui, i=l,...,K

i=1
then the Laplace transform is

f*(s)

]

K
q.u, / (u, + 8) (4.4)
121 A S

Theorem 4.1: For K

2,3, a hyper—-exponential distribution of the above form
may be represented by a generalized Erlang (GE) distribution
with the same number of stages, the same mean holding times

for corresponding stages, and standard probabilities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

I e
O ()

Figure 4.6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




43

Proof: We consider the case for K = 3, A similar argument holds for K = 2,
Assume without loss of generality that ¥y z_uz z_u3 and that q > 0,
i=1,2,3. Let

Py = 4p * (apky + qzu3)/wy

- 2 _ 2
I B A B 1 B e

- 2 .
AoHgMy F dgHiHy — dgHy = dgkgly
It is easy to show that Py and P, lie in the interval [0,1].
By direct substitution of these values in (4.3) one can obtain an

expression equivalent to (4.4). Thus the GE distribution with K = 3

is equivalent to the hyper-exponential formulation.
Conjecture: The above result holds for arbitrary K > 2.

Many other interesting distributions can be represented by the
restricted GE distribution limited to standard probabilities. For example,
distributions with two or three modes may be represented by distributions
of the form in Figure 4.5. It is clear from the proof of Theorem 4.1 that
the form of Figure 4.5 is equivalent to a GE distribution with standard
probabilities. Of course, Erlang and hypo-exponential (Ml) forms are cases
of the restricted form. Distributions of the form in Figure 4.6 may be
represented by the restricted GE form with standard probabilities if u, or
My 5_u1. Otherwise, the restricted form with real probabilities may be used.
From the above results, it is plausible that arbitrary distributions consisting
of networks of exponential stages may be represented by the Cox form with
real probabilities. Since networks of exponential stages may be used to

represent arbitrary distributions with rational Laplace transforms (Cl),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



44

correctness of this conjecture would imply that we may restrict the Cox
form to real probabilities and holding times and still be able to represent
arbitrary distributions with rational Laplace transforms.

We now consider some surprising results obtained by using "pseudo
probability demnsity functions" (pseudo-PDF's). We do not fully understand
these functions or their application, but they seem potentially useful in
computer systems modeling and worthy of further study. A general problem
with any distribution form consisting of exponential stages is that the
minimum obtainable coefficient of variation is 1/v¥K. Thus many stages must
be used to represent distributions with little variance, and an infinite
number of stages must be used to represent a constant distribution. The
pseudo-PDF's we consider may have arbitrarily small coefficient of variation
with as few as two stages.

Consider a Cox form with K = 2, P, = 0, By = Hy = 2 + /2 and
Py = - 2. A graph of this function is shown in Figure 4.7. This function
has "mean" 1 and "variance" of 0. It is clearly not a PDF because it is not
strictly non-negative. However, it is like a PDF in that its integral from
zero to infinity is 1. Using this function with algorithm 4.3 we obtained
results nearly identical to those obtained by Gaver (Gl) for utilization of
a CPU with constant service times. The maximum disagreement with the results
obtained by Gaver was .004. Using the techniques of Chapter V, we used this
form to analyze more general models with constant CPU service times. The
results of this analysis were in good agreement with simulation results for

CPU utilization, mean and standard deviation of queue length and wait times.

(See Tables 5.1, 5.2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45



46

These results are exciting, but pseudo-PDF's must be used with
caution until they are better understood. It is possible to obtain physically
impossible results using the form described above. Consider a model similar
to that of section 4.2 with two customers, a pseudo-PDF for the first queue
service time, and an exponential distribution with mean 1/X for the second
queue service time. TFor the pseudo-PDF, let My =My = 1 and P, = - V2.

This form has mean 2 + V2 and variance 0. If A # 1/¥2, it is easily shown
(see Algorithm 4.3) that the utilization of server 1 is

1-(1-A2)/(L+ 21+ 4+ 2/DA2 + (2 + /2)23) (4.5)
Clearly this value will be greater than 1, a physiéally impossible situation,
if A is greater than 1/Y/2. However disconcerting this may be, it can be
interpreted as a reasonable amount of error. For example, if A = 1, then
the value of (4.5) will be approximately 1.03. Using the analysis of (S4) we
find that the correct value for a model with constant service of 2 + v2 is
approximately .99. We will not pursue these forms further here, but suggest

that they be further studied in the future.

4.4 Two Queues - One GE, One Exponential

We now illustrate techniques for models with one queue having the
GE form of service distribution and a second queue having an exponential
distribution; otherwise, the model is as in section 4.2. We will often omit
the subscript when referring to Py It is straightforward to extend the
algorithm to allow customers to feedback to the queue they are departing from
according to fixed probabilities. We also assume that K = 2; extension to
other values of K is straightforward.

Let the state of the model be represented by the ordered pair (i,n)

where there are n customers in queue 1 and the customer being served is in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

stage 1 of the service distribution. For notational convenience, let 1 = 1
when n = 0. Figure 4.8 gives the state transition diagram for N = 3.

We present two algorithms; the first determines P(1,N) and P(2,N) and the
second determines P(1,0). Though the second algorithm is preferable for
this model, the techniques of both algorithms are applied to more complex
models. Determination of model statistics is not included, these may be
determined in a straightforward manner similar to Algorithm 4.1.

Figure 4.8 is partitioned into three groups of states by dashed
lines. Algorithm 4.2 "sweeps through" the state diagram according to these
partitions. Step 1 determines values for the states in the top group. Step
2 determines values for the middle group. Step 3 determines values for the

bottom group of states and uses these to determine the model solutions.

Algorithm 4.2 (assume N > 1)
Throughout most of the algorithm we represent state probabilities
as two-element column vectors; at the end of step 3 P(1,N) and P(2,N)
are determined as scalars.
1. Initialization
P(1,N) = (1,01

P(2.N) = (0,197
B(LIN-1) = Gy /A)B(L,N)

P(2,8-1) = (u,/M)P(2,N) - (p uy/A)P(L,N)
S = P(1,N) + P(2,N) + P(1,N-1) + P(2,N-1)

2, Iteration. For n = N-2,...,1 do step 2.

P(1,1) = (1 + u;/MP(1,ntl) = (p vy /M)P(1,n42) - (u,/N)P(2,042)
P(2,1) = (1 + u,/NP(2,0+1) = (p uy/M)P(1,nH1)
S = S + P(1,n) + P(2,n)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48.

Figure 4.8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

3. Determination of P(1,N), P(2,N) as scalars

B(1,0) = (1 + 1 /AP(L,1) - (puy/MB(L,2) - (,/M)P(2,2)
S=8+ P(l,O)’ '
D = P(2,1) - ( uy/(n, + M)IP(L,1)

Note: D is the difference of the value of P(2,1) as determined
from the balance equations for (2,2) and the value of P(2,1)
as determined from the balance equations for (2,1). Thus
the inner product of D and the vector consisSting of the

scalar values of P(1,N) and P(2,N) must be O.

T
Solve DT X = 0 for x
S 1

P(lsN) = Cl P(Z,N) = CZ

where Ci is the ith element of x.

Algorithm 4.3 (assume N > 1)
1. Initialization

1

P(1,0) .
(A/(pu1 + pnluzl(u2 + 2)))P(1,0)

P(1,1)

This expression is obtained from the balance equations for
state (1,0) and (2,1) as follows:

AP(1,0) (4.6)

pu P (1,1) + u,P(2,1)

(u, + MB(2,1) = puy P(1,1) 4.7
dividing each side of (4.7) by By + A and substituting into
(4.6) yields

uiﬁhl
PP+ pEEE P = R0 (4.8)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



collecting terms and dividing by py; + Ehluzl(pz + )

yields
A

P(1,1) = —
pu, + puyu,/(uy + )

P(1,0)

P(2,1) = pu P(1,1)/(u, + 1)
= P(1,0) + P(1,1) + P(2,1)

2. Iteration. Do step 2 for n = 2,N-1

50

€4.9)

P(1,n) = (A + ¥)P(1,n-1) - AP(1,n-2) - uAP(2,n-1)/(n, + 1)

PHy + PHyHy/ (y + 1)

This expression is obtained from the balance equation for

states (1,n-1) and (2,n) as follows

pulP(l,n) + uZP(Z,n) + AP(1,n-2) = (A + ul)P(l,n—l)

(y + A)P(2,0) = puyP(1,0) + AP(2,0-1)
-5“1 7\
Phgly "“2
pulP(l,n) + ——= sy P(1,n) + —=— P(2 n~1) + AP(1,n-2) =
Ho HytA
O+ ul)P(l.n—l)
A+u1
P(l,n) = — P(1,n-1)
- — A P(1,n-2)
Pu1+pu1u2/(u2+l)
Auz
- — P(2,n-1)
(uoA)pu o 1y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)



51 -
P(2,m) = (pu,P(1,n) + AP(2,n-1))/(n, + A)
S =84+ P(1l,n) + P(2,n)
3. Determination of P(1,0)

P(2,N) = ((A + 1 IP(L,N-1) - AP(1,§-2) - AB(2,N-1))/u;
P(2,0) = (i P(L,N) + AP(2,§-1))/u,

S =S + P(1,N) + P(2,N)

P(1,0) = 1/

4.5 Application to More General Models

We now present algorithms for a variety of important models. These
algorithms are not as general as possible. They are intended to illustrate
technique. We have implemented more general versions of each of these
algorithms, in Fortran for a CDC 6600. These algorithms may be combined to

consider models with several of the features considered below.

4.5.1 Two Non-Exponential Queues R

Consider a two queue network as in Figure 4.1, with N identical
customers, with FCFS disciplines at both queues, and GE distributions at both
queues. Assume that each distribution has two stages, with rates My and uz
and probability Py for queue 1, and with rates Al and Az and probability 9,
for queue 2. As before, we will often omit the subscripts on p and q. We
may define a state of this system as a triple (i,j,n), where n = 0,...,N is
the number of customers in queue 1, i = 1,2 is the service stage of the customer
being served at queue 1, and j = 1,2 is the service stage of the customer
being served at queue 2. For notational convenience, let i be 1 when n = 0,
and let j be 1 when n = N. Let P(i,j,n) be probability of state (i,j,n).

The state transition diagram for N = 3 is given in Figure 4.9.

-—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2,1,2

ary <
1i,1,1 — 2,1,1
u, / PHy
Xz o
q)\l 1 112
qry
1,1,0
Figure 4.9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52



53

Algorithm 4.4 Determination of P(1,1,0) and P(1,2,0)
(assume N > 1)

1. Initialization

P(1,1,0) = (1,0)T
P(1,2,0) = (0,17
Ay
P(1,1,1) = — P(1,1,0)
pHy + pugu,/(u, + 40D
Py,
P(2,1,1) = P(1,1,1)
U, + A
2 1
Ay
P(1,2,1) = — P(1,2,0)
Puy + Py, (Hy + AY)
oy
b — P(l,l,O)
qu,)
- . — P(zylsl)
pHy (My + 25) + pujn,
P(2,2,1) Py (1,2,1) oty
] ] = P b} 3 +
My T2y g + A,

s =P(1,1,00+P(1,2,0)+P(1,1,1)+P(1,2,1)+P(2,1,1)+P(2,2.1)

2. Iteration. Do step 2 for n = 2,3,...,N-1

A tu KA
P(1,1,n) = — L X P(1,1,n-1) - 2 {_ .
Pulﬂuluzl(uz"'?sl) (u2+ll)pu1+~pulu2
HLA . qA
P(2,1,n-1) - 22 P(2,2,n-1) - 1
(uytr Ipu +pug B,y Pup+PH My / (uytay)
( "2
P(1,1,n~-2) - P(1,2,n-2)
P HPU Hy/ (HptA )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



54

A A

P(2,1.m) = —oL P11y 4 —ol p(2,1.n01) 4 ——2- P(2,2.0-1)
A ’ ,n = e—— P ’ ,n + P » ,n"‘ + — Py ,n‘—
u2+)\1 "2'”‘1 u2+)\1
uz + )‘1
P(1,2,n) = — P(1,2,n-1)
Py, + puluzl(u2 +2,)
u,qA
- 2 1_ P(Z,l,n)
(uz + Xz)pul + PH, M,
ary
- — P(1,1,n~1)
pH; + i,/ (i, + 2y
(2,2,n) ;ul(?.) Py (2,1,n)
P(2,2,n) = ——— P(1,2,n) + ——— P(2,1,n
u2 + )\2 112 + }‘2

S =S + P(1,1,n) + P(2,1,n) + P(1,2,n) + P(2,2,n)
3. Determination of P(1,1,0), P(1,2,0) as scalars

}\1 + ul qA

P(L,1,0) = ~——=P(1,1,8-1) - 'Tfl‘ P(2,1,N-1)
1 1 v
Ay a}y
- -2 P(2,2,N-1) - —=P(1,1,N-2)
Ay
- :l— P(1,2,N-2)
1
Py ary A,
P(2,1,8) = —= P(L,1,8) + —= B(2,1,8-1) + =2 P(2,2,8-1)
¥y 2 2

S =8 + P(1,1,N) + P(2,1,N)

™ ( )
1l P 1,1’N_1
ul + )tz

D = P(2,1,N-1) -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

T .
solve D X = [ 0 ] for x

st 1

P(1,1,0) = ¢ P(1,2,0) = ¢

1 2

Our computer implementation of this algorithm allows the number of .
stages at each queue to be 1, 2 or 3, independent of the number of stages at
the other queue. 1In this implementation, the rates of each stage of the
distribution for the second queue may be a function of the number of customers
in that queue; when these rates are not queue length dependent, the program

can determine results for a range of numbers of customers in the model

without redetermining intermediate results.

4.5.2 Multiple Identical Servers

We now consider models with two identical servers at queue 1. The
algorithm we present can be extended to more than two servers. We assume the
service time distribution for queue 1 is of the above form with two stages and
the second queue service distribution is exponential with mean 1/)\; extension
to both distributions of the Cox form is straightforward. We assume that one
server is idle when only one customer is in queue 1l; very minor changes in
the algorithm are required to consider cooperation of the two servers when
there is only one customer in the queue. The state of the model can be
described as a triple (i,j,n) where there are n customers in queue 1, the
customer being served at one server is in stage i, and the customer being
served at the other server is in stage j, where i < j. For notational
convenience, we have i identically 1 when n = 1, and i and j identically 1

when n = 0. The state transition diagram for N = 3 is given in Figure 4.10.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

2,2,3
_“1
A
1,1,3 - 1,2,3
2pyy N\ 2\
U
2
A 2pu, 2,2;2 Py
¥2
PUuy
1,1,2 ~ 1,2,2
2puy
pu
A 2p}.|1 Hy 21,12 1
1,1,1 _ 1,2,1
A PH
1,1,0

Figure 4.10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



57

Algorithm 4.5 Determination of P(1,1,1) and P(1,2,1)
(assume N > 2)

l. Initialization

P@,1,1) = (1,007
P(1,2,1) = (0,1)F

P, My
P(1,1,0) = —= P(1,1,1) + 5= P(1,2,1)

At ou,

P(1,2,2) = — P(1,2,1)

Py + Zpuin,/ (20, + 3)

PHy
- — P(1,1,1)
pHy + 2pu H,/ (2u, + A)
Py

P(2,2,2) = Euz—_*_—'x P(1,2,2)

e My A
P(1,1,2) = Zou, P(1,1,1) - 5;;;-?(1,2,2) - EEEI-P(l,l,O)

s = P(1,1,1) + P(1,1,0) + P(1,2,2) + P(2,2,2) + P(1,1,2)

2, 1Iteration. Do step 2 for n = 3,N-1

A+ul+u2
P(1,2,n) = — P(1,2,n-1)
Puy + 2puyu,/ 2y, + )

2u2A
(2u, + Mpy; + Zpuyu,

. i_
-~ pul P(1913n—1)

pu, + Zpuluzl(Zuz + 1)

- — A P(1,2,n-2)
puy + 2puaH,/ (2uy + A)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

Py A
P(2,2,n) = -Z"FFT P(1,2,n) + WP(Z’Z’n-l)
A+ Zul By
r(1,1,n) = ———P(1,1,n-1) - ——— P(1,2,n)
2p¥, 2p111
. P(1,1,n-2)
- ' zpul sls

$=5+P(,2,n) + P(2,2,n) + P(1,1,n)

3. Determination of P(1,1,1) and P(1,2,1) as scalars

A+ul+p2 A
P(1,2,N) = ——=P(1,2,8-1) - = P(2,2,8-1)
1 51
- 2p P(L,1,8-1) - %— P(1,2,N-2)
1
My Wy
A+ Zul By
= ———= P - - —
P(1,1,N) o (1,1,N-1) Tou P(1,2,N)
-2 p(1,1,8-2)
zpul sdy

S =8 + P(1,2,N) + P(2,2,N) + P(1,1,N)

A

D=P(,1,N) - -2—u-— P(1,1,N-1)
1
[T
Solve DT X = 0
S 1
P(l,Z,l) = Cz

Our computer implementation of the above algorithm allows A to be a
function of the number of customers in queue 2. It will handle models where
both servers in queue 1 cooperate when a single customer is present in that

queue.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

Note that algorithm 4.5 is not defined for p = 0 because of the

division by 2pu1 in step 2. Of course the algorithm will be unstable when p
is near zero. Algorithm 4.5E (Erlang) will handle the case where p is zero.
"It would be straightforward to develop an algorithm which determines P(l,l,N),
P(1,2,N) and P(2,2,N) and would not be sensitive to the value of p, but this
would require more memory, especially when extended to multiple classes.

We expect that Algorithm 4.5E could be modified to consider the general case,
but we have not done so. This modified algorithm would likely require memory

comparable to Algorxithm 4.5.

Algorithm 4.5E Determination of P(1,1,0)
(assume p = 0, N > 2)

1. Initialization

P(1,1,0) =1
P(1,2,1) = %— P(1,1,0)
2
A+ uz
P(1,2,2) = P(1,2,1)
2“1“2/(2“2 +A) + “1“2/(“1 + 1)
ulk
- P(1,1,0)
(“1 + 3\)2ulu2/(2u2 + 1) + MM,
¥
P(2,2,2) = m P(1,2,2)
2
P(1,1,1) = ——:%—X-P(l,Z,Z) + ———%7X-P(1,1,0)
uy My

s = P(1,1,0) + P(1,2,1) + P(1,2,2) + P(2,2,2) + P(1,1,1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

2., Iteration. Do step 2 for n = 3,...,N-1

A+ul+u2
P(1,2,n) = - P(1,2,n-1)
2u1u2/(2u2 + ) + 2ulu2/(2ul + A)
2ulk
- P(l,l,n—2)
(2u1 + k)2u1u2/(2u2 + 1) + 21,1y
ZMZA
- P(Z’Z:n"l)
2ulu2 + (2112 + l)2u1u2/(2u1 + )
P(22n)-——u—1—1’(12 )+-——-L-P(22 1)
ST S T T
P(1,1,n-1) = -—-—Eg—-P(l 2,n) + S — P(1,1,n-2)
i FITEC Yl e TR Y
s =8+°P(1,2,n) + P(2,2,n) + P(1,1,n-1)
3. Determination of P(1,1,0)
( Mg tu,
P(1,2,N) = P(1,2,N-1)
Ht Zuluz/(Zul + 2)
2ull
- P(1,1,N-2)
(Zul + Muy + 2w,
T, + 2 A/(2 Ty F(2.2,8-1)
gt A
P(2,2,N) = — P(1,2,N) + —— P(2,2,N-1)
2u2 Zuz
P(1,1,8-1) = ———135—-P(1 2,N) + ———3—-—-9(1 1,N-2)
9., —2111"'}‘ y&y 2u1+)\ ’+>
P(1,1,0) = 32— P(1,1,8-1)
o1

s =8+ P(,2,N) +P(2,2,N) + P(1,1,N-1) + P(2,1,N)

P(1,1,0) = 1/s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



61
4.5.3 Different Classes of Customers - FCFS

In this section we present an algorithm for models with FCFS digcip-
line at queue 1 and 2 classes of customers with class dependent service times.
In subsequent sections we consider models with priority disciplines at queue 1.
We assume that queue 2 is such that customers of different classes are served
in parallel. In Algorithm 4.6 we assume that the mean service time for each
class of customers is exponential with mean 1/lj, j=1,2, where j indicates
customer class. We assume that the service time at queue 1 is exponentially
distributed with mean 1/UB, j=1,2; extension to non-exponential distributions
of the Cox form is straightforward. We will assume that there is exactly 1
customer of class 1 in the model; extension to models where customers may change
class when leaving a queue so long as there is at most one class 1 customer at
any time is straightforward. Extension to models with more than one customer of
each class and more than 2 classes is possible but more difficult. Extension
to models with multiple identical servers at queue 1 is straightforward. We
represent a state of the model by an ordered pair (i,n) where n is the number
of customers in queue 1 and i is the number of class 2 customers at the head of
queue 1. When there is no class 1 customer in queue 1, i and n will have the
same value. Figure 4.11 gives the state transition diagram for a model with
4 customers.

Algorithm 4.6 Determination of P(0,0),...,P(0,N-1)
(assume N > 1)

Note that this is the first algorithm we present where the number of
states to be finally determined depends on the number of customers.

The vectors we deal with have length N. We will represent a column

vector with all elements 0 except the ith element 1 as e.

1. Initialization.

P(0,0) = e,
P(0,1) = e,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

Figure 4.11

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63

A, + A H
L—270,0 - Fro,

2 2

P(1,1) =

s = P(0,0) + P(0,1) + P(1,1)
2. Iteration. Do step 2 for n= 2,...,N-1
a. P(0,n) = € 411
b. Iteration. Do step 2b for i =1,...,n-1

CA 4 A
P, = 2-maZd) 5y gy o BRELD pe a0
2

M2
AL +A +U A B
c. P(n,n) = —l——g——Z»P(n—l,n—l) - —2-P(n-2,n-2) - ;l'P(O,n)
) Mo 2

d. S=S+PO0,n) + ... + P(n,n)
3. Determination of P(0,0),...,P(0,N-1) as scalars

AL +n A
12 p(N-1,8-1) = =2 P(N-2,N-2)

a. P(O,N) = Wy ™

S = S + P(0,N)

b. Iteration. Do step 3b for i =1,...,N-1

Aty L A _
P(i,n) = —2-Win(2:1) pey g nogy - WIRGLN) ey g N9
Yo ¥o
Mnin(2,N-1)
D, = P(i,n) - 2 P(i,N-1)
i Uy
S =85+ P(i,n)
¢. Solve
(T ()
D, 0
. X = .
T
Dy1 0
T
\ S° ) L 1)
For n = 0,...,N-1 P(O,n) = S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



64

Our computer implementation uses a similar algorithm which solves
for states with all customers in queue 1 and allows queue 1 service distribu-
tions of the Cox form with arbitrary numbers of stages. When we allow non-
exponential distributions at queue 1, an extended version of Algorithm 4.6
will use considerably less memory and be more efficient than the algorithm we
implemented. Our implementation allows ll and Az to be dependent on the

numbers of customers of each type queue 2.

4.5.4 Preemptive Priority Based on Customer Class

Let queue 1 of the two queue models we have been considering have
a preemptive priority discipline with class 1 customers having priority over
class 2 customers. Let queue 2 have a parallel service discipline as in
section 4.5.3. We assume that there are Nl class 1 customers and N2 class
2 customers, and that all service time distributions are exponential with
means as before. Extension to more classes of customers is straightforward
and extension to non-exponential distributions is also possible. We
represent a state of the model by the ordered pair (nl,nz) where n, is the
number of class i customers in queue 1. Figure 4.12 gives the state
transition diagram for Nl = 3 and N, = 2.
Algorithm 4.7 Determination of P(Nl’o)""’P(Nl’NZ)
(assume N1 > 0, N2 >70)
Note that the vectors we deal with will have N2 + 1 elements
1. Initialization

a. For n, = 0,...,N2, P(Nl,nz) = enz+1

ul + Az

b. P(Nl—l,O) = P(Nl,O)

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ul + hz
M

p A
P(N N, - 2

P(Nl-l,nz) P(Nl,nz)

P(Nl-l NZ) =

l 1

N

1 N,

_ )
nl—Nl—l n2-0

P(nl,nz)

=N

Do step 2 for n, 1

Iteration.

+ A

M

¥y

a. P(nl,O) = 2

P(n1+1,0)

b. Iteration.

H.+A
1,
P(ny,n)) = =5

1

P(n1+1,n2)

A
A

Y1
= ——-P(n +1,n )

P(n,,N)) "

1
N

s+ ¥

n2=0

2

S = P(nl,nz)

Determination of P(Nl,O),...,P(N1

a. Iteration.

_
A1+12+u2

Dy

= P(O,n,) -
) 2

e

A PR,

A

Ai+

p, = P(O,N,) - P(0O,N
N, *2 2 2

2
- — P(N, ,n
Al 1

—2,--.

Do step 2 for n, =

2 P(n1+1 n,~1l) -

Do step 3.a for n, =

P(O,n2

-1) -

Iteration. Do step l.c for n, = 1,...,N2—1

A

2—1)

P(N Nz—l)

,0

vy
- — P(n1+2,0)

M

l,. L) ,Nz—l

A

2
T P(n +l,n2 1) -

1

g
P(n +2,n

,Nz) as scalars

1,...,N,-1

2

e T
A 1+A 2+ 2

P(l,nz)

+1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

P(n +2,n

2)

2)



67

c. Solve ( D{ M (0 )
g |7 o
2
T
L 57 ) L 1)
d. FOI nz = O,OIO,NZ P(Nl9n2) = Cn +1

2

Our computer implementation of an algorithm based on 4.7 allows
three classes of customers and assumes exponential distributions. The values

of A,, 1 =1,2,3, may be dependent on the numbers of customers of each

i
class in queue 2, Our algorithm decides which states to solve for on the
basis of minimizing the length of the vectors used; it solves for the states

with n, = Ni’ where i is the minimum value such that n, = max(nl,nz,n3).

i

4,5.5 Non-Preemptive Priority Based on Customer Class

We now consider models similar to those considered in 4.5.4, but
with non-preemptive priority at queue 1. The state of the model is represented
by an ordered triple (i,nl,nz) where i is the class of the customer being

served at queue 1 and n, and n, are as before. (Let i = 2 when n, = m, = 0.

Figure 4.13 gives the state transition diagram for N1 = 3 and N2 = 2,

Algorithm 4.8 Determination of P(l,Nl,O),P(l,Nl,l),P(l,Nl,Z),...,P(l,NlNz),

P(Z,Nl,NZ)

(assume N, > 1, N, > 0)

1 2
Note the vectors we deal with have length 2N2+1
1., Initialization.
a. P(l,Nl,O) = e For n, = 1,...,N2,

For 1 = 1,2, P(i,N),n,) = ®2n,+i-1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

o~
~<
-+
=%

m o
-
~

4
=1 Q
o)
b
60
)
1 F
\A Q
~—
- o~
~ a
\A2 o~
ul
~— - —
i e | 11 ~< =
< <

0,0

u
2,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69
Agthy My

b. P(l,Nl—l,O) = T P(l,Nl,O) - —XIP(Z’N].’]')

c. Iteration. Do step l.c for n, = l,Nz—l

Agtiy )
P(l,Nl—l,nz) = 11 P(l,Nl,nz) - A—l- P(Z,Nl,n2+1)
Ay
Aty (1-6 n PR
_ A2y 1,022 )
P(Z,Nl—l,nz) = }\1 P(2,Nl,n2) - 11 P(Z,Nl,n2 1)

where 6 is the Kronecker §.

! A
= L -2 -
d. P(1,N-1,N)) = " P(L,N;,N,) X P(1,N;,N,-1)
0y (1—61’N2)A2
P(2,N -1,N,) = XZ-P(Z,NI,NZ) - W P(2,N,,N,-1)
2 N N
e. S =P(1,N ,0) + P(1,N.~-1,0) = ) Y Y P(i,n ,n,)
1 1 L 1’72
1=l n;=N -1 n,=1

2., Iteration. Do step 2-for n, = Ni;Q,...,l

)‘l-l-lz-l-ul u2
a. P(1,n,,0) = ———— P(1,n,+1,0) - — P(2,n,+1,1)
1 A 1 A 1
1 1
91
- —)\1 P(l,nl+2,0)

b. Iteration. Do step 2 for n, = 1,...,N2—l

ll+>\2+u1 uz _
P(l,nl,nz) = T P(l,n1+1,n2) - 7\? P(2,nl+l,n2+l)
Ay My
- -A: P(l,n1+l,n2-1) - -)‘-; P(l’nl+2’n2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70
(1-8 YA
1 My 2
P(2,n1,n2) = —_-_XI—_'P(Z’n1+1’n2) - 11 P(2,n1+1,?2—1)
A, +u A
171
kl P(1, n1+1 N ) -~

A +Az+p2 1,n

2 P(1,n,+1,N,-1)

c. P(l,nl,Nz) = )

in

1
- i—-P(l,n1+2,n2)
YA

1
11+u2 (1-61,N2 2
P(Z,nl,NZ) = Al P(2,n +1,N2) - Al P(Z,nl+1,N2)

)

d. S =8+P(l,n,0) + 2 y P(i,n,,n,)

i=1 nz*l

l’N2) as scalars

2 = lgout,Nz"l

Ay )
2 2 A1+l2+ul 2 X1+X2+u1

3. Determination of P(l,Nl,O),...,P(Z,N

a. Iteration. Do step 3.a for n

+1)

P(2,1,n2

=]
!

s
AL +A

P(1,2,n2)
172"

A e
P(l,l,N ) -3 1. P(l,l’N "l)
2 2 X1+u1 2 l1+u1

A1+A2+ul
A

P(1,2,n )

o
|~
]

H H
P(1,1,0) - —2 P(2,1,1) - 7=
1 Ay

c. P(2,0,0) = P(1,2,0)

-1
A,

d. Iteration. Do step 3.d for n, = 1,...,N

(1~

2 2

l,n2
1

A
2 2

A1+Az+u2

A

P(2,0,n,) = P(2,1,n P(2,1,n,-1)

 —
(1-6

1
; Aty
2 x

1,N
2) - A

e. P(2,0,N P(2,1,N P(2,1,N,-1)

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



71

g. Iteration. Do step 3.g for r, = l,...,N2-1
Ay My
D = P(2,0,n,) - =—/—— P(2,0,n,-1) - ~—————— P(2,0
N2+n2 27 A1+A2+u2 2 A1+Az+m2
f(\a‘*') l-'l
) - e P(2,1,n,)
11+A2+u2 2
Ay M
h. D = P(2,0,N,) - ?(2,0,N,-1) - —— P(1,1,N,)
2N2 2 Al+u2 2 Xl+p2 2
3
i. Solve r D{ [0 ]
:T x = .
D 0
2N2
T
\ S b, \ 1 /
P(lleso) = Cl
for n, = 1,...,N2, for 1 = 1,2, P(i,Nl3n2) = CZn2+i-l

The algorithm we implemented allows three classes of customers, and

allows queue length dependent service times for queue 2.

4.5.6 Other Applications

We have applied these techniques to two queue models with random
scheduling at queue 1 or with priority disciplines at both queues, and to
models with more than two queues, but have not implemented computer programs
for these models. Models with priority disciplines at both queues seem
limited in applicability to computer systems. Algorithms for more than two
queues will tend to have large memory requirements, but may still be of some

value.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



72

4.6 Application to Computer System Modeling

4.6.1 General Approaches

Many approximate analysis techniques for general models of computing
systems are dependent on solution of the models we have considered (C2,
Chapter V). We now consider direct use of these models in computer system
analysis. The models used here are based on those of Gaver (Gl).

We can use these queueing network models to help illustrate some
of the effects of having single or multiple processing units, and of having
multitasking when there are multiple processing units. We will restrict
attention to a simple class of models; the analysis can be extended to much
more general models using the techniques of (B4,C2,Chapter V). We will
assume that there is a fixed number of programs in memory and that these
programs have identical behavior. The programs alternately request service
from a central processing unit (CPU) and an input/output (I/0) device. When
there are no free CPU's, or no free I/0's, programs must wait in the
respective CPU and 1/0 queues, both with FCFS queueing discipline. We assume
the service times at the I/0 devices are exponentially distributed with mean
L, where L is the number of I1/0 devices, and that the CPU service times have
a standardized distribution (Chapter V) with mean 1/p and coefficient of
variation C.

The queueing network models we use are those of sections 4.4 and
4.5.2., We let queue 1 represent the CPU queue and let queue 2 represent the
I/0 queue. For queue 2 we let A be a function of the length of queue 2,
with li = ﬁin(i,L)/L, i=1,...,N, where N is the number of programs. We

use this representation so that the effective combined rate of the I/0

devices will be 1 when all devices are busy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



73

In Section 4.6.2 we consider the relative advantages of having a
single CPU of given speed and of having two CPU's half as fast as the single
processor, in section 4.6.3 we study the improvement in throughment obtained
by multitasking with two processors, and in section 4.6.4 we consider improve-

ments in throughput which may be obtained by adding or upgrading CPU's.

4.6.2 Single CPU vs. Two Slower CPU's

It would be reasonable to expect that a single CPU would be better
than two CPU's with half the processing rate of the single CPU, since one
of the slower CPU's in the two CPU case would be idle when there is only a
single program needing a CPU. Figure 4.14 shows the ratio of throughput
with one CPU to the throughput with two CPU's half as fast as a function of
u for the fast CPU. Curves for three values of C are given. The number of
customers and the number of I/0's are both held constant at 3. Notice that
there is little difference between one fast CPU and two slower CPU's when
the CfU distribution is skewed. When the distribution is so skewed, a single
CPU may be occupied for long periods by a single program; the other programs
must wait in the CPU queue while the I/0's are idle. In contrast, with
multiple CPU's programs with smaller requests for service can continue to
circulate through the system. As C decreases, the ratio increases because
this blocking effect decreases. The blocking effect becomes strong enough
to favor two slower CPU's when the number of programs and I/0's is raised to
5 (Figure 4.15), or when there is contention for I/0 devices (Figure 4.16).
Figure 4.17 shows throughput as a function of the number of programs. Curves
are shown for 1 and 2 CPU's. L is the same as the number of programs, u for

the fast CPU is 1, u for the 2 slow CPU's is .5, and C is 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.14 3 Programs

3 1/0's

(o]
T 1.08
&
&
=]
[}
®
]
(=]
1 %}
&
1.02
2 [ 9 1 [
| B [ § [ ] | |
1 2 3 4 5

Processing Rate ()

C - Coefficient of Variation

Figure 4.14 - Throughput Ratio - 1 Fast/2 Slow CPU's

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74



1.08 5 Programs

51/0's

1.03

Throughput Ratio

1.00

.98

Processing Rate

Figure 4.15 - Throughput Ratio - 1 Fast/2 Slow CPU's

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75



1.07

Throughput Ratio

.92

3 Programs

U e

Processing Rate

Figure 4.16 - Throughput Ratio - 1 Fast/2 Slow CPU's

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76



A CPU'S
Rate .5

= === 1 CPU rate 1

Throughput
2N

)
1 1 ] 1 -1 | P N [
| N N J | ] ] | | L ]
2 3 4 5 6 7 8 9 10
Number of Programs and I1/0's

Figure 4.17 - Throughput with Skewed CPU Distribution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77



78

4.6.3 Improvement Obtained by Multitasking

When a system has more than one CPU, it may be possible to improve
performance by dividing a program into tasks which may execute in parallel (H3).
Usually there will be interference between the tasks, but for the sake of
illustration we will assume that it is possible for two processors to
cooperate fully on a single program without interference. If processors
always cooperate on a single program without interference, then this is
equivalent to a single CPU with rate equal to the combined rate of the indivi-
dual CPU's. The analysis of Sec. 4.6.2 would be aprroximate for- the case.

We assume that processors cooperate only when there is exactly one program
needing a CPU. Figure 4.18 shows the ratio of throughput with and without
cooperation as a function of 2u. Curves are shown for the same distributions
as before, for a system with three programs and three 1/0's. Figure 4.19

gives results for a system with 5 programs and 5 I/0's. Notice that the
potential improvement is less; since there are more programs, it is less likely
that there will be only one program needing the CPU. Also notice in both
figures that maximum potential improvement exists when the systém is fairly
well balanced. When the system is CPU bound, it is unlikely that only one
program will need a CPU; when the system is I/0 bound, improvement in CPU

performance has little overall effect.

4.6.4 Improvement Obtained by Adding or Upgrading CPU's

In general, the rates of CPU's actually obtainable do not increase
continuously, but in discrete steps. For the sake of example, we assume
that we have a choice of four CPU's with mean processing rates (u) 1/3, 1, 3,

and 9, that a system can support at most 2 CPU's, and that CPU's of different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.13 3 Programs
. 3 1I/0's
.S ------—C= 5.
&
o
Py
] - 1
o --——--C= .
(=7
'ED 1-08
3
8 ol D GNP G S
= C = .75
B
1.03 ‘
1 1 [ 1 [
' L] ! 1 T
1 2 3 4 5

Processing Rate

Figure 4.18 - Throughput Ratio - Multi-tasking/Uni-tasking

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.08

1.04

Throughput Ratio

1.0

- 80

5 Programs
5 1/0's

]
wi

- cun eEp @ CaEn T e D GO wemn C

L

i 1
| '
2 3 4 5

Processing Rate

Figure 4.19 - Throughput Ratio - Multi-tasking/Uni-tasking

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



81

rates may not be used together. Thus a system with a single CPU may increase
processing power by adding a similar CPU, but a system with dual CPU's

must increase power by getting a faster CPU. We would expect that throughput
would increase monotonically as potential processing power is increased,

as in Figure 4.20. In this figure we have 3 programs, 3 I/0's, and C is 5.
Some unexpected behavior does occur under other circumstances. Figure 4.21
is for a system with five customers and one I/0. Replacing two CPU's of rate
3 with one of rate 9 actually decreases throughput; this can be explained by
the effect of the skewed distribution as with Figures 4.15 and 4.16.

Figure 4.22 is for a system with 5 customers, 5 I/0's, and C = .75. Adding a
second CPU of rate 3 or rate 9 produces negligible improvement because it is
unlikely that more than one program will need the CPU at the same time.

These anomalies are not of great significance; since the system is so I/0
bound where the anomalies occur, it is unlikely that one would try to improve

system performance by increasing CPU power.

4.6.5 Summary of Model Results

These models suggest several areas of consideration in choice of
CPU's and CPU Schedulers. From section 4.6.2 we see that the choice of the
number of processors depends heavily on the coefficient of variation of the
distribution of CPU service requests. If severél CPU's are used, the system
is well-balanced, the programs can be divided into non-interfering tasks, and
the coefficient of variation of the CPU service distribution is small, then
it may be advantageous to have the CPU's cooperate on a single program rather
?han work on separate programs. From section 4.6.3 we see that multi-tasking

may also be desirable when only a single program needs a CPU, if the system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



82

—  (2)

.96
(2)
(2) 3 Programs
3 1/0's
‘é C=5.
< .63
=3
o
vl
o
B
(2)
.30] |
] 2 - 1
| | J ] |
11 3 9
3

Figure 4.20 - Throughput Obtained by Upgrading CPU's

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Processing Rate



83

- (2)

1.00 2)
(2)
5 Programs
11/0
C = 5.
5 .66
(=}
.5)
3
(o]
¥ ]
& (2)
.33}
— } )
11 3 9
3

Processing Rate

Figure 4.21 - Throughput Obtained by Upgrading CPU's

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(2)

.98
2
(2)
o 65
3
y 5 Programs
¥ 5 1/0's
o
£ C=.75
= (2)
.33
. 1 ) l
1 ' I
11 3 9
3

Processing Rate

Figure 4.22 - Throughput Obtained by Upgrading CPU's

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84



85

is well balanced and programs may be divided into non-interfering tasks.
Finally, from section 4.6.4 we find that the models of increasing CPU power

agree with intuition as long as the system is not severely I/0 bound.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER V

APPROXIMATE ANALYSIS OF CENTRAL SERVER MODELS

5.1 Introduction

Central server queueing network models have been widely used in
the analysis of computing systems (B1,B6,G2,L2,S4,S5). These models assume
that a fixed number of customers (programs) traverse a closed network consist-
ing of the central processor (CPU) and tEe. input/output (I/0) devices. A
customer alternately receives service from the CPU and one of the I/0 devices.
A customer may have to wait in a queue if the server is busy. After completing
service at the CPU, a customer selects an I/0 device according to probabilities
associated with that device and the given customer. These probabilities are
independent of the state of the system. The service time of a customer on a
device may depend upon the device, the customer, and the queue lengths for-
that device, but is otherwise independent of the state of the system. Figure
5.1 illustrates a central server model with three I/0 devices. Central
server models have also been used as sub-models in detailed models of complex
systems (B4).

Often the models used are such that solutions for the equilibrium
behavior can be determined using the techniques of local balance (B2,Cl).
If the model is to have first come first served (FCFS) queueing disciplines,
and if the techniques of local balance are to be used in the solution of the
model, then it must be assumed that, at the ;ervers with FCFS disciplines,
the service distributions are exponential and independent of the customer
being served. Local balance techniques do not allow priority queueing
disciplines.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I/0 1

1P I ;
CPU I/0 2
1/0 3
Figure 5.1
CPU Composite I/0
Figure 5.2
I1/01
1/0 2
SRSy
1/0 3
Figure 5.3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87



88

Empirical studies on real computing systems show that CPU service
distributions are often hyper—e#ponential (the standard deviation is greater
than the mean) and that I/0 device service distributions may be hypo-
exponential (the standard deviation is less than the mean). Studies (J2)
have shown that mean service times and service distrzbutions are dependent on
the customer being served. When one makes assumptions that distributions
are exponential and all customers have the same distributions, significant
inaccuracy may be introduced into the model. Clearly, distinctions must be
made between customers if priority CPU distributions are considered. Therefore,
(a) many realistic problems do not satisfy local balance and (b) customer
differentiation is often required for realistic models.

Chandy, Herzog and Woo (C2) have developed accurate approximate
iterative techniques for analysis of general queueing networks with non-
exponential service distributions and distributions dependent on customer
class. The iterative techniques of Wallace and Rosemberg (W1l) may also be
used to obtain exact solutions for models with non-exponential distributions.
The techniques of Crane and Iglehart (C6,C7) may be used to obtain confidence
intervals for simulation results for these models and thus to obtain accurate
simulation results. However, these techniques are relatively expensive to
apply. In many instances it will not be practical to survey a large variety
of models using these techniques.

We present here approximate solution techniques specifically intended
for, but not limited to, central server models of computing systems. Our
techniques are considerably less expensive to apply than the above mentioned

techniques, but are sufficiently accurate for the initial stages of computer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

system design. Our techniques complement the previous techniques in that
ours can be used to study and compare a large variety of models, and then
more accurate, more expensive techniques may be used, to study more carefully,
a small subset of the original group of models.

Section 5.2 summarizes central server models in local balance and
gives examples of inaccuracies of "local balance assumptions." Section 5.3
describes "Norton's Theorem" on locally balanced queueing networks (C3)
as applied to central server models. Our approximations are based on the
results of Norton's Theorem. Section 5.4 pfesents the approximations for
models with non-exponential distributions, Section 5.5 presents techniques for
class dependent service distributions, and Section 5.6 presents techmniques
for models with priority CPU disciplines based on customer class. In Section
5.7 we compare the results of our techniques with results of simulations; our

techniques are validated by comparison with over 125 different simulations.

5.2 Local Balance

A central server model will be in local balance (B2) if 1) branching
probabilities are dependent only on the device and the customer class, 2) all
queueing disciplines are FCFS, processor sharing (PS) or last come first
served preemptive resume (LCFSPR), 3) servers with FCFS discipline have
exponential distributions independent of customer class (which may depend on
queue length), and 4) servers with PS or LCFSPR disciplines have differentiable
service distributions (which may be dependent on customer class). In these mo-
dels the equilibrium state probabilities will have the 'product form," and are
easily calculated (B2). From the state probabilities one can determine model
statistics such as throughput, server utilization, queue length distributions

and waiting time distributions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90

The following example illustrates the inaccuracy which may be
introduced by using local balance solutions for models violating local
balance assumptions. This example is by no means a worst case, but illustrates
that results of assuming local balance are likely to be unsatisfactory.

Suppose that a system to be modeled has one I/0 device and two
classes of customers, with one customer per class. Further, both service
disciplines are FCFS, all service distributions are exponential, the mean
CPU service time for class one is 2, the mean CPU service time for class two
is .2, and the mean I/O service time for both classes is 1. Suppose we are
interested in the overall throughput of customers through the CPU. This
model is small enough that exact solution of the Markov balance equatioms is
convenient, From the solution of these equations the throughput is .5941.
If we assume that the results for a similar model with PS CPU discipline will
be close enough, the value we get for throughput will be .84, an error of
more than 40%. 1If we apply the techniques of Section 5, the value we get
for throughput is .6375, an error of about 7%.

Other examples illustrating the inaccuracy introduced by local

balance assumptions are found in (C2).

5.3 Norton's Theorem Applied to Central Server Models
This section reviews earlier work on Norton's Theorem in subsection

5.3.1, in 5.3.2 a multiclass example is presented, and computational algorithms

are presented in 5.3.3.

5.3.1 Norton's Theorem: A Discussion

Norton's Theorem (C3) may be used to transform a central server

model in local balance into one with a single "composite'" I/0 which represents

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91

the combined effects of the I/O devices in the original model at steady state.
See Figure 5.2. Values determined for equilibrium cycle times, throughputs,
server utilizations, and CPU queue length and waiting time distributions of
the two-queue model will be the same as those calculated for the original
model. The transformation is independent of the CPU parameters, so if a
variety of CPU parameters are to be studied, effort may be saved by applying
Norton's Theorem and studying the reduced model as the CPU parameters are
varied. The approximation technique presented here is also especially well
suited for parametric analysis of the CPU.

In describing Norton's Theorem we shall assume that there are J
classes of customers. The composite I/0O processes all classes of customers
in parallel in the two queue, CPU-composite I/0 model. The composite 1/0
service rate for the first customer of any given class i at any given time
depends upon i and upon the number of customers Nj of class j, j = 1,...,J,
in the composite I/0 queue at that time. These composite I/0 service rates
are determined by analyzing a modified version of the original network in
which the CPU has been "shorted," i.e., the mean CPU service time for all
customers is set to zero. See Figure 5.3. The composite I/0 service rate for
the first customer of any given class i, when there are Nj customers of class
j» 3 =1,...,J, in the composite I/0 queue, is set equal to the throughput
of the customers in class i through the shorted CPU when there is a population
of Nj customers of class j, j = 1,...,J, in the shorted CPU model. The
solutions of the two-queue, CPU-composite I/0 model, with the same CPU
parameters as in the original model and these queue-dependent composite I/0

service rates, will be identical to those of the original model for the

equilibrium statistics mentioned above.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



92

5.3.2 Example

Consider the following two-class example of a locally-balanced
central-server model with a processor-shared CPU and two I/0s labeled 1 and
2, two non-identical customers, one of class A and the other of class B.

The class A customer uses I/0's 1 and 2 with equal probability, while the
class B customer uses I1/0 1 exclusively. The mean service time for each I/0
is independent of customer class. The mean service times for I/0s 1 and 2
are 1 and 2, respectively. All I/O service times have negative-exponential
distributions.

Both class A and B customers are assumed to be serviced in parallel
in the composite I/0 queue. The service rates for class A and class B
customers depend upon the numbers of class A and B customers in the composite
I/0 queue. We next discuss the computation of these rates by analyzing the
modified version of the original network in which the CPU has been shorted
(Figure 5.3). When only the class A customer is present in the CPU-shorted
network, the throughput of the class A customer through the shorted CPU is
2/3; when only the class B customer is present the throughput is 1; and when
both are present, the throughputs for classes A and B are 1/2 and 3/4,
respectively. The composite I/0 service rates when there is one customer of
class A and none of class B in the composite 1/0 queue is set to 2/3 for
class A (and 0 for class B); when there is one customer of class B and none
of class A the rate is set to 1 for class B (and 0 for class A); and when
there is one customer of each class the rates are set to 1/2 for class A and
and 3/4 for class B. The solution of the CPU-composite-I/0 model with the

same CPU parameters as in the original model and these queue-dependent composite

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



93

I1/0 service rates, will be identical to the solutions of the original model

for the equilibrium statistics mentioned above.

5.3.3 Determination of Composite I/0 Throughput

In this section we review computational techniques developed by
Buzenr: (B6) and extended by Chandy, Herzog and Woo (C3). We will assume an
arbitrary closed network in local balance with R single server queues
numbered from 1 to R. We assume that J, the number of customers, is 2, and
later consider arbitrary J > 1. We assume that customers cannot change

class, that the mean service rate at queue r for class j is Ar , that a class

3

j customer leaving queue r joins queue r' with probability p(rj) (£'4) and
b 3

that the number of class j customers at queue r is n We must have

i’
R
nrj = Nj. We define erj’ the expected number of times a customer of
r=1

class j visits queue r, by J sets of R linear equations of the form

R
°r T L ergray), @) 5-1)
For a given j’.{erj} is uniquely determined up to a multiplicative constant.
We know from (B2) that the probability of having nrj customers of

class j at queve r, j = 1,2, r = 1,...,R, P(nll’n12’n21’n22""’an’nRZ) is

1 R 1 B 2 erj nrj
r=1 rl j=1 rj

Here G is a normalizing constant chosen so that the probabilities sum to 1.
Of course G is dependent on Nj’ j =1,2, so we will refer to G(Nl’Nz)' So

we must have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



94

n
R n_.+n 2 (e rj
GO ,N) = f ¥ noo| r2] I ij] (5.3)
In_ =N, In_=N, 1=l 1 ) 3=1{*r3
] 2.0 r2 2.0

The reader should be alarmed by the computation required to determine (5.2)
and (5.3); though we could determine throughput from these expressions, more

efficient algorithms are needed.

It can be shown that the throughput of class 1 customers through

queue r when there are Nj, j = 1,2, customers in the network, Trl(Nl,NZ), is

e _.G(N_-1,N,)
ol Y1 T2
Ty (NysNp) = G(N,,N,) (5.4)
172
Similarly,
_or2 Y12
Tra(NyoN,) = GO ,,) (5.5)

So we need only find efficient algorithms for determining G(Nl-l,Nz),
G(Nl,Nz-l) and G(Nl’NZ)' We now consider an algorithm for determining
= 0,...,N

G(nl,nz) for n, = 0,...,Nl and n

1 2 2°
We let G be an array with first subscript ranging from 0 to Nl and
second subscript ranging from 0 to Nz. We will define arrays Xr’ r=1,...,R
and a "convolution" operator "*" such that
* * * X -

G = Xl X XR (5.6)

The operator "*" is associative and commutative, but for comvenience we
T om * = =

determine G as GR’ where Gr Gr—l Xr, r 2,...,R, and G1 Xl. For
r=1,...,R, n, = 0,...,N1, n, = 0,...,N2, we define

n,in,} P n p n
X (ap,mp) = | 2 | ER IR (5.7)
1 Arl Arl

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



95

Notice that we do not have to evaluate (5.7) for each element of Xr' For

example, for ny,n, > 0,

n, +n (p )
1 2 rl
X(n,n)'-' X(n-l-,n)
T 1’2 n, ﬁr% ro1 2
n, +n rp \}
_ 1 2 T2
- e .L)‘rz Xr(nl,n2 1) | (5.8)
For r = 1,...,R, n, = 0,...,N1, n, = 0,...,N2
n, n
G_(n,n,) = 1Z=o iE=0 G, (1,1 )% (n -1 ,n,-1,) (5.9)
1 2

We now apply these algorithms to the example of Section 5.3.2. We let class

A correspond to class 1 and class B correspond to class 2. So we have

Py1 = Ppy = +3» Ppp T 1 Pyy =05 Wy =My, = land by =y, = 5. We
can let erj = prj' Then
. f1 1
61 =% '(.5 1]
1 0
X [1 o]
cec, - [ 1-0 + 11
1ol + .5¢1 1.0 + 1-1 + .50 + 1.1
(1 1
1.5 2
R
If we let Tj(nl,nz) = nzl Trj(nl’nz)’ then
=1 .2
LW =153
=1
T, (1,1) = 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96

1_
TZ(O’]') =T= 1
_1.5_3
TZCl,l) 5

When j > 1, then (5.7) and (5.9) become

' n n n
Xr(nl,nz,iccgnj) - { veen —— - s _l

| M1M20 00Ty

and
n n n

- j
Gr(nl,nz,...,nj) = 7 Yo X“ Gr_l(il,iz,...,lj)Xr(nl—il,
h|

il=0 12=0 i,=0
nz—iz,...,nj—ij) (5.11)
These algorithms also apply to networks with queue length dependent
service rates.
Assume queue r is FCFS with queue length dependent service rates.
Let A (n) be the rate with n éustomers in the queue. (Queue length dependent
service rates are useful for representing multiple servers .at a single queue.
For example, if we have k servers each with rate u, we let A(n) = min(n,k)u.)

We can let

1 P P
X (n,,n) = rl r2
rT1T2 { "1 ) TDAD-. .o Tay) (5.12)

If we define Xr as in (5.12), then G and the throughput will be as before.

n +n2} n1 )

5.4 FCFS Central Server Models with Non-Exponential Service Times
We first discuss the overall technique gemerally (5.4.1), then
study composite I/0 representations (5.4.2), present the detailed algorithm

(5.4.3), and finally work out an example (5.4.4).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



97.

5.4.1 OQverview

We now restrict our attention to central server models with all
customers identical, FCFS disciplines at all servers, and arbitrary service
distributions having rational Laplace transforms. For sake of discussion,
we will assume that the system being modeled has a single CPU. These techniques
have also been applied to models with multiple identical CPU's. Even though
this class of models is not in local balance except when all service distribu-
tions are exponential, we shall apply Norton's Theorem and show that the
composite I1/0 model yields solutions close to those of the original model.

(In making the composite I/0 transformation we assume that the I/0 devices

have exponential distributions with the same means as the actual distributiomns.
See example below.) Chandy, Herzog and Woo (C2) use an approximate application
of .Norton's Theorem in their iterative method. In order to compensate for

the inaccuracy introduced, we adjust the distributions for the composite I/0

to reflect the non-exponential character of the actual distributions.

After applying Norton's Theorem and adjusting the distributions, we
have a central server model with a single composite I/0, with both service
distributions non-exponential. This model is solved by an efficient recursive
technique which is an application of the technique developed by Herzog, Woo
and Chandy (H1l). Their technique assumes distributions of the generalized
Erlang form developed by Cox (C5). This generalized form includes arbitrary
distributions with rational Laplace transform. Our technique assumes that
both the CPU and the I/0 distributions are of this general form. Details of
our two queue analysis are given in Chapter IV,

Our adjustment for the non-exponential nature of the I/0 distribu-

tions is simple and effective. More sophisticated adjustments could potentially

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



98

increase the accuracy of the final results. We characterize each 1/0
distribution by its mean and coefficient of variation (standard deviation
divided by the mean). For the means of the composite I/0 distributions we
use the queue length dependent values as shown earlier. We assume that the
composite I/0 coefficient of variation is the weighted sum of the coefficients
of variation of the individual distributions, with the weights being the I/0
branching probabilities. The composite I/0 coefficient of variation is a
constant, independent of queue length. Of course, the mean and coefficient

of variation do not completely specify the distribution. If the composite

I/0 coefficient of variation is greater than one, we assume that the composite
I/0 service time is a standard two stage hyper-exponential as in Figure 5.4.
If the coefficient of variation is one, we assume the service time is
exponential. If the coefficient of variation is less than one, we assume

the service time is of the generalized Erlang form with the minimum number of
stages necessary to obtain the given coefficient of variation, all stages
having the same mean, and all branching probabilities zero, with the possible

exception of the branch after the first stage, as in Figure 5.5.

5.4.2 The Composite I/0 Distribution

We desire that the composite I/0 distribution represent the aggregate
of all the individual I/0 distributions. Intuitively, we expect the distribu-
tion of a given 1/0 to influence the composite I1/0 distribution more than
distributions of other I/0s, if the given I/0 processes more customers than
other I/0s. We decided to restrict attention to the first two moments to keep
computation simple. The means of composite I/0 service times are obtained

by aggregating individual I/0 mean service times via Norton's Theorem. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



99

1
P
S5
7
1-p
2
Figure 5.4
>
P
l-p LI I
1 2 3 n-1 n
Figure 5.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100

composite coefficient of variation is obtained by aggregating individual
coefficients of variation, weighting each I/0 by its branching probability
since I/0 branching probabilities are directly proportional to I/0 through-
puts. Note that though the mean composite service time is queue-length
dependent, the coefficient of variation is not dependent on queue length.
Note also that if all the 1/0s have the same coefficient of variation, then
the composite I/0 will have that coefficient of variation too.

The first two moments do not completely specify a distribution. We
decided to model composite service times using either two-stage hyper-
exponential (Figure 4.4) or generalized Erlang (Figure 4.5) random variables
since these are common ways of representing service times in computing systems.
Note that the particular forms of the hyper-exponential and generalized Erlang
random variables are such that the first two moments uniquely specify the
distributions. The selection of these particular composite I/0 distributions
were made with modeling convenience and reasonability in mind; clearly other
choices could also have been made. However, note that if the original model
satisfies local balance, then our technique gives exact results, since the
composite I1/0 distribution obtained via our technique is the same as that
obtained via Norton's Theorem.

The Hyper-Exponential

Let kc be the coefficient of variation of the composite I/0. We
shall use a standard hyper-exponential random variable to model composite
I1/0 service times if kc > 1. The relationship between kc and parameter p

(Figure 5.4) of the hyper-exponential is shown below:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



101

k§+1—»’kc"—1

2
2(kc + 1)

(5.13)

p:

Note that kc uniquely specifies p. The means for each stage of this hyper-

exponential are uniquely specified by p and the mean composite service time.

Mean of stage 1 = mean composi;; service time (5.14)
Mean of stage 2 = mean compoziifpiervice time (5.15)

Generalized Erlang

Consider the generalized Erlang (Figure 5.5) with n stages,
n=2,34,.... After a customer completes the first stage, he may finish
service with probability p, or he may continue through the remaining n - 1
stages with probability 1l-p. All stages have the same mean time, and all
stage holding times are independent exponential random variables. By varying
p from O to 1 the coefficient of variation ranges from 1/V/n to 1. We wish
to keep the number of stages small to minimize computation. Hence, we shall
use n stages if and only if, 1/vn-1 > kc > 1/v/n;. The value of n is directly
determined from kc‘ n and kc together uniquely specify p. See equation (5.16)
below. The means for each stage are uniquely specified by n, kc, p and the

means of the composite I/0 service times.

2nk? + n-2 - /n%+4 - 4nk?
P = < (5.16)

2(kg + 1) (n-1)

mean composite service time
n - pCa-1) (5.17)

Mean of each stage =

In conclusion, the generalized Erlang and hyper—exponential random

variables shown in Figures 5.4 and 5.5, are completely specified by the first

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



102

two moments, and have a wide range of coefficients of variation. The
parameters p are independent of composite I/0 mean service times and the mean
times for all stages in both distributions are directly proportional to the
composite I/O mean service time; this simple relationmship is an advantage

In modeling queue-dependent service rates.

5.4.3 The Algorithm

We now present the algorithm after explaining some notation. Let
there be R I/0 queues indexed 1,...,r,...,R. We shall use the subscript r
to denote the rth I/0 in the original model and the subscript c to denote
the composite I/0 in the CPU-composite-I/0 model. Let P be the probability
that a customer branches to the rth I/0 devicé after finishing CPU service.
Let k denote the coefficient of variation: kc for the composite I/0 and kr
for the rth 1/0 device. We shall use the subscript 0 (zero) for the CPU. Let
Ur be the utilization and t. the throughput for the rth queue, r=0,1,...,R.
Let Ai be the service rate for the rth I/0 device. Let E‘and w be the mean
CPU queue length and wait times and let oq and 9 be the corresponding
standard deviations. Let C be the cycle time; C is very important since

response time in the computer system will be dependent on C.

ALGORITHM 5.1

Step 1. Composite 1/0 Service Rates

Consider the given (non-locally-balanced) model. Construct the
shorted-CPU model in which all I/0 service times are assumed to be independent
exponential random variables and the CPU service time is set to zero. The

shorted-CPU model satisfies local balance and can be analyzed easily.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



103

Determine queue-dependent composite I/0 service rates by analyzing the

shorted-CPU model.
Step 2. Composite I/0 Coefficient of Variation

R
Compute kc = z kr * P,
r=1

Step 3. Determine exponential stage representations for composite I/0

service times from kc and composite 1/0 mean service times.

Ifk >1 use standard hyper-exponential random variable. (Fig. 5.4)
If kc =1 use exponential random variable
If kc <1 use generalized Erlang random variable. (Fig. 5.5)

Step 4. Solve the two queue, CPU-composite I/0 model.

The CPU parameters in this model are set to the same values as in
the original model. The composite 1/0 parameters are completely and uniquely
specified by step 3. The two-queue model is completely specified. Analyze

this model to determine C, UO’ to, E} Gq, 5; and Ow.

Step 5. 1I/0 Utilizations

1,-..,R

Compute t_ = t0 X p for r

i

u. = tr/Ar forr = 1,...,R

stop.

5.4.4 Example

Consider a two I/0 model with 2 customers where I/0 1 has anv
exponential service time with mean 4. I/0 2 has a generalized Erlangian

gservice time with a coefficient of variation of .414 and mean 2 and the CPU

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



104

has a standard hyper-exponential service time with a coefficient of variation
of 2 and a mean of 2. Customers use each I/0 with equal probability. We

shall now follow through the five steps of the algorithm.

Step 1. The composite I/O service rates (from Section 5.3.3) when there are

j customers, j = 1,2, in the composite I/0 queue are 1/3 and 3/7, respectively.
Step 2. kc = (0.5 x 1.0) + (0.5 x 0.414) = 0.707

Step 3. Since kc < 1 the generalized Erlang representation is used. 1In
this case n will be 2 and p will be zero. (The rate for each stage is clearly

twice the composite I/0 service rate.)

Step 4. We now have a two-queue model where the CPU service time is a two-
stage hyper-exponential and the composite I/0 service time is a two-stage

Erlang. The balance equations for the resulting Markov states are solved

to obtain C 6.99, U, = .571, t

0 = .286, Eb = .837, w, = 2.93

0 0

Step 5. t; =ty x 0.5=.143, t, = t, x 0.5 = .143
U, = tl/x1 = .571, U, = tZ/A2 = ,286

stop.

5.5 FCFS Central Server Models with Class Dependent Service Rates
This section is divided into three subsections. In 5.5.1 we discuss
the technique generally, in 5.5.2, the algorithm is presented and an example

is worked out in 5.5.3.

5.5.1 Discussion

In this section, we restrict ourselves to models with several classes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



105

of customers, FCFS, all service distributions exponential, all I/0 service
rates independent of customer class, and the CPU service rates dependent on
customer class. The assumption of class independent I/0 service rates can be
justified by observing that the largest portion of most I/0 services is spent
on primarily program independent operations such as acquiring channels,
positioning disk arms, and waiting for device rotation. The techniques
presented here have been extended to non-exponential CPU distributions and
can also easily be extended to non-exponential I/O distributions. They are
extended to priority disciplines in the next section, using the techniques

of the previous section. Our techniques may also be extended to other, more
general models.

Multiple classes severely comnlicate analysis. Even the reduced model
obtained by applying the Norton's Theorem approximation to the I/0 subnetwork
is difficult to analyze. As the number of classes and/or the numbers of
customers per class attain even moderate values, e.g., 4, the analysis
becomes too complex to be of practical value.

To reduce the complexity of analysis, we transform the more general
original model to an approximately equivalent one with only two classes of
customers: a designated class with only one customer and a composite class
representing all of the other customers in the network. This further reduced
model can be analyzed relatively easily, by applying the Norton's Theorem
approximation. We designate each class in the original model and in turn
analyze the corresponding reduced model, thus we obtain approximate values
for the interesting statistics by each customer class in the original model.

In transforming the original model to the one with only two classes,

the customer of the designated class is given the same I/0 branching

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106

probabilities and CPU service distribution as in the original model. For
each I/0 device, the composite class branching probability is determined
as a weighted sum of the branching probabilities of the classes co-
alescing from the original model. The weights used are the relative
throughputs of the corresponding customers in a model identical to the original
model, except that the CPU is processor-shared; this PS model satisfies local
balance and is easily analyzed. The CPU service distribution for the
composite class is chosen to be the standard two stage hyper—exponential
distribution with mean and second moment determined from weighted sums of the
means and second moments of the CPU service distributions of the classes
being coalesced from the original model.

After this transformation is applied, the Norton's Theorem approxima-
tion is applied. The resulting model, with the composite class and composite

I/0 queue is analyzed by techniques similar to those used in Section 5.4.

5.5.2 Algorithms

In this subsection we describe two algorithms, the main program,
algorithm 5.2, is presented in 5.2.1l., and a subprogram, algorithm 5.3, which

approximates an N-class problem by a two-class problem, is in 5.5.2.2.

5.5.2.1 ALGORITHM 5.2

Assume that there are N classes of customers. For purposes of
exposition, we assume (without loss of generality) that there is only one

customer in each class.

Step 1. For each class i in turn, 1 = 1,...,N, do steps 2-i through 5-i and

thus compute the throughputs and utilizations for all queues for class i, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



107

also the means and variances of CPU queue lengths and wait times for class i.

The algorithm stops after all N classes have been considered.

Step 2-i. Use algorithm 5.3 to approximate the given N-class problem by a
two-class problem where the two classes are the designated class and a
"composite class" which represents all customers except those in the designated
class. We shall refer to the original central-server model as model A and

this two-class approximation as model B. Note that B and A have exactly

the same central-server network structure; only the number of classes is
changed. The parameters for the designated class are the same in A and B.

CPU service time for the composite class is assumed to be hyperexponential in

B. I/0 service times are identical in A and B.

Step 3-i. Compute composite I/0 service rates for the designated and composite
classes of model B in the usual manner (i.e., by computing throughputs
through the shorted CPU of model B and assuming all I/0 service times are

exponential).

Step 4-i. Consider the resulting two-queue, two-class network consisting of
the CPU and I/0 queues and the designated and composite classes; we shall
refer to this network as model C. Solve Markov balance equations to determine
steady-state probabilities of model C. Determine CPU throughput tOi’
utilization UOi’ mean and variance of CPU queue length and wait time for
designated class i from the equilibrium state probabilities of model C.

(Statistics for the composite class are not computed).

Step 5-i. Determine I/0 throughputs tri’ and utilizstions Uri’ for each 1/0

ry, r=1,...,R, for the designated class i. Let Py be the probability

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



108

that a customer of class i branches to I/0 r after CPU service. Then

t, = forr = 1,...,R

i %or ™ Pri

and U /A for r = 1,...,R

ri = et/
Statistics for the composite class are not computed.

Figure 5.6 shows the relationships between models A, B and C.

5.5.2.2 ALGORITHM 5.3

For determining CPU service distributions and I/0 branching p

probabilities for the coalesced class.

Step 1. Consider a network identical to the given network (model A) except
that the CPU is processor-shared; we shall refer to this network as model D.
Model D satisfies local balance and is easily analyzable. (See Section 5.3.3.)
For the purposes of Algorithm 5.3 only, we shall approximate the CPU
throughputs of model A by those of model D. Compute t;, the CPU throughput

of class j in model D, for j = 1,...,N.

Step 2. Compute the conditional probability Vj that a random customer who
finishes I/0 service in model D is in class j given that he is not in

designated class 1i.

c/] L ot forj#i
] h#i h

=0 for i = 1
Step 3. Compute the first two moments of the CPU service time for the
composite class. Let EISn] and E[S?] be the nth moment of the CPU service

time for the coalesced class and class j respectively, j = 1,...,N. Then:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



109

MODEL A
Given network

N classes

- e oeme—a=ee-—ao ransformation achieved
by algorithm 5.3

MODEL B
Given network

2 customer classes

e e e e o ——————- Transformation achieved via
I composite I/0 technique

MODEL C
2 queue - network

2 customer classes

FIGURE 5.6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



110

E[S] = § E[sj]-vj

E[s2] = § E[S?jtv
h|

Represent CPU service time for the composite class by a standard hyper-

3

exponential random variable (Figure 5.4) with the above first two moments.

Step 4. Approximate I/O branching probabilities for the composite class by

Stop.

5.5.3 Example

Consider a model with two I/Os and three classes of customers. The
mean service times for I/0 1 and I/0 2 are both 2 time units. The branching
probabilities for the first I1/0 are 1., 0, .5, for classes 1, 2 and 3,
respectively, and 0, 1., .5, for the second 1/0. CPU mean times for classes
1,2,3 are 1,2,3, respectively. All service times are assumed to be indepenr

dent, exponential random variables.

ALGORITHM 5.2 - Step 1. We shall carry out steps 2-i through 5-i, for i=1.

We first call Algorithm 5.3 to obtain the 2-class approximation.

ALGORITHM 5.3 - Step 1. Analyzing model D we get

t = .159 ty = <111

ALGORITHM 5.3 - Step 2. Vl = 0, V2 = ,589, V3 = 411

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



111

ALGORITHM 5.3 - Step 3. E[S] = (2 x .589) + (3 x .411) 2.41

il

E[szl = (8 x ,589) + (18 x .411) = 12.12

The hyper—exponential representation for the CPU service time has parameter

p = 0.398.

'ALGORITHM 5.3 - Step 4.

Py, = (0 x .589) + (.5 x .411) = .206

Py (1 x .589) + (.5 x .411) = ,795
We now have a two-class problem the CPU service time for the composite
class is hyper-exponential with mean 2.41 and I/0 branching probabilities for

device 1 is .206 and for device 2 is .795.

ALGORITHM 5.2 - Step 3.1. The composite I/O service rates for class 1 and

the composite class for different queue conditions are shown below.

Total Total rate
Number of Number of composite rate for for composite

class. 1 customers class customers class 1 class

1 0 «S5 0

o 1 0 5

0 2 0 .598

1 1 .415 .415

1 2 .386 .556
ALGORITHM 5.2 - Step 4.1. Model C is analyzed to obtain t01 = .173, U01=.l73,
Ei = .59, w; = 3.43, 0, = .49, 0 = 3.09.

1 1
5.6 Approximations for Models with Priority CPU Disciplines
Now we consider central server models with the same characteristics

as in the previous section, except that the CPU discipline will be a priority:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



112

discipline with priority based on customer class. We will restrict considera-
tion to preemptive and non-preemptive priority based on customer class, but
these techniques are directly applicable to other priority disciplines.

Again, we do not try to apply Norton's Theorem approximation
directly, but rather combine the classes of customers in the original model
to simplify the analysis. The reduced model we consider has three classes of
customers: a designated class, which we do not restrict to a single customer
as in the FCFS model, and two composite classes, one of a higher priority
than the designated class, and one of lower priority. The combination of
classes into these three classes is similar to the technique used in the
previous section. The coalescing is done separately for each of the two
composite classes. The CPU distribution used for each of the composite
classes is an exponential distribution with mean taken as the weighted sum of
the means of the classes coalescing into that composite class. The
weights are the relative throughputs of classes within the composite class.
In other respects, the analysis is essentially the same as that already

described.

5.7 Validation, Implementation and Performance

We have.constructed a simulator which employs the confidence
interval techniques of Crane and Iglehart (C6,C7). This simulator can be used
with general queueing networks with a variety of disciplines, hetergeneous,
classes of customers, and generalized Erlang service distributions. The
simulator determines confidence intervals during the simulation, and continues
the simulation until satisfactory intervals are obtained. Details of the

simulator are found in Chapter VI. This simulator has been used to determine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



113

results for the various models described below. Crane and Iglehart show how
to obtain confidence intervals for results of simulations of Markov models.
In general, the confidence intervals we obtained are as follows: For
utilization, the 90% intervals are at most .05 wide. For those cases where
queue lengths and waiting times are obtained, the, the 90% intervals for the
means are at most + 67 of the point estimates, and the 80% intervals for the
standard deviations are at most + 16% of the point estimates. In many of the
cases the intervals are considerably tighter. However, we were unable to
obtain confidence intervals for the FCFS models with 6 classes of customers.
For these models the state space is very large, and we were unable to select
a state that the system would return to frequently; this is necessary to
apply the Crane and Iglehart techniques. We used predetermined simulation
run lengths for the 6 class FCFS models, with the run lengths based on
experience with 4 class FCFS models. For the models with multiple CPU's
or constant service times we used simulators constructed in QSIM (F1,M2).

We have implemented our approximation techniques as a set of Fortran
programs for a CDC 6600. Over 125 models have been validated to assure a
thorough sampling of problems.

56 of the models validated are of the class described in Section 5.4,
i.e., single class, non-exponential. In general the models were fairly well
balanced, but some of the models were strongly CPU bound or I/0 bound.
See Table 5.1. Error tolerances were determined in the manner used in (5)
for CPU utilizations, CPU queue lengths and CPU waiting times. Results are
said to be within a tolerance z if 1) the difference in utilization is not

more than z, 2) the differences in the means and standard deviations of queue

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



‘uoissiwiad 1noyum paugiyosd uononpoidal Jayund “iaumo 1ybuAdod syl Jo uoissiwiad yum paonpoiday

VTABLE 1 - NON~EXPONENTIAL NODEL DESCRIPTIONS

NO. CUST, NO. CPUS CcPU 170 1(5) 170 2(6) /0 3N
MEAN C.V, PROB MEAN C.vV, PROB MEAN C,V, PROB MEAN C.V.
e e 2000 2.134 «500 2,000 1.000 «250 1,000 1,000 «250 ,250 1,000
L) 2 2.000 2,136 - ,500 2,000 1,000 «250 1.000 1,000 250 ,250 1,000
8 e 2,000 2.13¢ +«500 2,000 1.000 «250 1,000 1,000 +250 ,250 1,000
12 2 2.000 2.134 +500 2,000 1.000 «250 1,000 1,000 250 ,250 1,000
2 1 1.000 0.000 «500 2,000 1,000 «250 1.000 1,000 «250 ,250 1,000
L 1 1.000 0.000 «500 2,000 1,000 «250 1,000 1,000 «250 ,250 1,000
8 1 1.000 0.000 «500 2,000 1.000 «250 1,000 1,000 «250 4250 1,000
12 1 1,000 0,000 «500 2,000 1.000 «250 1.000 1,000 «250 .250 1,000
2 1 1.000 2.134 «500 2,000 1.000 «250 1,000 1.,00¢ 250 4250 1.000
[ 1 1.000 2,134 +500 2,000 1.000 . ,250 1.000 1.000 +250 ,250 1.000
8 1 1.000 2,134 «S00 2.000 1.000 «250 1.000 1,000 +250 4,250 1.000
12 1 1.000 2.13¢4 «500 2,000 1,000 «250 1,000 1,000 «250 .250 l.000
2 1 1.000 1.000 «500 2.000 .707 «250 1,000 ,707 +250 4250 707
4 1 1.000 1.000 «500 2.000 707 250 1,000 ,L707 «250 ,250 .707
8 1 1,000 1.000 «500 2,000 4707 «250 1,000 ,L707 +250 4250 o707
12 1 1.000 1,000 «500 2,000 4707 250 1.000 ,707 «250 .250 .707
4 1 1.000 2,134 «500 2,000 .707 «250 1,000 ,707 «250 4250 707
& 1 1.000 24134 500 2,000 707 «250 1,000 ,707 «250 .250 L7707
8 1 1.000 2.134 «500 2.000 .707 +250 1,000 ,707 «250 +250 L707
12 i 1.000 2.134 «500 2,000 .707 «250 1,000 ,707 250 L250 707
e 1 1.000 1,000 125 4,000 .707 «125 4,000 .707 o129 44000 4707
«125 4,000 .707 0125 4,000 707 «125 4.000 .707
4 1 1,000 1.000 «125 4.000 .707 <125 4,000 ,707 «125 44000 707
o125 4,000 707 125 4.000 ,707 «125 4.000 <707
8 1 1.000 1.000 «125 4,000 .707 «125 4.000 ,707 «125 44000 o707
0125 4,000 o707 «125 4,000 ,707 125 4,000 L707
12 1 1.000 .000 125 4,000 4707 +125 4,000 707 125 4.000 o707
«125 4,000 .707 «125 4,000 .707 «125 4,000 707
e 1. 1.000 5.000 +250 4,000 1.000 «250 4,000 1.000 +250 4.000 1.000
b 1 1,000 5,000 +250 4,000 1.000 2250 4,000 1,000 «250 4,000 1.000
8 1 1.000 5.000 »250 4,000 1.000 «250 4,000 1,000 *250 4,000 1,000
12 1 1.000 5,000 +250 4,000 1,000 +250 4,000 1,000 «250 4.000 1.000
e 1 1.000 3.000 «250 1,000 1.000 «250 1.000 1.000 +250 1.000 14000
4 1 1.000 3.000 «<50 1,000 1.000 €50 1,000 1,000 «250 1,000 1.000
8 1 1,000 3.000 «250 1,000 1.000 «250 1,000 1,000 «250 1,000 1,000
12 1 1.000 3,000 «250 1,000 1.000 «250 1,000 1.000 «250 1.000 1.000
e |} 1.000 1.000 «250 8,000 l.000 «250 8.000 ,707 «250 8.000 ,707
4 1 1.000 1.000 «250 8,000 1.000 «250 8.00¢ ,707 «250 8.000 .707
8 1 1.000 1.000 «250 8,000 1.000 «250 8.000 .707 «250 8.000 .707
12 1 1.000 1.000 +250 8,000 1.000 «250 B8.000 .707 «250 8.000 .707
e 1 1,000 3,000 «250 4,000 3.000 «250 4,000 3.000 «250 4,000 3,000
& 1 1.000 3,000 «250 4,000 3.000 #2850 44000 3,000 +250 4,000 3,000
8. 1 1,000 3,000 «250 4,000 3.000 «250 4,000 3,000 +250 4,000 3.000
12 1 1.000 3.000 0250 4,000 3.000 0290 4,000 3,000 «250 4,000 3.000
e 1 1,000 577 «250 4,000 .577 «250 4,000 4577 «250 4,000 .S77
L 1 1.000 ,S577 «250 4,000 .S577 2250 4,000 L577 «250 4,000 .S77
e 1 1,000 .577 «250 4,000 3.000 «250 4,000 1,000 «250 4.000 ,L707
& 1 1.000 .577 «250 4,000 3.000 4250 4,000 1,000 ,250 4.000 ,L707
e i 1,000 3.000 +250 4,000 3.000 «250 4.000 1,000 «250 4,000 L7707
& 1 1.000 3.000 +250 4,000 3.000 «250 44000 1,000 «250 4,000 ,707
8 i 1,000 3,000 «250 4,000 3.000 «250 4.0600 1.000 «250 4,000 ,707
12 1 1,000 3,000 «250 4,000 3,000 «250 4.000 1,000 +250 4,000 707
r 1 1,000 3,000 «250 8,000 1.000 «250 8,000 }.000 «250 8.000 1,000
b 1 1.000 3,000 «250 8,000 1.0600 «250 8.000 1,000 «250 84000 1,000
a8 1 1.000 3,000 «250 8,000 1,000 +250 8.000 1.000 «250 8,000 1,000
12 1 1.000 3.000 «250 8,000 1.000 +250 8,000 1,000 «250 8.000 §.000
e 1 1.000 1.000 «250 1,000 1.000 «250 1,000 .707 «250 1,000 .707
& 1 1.000 1.000 250 1.000 1.000 +250 1.000 L707 «250 14000 ,707
8 1 1,000 1,000 «250 1,000 1.000 +250°1.000 .707 . .250 1.000 ,707
12 1 1.000 1,000 «250 1,000 1.000 «250 1.000 ,707 250 1.000 L2707

170 4(8)
PROB MEAN C.V.
o125 4,000 L,T707
«125 4,000 ,707
o125 4,000 ,707
o125 4,000 ,707
o125 4,000 ,707
«125 4,000 L7707
125 4,000 ,707
«125 4,000 .707
«250 4,000 1,000
+250 4,000 1,000
«250 4,000 1.000
+250 4,000 1.000
«250 1,000 1,000
«2%0 1,000 1.000
e250 1.000 1.000
«250 1,000 1.000
+250 84000 ,L,577
«250 8.000 .S717
«250 8,000 ,577
«250 8,000 ,577
0250 4,000 3,000
«250 4,000 3,000
«250 4,000 3,000
250 4,000 3,000
«250 4,000 «577
«250 4,000 L,577
0250 4,000° 4577
+250 4,000 ,577
«250 4,000 L577
«250 4,000 ,S77
«250 4,000 ,LS577
«250 4,000 o577
+250 8,000 1,000
«250 8,000 1.000
+250 8,000 1,000
«250 8,000 1,000
+250 1,000 ,S77
«250 1,000 .577
«250 1,000 .S77

«250

1.000

«ST7

11



115

length are not more than 2z times the number of customers in the network, and
3) the differences in the means and standard deviations of the wait times are
not more than z times the cycle time. For the 56 models studied, the results
are generally within a tolerance of .05, with a maximum tolerance of.l7. 1In
(C2) a tolerance of .05 is considered to be good, and a tolerance of .10

is considered adequate. By these standards the results are good for 47 of

the models and adequate for 5] of the 56 models. The results for similar

PS models are adequate for only 25 of the 56 models. For these models, the
computer time required per model was negligible, approximately 75 milliseconds
per model. Table 5.2 shows results for these models.

44 models of the class described in Section 5.5, i.e., FCFS with
different classes of customers, including 4 with hyper-exponential CPU
distributions, have been validated. These models include from 2 to 8
customers, with from 2 to 6 classes of customers, and 3 or 4 I/0 devices.
Utilizations and throughputs, both overall and by class, were validated for
all of these models. For 8 of the models, queue lengths and wait times for
each class were also validated. See Tables 5.3 and 5.4. We did not
explicitlyjdetermine tolerances as in the single class models, but in general
the results showed good accuracy for utilization and reasonable accuracy
overall. For the 44 models, the programs required approximately 400 milli-
seconds computation per model.

36 priority models were validated, 24 preemptive and 12 non-preemptive.
These models included from 4 to 6 customers, with from 3 to 6 classes, and
30or 4 I/0 devices. Again, utilizations and throughputs were validated for

all models. CPU queue lengths and mean CPU wait times were validated for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



116

92° S2° €2° S2°* %2°* 62°* 12° G2° 19°C @9°¢ G6°01 12°01 t2°! st°1 L2°01 Is°01 00°1 00°% 021 0°21 o0°*21 20 20°¢ 95
12° S2° 12° G2° Q2° Gg2°* H2° S2° 262 98°2 €S5°9 02°9 9t*l t2*t 29°a 0.°9 noO°1 00°1 0'e 0°g 0°§ 20 2o0° b1
G2* 92" #2° 42° 22° H2° 42 n2° 18°1 96°1 20°¢ @8°2 S0°l otr*t1 ©8°2 @r°2 th®  L6° 2*n 1%« 1%y €0 €o° %6
gl® 61* 61° 61°* 12° 61* 91° 61° ge*l ¢2€°1l 09°t ge°t L 9L* 6ley oy*y VA ¥ o 92 ct2 9°2 80°* SQ° €S
QL Ll 9L° LL* 6L° tL* L1* 1L* 95*9 S1°2 16%2 2°C 02°2 202 H1°1 SP°1 fE®  8E° #*0g Qf°lg €°1C 91l 20° 2s
19* B89* 69° 89° OL° 99° 69° €9° scE*9  12¢9 12°2 %9°2 6L°1 911 %6° 06°* [ G*22 R°22 »°g2 12* 1o 15
28°* 26° 6G6° 26* €G* 26* €G°* 2G6° 0G*y 28°9 eL*t 2g°l 26° 16° ane 8n° se* 92* L*71t f°st €°¢cl 02* 20° cs
L1€° 9C° wE® 9€° 0% 9€° ' 2€° 9¢° GE*E  SL°E 12°t ocg*t 1S*  #©ge 22° €2 L1° g1e 6°01 R°IT 1°11 6l €o° 6%
€9® 99° 49° 99° (9° g9°* #9°* gg° gu*8 €06 8H*y 2¢°S 12°C €0°9 S0°E %5°¢ %9°  99°* 0°91 a*uwl 0°gl 2t 90 99
6G° 6G° @5° 65° 95° 65° U1S° 65° €6°9 lwey 26°C 18°C  HG*2 CL1°2 G6°1 G2°2 oG* 6G° 0°21 f*s»t s°¢l gL*  %0° X
SH® UK GH® QB HH® GH® 4h° Qgn° 66°% LE°S  01°2 G2°2 €€°1 fE°*1 6Sb° €0°1 LTI T A 0y 1°4  B°9 gE* %0° S9
0t® 2¢° 62° 2€°* (12* 2€°* 9t° 2¢° Ql*y  l6°C 0S5°1 ¢co°t 2L 21° one LT ogce 2¢c° 0°'9 9°q £°S g% 20° (-3
8% 06° 2%° 05° 1S° 05* [%° 0§° 06° 0g° 09°t gs5°1 %8* @6° L9* tg* L1%* 0s6° 0°'e <'wm o'e 20° €0° L)
0E® €C€° 2€° €€° €£° €E®* »€° €€* 89° 6S° E1'1 o2°1 95°* 19° se* 06° 1€* ¢c° 0°s <°g 0°9 80 €o0° (2]
68° I5* 96*' Ig* &6S° 15° 95° 1g° s8* 19° 9€°1 2s%°1 08* €/° s € s6* 1s° o'y 2°: g% 66U %0° 2%
19° 9C° G€° oC° o9C° 9f* 1€° oc* 99° 9s° 21°1 »1°1 95* \s* on° 6f a€®  »t° 0°9 c*g 6°¢c 60°* €0° 1 L]
€5® €9° R/%* €9° &5° €9* 1S° €9° 92°8 6%°6 S8°% R2°'9  29°C s£°y €y*Z 6e6°f ®s°* €9° 0°91 »°22 6°6l LT-A § (L]
€%° 2S° 6%° 1S° 89" 1S° %% 18° 02°L wlL°L 12°C ar*y 06°2 €h*? 21°1 8Bn*2 19°  1S° N2l 021 1°et oc* ot* 6¢
QC® %9° BEC* &%° QAC® on* Q9C* uu* 1£°§ ®8°S  22°2 6n°2 0C*l et €we 601 L€*  Hu* 0°H4 P°01 0°¢ 9€* 10° 14
#€* 1€°* o0€°® I€* S2°* 1t* 22° t¢* 08°C %0°% (9°1 geo°l 69°* Gi° 6¢€° Ly 12°  1ge° 0°9 £°L %°9 9€* 40 i€
28°* 6L°* 16° 6L° 28° 6L°* 28° 6L° 8%l €s5°1l 16°1 sc°l 16* 96° 29°* 1ge s 0On° 5*0E G°62 %°0C 10 10 S¢
LTANE VA REK-TE R FAREE YA RN VAR 7L ViU L€°1 2%°1 19°l on°l 18* ¢€8° €6 1g* 1€° 9¢€° g°22 9°'i2 &*¢¢2 20 10 st
f5° 9G6° S* 95* 95° 9G* Q9G* #G* 12°t %21 €2*1 g2t 29° 29° SE* LI g2 12° L1 0l 1°01 1o 10° g
9C* IE* 6E°* LE* ©C* g€+ 8E°* 1E° go*tl 60°1 g0t o1l HH* Gh* 02° 0z i 91° 6°01 w01 6°01 00* 00° €€
62° 62* 2° G2+ G2° 62° 9n2* c2° 1S°6 BE*01 RBI°CL sc*01 26°1 412 26°01 €C°01 00°1 00°Y 0°21 o°21 d0°21 05" 10° 2¢
Ge* S2* 62° o2°* %2° g2* g2° G2 60°8 %Hyeg 2%*9 959  G6°l P6°T 6£°9 6E°9 66° 66° 0*g 1°9 t°s »9*  40e 1€
62°® €2* G2° €2°* ¢2°* t2°* ¢€2° te* c8°s 0O6°S %8°2 €0°¢ 6t l fE*1 69°2 HL°2 06 06° 2'e LA LA ] L4°  20° 0¢
el* 81* 9t gl* gt* gl* 91°* gi* 29°6  L1°y L2°1 g5t 98° #g* Z2°1 Lt €L 2L° 9*e L2 9*2 12+t L1e 62
®9°* 29°* #Q°* 29°* GG* 29°* £9° 29° 18°€l 96°S1 (2°S 9e°S 0E*% 09°% S%°E 69°¢ £9°* 29° 0°91 I°6l C€°el gse Il 82
95* 959* 6S° 95* 65°* 95° 85* 95° 85°01 91°El vYg°g 12°9 %8°2 g0°c <21°2 9g*2 €G* 95° 0°21 G°91 g°*91 g5 8l- L2
CH® 99 40t Hut  6n* ahv 2% 4ne 21°01 8%°6  1S°2 €%°*2 €S°T 0G°1 Sl L0°T o9& 4h* 08 1°®  0°¢ 66° (L0 92
1€ tg* 1g* 1e* 2t° le* o©Og* ¢ 85°t %8°9  6S°1 g%°1 9L* 61° 65 ty* OGN § 0°9 2°9 %9 couel 2t- s2
1% 8%° 60 g9 6%° 8% 8%° gn°
6%° 89" 6% 8™ 6%°* g9 g9 8%* LY°C Eueg 2l 61°S 0L*2 112 ©S°S B6°%H L6 96° L1°21 +»*21 s*21 %0* S0° %2
€u® 29° a9 2uc  ant 20°  gy° 2w
€9° 2%° Gu* 20 260 D4 Hut pe 192 &€*2 61°C ge'2 681l (89°1 6L1°2 €£5°2 @gR* GR* 9°%6 %% LAY $0* €O0° €2
1€® 62* 0€°* 62° 0OE°* 62° 1€°* 62°
0€® 62°* 2€°* 62° 62" 62°* 0f°* 62° 67l 1g°i €9°l ¢9°1 20°1 10°1 66° 96° 09° 65° 8°9 19 g°s 10 10 22
61* 81 81° 81° 81* gl* 81° 9l°*
L41* gt el gt 2%* gle @gl°* gl° gler si+t 02°1 sg1°tl 29* 19° E€oe 4 0 9€°* 9¢* 9*G &' g°c 10 10° 12
90° SO0° ¢2°* 12 [8° SK* 689 01*¢ 89°9 o9¢‘9 66*E 12%y 26°G LEn°g 6e8* G8° 0°El o°cl 1°s1 02* %0° T4
c0°* g0°* 12° 02°* +8* 189° 1€°G 19°G o9°% Ge°y €12 0s°2 S2°ft 19*c g+ 1lg° 16 %6 6% ®2°*  %90° 6l
G0e g0 gl gle €2 21° sley 10°%  2G9°2 #4c*2  0G°1 4ge1 gHe1 €8°1 gg* 2;° 1*6  f°c g°¢ €9 €0e gl
%0° %0° ¢gl° gl* 19* 65° 982 682 1s°1 ¢ge*l £€8° 4R 16° le* 09°* 65° 2°€ £°€ 2°€ L9 10 FA ¢
90°* 90* ¢2* €2°* 26° £6° 62*% €l 2°9 90°9 C9°€ %wGeg BEe°g 99°g w6 €6° 0°€l a*21 @2l 20° €0 91
90° 90° ¢2°* 22°* 06° 06°* 26°2 66°2 €2'% 91y 1€°2 292 BU°C 9Ll°C 16* 06° 16 f°]  6°6 €o* 20- st
G0* g0°* 12* 02* 08° 08° 98°1 98°t 2€°2 0€£°2 1€°! eg°1 O6*t €8°1 28 0g9° 'S 6°% 0°¢c %0 20° (24
90 90* 21* 91* €9° €9* 0E*1 62°1 €5°1 19°1 8L &L* 26* 6R° S9* €9° 2t LAd 2°t €0 20° el
90° G0°* 12* 12* 98° SR* 92t H1°L  6%°9 25°9 01°% 92+% S9+g 1lg*g ¢p°* Gg° 0°E1l &°Cl 2°1 22 20° el
60° S0° 12° 02° 28° 08° €6°s 02°5 [1-20 2EN-T34 ] 09°2 €h*>? 6L°C 99°fF R  0g8° 16 LY [ A} 1 92°* €0 1t
%0* »0° gl* gl* €1* 12° LO0*n 20°% 1S*2 6S°2 9S°1 9G°1 281 SK°y e e 1*'6  o°5 9°c 6t 10° ot
90°* %0° Gl* Gl* 19° .6S* €L°2 062 0S'l gl %8°* GHe 68° 6* 65°* 6S° et »°E 2t 2%° &0- 6
90° 90° 92* 42° 96° 96° 62°¢t 91°C 2i*9 10°*9 %S°E wE*E 2Ll°S 7L*s t6* 96° 0°Et @°21 9°21 L0* 20° °]
90° 90° %2° £€2°* 06° €£6° 212 €0%*2 2€°% €£0°*% QE°2 €2°27 96°C Si°'t 26° €6° 1°6 L8 9°§ 1{* co- i
G0* S0° 12° 12* 08° S8* S6* €6° L2°2 2i1*2 92°1 21y BHl 64°1 €R* S@° t°s ey L* 6l* €0° 9
50° %0° (1* 21* S9° 19° 2€° 0H* 2c*l  e2°tl €L 12 l8° I3: Q9 19° et 0°g 0°¢C 1€* toe s
60° G0°* €£2° 12° 18° 99° %2t 18°9 #1°9  46°C G0°*s» 00°9 61°g o9zl 2:°1 1°€t 9°ct 0°%1 L0° %0 L]
S0° S0° 12° t2° 28° 28° €0°9 18y 6L1°% 29°2 022 90°*%» f£6°C 0oL*l %9°1 1°6 %°6 L°¢ S0°* 90° €
%0 S0°* 61° gl* €L1° €L* 98° 08°2 €£g°2 SC'l 9E°1 90°2 90°2 9%°1 92°1 €°'Ss s§°s g'¢ s0°* 10° e
€0 €0° 9l® 41 oG* G5° Sty 50°2 00°2 LZA N TR 211 01°*1 211 01°1 9t 9°¢ 9°t 20 20 1
WIS dd¥Y WIS dd¥ KIS ¢dv KIS a&d¥ 1S dd¥ 1s deV WIS ddv Hnis ddv HIS daVv Sd WIS ddv Sd day
8¢9 01 L¢¢ 01 82 ¢1 S*1 01 1N *1°A*g°s *L°A°K Ndd  *T*0°0°Ss " *T°0°h NdI 11N Ndd 311 3WAD 3IINYY3TI0L 300

S17NS3¥ 1300k WILININOGYI-NON = 2 ITav}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



117

2992
199°2
199°2
199°2
1992
199°2
L99°2
199°2
199°2
199°2
199°2
1992
199°2
1992
199°2
199°2
199°2
199°2
199°2
L99°2
19%8°2
199°2
199°2
1992
199°2
199°2
199°2
199°2
199°2
199°e
199°2
199°2
NV3W

009°*
009
o002°
002°
609°
009°
002°
0o0z2*
00g*
00%°
002°
002°
009°
00y
002°
002°
009
009°
002°
0o02°
009°
00n°*
002°
002°
009°
00%°
002°
002°
009°*
00%°
002°
002°
80yd

€ o/1.

009° 1
009°1
0091
009°1
006°1
009°1
009°1
009°1
009°1
009°1
0091
0091
00s°1
009°1
009°1
009°1
009°1
009°1
009°1
009°1
0091
009°1
009°1
009°1
009° Y
009°1
009°1
009°1
009°1
009°1
009°t
009°¢
NV3IR

e

002°
009
00"
o002
002e
00h°e
009
002°
002¢
009°
004
oo2e
002°
0Qq*
00y
002
002
00y
004°
002-°
002
00n°
004
002°
002°
004°
00he
002°
002°
00y*
004°
002°
80¥d
0/%

SNOT1d182S30 1300H SSY1D=117NW S424 = € 37avL

000°2
000°2
000°2
000°2
000°2
000°2
000°2
000°2
000°+2
000°2
000°*2
000°2
000°*2
000°2
000°2
000°2
000°2
000°2
000°2
000¢+2
000°2
000°2
000°2
000°2
000°2
000°2
000°2
000°2
000°2
000°2
000°2
000°2
NV3IH

002°*
go02°
005*
0o0s°
002°
0o2°
00%°
009°
002°*
002"
oon*
009°*
002°
ooe*
00y°
009°
002°
ao02°
00%°
009°
002°
002*
0on*
009°
0o2°
[]) A
004°
009°
go2*
002°
00%°
009°
804d

L o/1

000°2
0002
0002
000°2
000°2
000°2
0002
000°2
0002
000+2
000+2
0002
000-2
000°2
0002
0002
000°1¥
000°1
000°t
coo-1
000°1
000°1
000°1
oco°t
000°1
06g°1
000°1
000°1
0oo0°t
000°1
000°1
ooo0°t
*A%y

000°§
052°
00g*
00g°
00ge*
000°S
0see
0og*
00ge
goge
000+S
0s2-
052
00g*
000G
000°S
000°*S
0s2°
00g*
G0g*
00g*
000°S
0G2e
00g*
00ge
0oge
000°S
gsze
052
00G°*
00g*
000°S
NVIn

Nad

S ot et h 0 @ ot Tl et S et ) ot ot ol ol ol Pl ol gl ood ek ek 8 ol o ol D Y R e -y

*1SnJ °*ON

NN”.’—QNHQ—'NHQ—‘NHQ—Nﬂé—ONN\_Y—GNMQ-‘Nﬂ‘

SSvD

1
300w

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



‘uoissiwiad 1noyum paugiyosd uononpoidal Jayund “iaumo 1ybuAdod syl Jo uoissiwiad yum paonpoiday

MODEL
1

CLASS

& W~ SUN S WUNw SLWN»> PWN= S W™ &N -

& W

CYCLE TIME
PP

630
8480
5.29
S5.90
6.12
627
5.21
B8.71
5.78
6423
6.12
Se4?
5.19
9.05
5.96
6402
Setl
Se31
5.139
Yeub
6.60
9.01
552
6.21
6.53
6456
5.52
8492
6.07
64568
640
Se73
Sebb
9.27
629
6430
5.67
S.56
5.69
2.869

sIM
7.37
8413
6.87
Te17
7'““
T426
604
TeY%
Ta1?
Tkl
T.28
6.40
6457
8435
7.08
Tel2
6.72
6.02
6.88
Be57
7.59
8,22
7.13
T4l
7.68
T.78
719
B8.26
T.72
1.99
T7.67
7|l5
1.03
8:63
8.09
Tewld
6493
6.85
7.37
8,83

Ps
Selb
1075
4e19
4062
‘4e3b
Sell
372
1060
4«57
4496
S.00
“'36
3.68
11.08
479
4494
4433
4425
3.88
11.58
S.1é4
10.75
4419
‘..62
LY
Sel0
372
10.60
“.57
4496
5.00
4¢36
3.68
11.08
4.79
449
4432
4425
3.88
11.58

TABLE 4 = FCFS MULTI-CLASS MOOEL RESULTS

CPU UTIL

APP
19
57
«09
«08
04
79
+05
«57
«09
«08
.18
«09
«05
55
.ou
o716
«09
2 09
«05
+53
16
30
«09
08
.04
«716
«05
56
.08
<08
75
«09
<05
54
.08
T4
«09
+09
«04
«52

sin
«80
63
07
«07
«03
«80
.o“
062
.07
.07
‘79
«07
«0%
6}
«0b
78
<08
<08
‘o'.
«60
+ 76
59
.07
.07
.on‘
76
«03
61
+00
«06
.75
07
« 06
59
.°°
o 70
.07
«07
.03
«50

CPU Mo, Lo
APP  gIM
l'b? 2.!6
«61 67
37 52
¢35 .50
o34 48
1.67 2.15
«36 .S0
61 66
+36 «50
«35 49
1,55 2.13
«36 51
«35 49
«59 «65
«35 48
1,62 2,13
236 «5S1
36 «51
o34 48
«56 63
1,73 2,14
+ 61 «64
39 S2
37 «50
«36 48
1.73 2.19
37 «51
62 «66
«37 «52
37 51
1.70 2.14
«38 «51
37 50
59 64
«37 «50
1.68 2.09
«37 «S0
«37 S0
36 o4?
«57 +61

SeDeQol e

APP

49
48
048
47

.48
049
Y]
»48

«48
48
«49
.48

o4B
048
47
50

«49
49
k8
«48

Y}
49
048
«48

048
o48
049
«48

«48
1y}
Y
«50

sIN

o7
«50
«50
«50

«50
ool
S0
50

50
.50
«48
«50

«50
«50
«50
4B

48
«S0
«50
«50

«S0
47
50
S50

3-1]
«50
4B
«50

.50
«50
49

CPU M.W.T,

APP
2464
533
1.97
2409
2.09
2462
1.89
5432
205
2e16
2452
1.97
le.82
532
2.08
2e45
1.964
1a91
l1.85
5.33
2.85
5,51
2.‘3
2.30
2,37
2.83
2.06
3448
2.25
2,41
2.72
a.ls
1.99
5.50
2,31
2465
2.13
2.08
2,05
5.52

siM
3.98
S.h2
3,54
3.60
3,53
3.90
3.30
5426
3.59
Jlb“
3.87
3445
3.22
S.94
3.67
379
3.40
3,37
J.30
S.43
4,07
5,28
3,69
3,75
3-65
‘..27
3.06
5'““
4.03
4,05
hell
3.65
3.50
5.48
4e0b
3.87
347
Jalesy
3.50
S5.41

SeDeMoTe

APP

“e9%4
3.95
4,09
4ql19

3.99
4.94
4.08
4e21

3,95
3.87
4494
4407

3.87
3.83
3.86
4,94

5,08
6,90
1.25
7.56

7.02
S.08
7.21
7,51

6.94
6.82
S.08
7.26

6.82
6.73
6.87
5,09

(3L ]

Se11
4.62
hell
“‘76

6.62
S.06
4467
4.71

“.63
4.58
Selld
4.70

4466
4.63
G467
S.21

9,48
8.67
8,83
8.89

94495

10,27

9.73
9.80

9.31
9.25
1043
9.83

B.66
B8.58
B.82
9.88

UTIL 1
APP
42
olé
.ls
07
«07
.45
23
«09
.or
206
o8
«22
.ls
04
«07
a9
«22
.15
«07
« 04
40
.13
. )
.06
.06
™)
.22
« 09
07
.06
kb6
21
»15
o064
«06
a7
21
olé
.07
04

01
simM
I37
olb
oll
«06
«05
«39
.18
10
<06
.os
<40
.18
-12
.05
‘05
vl
418
.12
<05
«05
+36
1o
.12
«05
.05
»37
$17
10
.05
«05
38
17
o1t
+05
«0S
«38
.17
ol2
+05
04

APP
«32
o0b
.12
oll
«05
30
.06
07
ol
05
31
2006
12
«07
.os
3]
«06
ol2
.12
«03
«30
Y
.lz
210
+05
«28
06
07
o1l
«05
29
Q6
o2
07
=05
032
<06
12
o1l

03

10 2

«27
o0b
10
10
.ob
25
«03
«08
«09
ol
«25
«05
009
«08
«0b
.28
0
.10
+09
.0“
26
.06
.09

o0
026
06
.07
.08
204
25
lo“
«09
«08
0%
025
los
+09
.09
« 04

APP
«60
206
10
.18
.26
«60
10
«06
.18
026
.59
10
10
el2
27
o517
10
el0
«20
17
«57
«06
10
17
24
58
10
.06
18
-2
«56
«09
10
-l
25
o564
«09
10
19
«17

10 3
siu
«51
.06
«08
«15
21
«50
«07
07
e15
o2}
«50
«08
.oa
13
2]
1Y)
«08
«08
15
.la
«50
«06
.08
15
21
okl
«07
.o’
.lb
«20
LY ]
«08
«08
13
«20
%9
«08
«08
«15
.18

811



119

12 preemptive models and all non-preemptive models. See Tables 5.5, 5.6 and
5.7. For the 36 models, the computation per model was approximately 400
milliseconds.

| In addition to providing reasonable accuracy for models not in
local balance, these programs give exact results for models in local balance
where class coalescing is not necessary. Though the coalescing techniques
do not necessarily give exact results for locally balanced models, the
results are very close. In the above validation process, for all FCFS
models requiring coalescing, the coalescing process was applied to a locally
balanced model similar to the non-locally balanced model being studied.
Individual class throughputs and utilizations were compared for the locally
balanced model with and without coalescing. The differences were never more
than 1% and usually less than that.

These programs are more than an order of magnitude faster than

existing implementations of other techniques.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



‘uoissiwiad 1noyum paugiyosd uononpoidal Jayund “iaumo 1ybuAdod syl Jo uoissiwiad yum paonpoiday

MODEL
1

1

12

CLASS’

W= W= WUN = W= WU WUN~ NS U ~RNSLUNCNSWUNRNS W~ NSEWN= NS WN

TABLE 5 = PRIORITY MODEL DESCRIPTIONS

NO, CUST.

e Ll I I 950 Q) Ll T 50 1) 0= 000 0 Py 0 bt bt 1) Gt e ot s Bd Dt Do B Bt B s G P o ud B B B Gt Pt B s St G G Gt e et D Pt G P Gt v Gumb il

cPu
MEAN
3,333
«33)3
+«333
2167
«333
«333
.333
«333
«333
3.333
.333
«333
1.000
24000
«250
«500
«333
250
2250
«333
«500
2.000
1.000
250
1.000
«100
=100
.loo
100
«100
1.000
«667
083
«083
«083
«067
«500
«167
«230
«500
167
«250
»500
167
«250
500
«167
«250
500
167
250
+500
167
«250

17

PROB
333
«333
+333
333
333
333
+333
«333
333
332
«333
333
333
«333
433
«333
433
333
«333
«333
333
333
«433
333
o2b0
+250
«250
«Z250
«250
«250
«250
#250
o250
«250
0250
250
125
125
o125
125
o125
o125
#1285
o125
o1¢5
125
«125
125
125
o125
o125
125
o125
125

01
MEAN
24000
2.000
2000
2.000
24000
2.000
2000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2+000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2,000
2.000
2.000
2.000
20000
2.000
2.000
2.000
24000
2.000
2.000
2.000
1.000
1.000
1.000
1.000
1.000
1.000
1,000
1.000
1.000
10000
1,000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

| ¥

PROB
«333
«323
«333
«333
«333
«333
»333
333
333
.333
«333
333
'333
+333
«333
«333
«333
+333
«333
«333
¢333
«333
333
+333
250
+250
.250
250
.250
250
+220
'250
«250
250
+250
«250
«125
125
«125
125
o125
«125
o125
125
«12%
«125
o125
.125
«125
«125
»t25
125
o125

02
MEAN
1600
1.600
14600
1.600
1600
1.600
1600
1.600
1.600
1.600
1.600
1.600
14600
1.600
1+600
1.600
14600
1.600
1.600
1.600
1.600
1.600
1.600
14600
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
l.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

| ¥

03
MEAN
20667
2667
20667
2667
24667
2667
20667
2.667
24667
24667
24667
24667
24667
2.667
2e667
2.667
2.667
2.667
2+667
2.667
2.6617
24067
2.667
2e667
+«500
.500
500
500
+500
+500
0500
«500
«500
«500
«500
+500
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
t«000
1.000
1.000
1000
1.000
1.000
1.000
1.000

17
PROB

250
«250
«250
+250
«250
250
«250
250
«250
.250
-250
+250
«250
250
«250
+250
«250
250
«250
250
«250
250
«250
«250
.250
250
«250
.250
«250
«250

0 &
MEAN

1,000
1,000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
2.000
2,000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2,000
24000

0ct



‘uoissiwiad 1noyum paugiyosd uononpoidal Jayund “iaumo 1ybuAdod syl Jo uoissiwiad yum paonpoiday

MODEL
1

CLASS

CVSWN>~ CNSWNr CURPLUAS CUNESWN> VNS W~

OV e W

T.06
8.“‘
6,03
6,70
7.27
6,99
7.26
6.22
5.27
.81
$.39
10.68
6.83
T.10
7.00
5.91
7,31
6,49
8,06
7.31
7.35
6.21
S.17
“.78
S.61
8.78
7.76
7.02
2.71
4,93
2.27
2.04
2447
2+95
2499
3,05
4.9
3.06
2,35
2.67
3. 14
3,15

CYCLE TIME

Siu
1.56
6,86
6,14
7-16
8,12
8,02
9,42
6.14
L.49
4.58
5.13
9,92
8,00
B.bo
6,92
4,60
6,71
6.50
8,45
8,51
9,02
402
4,61
SeS
8,76
8,02
8.37
2.79
4,33
2.20
2415
2,56
J.24
3.33
3,15
4.0
2,81
2,35
2,98
3,03
3,79

PS
6e16
962
S5.12
$.90
6.20
5.82
5.82
6.03
$.33
Se17
5.69

11.21
S.73
Se13
6.27
6.54
,’92
5.58
6.90
S.75
S5.54
6409
S.11
Sel4
6.05
9.43
Telt
S5.51
2+:62
5.28
2.16
1.96
237
2.83
2.83
2.70
S.43
2.99
1.89
2.28
2.72
2.68

CPU UTIL

APP
62
«40
«06
+05
.02
+05
.05
«60
«06
«07
+06
31
«05
«05
«62
17
.27
.oh
«06
«05
«03
60
«05
«07
«09
«23
13
« 06
040
«20
N
«05
04
003
003
«564
.20
.22
« 06
«03
«+03
«02

SIN
«069
49
«05
«05
+02
« 04
01
.62
07
«07
06
«J]
004
004
+68
21
«30
«04
.06
o 04
«03
«b0
«006
«07
«09
«23
12
«03
43
«24
«05
«05
«04
«03
#03
«59
25
«23
«04
.03
02
02

TABLE 6 - PREENPTIVE MODEL RESULTS

CPU MelQ.tLe
AP? SIN
1e68 2,23
040 49
29 o34
25 P L
21 31
«25 «37
27 .38
1ol 1.34
«06 <07
«08 «09
«08 »09
LY ha
25 «31
«27 «33
1.67 1.92
17 o2l
39 Y4
«25 27
28 <32
.29 °J4
29 «35
le)3 1l.22
«05 «06
0B «08
.ll .lZ
«31 o32
«32 35
226 29
75 «99
«20 24
13 «lb
12 16
<10 .15
«10 214
10 15
1.39 1.68
.20 «25
«35 39
26 27
21 26
«18 .25
«18 25

SeDelale

APP

49
45
olets
1Y
13

24
27
«28
049
4]
b4

37
89
03
.“5
«45
shS

21
27
«32
046
47
ohi

40
34
32
«31
«30
31

«90
48
ohte
ol
.39
+38

SIM

#50
47
o7
J46
.48
.49

«26
28
50
046
a7

o]
«49
bt
7
ol
.48

«23
27
«32
o7
Iga
245

o&3
«35
37
.36
«35
«36

43
«49
b
T
o3
o%3

CPU MeW,Y

- APP
1.97
.33
1,76
1,70
1,53
1.78
1.99
1.21
+33
«39
46
4446
1.69
1+90
1.95
1.00
2'8“
1464
2424
2elt
2¢13
1e17
+25
037
63
2e76
2.‘.8
1.83
34
1.00
30
o2h
.26
28
31
o7l
!.00
1.10
«62
+56
57
+55

.
Siv
2.3‘
.39
2.06
2,46
2,564
3.16
3.59
1.37
«33
«40
kb
4e36
2-5‘
250
2+22
99
2.80
1.76
276
2091
3.19
1426
.26
«37
«65
285
3.01
2-“‘.
1)
1.02
'32
«34
«39
a7

.95

uriL 10

APP
56
o146
o13
«06
.06
.10
«09
+70
«23
17
07
o 04
«l0
09
o651
20
.ll
.06
«05
«09
09
70
«23
17

«17

+09
16
16

1
SIM
313
.17
013
06
.05
.08
«07
«73
27
18
«08
04
«09
«08
o by
.26
o11
«06
«05
.08
«08
o171
.21
.‘8
.07
« 04
«08
07
«87
29
«09
.lo
ol
ol
.l“
«83
32
06
+08
09
el3
14

APP
o4l
o 06
o1l
«10
'0“
.08
07
50
«06
13
o12
«03
«08
08
Nk
'05
«09
+10

“e 06

«07
07
49
206
13
o1l
04
07
«08
57
«03
13
20
«05
«08
.08
«S50
«03
«10
17
+05
«08
+08

10 2
SImM
&0

10
.09
06
.06
.06
.sl
«08
.l"
«13
«03
«07
06
o4l
.06
'09
«10
o 06
« 00
06
049
07
ol
.12
« 04
«07?
«06
«55
«03
o104
.18
« 06
08
+08
49
«03
12
.17
o 04
06
«07

APP
«78
« 06
<09
.16
.22
13
12
.82
10
11

Ieo'

15
.13
13
«77
«09
«07
16
20
ol2
12
«83
el0
o1l
19
218
o1l
°13
29
«01
07
.10
«03
04
.o“
«25
«0)
» 05
+09
02
o0&
204

10 3
SIM

o 10
+09

.07
«09
.03
«04
00‘0
lz“
« 02
+ 05
.08
02
.03
03

APP

63
«03
13
«05
25
«08
+08
+55
«03
«10
06
023
.08
.08

10 &
SIv

«60
«03
olb
)
.2“
«08
«08
«S2
«03
oll}
o 04
.21
07
«06

12T



‘uoissiwiad 1noyum paugiyosd uononpoidal Jayund “iaumo 1ybuAdod syl Jo uoissiwiad yum paonpoiday

MODEL
7

10

11

12

CLASS

W= (DR s

W= W W

(23 g

CYCLE TIME
PP

2471
272
2457
2.86
2457
2.59
2451
2.66
2.59
2.57
235
2.7
3. 3“
3.24
3.10
3.57
3.57
J.4b
3.37
3.93
Je4d
3.34
Jebb
J.61

SiK
2469
2.60
2e62
J.00
2454
2.45
2.51
2.72
2407
2,46
2433
2.77
3,34
3.03
J.12
3.b66
ERS-1Y
3.28
340
4a11
Jekb
3.19
3.50
J.85

PS
2461
2.92
2e28
2442
2451
2.80
2e42
2.45
254
2.81
230
2455
3.31
3.57
Jel10
3.37
Jed2
3.81
2492
3.21
3.3)
3.66
Jd.21
3.15

cPy
APP
52
«37
«06
«09
42
19
«}3
«09
45
.19
.07
.18
ol
15
o1l
21
«6l
4G
«05
«13
-1
«30
«15
.01

UTIL
SINM
oS4
39
06
«08
o)
21
13
«09
046
«21
l07
=18
Y
Y]
ell
21
«62
«45
«05
12
52
31
+15
«07

TABLE 6 - PREENPTIYE MODEL RESyLTS

CPU MeQ,te
AP2 SIM
«95 99
kb «49
21 22
28 «28
68 «69
.19 21
27 «28
21 21
o7% «T6
.19 21
o} ol14
.4‘ .“l
87 «87
.15 «16
«20 «20
52 «51

147 ohB
63 «65
.23 23
o6l «60

1.08 «08
«36 «37
4B L4B
264 23

SeDaQuls
APP  SIN
65 67
bl L&)
WS 4S5
«39 L40
5S4 .55
bl L6}
0 4]
o34 L35
b4 405
+36 437
b LJ46
«80 .79
o84 B3
b2 42
oIT W17
«S9 459
+81 .80
b3 L42

CPU M W,T

.
APP SIn
.65 -67
«62 -1
55 .58
«81 +8%
x| bl
.50 .Sl
«34 «35
57 «56
Y} 49
+50 51
03] #33
56 57
48 49
+50 249
.3l .31
61 62
88 .87
«73 71
«77 .78

1019 1424
62 62
.60 .59
«55 «56
«88 «50

Ut 101

APP
ohb
«37
05
04
o3
19
«l0
+05S
e 3%
19
.05
09
«34
*15
«08
ell
«54
ehbh
<04
c06
olels
e300
o1l
«03

SIn
.“6
037
«05
006
35
20
«10
+05
Ex I
»21
005
«09
.3“
.ls
.08
sll
«56
46
«06
e 06
bt
«30
o1l
03

APP
.33
«09
.19
« 06
49
« 05
o4l
« 05
«35
«05
21
009
okl
«04
«J32
(33
32
ell
.15
«00
«55
«07
ol
03

10 2
SIN
02
o10
.18
0%
Y]
206
«38
0%
«38
.os
23
09
hb
«04
3l
o1l
32
ell
.l“
YL
.SS
«08
bl
04

APP
«32
«09
«0S
17
«36
«05
10
.19
o7
«05
-05
«37
«S4
'Y
«08
a2
249
ell
o0&
«25
32
07
o1l
ol4

10 3
SIn
.]l
10
o0&
17
o34
206
.10
19
kb
«05
05
o6
+ 54
o 04
«09
L3
.“0
ol2
«04
«25
.3'
07
ol1
13

APP
76
037
.19
017
«18
19
.‘o
o19
o177
.19
«21
'37
.90
15
32
T4
«8%
olele
«15
25
«87
30
shb
ol

10 &
SIv
o786
«J8
.19
17
.78
21
40
17
«17
«20
«20
«37
«90
.lb
34
o4l
<83
k3
ol
23
+88
«J2
sk
el

22T



‘uoissiwiad 1noyum paugiyosd uononpoidal Jayund “iaumo 1ybuAdod syl Jo uoissiwiad yum paonpoiday

MODEL
1

CLASS

CNSLWN NS WN-

SN SN~

CREFWNT CNSWNe-

CNFWN-

CYCLE TIME

APP
6,81
8.16
5.91
6,49
T.21
6.66
6.81
6.26
5.31
5.25
5.89
9+40
6.50
666
6.69
S.us
6,71
6.4k
7,51
6.89
6.97
b.22
5.23
5.25
6.06
8.17
6.88
6467
2.68
“.85
2.28
2.02
2444
2'90
2,92
2.95
4,75
2,83
2,30
2.61
3,06
3.07

Sim
T.21
7,06
S.98
6,71
7.81
7.88
8,38
7.07
S.83
6,05
6,82
8,62
7.81
b.48
'los
6,08
6,30
6,171
8,01
7.10
8,04
0,48
S.34
S48
6,34
T.56
7.21
T.86
2.77
4,32
2.26
2.11
2.59
3.10
3,20
3,08
4,20
2,63
2,39
2., 43
3,50
3,63

PS
616
962
S.12
S.90
6e20
S.82
S.82
6.03
5.33
Se17
S.69

1l.21
5.73
573
6.27
6.54
7.92
S'Sa
6.90
G795
554
609
S.11
514
6.05
9e43
T.04
S5.51
2.62
Se28
2.16
1e%6
2.37
283
2,83
2.70
S.63
2.99
1.89
2.28
2.72
2.68

CPU UTIL

APP
N1}
o4l
.06
«05
+02
«05
.os
N-1%
«06
206
06
«35
«05
«05
4.1
17
«30
04
«07
«CS
«06
62
.05
«06
.oa
26
«15
«06
ohl
o2l
.o“
«05
<04
«03
.03
56
21
20
06
«03
«03
02

Sin
«68
ob?
<06
«05
02
.06
Uk
«65
06
06
05
Y]
04
.o“
Y1)
elb
«32
.o‘.
« (6
o0&
«03
Y X
+05
«06
«08
27
.l“
«0)
b2
23
+04
05
.0“
«03

00
o2h
25
«03
«03
o 02
.02

TASLE 7 = NON-PREEMPYIVE MODEL RESyLTS

CPU MeQ,Le
APP SIM
1,59 2,05
Y 49
28 31
23 I
20 29
22 «32
23 +33
1.27 1.91
sl 27
15 .28
o165 o271
38 ohte
22 032
23 «33
1¢57 1.82
«23 «30
« 30 «39
o264 26
o2k 27
25 «31
26 «30
le23 1.54
«]13 «18
316 «21
.18 22
«29 «33
26 «31
-23 -28
o72 «91
21 23
«13 «13
Oll ol“
09 13
+08 13
.09 <13
1la31 1,67
«23 «29
«33 «J36
.25 .27
.19 «26
.16 24
e16 25

SoD.O.Ln

APP

b9
45
.'02
ohg
2
42

o34
36
37
49
4]
b2

42
48
L x]
042
bty
b4

033
.36
038
.‘5
ok

b}
«34
.32
29
«28
.cB

42
Y
%
.39
.37
.36

SId

«50
W46
Y
o6
o0?
w7

4S5
45
.“5
.50
o7
b7

46
49
chte
a4
b6
l“b

39
.“o
W42
4?7
-"6
o45S

-“2
«34
«35
034
.33
e 1}
+ 46
48
il

o3
k3

CPU M, WeTe
APP SIM

1.80
Jbb
1ol
1.38
1«36
156
1.32
.72
«87
294
3«70
1.37
1.48
175
1.33
2.83
l‘“o
1.68
1.67
1.73
1.28
066
«87
1.07
242
1.76
149
«J2
1.03
31
.23
»23
24
25
-1}
1.08
.96
51
Y]
49
Y:)

2006
3,45
1,83
2.05
230
252
2080
2.26
159
1.70
1.87
367
249
2.82
2ol
1.83
2445
1.74
2413
2435
243
1.66
98
113
1.42
2453
2423
2.22
42
1.01
«30
30
.3“
40
X
+86
1,24
.95
+64
TG4
«86
+90

uri, 10 1

APP
«60
«15
olé
«06
«06
‘lo
10
.69
23
15
«07
o4
.10
«10
63
21
el2
«06
«05
.lo
el0
«69
23
.ls
«07
«05
«10
10
+89
«26
«09
10
10
17
.17
+«84
+26
.07
«09
"o
o 16
.16

SiM
57
16
Y ]
«05
«05
«09
«08
«6]
«20
Y]
«06
»05
«08
+08
«63
21
13
+06
06
«09
«08
b5
22
ol
06
«05
10
«08
«87
«29
«08
«09
elo
o15
s

.al .

«30
07
«08
.08
o 15
.11

APP
45
« 06
il
.lo
o 0b
.08
« 08
.“9
«06
12
.ll
«03
«08
«08
04S
«05
10
«10
.ok
+08
«08
s49
+06
.12
«11
s 04
-08
«08
.SB
«03
«13
«20
05
«09

52
003
.11
o117
»05
-08
+08

10 2
SiM
o2
05

.10
104
«07
<06
43
«06
o1l
o 10
Q&
.07
«06
%)
«05
.ll
+10
o 00
07
'06
bl
206
12
«10
«00
<08
07
«56
+03
olé
19
.o“
«08

«51
.03
oll
.18

207
<07

.oa
17
21
+13
13
84
.lo
«10
.18
«20
13
«13
.29
«01}
.07
el0
.03
« 06
.04
«26
01
«05
09
.02
o 04
o0&

APP

«63
«03
«13
+05
.26
«09

L ]

58
+03
o1l
06
26
+08
.08

10 &
L]

si

«62
«03
13
05
024
«08
.08
«S4
.03
W11
L
«22
+07
.07

YA



‘uoissiwiad 1noyum paugiyosd uononpoidal Jayund “iaumo 1ybuAdod syl Jo uoissiwiad yum paonpoiday

HODEL
?

10

12

CLASS

WiNe= W W

W W

[ %RV X

CYCLE
APP S

2.68
2.78
2,52
2.65
2,55
2.67
2,51
2.52
2,57
2066
.39
2.63
3,34
3,34
3,16
3,46
3,54
3.53
3.33
3.66
.6l
Jeb2
3.490
J.38

n
2464
2.08
2,96
2,66
2.55
2,56
2,56
2,56
2,53
2.50
2,33
2,66
3,248
3.12
3, t2
3,46
3.53
3.4l
3.36
3,83
J.u2
3.33
R PV
3.52

+

TIME
PS

2.61
2492
2,28
2443
2.51
2,80
2q42
2,645
2.54
2.81
2,30
2.55
3,31
3.57
3.10
3437
3.62
3.81
2.92
3.21
3.33
366
3.21
3.15

CPU UTIL

APP
52
«36
.07
+09
k2
.19
13
.10
3
19
.07
.l9
Y
.15
.ll
22
61
%]
.05
sl
51
«29
+15
07

SIM
«53
37
«06
o 10
42
«20
Y k)
«09
46
20
207
.18
.“a
s 16
11
.22
«62
LY
.05
13
«52
«31
olé
07

TABLE 7 = NON-PREEMPyIVE MODEL RESuLyS

CPU "looLo
AP?  SIM
92 «95
48 «50
«20 20
66 <66
21 .22
27 27
.18 el7
«72 o Th
.22 «23
ol -ls
»35 «36
«85 <87
18 (19
«23 .23
45 o 45

1.4 1,40
67 «69
.22 .22
52 52

1.04 1.05
«38 k0
4S5 W45
20 «20

S.D.0.L.

APP

260
o0
b2

o4l
'53
+38

nkl
«35
59

«38
49
«73

85
ob)
72

60
o7
40

SIM

67
o 40
%3

o2
53
.38

48
.36
+60

<39
49
73

«85
.“2

73

61

«76 .
40 -

CPU MeW.Y

L ]
APP Siv
obl «63
67 +68
«50 .52
62 + 66
Y 42
+56 57
38 35
«51 &3
W46 Y
58 59
o4O 35
52 o7
47,48
+59 «59
57 5T
+«83 «85
79 « 79
o7} 15
+93 1l.00
59 «60
«66 67
52 52
o617 «69

uTIt 101

APP
46
36
«05
+0S
o34
.l9
.10
«05
034
.19
+05
10
o34
15
.08
oll
«53
.“J
.o“
«07
bl
29
o1l
o 0%

SIM
o4?
«J8
«05
W06
P
19
el0
05
36
22
05
«09
13
W16
.09
oll
oS54
LX)
o 04
«07
obS
030
o11
206

APP
034
« 09
.20
« 05
50
«05
40
«05
35
005
.21
«10
kb
«0%
«32
o1l
«32
.11
07
.55
«07
.k‘
«0%

APP
«33
«09
.05
.19
o34
+05
.10
.20

48

005

»38
55
04
.08
%)
Y
oll
«04
27
«33
07
o1l
.15

10 3
SIM

«04

olb

o153

10 &

«B4
okl

-89
«J0
o4S
ols

({4}



CHAPTER VI
SIMULATION OF GENERALIZED QUEUEING NETWORKS

6.1 Introduction

Queueing network models cam be used to analyze characteristics of
computing systems such as scheduling disciplines with priority and/or pre-
emption, non-exponential service time distributions, customer dependent
behavior and contention for memory, channels and other resources (B2,B4,Fl,
K1, Chapter V). Though much progress has been made in using algebraic or
numerical techniques to find solutions or approximate solutions for these
complex models (B2,B4,C2,K1,Chapter V), simulation is more general than
other solution techniques. Confidence intervals for simulation results are
very important. Confidence intervals for simulation results for a very large
class of queueing network models can be determined using the techniques of
Crane and Iglehart (C6,C7). We have developed a versatile simulator incorporat-
ing confidence interval analysis; this simulator and the extensions proposed
here provide the computer system designer/analyst with powerful new tools.

In section 6.2 we review the techniques of Crane and Iglehart, in
Section 6.3 we present a description of the simulator we have implemented,
and in section 6.4 we discuss the extension of the existing simulator to the
general models described above. In section 6.5 we present a language, QUASCIL
(QUeueing Analysis by Simulation with Confidence Intervals), based on the
language QAL (F1,M2). Only models for which the confidence interval technigques
are valid may be expressed in QUASCI; the language is designed to prevent

incorrect application of the confidence interval techniques. QUASCI is also

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



126

appropriate for model description for solution packages using nonsimulation
techniques. This is significant in the application of queueing network

models to computer system analysis.

6.2 Confidence Intervals -- The Crane-Iglehart Technique

Confidence intervals (M3) may be used to indicate the accuracy of
simulation results. We can say with a certain level of confidence, say 90%,
that the result of a simulation will lie within an interval, say (a,b). In
other words, if we run many simulations, the results of 90%Z of the simulations
will be in the interval (a,b).

Crane and Iglehart have developed confidence interval techniques for
simulations of Markovian'models with a single chain. We will assume for
now that the state space of the model is finite or countably infinite; these
techniques may also be applied to other models (C7,L1l). The techniques are
based on many replications of "tours", a tour being defined as the period
between two successive returns to a designated state. The simulation need
not simulate the Markov process directly, but it must be able to determine
when the system returns to the designated state. Crane and Iglehart show
that the expected length of the confidence intervals, given a fixed simulation
run length, is independent of the state chosen to define the tours. However,
if the state chosen is such that the tours are very long relative to the total
simulation run length, then few tours will be replicated and the confidence

interval analysis will not be valid. So we should attempt to choose a
frequently entered state to define the tours. We should also choose states

that are simply defined so that overhead of testing for the state is not too

great.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



127

We illustrate application of the techniques in determining confidence
intervals for server utilization. Application to other model statistics is
gimilar. Server utilization can be determined by dividing the simulated time
during which the server is busy by the total simulated time. Equivalently,
we can determine utilization as EYT; where Bi is the time the server is busy
during tour i, and Ti is the length of tour i. For g in the interval (0,1)
we can determine an approximate 100(1 - g) percent confidence interval for

BT—kle—‘/ﬁ’BT-kslz+/ﬁ

utilization (C6) as: , where k, S19° Sgo

T2 _ T2 _
T k522 T k522

and D are defined as follows:

-n2 -
Let ¢(z) = 1 ffw e /2 dn , z, = ¢ 1(x) and let n be the number

Y21
zi—glz n — n 2 =
of tours, then k = g 812 = 1 (E[BT] - BT). 522 = o1 (E[T?] - T9).
= I 27 _ ®”2 = (BT - 2 _ (m2 _ w2
Let $11 = o3 (E[B4] - B%), then D = (BT kslz) (B ksll)(T kszz).

6.3 APLOMB - A Simulator for Closed Queueing Networks
We have constructed a queueing network simulator employing the
Crane-Iglehart techniques. This simulator exists as a set of Fortran sub-
routines. The user provides the routines with a definition of the model,
criteria for acceptable confidence intervals, and a short routine which is
. called to determine whether the simulated system is in the tour defining

state.

The networks simulated by APLOMB may have several different classes
of customers. Each queue may have one of a variety of queueing disciplines,
including FCFS and priority disciplines. The existing simulator assumes a

single server at each queue, but may be easily extended to allow multiple

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



128

identical servers. Service distributions of generalized Erlang form
(Figure 6.1) proposed by Cox (C5, Chapter IV, Chapter V) are assumed; the

service times may be class dependent. Customers leaving a queue may be routed

‘ >
H u u U
1 2 3 4

- rate of exponential stage i

u
i
P, - probability of bypassing stages after stage i

Figure 6.1

to any queue in the network according to fixed probabilities. These
probabilities may be dependent on the customer class and the queue being left.
The state of the system is determined by the number of customers of each class
in each queue, the ordering of customers in each queue, and the current
distribution stage for each customer. This system will have a finite state
space;

The simulator structure is driven by an event list. An event
occurs each time a customer completes a stage of its service distribution.
After each event the user supplied routine is called to determine whether
the system is in the tour defining state or not. If the system is not in
the tour defining state, the simulation continues. If the system is in the
tour defining state, the accumulators used in the confidence interval analysis

are updated. If a sufficient number of tours have been replicated, confidence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



129

intervals are determined. If the confidence intervals are satisfactory, the
simulation is terminated, otherwise additional replications are made until
satisfactory intervals are obtained.

This simulator has been used to determine results for over 125
computer system models (Chapter V). The results of these simulations are

in agreement with those obtained by analytic approximation techniques.

6.4 Extension to Open Networks, Mixed Networks and Passive Servers

The existing simulator may be easily extended to include open and
mixed networks. Open networks have sources which emit customers and sinks
which absorb customers leaving the network. Mixed networks are open for some
classes of customers and closed for other classes. If we represent the time
between arrivals from a source by a distribution of the Cox form (Figure 6.1)
and make other restrictions as with closed networks, then the system will have
a countably infinite state space. The state of the system is determined by
the distribution stage of each source, and the same conditions which determine
the state of the closed network. In addition to events occurring after
customers complete service stages, events must occur when a source distribution
stage is completed.

Passive servers are a construction which has been included in
queueing network models to consider the effects of blocking in computer
systems for resources such as memory, channels and peripheral processors.
Customers must acquire units of the server before they may traverse certain
parts of the network. If the units are not available, the customer must wait
in a queue. When a customer leaves the restricted portion of the network,

all units of the passive server are released by the possessing customer and a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



130

queued customer may acquire these units. We assume that the number'of units
required by a customer is described by a finite probability mass function, and
dependent only on the server and the customer class. The state of a system
will be determined by the above mentioned conditions, by the allocations of
passive servers to each customer, the number of customers of each class in
each queue for a passive server,’and the ordering of customers in these
queues. The state space will be at most countably infinite. Since passive

servers will only be affected when customers leave a source or an active

server, the same event definitions described above can be used.

6.5 QUASCI

QUASCT is a high level language very similar to the language
QAL (F1,M2). We have restricted the features of QAL to allow only models
which are compatible with the confidence interval techniques, and have added
new features to facilitate use of the confidence interval techniques. First
we présent an example illustrating some of the features of the language,

then informally present the syntax and semantics of the language.

6.5.1 An Example

Figure 6.2 illustrates a simple model of a computing system.
Customers arriving at the system must wait in a queue until allocated space
in memory. After receiving memory, the customers alternately request service
from the central processing unit (CPU) and from an input/output (I/0) device.
After several cycles of CPU and I/0 services, the customers release their
portion of memory and leave the system. Figure 6.3 gives a QUASCI description

of this model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



131-

[Va] [T ]

- N
o o
— —

Figure 6.2

MEMORY

INPUT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



132

NETWORK
1 (1.) (ALLOCATE, MEMORY)
2 (1.) (cPu)
3 (.4) (T01)
3 (.6) .(102)
4  (.5) (60,2)
4 (.5) (RELEASE, MEMORY)
5 (1.) (SINK)

END
SERVERS
MEMORY, PASSIVE = 4, REQUEST = 1 $
CPU, DISTRIBUTION = STANDARD(1l.,5.), DISCIPLINE = PS,
TOLERANCE = (1.,.05,.2,.2) $§
I01, DISTRIBUTION = STANDARD(2.,.5) $
102, DISTRIBUTION = STANDARD(3.,.5) $
END
SOURCES
INPUT, DISTRIBUTION = STANDARD(10.,1.), ENTRY POINT = MEMORY $
END
CUSTOMERS
CPU = (2) $
END
TOURS
MEMORY, LENGTH = 0 $§ CPU, LENGTH = (2) $
101, LENGTH = 0 $ 102, LENGTH = 0 $
END
SIMULATE
BATCH, CONFIDENCE = 95
END

Figure 6.3

The NETWORK statement describes the interconnections of the model
elements. This statement consists of several "levels". Each level consists
of a level number, a traversal probability, and either a network element or a
"GO" element. Customers leaving a network element proceed to a level with
the next higher level number, unless directed to a specific level or element
by a "GO". When there are several levels to choose from, the choice is

determined by the associated traversal probabilities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



133

The SERVERS statement gives the characteristics of each of the
gservers in the model and their associated queues. Several characteristics are
not specified; default values are assumed. MEMORY is a passive server with a
total of four units available; customers always request 1 unit. The queueing
discipline is FCFS by default, and no criteria are specified for the
confidence intervals for the statistics associated with MEMORY. The CPU is
an active server (as opposed to a passive server -- the CPU is a server in
the traditional sense). The distribution of service requests is a standardized
form (Chapter V) with mean of 1 and coefficient of variation 5. The queueing
discipline is Processor Sharing (PS), the limiting case of a no overhead
round-robin discipline as the quantum approaches zero. TOLERANCE specifies
maximum lengths for the confidence intervals for throughput, utilization, queue
length and wait time, respectively, at the CPU.

The SOURCES statement specifies the name of the source, INPUT, the
distribution for interarrival times from the source, and the place where
customers enter the network. Customers arriving from the source are of
class 0, by default.

The CUSTOMERS statement specifies that there are to be two class O
customers at the CPU when simulation begins.

The TOURS statement specifies the conditions which determine the
tour defining state. In this example, all queues are empty in the tour
defining state, except for the CPU queue, which must have 2 customers. Both
customers at the CPU must be in the first stage of their service distribution,
by default. Also by default, the source must be in the first stage of its

distribution. Notice that the system is in the tour defining state initially.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



134

The SIMULATE statement specifies that simulation is to be initiated,

and the confidence level is to be 95%.

6.5.2 Syntax and Semantics of QUASCI

QUASCI, like QAL, is intended to be embedded in a high level
algorithmic language such as FORTRAN, PASCAL or PL/1l. QUASCI programs may
take advantage of host language facilities for communicating with the operating
system, for iteration, for computing values of variables, etc. The interaction
of QUASCI with the host language is more restricted than that of QAL. The
primary difference is that host language expressions within QUASCI statements
are not evaluated repeatedly during the simulation, but rather evaluated when
the QUASCI statement is executed. This is necessary; otherwise, we could not
easily guarantee that the Markov process for the simulated system is properly
defined. This restriction also removes oné of the primary implementation
difficulties of QAL.

There are seven statements in the language, SIMULATE, NETWORK,

. SERVERS, TOURS, CUSTOMERS, SOURCES and SINKS. All programs must include the
first three and either CUSTOMERS or SOURCES or both, TOURS must be included
unless the system is an open network. We will now discuss these statements
in the above order, but first describe notation. Braces { } enclose required
items, and brackets [ ] enclose optional items. When there are several lines
within braces or brackets, any one line may be used for the required or option-
al item. Underlined values are used as default values where no item is
specified. Capitalized words denote keywords. Where several orderings of
keyword items are possible, all orderings are equivalent. An ellipsis (...)

represents repetition of the preceeding form.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



135

Figure 6.4 describes the SIMULATE statement. The <name> is used

to identify the entire simulation, and must be a valid identifier in the host

SIMULATE <name> »CONFIDENCE= _ 90 :]
<expr>

,TOUR LIMIT=  _ 25 25 )]
“gexpr> * <expr>

Figure 6.4

language. CONFIDENCE sets the level of confidence for the simulation
statistics. The item <expr> denotes a scalar expression in the host language.
The first value in parentheses for the TOUR LIMIT sets the minimum number of
tours considered necessary for valid confidence intervals. The second
parenthesized value sets the number of tours to be replicated before rechecking
the confidence intervals.

Figure 6.5 describes the NETWORK statement. The item <level #>

NETWORK

{;level #{} expr> } " ~
<expr>[,<expr>]...) (ALLOCATE, <name>)
(RELEASE, <name>)
([SERVER,] <name>)
(SINK [,<name>])

=
<level i#>

{1 (BRANCH,<name>)
(CLASS,<expr> ) . |

—

-

END
Figure 6.5

must be an unsigned integer. The parenthesized expressions in the second

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



136

part of the level give traversal probabilities. The singly nested form gives

class independent probabilities, while the doubly nested form gives probabilities

for each class from class O through the highest class number occurring in

this model. (QUASCI allows only single digit class numbers for clarity in

the TOURS statement. From experience with APLOMB, it is doubtful that

simulation analysis of models with more than ten classes would be tractable.)
 The items allowed for the third part of the level are generally self explanatory.

The BRANCH item is intended as a labeled "dummy" node for convenience in

describing complex routings. The CLASS item changes the class of a customer

to the value given in the expression.

Syntax of the SERVERS statement is shown in Figure 6.6.

SERVERS
<name> .
[ 1 ,ACTIVE= 1 , DISTRIBUTION= '
<expr> <expr> <dist>
{ (<dist> [,<dist>] ...)
»PASSIVE=<expr> ,REQUEST= |<fpmf>
L (<fpmf>[ ,<fpmf>]...)
" DISCIPLINE= FCFS
PRIORITY (<expr>)
PSs
LCFSPR
F
L ¥ a

«© - -] o

[;TOLERANCE= (<expr>,<expr>,<expr>,<expr>)

s STATISTICS= GENERAL
NONE
FULL

Figure 6.6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



137

This figure shows the description possibilities for one server or set of
identical servers. Several descriptions may be included in a single statement,
with each description terminated by a dollar sign. The first line in the
major braces is for active servers, the second for passive servers.

For active servers, the expression in parentheses gives the number
of identical servers. The expression after ACTIVE= gives the rate of each
server. In the distribution description for the server, we specify whether
the distribution is class independent or class dependent. The form with a
single expression is for class independent distributions. The parenthesized

. form is for class dependent distributions. There are several options for

<dist>. The primary two are a standardized version of the Cox form (Chapter V),
STANDARD(<expr>,<expr>), where the first expression is the mean and the ,
second is the coefficient of variation, and the general Cox form, SGQ?S;;;;>:
<rates>,<prob>), where the expression gives the number of exponential
stages, <rates> is a vector of rates for the stages, and <prob> is a vector
of bypassing probabilities for the stages. We may allow other distributioms
consisting of networks of exponential stages. However, this complicates
implementation and adds little generality (Chapter IV). Including distribu-
tions which are not representable by a finite number of exponential stages, for
example the uniform distribution, does add considerable generality, but also
requires restrictions in the tour definitions. If we have such distributions,
then the state space will not be countable. In choosing states for tour
definition, we are restricted to those states which have tour lengths with
finite first and second moments (C7,L1).

With passive servers, the expression after PASSIVE= gives the total

number of units available. We specify the number of units for each request

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



138

after PASSIVE=. This may be class independent or dependent as with active
server distributions. The item <fpmf> may either be an expression, in which
case the number of units requested is a constant, or a finite probability
mass function expressed as PMF((<expr>,<expr>),(<expr>,<expr>),...), where
the first expression of the pair is the probability of the value of the
gecond expression.

Several options are shown for the queueing discipline. The default
discipline, first come first served (FCFS) is appropriate for either active
or passive servers. The expression after the PRIORITY discipline gives the
preemption distance (H2). This discipline is appropriate for passive
servers only if it is non-preemptive. PS is appropriate only for active
servers as is Last Come First Served Preemptive Resume (LCFSPR). First Fit
(FF) is appropriate only for passive servers. FF is similar to FCFS, but
when the first customer in the queue requests more units than are available,
other. customers with smaller requests may be allocated units. Other
disciplines may alsc be added to the language.

As previously mentioned, the expressions in the TOLERANCE description
are maximum lengths for the confidence intervals for throughput, utilization,
‘mean queue length and mean wait time, respectively. These lengths are for
class independent statistics. Three options are allowed for the statistics
gathered; class independent statistics (GENERAL); no statistics (NONE) and
class dependent as well as class independent statistics (FULL).

Figure 6.7 shows the form of the TOURS statement. Tour descriptions

are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



139

TOURS -
<name> | ,LENGTH= 0
L (<expr>[,<expr>]...)
”
,QUEUE= J[1
(<digit>[<digit>]...)|<digit> [(3TAGE= 1 3
. <expr>}| -

[<name>= 0
<expr>f|
,STAGE= 1 ..
<expr> see .

Figure 6.7

appropriate only to servers and sources. The LENGIH and QUEUE keywords are
appropriate only to servers, while the STAGE keyword outside of the QUEUE
section is appropriate only to sources. Where the total queue length is non-
zero,‘lengths for each class must be specified. If more than one class of
customers is present in the queue, and the discipline is not PS or PRIORITY
with preemption distance 1, then the ordering of customers in the queue must
be specified with the QUEUE section. The customers are specified in order
from first to last. The number in parentheses is the number of customers of
the class specified by the digit following the parentheses. The STAGE keyword
in parentheses is for the current distribution stage of those customers.

The <name> in parentheses is the name of a passive server, and the expression
gives the number of units of the server that are held. The STAGE keyword for
sources is}for the current distribution stage for that source. Note that

the syntax does not prevent the user from defining a model with multiple

chains or using a transient state for tour definition. These are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



140

considered semantic errors and an implementation of the language should attempt
to check for such errors before simulation is initiated.AFor example, if the
network is such that customers may initially be in a queue to which they
cannot return, if aeadlocks may occur, or if customers may change from one
class to another but not reverse the class change, then transient states can
exist.

The CUSTOMERS, SOURCES and SINKS statement are described in Figures

6.8, 6.9, and 6.10. The CUSTOMERS statement may be used to place

CUSTOMERS
<name> = (<expr>[,<expr>]...) $ ...
END
Figure 6.8
SOURCES
<name> {,DISTRIBUTION= <dist>}
},ENTRY POINT= <name>
. <level {>
»CLASS= 0
<expr>
,STATISTICS= GENERAL
NONE
$ LN
END
Figure 6.9
SINKS
<name> ,STATISTICS= GENERAL
NONE
FULL
$ a0
END

Figure 6.10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



141

customers initially at different servers in the network. This is necessary
for closed networks and useful in open networks. The distribution options for
sources are similar to those for servers, but are restricted to forms with a
finite number of exponential stages.

Finally, we summarize the differences between QUASCI and QAL. We
ignore minor differences, such as substitution of one keywor& for another.

First, the language QUASCI is more restricted than QAL, both in
terms of features allowed and in terms of semantics. The restrictions are
generally necessary to guarantee that the confidence interval techniques may
be applied. Expressions in QUASCI statements may not change value during
simulation, as may those in QAL. QUASCI cannot allow source distributions
which are not representable by finite networks of exponential stages. Control
of routing in the network is limited to fixed probabilities in QUASCI, while
QAL allows very general predicates to control routing and allows the predicates
to change during simulation. QUASCI does not allow customers to create
subtasks, as does QAL. QUASCI does not separate queues from servers as does
QAL, .nor does QUASCI allow the flexibility of server definition that QAL allows.
QUASCI does not allow passive servers to be consumed or created. QAL permits
ugser definition of queueing disciplines and other simulation constructs, but

QUASCI does not.

Second, QUASCI includes features not found in QAL, such as tour
definition, which enable convenient use of confidence interval analysis. As
another extension, QUASCI distinguishes between customer classes by digits

instead of names and includes class distinctions as an integral part of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



142

syntax of the language; QAL requires more user effort in the specification
of class dependent behavior. Liu (L4) has extended the syntax of QAL in a

similar manner.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER VII
SUMMARY AND RECOMMENDATIONS

We have presented an approach to configuration design of computing
systems. We have also presented techniques useful in the implementation of
this approach.

We have shown that efficient optimization procedures may be applied
to a large class of open queueing networks with different classes of customers.
In many situations these open queueing networks may be used as models of
computing systems, communication networks and computer networks. We recommend
that an existing computer program, such as Hogarth's (H3), be extended to
include this class of networks. Extension of our results to closed networks
would be very useful, though this appears to be a difficult problem.

Our algorithms for numerical solution of closed queueing networks
enable inexpensive parametric analysis of realistic models of computing
systems. These algorithms are also valuable in the approximate analysis of
more complex models; our approximate analysis techniques for central server
models are economical and suitable for analysis of large parameter spaces of
configurations. We thoroughly validated our approximations with simulation
results for over 125 models. These nu?erical and approximation techniques
are compatible with the techniques for models with passive resources such as
memory (B4,K1); computer programs combining our techniques with these
previous techniques would be very valuable to the computer system designer.

The characteristics of the models we analyze correspond to develop-

ments in computer systems and results of measurement studies. Measurement

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



144

has shown that service time distributions are often non-exponential; our
models allow a general class of service time distrihutions. Our models

allow multiple identical processors; there is a trend toward architectures
with multiprocessing and our models are gpproPriate for analysis of these
models. Empirical studies show that different programs have different service
characteristics. Our models represent program dependent behvaior by using
different classes of programs. Priority scheduling is widely used in computer
systems and computer networks; our models allow preemptive and non-preemptive
priorities.

Simulation stuaies continue to be important in computer system
evaluation. Simulation techniques have been used casually in the past and
simulation results have been viewed with skepticism for this reason. Our
work has helped to formalize simulation technique and provide tools and
theory which allow confidence in simulation results.

We have shown that the confidence interval simulation techniques
of Crane and Iglehart (C6,C7) may be applied to a very large class of general
models of computing systems. We have presented a language, QUASCI, designed
to facilitate correct application of these simulation techniques. A simula-
tion implementation of this language would also be extremely valuable to
computer system designers.

QUASCI may aléo be used to represent models soluble by non-
simulation techniques. We suggest that this language be used as a general
modeling language. It should be possible to implement this language so that
the user need not specify the solution technique to be used. In such an

implementation, the user would specify the model and the results required;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



145

the implementation itself would then determine which solution technique
would be appropriate to these user specificationms.

Since the computer system designer will usually be interested in a
parameter space of models, we would recommend research to extend and implement
our language to allow the user to specify a parameter space of models and
criteria for selection of optimal models. This extended language implementa~-
tion would be responsible for searching the parameter space and reporting

to the user the optimal model or models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bl

B2

B3

B4

BS

B6

Cl

c2

c3

C4

C5

cé

c7

BIBLIOGRAPHY |

Baskett, F. Mathematical Models of Multiprogrammed Computer Systems.
TSN-17, Computation Center, The University of Texas at Austin, (1971).

‘Baskett, F., Chandy, K. M., Muntz, R. R., and Palacios-Gomez, F. "Open,

Closed and Mixed Networks of Queues with Different Classes of Customers",.

-to appear JACM (1975).

Bell, C. G. and Newell, A. Computer Structures: Readings and Examples.
McGraw-Hill Book Company, 1971.

Brown, R. M. An Analytic Model of a Large Scale Interactive System
Including the Effects of Finite Main Memory. M. A. Thesis, Department
of Computer Sciences, University of Texas at Austin, (1974).

Browne, J. C., Chandy, K. M., Brown, R. M., Keller, T. K., Towsley, D.
and Dissly, C. W. "Hierarchical Techniques for Development of Realistic
Models of Complex Computer Systems", to appear IEEE Tramsactions on

Computers, (1975).

Buzen, J. Queueing Network Models of Multiprogramming. Ph.D. Disserta—-
tion, Division of Engineering and Applied Physics, Harvard University,
(1971).

Chandy, K. M. '"The Analysis and Solutions for General Queueing Networks",
Proceedings Sixth Annual Princeton Conference on Information Sciences,

Princeton. University, (1972).

Chandy, K. M., Herzog, U., and Woo, L. "Approximate Analysis of General
Queueing Networks', IBM Journal of Research and Development, (January,
1975).

Chandy, K. M., Herzog, U., and Woo, L. "Parametric Analysis of Queueing
Network Models', IBM Journal of Research and Development, (January
1975).

Chandy, K. M., Howard, J. H. and Towsley, D. F. "Station Balance",
submitted, JACM (1975).

Cox, D. R. "A Use of Complex Probabilities in the Theory of Stochastic
Processes', Proceedings Cambridge Philosophical Society 51 (1955),

Crane, M. A. and Iglehart, D. I. "Simulation of Stable Stochastic
Systems I: General Multiserver Queues'", JACM 21, 1 (1974) pp. 103-113.

Crane, M. A. and Iglehart, D. I. "Simulation of Stable Stochastic
Systems II: Markov Chains", JACM 21, 1 (1974), pp. 114-123.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



c8

Dl

Fl

F2

Gl

G2

G3

Hl

H2

H3

H4

11

Jl

J2

147

Courtois, P. J. and Georges, J. '"On a Single Server Finite Queueing
Model with State Dependent Arrival and Service Processes", Operations
Regearch, (1971) pp. 424-434.

Drake, A. W. Fundamentals of Applied Probability Theory. McGraw-Hill
Book Company, 1967.

Foster, D. V., McGehearty, P. F., Sauer, C. H. and Waggoner, C. N.
YA Language for Analysis of Queueing Models", Proceedings Fifth
Annual Pittsburgh Modeling and Simulation Conference, University of
Pittsburgh, (1974).

Foster, D. V. File Assignment in Memory Hierarchies, Ph.D. Dissertation,
Department of Computer Sciences, University of Texas at Austin, (1975).

Gaver, D. P. '"Probability Models for Multiprogrammed Computer Systems",
JACM 14, 3 (1967) pp. 423-438.

Gaver, D. P. and Shedler, G. S. "“Approximate Models for Processor
Utilization in Multiprogrammed Computer Systems'", SIAM Journal of
Computing 2, 3 (1973) pp. 183-192.

Gordon, W. J. and Newell, G. F. '"Closed Queueing Systems with Exponential
Servers", Operations Research 15, (1967) pp. 254-265.

Herzog, U., Woo, L. and Chandy, K. M. '"Solution of Queueing Problems
by a Recursive Technique", to appear IBM Journal of Research and
Development.

Herzog, U. "Efficient Priority Strategies for Switching Centers in
Communication Networks', Proceedings Second Texas Conference on Computing
Systems, University of Texas at Austin, (1973).

Hogarth, J. Optimization and Analysis of Queueing Networks. Ph.D.
Dissertation, Department of Computer Sciences, University of Texas at
Austin, (1975).

Hu, T. C. Integer Programming and Network Flows. Addison-Wesley, 1969.

Irani, K. B. and Wallace, V. L. "On Network Linguistics and the
Conversational Design of Queueing Networks", JACM 18, 4 (1971) pp. 616-
629.

Jackson, J. R. '"Jobshop-like Queueing Systems', Management Science 10,
1 (1963) pp. 131-142.

Johnson, D. S. A Process-Oriented Model of Resource Demandé in Large,
Multiprocessing Computer Utilities. TSN-29, Computation Center, The
University of Texas at Austin, (1972).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



K4

L1

L2

L3

L4

M1

M2

M3

M4

M5

Pl

R1

148

Keller, T. W. and Chandy, K. M. ‘"“Computer Models with Constrained
Parallel Processors', Proceedings 1974 Sagamore Conference on Parallel

Processing.

Kleinrock, L. Communication Nets. McGraw-Hill Book Company, 1964.

Kobayashi, H. ''Applications of the Diffusion Approximation to Queueing
Networks I: Equilibrium Queue Distributions", JACM 21, 2 (1974)
pp. 316-328.

Kobayashi, H. "Application‘s--dfﬂ the Diffusion Approximation to Queueing
Networks II: Nonequilibrium Distributions and Applications to Computer
Modeling', JACM 21, 3 (1974) pp. 459-469.

Lavenberg, S. S. [Efficilent Estimation Via Simulation of Work-Rates in
Closed Queueing Networks. RJ 1390, IBM Research Laboratory, San Jose,
California, (1974).

Lee, C. C. Queueing Models of Device Utilization in Multiprogrammed
Computer Systems, TR-7, Department of Computer Sciences, The University
of Texas at Austin, (December 1972).

Little, J. D. C. "A Proof for the Queueing Formula L = Aw",
Operations Research 9 (1966) pp. 383-387.

Liu, C. A. forthcoming M.A. Thesis, Cepartment of Computer Sciences,
University of Texas at Austin,

Martin, J. Design of Real-Time Computer Systems. Prentice-Hall, 1967.

McGehearty, P. F. QSIM, An Implementation of a Language for Analysis
of Queueing Models. M. A. Thesis, Department of Computer Sciences,
University of Texas at Austin, (1974).

Mood, A. M. and Graybill, F. A. Introduction to the Theory of Statistics.
McGraw~-Hill Book Company, 1963.

Morse, P. M. Queues, Inventories and Maintenance. John Wiley and Soms,
1958.

Muntz, R. R. Poisson Departure Processes and Queueing Networks,
IBM Research Report RC-4145 (1972).

Peebles, R. W. '"A Homogeneous Network of Computers for Data Sharing",
Lecture presented Department of Computer Sciences, University of Texas
at Austin, October 16, 1974.

Reiser, M. and Kobayashi, H. '"Queueing Networks with Several Closed
Subchains: Theory and Computational Algorithms", to appear IBM Journal
of Research and Development.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



149

R2 Rockafellar, R. T. Convex Analysis. Princeton University Press, 1970.

S1 Sauer, C. H. and Chandy, K. M. '"Approximate Analysis of Central Server
Models", to appear IBM Journal of Research and Development, (1975).

82 Sauer, C. H. "Simulation Analysis of Generalized Queueing Networks",
to appear Proceedings Summer Computer Simulation Conference, (1975).

S3 Shedler, G. S. A Cyclic Queue Model of A Paging Machine. IBM Research
Report, RC 2814, Yorktown Heights, New York. (March 1970).

84 Smith, J. L. "An Analysis of Time Sharing Computer Systems Using
Markov Models", Proceedings Spring Joint Computer Conference, (1966).

T1 Towsley, D. F. Queueing Networks with State Dependent Branching
‘Probabilities. Forthcoming Ph.D. Dissertation, Department of Computer
Sciences, University of Texas at Austin.

Wl Wallace, V. L. and Rosenberg, R. S. 'Markovian Models and Numerical
Analysis of Computer System Behavior", Proceedings Spring Joint
Computer Conference, (1966).

W2 Williams, A. C. and Bhandiwad, R. Private communication.

W3 Wolfe, P. '"Methods of Nonlinear Programming', in Abadie, J., editor,
Nonlinear Programming. John Wiley and Sons, 1967.

W4 Wyszewianski, R. J. Feedback Queues in the Modeling of Computer
Systems: A Survey. TR 74~1, Department of Industrial and Operations

Engineering, University of Michigan, (1974).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VITA

Charles Herbert Sauer was born in Betheseda, Maryland on August 14, 1947,

the son of Doris Johnson Sauer and Herbert Irvin Sauer. After graduation
from Hickman High School, Columbia, Missouri, in 1965, he entered Carleton
College, Northfield, Minmesota. He continued his studies at the University
of Missouri, Columbia, Missouri, in 1966 and at San Francisco State College,
San Francisco, California, in 1967-68. After an interruption to pursue
musical interests, he continued studies at the University of Texas at Austin,
Austin, Texas, in 1969, receiving the degree of Bachelor of Arts with a major
in mathematics from the University of Texas at Austin in December 1970. 1In
September 1971 he entered the Graduate School of the University of Texas at

Austin.

Permanent address: 1635 Highridge Circle
Columbia, Missouri 65201

" This dissertation was typed by Ann M. Patterson.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



